]> bbs.cooldavid.org Git - net-next-2.6.git/blob - fs/btrfs/inode.c
Btrfs: Add mount -o compress-force
[net-next-2.6.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include "compat.h"
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "transaction.h"
43 #include "btrfs_inode.h"
44 #include "ioctl.h"
45 #include "print-tree.h"
46 #include "volumes.h"
47 #include "ordered-data.h"
48 #include "xattr.h"
49 #include "tree-log.h"
50 #include "compression.h"
51 #include "locking.h"
52
53 struct btrfs_iget_args {
54         u64 ino;
55         struct btrfs_root *root;
56 };
57
58 static const struct inode_operations btrfs_dir_inode_operations;
59 static const struct inode_operations btrfs_symlink_inode_operations;
60 static const struct inode_operations btrfs_dir_ro_inode_operations;
61 static const struct inode_operations btrfs_special_inode_operations;
62 static const struct inode_operations btrfs_file_inode_operations;
63 static const struct address_space_operations btrfs_aops;
64 static const struct address_space_operations btrfs_symlink_aops;
65 static const struct file_operations btrfs_dir_file_operations;
66 static struct extent_io_ops btrfs_extent_io_ops;
67
68 static struct kmem_cache *btrfs_inode_cachep;
69 struct kmem_cache *btrfs_trans_handle_cachep;
70 struct kmem_cache *btrfs_transaction_cachep;
71 struct kmem_cache *btrfs_path_cachep;
72
73 #define S_SHIFT 12
74 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
76         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
77         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
78         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
79         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
80         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
81         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
82 };
83
84 static void btrfs_truncate(struct inode *inode);
85 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
86 static noinline int cow_file_range(struct inode *inode,
87                                    struct page *locked_page,
88                                    u64 start, u64 end, int *page_started,
89                                    unsigned long *nr_written, int unlock);
90
91 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92                                      struct inode *inode,  struct inode *dir)
93 {
94         int err;
95
96         err = btrfs_init_acl(trans, inode, dir);
97         if (!err)
98                 err = btrfs_xattr_security_init(trans, inode, dir);
99         return err;
100 }
101
102 /*
103  * this does all the hard work for inserting an inline extent into
104  * the btree.  The caller should have done a btrfs_drop_extents so that
105  * no overlapping inline items exist in the btree
106  */
107 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
108                                 struct btrfs_root *root, struct inode *inode,
109                                 u64 start, size_t size, size_t compressed_size,
110                                 struct page **compressed_pages)
111 {
112         struct btrfs_key key;
113         struct btrfs_path *path;
114         struct extent_buffer *leaf;
115         struct page *page = NULL;
116         char *kaddr;
117         unsigned long ptr;
118         struct btrfs_file_extent_item *ei;
119         int err = 0;
120         int ret;
121         size_t cur_size = size;
122         size_t datasize;
123         unsigned long offset;
124         int use_compress = 0;
125
126         if (compressed_size && compressed_pages) {
127                 use_compress = 1;
128                 cur_size = compressed_size;
129         }
130
131         path = btrfs_alloc_path();
132         if (!path)
133                 return -ENOMEM;
134
135         path->leave_spinning = 1;
136         btrfs_set_trans_block_group(trans, inode);
137
138         key.objectid = inode->i_ino;
139         key.offset = start;
140         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
141         datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143         inode_add_bytes(inode, size);
144         ret = btrfs_insert_empty_item(trans, root, path, &key,
145                                       datasize);
146         BUG_ON(ret);
147         if (ret) {
148                 err = ret;
149                 goto fail;
150         }
151         leaf = path->nodes[0];
152         ei = btrfs_item_ptr(leaf, path->slots[0],
153                             struct btrfs_file_extent_item);
154         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156         btrfs_set_file_extent_encryption(leaf, ei, 0);
157         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159         ptr = btrfs_file_extent_inline_start(ei);
160
161         if (use_compress) {
162                 struct page *cpage;
163                 int i = 0;
164                 while (compressed_size > 0) {
165                         cpage = compressed_pages[i];
166                         cur_size = min_t(unsigned long, compressed_size,
167                                        PAGE_CACHE_SIZE);
168
169                         kaddr = kmap_atomic(cpage, KM_USER0);
170                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
171                         kunmap_atomic(kaddr, KM_USER0);
172
173                         i++;
174                         ptr += cur_size;
175                         compressed_size -= cur_size;
176                 }
177                 btrfs_set_file_extent_compression(leaf, ei,
178                                                   BTRFS_COMPRESS_ZLIB);
179         } else {
180                 page = find_get_page(inode->i_mapping,
181                                      start >> PAGE_CACHE_SHIFT);
182                 btrfs_set_file_extent_compression(leaf, ei, 0);
183                 kaddr = kmap_atomic(page, KM_USER0);
184                 offset = start & (PAGE_CACHE_SIZE - 1);
185                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186                 kunmap_atomic(kaddr, KM_USER0);
187                 page_cache_release(page);
188         }
189         btrfs_mark_buffer_dirty(leaf);
190         btrfs_free_path(path);
191
192         /*
193          * we're an inline extent, so nobody can
194          * extend the file past i_size without locking
195          * a page we already have locked.
196          *
197          * We must do any isize and inode updates
198          * before we unlock the pages.  Otherwise we
199          * could end up racing with unlink.
200          */
201         BTRFS_I(inode)->disk_i_size = inode->i_size;
202         btrfs_update_inode(trans, root, inode);
203
204         return 0;
205 fail:
206         btrfs_free_path(path);
207         return err;
208 }
209
210
211 /*
212  * conditionally insert an inline extent into the file.  This
213  * does the checks required to make sure the data is small enough
214  * to fit as an inline extent.
215  */
216 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
217                                  struct btrfs_root *root,
218                                  struct inode *inode, u64 start, u64 end,
219                                  size_t compressed_size,
220                                  struct page **compressed_pages)
221 {
222         u64 isize = i_size_read(inode);
223         u64 actual_end = min(end + 1, isize);
224         u64 inline_len = actual_end - start;
225         u64 aligned_end = (end + root->sectorsize - 1) &
226                         ~((u64)root->sectorsize - 1);
227         u64 hint_byte;
228         u64 data_len = inline_len;
229         int ret;
230
231         if (compressed_size)
232                 data_len = compressed_size;
233
234         if (start > 0 ||
235             actual_end >= PAGE_CACHE_SIZE ||
236             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237             (!compressed_size &&
238             (actual_end & (root->sectorsize - 1)) == 0) ||
239             end + 1 < isize ||
240             data_len > root->fs_info->max_inline) {
241                 return 1;
242         }
243
244         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
245                                  &hint_byte, 1);
246         BUG_ON(ret);
247
248         if (isize > actual_end)
249                 inline_len = min_t(u64, isize, actual_end);
250         ret = insert_inline_extent(trans, root, inode, start,
251                                    inline_len, compressed_size,
252                                    compressed_pages);
253         BUG_ON(ret);
254         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
255         return 0;
256 }
257
258 struct async_extent {
259         u64 start;
260         u64 ram_size;
261         u64 compressed_size;
262         struct page **pages;
263         unsigned long nr_pages;
264         struct list_head list;
265 };
266
267 struct async_cow {
268         struct inode *inode;
269         struct btrfs_root *root;
270         struct page *locked_page;
271         u64 start;
272         u64 end;
273         struct list_head extents;
274         struct btrfs_work work;
275 };
276
277 static noinline int add_async_extent(struct async_cow *cow,
278                                      u64 start, u64 ram_size,
279                                      u64 compressed_size,
280                                      struct page **pages,
281                                      unsigned long nr_pages)
282 {
283         struct async_extent *async_extent;
284
285         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286         async_extent->start = start;
287         async_extent->ram_size = ram_size;
288         async_extent->compressed_size = compressed_size;
289         async_extent->pages = pages;
290         async_extent->nr_pages = nr_pages;
291         list_add_tail(&async_extent->list, &cow->extents);
292         return 0;
293 }
294
295 /*
296  * we create compressed extents in two phases.  The first
297  * phase compresses a range of pages that have already been
298  * locked (both pages and state bits are locked).
299  *
300  * This is done inside an ordered work queue, and the compression
301  * is spread across many cpus.  The actual IO submission is step
302  * two, and the ordered work queue takes care of making sure that
303  * happens in the same order things were put onto the queue by
304  * writepages and friends.
305  *
306  * If this code finds it can't get good compression, it puts an
307  * entry onto the work queue to write the uncompressed bytes.  This
308  * makes sure that both compressed inodes and uncompressed inodes
309  * are written in the same order that pdflush sent them down.
310  */
311 static noinline int compress_file_range(struct inode *inode,
312                                         struct page *locked_page,
313                                         u64 start, u64 end,
314                                         struct async_cow *async_cow,
315                                         int *num_added)
316 {
317         struct btrfs_root *root = BTRFS_I(inode)->root;
318         struct btrfs_trans_handle *trans;
319         u64 num_bytes;
320         u64 orig_start;
321         u64 disk_num_bytes;
322         u64 blocksize = root->sectorsize;
323         u64 actual_end;
324         u64 isize = i_size_read(inode);
325         int ret = 0;
326         struct page **pages = NULL;
327         unsigned long nr_pages;
328         unsigned long nr_pages_ret = 0;
329         unsigned long total_compressed = 0;
330         unsigned long total_in = 0;
331         unsigned long max_compressed = 128 * 1024;
332         unsigned long max_uncompressed = 128 * 1024;
333         int i;
334         int will_compress;
335
336         orig_start = start;
337
338         actual_end = min_t(u64, isize, end + 1);
339 again:
340         will_compress = 0;
341         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
343
344         /*
345          * we don't want to send crud past the end of i_size through
346          * compression, that's just a waste of CPU time.  So, if the
347          * end of the file is before the start of our current
348          * requested range of bytes, we bail out to the uncompressed
349          * cleanup code that can deal with all of this.
350          *
351          * It isn't really the fastest way to fix things, but this is a
352          * very uncommon corner.
353          */
354         if (actual_end <= start)
355                 goto cleanup_and_bail_uncompressed;
356
357         total_compressed = actual_end - start;
358
359         /* we want to make sure that amount of ram required to uncompress
360          * an extent is reasonable, so we limit the total size in ram
361          * of a compressed extent to 128k.  This is a crucial number
362          * because it also controls how easily we can spread reads across
363          * cpus for decompression.
364          *
365          * We also want to make sure the amount of IO required to do
366          * a random read is reasonably small, so we limit the size of
367          * a compressed extent to 128k.
368          */
369         total_compressed = min(total_compressed, max_uncompressed);
370         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
371         num_bytes = max(blocksize,  num_bytes);
372         disk_num_bytes = num_bytes;
373         total_in = 0;
374         ret = 0;
375
376         /*
377          * we do compression for mount -o compress and when the
378          * inode has not been flagged as nocompress.  This flag can
379          * change at any time if we discover bad compression ratios.
380          */
381         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
382             btrfs_test_opt(root, COMPRESS)) {
383                 WARN_ON(pages);
384                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
385
386                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
387                                                 total_compressed, pages,
388                                                 nr_pages, &nr_pages_ret,
389                                                 &total_in,
390                                                 &total_compressed,
391                                                 max_compressed);
392
393                 if (!ret) {
394                         unsigned long offset = total_compressed &
395                                 (PAGE_CACHE_SIZE - 1);
396                         struct page *page = pages[nr_pages_ret - 1];
397                         char *kaddr;
398
399                         /* zero the tail end of the last page, we might be
400                          * sending it down to disk
401                          */
402                         if (offset) {
403                                 kaddr = kmap_atomic(page, KM_USER0);
404                                 memset(kaddr + offset, 0,
405                                        PAGE_CACHE_SIZE - offset);
406                                 kunmap_atomic(kaddr, KM_USER0);
407                         }
408                         will_compress = 1;
409                 }
410         }
411         if (start == 0) {
412                 trans = btrfs_join_transaction(root, 1);
413                 BUG_ON(!trans);
414                 btrfs_set_trans_block_group(trans, inode);
415
416                 /* lets try to make an inline extent */
417                 if (ret || total_in < (actual_end - start)) {
418                         /* we didn't compress the entire range, try
419                          * to make an uncompressed inline extent.
420                          */
421                         ret = cow_file_range_inline(trans, root, inode,
422                                                     start, end, 0, NULL);
423                 } else {
424                         /* try making a compressed inline extent */
425                         ret = cow_file_range_inline(trans, root, inode,
426                                                     start, end,
427                                                     total_compressed, pages);
428                 }
429                 if (ret == 0) {
430                         /*
431                          * inline extent creation worked, we don't need
432                          * to create any more async work items.  Unlock
433                          * and free up our temp pages.
434                          */
435                         extent_clear_unlock_delalloc(inode,
436                              &BTRFS_I(inode)->io_tree,
437                              start, end, NULL,
438                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
439                              EXTENT_CLEAR_DELALLOC |
440                              EXTENT_CLEAR_ACCOUNTING |
441                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
442
443                         btrfs_end_transaction(trans, root);
444                         goto free_pages_out;
445                 }
446                 btrfs_end_transaction(trans, root);
447         }
448
449         if (will_compress) {
450                 /*
451                  * we aren't doing an inline extent round the compressed size
452                  * up to a block size boundary so the allocator does sane
453                  * things
454                  */
455                 total_compressed = (total_compressed + blocksize - 1) &
456                         ~(blocksize - 1);
457
458                 /*
459                  * one last check to make sure the compression is really a
460                  * win, compare the page count read with the blocks on disk
461                  */
462                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
463                         ~(PAGE_CACHE_SIZE - 1);
464                 if (total_compressed >= total_in) {
465                         will_compress = 0;
466                 } else {
467                         disk_num_bytes = total_compressed;
468                         num_bytes = total_in;
469                 }
470         }
471         if (!will_compress && pages) {
472                 /*
473                  * the compression code ran but failed to make things smaller,
474                  * free any pages it allocated and our page pointer array
475                  */
476                 for (i = 0; i < nr_pages_ret; i++) {
477                         WARN_ON(pages[i]->mapping);
478                         page_cache_release(pages[i]);
479                 }
480                 kfree(pages);
481                 pages = NULL;
482                 total_compressed = 0;
483                 nr_pages_ret = 0;
484
485                 /* flag the file so we don't compress in the future */
486                 if (!btrfs_test_opt(root, FORCE_COMPRESS))
487                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
488         }
489         if (will_compress) {
490                 *num_added += 1;
491
492                 /* the async work queues will take care of doing actual
493                  * allocation on disk for these compressed pages,
494                  * and will submit them to the elevator.
495                  */
496                 add_async_extent(async_cow, start, num_bytes,
497                                  total_compressed, pages, nr_pages_ret);
498
499                 if (start + num_bytes < end && start + num_bytes < actual_end) {
500                         start += num_bytes;
501                         pages = NULL;
502                         cond_resched();
503                         goto again;
504                 }
505         } else {
506 cleanup_and_bail_uncompressed:
507                 /*
508                  * No compression, but we still need to write the pages in
509                  * the file we've been given so far.  redirty the locked
510                  * page if it corresponds to our extent and set things up
511                  * for the async work queue to run cow_file_range to do
512                  * the normal delalloc dance
513                  */
514                 if (page_offset(locked_page) >= start &&
515                     page_offset(locked_page) <= end) {
516                         __set_page_dirty_nobuffers(locked_page);
517                         /* unlocked later on in the async handlers */
518                 }
519                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
520                 *num_added += 1;
521         }
522
523 out:
524         return 0;
525
526 free_pages_out:
527         for (i = 0; i < nr_pages_ret; i++) {
528                 WARN_ON(pages[i]->mapping);
529                 page_cache_release(pages[i]);
530         }
531         kfree(pages);
532
533         goto out;
534 }
535
536 /*
537  * phase two of compressed writeback.  This is the ordered portion
538  * of the code, which only gets called in the order the work was
539  * queued.  We walk all the async extents created by compress_file_range
540  * and send them down to the disk.
541  */
542 static noinline int submit_compressed_extents(struct inode *inode,
543                                               struct async_cow *async_cow)
544 {
545         struct async_extent *async_extent;
546         u64 alloc_hint = 0;
547         struct btrfs_trans_handle *trans;
548         struct btrfs_key ins;
549         struct extent_map *em;
550         struct btrfs_root *root = BTRFS_I(inode)->root;
551         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
552         struct extent_io_tree *io_tree;
553         int ret = 0;
554
555         if (list_empty(&async_cow->extents))
556                 return 0;
557
558
559         while (!list_empty(&async_cow->extents)) {
560                 async_extent = list_entry(async_cow->extents.next,
561                                           struct async_extent, list);
562                 list_del(&async_extent->list);
563
564                 io_tree = &BTRFS_I(inode)->io_tree;
565
566 retry:
567                 /* did the compression code fall back to uncompressed IO? */
568                 if (!async_extent->pages) {
569                         int page_started = 0;
570                         unsigned long nr_written = 0;
571
572                         lock_extent(io_tree, async_extent->start,
573                                     async_extent->start +
574                                     async_extent->ram_size - 1, GFP_NOFS);
575
576                         /* allocate blocks */
577                         ret = cow_file_range(inode, async_cow->locked_page,
578                                              async_extent->start,
579                                              async_extent->start +
580                                              async_extent->ram_size - 1,
581                                              &page_started, &nr_written, 0);
582
583                         /*
584                          * if page_started, cow_file_range inserted an
585                          * inline extent and took care of all the unlocking
586                          * and IO for us.  Otherwise, we need to submit
587                          * all those pages down to the drive.
588                          */
589                         if (!page_started && !ret)
590                                 extent_write_locked_range(io_tree,
591                                                   inode, async_extent->start,
592                                                   async_extent->start +
593                                                   async_extent->ram_size - 1,
594                                                   btrfs_get_extent,
595                                                   WB_SYNC_ALL);
596                         kfree(async_extent);
597                         cond_resched();
598                         continue;
599                 }
600
601                 lock_extent(io_tree, async_extent->start,
602                             async_extent->start + async_extent->ram_size - 1,
603                             GFP_NOFS);
604
605                 trans = btrfs_join_transaction(root, 1);
606                 ret = btrfs_reserve_extent(trans, root,
607                                            async_extent->compressed_size,
608                                            async_extent->compressed_size,
609                                            0, alloc_hint,
610                                            (u64)-1, &ins, 1);
611                 btrfs_end_transaction(trans, root);
612
613                 if (ret) {
614                         int i;
615                         for (i = 0; i < async_extent->nr_pages; i++) {
616                                 WARN_ON(async_extent->pages[i]->mapping);
617                                 page_cache_release(async_extent->pages[i]);
618                         }
619                         kfree(async_extent->pages);
620                         async_extent->nr_pages = 0;
621                         async_extent->pages = NULL;
622                         unlock_extent(io_tree, async_extent->start,
623                                       async_extent->start +
624                                       async_extent->ram_size - 1, GFP_NOFS);
625                         goto retry;
626                 }
627
628                 /*
629                  * here we're doing allocation and writeback of the
630                  * compressed pages
631                  */
632                 btrfs_drop_extent_cache(inode, async_extent->start,
633                                         async_extent->start +
634                                         async_extent->ram_size - 1, 0);
635
636                 em = alloc_extent_map(GFP_NOFS);
637                 em->start = async_extent->start;
638                 em->len = async_extent->ram_size;
639                 em->orig_start = em->start;
640
641                 em->block_start = ins.objectid;
642                 em->block_len = ins.offset;
643                 em->bdev = root->fs_info->fs_devices->latest_bdev;
644                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
645                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
646
647                 while (1) {
648                         write_lock(&em_tree->lock);
649                         ret = add_extent_mapping(em_tree, em);
650                         write_unlock(&em_tree->lock);
651                         if (ret != -EEXIST) {
652                                 free_extent_map(em);
653                                 break;
654                         }
655                         btrfs_drop_extent_cache(inode, async_extent->start,
656                                                 async_extent->start +
657                                                 async_extent->ram_size - 1, 0);
658                 }
659
660                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
661                                                ins.objectid,
662                                                async_extent->ram_size,
663                                                ins.offset,
664                                                BTRFS_ORDERED_COMPRESSED);
665                 BUG_ON(ret);
666
667                 /*
668                  * clear dirty, set writeback and unlock the pages.
669                  */
670                 extent_clear_unlock_delalloc(inode,
671                                 &BTRFS_I(inode)->io_tree,
672                                 async_extent->start,
673                                 async_extent->start +
674                                 async_extent->ram_size - 1,
675                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
676                                 EXTENT_CLEAR_UNLOCK |
677                                 EXTENT_CLEAR_DELALLOC |
678                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
679
680                 ret = btrfs_submit_compressed_write(inode,
681                                     async_extent->start,
682                                     async_extent->ram_size,
683                                     ins.objectid,
684                                     ins.offset, async_extent->pages,
685                                     async_extent->nr_pages);
686
687                 BUG_ON(ret);
688                 alloc_hint = ins.objectid + ins.offset;
689                 kfree(async_extent);
690                 cond_resched();
691         }
692
693         return 0;
694 }
695
696 /*
697  * when extent_io.c finds a delayed allocation range in the file,
698  * the call backs end up in this code.  The basic idea is to
699  * allocate extents on disk for the range, and create ordered data structs
700  * in ram to track those extents.
701  *
702  * locked_page is the page that writepage had locked already.  We use
703  * it to make sure we don't do extra locks or unlocks.
704  *
705  * *page_started is set to one if we unlock locked_page and do everything
706  * required to start IO on it.  It may be clean and already done with
707  * IO when we return.
708  */
709 static noinline int cow_file_range(struct inode *inode,
710                                    struct page *locked_page,
711                                    u64 start, u64 end, int *page_started,
712                                    unsigned long *nr_written,
713                                    int unlock)
714 {
715         struct btrfs_root *root = BTRFS_I(inode)->root;
716         struct btrfs_trans_handle *trans;
717         u64 alloc_hint = 0;
718         u64 num_bytes;
719         unsigned long ram_size;
720         u64 disk_num_bytes;
721         u64 cur_alloc_size;
722         u64 blocksize = root->sectorsize;
723         u64 actual_end;
724         u64 isize = i_size_read(inode);
725         struct btrfs_key ins;
726         struct extent_map *em;
727         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
728         int ret = 0;
729
730         trans = btrfs_join_transaction(root, 1);
731         BUG_ON(!trans);
732         btrfs_set_trans_block_group(trans, inode);
733
734         actual_end = min_t(u64, isize, end + 1);
735
736         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
737         num_bytes = max(blocksize,  num_bytes);
738         disk_num_bytes = num_bytes;
739         ret = 0;
740
741         if (start == 0) {
742                 /* lets try to make an inline extent */
743                 ret = cow_file_range_inline(trans, root, inode,
744                                             start, end, 0, NULL);
745                 if (ret == 0) {
746                         extent_clear_unlock_delalloc(inode,
747                                      &BTRFS_I(inode)->io_tree,
748                                      start, end, NULL,
749                                      EXTENT_CLEAR_UNLOCK_PAGE |
750                                      EXTENT_CLEAR_UNLOCK |
751                                      EXTENT_CLEAR_DELALLOC |
752                                      EXTENT_CLEAR_ACCOUNTING |
753                                      EXTENT_CLEAR_DIRTY |
754                                      EXTENT_SET_WRITEBACK |
755                                      EXTENT_END_WRITEBACK);
756
757                         *nr_written = *nr_written +
758                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
759                         *page_started = 1;
760                         ret = 0;
761                         goto out;
762                 }
763         }
764
765         BUG_ON(disk_num_bytes >
766                btrfs_super_total_bytes(&root->fs_info->super_copy));
767
768
769         read_lock(&BTRFS_I(inode)->extent_tree.lock);
770         em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
771                                    start, num_bytes);
772         if (em) {
773                 /*
774                  * if block start isn't an actual block number then find the
775                  * first block in this inode and use that as a hint.  If that
776                  * block is also bogus then just don't worry about it.
