]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/staging/rtl8187se/r8185b_init.c
Staging: rtl8187se: Remove card8185 variable to simplify flow
[net-next-2.6.git] / drivers / staging / rtl8187se / r8185b_init.c
1 /*++
2 Copyright (c) Realtek Semiconductor Corp. All rights reserved.
3
4 Module Name:
5         r8185b_init.c
6
7 Abstract:
8         Hardware Initialization and Hardware IO for RTL8185B
9
10 Major Change History:
11         When        Who      What
12         ----------    ---------------   -------------------------------
13         2006-11-15    Xiong             Created
14
15 Notes:
16         This file is ported from RTL8185B Windows driver.
17
18
19 --*/
20
21 /*--------------------------Include File------------------------------------*/
22 #include <linux/spinlock.h>
23 #include "r8180_hw.h"
24 #include "r8180.h"
25 #include "r8180_rtl8225.h" /* RTL8225 Radio frontend */
26 #include "r8180_93cx6.h"   /* Card EEPROM */
27 #include "r8180_wx.h"
28
29 #include "ieee80211/dot11d.h"
30
31
32 //#define CONFIG_RTL8180_IO_MAP
33
34 #define TC_3W_POLL_MAX_TRY_CNT 5
35 static u8 MAC_REG_TABLE[][2]={
36                         //PAGA 0:
37                         // 0x34(BRSR), 0xBE(RATE_FALLBACK_CTL), 0x1E0(ARFR) would set in HwConfigureRTL8185()
38                         // 0x272(RFSW_CTRL), 0x1CE(AESMSK_QC) set in InitializeAdapter8185().
39                         // 0x1F0~0x1F8  set in MacConfig_85BASIC()
40                         {0x08, 0xae}, {0x0a, 0x72}, {0x5b, 0x42},
41                         {0x84, 0x88}, {0x85, 0x24}, {0x88, 0x54}, {0x8b, 0xb8}, {0x8c, 0x03},
42                         {0x8d, 0x40}, {0x8e, 0x00}, {0x8f, 0x00}, {0x5b, 0x18}, {0x91, 0x03},
43                         {0x94, 0x0F}, {0x95, 0x32},
44                         {0x96, 0x00}, {0x97, 0x07}, {0xb4, 0x22}, {0xdb, 0x00},
45                         {0xf0, 0x32}, {0xf1, 0x32}, {0xf2, 0x00}, {0xf3, 0x00}, {0xf4, 0x32},
46                         {0xf5, 0x43}, {0xf6, 0x00}, {0xf7, 0x00}, {0xf8, 0x46}, {0xf9, 0xa4},
47                         {0xfa, 0x00}, {0xfb, 0x00}, {0xfc, 0x96}, {0xfd, 0xa4}, {0xfe, 0x00},
48                         {0xff, 0x00},
49
50                         //PAGE 1:
51                         // For Flextronics system Logo PCIHCT failure:
52                         // 0x1C4~0x1CD set no-zero value to avoid PCI configuration space 0x45[7]=1
53                         {0x5e, 0x01},
54                         {0x58, 0x00}, {0x59, 0x00}, {0x5a, 0x04}, {0x5b, 0x00}, {0x60, 0x24},
55                         {0x61, 0x97}, {0x62, 0xF0}, {0x63, 0x09}, {0x80, 0x0F}, {0x81, 0xFF},
56                         {0x82, 0xFF}, {0x83, 0x03},
57                         {0xC4, 0x22}, {0xC5, 0x22}, {0xC6, 0x22}, {0xC7, 0x22}, {0xC8, 0x22}, //lzm add 080826
58                         {0xC9, 0x22}, {0xCA, 0x22}, {0xCB, 0x22}, {0xCC, 0x22}, {0xCD, 0x22},//lzm add 080826
59                         {0xe2, 0x00},
60
61
62                         //PAGE 2:
63                         {0x5e, 0x02},
64                         {0x0c, 0x04}, {0x4c, 0x30}, {0x4d, 0x08}, {0x50, 0x05}, {0x51, 0xf5},
65                         {0x52, 0x04}, {0x53, 0xa0}, {0x54, 0xff}, {0x55, 0xff}, {0x56, 0xff},
66                         {0x57, 0xff}, {0x58, 0x08}, {0x59, 0x08}, {0x5a, 0x08}, {0x5b, 0x08},
67                         {0x60, 0x08}, {0x61, 0x08}, {0x62, 0x08}, {0x63, 0x08}, {0x64, 0x2f},
68                         {0x8c, 0x3f}, {0x8d, 0x3f}, {0x8e, 0x3f},
69                         {0x8f, 0x3f}, {0xc4, 0xff}, {0xc5, 0xff}, {0xc6, 0xff}, {0xc7, 0xff},
70                         {0xc8, 0x00}, {0xc9, 0x00}, {0xca, 0x80}, {0xcb, 0x00},
71
72                         //PAGA 0:
73                         {0x5e, 0x00},{0x9f, 0x03}
74                 };
75
76
77 static u8  ZEBRA_AGC[]={
78                         0,
79                         0x7E,0x7E,0x7E,0x7E,0x7D,0x7C,0x7B,0x7A,0x79,0x78,0x77,0x76,0x75,0x74,0x73,0x72,
80                         0x71,0x70,0x6F,0x6E,0x6D,0x6C,0x6B,0x6A,0x69,0x68,0x67,0x66,0x65,0x64,0x63,0x62,
81                         0x48,0x47,0x46,0x45,0x44,0x29,0x28,0x27,0x26,0x25,0x24,0x23,0x22,0x21,0x08,0x07,
82                         0x06,0x05,0x04,0x03,0x02,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
83                         0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x0f,0x10,0x11,0x12,0x13,0x15,0x16,
84                         0x17,0x17,0x18,0x18,0x19,0x1a,0x1a,0x1b,0x1b,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e,
85                         0x1f,0x1f,0x1f,0x20,0x20,0x20,0x20,0x21,0x21,0x21,0x22,0x22,0x22,0x23,0x23,0x24,
86                         0x24,0x25,0x25,0x25,0x26,0x26,0x27,0x27,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F,0x2F
87                         };
88
89 static u32 ZEBRA_RF_RX_GAIN_TABLE[]={
90                         0x0096,0x0076,0x0056,0x0036,0x0016,0x01f6,0x01d6,0x01b6,
91                         0x0196,0x0176,0x00F7,0x00D7,0x00B7,0x0097,0x0077,0x0057,
92                         0x0037,0x00FB,0x00DB,0x00BB,0x00FF,0x00E3,0x00C3,0x00A3,
93                         0x0083,0x0063,0x0043,0x0023,0x0003,0x01E3,0x01C3,0x01A3,
94                         0x0183,0x0163,0x0143,0x0123,0x0103
95         };
96
97 static u8 OFDM_CONFIG[]={
98                         // OFDM reg0x06[7:0]=0xFF: Enable power saving mode in RX
99                         // OFDM reg0x3C[4]=1'b1: Enable RX power saving mode
100                         // ofdm 0x3a = 0x7b ,(original : 0xfb) For ECS shielding room TP test
101
102                         // 0x00
103                         0x10, 0x0F, 0x0A, 0x0C, 0x14, 0xFA, 0xFF, 0x50,
104                         0x00, 0x50, 0x00, 0x00, 0x00, 0x5C, 0x00, 0x00,
105                         // 0x10
106                         0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xA8, 0x26,
107                         0x32, 0x33, 0x06, 0xA5, 0x6F, 0x55, 0xC8, 0xBB,
108                         // 0x20
109                         0x0A, 0xE1, 0x2C, 0x4A, 0x86, 0x83, 0x34, 0x00,
110                         0x4F, 0x24, 0x6F, 0xC2, 0x03, 0x40, 0x80, 0x00,
111                         // 0x30
112                         0xC0, 0xC1, 0x58, 0xF1, 0x00, 0xC4, 0x90, 0x3e,
113                         0xD8, 0x3C, 0x7B, 0x10, 0x10
114                 };
115
116 /*---------------------------------------------------------------
117   * Hardware IO
118   * the code is ported from Windows source code
119   ----------------------------------------------------------------*/
120
121 void
122 PlatformIOWrite1Byte(
123         struct net_device *dev,
124         u32             offset,
125         u8              data
126         )
127 {
128         write_nic_byte(dev, offset, data);
129         read_nic_byte(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
130
131 }
132
133 void
134 PlatformIOWrite2Byte(
135         struct net_device *dev,
136         u32             offset,
137         u16             data
138         )
139 {
140         write_nic_word(dev, offset, data);
141         read_nic_word(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
142
143
144 }
145 u8 PlatformIORead1Byte(struct net_device *dev, u32 offset);
146
147 void
148 PlatformIOWrite4Byte(
149         struct net_device *dev,
150         u32             offset,
151         u32             data
152         )
153 {
154 //{by amy 080312
155 if (offset == PhyAddr)
156         {//For Base Band configuration.