777                  */
778                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
779                         free_extent_map(em);
780                         em = search_extent_mapping(em_tree, 0, 0);
781                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
782                                 alloc_hint = em->block_start;
783                         if (em)
784                                 free_extent_map(em);
785                 } else {
786                         alloc_hint = em->block_start;
787                         free_extent_map(em);
788                 }
789         }
790         read_unlock(&BTRFS_I(inode)->extent_tree.lock);
791         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
792
793         while (disk_num_bytes > 0) {
794                 unsigned long op;
795
796                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
797                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
798                                            root->sectorsize, 0, alloc_hint,
799                                            (u64)-1, &ins, 1);
800                 BUG_ON(ret);
801
802                 em = alloc_extent_map(GFP_NOFS);
803                 em->start = start;
804                 em->orig_start = em->start;
805                 ram_size = ins.offset;
806                 em->len = ins.offset;
807
808                 em->block_start = ins.objectid;
809                 em->block_len = ins.offset;
810                 em->bdev = root->fs_info->fs_devices->latest_bdev;
811                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
812
813                 while (1) {
814                         write_lock(&em_tree->lock);
815                         ret = add_extent_mapping(em_tree, em);
816                         write_unlock(&em_tree->lock);
817                         if (ret != -EEXIST) {
818                                 free_extent_map(em);
819                                 break;
820                         }
821                         btrfs_drop_extent_cache(inode, start,
822                                                 start + ram_size - 1, 0);
823                 }
824
825                 cur_alloc_size = ins.offset;
826                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
827                                                ram_size, cur_alloc_size, 0);
828                 BUG_ON(ret);
829
830                 if (root->root_key.objectid ==
831                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
832                         ret = btrfs_reloc_clone_csums(inode, start,
833                                                       cur_alloc_size);
834                         BUG_ON(ret);
835                 }
836
837                 if (disk_num_bytes < cur_alloc_size)
838                         break;
839
840                 /* we're not doing compressed IO, don't unlock the first
841                  * page (which the caller expects to stay locked), don't
842                  * clear any dirty bits and don't set any writeback bits
843                  *
844                  * Do set the Private2 bit so we know this page was properly
845                  * setup for writepage
846                  */
847                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
848                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
849                         EXTENT_SET_PRIVATE2;
850
851                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
852                                              start, start + ram_size - 1,
853                                              locked_page, op);
854                 disk_num_bytes -= cur_alloc_size;
855                 num_bytes -= cur_alloc_size;
856                 alloc_hint = ins.objectid + ins.offset;
857                 start += cur_alloc_size;
858         }
859 out:
860         ret = 0;
861         btrfs_end_transaction(trans, root);
862
863         return ret;
864 }
865
866 /*
867  * work queue call back to started compression on a file and pages
868  */
869 static noinline void async_cow_start(struct btrfs_work *work)
870 {
871         struct async_cow *async_cow;
872         int num_added = 0;
873         async_cow = container_of(work, struct async_cow, work);
874
875         compress_file_range(async_cow->inode, async_cow->locked_page,
876                             async_cow->start, async_cow->end, async_cow,
877                             &num_added);
878         if (num_added == 0)
879                 async_cow->inode = NULL;
880 }
881
882 /*
883  * work queue call back to submit previously compressed pages
884  */
885 static noinline void async_cow_submit(struct btrfs_work *work)
886 {
887         struct async_cow *async_cow;
888         struct btrfs_root *root;
889         unsigned long nr_pages;
890
891         async_cow = container_of(work, struct async_cow, work);
892
893         root = async_cow->root;
894         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
895                 PAGE_CACHE_SHIFT;
896
897         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
898
899         if (atomic_read(&root->fs_info->async_delalloc_pages) <
900             5 * 1042 * 1024 &&
901             waitqueue_active(&root->fs_info->async_submit_wait))
902                 wake_up(&root->fs_info->async_submit_wait);
903
904         if (async_cow->inode)
905                 submit_compressed_extents(async_cow->inode, async_cow);
906 }
907
908 static noinline void async_cow_free(struct btrfs_work *work)
909 {
910         struct async_cow *async_cow;
911         async_cow = container_of(work, struct async_cow, work);
912         kfree(async_cow);
913 }
914
915 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
916                                 u64 start, u64 end, int *page_started,
917                                 unsigned long *nr_written)
918 {
919         struct async_cow *async_cow;
920         struct btrfs_root *root = BTRFS_I(inode)->root;
921         unsigned long nr_pages;
922         u64 cur_end;
923         int limit = 10 * 1024 * 1042;
924
925         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
926                          1, 0, NULL, GFP_NOFS);
927         while (start < end) {
928                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
929                 async_cow->inode = inode;
930                 async_cow->root = root;
931                 async_cow->locked_page = locked_page;
932                 async_cow->start = start;
933
934                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
935                         cur_end = end;
936                 else
937                         cur_end = min(end, start + 512 * 1024 - 1);
938
939                 async_cow->end = cur_end;
940                 INIT_LIST_HEAD(&async_cow->extents);
941
942                 async_cow->work.func = async_cow_start;
943                 async_cow->work.ordered_func = async_cow_submit;
944                 async_cow->work.ordered_free = async_cow_free;
945                 async_cow->work.flags = 0;
946
947                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
948                         PAGE_CACHE_SHIFT;
949                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
950
951                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
952                                    &async_cow->work);
953
954                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
955                         wait_event(root->fs_info->async_submit_wait,
956                            (atomic_read(&root->fs_info->async_delalloc_pages) <
957                             limit));
958                 }
959
960                 while (atomic_read(&root->fs_info->async_submit_draining) &&
961                       atomic_read(&root->fs_info->async_delalloc_pages)) {
962                         wait_event(root->fs_info->async_submit_wait,
963                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
964                            0));
965                 }
966
967                 *nr_written += nr_pages;
968                 start = cur_end + 1;
969         }
970         *page_started = 1;
971         return 0;
972 }
973
974 static noinline int csum_exist_in_range(struct btrfs_root *root,
975                                         u64 bytenr, u64 num_bytes)
976 {
977         int ret;
978         struct btrfs_ordered_sum *sums;
979         LIST_HEAD(list);
980
981         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
982                                        bytenr + num_bytes - 1, &list);
983         if (ret == 0 && list_empty(&list))
984                 return 0;
985
986         while (!list_empty(&list)) {
987                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
988                 list_del(&sums->list);
989                 kfree(sums);
990         }
991         return 1;
992 }
993
994 /*
995  * when nowcow writeback call back.  This checks for snapshots or COW copies
996  * of the extents that exist in the file, and COWs the file as required.
997  *
998  * If no cow copies or snapshots exist, we write directly to the existing
999  * blocks on disk
1000  */
1001 static noinline int run_delalloc_nocow(struct inode *inode,
1002                                        struct page *locked_page,
1003                               u64 start, u64 end, int *page_started, int force,
1004                               unsigned long *nr_written)
1005 {
1006         struct btrfs_root *root = BTRFS_I(inode)->root;
1007         struct btrfs_trans_handle *trans;
1008         struct extent_buffer *leaf;
1009         struct btrfs_path *path;
1010         struct btrfs_file_extent_item *fi;
1011         struct btrfs_key found_key;
1012         u64 cow_start;
1013         u64 cur_offset;
1014         u64 extent_end;
1015         u64 extent_offset;
1016         u64 disk_bytenr;
1017         u64 num_bytes;
1018         int extent_type;
1019         int ret;
1020         int type;
1021         int nocow;
1022         int check_prev = 1;
1023
1024         path = btrfs_alloc_path();
1025         BUG_ON(!path);
1026         trans = btrfs_join_transaction(root, 1);
1027         BUG_ON(!trans);
1028
1029         cow_start = (u64)-1;
1030         cur_offset = start;
1031         while (1) {
1032                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1033                                                cur_offset, 0);
1034                 BUG_ON(ret < 0);
1035                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1036                         leaf = path->nodes[0];
1037                         btrfs_item_key_to_cpu(leaf, &found_key,
1038                                               path->slots[0] - 1);
1039                         if (found_key.objectid == inode->i_ino &&
1040                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1041                                 path->slots[0]--;
1042                 }
1043                 check_prev = 0;
1044 next_slot:
1045                 leaf = path->nodes[0];
1046                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1047                         ret = btrfs_next_leaf(root, path);
1048                         if (ret < 0)
1049                                 BUG_ON(1);
1050                         if (ret > 0)
1051                                 break;
1052                         leaf = path->nodes[0];
1053                 }
1054
1055                 nocow = 0;
1056                 disk_bytenr = 0;
1057                 num_bytes = 0;
1058                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1059
1060                 if (found_key.objectid > inode->i_ino ||
1061                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1062                     found_key.offset > end)
1063                         break;
1064
1065                 if (found_key.offset > cur_offset) {
1066                         extent_end = found_key.offset;
1067                         extent_type = 0;
1068                         goto out_check;
1069                 }
1070
1071                 fi = btrfs_item_ptr(leaf, path->slots[0],
1072                                     struct btrfs_file_extent_item);
1073                 extent_type = btrfs_file_extent_type(leaf, fi);
1074
1075                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1076                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1077                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1078                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1079                         extent_end = found_key.offset +
1080                                 btrfs_file_extent_num_bytes(leaf, fi);
1081                         if (extent_end <= start) {
1082                                 path->slots[0]++;
1083                                 goto next_slot;
1084                         }
1085                         if (disk_bytenr == 0)
1086                                 goto out_check;
1087                         if (btrfs_file_extent_compression(leaf, fi) ||
1088                             btrfs_file_extent_encryption(leaf, fi) ||
1089                             btrfs_file_extent_other_encoding(leaf, fi))
1090                                 goto out_check;
1091                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1092                                 goto out_check;
1093                         if (btrfs_extent_readonly(root, disk_bytenr))
1094                                 goto out_check;
1095                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1096                                                   found_key.offset -
1097                                                   extent_offset, disk_bytenr))
1098                                 goto out_check;
1099                         disk_bytenr += extent_offset;
1100                         disk_bytenr += cur_offset - found_key.offset;
1101                         num_bytes = min(end + 1, extent_end) - cur_offset;
1102                         /*
1103                          * force cow if csum exists in the range.
1104                          * this ensure that csum for a given extent are
1105                          * either valid or do not exist.
1106                          */
1107                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1108                                 goto out_check;
1109                         nocow = 1;
1110                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1111                         extent_end = found_key.offset +
1112                                 btrfs_file_extent_inline_len(leaf, fi);
1113                         extent_end = ALIGN(extent_end, root->sectorsize);
1114                 } else {
1115                         BUG_ON(1);
1116                 }
1117 out_check:
1118                 if (extent_end <= start) {
1119                         path->slots[0]++;
1120                         goto next_slot;
1121                 }
1122                 if (!nocow) {
1123                         if (cow_start == (u64)-1)
1124                                 cow_start = cur_offset;
1125                         cur_offset = extent_end;
1126                         if (cur_offset > end)
1127                                 break;
1128                         path->slots[0]++;
1129                         goto next_slot;
1130                 }
1131
1132                 btrfs_release_path(root, path);
1133                 if (cow_start != (u64)-1) {
1134                         ret = cow_file_range(inode, locked_page, cow_start,
1135                                         found_key.offset - 1, page_started,
1136                                         nr_written, 1);
1137                         BUG_ON(ret);
1138                         cow_start = (u64)-1;
1139                 }
1140
1141                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1142                         struct extent_map *em;
1143                         struct extent_map_tree *em_tree;
1144                         em_tree = &BTRFS_I(inode)->extent_tree;
1145                         em = alloc_extent_map(GFP_NOFS);
1146                         em->start = cur_offset;
1147                         em->orig_start = em->start;
1148                         em->len = num_bytes;
1149                         em->block_len = num_bytes;
1150                         em->block_start = disk_bytenr;
1151                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1152                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1153                         while (1) {
1154                                 write_lock(&em_tree->lock);
1155                                 ret = add_extent_mapping(em_tree, em);
1156                                 write_unlock(&em_tree->lock);
1157                                 if (ret != -EEXIST) {
1158                                         free_extent_map(em);
1159                                         break;
1160                                 }
1161                                 btrfs_drop_extent_cache(inode, em->start,
1162                                                 em->start + em->len - 1, 0);
1163                         }
1164                         type = BTRFS_ORDERED_PREALLOC;
1165                 } else {
1166                         type = BTRFS_ORDERED_NOCOW;
1167                 }
1168
1169                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1170                                                num_bytes, num_bytes, type);
1171                 BUG_ON(ret);
1172
1173                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1174                                 cur_offset, cur_offset + num_bytes - 1,
1175                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1176                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1177                                 EXTENT_SET_PRIVATE2);
1178                 cur_offset = extent_end;
1179                 if (cur_offset > end)
1180                         break;
1181         }
1182         btrfs_release_path(root, path);
1183
1184         if (cur_offset <= end && cow_start == (u64)-1)
1185                 cow_start = cur_offset;
1186         if (cow_start != (u64)-1) {
1187                 ret = cow_file_range(inode, locked_page, cow_start, end,
1188                                      page_started, nr_written, 1);
1189                 BUG_ON(ret);
1190         }
1191
1192         ret = btrfs_end_transaction(trans, root);
1193         BUG_ON(ret);
1194         btrfs_free_path(path);
1195         return 0;
1196 }
1197
1198 /*
1199  * extent_io.c call back to do delayed allocation processing
1200  */
1201 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1202                               u64 start, u64 end, int *page_started,
1203                               unsigned long *nr_written)
1204 {
1205         int ret;
1206         struct btrfs_root *root = BTRFS_I(inode)->root;
1207
1208         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1209                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1210                                          page_started, 1, nr_written);
1211         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1212                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1213                                          page_started, 0, nr_written);
1214         else if (!btrfs_test_opt(root, COMPRESS))
1215                 ret = cow_file_range(inode, locked_page, start, end,
1216                                       page_started, nr_written, 1);
1217         else
1218                 ret = cow_file_range_async(inode, locked_page, start, end,
1219                                            page_started, nr_written);
1220         return ret;
1221 }
1222
1223 static int btrfs_split_extent_hook(struct inode *inode,
1224                                     struct extent_state *orig, u64 split)
1225 {
1226         struct btrfs_root *root = BTRFS_I(inode)->root;
1227         u64 size;
1228
1229         if (!(orig->state & EXTENT_DELALLOC))
1230                 return 0;
1231
1232         size = orig->end - orig->start + 1;
1233         if (size > root->fs_info->max_extent) {
1234                 u64 num_extents;
1235                 u64 new_size;
1236
1237                 new_size = orig->end - split + 1;
1238                 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1239                                         root->fs_info->max_extent);
1240
1241                 /*
1242                  * if we break a large extent up then leave oustanding_extents
1243                  * be, since we've already accounted for the large extent.
1244                  */
1245                 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1246                               root->fs_info->max_extent) < num_extents)
1247                         return 0;
1248         }
1249
1250         spin_lock(&BTRFS_I(inode)->accounting_lock);
1251         BTRFS_I(inode)->outstanding_extents++;
1252         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1259  * extents so we can keep track of new extents that are just merged onto old
1260  * extents, such as when we are doing sequential writes, so we can properly
1261  * account for the metadata space we'll need.
1262  */
1263 static int btrfs_merge_extent_hook(struct inode *inode,
1264                                    struct extent_state *new,
1265                                    struct extent_state *other)
1266 {
1267         struct btrfs_root *root = BTRFS_I(inode)->root;
1268         u64 new_size, old_size;
1269         u64 num_extents;
1270
1271         /* not delalloc, ignore it */
1272         if (!(other->state & EXTENT_DELALLOC))
1273                 return 0;
1274
1275         old_size = other->end - other->start + 1;
1276         if (new->start < other->start)
1277                 new_size = other->end - new->start + 1;
1278         else
1279                 new_size = new->end - other->start + 1;
1280
1281         /* we're not bigger than the max, unreserve the space and go */
1282         if (new_size <= root->fs_info->max_extent) {
1283                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1284                 BTRFS_I(inode)->outstanding_extents--;
1285                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1286                 return 0;
1287         }
1288
1289         /*
1290          * If we grew by another max_extent, just return, we want to keep that
1291          * reserved amount.
1292          */
1293         num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1294                                 root->fs_info->max_extent);
1295         if (div64_u64(new_size + root->fs_info->max_extent - 1,
1296                       root->fs_info->max_extent) > num_extents)
1297                 return 0;
1298
1299         spin_lock(&BTRFS_I(inode)->accounting_lock);
1300         BTRFS_I(inode)->outstanding_extents--;
1301         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1302
1303         return 0;
1304 }
1305
1306 /*
1307  * extent_io.c set_bit_hook, used to track delayed allocation
1308  * bytes in this file, and to maintain the list of inodes that
1309  * have pending delalloc work to be done.
1310  */
1311 static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1312                        unsigned long old, unsigned long bits)
1313 {
1314
1315         /*
1316          * set_bit and clear bit hooks normally require _irqsave/restore
1317          * but in this case, we are only testeing for the DELALLOC
1318          * bit, which is only set or cleared with irqs on
1319          */
1320         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1321                 struct btrfs_root *root = BTRFS_I(inode)->root;
1322
1323                 spin_lock(&BTRFS_I(inode)->accounting_lock);
1324                 BTRFS_I(inode)->outstanding_extents++;
1325                 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1326                 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
1327                 spin_lock(&root->fs_info->delalloc_lock);
1328                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1329                 root->fs_info->delalloc_bytes += end - start + 1;
1330                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1331                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1332                                       &root->fs_info->delalloc_inodes);
1333                 }
1334                 spin_unlock(&root->fs_info->delalloc_lock);
1335         }
1336         return 0;
1337 }
1338
1339 /*
1340  * extent_io.c clear_bit_hook, see set_bit_hook for why
1341  */
1342 static int btrfs_clear_bit_hook(struct inode *inode,
1343                                 struct extent_state *state, unsigned long bits)
1344 {
1345         /*
1346          * set_bit and clear bit hooks normally require _irqsave/restore
1347          * but in this case, we are only testeing for the DELALLOC
1348          * bit, which is only set or cleared with irqs on
1349          */
1350         if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1351                 struct btrfs_root *root = BTRFS_I(inode)->root;
1352
1353                 if (bits & EXTENT_DO_ACCOUNTING) {
1354                         spin_lock(&BTRFS_I(inode)->accounting_lock);
1355                         BTRFS_I(inode)->outstanding_extents--;
1356                         spin_unlock(&BTRFS_I(inode)->accounting_lock);
1357                         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1358                 }
1359
1360                 spin_lock(&root->fs_info->delalloc_lock);
1361                 if (state->end - state->start + 1 >
1362                     root->fs_info->delalloc_bytes) {
1363                         printk(KERN_INFO "btrfs warning: delalloc account "
1364                                "%llu %llu\n",
1365                                (unsigned long long)
1366                                state->end - state->start + 1,
1367                                (unsigned long long)
1368                                root->fs_info->delalloc_bytes);
1369                         btrfs_delalloc_free_space(root, inode, (u64)-1);
1370                         root->fs_info->delalloc_bytes = 0;
1371                         BTRFS_I(inode)->delalloc_bytes = 0;
1372                 } else {
1373                         btrfs_delalloc_free_space(root, inode,
1374                                                   state->end -
1375                                                   state->start + 1);
1376                         root->fs_info->delalloc_bytes -= state->end -
1377                                 state->start + 1;
1378                         BTRFS_I(inode)->delalloc_bytes -= state->end -
1379                                 state->start + 1;
1380                 }
1381                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1382                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1383                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1384                 }
1385                 spin_unlock(&root->fs_info->delalloc_lock);
1386         }
1387         return 0;
1388 }
1389
1390 /*
1391  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1392  * we don't create bios that span stripes or chunks
1393  */
1394 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1395                          size_t size, struct bio *bio,
1396                          unsigned long bio_flags)
1397 {
1398         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1399         struct btrfs_mapping_tree *map_tree;
1400         u64 logical = (u64)bio->bi_sector << 9;
1401         u64 length = 0;
1402         u64 map_length;
1403         int ret;
1404
1405         if (bio_flags & EXTENT_BIO_COMPRESSED)
1406                 return 0;
1407
1408         length = bio->bi_size;
1409         map_tree = &root->fs_info->mapping_tree;
1410         map_length = length;
1411         ret = btrfs_map_block(map_tree, READ, logical,
1412                               &map_length, NULL, 0);
1413
1414         if (map_length < length + size)
1415                 return 1;
1416         return 0;
1417 }
1418
1419 /*
1420  * in order to insert checksums into the metadata in large chunks,
1421  * we wait until bio submission time.   All the pages in the bio are
1422  * checksummed and sums are attached onto the ordered extent record.
1423  *
1424  * At IO completion time the cums attached on the ordered extent record
1425  * are inserted into the btree
1426  */
1427 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1428                                     struct bio *bio, int mirror_num,
1429                                     unsigned long bio_flags)
1430 {
1431         struct btrfs_root *root = BTRFS_I(inode)->root;
1432         int ret = 0;
1433
1434         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1435         BUG_ON(ret);
1436         return 0;
1437 }
1438
1439 /*
1440  * in order to insert checksums into the metadata in large chunks,
1441  * we wait until bio submission time.   All the pages in the bio are
1442  * checksummed and sums are attached onto the ordered extent record.
1443  *
1444  * At IO completion time the cums attached on the ordered extent record
1445  * are inserted into the btree
1446  */
1447 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1448                           int mirror_num, unsigned long bio_flags)
1449 {
1450         struct btrfs_root *root = BTRFS_I(inode)->root;
1451         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1452 }
1453
1454 /*
1455  * extent_io.c submission hook. This does the right thing for csum calculation
1456  * on write, or reading the csums from the tree before a read
1457  */
1458 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1459                           int mirror_num, unsigned long bio_flags)
1460 {
1461         struct btrfs_root *root = BTRFS_I(inode)->root;
1462         int ret = 0;
1463         int skip_sum;
1464
1465         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1466
1467         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1468         BUG_ON(ret);
1469
1470         if (!(rw & (1 << BIO_RW))) {
1471                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1472                         return btrfs_submit_compressed_read(inode, bio,
1473                                                     mirror_num, bio_flags);
1474                 } else if (!skip_sum)
1475                         btrfs_lookup_bio_sums(root, inode, bio, NULL);
1476                 goto mapit;
1477         } else if (!skip_sum) {
1478                 /* csum items have already been cloned */
1479                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1480                         goto mapit;
1481                 /* we're doing a write, do the async checksumming */
1482                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1483                                    inode, rw, bio, mirror_num,
1484                                    bio_flags, __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1512 {
1513         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1514                 WARN_ON(1);
1515         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1516                                    GFP_NOFS);
1517 }
1518
1519 /* see btrfs_writepage_start_hook for details on why this is required */
1520 struct btrfs_writepage_fixup {
1521         struct page *page;
1522         struct btrfs_work work;
1523 };
1524
1525 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1526 {
1527         struct btrfs_writepage_fixup *fixup;
1528         struct btrfs_ordered_extent *ordered;
1529         struct page *page;
1530         struct inode *inode;
1531         u64 page_start;
1532         u64 page_end;
1533
1534         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1535         page = fixup->page;
1536 again:
1537         lock_page(page);
1538         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1539                 ClearPageChecked(page);
1540                 goto out_page;
1541         }
1542
1543         inode = page->mapping->host;
1544         page_start = page_offset(page);
1545         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1546
1547         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1548
1549         /* already ordered? We're done */
1550         if (PagePrivate2(page))
1551                 goto out;
1552
1553         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1554         if (ordered) {
1555                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1556                               page_end, GFP_NOFS);
1557                 unlock_page(page);
1558                 btrfs_start_ordered_extent(inode, ordered, 1);
1559                 goto again;
1560         }
1561
1562         btrfs_set_extent_delalloc(inode, page_start, page_end);
1563         ClearPageChecked(page);
1564 out:
1565         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1566 out_page:
1567         unlock_page(page);
1568         page_cache_release(page);
1569 }
1570
1571 /*
1572  * There are a few paths in the higher layers of the kernel that directly
1573  * set the page dirty bit without asking the filesystem if it is a
1574  * good idea.  This causes problems because we want to make sure COW
1575  * properly happens and the data=ordered rules are followed.