157                 unsigned char   cmdByte;
158                 unsigned long   dataBytes;
159                 unsigned char   idx;
160                 u8      u1bTmp;
161
162                 cmdByte = (u8)(data & 0x000000ff);
163                 dataBytes = data>>8;
164
165                 //
166                 // 071010, rcnjko:
167                 // The critical section is only BB read/write race condition.
168                 // Assumption:
169                 // 1. We assume NO one will access BB at DIRQL, otherwise, system will crash for
170                 // acquiring the spinlock in such context.
171                 // 2. PlatformIOWrite4Byte() MUST NOT be recursive.
172                 //
173 //              NdisAcquireSpinLock( &(pDevice->IoSpinLock) );
174
175                 for(idx = 0; idx < 30; idx++)
176                 { // Make sure command bit is clear before access it.
177                         u1bTmp = PlatformIORead1Byte(dev, PhyAddr);
178                         if((u1bTmp & BIT7) == 0)
179                                 break;
180                         else
181                                 mdelay(10);
182                 }
183
184                 for(idx=0; idx < 3; idx++)
185                 {
186                         PlatformIOWrite1Byte(dev,offset+1+idx,((u8*)&dataBytes)[idx] );
187                 }
188                 write_nic_byte(dev, offset, cmdByte);
189
190 //              NdisReleaseSpinLock( &(pDevice->IoSpinLock) );
191         }
192 //by amy 080312}
193         else{
194                 write_nic_dword(dev, offset, data);
195                 read_nic_dword(dev, offset); // To make sure write operation is completed, 2005.11.09, by rcnjko.
196         }
197 }
198
199 u8
200 PlatformIORead1Byte(
201         struct net_device *dev,
202         u32             offset
203         )
204 {
205         u8      data = 0;
206
207         data = read_nic_byte(dev, offset);
208
209
210         return data;
211 }
212
213 u16
214 PlatformIORead2Byte(
215         struct net_device *dev,
216         u32             offset
217         )
218 {
219         u16     data = 0;
220
221         data = read_nic_word(dev, offset);
222
223
224         return data;
225 }
226
227 u32
228 PlatformIORead4Byte(
229         struct net_device *dev,
230         u32             offset
231         )
232 {
233         u32     data = 0;
234
235         data = read_nic_dword(dev, offset);
236
237
238         return data;
239 }
240
241 void
242 SetOutputEnableOfRfPins(
243         struct net_device *dev
244         )
245 {
246         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
247
248         switch(priv->rf_chip)
249         {
250         case RFCHIPID_RTL8225:
251         case RF_ZEBRA2:
252         case RF_ZEBRA4:
253                 write_nic_word(dev, RFPinsEnable, 0x1bff);
254                 //write_nic_word(dev, RFPinsEnable, 0x1fff);
255                 break;
256         }
257 }
258
259 void
260 ZEBRA_RFSerialWrite(
261         struct net_device *dev,
262         u32                     data2Write,
263         u8                      totalLength,
264         u8                      low2high
265         )
266 {
267         ThreeWireReg            twreg;
268         int                             i;
269         u16                             oval,oval2,oval3;
270         u32                             mask;
271         u16                             UshortBuffer;
272
273         u8                      u1bTmp;
274         // RTL8187S HSSI Read/Write Function
275         u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
276         u1bTmp |=   RF_SW_CFG_SI;   //reg08[1]=1 Serial Interface(SI)
277         write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
278         UshortBuffer = read_nic_word(dev, RFPinsOutput);
279         oval = UshortBuffer & 0xfff8; // We shall clear bit0, 1, 2 first, 2005.10.28, by rcnjko.
280
281         oval2 = read_nic_word(dev, RFPinsEnable);
282         oval3 = read_nic_word(dev, RFPinsSelect);
283
284         // <RJ_NOTE> 3-wire should be controled by HW when we finish SW 3-wire programming. 2005.08.10, by rcnjko.
285         oval3 &= 0xfff8;
286
287         write_nic_word(dev, RFPinsEnable, (oval2|0x0007)); // Set To Output Enable
288         write_nic_word(dev, RFPinsSelect, (oval3|0x0007)); // Set To SW Switch
289         udelay(10);
290
291         // Add this to avoid hardware and software 3-wire conflict.
292         // 2005.03.01, by rcnjko.
293         twreg.longData = 0;
294         twreg.struc.enableB = 1;
295         write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Set SI_EN (RFLE)
296         udelay(2);
297         twreg.struc.enableB = 0;
298         write_nic_word(dev, RFPinsOutput, (twreg.longData|oval)); // Clear SI_EN (RFLE)
299         udelay(10);
300
301         mask = (low2high)?0x01:((u32)0x01<<(totalLength-1));
302
303         for(i=0; i<totalLength/2; i++)
304         {
305                 twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
306                 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
307                 twreg.struc.clk = 1;
308                 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
309                 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
310
311                 mask = (low2high)?(mask<<1):(mask>>1);
312                 twreg.struc.data = ((data2Write&mask)!=0) ? 1 : 0;
313                 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
314                 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
315                 twreg.struc.clk = 0;
316                 write_nic_word(dev, RFPinsOutput, (twreg.longData|oval));
317                 mask = (low2high)?(mask<<1):(mask>>1);
318         }
319
320         twreg.struc.enableB = 1;
321         twreg.struc.clk = 0;
322         twreg.struc.data = 0;
323         write_nic_word(dev, RFPinsOutput, twreg.longData|oval);
324         udelay(10);
325
326         write_nic_word(dev, RFPinsOutput, oval|0x0004);
327         write_nic_word(dev, RFPinsSelect, oval3|0x0000);
328
329         SetOutputEnableOfRfPins(dev);
330 }
331 //by amy
332
333
334 int
335 HwHSSIThreeWire(
336         struct net_device *dev,
337         u8                      *pDataBuf,
338         u8                      nDataBufBitCnt,
339         int                     bSI,
340         int                     bWrite
341         )
342 {
343         int     bResult = 1;
344         u8      TryCnt;
345         u8      u1bTmp;
346
347         do
348         {
349                 // Check if WE and RE are cleared.
350                 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
351                 {
352                         u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
353                         if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
354                         {
355                                 break;
356                         }
357                         udelay(10);
358                 }
359                 if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
360                         panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
361
362                 // RTL8187S HSSI Read/Write Function
363                 u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
364
365                 if(bSI)
366                 {
367                         u1bTmp |=   RF_SW_CFG_SI;   //reg08[1]=1 Serial Interface(SI)
368                 }else
369                 {
370                         u1bTmp &= ~RF_SW_CFG_SI;  //reg08[1]=0 Parallel Interface(PI)
371                 }
372
373                 write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
374
375                 if(bSI)
376                 {
377                         // jong: HW SI read must set reg84[3]=0.