1576  *
1577  * In our case any range that doesn't have the ORDERED bit set
1578  * hasn't been properly setup for IO.  We kick off an async process
1579  * to fix it up.  The async helper will wait for ordered extents, set
1580  * the delalloc bit and make it safe to write the page.
1581  */
1582 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1583 {
1584         struct inode *inode = page->mapping->host;
1585         struct btrfs_writepage_fixup *fixup;
1586         struct btrfs_root *root = BTRFS_I(inode)->root;
1587
1588         /* this page is properly in the ordered list */
1589         if (TestClearPagePrivate2(page))
1590                 return 0;
1591
1592         if (PageChecked(page))
1593                 return -EAGAIN;
1594
1595         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1596         if (!fixup)
1597                 return -EAGAIN;
1598
1599         SetPageChecked(page);
1600         page_cache_get(page);
1601         fixup->work.func = btrfs_writepage_fixup_worker;
1602         fixup->page = page;
1603         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1604         return -EAGAIN;
1605 }
1606
1607 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1608                                        struct inode *inode, u64 file_pos,
1609                                        u64 disk_bytenr, u64 disk_num_bytes,
1610                                        u64 num_bytes, u64 ram_bytes,
1611                                        u8 compression, u8 encryption,
1612                                        u16 other_encoding, int extent_type)
1613 {
1614         struct btrfs_root *root = BTRFS_I(inode)->root;
1615         struct btrfs_file_extent_item *fi;
1616         struct btrfs_path *path;
1617         struct extent_buffer *leaf;
1618         struct btrfs_key ins;
1619         u64 hint;
1620         int ret;
1621
1622         path = btrfs_alloc_path();
1623         BUG_ON(!path);
1624
1625         path->leave_spinning = 1;
1626
1627         /*
1628          * we may be replacing one extent in the tree with another.
1629          * The new extent is pinned in the extent map, and we don't want
1630          * to drop it from the cache until it is completely in the btree.
1631          *
1632          * So, tell btrfs_drop_extents to leave this extent in the cache.
1633          * the caller is expected to unpin it and allow it to be merged
1634          * with the others.
1635          */
1636         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1637                                  &hint, 0);
1638         BUG_ON(ret);
1639
1640         ins.objectid = inode->i_ino;
1641         ins.offset = file_pos;
1642         ins.type = BTRFS_EXTENT_DATA_KEY;
1643         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1644         BUG_ON(ret);
1645         leaf = path->nodes[0];
1646         fi = btrfs_item_ptr(leaf, path->slots[0],
1647                             struct btrfs_file_extent_item);
1648         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1649         btrfs_set_file_extent_type(leaf, fi, extent_type);
1650         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1651         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1652         btrfs_set_file_extent_offset(leaf, fi, 0);
1653         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1654         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1655         btrfs_set_file_extent_compression(leaf, fi, compression);
1656         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1657         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1658
1659         btrfs_unlock_up_safe(path, 1);
1660         btrfs_set_lock_blocking(leaf);
1661
1662         btrfs_mark_buffer_dirty(leaf);
1663
1664         inode_add_bytes(inode, num_bytes);
1665
1666         ins.objectid = disk_bytenr;
1667         ins.offset = disk_num_bytes;
1668         ins.type = BTRFS_EXTENT_ITEM_KEY;
1669         ret = btrfs_alloc_reserved_file_extent(trans, root,
1670                                         root->root_key.objectid,
1671                                         inode->i_ino, file_pos, &ins);
1672         BUG_ON(ret);
1673         btrfs_free_path(path);
1674
1675         return 0;
1676 }
1677
1678 /*
1679  * helper function for btrfs_finish_ordered_io, this
1680  * just reads in some of the csum leaves to prime them into ram
1681  * before we start the transaction.  It limits the amount of btree
1682  * reads required while inside the transaction.
1683  */
1684 static noinline void reada_csum(struct btrfs_root *root,
1685                                 struct btrfs_path *path,
1686                                 struct btrfs_ordered_extent *ordered_extent)
1687 {
1688         struct btrfs_ordered_sum *sum;
1689         u64 bytenr;
1690
1691         sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1692                          list);
1693         bytenr = sum->sums[0].bytenr;
1694
1695         /*
1696          * we don't care about the results, the point of this search is
1697          * just to get the btree leaves into ram
1698          */
1699         btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1700 }
1701
1702 /* as ordered data IO finishes, this gets called so we can finish
1703  * an ordered extent if the range of bytes in the file it covers are
1704  * fully written.
1705  */
1706 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1707 {
1708         struct btrfs_root *root = BTRFS_I(inode)->root;
1709         struct btrfs_trans_handle *trans;
1710         struct btrfs_ordered_extent *ordered_extent = NULL;
1711         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1712         struct btrfs_path *path;
1713         int compressed = 0;
1714         int ret;
1715
1716         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1717         if (!ret)
1718                 return 0;
1719
1720         /*
1721          * before we join the transaction, try to do some of our IO.
1722          * This will limit the amount of IO that we have to do with
1723          * the transaction running.  We're unlikely to need to do any
1724          * IO if the file extents are new, the disk_i_size checks
1725          * covers the most common case.
1726          */
1727         if (start < BTRFS_I(inode)->disk_i_size) {
1728                 path = btrfs_alloc_path();
1729                 if (path) {
1730                         ret = btrfs_lookup_file_extent(NULL, root, path,
1731                                                        inode->i_ino,
1732                                                        start, 0);
1733                         ordered_extent = btrfs_lookup_ordered_extent(inode,
1734                                                                      start);
1735                         if (!list_empty(&ordered_extent->list)) {
1736                                 btrfs_release_path(root, path);
1737                                 reada_csum(root, path, ordered_extent);
1738                         }
1739                         btrfs_free_path(path);
1740                 }
1741         }
1742
1743         if (!ordered_extent)
1744                 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1745         BUG_ON(!ordered_extent);
1746         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1747                 BUG_ON(!list_empty(&ordered_extent->list));
1748                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1749                 if (!ret) {
1750                         trans = btrfs_join_transaction(root, 1);
1751                         ret = btrfs_update_inode(trans, root, inode);
1752                         BUG_ON(ret);
1753                         btrfs_end_transaction(trans, root);
1754                 }
1755                 goto out;
1756         }
1757
1758         lock_extent(io_tree, ordered_extent->file_offset,
1759                     ordered_extent->file_offset + ordered_extent->len - 1,
1760                     GFP_NOFS);
1761
1762         trans = btrfs_join_transaction(root, 1);
1763
1764         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1765                 compressed = 1;
1766         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767                 BUG_ON(compressed);
1768                 ret = btrfs_mark_extent_written(trans, inode,
1769                                                 ordered_extent->file_offset,
1770                                                 ordered_extent->file_offset +
1771                                                 ordered_extent->len);
1772                 BUG_ON(ret);
1773         } else {
1774                 ret = insert_reserved_file_extent(trans, inode,
1775                                                 ordered_extent->file_offset,
1776                                                 ordered_extent->start,
1777                                                 ordered_extent->disk_len,
1778                                                 ordered_extent->len,
1779                                                 ordered_extent->len,
1780                                                 compressed, 0, 0,
1781                                                 BTRFS_FILE_EXTENT_REG);
1782                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1783                                    ordered_extent->file_offset,
1784                                    ordered_extent->len);
1785                 BUG_ON(ret);
1786         }
1787         unlock_extent(io_tree, ordered_extent->file_offset,
1788                     ordered_extent->file_offset + ordered_extent->len - 1,
1789                     GFP_NOFS);
1790         add_pending_csums(trans, inode, ordered_extent->file_offset,
1791                           &ordered_extent->list);
1792
1793         /* this also removes the ordered extent from the tree */
1794         btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1795         ret = btrfs_update_inode(trans, root, inode);
1796         BUG_ON(ret);
1797         btrfs_end_transaction(trans, root);
1798 out:
1799         /* once for us */
1800         btrfs_put_ordered_extent(ordered_extent);
1801         /* once for the tree */
1802         btrfs_put_ordered_extent(ordered_extent);
1803
1804         return 0;
1805 }
1806
1807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1808                                 struct extent_state *state, int uptodate)
1809 {
1810         ClearPagePrivate2(page);
1811         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1812 }
1813
1814 /*
1815  * When IO fails, either with EIO or csum verification fails, we
1816  * try other mirrors that might have a good copy of the data.  This
1817  * io_failure_record is used to record state as we go through all the
1818  * mirrors.  If another mirror has good data, the page is set up to date
1819  * and things continue.  If a good mirror can't be found, the original
1820  * bio end_io callback is called to indicate things have failed.
1821  */
1822 struct io_failure_record {
1823         struct page *page;
1824         u64 start;
1825         u64 len;
1826         u64 logical;
1827         unsigned long bio_flags;
1828         int last_mirror;
1829 };
1830
1831 static int btrfs_io_failed_hook(struct bio *failed_bio,
1832                          struct page *page, u64 start, u64 end,
1833                          struct extent_state *state)
1834 {
1835         struct io_failure_record *failrec = NULL;
1836         u64 private;
1837         struct extent_map *em;
1838         struct inode *inode = page->mapping->host;
1839         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1840         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1841         struct bio *bio;
1842         int num_copies;
1843         int ret;
1844         int rw;
1845         u64 logical;
1846
1847         ret = get_state_private(failure_tree, start, &private);
1848         if (ret) {
1849                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1850                 if (!failrec)
1851                         return -ENOMEM;
1852                 failrec->start = start;
1853                 failrec->len = end - start + 1;
1854                 failrec->last_mirror = 0;
1855                 failrec->bio_flags = 0;
1856
1857                 read_lock(&em_tree->lock);
1858                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1859                 if (em->start > start || em->start + em->len < start) {
1860                         free_extent_map(em);
1861                         em = NULL;
1862                 }
1863                 read_unlock(&em_tree->lock);
1864
1865                 if (!em || IS_ERR(em)) {
1866                         kfree(failrec);
1867                         return -EIO;
1868                 }
1869                 logical = start - em->start;
1870                 logical = em->block_start + logical;
1871                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1872                         logical = em->block_start;
1873                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1874                 }
1875                 failrec->logical = logical;
1876                 free_extent_map(em);
1877                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1878                                 EXTENT_DIRTY, GFP_NOFS);
1879                 set_state_private(failure_tree, start,
1880                                  (u64)(unsigned long)failrec);
1881         } else {
1882                 failrec = (struct io_failure_record *)(unsigned long)private;
1883         }
1884         num_copies = btrfs_num_copies(
1885                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1886                               failrec->logical, failrec->len);
1887         failrec->last_mirror++;
1888         if (!state) {
1889                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1890                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1891                                                     failrec->start,
1892                                                     EXTENT_LOCKED);
1893                 if (state && state->start != failrec->start)
1894                         state = NULL;
1895                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1896         }
1897         if (!state || failrec->last_mirror > num_copies) {
1898                 set_state_private(failure_tree, failrec->start, 0);
1899                 clear_extent_bits(failure_tree, failrec->start,
1900                                   failrec->start + failrec->len - 1,
1901                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1902                 kfree(failrec);
1903                 return -EIO;
1904         }
1905         bio = bio_alloc(GFP_NOFS, 1);
1906         bio->bi_private = state;
1907         bio->bi_end_io = failed_bio->bi_end_io;
1908         bio->bi_sector = failrec->logical >> 9;
1909         bio->bi_bdev = failed_bio->bi_bdev;
1910         bio->bi_size = 0;
1911
1912         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1913         if (failed_bio->bi_rw & (1 << BIO_RW))
1914                 rw = WRITE;
1915         else
1916                 rw = READ;
1917
1918         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1919                                                       failrec->last_mirror,
1920                                                       failrec->bio_flags);
1921         return 0;
1922 }
1923
1924 /*
1925  * each time an IO finishes, we do a fast check in the IO failure tree
1926  * to see if we need to process or clean up an io_failure_record
1927  */
1928 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1929 {
1930         u64 private;
1931         u64 private_failure;
1932         struct io_failure_record *failure;
1933         int ret;
1934
1935         private = 0;
1936         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1937                              (u64)-1, 1, EXTENT_DIRTY)) {
1938                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1939                                         start, &private_failure);
1940                 if (ret == 0) {
1941                         failure = (struct io_failure_record *)(unsigned long)
1942                                    private_failure;
1943                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1944                                           failure->start, 0);
1945                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1946                                           failure->start,
1947                                           failure->start + failure->len - 1,
1948                                           EXTENT_DIRTY | EXTENT_LOCKED,
1949                                           GFP_NOFS);
1950                         kfree(failure);
1951                 }
1952         }
1953         return 0;
1954 }
1955
1956 /*
1957  * when reads are done, we need to check csums to verify the data is correct
1958  * if there's a match, we allow the bio to finish.  If not, we go through
1959  * the io_failure_record routines to find good copies
1960  */
1961 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1962                                struct extent_state *state)
1963 {
1964         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1965         struct inode *inode = page->mapping->host;
1966         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1967         char *kaddr;
1968         u64 private = ~(u32)0;
1969         int ret;
1970         struct btrfs_root *root = BTRFS_I(inode)->root;
1971         u32 csum = ~(u32)0;
1972
1973         if (PageChecked(page)) {
1974                 ClearPageChecked(page);
1975                 goto good;
1976         }
1977
1978         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1979                 return 0;
1980
1981         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1982             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1983                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1984                                   GFP_NOFS);
1985                 return 0;
1986         }
1987
1988         if (state && state->start == start) {
1989                 private = state->private;
1990                 ret = 0;
1991         } else {
1992                 ret = get_state_private(io_tree, start, &private);
1993         }
1994         kaddr = kmap_atomic(page, KM_USER0);
1995         if (ret)
1996                 goto zeroit;
1997
1998         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1999         btrfs_csum_final(csum, (char *)&csum);
2000         if (csum != private)
2001                 goto zeroit;
2002
2003         kunmap_atomic(kaddr, KM_USER0);
2004 good:
2005         /* if the io failure tree for this inode is non-empty,
2006          * check to see if we've recovered from a failed IO
2007          */
2008         btrfs_clean_io_failures(inode, start);
2009         return 0;
2010
2011 zeroit:
2012         if (printk_ratelimit()) {
2013                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2014                        "private %llu\n", page->mapping->host->i_ino,
2015                        (unsigned long long)start, csum,
2016                        (unsigned long long)private);
2017         }
2018         memset(kaddr + offset, 1, end - start + 1);
2019         flush_dcache_page(page);
2020         kunmap_atomic(kaddr, KM_USER0);
2021         if (private == 0)
2022                 return 0;
2023         return -EIO;
2024 }
2025
2026 struct delayed_iput {
2027         struct list_head list;
2028         struct inode *inode;
2029 };
2030
2031 void btrfs_add_delayed_iput(struct inode *inode)
2032 {
2033         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2034         struct delayed_iput *delayed;
2035
2036         if (atomic_add_unless(&inode->i_count, -1, 1))
2037                 return;
2038
2039         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2040         delayed->inode = inode;
2041
2042         spin_lock(&fs_info->delayed_iput_lock);
2043         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2044         spin_unlock(&fs_info->delayed_iput_lock);
2045 }
2046
2047 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2048 {
2049         LIST_HEAD(list);
2050         struct btrfs_fs_info *fs_info = root->fs_info;
2051         struct delayed_iput *delayed;
2052         int empty;
2053
2054         spin_lock(&fs_info->delayed_iput_lock);
2055         empty = list_empty(&fs_info->delayed_iputs);
2056         spin_unlock(&fs_info->delayed_iput_lock);
2057         if (empty)
2058                 return;
2059
2060         down_read(&root->fs_info->cleanup_work_sem);
2061         spin_lock(&fs_info->delayed_iput_lock);
2062         list_splice_init(&fs_info->delayed_iputs, &list);
2063         spin_unlock(&fs_info->delayed_iput_lock);
2064
2065         while (!list_empty(&list)) {
2066                 delayed = list_entry(list.next, struct delayed_iput, list);
2067                 list_del(&delayed->list);
2068                 iput(delayed->inode);
2069                 kfree(delayed);
2070         }
2071         up_read(&root->fs_info->cleanup_work_sem);
2072 }
2073
2074 /*
2075  * This creates an orphan entry for the given inode in case something goes
2076  * wrong in the middle of an unlink/truncate.
2077  */
2078 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2079 {
2080         struct btrfs_root *root = BTRFS_I(inode)->root;
2081         int ret = 0;
2082
2083         spin_lock(&root->list_lock);
2084
2085         /* already on the orphan list, we're good */
2086         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2087                 spin_unlock(&root->list_lock);
2088                 return 0;
2089         }
2090
2091         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2092
2093         spin_unlock(&root->list_lock);
2094
2095         /*
2096          * insert an orphan item to track this unlinked/truncated file
2097          */
2098         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2099
2100         return ret;
2101 }
2102
2103 /*
2104  * We have done the truncate/delete so we can go ahead and remove the orphan
2105  * item for this particular inode.
2106  */
2107 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2108 {
2109         struct btrfs_root *root = BTRFS_I(inode)->root;
2110         int ret = 0;
2111
2112         spin_lock(&root->list_lock);
2113
2114         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2115                 spin_unlock(&root->list_lock);
2116                 return 0;
2117         }
2118
2119         list_del_init(&BTRFS_I(inode)->i_orphan);
2120         if (!trans) {
2121                 spin_unlock(&root->list_lock);
2122                 return 0;
2123         }
2124
2125         spin_unlock(&root->list_lock);
2126
2127         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2128
2129         return ret;
2130 }
2131
2132 /*
2133  * this cleans up any orphans that may be left on the list from the last use
2134  * of this root.
2135  */
2136 void btrfs_orphan_cleanup(struct btrfs_root *root)
2137 {
2138         struct btrfs_path *path;
2139         struct extent_buffer *leaf;
2140         struct btrfs_item *item;
2141         struct btrfs_key key, found_key;
2142         struct btrfs_trans_handle *trans;
2143         struct inode *inode;
2144         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2145
2146         if (!xchg(&root->clean_orphans, 0))
2147                 return;
2148
2149         path = btrfs_alloc_path();
2150         BUG_ON(!path);
2151         path->reada = -1;
2152
2153         key.objectid = BTRFS_ORPHAN_OBJECTID;
2154         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2155         key.offset = (u64)-1;
2156
2157         while (1) {
2158                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2159                 if (ret < 0) {
2160                         printk(KERN_ERR "Error searching slot for orphan: %d"
2161                                "\n", ret);
2162                         break;
2163                 }
2164
2165                 /*
2166                  * if ret == 0 means we found what we were searching for, which
2167                  * is weird, but possible, so only screw with path if we didnt
2168                  * find the key and see if we have stuff that matches
2169                  */
2170                 if (ret > 0) {
2171                         if (path->slots[0] == 0)
2172                                 break;
2173                         path->slots[0]--;
2174                 }
2175
2176                 /* pull out the item */
2177                 leaf = path->nodes[0];
2178                 item = btrfs_item_nr(leaf, path->slots[0]);
2179                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2180
2181                 /* make sure the item matches what we want */
2182                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2183                         break;
2184                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2185                         break;
2186
2187                 /* release the path since we're done with it */
2188                 btrfs_release_path(root, path);
2189
2190                 /*
2191                  * this is where we are basically btrfs_lookup, without the
2192                  * crossing root thing.  we store the inode number in the
2193                  * offset of the orphan item.
2194                  */
2195                 found_key.objectid = found_key.offset;
2196                 found_key.type = BTRFS_INODE_ITEM_KEY;
2197                 found_key.offset = 0;
2198                 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2199                 if (IS_ERR(inode))
2200                         break;
2201
2202                 /*
2203                  * add this inode to the orphan list so btrfs_orphan_del does
2204                  * the proper thing when we hit it
2205                  */
2206                 spin_lock(&root->list_lock);
2207                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2208                 spin_unlock(&root->list_lock);
2209
2210                 /*
2211                  * if this is a bad inode, means we actually succeeded in
2212                  * removing the inode, but not the orphan record, which means
2213                  * we need to manually delete the orphan since iput will just
2214                  * do a destroy_inode
2215                  */
2216                 if (is_bad_inode(inode)) {
2217                         trans = btrfs_start_transaction(root, 1);
2218                         btrfs_orphan_del(trans, inode);
2219                         btrfs_end_transaction(trans, root);
2220                         iput(inode);
2221                         continue;
2222                 }
2223
2224                 /* if we have links, this was a truncate, lets do that */
2225                 if (inode->i_nlink) {
2226                         nr_truncate++;
2227                         btrfs_truncate(inode);
2228                 } else {
2229                         nr_unlink++;
2230                 }
2231
2232                 /* this will do delete_inode and everything for us */
2233                 iput(inode);
2234         }
2235
2236         if (nr_unlink)
2237                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2238         if (nr_truncate)
2239                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2240
2241         btrfs_free_path(path);
2242 }
2243
2244 /*
2245  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2246  * don't find any xattrs, we know there can't be any acls.
2247  *
2248  * slot is the slot the inode is in, objectid is the objectid of the inode
2249  */
2250 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2251                                           int slot, u64 objectid)
2252 {
2253         u32 nritems = btrfs_header_nritems(leaf);
2254         struct btrfs_key found_key;
2255         int scanned = 0;
2256
2257         slot++;
2258         while (slot < nritems) {
2259                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2260
2261                 /* we found a different objectid, there must not be acls */
2262                 if (found_key.objectid != objectid)
2263                         return 0;
2264
2265                 /* we found an xattr, assume we've got an acl */
2266                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2267                         return 1;
2268
2269                 /*
2270                  * we found a key greater than an xattr key, there can't
2271                  * be any acls later on
2272                  */
2273                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2274                         return 0;
2275
2276                 slot++;
2277                 scanned++;
2278
2279                 /*
2280                  * it goes inode, inode backrefs, xattrs, extents,
2281                  * so if there are a ton of hard links to an inode there can
2282                  * be a lot of backrefs.  Don't waste time searching too hard,
2283                  * this is just an optimization
2284                  */
2285                 if (scanned >= 8)
2286                         break;
2287         }
2288         /* we hit the end of the leaf before we found an xattr or
2289          * something larger than an xattr.  We have to assume the inode
2290          * has acls
2291          */
2292         return 1;
2293 }
2294
2295 /*
2296  * read an inode from the btree into the in-memory inode
2297  */
2298 static void btrfs_read_locked_inode(struct inode *inode)
2299 {
2300         struct btrfs_path *path;
2301         struct extent_buffer *leaf;
2302         struct btrfs_inode_item *inode_item;
2303         struct btrfs_timespec *tspec;
2304         struct btrfs_root *root = BTRFS_I(inode)->root;
2305         struct btrfs_key location;
2306         int maybe_acls;
2307         u64 alloc_group_block;
2308         u32 rdev;
2309         int ret;
2310
2311         path = btrfs_alloc_path();
2312         BUG_ON(!path);
2313         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2314
2315         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2316         if (ret)
2317                 goto make_bad;
2318
2319         leaf = path->nodes[0];
2320         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2321                                     struct btrfs_inode_item);
2322
2323         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2324         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2325         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2326         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2327         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2328
2329         tspec = btrfs_inode_atime(inode_item);
2330         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2331         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2332
2333         tspec = btrfs_inode_mtime(inode_item);
2334         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2335         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2336
2337         tspec = btrfs_inode_ctime(inode_item);
2338         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2339         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2340
2341         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2342         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2343         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2344         inode->i_generation = BTRFS_I(inode)->generation;
2345         inode->i_rdev = 0;
2346         rdev = btrfs_inode_rdev(leaf, inode_item);
2347
2348         BTRFS_I(inode)->index_cnt = (u64)-1;
2349         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2350
2351         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2352
2353         /*
2354          * try to precache a NULL acl entry for files that don't have
2355          * any xattrs or acls
2356          */
2357         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2358         if (!maybe_acls)
2359                 cache_no_acl(inode);
2360
2361         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2362                                                 alloc_group_block, 0);
2363         btrfs_free_path(path);
2364         inode_item = NULL;
2365
2366         switch (inode->i_mode & S_IFMT) {
2367         case S_IFREG:
2368                 inode->i_mapping->a_ops = &btrfs_aops;
2369                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2370                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2371                 inode->i_fop = &btrfs_file_operations;
2372                 inode->i_op = &btrfs_file_inode_operations;
2373                 break;
2374         case S_IFDIR:
2375                 inode->i_fop = &btrfs_dir_file_operations;
2376                 if (root == root->fs_info->tree_root)
2377                         inode->i_op = &btrfs_dir_ro_inode_operations;
2378                 else
2379                         inode->i_op = &btrfs_dir_inode_operations;
2380                 break;
2381         case S_IFLNK:
2382                 inode->i_op = &btrfs_symlink_inode_operations;
2383                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2384                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2385                 break;
2386         default:
2387                 inode->i_op = &btrfs_special_inode_operations;
2388                 init_special_inode(inode, inode->i_mode, rdev);
2389                 break;
2390         }
2391
2392         btrfs_update_iflags(inode);
2393         return;
2394
2395 make_bad:
2396         btrfs_free_path(path);
2397         make_bad_inode(inode);
2398 }
2399
2400 /*
2401  * given a leaf and an inode, copy the inode fields into the leaf
2402  */
2403 static void fill_inode_item(struct btrfs_trans_handle *trans,
2404                             struct extent_buffer *leaf,
2405                             struct btrfs_inode_item *item,
2406                             struct inode *inode)
2407 {
2408         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2409         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2410         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2411         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2412         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2413
2414         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2415                                inode->i_atime.tv_sec);
2416         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2417                                 inode->i_atime.tv_nsec);
2418
2419         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2420                                inode->i_mtime.tv_sec);
2421         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2422                                 inode->i_mtime.tv_nsec);
2423
2424         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2425                                inode->i_ctime.tv_sec);
2426         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2427                                 inode->i_ctime.tv_nsec);
2428
2429         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2430         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2431         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2432         btrfs_set_inode_transid(leaf, item, trans->transid);
2433         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2434         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2435         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2436 }
2437
2438 /*
2439  * copy everything in the in-memory inode into the btree.
2440  */
2441 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2442                                 struct btrfs_root *root, struct inode *inode)
2443 {
2444         struct btrfs_inode_item *inode_item;
2445         struct btrfs_path *path;
2446         struct extent_buffer *leaf;
2447         int ret;
2448
2449         path = btrfs_alloc_path();
2450         BUG_ON(!path);
2451         path->leave_spinning = 1;
2452         ret = btrfs_lookup_inode(trans, root, path,
2453                                  &BTRFS_I(inode)->location, 1);
2454         if (ret) {
2455                 if (ret > 0)
2456                         ret = -ENOENT;
2457                 goto failed;
2458         }
2459
2460         btrfs_unlock_up_safe(path, 1);
2461         leaf = path->nodes[0];
2462         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2463                                   struct btrfs_inode_item);
2464
2465         fill_inode_item(trans, leaf, inode_item, inode);
2466         btrfs_mark_buffer_dirty(leaf);
2467         btrfs_set_inode_last_trans(trans, inode);
2468         ret = 0;
2469 failed:
2470         btrfs_free_path(path);
2471         return ret;
2472 }
2473
2474
2475 /*
2476  * unlink helper that gets used here in inode.c and in the tree logging
2477  * recovery code.  It remove a link in a directory with a given name, and
2478  * also drops the back refs in the inode to the directory
2479  */
2480 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2481                        struct btrfs_root *root,
2482                        struct inode *dir, struct inode *inode,
2483                        const char *name, int name_len)
2484 {
2485         struct btrfs_path *path;
2486         int ret = 0;
2487         struct extent_buffer *leaf;
2488         struct btrfs_dir_item *di;
2489         struct btrfs_key key;
2490         u64 index;
2491
2492         path = btrfs_alloc_path();
2493         if (!path) {
2494                 ret = -ENOMEM;
2495                 goto err;
2496         }
2497
2498         path->leave_spinning = 1;
2499         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2500                                     name, name_len, -1);
2501         if (IS_ERR(di)) {
2502                 ret = PTR_ERR(di);
2503                 goto err;
2504         }
2505         if (!di) {
2506                 ret = -ENOENT;
2507                 goto err;
2508         }
2509         leaf = path->nodes[0];
2510         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2511         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2512         if (ret)
2513                 goto err;
2514         btrfs_release_path(root, path);
2515
2516         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2517                                   inode->i_ino,
2518                                   dir->i_ino, &index);
2519         if (ret) {
2520                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2521                        "inode %lu parent %lu\n", name_len, name,
2522                        inode->i_ino, dir->i_ino);
2523                 goto err;
2524         }
2525
2526         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2527                                          index, name, name_len, -1);
2528         if (IS_ERR(di)) {
2529                 ret = PTR_ERR(di);
2530                 goto err;
2531         }
2532         if (!di) {
2533                 ret = -ENOENT;
2534                 goto err;
2535         }
2536         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2537         btrfs_release_path(root, path);
2538
2539         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2540                                          inode, dir->i_ino);
2541         BUG_ON(ret != 0 && ret != -ENOENT);
2542
2543         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2544                                            dir, index);
2545         BUG_ON(ret);
2546 err:
2547         btrfs_free_path(path);
2548         if (ret)
2549                 goto out;
2550
2551         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2552         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2553         btrfs_update_inode(trans, root, dir);
2554         btrfs_drop_nlink(inode);
2555         ret = btrfs_update_inode(trans, root, inode);
2556 out:
2557         return ret;
2558 }
2559
2560 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2561 {
2562         struct btrfs_root *root;
2563         struct btrfs_trans_handle *trans;
2564         struct inode *inode = dentry->d_inode;
2565         int ret;
2566         unsigned long nr = 0;
2567
2568         root = BTRFS_I(dir)->root;
2569
2570         /*
2571          * 5 items for unlink inode
2572          * 1 for orphan
2573          */
2574         ret = btrfs_reserve_metadata_space(root, 6);
2575         if (ret)
2576                 return ret;
2577
2578         trans = btrfs_start_transaction(root, 1);
2579         if (IS_ERR(trans)) {
2580                 btrfs_unreserve_metadata_space(root, 6);
2581                 return PTR_ERR(trans);
2582         }
2583
2584         btrfs_set_trans_block_group(trans, dir);
2585
2586         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2587
2588         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589                                  dentry->d_name.name, dentry->d_name.len);
2590
2591         if (inode->i_nlink == 0)
2592                 ret = btrfs_orphan_add(trans, inode);
2593
2594         nr = trans->blocks_used;
2595
2596         btrfs_end_transaction_throttle(trans, root);
2597         btrfs_unreserve_metadata_space(root, 6);
2598         btrfs_btree_balance_dirty(root, nr);
2599         return ret;
2600 }
2601
2602 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2603                         struct btrfs_root *root,
2604                         struct inode *dir, u64 objectid,
2605                         const char *name, int name_len)
2606 {
2607         struct btrfs_path *path;
2608         struct extent_buffer *leaf;
2609         struct btrfs_dir_item *di;
2610         struct btrfs_key key;
2611         u64 index;
2612         int ret;
2613
2614         path = btrfs_alloc_path();
2615         if (!path)
2616                 return -ENOMEM;
2617
2618         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2619                                    name, name_len, -1);
2620         BUG_ON(!di || IS_ERR(di));
2621
2622         leaf = path->nodes[0];
2623         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2624         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2625         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2626         BUG_ON(ret);
2627         btrfs_release_path(root, path);
2628
2629         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2630                                  objectid, root->root_key.objectid,
2631                                  dir->i_ino, &index, name, name_len);
2632         if (ret < 0) {
2633                 BUG_ON(ret != -ENOENT);
2634                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2635                                                  name, name_len);
2636                 BUG_ON(!di || IS_ERR(di));
2637
2638                 leaf = path->nodes[0];
2639                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2640                 btrfs_release_path(root, path);
2641                 index = key.offset;
2642         }
2643
2644         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2645                                          index, name, name_len, -1);
2646         BUG_ON(!di || IS_ERR(di));
2647
2648         leaf = path->nodes[0];
2649         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2650         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2651         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2652         BUG_ON(ret);
2653         btrfs_release_path(root, path);
2654
2655         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2656         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2657         ret = btrfs_update_inode(trans, root, dir);
2658         BUG_ON(ret);
2659         dir->i_sb->s_dirt = 1;
2660
2661         btrfs_free_path(path);
2662         return 0;
2663 }
2664
2665 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2666 {
2667         struct inode *inode = dentry->d_inode;
2668         int err = 0;
2669         int ret;
2670         struct btrfs_root *root = BTRFS_I(dir)->root;
2671         struct btrfs_trans_handle *trans;
2672         unsigned long nr = 0;
2673
2674         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2675             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
2676                 return -ENOTEMPTY;
2677
2678         ret = btrfs_reserve_metadata_space(root, 5);
2679         if (ret)
2680                 return ret;
2681
2682         trans = btrfs_start_transaction(root, 1);
2683         if (IS_ERR(trans)) {
2684                 btrfs_unreserve_metadata_space(root, 5);
2685                 return PTR_ERR(trans);
2686         }
2687
2688         btrfs_set_trans_block_group(trans, dir);
2689
2690         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2691                 err = btrfs_unlink_subvol(trans, root, dir,
2692                                           BTRFS_I(inode)->location.objectid,
2693                                           dentry->d_name.name,
2694                                           dentry->d_name.len);
2695                 goto out;
2696         }
2697
2698         err = btrfs_orphan_add(trans, inode);
2699         if (err)
2700                 goto out;
2701
2702         /* now the directory is empty */
2703         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2704                                  dentry->d_name.name, dentry->d_name.len);
2705         if (!err)
2706                 btrfs_i_size_write(inode, 0);
2707 out:
2708         nr = trans->blocks_used;
2709         ret = btrfs_end_transaction_throttle(trans, root);
2710         btrfs_unreserve_metadata_space(root, 5);
2711         btrfs_btree_balance_dirty(root, nr);
2712
2713         if (ret && !err)
2714                 err = ret;
2715         return err;
2716 }
2717
2718 #if 0
2719 /*
2720  * when truncating bytes in a file, it is possible to avoid reading
2721  * the leaves that contain only checksum items.  This can be the
2722  * majority of the IO required to delete a large file, but it must
2723  * be done carefully.
2724  *
2725  * The keys in the level just above the leaves are checked to make sure
2726  * the lowest key in a given leaf is a csum key, and starts at an offset
2727  * after the new  size.
2728  *
2729  * Then the key for the next leaf is checked to make sure it also has
2730  * a checksum item for the same file.  If it does, we know our target leaf
2731  * contains only checksum items, and it can be safely freed without reading
2732  * it.
2733  *
2734  * This is just an optimization targeted at large files.  It may do
2735  * nothing.  It will return 0 unless things went badly.
2736  */
2737 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2738                                      struct btrfs_root *root,
2739                                      struct btrfs_path *path,
2740                                      struct inode *inode, u64 new_size)
2741 {
2742         struct btrfs_key key;
2743         int ret;
2744         int nritems;
2745         struct btrfs_key found_key;
2746         struct btrfs_key other_key;
2747         struct btrfs_leaf_ref *ref;
2748         u64 leaf_gen;
2749         u64 leaf_start;
2750
2751         path->lowest_level = 1;
2752         key.objectid = inode->i_ino;
2753         key.type = BTRFS_CSUM_ITEM_KEY;
2754         key.offset = new_size;
2755 again:
2756         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2757         if (ret < 0)
2758                 goto out;
2759
2760         if (path->nodes[1] == NULL) {
2761                 ret = 0;
2762                 goto out;
2763         }
2764         ret = 0;
2765         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2766         nritems = btrfs_header_nritems(path->nodes[1]);
2767
2768         if (!nritems)
2769                 goto out;
2770
2771         if (path->slots[1] >= nritems)
2772                 goto next_node;
2773
2774         /* did we find a key greater than anything we want to delete? */
2775         if (found_key.objectid > inode->i_ino ||
2776            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2777                 goto out;
2778
2779         /* we check the next key in the node to make sure the leave contains
2780          * only checksum items.  This comparison doesn't work if our
2781          * leaf is the last one in the node
2782          */
2783         if (path->slots[1] + 1 >= nritems) {
2784 next_node:
2785                 /* search forward from the last key in the node, this
2786                  * will bring us into the next node in the tree
2787                  */
2788                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2789
2790                 /* unlikely, but we inc below, so check to be safe */
2791                 if (found_key.offset == (u64)-1)
2792                         goto out;
2793
2794                 /* search_forward needs a path with locks held, do the
2795                  * search again for the original key.  It is possible
2796                  * this will race with a balance and return a path that
2797                  * we could modify, but this drop is just an optimization
2798                  * and is allowed to miss some leaves.
2799                  */
2800                 btrfs_release_path(root, path);
2801                 found_key.offset++;
2802
2803                 /* setup a max key for search_forward */
2804                 other_key.offset = (u64)-1;
2805                 other_key.type = key.type;
2806                 other_key.objectid = key.objectid;
2807
2808                 path->keep_locks = 1;
2809                 ret = btrfs_search_forward(root, &found_key, &other_key,
2810                                            path, 0, 0);
2811                 path->keep_locks = 0;
2812                 if (ret || found_key.objectid != key.objectid ||
2813                     found_key.type != key.type) {
2814                         ret = 0;
2815                         goto out;
2816                 }
2817
2818                 key.offset = found_key.offset;
2819                 btrfs_release_path(root, path);
2820                 cond_resched();
2821                 goto again;
2822         }
2823
2824         /* we know there's one more slot after us in the tree,
2825          * read that key so we can verify it is also a checksum item
2826          */
2827         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2828
2829         if (found_key.objectid < inode->i_ino)
2830                 goto next_key;
2831
2832         if (found_key.type != key.type || found_key.offset < new_size)
2833                 goto next_key;
2834
2835         /*
2836          * if the key for the next leaf isn't a csum key from this objectid,
2837          * we can't be sure there aren't good items inside this leaf.
2838          * Bail out
2839          */
2840         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2841                 goto out;
2842
2843         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2844         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2845         /*
2846          * it is safe to delete this leaf, it contains only
2847          * csum items from this inode at an offset >= new_size
2848          */
2849         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2850         BUG_ON(ret);
2851
2852         if (root->ref_cows && leaf_gen < trans->transid) {
2853                 ref = btrfs_alloc_leaf_ref(root, 0);
2854                 if (ref) {
2855                         ref->root_gen = root->root_key.offset;
2856                         ref->bytenr = leaf_start;
2857                         ref->owner = 0;
2858                         ref->generation = leaf_gen;
2859                         ref->nritems = 0;
2860
2861                         btrfs_sort_leaf_ref(ref);
2862
2863                         ret = btrfs_add_leaf_ref(root, ref, 0);
2864                         WARN_ON(ret);
2865                         btrfs_free_leaf_ref(root, ref);
2866                 } else {
2867                         WARN_ON(1);
2868                 }
2869         }
2870 next_key:
2871         btrfs_release_path(root, path);
2872
2873         if (other_key.objectid == inode->i_ino &&
2874             other_key.type == key.type && other_key.offset > key.offset) {
2875                 key.offset = other_key.offset;
2876                 cond_resched();
2877                 goto again;
2878         }
2879         ret = 0;
2880 out:
2881         /* fixup any changes we've made to the path */
2882         path->lowest_level = 0;
2883         path->keep_locks = 0;
2884         btrfs_release_path(root, path);
2885         return ret;
2886 }
2887
2888 #endif
2889
2890 /*
2891  * this can truncate away extent items, csum items and directory items.
2892  * It starts at a high offset and removes keys until it can't find
2893  * any higher than new_size
2894  *
2895  * csum items that cross the new i_size are truncated to the new size
2896  * as well.
2897  *
2898  * min_type is the minimum key type to truncate down to.  If set to 0, this
2899  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2900  */
2901 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2902                                struct btrfs_root *root,
2903                                struct inode *inode,
2904                                u64 new_size, u32 min_type)
2905 {
2906         struct btrfs_path *path;
2907         struct extent_buffer *leaf;
2908         struct btrfs_file_extent_item *fi;
2909         struct btrfs_key key;
2910         struct btrfs_key found_key;
2911         u64 extent_start = 0;
2912         u64 extent_num_bytes = 0;
2913         u64 extent_offset = 0;
2914         u64 item_end = 0;
2915         u64 mask = root->sectorsize - 1;
2916         u32 found_type = (u8)-1;
2917         int found_extent;
2918         int del_item;
2919         int pending_del_nr = 0;
2920         int pending_del_slot = 0;
2921         int extent_type = -1;
2922         int encoding;
2923         int ret;
2924         int err = 0;
2925
2926         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
2927
2928         if (root->ref_cows)
2929                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2930
2931         path = btrfs_alloc_path();
2932         BUG_ON(!path);
2933         path->reada = -1;
2934
2935         key.objectid = inode->i_ino;
2936         key.offset = (u64)-1;
2937         key.type = (u8)-1;
2938
2939 search_again:
2940         path->leave_spinning = 1;
2941         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2942         if (ret < 0) {
2943                 err = ret;
2944                 goto out;
2945         }
2946
2947         if (ret > 0) {
2948                 /* there are no items in the tree for us to truncate, we're
2949                  * done
2950                  */
2951                 if (path->slots[0] == 0)
2952                         goto out;
2953                 path->slots[0]--;
2954         }
2955
2956         while (1) {
2957                 fi = NULL;
2958                 leaf = path->nodes[0];
2959                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2960                 found_type = btrfs_key_type(&found_key);
2961                 encoding = 0;
2962
2963                 if (found_key.objectid != inode->i_ino)
2964                         break;
2965
2966                 if (found_type < min_type)
2967                         break;
2968
2969                 item_end = found_key.offset;
2970                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2971                         fi = btrfs_item_ptr(leaf, path->slots[0],
2972                                             struct btrfs_file_extent_item);
2973                         extent_type = btrfs_file_extent_type(leaf, fi);
2974                         encoding = btrfs_file_extent_compression(leaf, fi);
2975                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2976                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2977
2978                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2979                                 item_end +=
2980                                     btrfs_file_extent_num_bytes(leaf, fi);
2981                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2982                                 item_end += btrfs_file_extent_inline_len(leaf,
2983                                                                          fi);
2984                         }
2985                         item_end--;
2986                 }
2987                 if (found_type > min_type) {
2988                         del_item = 1;
2989                 } else {
2990                         if (item_end < new_size)
2991                                 break;
2992                         if (found_key.offset >= new_size)
2993                                 del_item = 1;
2994                         else
2995                                 del_item = 0;
2996                 }
2997                 found_extent = 0;
2998                 /* FIXME, shrink the extent if the ref count is only 1 */
2999                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3000                         goto delete;
3001
3002                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3003                         u64 num_dec;
3004                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3005                         if (!del_item && !encoding) {
3006                                 u64 orig_num_bytes =
3007                                         btrfs_file_extent_num_bytes(leaf, fi);
3008                                 extent_num_bytes = new_size -
3009                                         found_key.offset + root->sectorsize - 1;
3010                                 extent_num_bytes = extent_num_bytes &
3011                                         ~((u64)root->sectorsize - 1);
3012                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3013                                                          extent_num_bytes);
3014                                 num_dec = (orig_num_bytes -
3015                                            extent_num_bytes);
3016                                 if (root->ref_cows && extent_start != 0)
3017                                         inode_sub_bytes(inode, num_dec);
3018                                 btrfs_mark_buffer_dirty(leaf);
3019                         } else {
3020                                 extent_num_bytes =
3021                                         btrfs_file_extent_disk_num_bytes(leaf,
3022                                                                          fi);
3023                                 extent_offset = found_key.offset -
3024                                         btrfs_file_extent_offset(leaf, fi);
3025
3026                                 /* FIXME blocksize != 4096 */
3027                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3028                                 if (extent_start != 0) {
3029                                         found_extent = 1;
3030                                         if (root->ref_cows)
3031                                                 inode_sub_bytes(inode, num_dec);
3032                                 }
3033                         }
3034                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3035                         /*
3036                          * we can't truncate inline items that have had
3037                          * special encodings
3038                          */
3039                         if (!del_item &&
3040                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3041                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3042                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3043                                 u32 size = new_size - found_key.offset;
3044
3045                                 if (root->ref_cows) {
3046                                         inode_sub_bytes(inode, item_end + 1 -
3047                                                         new_size);
3048                                 }
3049                                 size =
3050                                     btrfs_file_extent_calc_inline_size(size);
3051                                 ret = btrfs_truncate_item(trans, root, path,
3052                                                           size, 1);
3053                                 BUG_ON(ret);
3054                         } else if (root->ref_cows) {
3055                                 inode_sub_bytes(inode, item_end + 1 -
3056                                                 found_key.offset);
3057                         }
3058                 }
3059 delete:
3060                 if (del_item) {
3061                         if (!pending_del_nr) {
3062                                 /* no pending yet, add ourselves */
3063                                 pending_del_slot = path->slots[0];
3064                                 pending_del_nr = 1;
3065                         } else if (pending_del_nr &&
3066                                    path->slots[0] + 1 == pending_del_slot) {
3067                                 /* hop on the pending chunk */
3068                                 pending_del_nr++;
3069                                 pending_del_slot = path->slots[0];
3070                         } else {
3071                                 BUG();
3072                         }
3073                 } else {
3074                         break;
3075                 }
3076                 if (found_extent && root->ref_cows) {
3077                         btrfs_set_path_blocking(path);
3078                         ret = btrfs_free_extent(trans, root, extent_start,
3079                                                 extent_num_bytes, 0,
3080                                                 btrfs_header_owner(leaf),
3081                                                 inode->i_ino, extent_offset);
3082                         BUG_ON(ret);
3083                 }
3084
3085                 if (found_type == BTRFS_INODE_ITEM_KEY)
3086                         break;
3087
3088                 if (path->slots[0] == 0 ||
3089                     path->slots[0] != pending_del_slot) {
3090                         if (root->ref_cows) {
3091                                 err = -EAGAIN;
3092                                 goto out;
3093                         }
3094                         if (pending_del_nr) {
3095                                 ret = btrfs_del_items(trans, root, path,
3096                                                 pending_del_slot,
3097                                                 pending_del_nr);
3098                                 BUG_ON(ret);
3099                                 pending_del_nr = 0;
3100                         }
3101                         btrfs_release_path(root, path);
3102                         goto search_again;
3103                 } else {
3104                         path->slots[0]--;
3105                 }
3106         }
3107 out:
3108         if (pending_del_nr) {
3109                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3110                                       pending_del_nr);
3111         }
3112         btrfs_free_path(path);
3113         return err;
3114 }
3115
3116 /*
3117  * taken from block_truncate_page, but does cow as it zeros out
3118  * any bytes left in the last page in the file.
3119  */
3120 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3121 {
3122         struct inode *inode = mapping->host;
3123         struct btrfs_root *root = BTRFS_I(inode)->root;
3124         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3125         struct btrfs_ordered_extent *ordered;
3126         char *kaddr;
3127         u32 blocksize = root->sectorsize;
3128         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3129         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3130         struct page *page;
3131         int ret = 0;
3132         u64 page_start;
3133         u64 page_end;
3134
3135         if ((offset & (blocksize - 1)) == 0)
3136                 goto out;
3137         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3138         if (ret)
3139                 goto out;
3140
3141         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3142         if (ret)
3143                 goto out;
3144
3145         ret = -ENOMEM;
3146 again:
3147         page = grab_cache_page(mapping, index);
3148         if (!page) {
3149                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3150                 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3151                 goto out;
3152         }
3153
3154         page_start = page_offset(page);
3155         page_end = page_start + PAGE_CACHE_SIZE - 1;
3156
3157         if (!PageUptodate(page)) {
3158                 ret = btrfs_readpage(NULL, page);
3159                 lock_page(page);
3160                 if (page->mapping != mapping) {
3161                         unlock_page(page);
3162                         page_cache_release(page);
3163                         goto again;
3164                 }
3165                 if (!PageUptodate(page)) {
3166                         ret = -EIO;
3167                         goto out_unlock;
3168                 }
3169         }
3170         wait_on_page_writeback(page);
3171
3172         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3173         set_page_extent_mapped(page);
3174
3175         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3176         if (ordered) {
3177                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3178                 unlock_page(page);
3179                 page_cache_release(page);
3180                 btrfs_start_ordered_extent(inode, ordered, 1);
3181                 btrfs_put_ordered_extent(ordered);
3182                 goto again;
3183         }
3184
3185         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
3186                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3187                           GFP_NOFS);
3188
3189         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3190         if (ret) {
3191                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3192                 goto out_unlock;
3193         }
3194
3195         ret = 0;
3196         if (offset != PAGE_CACHE_SIZE) {
3197                 kaddr = kmap(page);
3198                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3199                 flush_dcache_page(page);
3200                 kunmap(page);
3201         }
3202         ClearPageChecked(page);
3203         set_page_dirty(page);
3204         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3205
3206 out_unlock:
3207         if (ret)
3208                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3209         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
3210         unlock_page(page);
3211         page_cache_release(page);
3212 out:
3213         return ret;
3214 }
3215
3216 int btrfs_cont_expand(struct inode *inode, loff_t size)
3217 {
3218         struct btrfs_trans_handle *trans;
3219         struct btrfs_root *root = BTRFS_I(inode)->root;
3220         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3221         struct extent_map *em;
3222         u64 mask = root->sectorsize - 1;
3223         u64 hole_start = (inode->i_size + mask) & ~mask;
3224         u64 block_end = (size + mask) & ~mask;
3225         u64 last_byte;
3226         u64 cur_offset;
3227         u64 hole_size;
3228         int err = 0;
3229
3230         if (size <= hole_start)
3231                 return 0;
3232
3233         while (1) {
3234                 struct btrfs_ordered_extent *ordered;
3235                 btrfs_wait_ordered_range(inode, hole_start,
3236                                          block_end - hole_start);
3237                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3238                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3239                 if (!ordered)
3240                         break;
3241                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3242                 btrfs_put_ordered_extent(ordered);
3243         }
3244
3245         cur_offset = hole_start;
3246         while (1) {
3247                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3248                                 block_end - cur_offset, 0);
3249                 BUG_ON(IS_ERR(em) || !em);
3250                 last_byte = min(extent_map_end(em), block_end);
3251                 last_byte = (last_byte + mask) & ~mask;
3252                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3253                         u64 hint_byte = 0;
3254                         hole_size = last_byte - cur_offset;
3255
3256                         err = btrfs_reserve_metadata_space(root, 2);
3257                         if (err)
3258                                 break;
3259
3260                         trans = btrfs_start_transaction(root, 1);
3261                         btrfs_set_trans_block_group(trans, inode);
3262
3263                         err = btrfs_drop_extents(trans, inode, cur_offset,
3264                                                  cur_offset + hole_size,
3265                                                  &hint_byte, 1);
3266                         BUG_ON(err);
3267
3268                         err = btrfs_insert_file_extent(trans, root,
3269                                         inode->i_ino, cur_offset, 0,
3270                                         0, hole_size, 0, hole_size,
3271                                         0, 0, 0);
3272                         BUG_ON(err);
3273
3274                         btrfs_drop_extent_cache(inode, hole_start,
3275                                         last_byte - 1, 0);
3276
3277                         btrfs_end_transaction(trans, root);
3278                         btrfs_unreserve_metadata_space(root, 2);
3279                 }
3280                 free_extent_map(em);
3281                 cur_offset = last_byte;
3282                 if (cur_offset >= block_end)
3283                         break;
3284         }
3285
3286         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3287         return err;
3288 }
3289
3290 static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3291 {
3292         struct btrfs_root *root = BTRFS_I(inode)->root;
3293         struct btrfs_trans_handle *trans;
3294         unsigned long nr;
3295         int ret;
3296
3297         if (attr->ia_size == inode->i_size)
3298                 return 0;
3299
3300         if (attr->ia_size > inode->i_size) {
3301                 unsigned long limit;
3302                 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3303                 if (attr->ia_size > inode->i_sb->s_maxbytes)
3304                         return -EFBIG;
3305                 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3306                         send_sig(SIGXFSZ, current, 0);
3307                         return -EFBIG;
3308                 }
3309         }
3310
3311         ret = btrfs_reserve_metadata_space(root, 1);
3312         if (ret)
3313                 return ret;
3314
3315         trans = btrfs_start_transaction(root, 1);
3316         btrfs_set_trans_block_group(trans, inode);
3317
3318         ret = btrfs_orphan_add(trans, inode);
3319         BUG_ON(ret);
3320
3321         nr = trans->blocks_used;
3322         btrfs_end_transaction(trans, root);
3323         btrfs_unreserve_metadata_space(root, 1);
3324         btrfs_btree_balance_dirty(root, nr);
3325
3326         if (attr->ia_size > inode->i_size) {
3327                 ret = btrfs_cont_expand(inode, attr->ia_size);
3328                 if (ret) {
3329                         btrfs_truncate(inode);
3330                         return ret;
3331                 }
3332
3333                 i_size_write(inode, attr->ia_size);
3334                 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3335
3336                 trans = btrfs_start_transaction(root, 1);
3337                 btrfs_set_trans_block_group(trans, inode);
3338
3339                 ret = btrfs_update_inode(trans, root, inode);
3340                 BUG_ON(ret);
3341                 if (inode->i_nlink > 0) {
3342                         ret = btrfs_orphan_del(trans, inode);
3343                         BUG_ON(ret);
3344                 }
3345                 nr = trans->blocks_used;
3346                 btrfs_end_transaction(trans, root);
3347                 btrfs_btree_balance_dirty(root, nr);
3348                 return 0;
3349         }
3350
3351         /*
3352          * We're truncating a file that used to have good data down to
3353          * zero. Make sure it gets into the ordered flush list so that
3354          * any new writes get down to disk quickly.
3355          */
3356         if (attr->ia_size == 0)
3357                 BTRFS_I(inode)->ordered_data_close = 1;
3358
3359         /* we don't support swapfiles, so vmtruncate shouldn't fail */
3360         ret = vmtruncate(inode, attr->ia_size);
3361         BUG_ON(ret);
3362
3363         return 0;
3364 }
3365
3366 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3367 {
3368         struct inode *inode = dentry->d_inode;
3369         int err;
3370
3371         err = inode_change_ok(inode, attr);
3372         if (err)
3373                 return err;
3374
3375         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3376                 err = btrfs_setattr_size(inode, attr);
3377                 if (err)
3378                         return err;
3379         }
3380         attr->ia_valid &= ~ATTR_SIZE;
3381
3382         if (attr->ia_valid)
3383                 err = inode_setattr(inode, attr);
3384
3385         if (!err && ((attr->ia_valid & ATTR_MODE)))
3386                 err = btrfs_acl_chmod(inode);
3387         return err;
3388 }
3389
3390 void btrfs_delete_inode(struct inode *inode)
3391 {
3392         struct btrfs_trans_handle *trans;
3393         struct btrfs_root *root = BTRFS_I(inode)->root;
3394         unsigned long nr;
3395         int ret;
3396
3397         truncate_inode_pages(&inode->i_data, 0);
3398         if (is_bad_inode(inode)) {
3399                 btrfs_orphan_del(NULL, inode);
3400                 goto no_delete;
3401         }
3402         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3403
3404         if (root->fs_info->log_root_recovering) {
3405                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3406                 goto no_delete;
3407         }
3408
3409         if (inode->i_nlink > 0) {
3410                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3411                 goto no_delete;
3412         }
3413
3414         btrfs_i_size_write(inode, 0);
3415
3416         while (1) {
3417                 trans = btrfs_start_transaction(root, 1);
3418                 btrfs_set_trans_block_group(trans, inode);
3419                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3420
3421                 if (ret != -EAGAIN)
3422                         break;
3423
3424                 nr = trans->blocks_used;
3425                 btrfs_end_transaction(trans, root);
3426                 trans = NULL;
3427                 btrfs_btree_balance_dirty(root, nr);
3428         }
3429
3430         if (ret == 0) {
3431                 ret = btrfs_orphan_del(trans, inode);
3432                 BUG_ON(ret);
3433         }
3434
3435         nr = trans->blocks_used;
3436         btrfs_end_transaction(trans, root);
3437         btrfs_btree_balance_dirty(root, nr);
3438 no_delete:
3439         clear_inode(inode);
3440         return;
3441 }
3442
3443 /*
3444  * this returns the key found in the dir entry in the location pointer.
3445  * If no dir entries were found, location->objectid is 0.
3446  */
3447 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3448                                struct btrfs_key *location)
3449 {
3450         const char *name = dentry->d_name.name;
3451         int namelen = dentry->d_name.len;
3452         struct btrfs_dir_item *di;
3453         struct btrfs_path *path;
3454         struct btrfs_root *root = BTRFS_I(dir)->root;
3455         int ret = 0;
3456
3457         path = btrfs_alloc_path();
3458         BUG_ON(!path);
3459
3460         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3461                                     namelen, 0);
3462         if (IS_ERR(di))
3463                 ret = PTR_ERR(di);
3464
3465         if (!di || IS_ERR(di))
3466                 goto out_err;
3467
3468         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3469 out:
3470         btrfs_free_path(path);
3471         return ret;
3472 out_err:
3473         location->objectid = 0;
3474         goto out;
3475 }
3476
3477 /*
3478  * when we hit a tree root in a directory, the btrfs part of the inode
3479  * needs to be changed to reflect the root directory of the tree root.  This
3480  * is kind of like crossing a mount point.
3481  */
3482 static int fixup_tree_root_location(struct btrfs_root *root,
3483                                     struct inode *dir,
3484                                     struct dentry *dentry,
3485                                     struct btrfs_key *location,
3486                                     struct btrfs_root **sub_root)
3487 {
3488         struct btrfs_path *path;
3489         struct btrfs_root *new_root;
3490         struct btrfs_root_ref *ref;
3491         struct extent_buffer *leaf;
3492         int ret;
3493         int err = 0;
3494
3495         path = btrfs_alloc_path();
3496         if (!path) {
3497                 err = -ENOMEM;
3498                 goto out;
3499         }
3500
3501         err = -ENOENT;
3502         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3503                                   BTRFS_I(dir)->root->root_key.objectid,
3504                                   location->objectid);
3505         if (ret) {
3506                 if (ret < 0)
3507                         err = ret;
3508                 goto out;
3509         }
3510
3511         leaf = path->nodes[0];
3512         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3513         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3514             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3515                 goto out;
3516
3517         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3518                                    (unsigned long)(ref + 1),
3519                                    dentry->d_name.len);
3520         if (ret)
3521                 goto out;
3522
3523         btrfs_release_path(root->fs_info->tree_root, path);
3524
3525         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3526         if (IS_ERR(new_root)) {
3527                 err = PTR_ERR(new_root);
3528                 goto out;
3529         }
3530
3531         if (btrfs_root_refs(&new_root->root_item) == 0) {
3532                 err = -ENOENT;
3533                 goto out;
3534         }
3535
3536         *sub_root = new_root;
3537         location->objectid = btrfs_root_dirid(&new_root->root_item);
3538         location->type = BTRFS_INODE_ITEM_KEY;
3539         location->offset = 0;
3540         err = 0;
3541 out:
3542         btrfs_free_path(path);
3543         return err;
3544 }
3545
3546 static void inode_tree_add(struct inode *inode)
3547 {
3548         struct btrfs_root *root = BTRFS_I(inode)->root;
3549         struct btrfs_inode *entry;
3550         struct rb_node **p;
3551         struct rb_node *parent;
3552 again:
3553         p = &root->inode_tree.rb_node;
3554         parent = NULL;
3555
3556         if (hlist_unhashed(&inode->i_hash))
3557                 return;
3558
3559         spin_lock(&root->inode_lock);
3560         while (*p) {
3561                 parent = *p;
3562                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3563
3564                 if (inode->i_ino < entry->vfs_inode.i_ino)
3565                         p = &parent->rb_left;
3566                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3567                         p = &parent->rb_right;
3568                 else {
3569                         WARN_ON(!(entry->vfs_inode.i_state &
3570                                   (I_WILL_FREE | I_FREEING | I_CLEAR)));
3571                         rb_erase(parent, &root->inode_tree);
3572                         RB_CLEAR_NODE(parent);
3573                         spin_unlock(&root->inode_lock);
3574                         goto again;
3575                 }
3576         }
3577         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3578         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3579         spin_unlock(&root->inode_lock);
3580 }
3581
3582 static void inode_tree_del(struct inode *inode)
3583 {
3584         struct btrfs_root *root = BTRFS_I(inode)->root;
3585         int empty = 0;
3586
3587         spin_lock(&root->inode_lock);
3588         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3589                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3590                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3591                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3592         }
3593         spin_unlock(&root->inode_lock);
3594
3595         if (empty && btrfs_root_refs(&root->root_item) == 0) {
3596                 synchronize_srcu(&root->fs_info->subvol_srcu);
3597                 spin_lock(&root->inode_lock);
3598                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3599                 spin_unlock(&root->inode_lock);
3600                 if (empty)
3601                         btrfs_add_dead_root(root);
3602         }
3603 }
3604
3605 int btrfs_invalidate_inodes(struct btrfs_root *root)
3606 {
3607         struct rb_node *node;
3608         struct rb_node *prev;
3609         struct btrfs_inode *entry;
3610         struct inode *inode;
3611         u64 objectid = 0;
3612
3613         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3614
3615         spin_lock(&root->inode_lock);
3616 again:
3617         node = root->inode_tree.rb_node;
3618         prev = NULL;
3619         while (node) {
3620                 prev = node;
3621                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3622
3623                 if (objectid < entry->vfs_inode.i_ino)
3624                         node = node->rb_left;
3625                 else if (objectid > entry->vfs_inode.i_ino)
3626                         node = node->rb_right;
3627                 else
3628                         break;
3629         }
3630         if (!node) {
3631                 while (prev) {
3632                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3633                         if (objectid <= entry->vfs_inode.i_ino) {
3634                                 node = prev;
3635                                 break;
3636                         }
3637                         prev = rb_next(prev);
3638                 }
3639         }
3640         while (node) {
3641                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3642                 objectid = entry->vfs_inode.i_ino + 1;
3643                 inode = igrab(&entry->vfs_inode);
3644                 if (inode) {
3645                         spin_unlock(&root->inode_lock);
3646                         if (atomic_read(&inode->i_count) > 1)
3647                                 d_prune_aliases(inode);
3648                         /*
3649                          * btrfs_drop_inode will remove it from
3650                          * the inode cache when its usage count
3651                          * hits zero.
3652                          */
3653                         iput(inode);
3654                         cond_resched();
3655                         spin_lock(&root->inode_lock);
3656                         goto again;
3657                 }
3658
3659                 if (cond_resched_lock(&root->inode_lock))
3660                         goto again;
3661
3662                 node = rb_next(node);
3663         }
3664         spin_unlock(&root->inode_lock);
3665         return 0;
3666 }
3667
3668 static noinline void init_btrfs_i(struct inode *inode)
3669 {
3670         struct btrfs_inode *bi = BTRFS_I(inode);
3671
3672         bi->generation = 0;
3673         bi->sequence = 0;
3674         bi->last_trans = 0;
3675         bi->last_sub_trans = 0;
3676         bi->logged_trans = 0;
3677         bi->delalloc_bytes = 0;
3678         bi->reserved_bytes = 0;
3679         bi->disk_i_size = 0;
3680         bi->flags = 0;
3681         bi->index_cnt = (u64)-1;
3682         bi->last_unlink_trans = 0;
3683         bi->ordered_data_close = 0;
3684         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3685         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
3686                              inode->i_mapping, GFP_NOFS);
3687         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3688                              inode->i_mapping, GFP_NOFS);
3689         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
3690         INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
3691         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3692         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
3693         mutex_init(&BTRFS_I(inode)->log_mutex);
3694 }
3695
3696 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3697 {
3698         struct btrfs_iget_args *args = p;
3699         inode->i_ino = args->ino;
3700         init_btrfs_i(inode);
3701         BTRFS_I(inode)->root = args->root;
3702         btrfs_set_inode_space_info(args->root, inode);
3703         return 0;
3704 }
3705
3706 static int btrfs_find_actor(struct inode *inode, void *opaque)
3707 {
3708         struct btrfs_iget_args *args = opaque;
3709         return args->ino == inode->i_ino &&
3710                 args->root == BTRFS_I(inode)->root;
3711 }
3712
3713 static struct inode *btrfs_iget_locked(struct super_block *s,
3714                                        u64 objectid,
3715                                        struct btrfs_root *root)
3716 {
3717         struct inode *inode;
3718         struct btrfs_iget_args args;
3719         args.ino = objectid;
3720         args.root = root;
3721
3722         inode = iget5_locked(s, objectid, btrfs_find_actor,
3723                              btrfs_init_locked_inode,
3724                              (void *)&args);
3725         return inode;
3726 }
3727
3728 /* Get an inode object given its location and corresponding root.
3729  * Returns in *is_new if the inode was read from disk
3730  */
3731 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3732                          struct btrfs_root *root)
3733 {
3734         struct inode *inode;
3735
3736         inode = btrfs_iget_locked(s, location->objectid, root);
3737         if (!inode)
3738                 return ERR_PTR(-ENOMEM);
3739
3740         if (inode->i_state & I_NEW) {
3741                 BTRFS_I(inode)->root = root;
3742                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3743                 btrfs_read_locked_inode(inode);
3744
3745                 inode_tree_add(inode);
3746                 unlock_new_inode(inode);
3747         }
3748
3749         return inode;
3750 }
3751
3752 static struct inode *new_simple_dir(struct super_block *s,
3753                                     struct btrfs_key *key,
3754                                     struct btrfs_root *root)
3755 {
3756         struct inode *inode = new_inode(s);
3757
3758         if (!inode)
3759                 return ERR_PTR(-ENOMEM);
3760
3761         init_btrfs_i(inode);
3762
3763         BTRFS_I(inode)->root = root;
3764         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3765         BTRFS_I(inode)->dummy_inode = 1;
3766
3767         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3768         inode->i_op = &simple_dir_inode_operations;
3769         inode->i_fop = &simple_dir_operations;
3770         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3771         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3772
3773         return inode;
3774 }
3775
3776 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3777 {
3778         struct inode *inode;
3779         struct btrfs_root *root = BTRFS_I(dir)->root;
3780         struct btrfs_root *sub_root = root;
3781         struct btrfs_key location;
3782         int index;
3783         int ret;
3784
3785         dentry->d_op = &btrfs_dentry_operations;
3786
3787         if (dentry->d_name.len > BTRFS_NAME_LEN)
3788                 return ERR_PTR(-ENAMETOOLONG);
3789
3790         ret = btrfs_inode_by_name(dir, dentry, &location);
3791
3792         if (ret < 0)
3793                 return ERR_PTR(ret);
3794
3795         if (location.objectid == 0)
3796                 return NULL;
3797
3798         if (location.type == BTRFS_INODE_ITEM_KEY) {
3799                 inode = btrfs_iget(dir->i_sb, &location, root);
3800                 if (unlikely(root->clean_orphans) &&
3801                     !(inode->i_sb->s_flags & MS_RDONLY)) {
3802                         down_read(&root->fs_info->cleanup_work_sem);
3803                         btrfs_orphan_cleanup(root);
3804                         up_read(&root->fs_info->cleanup_work_sem);
3805                 }
3806                 return inode;
3807         }
3808
3809         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3810
3811         index = srcu_read_lock(&root->fs_info->subvol_srcu);
3812         ret = fixup_tree_root_location(root, dir, dentry,
3813                                        &location, &sub_root);
3814         if (ret < 0) {
3815                 if (ret != -ENOENT)
3816                         inode = ERR_PTR(ret);
3817                 else
3818                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
3819         } else {
3820                 inode = btrfs_iget(dir->i_sb, &location, sub_root);
3821         }
3822         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3823
3824         if (root != sub_root) {
3825                 down_read(&root->fs_info->cleanup_work_sem);
3826                 if (!(inode->i_sb->s_flags & MS_RDONLY))
3827                         btrfs_orphan_cleanup(sub_root);
3828                 up_read(&root->fs_info->cleanup_work_sem);
3829         }
3830
3831         return inode;
3832 }
3833
3834 static int btrfs_dentry_delete(struct dentry *dentry)
3835 {
3836         struct btrfs_root *root;
3837
3838         if (!dentry->d_inode && !IS_ROOT(dentry))
3839                 dentry = dentry->d_parent;
3840
3841         if (dentry->d_inode) {
3842                 root = BTRFS_I(dentry->d_inode)->root;
3843                 if (btrfs_root_refs(&root->root_item) == 0)
3844                         return 1;
3845         }
3846         return 0;
3847 }
3848
3849 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3850                                    struct nameidata *nd)
3851 {
3852         struct inode *inode;
3853
3854         inode = btrfs_lookup_dentry(dir, dentry);
3855         if (IS_ERR(inode))
3856                 return ERR_CAST(inode);
3857
3858         return d_splice_alias(inode, dentry);
3859 }
3860
3861 static unsigned char btrfs_filetype_table[] = {
3862         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3863 };
3864
3865 static int btrfs_real_readdir(struct file *filp, void *dirent,
3866                               filldir_t filldir)
3867 {
3868         struct inode *inode = filp->f_dentry->d_inode;
3869         struct btrfs_root *root = BTRFS_I(inode)->root;
3870         struct btrfs_item *item;
3871         struct btrfs_dir_item *di;
3872         struct btrfs_key key;
3873         struct btrfs_key found_key;
3874         struct btrfs_path *path;
3875         int ret;
3876         u32 nritems;
3877         struct extent_buffer *leaf;
3878         int slot;
3879         int advance;
3880         unsigned char d_type;
3881         int over = 0;
3882         u32 di_cur;
3883         u32 di_total;
3884         u32 di_len;
3885         int key_type = BTRFS_DIR_INDEX_KEY;
3886         char tmp_name[32];
3887         char *name_ptr;
3888         int name_len;
3889
3890         /* FIXME, use a real flag for deciding about the key type */
3891         if (root->fs_info->tree_root == root)
3892                 key_type = BTRFS_DIR_ITEM_KEY;
3893
3894         /* special case for "." */
3895         if (filp->f_pos == 0) {
3896                 over = filldir(dirent, ".", 1,
3897                                1, inode->i_ino,
3898                                DT_DIR);
3899                 if (over)
3900                         return 0;
3901                 filp->f_pos = 1;
3902         }
3903         /* special case for .., just use the back ref */
3904         if (filp->f_pos == 1) {
3905                 u64 pino = parent_ino(filp->f_path.dentry);
3906                 over = filldir(dirent, "..", 2,
3907                                2, pino, DT_DIR);
3908                 if (over)
3909                         return 0;
3910                 filp->f_pos = 2;
3911         }
3912         path = btrfs_alloc_path();
3913         path->reada = 2;
3914
3915         btrfs_set_key_type(&key, key_type);
3916         key.offset = filp->f_pos;
3917         key.objectid = inode->i_ino;
3918
3919         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3920         if (ret < 0)
3921                 goto err;
3922         advance = 0;
3923
3924         while (1) {
3925                 leaf = path->nodes[0];
3926                 nritems = btrfs_header_nritems(leaf);
3927                 slot = path->slots[0];
3928                 if (advance || slot >= nritems) {
3929                         if (slot >= nritems - 1) {
3930                                 ret = btrfs_next_leaf(root, path);
3931                                 if (ret)
3932                                         break;
3933                                 leaf = path->nodes[0];
3934                                 nritems = btrfs_header_nritems(leaf);
3935                                 slot = path->slots[0];
3936                         } else {
3937                                 slot++;
3938                                 path->slots[0]++;
3939                         }
3940                 }
3941
3942                 advance = 1;
3943                 item = btrfs_item_nr(leaf, slot);
3944                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3945
3946                 if (found_key.objectid != key.objectid)
3947                         break;
3948                 if (btrfs_key_type(&found_key) != key_type)
3949                         break;
3950                 if (found_key.offset < filp->f_pos)
3951                         continue;
3952
3953                 filp->f_pos = found_key.offset;
3954
3955                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3956                 di_cur = 0;
3957                 di_total = btrfs_item_size(leaf, item);
3958
3959                 while (di_cur < di_total) {
3960                         struct btrfs_key location;
3961
3962                         name_len = btrfs_dir_name_len(leaf, di);
3963                         if (name_len <= sizeof(tmp_name)) {
3964                                 name_ptr = tmp_name;
3965                         } else {
3966                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3967                                 if (!name_ptr) {
3968                                         ret = -ENOMEM;
3969                                         goto err;
3970                                 }
3971                         }
3972                         read_extent_buffer(leaf, name_ptr,
3973                                            (unsigned long)(di + 1), name_len);
3974
3975                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3976                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3977
3978                         /* is this a reference to our own snapshot? If so
3979                          * skip it
3980                          */
3981                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
3982                             location.objectid == root->root_key.objectid) {
3983                                 over = 0;
3984                                 goto skip;
3985                         }
3986                         over = filldir(dirent, name_ptr, name_len,
3987                                        found_key.offset, location.objectid,
3988                                        d_type);
3989
3990 skip:
3991                         if (name_ptr != tmp_name)
3992                                 kfree(name_ptr);
3993
3994                         if (over)
3995                                 goto nopos;
3996                         di_len = btrfs_dir_name_len(leaf, di) +
3997                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3998                         di_cur += di_len;
3999                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4000                 }
4001         }
4002
4003         /* Reached end of directory/root. Bump pos past the last item. */
4004         if (key_type == BTRFS_DIR_INDEX_KEY)
4005                 /*
4006                  * 32-bit glibc will use getdents64, but then strtol -
4007                  * so the last number we can serve is this.
4008                  */
4009                 filp->f_pos = 0x7fffffff;
4010         else
4011                 filp->f_pos++;
4012 nopos:
4013         ret = 0;
4014 err:
4015         btrfs_free_path(path);
4016         return ret;
4017 }
4018
4019 int btrfs_write_inode(struct inode *inode, int wait)
4020 {
4021         struct btrfs_root *root = BTRFS_I(inode)->root;
4022         struct btrfs_trans_handle *trans;
4023         int ret = 0;
4024
4025         if (root->fs_info->btree_inode == inode)
4026                 return 0;
4027
4028         if (wait) {
4029                 trans = btrfs_join_transaction(root, 1);
4030                 btrfs_set_trans_block_group(trans, inode);
4031                 ret = btrfs_commit_transaction(trans, root);
4032         }
4033         return ret;
4034 }
4035
4036 /*
4037  * This is somewhat expensive, updating the tree every time the
4038  * inode changes.  But, it is most likely to find the inode in cache.
4039  * FIXME, needs more benchmarking...there are no reasons other than performance
4040  * to keep or drop this code.
4041  */
4042 void btrfs_dirty_inode(struct inode *inode)
4043 {
4044         struct btrfs_root *root = BTRFS_I(inode)->root;
4045         struct btrfs_trans_handle *trans;
4046
4047         trans = btrfs_join_transaction(root, 1);
4048         btrfs_set_trans_block_group(trans, inode);
4049         btrfs_update_inode(trans, root, inode);
4050         btrfs_end_transaction(trans, root);
4051 }
4052
4053 /*
4054  * find the highest existing sequence number in a directory
4055  * and then set the in-memory index_cnt variable to reflect
4056  * free sequence numbers
4057  */
4058 static int btrfs_set_inode_index_count(struct inode *inode)
4059 {
4060         struct btrfs_root *root = BTRFS_I(inode)->root;
4061         struct btrfs_key key, found_key;
4062         struct btrfs_path *path;
4063         struct extent_buffer *leaf;
4064         int ret;
4065
4066         key.objectid = inode->i_ino;
4067         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4068         key.offset = (u64)-1;
4069
4070         path = btrfs_alloc_path();
4071         if (!path)
4072                 return -ENOMEM;
4073
4074         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4075         if (ret < 0)
4076                 goto out;
4077         /* FIXME: we should be able to handle this */
4078         if (ret == 0)
4079                 goto out;
4080         ret = 0;
4081
4082         /*
4083          * MAGIC NUMBER EXPLANATION:
4084          * since we search a directory based on f_pos we have to start at 2
4085          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4086          * else has to start at 2
4087          */
4088         if (path->slots[0] == 0) {
4089                 BTRFS_I(inode)->index_cnt = 2;
4090                 goto out;
4091         }
4092
4093         path->slots[0]--;
4094
4095         leaf = path->nodes[0];
4096         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4097
4098         if (found_key.objectid != inode->i_ino ||
4099             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4100                 BTRFS_I(inode)->index_cnt = 2;
4101                 goto out;
4102         }
4103
4104         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4105 out:
4106         btrfs_free_path(path);
4107         return ret;
4108 }
4109
4110 /*
4111  * helper to find a free sequence number in a given directory.  This current
4112  * code is very simple, later versions will do smarter things in the btree
4113  */
4114 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4115 {
4116         int ret = 0;
4117
4118         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4119                 ret = btrfs_set_inode_index_count(dir);
4120                 if (ret)
4121                         return ret;
4122         }
4123
4124         *index = BTRFS_I(dir)->index_cnt;
4125         BTRFS_I(dir)->index_cnt++;
4126
4127         return ret;
4128 }
4129
4130 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4131                                      struct btrfs_root *root,
4132                                      struct inode *dir,
4133                                      const char *name, int name_len,
4134                                      u64 ref_objectid, u64 objectid,
4135                                      u64 alloc_hint, int mode, u64 *index)
4136 {
4137         struct inode *inode;
4138         struct btrfs_inode_item *inode_item;
4139         struct btrfs_key *location;
4140         struct btrfs_path *path;
4141         struct btrfs_inode_ref *ref;
4142         struct btrfs_key key[2];
4143         u32 sizes[2];
4144         unsigned long ptr;
4145         int ret;
4146         int owner;
4147
4148         path = btrfs_alloc_path();
4149         BUG_ON(!path);
4150
4151         inode = new_inode(root->fs_info->sb);
4152         if (!inode)
4153                 return ERR_PTR(-ENOMEM);
4154
4155         if (dir) {
4156                 ret = btrfs_set_inode_index(dir, index);
4157                 if (ret) {
4158                         iput(inode);
4159                         return ERR_PTR(ret);
4160                 }
4161         }
4162         /*
4163          * index_cnt is ignored for everything but a dir,
4164          * btrfs_get_inode_index_count has an explanation for the magic
4165          * number
4166          */
4167         init_btrfs_i(inode);
4168         BTRFS_I(inode)->index_cnt = 2;
4169         BTRFS_I(inode)->root = root;
4170         BTRFS_I(inode)->generation = trans->transid;
4171         btrfs_set_inode_space_info(root, inode);
4172
4173         if (mode & S_IFDIR)
4174                 owner = 0;
4175         else
4176                 owner = 1;
4177         BTRFS_I(inode)->block_group =
4178                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4179
4180         key[0].objectid = objectid;
4181         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4182         key[0].offset = 0;
4183
4184         key[1].objectid = objectid;
4185         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4186         key[1].offset = ref_objectid;
4187
4188         sizes[0] = sizeof(struct btrfs_inode_item);
4189         sizes[1] = name_len + sizeof(*ref);
4190
4191         path->leave_spinning = 1;
4192         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4193         if (ret != 0)
4194                 goto fail;
4195
4196         inode->i_uid = current_fsuid();
4197
4198         if (dir && (dir->i_mode & S_ISGID)) {
4199                 inode->i_gid = dir->i_gid;
4200                 if (S_ISDIR(mode))
4201                         mode |= S_ISGID;
4202         } else
4203                 inode->i_gid = current_fsgid();
4204
4205         inode->i_mode = mode;
4206         inode->i_ino = objectid;
4207         inode_set_bytes(inode, 0);
4208         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4209         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4210                                   struct btrfs_inode_item);
4211         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4212
4213         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4214                              struct btrfs_inode_ref);
4215         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4216         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4217         ptr = (unsigned long)(ref + 1);
4218         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4219
4220         btrfs_mark_buffer_dirty(path->nodes[0]);
4221         btrfs_free_path(path);
4222
4223         location = &BTRFS_I(inode)->location;
4224         location->objectid = objectid;
4225         location->offset = 0;
4226         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4227
4228         btrfs_inherit_iflags(inode, dir);
4229
4230         if ((mode & S_IFREG)) {
4231                 if (btrfs_test_opt(root, NODATASUM))
4232                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4233                 if (btrfs_test_opt(root, NODATACOW))
4234                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4235         }
4236
4237         insert_inode_hash(inode);
4238         inode_tree_add(inode);
4239         return inode;
4240 fail:
4241         if (dir)
4242                 BTRFS_I(dir)->index_cnt--;
4243         btrfs_free_path(path);
4244         iput(inode);
4245         return ERR_PTR(ret);
4246 }
4247
4248 static inline u8 btrfs_inode_type(struct inode *inode)
4249 {
4250         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4251 }
4252
4253 /*
4254  * utility function to add 'inode' into 'parent_inode' with
4255  * a give name and a given sequence number.
4256  * if 'add_backref' is true, also insert a backref from the
4257  * inode to the parent directory.
4258  */
4259 int btrfs_add_link(struct btrfs_trans_handle *trans,
4260                    struct inode *parent_inode, struct inode *inode,
4261                    const char *name, int name_len, int add_backref, u64 index)
4262 {
4263         int ret = 0;
4264         struct btrfs_key key;
4265         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4266
4267         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4268                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4269         } else {
4270                 key.objectid = inode->i_ino;
4271                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4272                 key.offset = 0;
4273         }
4274
4275         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4276                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4277                                          key.objectid, root->root_key.objectid,
4278                                          parent_inode->i_ino,
4279                                          index, name, name_len);
4280         } else if (add_backref) {
4281                 ret = btrfs_insert_inode_ref(trans, root,
4282                                              name, name_len, inode->i_ino,
4283                                              parent_inode->i_ino, index);
4284         }
4285
4286         if (ret == 0) {
4287                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4288                                             parent_inode->i_ino, &key,
4289                                             btrfs_inode_type(inode), index);
4290                 BUG_ON(ret);
4291
4292                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4293                                    name_len * 2);
4294                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4295                 ret = btrfs_update_inode(trans, root, parent_inode);
4296         }
4297         return ret;
4298 }
4299
4300 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4301                             struct dentry *dentry, struct inode *inode,
4302                             int backref, u64 index)
4303 {
4304         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4305                                  inode, dentry->d_name.name,
4306                                  dentry->d_name.len, backref, index);
4307         if (!err) {
4308                 d_instantiate(dentry, inode);
4309                 return 0;
4310         }
4311         if (err > 0)
4312                 err = -EEXIST;
4313         return err;
4314 }
4315
4316 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4317                         int mode, dev_t rdev)
4318 {
4319         struct btrfs_trans_handle *trans;
4320         struct btrfs_root *root = BTRFS_I(dir)->root;
4321         struct inode *inode = NULL;
4322         int err;
4323         int drop_inode = 0;
4324         u64 objectid;
4325         unsigned long nr = 0;
4326         u64 index = 0;
4327
4328         if (!new_valid_dev(rdev))
4329                 return -EINVAL;
4330
4331         /*
4332          * 2 for inode item and ref
4333          * 2 for dir items
4334          * 1 for xattr if selinux is on
4335          */
4336         err = btrfs_reserve_metadata_space(root, 5);
4337         if (err)
4338                 return err;
4339
4340         trans = btrfs_start_transaction(root, 1);
4341         if (!trans)
4342                 goto fail;
4343         btrfs_set_trans_block_group(trans, dir);
4344
4345         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4346         if (err) {
4347                 err = -ENOSPC;
4348                 goto out_unlock;
4349         }
4350
4351         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4352                                 dentry->d_name.len,
4353                                 dentry->d_parent->d_inode->i_ino, objectid,
4354                                 BTRFS_I(dir)->block_group, mode, &index);
4355         err = PTR_ERR(inode);
4356         if (IS_ERR(inode))
4357                 goto out_unlock;
4358
4359         err = btrfs_init_inode_security(trans, inode, dir);
4360         if (err) {
4361                 drop_inode = 1;
4362                 goto out_unlock;
4363         }
4364
4365         btrfs_set_trans_block_group(trans, inode);
4366         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4367         if (err)
4368                 drop_inode = 1;
4369         else {
4370                 inode->i_op = &btrfs_special_inode_operations;
4371                 init_special_inode(inode, inode->i_mode, rdev);
4372                 btrfs_update_inode(trans, root, inode);
4373         }
4374         btrfs_update_inode_block_group(trans, inode);
4375         btrfs_update_inode_block_group(trans, dir);
4376 out_unlock:
4377         nr = trans->blocks_used;
4378         btrfs_end_transaction_throttle(trans, root);
4379 fail:
4380         btrfs_unreserve_metadata_space(root, 5);
4381         if (drop_inode) {
4382                 inode_dec_link_count(inode);
4383                 iput(inode);
4384         }
4385         btrfs_btree_balance_dirty(root, nr);
4386         return err;
4387 }
4388
4389 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4390                         int mode, struct nameidata *nd)
4391 {
4392         struct btrfs_trans_handle *trans;
4393         struct btrfs_root *root = BTRFS_I(dir)->root;
4394         struct inode *inode = NULL;
4395         int err;
4396         int drop_inode = 0;
4397         unsigned long nr = 0;
4398         u64 objectid;
4399         u64 index = 0;
4400
4401         /*
4402          * 2 for inode item and ref
4403          * 2 for dir items
4404          * 1 for xattr if selinux is on
4405          */
4406         err = btrfs_reserve_metadata_space(root, 5);
4407         if (err)
4408                 return err;
4409
4410         trans = btrfs_start_transaction(root, 1);
4411         if (!trans)
4412                 goto fail;
4413         btrfs_set_trans_block_group(trans, dir);
4414
4415         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4416         if (err) {
4417                 err = -ENOSPC;
4418                 goto out_unlock;
4419         }
4420
4421         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4422                                 dentry->d_name.len,
4423                                 dentry->d_parent->d_inode->i_ino,
4424                                 objectid, BTRFS_I(dir)->block_group, mode,
4425                                 &index);
4426         err = PTR_ERR(inode);
4427         if (IS_ERR(inode))
4428                 goto out_unlock;
4429
4430         err = btrfs_init_inode_security(trans, inode, dir);
4431         if (err) {
4432                 drop_inode = 1;
4433                 goto out_unlock;
4434         }
4435
4436         btrfs_set_trans_block_group(trans, inode);
4437         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4438         if (err)
4439                 drop_inode = 1;
4440         else {
4441                 inode->i_mapping->a_ops = &btrfs_aops;
4442                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4443                 inode->i_fop = &btrfs_file_operations;
4444                 inode->i_op = &btrfs_file_inode_operations;
4445                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4446         }
4447         btrfs_update_inode_block_group(trans, inode);
4448         btrfs_update_inode_block_group(trans, dir);
4449 out_unlock:
4450         nr = trans->blocks_used;
4451         btrfs_end_transaction_throttle(trans, root);
4452 fail:
4453         btrfs_unreserve_metadata_space(root, 5);
4454         if (drop_inode) {
4455                 inode_dec_link_count(inode);
4456                 iput(inode);
4457         }
4458         btrfs_btree_balance_dirty(root, nr);
4459         return err;
4460 }
4461
4462 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4463                       struct dentry *dentry)
4464 {
4465         struct btrfs_trans_handle *trans;
4466         struct btrfs_root *root = BTRFS_I(dir)->root;
4467         struct inode *inode = old_dentry->d_inode;
4468         u64 index;
4469         unsigned long nr = 0;
4470         int err;
4471         int drop_inode = 0;
4472
4473         if (inode->i_nlink == 0)
4474                 return -ENOENT;
4475
4476         /* do not allow sys_link's with other subvols of the same device */
4477         if (root->objectid != BTRFS_I(inode)->root->objectid)
4478                 return -EPERM;
4479
4480         /*
4481          * 1 item for inode ref
4482          * 2 items for dir items
4483          */
4484         err = btrfs_reserve_metadata_space(root, 3);
4485         if (err)
4486                 return err;
4487
4488         btrfs_inc_nlink(inode);
4489
4490         err = btrfs_set_inode_index(dir, &index);
4491         if (err)
4492                 goto fail;
4493
4494         trans = btrfs_start_transaction(root, 1);
4495
4496         btrfs_set_trans_block_group(trans, dir);
4497         atomic_inc(&inode->i_count);
4498
4499         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
4500
4501         if (err) {
4502                 drop_inode = 1;
4503         } else {
4504                 btrfs_update_inode_block_group(trans, dir);
4505                 err = btrfs_update_inode(trans, root, inode);
4506                 BUG_ON(err);
4507                 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4508         }
4509
4510         nr = trans->blocks_used;
4511         btrfs_end_transaction_throttle(trans, root);
4512 fail:
4513         btrfs_unreserve_metadata_space(root, 3);
4514         if (drop_inode) {
4515                 inode_dec_link_count(inode);
4516                 iput(inode);
4517         }
4518         btrfs_btree_balance_dirty(root, nr);
4519         return err;
4520 }
4521
4522 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4523 {
4524         struct inode *inode = NULL;
4525         struct btrfs_trans_handle *trans;
4526         struct btrfs_root *root = BTRFS_I(dir)->root;
4527         int err = 0;
4528         int drop_on_err = 0;
4529         u64 objectid = 0;
4530         u64 index = 0;
4531         unsigned long nr = 1;
4532
4533         /*
4534          * 2 items for inode and ref
4535          * 2 items for dir items
4536          * 1 for xattr if selinux is on
4537          */
4538         err = btrfs_reserve_metadata_space(root, 5);
4539         if (err)
4540                 return err;
4541
4542         trans = btrfs_start_transaction(root, 1);
4543         if (!trans) {
4544                 err = -ENOMEM;
4545                 goto out_unlock;
4546         }
4547         btrfs_set_trans_block_group(trans, dir);
4548
4549         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4550         if (err) {
4551                 err = -ENOSPC;
4552                 goto out_unlock;
4553         }
4554
4555         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4556                                 dentry->d_name.len,
4557                                 dentry->d_parent->d_inode->i_ino, objectid,
4558                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4559                                 &index);
4560         if (IS_ERR(inode)) {
4561                 err = PTR_ERR(inode);
4562                 goto out_fail;
4563         }
4564
4565         drop_on_err = 1;
4566
4567         err = btrfs_init_inode_security(trans, inode, dir);
4568         if (err)
4569                 goto out_fail;
4570
4571         inode->i_op = &btrfs_dir_inode_operations;
4572         inode->i_fop = &btrfs_dir_file_operations;
4573         btrfs_set_trans_block_group(trans, inode);
4574
4575         btrfs_i_size_write(inode, 0);
4576         err = btrfs_update_inode(trans, root, inode);
4577         if (err)
4578                 goto out_fail;
4579
4580         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4581                                  inode, dentry->d_name.name,
4582                                  dentry->d_name.len, 0, index);
4583         if (err)
4584                 goto out_fail;
4585
4586         d_instantiate(dentry, inode);
4587         drop_on_err = 0;
4588         btrfs_update_inode_block_group(trans, inode);
4589         btrfs_update_inode_block_group(trans, dir);
4590
4591 out_fail:
4592         nr = trans->blocks_used;
4593         btrfs_end_transaction_throttle(trans, root);
4594
4595 out_unlock:
4596         btrfs_unreserve_metadata_space(root, 5);
4597         if (drop_on_err)
4598                 iput(inode);
4599         btrfs_btree_balance_dirty(root, nr);
4600         return err;
4601 }
4602
4603 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4604  * and an extent that you want to insert, deal with overlap and insert
4605  * the new extent into the tree.
4606  */
4607 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4608                                 struct extent_map *existing,
4609                                 struct extent_map *em,
4610                                 u64 map_start, u64 map_len)
4611 {
4612         u64 start_diff;
4613
4614         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4615         start_diff = map_start - em->start;
4616         em->start = map_start;
4617         em->len = map_len;
4618         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4619             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4620                 em->block_start += start_diff;
4621                 em->block_len -= start_diff;
4622         }
4623         return add_extent_mapping(em_tree, em);
4624 }
4625
4626 static noinline int uncompress_inline(struct btrfs_path *path,
4627                                       struct inode *inode, struct page *page,
4628                                       size_t pg_offset, u64 extent_offset,
4629                                       struct btrfs_file_extent_item *item)
4630 {
4631         int ret;
4632         struct extent_buffer *leaf = path->nodes[0];
4633         char *tmp;
4634         size_t max_size;
4635         unsigned long inline_size;
4636         unsigned long ptr;
4637
4638         WARN_ON(pg_offset != 0);
4639         max_size = btrfs_file_extent_ram_bytes(leaf, item);
4640         inline_size = btrfs_file_extent_inline_item_len(leaf,
4641                                         btrfs_item_nr(leaf, path->slots[0]));
4642         tmp = kmalloc(inline_size, GFP_NOFS);
4643         ptr = btrfs_file_extent_inline_start(item);
4644
4645         read_extent_buffer(leaf, tmp, ptr, inline_size);
4646
4647         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4648         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4649                                     inline_size, max_size);
4650         if (ret) {
4651                 char *kaddr = kmap_atomic(page, KM_USER0);
4652                 unsigned long copy_size = min_t(u64,
4653                                   PAGE_CACHE_SIZE - pg_offset,
4654                                   max_size - extent_offset);
4655                 memset(kaddr + pg_offset, 0, copy_size);
4656                 kunmap_atomic(kaddr, KM_USER0);
4657         }
4658         kfree(tmp);
4659         return 0;
4660 }
4661
4662 /*
4663  * a bit scary, this does extent mapping from logical file offset to the disk.
4664  * the ugly parts come from merging extents from the disk with the in-ram
4665  * representation.  This gets more complex because of the data=ordered code,
4666  * where the in-ram extents might be locked pending data=ordered completion.
4667  *
4668  * This also copies inline extents directly into the page.
4669  */
4670
4671 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4672                                     size_t pg_offset, u64 start, u64 len,
4673                                     int create)
4674 {
4675         int ret;
4676         int err = 0;
4677         u64 bytenr;
4678         u64 extent_start = 0;
4679         u64 extent_end = 0;
4680         u64 objectid = inode->i_ino;
4681         u32 found_type;
4682         struct btrfs_path *path = NULL;
4683         struct btrfs_root *root = BTRFS_I(inode)->root;
4684         struct btrfs_file_extent_item *item;
4685         struct extent_buffer *leaf;
4686         struct btrfs_key found_key;
4687         struct extent_map *em = NULL;
4688         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4689         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4690         struct btrfs_trans_handle *trans = NULL;
4691         int compressed;
4692
4693 again:
4694         read_lock(&em_tree->lock);
4695         em = lookup_extent_mapping(em_tree, start, len);
4696         if (em)
4697                 em->bdev = root->fs_info->fs_devices->latest_bdev;
4698         read_unlock(&em_tree->lock);
4699
4700         if (em) {
4701                 if (em->start > start || em->start + em->len <= start)
4702                         free_extent_map(em);
4703                 else if (em->block_start == EXTENT_MAP_INLINE && page)
4704                         free_extent_map(em);
4705                 else
4706                         goto out;
4707         }
4708         em = alloc_extent_map(GFP_NOFS);
4709         if (!em) {
4710                 err = -ENOMEM;
4711                 goto out;
4712         }
4713         em->bdev = root->fs_info->fs_devices->latest_bdev;
4714         em->start = EXTENT_MAP_HOLE;
4715         em->orig_start = EXTENT_MAP_HOLE;
4716         em->len = (u64)-1;
4717         em->block_len = (u64)-1;
4718
4719         if (!path) {
4720                 path = btrfs_alloc_path();
4721                 BUG_ON(!path);
4722         }
4723
4724         ret = btrfs_lookup_file_extent(trans, root, path,
4725                                        objectid, start, trans != NULL);
4726         if (ret < 0) {
4727                 err = ret;
4728                 goto out;
4729         }
4730
4731         if (ret != 0) {
4732                 if (path->slots[0] == 0)
4733                         goto not_found;
4734                 path->slots[0]--;
4735         }
4736
4737         leaf = path->nodes[0];
4738         item = btrfs_item_ptr(leaf, path->slots[0],
4739                               struct btrfs_file_extent_item);
4740         /* are we inside the extent that was found? */
4741         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4742         found_type = btrfs_key_type(&found_key);
4743         if (found_key.objectid != objectid ||
4744             found_type != BTRFS_EXTENT_DATA_KEY) {
4745                 goto not_found;
4746         }
4747
4748         found_type = btrfs_file_extent_type(leaf, item);
4749         extent_start = found_key.offset;
4750         compressed = btrfs_file_extent_compression(leaf, item);
4751         if (found_type == BTRFS_FILE_EXTENT_REG ||
4752             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4753                 extent_end = extent_start +
4754                        btrfs_file_extent_num_bytes(leaf, item);
4755         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4756                 size_t size;
4757                 size = btrfs_file_extent_inline_len(leaf, item);
4758                 extent_end = (extent_start + size + root->sectorsize - 1) &
4759                         ~((u64)root->sectorsize - 1);
4760         }
4761
4762         if (start >= extent_end) {
4763                 path->slots[0]++;
4764                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4765                         ret = btrfs_next_leaf(root, path);
4766                         if (ret < 0) {
4767                                 err = ret;
4768                                 goto out;
4769                         }
4770                         if (ret > 0)
4771                                 goto not_found;
4772                         leaf = path->nodes[0];
4773                 }
4774                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4775                 if (found_key.objectid != objectid ||
4776                     found_key.type != BTRFS_EXTENT_DATA_KEY)
4777                         goto not_found;
4778                 if (start + len <= found_key.offset)
4779                         goto not_found;
4780                 em->start = start;
4781                 em->len = found_key.offset - start;
4782                 goto not_found_em;
4783         }
4784
4785         if (found_type == BTRFS_FILE_EXTENT_REG ||
4786             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4787                 em->start = extent_start;
4788                 em->len = extent_end - extent_start;
4789                 em->orig_start = extent_start -
4790                                  btrfs_file_extent_offset(leaf, item);
4791                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4792                 if (bytenr == 0) {
4793                         em->block_start = EXTENT_MAP_HOLE;
4794                         goto insert;
4795                 }
4796                 if (compressed) {
4797                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4798                         em->block_start = bytenr;
4799                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4800                                                                          item);
4801                 } else {
4802                         bytenr += btrfs_file_extent_offset(leaf, item);
4803                         em->block_start = bytenr;
4804                         em->block_len = em->len;
4805                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4806                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
4807                 }
4808                 goto insert;
4809         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4810                 unsigned long ptr;
4811                 char *map;
4812                 size_t size;
4813                 size_t extent_offset;
4814                 size_t copy_size;
4815
4816                 em->block_start = EXTENT_MAP_INLINE;
4817                 if (!page || create) {
4818                         em->start = extent_start;
4819                         em->len = extent_end - extent_start;
4820                         goto out;
4821                 }
4822
4823                 size = btrfs_file_extent_inline_len(leaf, item);
4824                 extent_offset = page_offset(page) + pg_offset - extent_start;
4825                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
4826                                 size - extent_offset);
4827                 em->start = extent_start + extent_offset;
4828                 em->len = (copy_size + root->sectorsize - 1) &
4829                         ~((u64)root->sectorsize - 1);
4830                 em->orig_start = EXTENT_MAP_INLINE;
4831                 if (compressed)
4832                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4833                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4834                 if (create == 0 && !PageUptodate(page)) {
4835                         if (btrfs_file_extent_compression(leaf, item) ==
4836                             BTRFS_COMPRESS_ZLIB) {
4837                                 ret = uncompress_inline(path, inode, page,
4838                                                         pg_offset,
4839                                                         extent_offset, item);
4840                                 BUG_ON(ret);
4841                         } else {
4842                                 map = kmap(page);
4843                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4844                                                    copy_size);
4845                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4846                                         memset(map + pg_offset + copy_size, 0,
4847                                                PAGE_CACHE_SIZE - pg_offset -
4848                                                copy_size);
4849                                 }
4850                                 kunmap(page);
4851                         }
4852                         flush_dcache_page(page);
4853                 } else if (create && PageUptodate(page)) {
4854                         if (!trans) {
4855                                 kunmap(page);
4856                                 free_extent_map(em);
4857                                 em = NULL;
4858                                 btrfs_release_path(root, path);
4859                                 trans = btrfs_join_transaction(root, 1);
4860                                 goto again;
4861                         }
4862                         map = kmap(page);
4863                         write_extent_buffer(leaf, map + pg_offset, ptr,
4864                                             copy_size);
4865                         kunmap(page);
4866                         btrfs_mark_buffer_dirty(leaf);
4867                 }
4868                 set_extent_uptodate(io_tree, em->start,
4869                                     extent_map_end(em) - 1, GFP_NOFS);
4870                 goto insert;
4871         } else {
4872                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
4873                 WARN_ON(1);
4874         }
4875 not_found:
4876         em->start = start;
4877         em->len = len;
4878 not_found_em:
4879         em->block_start = EXTENT_MAP_HOLE;
4880         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4881 insert:
4882         btrfs_release_path(root, path);
4883         if (em->start > start || extent_map_end(em) <= start) {
4884                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4885                        "[%llu %llu]\n", (unsigned long long)em->start,
4886                        (unsigned long long)em->len,
4887                        (unsigned long long)start,
4888                        (unsigned long long)len);
4889                 err = -EIO;
4890                 goto out;
4891         }
4892
4893         err = 0;
4894         write_lock(&em_tree->lock);
4895         ret = add_extent_mapping(em_tree, em);
4896         /* it is possible that someone inserted the extent into the tree
4897          * while we had the lock dropped.  It is also possible that
4898          * an overlapping map exists in the tree
4899          */
4900         if (ret == -EEXIST) {
4901                 struct extent_map *existing;
4902
4903                 ret = 0;
4904
4905                 existing = lookup_extent_mapping(em_tree, start, len);
4906                 if (existing && (existing->start > start ||
4907                     existing->start + existing->len <= start)) {
4908                         free_extent_map(existing);
4909                         existing = NULL;
4910                 }
4911                 if (!existing) {
4912                         existing = lookup_extent_mapping(em_tree, em->start,
4913                                                          em->len);
4914                         if (existing) {
4915                                 err = merge_extent_mapping(em_tree, existing,
4916                                                            em, start,
4917                                                            root->sectorsize);
4918                                 free_extent_map(existing);
4919                                 if (err) {
4920                                         free_extent_map(em);
4921                                         em = NULL;
4922                                 }
4923                         } else {
4924                                 err = -EIO;
4925                                 free_extent_map(em);
4926                                 em = NULL;
4927                         }
4928                 } else {
4929                         free_extent_map(em);
4930                         em = existing;
4931                         err = 0;
4932                 }
4933         }
4934         write_unlock(&em_tree->lock);
4935 out:
4936         if (path)
4937                 btrfs_free_path(path);
4938         if (trans) {
4939                 ret = btrfs_end_transaction(trans, root);
4940                 if (!err)
4941                         err = ret;
4942         }
4943         if (err) {
4944                 free_extent_map(em);
4945                 return ERR_PTR(err);
4946         }
4947         return em;
4948 }
4949
4950 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4951                         const struct iovec *iov, loff_t offset,
4952                         unsigned long nr_segs)
4953 {
4954         return -EINVAL;
4955 }
4956
4957 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4958                 __u64 start, __u64 len)
4959 {
4960         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4961 }
4962
4963 int btrfs_readpage(struct file *file, struct page *page)
4964 {
4965         struct extent_io_tree *tree;
4966         tree = &BTRFS_I(page->mapping->host)->io_tree;
4967         return extent_read_full_page(tree, page, btrfs_get_extent);
4968 }
4969
4970 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4971 {
4972         struct extent_io_tree *tree;
4973
4974
4975         if (current->flags & PF_MEMALLOC) {
4976                 redirty_page_for_writepage(wbc, page);
4977                 unlock_page(page);
4978                 return 0;
4979         }
4980         tree = &BTRFS_I(page->mapping->host)->io_tree;
4981         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4982 }
4983
4984 int btrfs_writepages(struct address_space *mapping,
4985                      struct writeback_control *wbc)
4986 {
4987         struct extent_io_tree *tree;
4988
4989         tree = &BTRFS_I(mapping->host)->io_tree;
4990         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4991 }
4992
4993 static int
4994 btrfs_readpages(struct file *file, struct address_space *mapping,
4995                 struct list_head *pages, unsigned nr_pages)
4996 {
4997         struct extent_io_tree *tree;
4998         tree = &BTRFS_I(mapping->host)->io_tree;
4999         return extent_readpages(tree, mapping, pages, nr_pages,
5000                                 btrfs_get_extent);
5001 }
5002 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5003 {
5004         struct extent_io_tree *tree;
5005         struct extent_map_tree *map;
5006         int ret;
5007
5008         tree = &BTRFS_I(page->mapping->host)->io_tree;
5009         map = &BTRFS_I(page->mapping->host)->extent_tree;
5010         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
5011         if (ret == 1) {
5012                 ClearPagePrivate(page);
5013                 set_page_private(page, 0);
5014                 page_cache_release(page);
5015         }
5016         return ret;
5017 }
5018
5019 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
5020 {
5021         if (PageWriteback(page) || PageDirty(page))
5022                 return 0;
5023         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
5024 }
5025
5026 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
5027 {
5028         struct extent_io_tree *tree;
5029         struct btrfs_ordered_extent *ordered;
5030         u64 page_start = page_offset(page);
5031         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
5032
5033
5034         /*
5035          * we have the page locked, so new writeback can't start,
5036          * and the dirty bit won't be cleared while we are here.
5037          *
5038          * Wait for IO on this page so that we can safely clear
5039          * the PagePrivate2 bit and do ordered accounting
5040          */
5041         wait_on_page_writeback(page);
5042
5043         tree = &BTRFS_I(page->mapping->host)->io_tree;
5044         if (offset) {
5045                 btrfs_releasepage(page, GFP_NOFS);
5046                 return;
5047         }
5048         lock_extent(tree, page_start, page_end, GFP_NOFS);
5049         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5050                                            page_offset(page));
5051         if (ordered) {
5052                 /*
5053                  * IO on this page will never be started, so we need
5054                  * to account for any ordered extents now
5055                  */
5056                 clear_extent_bit(tree, page_start, page_end,
5057                                  EXTENT_DIRTY | EXTENT_DELALLOC |
5058                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
5059                                  NULL, GFP_NOFS);
5060                 /*
5061                  * whoever cleared the private bit is responsible
5062                  * for the finish_ordered_io
5063                  */
5064                 if (TestClearPagePrivate2(page)) {
5065                         btrfs_finish_ordered_io(page->mapping->host,
5066                                                 page_start, page_end);
5067                 }
5068                 btrfs_put_ordered_extent(ordered);
5069                 lock_extent(tree, page_start, page_end, GFP_NOFS);
5070         }
5071         clear_extent_bit(tree, page_start, page_end,
5072                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
5073                  EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
5074         __btrfs_releasepage(page, GFP_NOFS);
5075
5076         ClearPageChecked(page);
5077         if (PagePrivate(page)) {
5078                 ClearPagePrivate(page);
5079                 set_page_private(page, 0);
5080                 page_cache_release(page);
5081         }
5082 }
5083
5084 /*
5085  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5086  * called from a page fault handler when a page is first dirtied. Hence we must
5087  * be careful to check for EOF conditions here. We set the page up correctly
5088  * for a written page which means we get ENOSPC checking when writing into
5089  * holes and correct delalloc and unwritten extent mapping on filesystems that
5090  * support these features.
5091  *
5092  * We are not allowed to take the i_mutex here so we have to play games to
5093  * protect against truncate races as the page could now be beyond EOF.  Because
5094  * vmtruncate() writes the inode size before removing pages, once we have the
5095  * page lock we can determine safely if the page is beyond EOF. If it is not
5096  * beyond EOF, then the page is guaranteed safe against truncation until we
5097  * unlock the page.
5098  */
5099 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5100 {
5101         struct page *page = vmf->page;
5102         struct inode *inode = fdentry(vma->vm_file)->d_inode;
5103         struct btrfs_root *root = BTRFS_I(inode)->root;
5104         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5105         struct btrfs_ordered_extent *ordered;
5106         char *kaddr;
5107         unsigned long zero_start;
5108         loff_t size;
5109         int ret;
5110         u64 page_start;
5111         u64 page_end;
5112
5113         ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
5114         if (ret) {
5115                 if (ret == -ENOMEM)
5116                         ret = VM_FAULT_OOM;
5117                 else /* -ENOSPC, -EIO, etc */
5118                         ret = VM_FAULT_SIGBUS;
5119                 goto out;
5120         }
5121
5122         ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5123         if (ret) {
5124                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5125                 ret = VM_FAULT_SIGBUS;
5126                 goto out;
5127         }
5128
5129         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
5130 again:
5131         lock_page(page);
5132         size = i_size_read(inode);
5133         page_start = page_offset(page);
5134         page_end = page_start + PAGE_CACHE_SIZE - 1;
5135
5136         if ((page->mapping != inode->i_mapping) ||
5137             (page_start >= size)) {
5138                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5139                 /* page got truncated out from underneath us */
5140                 goto out_unlock;
5141         }
5142         wait_on_page_writeback(page);
5143
5144         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
5145         set_page_extent_mapped(page);
5146
5147         /*
5148          * we can't set the delalloc bits if there are pending ordered
5149          * extents.  Drop our locks and wait for them to finish
5150          */
5151         ordered = btrfs_lookup_ordered_extent(inode, page_start);
5152         if (ordered) {
5153                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5154                 unlock_page(page);
5155                 btrfs_start_ordered_extent(inode, ordered, 1);
5156                 btrfs_put_ordered_extent(ordered);
5157                 goto again;
5158         }
5159
5160         /*
5161          * XXX - page_mkwrite gets called every time the page is dirtied, even
5162          * if it was already dirty, so for space accounting reasons we need to
5163          * clear any delalloc bits for the range we are fixing to save.  There
5164          * is probably a better way to do this, but for now keep consistent with
5165          * prepare_pages in the normal write path.
5166          */
5167         clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
5168                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
5169                           GFP_NOFS);
5170
5171         ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
5172         if (ret) {
5173                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5174                 ret = VM_FAULT_SIGBUS;
5175                 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5176                 goto out_unlock;
5177         }
5178         ret = 0;
5179
5180         /* page is wholly or partially inside EOF */
5181         if (page_start + PAGE_CACHE_SIZE > size)
5182                 zero_start = size & ~PAGE_CACHE_MASK;
5183         else
5184                 zero_start = PAGE_CACHE_SIZE;
5185
5186         if (zero_start != PAGE_CACHE_SIZE) {
5187                 kaddr = kmap(page);
5188                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5189                 flush_dcache_page(page);
5190                 kunmap(page);
5191         }
5192         ClearPageChecked(page);
5193         set_page_dirty(page);
5194         SetPageUptodate(page);
5195
5196         BTRFS_I(inode)->last_trans = root->fs_info->generation;
5197         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5198
5199         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
5200
5201 out_unlock:
5202         btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
5203         if (!ret)
5204                 return VM_FAULT_LOCKED;
5205         unlock_page(page);
5206 out:
5207         return ret;
5208 }
5209
5210 static void btrfs_truncate(struct inode *inode)
5211 {
5212         struct btrfs_root *root = BTRFS_I(inode)->root;
5213         int ret;
5214         struct btrfs_trans_handle *trans;
5215         unsigned long nr;
5216         u64 mask = root->sectorsize - 1;
5217
5218         if (!S_ISREG(inode->i_mode)) {
5219                 WARN_ON(1);
5220                 return;
5221         }
5222
5223         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5224         if (ret)
5225                 return;
5226
5227         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
5228         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
5229
5230         trans = btrfs_start_transaction(root, 1);
5231         btrfs_set_trans_block_group(trans, inode);
5232
5233         /*
5234          * setattr is responsible for setting the ordered_data_close flag,
5235          * but that is only tested during the last file release.  That
5236          * could happen well after the next commit, leaving a great big
5237          * window where new writes may get lost if someone chooses to write
5238          * to this file after truncating to zero
5239          *
5240          * The inode doesn't have any dirty data here, and so if we commit
5241          * this is a noop.  If someone immediately starts writing to the inode
5242          * it is very likely we'll catch some of their writes in this
5243          * transaction, and the commit will find this file on the ordered
5244          * data list with good things to send down.
5245          *
5246          * This is a best effort solution, there is still a window where
5247          * using truncate to replace the contents of the file will
5248          * end up with a zero length file after a crash.
5249          */
5250         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5251                 btrfs_add_ordered_operation(trans, root, inode);
5252
5253         while (1) {
5254                 ret = btrfs_truncate_inode_items(trans, root, inode,
5255                                                  inode->i_size,
5256                                                  BTRFS_EXTENT_DATA_KEY);
5257                 if (ret != -EAGAIN)
5258                         break;
5259
5260                 ret = btrfs_update_inode(trans, root, inode);
5261                 BUG_ON(ret);
5262
5263                 nr = trans->blocks_used;
5264                 btrfs_end_transaction(trans, root);
5265                 btrfs_btree_balance_dirty(root, nr);
5266
5267                 trans = btrfs_start_transaction(root, 1);
5268                 btrfs_set_trans_block_group(trans, inode);
5269         }
5270
5271         if (ret == 0 && inode->i_nlink > 0) {
5272                 ret = btrfs_orphan_del(trans, inode);
5273                 BUG_ON(ret);
5274         }
5275
5276         ret = btrfs_update_inode(trans, root, inode);
5277         BUG_ON(ret);
5278
5279         nr = trans->blocks_used;
5280         ret = btrfs_end_transaction_throttle(trans, root);
5281         BUG_ON(ret);
5282         btrfs_btree_balance_dirty(root, nr);
5283 }
5284
5285 /*
5286  * create a new subvolume directory/inode (helper for the ioctl).
5287  */
5288 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
5289                              struct btrfs_root *new_root,
5290                              u64 new_dirid, u64 alloc_hint)
5291 {
5292         struct inode *inode;
5293         int err;
5294         u64 index = 0;
5295
5296         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
5297                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
5298         if (IS_ERR(inode))
5299                 return PTR_ERR(inode);
5300         inode->i_op = &btrfs_dir_inode_operations;
5301         inode->i_fop = &btrfs_dir_file_operations;
5302
5303         inode->i_nlink = 1;
5304         btrfs_i_size_write(inode, 0);
5305
5306         err = btrfs_update_inode(trans, new_root, inode);
5307         BUG_ON(err);
5308
5309         iput(inode);
5310         return 0;
5311 }
5312
5313 /* helper function for file defrag and space balancing.  This
5314  * forces readahead on a given range of bytes in an inode
5315  */
5316 unsigned long btrfs_force_ra(struct address_space *mapping,
5317                               struct file_ra_state *ra, struct file *file,
5318                               pgoff_t offset, pgoff_t last_index)
5319 {
5320         pgoff_t req_size = last_index - offset + 1;
5321
5322         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5323         return offset + req_size;
5324 }
5325
5326 struct inode *btrfs_alloc_inode(struct super_block *sb)
5327 {
5328         struct btrfs_inode *ei;
5329
5330         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5331         if (!ei)
5332                 return NULL;
5333         ei->last_trans = 0;
5334         ei->last_sub_trans = 0;
5335         ei->logged_trans = 0;
5336         ei->outstanding_extents = 0;
5337         ei->reserved_extents = 0;
5338         ei->root = NULL;
5339         spin_lock_init(&ei->accounting_lock);
5340         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
5341         INIT_LIST_HEAD(&ei->i_orphan);
5342         INIT_LIST_HEAD(&ei->ordered_operations);
5343         return &ei->vfs_inode;
5344 }
5345
5346 void btrfs_destroy_inode(struct inode *inode)
5347 {
5348         struct btrfs_ordered_extent *ordered;
5349         struct btrfs_root *root = BTRFS_I(inode)->root;
5350
5351         WARN_ON(!list_empty(&inode->i_dentry));
5352         WARN_ON(inode->i_data.nrpages);
5353
5354         /*
5355          * This can happen where we create an inode, but somebody else also
5356          * created the same inode and we need to destroy the one we already
5357          * created.
5358          */
5359         if (!root)
5360                 goto free;
5361
5362         /*
5363          * Make sure we're properly removed from the ordered operation
5364          * lists.
5365          */
5366         smp_mb();
5367         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5368                 spin_lock(&root->fs_info->ordered_extent_lock);
5369                 list_del_init(&BTRFS_I(inode)->ordered_operations);
5370                 spin_unlock(&root->fs_info->ordered_extent_lock);
5371         }
5372
5373         spin_lock(&root->list_lock);
5374         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5375                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5376                        inode->i_ino);
5377                 list_del_init(&BTRFS_I(inode)->i_orphan);
5378         }
5379         spin_unlock(&root->list_lock);
5380
5381         while (1) {
5382                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5383                 if (!ordered)
5384                         break;
5385                 else {
5386                         printk(KERN_ERR "btrfs found ordered "
5387                                "extent %llu %llu on inode cleanup\n",
5388                                (unsigned long long)ordered->file_offset,
5389                                (unsigned long long)ordered->len);
5390                         btrfs_remove_ordered_extent(inode, ordered);
5391                         btrfs_put_ordered_extent(ordered);
5392                         btrfs_put_ordered_extent(ordered);
5393                 }
5394         }
5395         inode_tree_del(inode);
5396         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
5397 free:
5398         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5399 }
5400
5401 void btrfs_drop_inode(struct inode *inode)
5402 {
5403         struct btrfs_root *root = BTRFS_I(inode)->root;
5404
5405         if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5406                 generic_delete_inode(inode);
5407         else
5408                 generic_drop_inode(inode);
5409 }
5410
5411 static void init_once(void *foo)
5412 {
5413         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5414
5415         inode_init_once(&ei->vfs_inode);
5416 }
5417
5418 void btrfs_destroy_cachep(void)
5419 {
5420         if (btrfs_inode_cachep)
5421                 kmem_cache_destroy(btrfs_inode_cachep);
5422         if (btrfs_trans_handle_cachep)
5423                 kmem_cache_destroy(btrfs_trans_handle_cachep);
5424         if (btrfs_transaction_cachep)
5425                 kmem_cache_destroy(btrfs_transaction_cachep);
5426         if (btrfs_path_cachep)
5427                 kmem_cache_destroy(btrfs_path_cachep);
5428 }
5429
5430 int btrfs_init_cachep(void)
5431 {
5432         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5433                         sizeof(struct btrfs_inode), 0,
5434                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
5435         if (!btrfs_inode_cachep)
5436                 goto fail;
5437
5438         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5439                         sizeof(struct btrfs_trans_handle), 0,
5440                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5441         if (!btrfs_trans_handle_cachep)
5442                 goto fail;
5443
5444         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5445                         sizeof(struct btrfs_transaction), 0,
5446                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5447         if (!btrfs_transaction_cachep)
5448                 goto fail;
5449
5450         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5451                         sizeof(struct btrfs_path), 0,
5452                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
5453         if (!btrfs_path_cachep)
5454                 goto fail;
5455
5456         return 0;
5457 fail:
5458         btrfs_destroy_cachep();
5459         return -ENOMEM;
5460 }
5461
5462 static int btrfs_getattr(struct vfsmount *mnt,
5463                          struct dentry *dentry, struct kstat *stat)
5464 {
5465         struct inode *inode = dentry->d_inode;
5466         generic_fillattr(inode, stat);
5467         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
5468         stat->blksize = PAGE_CACHE_SIZE;
5469         stat->blocks = (inode_get_bytes(inode) +
5470                         BTRFS_I(inode)->delalloc_bytes) >> 9;
5471         return 0;
5472 }
5473
5474 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5475                            struct inode *new_dir, struct dentry *new_dentry)
5476 {
5477         struct btrfs_trans_handle *trans;
5478         struct btrfs_root *root = BTRFS_I(old_dir)->root;
5479         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
5480         struct inode *new_inode = new_dentry->d_inode;
5481         struct inode *old_inode = old_dentry->d_inode;
5482         struct timespec ctime = CURRENT_TIME;
5483         u64 index = 0;
5484         u64 root_objectid;
5485         int ret;
5486
5487         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5488                 return -EPERM;
5489
5490         /* we only allow rename subvolume link between subvolumes */
5491         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
5492                 return -EXDEV;
5493
5494         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5495             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
5496                 return -ENOTEMPTY;
5497
5498         if (S_ISDIR(old_inode->i_mode) && new_inode &&
5499             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5500                 return -ENOTEMPTY;
5501
5502         /*
5503          * We want to reserve the absolute worst case amount of items.  So if
5504          * both inodes are subvols and we need to unlink them then that would
5505          * require 4 item modifications, but if they are both normal inodes it
5506          * would require 5 item modifications, so we'll assume their normal
5507          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5508          * should cover the worst case number of items we'll modify.
5509          */
5510         ret = btrfs_reserve_metadata_space(root, 11);
5511         if (ret)
5512                 return ret;
5513
5514         /*
5515          * we're using rename to replace one file with another.
5516          * and the replacement file is large.  Start IO on it now so
5517          * we don't add too much work to the end of the transaction
5518          */
5519         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5520             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5521                 filemap_flush(old_inode->i_mapping);
5522
5523         /* close the racy window with snapshot create/destroy ioctl */
5524         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5525                 down_read(&root->fs_info->subvol_sem);
5526
5527         trans = btrfs_start_transaction(root, 1);
5528         btrfs_set_trans_block_group(trans, new_dir);
5529
5530         if (dest != root)
5531                 btrfs_record_root_in_trans(trans, dest);
5532
5533         ret = btrfs_set_inode_index(new_dir, &index);
5534         if (ret)
5535                 goto out_fail;
5536
5537         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5538                 /* force full log commit if subvolume involved. */
5539                 root->fs_info->last_trans_log_full_commit = trans->transid;
5540         } else {
5541                 ret = btrfs_insert_inode_ref(trans, dest,
5542                                              new_dentry->d_name.name,
5543                                              new_dentry->d_name.len,
5544                                              old_inode->i_ino,
5545                                              new_dir->i_ino, index);
5546                 if (ret)
5547                         goto out_fail;
5548                 /*
5549                  * this is an ugly little race, but the rename is required
5550                  * to make sure that if we crash, the inode is either at the
5551                  * old name or the new one.  pinning the log transaction lets
5552                  * us make sure we don't allow a log commit to come in after
5553                  * we unlink the name but before we add the new name back in.
5554                  */
5555                 btrfs_pin_log_trans(root);
5556         }
5557         /*
5558          * make sure the inode gets flushed if it is replacing
5559          * something.
5560          */
5561         if (new_inode && new_inode->i_size &&
5562             old_inode && S_ISREG(old_inode->i_mode)) {
5563                 btrfs_add_ordered_operation(trans, root, old_inode);
5564         }
5565
5566         old_dir->i_ctime = old_dir->i_mtime = ctime;
5567         new_dir->i_ctime = new_dir->i_mtime = ctime;
5568         old_inode->i_ctime = ctime;
5569
5570         if (old_dentry->d_parent != new_dentry->d_parent)
5571                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5572
5573         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5574                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5575                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5576                                         old_dentry->d_name.name,
5577                                         old_dentry->d_name.len);
5578         } else {
5579                 btrfs_inc_nlink(old_dentry->d_inode);
5580                 ret = btrfs_unlink_inode(trans, root, old_dir,
5581                                          old_dentry->d_inode,
5582                                          old_dentry->d_name.name,
5583                                          old_dentry->d_name.len);
5584         }
5585         BUG_ON(ret);
5586
5587         if (new_inode) {
5588                 new_inode->i_ctime = CURRENT_TIME;
5589                 if (unlikely(new_inode->i_ino ==
5590                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5591                         root_objectid = BTRFS_I(new_inode)->location.objectid;
5592                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
5593                                                 root_objectid,
5594                                                 new_dentry->d_name.name,
5595                                                 new_dentry->d_name.len);
5596                         BUG_ON(new_inode->i_nlink == 0);
5597                 } else {
5598                         ret = btrfs_unlink_inode(trans, dest, new_dir,
5599                                                  new_dentry->d_inode,
5600                                                  new_dentry->d_name.name,
5601                                                  new_dentry->d_name.len);
5602                 }
5603                 BUG_ON(ret);
5604                 if (new_inode->i_nlink == 0) {
5605                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
5606                         BUG_ON(ret);
5607                 }
5608         }
5609
5610         ret = btrfs_add_link(trans, new_dir, old_inode,
5611                              new_dentry->d_name.name,
5612                              new_dentry->d_name.len, 0, index);
5613         BUG_ON(ret);
5614
5615         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5616                 btrfs_log_new_name(trans, old_inode, old_dir,
5617                                    new_dentry->d_parent);
5618                 btrfs_end_log_trans(root);
5619         }
5620 out_fail:
5621         btrfs_end_transaction_throttle(trans, root);
5622
5623         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5624                 up_read(&root->fs_info->subvol_sem);
5625
5626         btrfs_unreserve_metadata_space(root, 11);
5627         return ret;
5628 }
5629
5630 /*
5631  * some fairly slow code that needs optimization. This walks the list
5632  * of all the inodes with pending delalloc and forces them to disk.
5633  */
5634 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
5635 {
5636         struct list_head *head = &root->fs_info->delalloc_inodes;
5637         struct btrfs_inode *binode;
5638         struct inode *inode;
5639
5640         if (root->fs_info->sb->s_flags & MS_RDONLY)
5641                 return -EROFS;
5642
5643         spin_lock(&root->fs_info->delalloc_lock);
5644         while (!list_empty(head)) {
5645                 binode = list_entry(head->next, struct btrfs_inode,
5646                                     delalloc_inodes);
5647                 inode = igrab(&binode->vfs_inode);
5648                 if (!inode)
5649                         list_del_init(&binode->delalloc_inodes);
5650                 spin_unlock(&root->fs_info->delalloc_lock);
5651                 if (inode) {
5652                         filemap_flush(inode->i_mapping);
5653                         if (delay_iput)
5654                                 btrfs_add_delayed_iput(inode);
5655                         else
5656                                 iput(inode);
5657                 }
5658                 cond_resched();
5659                 spin_lock(&root->fs_info->delalloc_lock);
5660         }
5661         spin_unlock(&root->fs_info->delalloc_lock);
5662
5663         /* the filemap_flush will queue IO into the worker threads, but
5664          * we have to make sure the IO is actually started and that
5665          * ordered extents get created before we return
5666          */
5667         atomic_inc(&root->fs_info->async_submit_draining);
5668         while (atomic_read(&root->fs_info->nr_async_submits) ||
5669               atomic_read(&root->fs_info->async_delalloc_pages)) {
5670                 wait_event(root->fs_info->async_submit_wait,
5671                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5672                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
5673         }
5674         atomic_dec(&root->fs_info->async_submit_draining);
5675         return 0;
5676 }
5677
5678 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5679                          const char *symname)
5680 {
5681         struct btrfs_trans_handle *trans;
5682         struct btrfs_root *root = BTRFS_I(dir)->root;
5683         struct btrfs_path *path;
5684         struct btrfs_key key;
5685         struct inode *inode = NULL;
5686         int err;
5687         int drop_inode = 0;
5688         u64 objectid;
5689         u64 index = 0 ;
5690         int name_len;
5691         int datasize;
5692         unsigned long ptr;
5693         struct btrfs_file_extent_item *ei;
5694         struct extent_buffer *leaf;
5695         unsigned long nr = 0;
5696
5697         name_len = strlen(symname) + 1;
5698         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5699                 return -ENAMETOOLONG;
5700
5701         /*
5702          * 2 items for inode item and ref
5703          * 2 items for dir items
5704          * 1 item for xattr if selinux is on
5705          */
5706         err = btrfs_reserve_metadata_space(root, 5);
5707         if (err)
5708                 return err;
5709
5710         trans = btrfs_start_transaction(root, 1);
5711         if (!trans)
5712                 goto out_fail;
5713         btrfs_set_trans_block_group(trans, dir);
5714
5715         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5716         if (err) {
5717                 err = -ENOSPC;
5718                 goto out_unlock;
5719         }
5720
5721         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5722                                 dentry->d_name.len,
5723                                 dentry->d_parent->d_inode->i_ino, objectid,
5724                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5725                                 &index);
5726         err = PTR_ERR(inode);
5727         if (IS_ERR(inode))
5728                 goto out_unlock;
5729
5730         err = btrfs_init_inode_security(trans, inode, dir);
5731         if (err) {
5732                 drop_inode = 1;
5733                 goto out_unlock;
5734         }
5735
5736         btrfs_set_trans_block_group(trans, inode);
5737         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
5738         if (err)
5739                 drop_inode = 1;
5740         else {
5741                 inode->i_mapping->a_ops = &btrfs_aops;
5742                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5743                 inode->i_fop = &btrfs_file_operations;
5744                 inode->i_op = &btrfs_file_inode_operations;
5745                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5746         }
5747         btrfs_update_inode_block_group(trans, inode);
5748         btrfs_update_inode_block_group(trans, dir);
5749         if (drop_inode)
5750                 goto out_unlock;
5751
5752         path = btrfs_alloc_path();
5753         BUG_ON(!path);
5754         key.objectid = inode->i_ino;
5755         key.offset = 0;
5756         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5757         datasize = btrfs_file_extent_calc_inline_size(name_len);
5758         err = btrfs_insert_empty_item(trans, root, path, &key,
5759                                       datasize);
5760         if (err) {
5761                 drop_inode = 1;
5762                 goto out_unlock;
5763         }
5764         leaf = path->nodes[0];
5765         ei = btrfs_item_ptr(leaf, path->slots[0],
5766                             struct btrfs_file_extent_item);
5767         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5768         btrfs_set_file_extent_type(leaf, ei,
5769                                    BTRFS_FILE_EXTENT_INLINE);
5770         btrfs_set_file_extent_encryption(leaf, ei, 0);
5771         btrfs_set_file_extent_compression(leaf, ei, 0);
5772         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5773         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5774
5775         ptr = btrfs_file_extent_inline_start(ei);
5776         write_extent_buffer(leaf, symname, ptr, name_len);
5777         btrfs_mark_buffer_dirty(leaf);
5778         btrfs_free_path(path);
5779
5780         inode->i_op = &btrfs_symlink_inode_operations;
5781         inode->i_mapping->a_ops = &btrfs_symlink_aops;
5782         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5783         inode_set_bytes(inode, name_len);
5784         btrfs_i_size_write(inode, name_len - 1);
5785         err = btrfs_update_inode(trans, root, inode);
5786         if (err)
5787                 drop_inode = 1;
5788
5789 out_unlock:
5790         nr = trans->blocks_used;
5791         btrfs_end_transaction_throttle(trans, root);
5792 out_fail:
5793         btrfs_unreserve_metadata_space(root, 5);
5794         if (drop_inode) {
5795                 inode_dec_link_count(inode);
5796                 iput(inode);
5797         }
5798         btrfs_btree_balance_dirty(root, nr);
5799         return err;
5800 }
5801
5802 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
5803                                u64 alloc_hint, int mode)
5804 {
5805         struct btrfs_trans_handle *trans;
5806         struct btrfs_root *root = BTRFS_I(inode)->root;
5807         struct btrfs_key ins;
5808         u64 alloc_size;
5809         u64 cur_offset = start;
5810         u64 num_bytes = end - start;
5811         int ret = 0;
5812
5813         while (num_bytes > 0) {
5814                 alloc_size = min(num_bytes, root->fs_info->max_extent);
5815
5816                 trans = btrfs_start_transaction(root, 1);
5817
5818                 ret = btrfs_reserve_extent(trans, root, alloc_size,
5819                                            root->sectorsize, 0, alloc_hint,
5820                                            (u64)-1, &ins, 1);
5821                 if (ret) {
5822                         WARN_ON(1);
5823                         goto stop_trans;
5824                 }
5825
5826                 ret = btrfs_reserve_metadata_space(root, 3);
5827                 if (ret) {
5828                         btrfs_free_reserved_extent(root, ins.objectid,
5829                                                    ins.offset);
5830                         goto stop_trans;
5831                 }
5832
5833                 ret = insert_reserved_file_extent(trans, inode,
5834                                                   cur_offset, ins.objectid,
5835                                                   ins.offset, ins.offset,
5836                                                   ins.offset, 0, 0, 0,
5837                                                   BTRFS_FILE_EXTENT_PREALLOC);
5838                 BUG_ON(ret);
5839                 btrfs_drop_extent_cache(inode, cur_offset,
5840                                         cur_offset + ins.offset -1, 0);
5841
5842                 num_bytes -= ins.offset;
5843                 cur_offset += ins.offset;
5844                 alloc_hint = ins.objectid + ins.offset;
5845
5846                 inode->i_ctime = CURRENT_TIME;
5847                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
5848                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5849                     cur_offset > inode->i_size) {
5850                         i_size_write(inode, cur_offset);
5851                         btrfs_ordered_update_i_size(inode, cur_offset, NULL);
5852                 }
5853
5854                 ret = btrfs_update_inode(trans, root, inode);
5855                 BUG_ON(ret);
5856
5857                 btrfs_end_transaction(trans, root);
5858                 btrfs_unreserve_metadata_space(root, 3);
5859         }
5860         return ret;
5861
5862 stop_trans:
5863         btrfs_end_transaction(trans, root);
5864         return ret;
5865
5866 }
5867
5868 static long btrfs_fallocate(struct inode *inode, int mode,
5869                             loff_t offset, loff_t len)
5870 {
5871         u64 cur_offset;
5872         u64 last_byte;
5873         u64 alloc_start;
5874         u64 alloc_end;
5875         u64 alloc_hint = 0;
5876         u64 locked_end;
5877         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5878         struct extent_map *em;
5879         int ret;
5880
5881         alloc_start = offset & ~mask;
5882         alloc_end =  (offset + len + mask) & ~mask;
5883
5884         /*
5885          * wait for ordered IO before we have any locks.  We'll loop again
5886          * below with the locks held.
5887          */
5888         btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5889
5890         mutex_lock(&inode->i_mutex);
5891         if (alloc_start > inode->i_size) {
5892                 ret = btrfs_cont_expand(inode, alloc_start);
5893                 if (ret)
5894                         goto out;
5895         }
5896
5897         ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
5898                                           alloc_end - alloc_start);
5899         if (ret)
5900                 goto out;
5901
5902         locked_end = alloc_end - 1;
5903         while (1) {
5904                 struct btrfs_ordered_extent *ordered;
5905
5906                 /* the extent lock is ordered inside the running
5907                  * transaction
5908                  */
5909                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5910                             GFP_NOFS);
5911                 ordered = btrfs_lookup_first_ordered_extent(inode,
5912                                                             alloc_end - 1);
5913                 if (ordered &&
5914                     ordered->file_offset + ordered->len > alloc_start &&
5915                     ordered->file_offset < alloc_end) {
5916                         btrfs_put_ordered_extent(ordered);
5917                         unlock_extent(&BTRFS_I(inode)->io_tree,
5918                                       alloc_start, locked_end, GFP_NOFS);
5919                         /*
5920                          * we can't wait on the range with the transaction
5921                          * running or with the extent lock held
5922                          */
5923                         btrfs_wait_ordered_range(inode, alloc_start,
5924                                                  alloc_end - alloc_start);
5925                 } else {
5926                         if (ordered)
5927                                 btrfs_put_ordered_extent(ordered);
5928                         break;
5929                 }
5930         }
5931
5932         cur_offset = alloc_start;
5933         while (1) {
5934                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5935                                       alloc_end - cur_offset, 0);
5936                 BUG_ON(IS_ERR(em) || !em);
5937                 last_byte = min(extent_map_end(em), alloc_end);
5938                 last_byte = (last_byte + mask) & ~mask;
5939                 if (em->block_start == EXTENT_MAP_HOLE ||
5940                     (cur_offset >= inode->i_size &&
5941                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5942                         ret = prealloc_file_range(inode,
5943                                                   cur_offset, last_byte,
5944                                                   alloc_hint, mode);
5945                         if (ret < 0) {
5946                                 free_extent_map(em);
5947                                 break;
5948                         }
5949                 }
5950                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5951                         alloc_hint = em->block_start;
5952                 free_extent_map(em);
5953
5954                 cur_offset = last_byte;
5955                 if (cur_offset >= alloc_end) {
5956                         ret = 0;
5957                         break;
5958                 }
5959         }
5960         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5961                       GFP_NOFS);
5962
5963         btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5964                                        alloc_end - alloc_start);
5965 out:
5966         mutex_unlock(&inode->i_mutex);
5967         return ret;
5968 }
5969
5970 static int btrfs_set_page_dirty(struct page *page)
5971 {
5972         return __set_page_dirty_nobuffers(page);
5973 }
5974
5975 static int btrfs_permission(struct inode *inode, int mask)
5976 {
5977         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
5978                 return -EACCES;
5979         return generic_permission(inode, mask, btrfs_check_acl);
5980 }
5981
5982 static const struct inode_operations btrfs_dir_inode_operations = {
5983         .getattr        = btrfs_getattr,
5984         .lookup         = btrfs_lookup,
5985         .create         = btrfs_create,
5986         .unlink         = btrfs_unlink,
5987         .link           = btrfs_link,
5988         .mkdir          = btrfs_mkdir,
5989         .rmdir          = btrfs_rmdir,
5990         .rename         = btrfs_rename,
5991         .symlink        = btrfs_symlink,
5992         .setattr        = btrfs_setattr,
5993         .mknod          = btrfs_mknod,
5994         .setxattr       = btrfs_setxattr,
5995         .getxattr       = btrfs_getxattr,
5996         .listxattr      = btrfs_listxattr,
5997         .removexattr    = btrfs_removexattr,
5998         .permission     = btrfs_permission,
5999 };
6000 static const struct inode_operations btrfs_dir_ro_inode_operations = {
6001         .lookup         = btrfs_lookup,
6002         .permission     = btrfs_permission,
6003 };
6004
6005 static const struct file_operations btrfs_dir_file_operations = {
6006         .llseek         = generic_file_llseek,
6007         .read           = generic_read_dir,
6008         .readdir        = btrfs_real_readdir,
6009         .unlocked_ioctl = btrfs_ioctl,
6010 #ifdef CONFIG_COMPAT
6011         .compat_ioctl   = btrfs_ioctl,
6012 #endif
6013         .release        = btrfs_release_file,
6014         .fsync          = btrfs_sync_file,
6015 };
6016
6017 static struct extent_io_ops btrfs_extent_io_ops = {
6018         .fill_delalloc = run_delalloc_range,
6019         .submit_bio_hook = btrfs_submit_bio_hook,
6020         .merge_bio_hook = btrfs_merge_bio_hook,
6021         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
6022         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
6023         .writepage_start_hook = btrfs_writepage_start_hook,
6024         .readpage_io_failed_hook = btrfs_io_failed_hook,
6025         .set_bit_hook = btrfs_set_bit_hook,
6026         .clear_bit_hook = btrfs_clear_bit_hook,
6027         .merge_extent_hook = btrfs_merge_extent_hook,
6028         .split_extent_hook = btrfs_split_extent_hook,
6029 };
6030
6031 /*
6032  * btrfs doesn't support the bmap operation because swapfiles
6033  * use bmap to make a mapping of extents in the file.  They assume
6034  * these extents won't change over the life of the file and they
6035  * use the bmap result to do IO directly to the drive.
6036  *
6037  * the btrfs bmap call would return logical addresses that aren't
6038  * suitable for IO and they also will change frequently as COW
6039  * operations happen.  So, swapfile + btrfs == corruption.
6040  *
6041  * For now we're avoiding this by dropping bmap.
6042  */
6043 static const struct address_space_operations btrfs_aops = {
6044         .readpage       = btrfs_readpage,
6045         .writepage      = btrfs_writepage,
6046         .writepages     = btrfs_writepages,
6047         .readpages      = btrfs_readpages,
6048         .sync_page      = block_sync_page,
6049         .direct_IO      = btrfs_direct_IO,
6050         .invalidatepage = btrfs_invalidatepage,
6051         .releasepage    = btrfs_releasepage,
6052         .set_page_dirty = btrfs_set_page_dirty,
6053         .error_remove_page = generic_error_remove_page,
6054 };
6055
6056 static const struct address_space_operations btrfs_symlink_aops = {
6057         .readpage       = btrfs_readpage,
6058         .writepage      = btrfs_writepage,
6059         .invalidatepage = btrfs_invalidatepage,
6060         .releasepage    = btrfs_releasepage,
6061 };
6062
6063 static const struct inode_operations btrfs_file_inode_operations = {
6064         .truncate       = btrfs_truncate,
6065         .getattr        = btrfs_getattr,
6066         .setattr        = btrfs_setattr,
6067         .setxattr       = btrfs_setxattr,
6068         .getxattr       = btrfs_getxattr,
6069         .listxattr      = btrfs_listxattr,
6070         .removexattr    = btrfs_removexattr,
6071         .permission     = btrfs_permission,
6072         .fallocate      = btrfs_fallocate,
6073         .fiemap         = btrfs_fiemap,
6074 };
6075 static const struct inode_operations btrfs_special_inode_operations = {
6076         .getattr        = btrfs_getattr,
6077         .setattr        = btrfs_setattr,
6078         .permission     = btrfs_permission,
6079         .setxattr       = btrfs_setxattr,
6080         .getxattr       = btrfs_getxattr,
6081         .listxattr      = btrfs_listxattr,
6082         .removexattr    = btrfs_removexattr,
6083 };
6084 static const struct inode_operations btrfs_symlink_inode_operations = {
6085         .readlink       = generic_readlink,
6086         .follow_link    = page_follow_link_light,
6087         .put_link       = page_put_link,
6088         .permission     = btrfs_permission,
6089         .setxattr       = btrfs_setxattr,
6090         .getxattr       = btrfs_getxattr,
6091         .listxattr      = btrfs_listxattr,
6092         .removexattr    = btrfs_removexattr,
6093 };
6094
6095 const struct dentry_operations btrfs_dentry_operations = {
6096         .d_delete       = btrfs_dentry_delete,
6097 };