378                         u1bTmp = read_nic_byte(dev, RFPinsSelect);
379                         u1bTmp &= ~BIT3;
380                         write_nic_byte(dev, RFPinsSelect, u1bTmp );
381                 }
382                 // Fill up data buffer for write operation.
383
384                 if(bWrite)
385                 {
386                         if(nDataBufBitCnt == 16)
387                         {
388                                 write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf));
389                         }
390                         else if(nDataBufBitCnt == 64)  // RTL8187S shouldn't enter this case
391                         {
392                                 write_nic_dword(dev, SW_3W_DB0, *((u32*)pDataBuf));
393                                 write_nic_dword(dev, SW_3W_DB1, *((u32*)(pDataBuf + 4)));
394                         }
395                         else
396                         {
397                                 int idx;
398                                 int ByteCnt = nDataBufBitCnt / 8;
399                                 //printk("%d\n",nDataBufBitCnt);
400                                 if ((nDataBufBitCnt % 8) != 0)
401                                 panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
402                                 nDataBufBitCnt);
403
404                                if (nDataBufBitCnt > 64)
405                                 panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
406                                 nDataBufBitCnt);
407
408                                 for(idx = 0; idx < ByteCnt; idx++)
409                                 {
410                                         write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
411                                 }
412                         }
413                 }
414                 else            //read
415                 {
416                         if(bSI)
417                         {
418                                 // SI - reg274[3:0] : RF register's Address
419                                 write_nic_word(dev, SW_3W_DB0, *((u16*)pDataBuf) );
420                         }
421                         else
422                         {
423                                 // PI - reg274[15:12] : RF register's Address
424                                 write_nic_word(dev, SW_3W_DB0, (*((u16*)pDataBuf)) << 12);
425                         }
426                 }
427
428                 // Set up command: WE or RE.
429                 if(bWrite)
430                 {
431                         write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
432                 }
433                 else
434                 {
435                         write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
436                 }
437
438                 // Check if DONE is set.
439                 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
440                 {
441                         u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
442                         if(  (u1bTmp & SW_3W_CMD1_DONE) != 0 )
443                         {
444                                 break;
445                         }
446                         udelay(10);
447                 }
448
449                 write_nic_byte(dev, SW_3W_CMD1, 0);
450
451                 // Read back data for read operation.
452                 if(bWrite == 0)
453                 {
454                         if(bSI)
455                         {
456                                 //Serial Interface : reg363_362[11:0]
457                                 *((u16*)pDataBuf) = read_nic_word(dev, SI_DATA_READ) ;
458                         }
459                         else
460                         {
461                                 //Parallel Interface : reg361_360[11:0]
462                                 *((u16*)pDataBuf) = read_nic_word(dev, PI_DATA_READ);
463                         }
464
465                         *((u16*)pDataBuf) &= 0x0FFF;
466                 }
467
468         }while(0);
469
470         return bResult;
471 }
472 //by amy
473
474 int
475 HwThreeWire(
476         struct net_device *dev,
477         u8                      *pDataBuf,
478         u8                      nDataBufBitCnt,
479         int                     bHold,
480         int                     bWrite
481         )
482 {
483         int     bResult = 1;
484         u8      TryCnt;
485         u8      u1bTmp;
486
487         do
488         {
489                 // Check if WE and RE are cleared.
490                 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
491                 {
492                         u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
493                         if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 )
494                         {
495                                 break;
496                         }
497                         udelay(10);
498                 }
499                 if (TryCnt == TC_3W_POLL_MAX_TRY_CNT)
500                         panic("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear!!\n", u1bTmp);
501
502                 // Fill up data buffer for write operation.
503                 if(nDataBufBitCnt == 16)
504                 {
505                         write_nic_word(dev, SW_3W_DB0, *((u16 *)pDataBuf));
506                 }
507                 else if(nDataBufBitCnt == 64)
508                 {
509                         write_nic_dword(dev, SW_3W_DB0, *((u32 *)pDataBuf));
510                         write_nic_dword(dev, SW_3W_DB1, *((u32 *)(pDataBuf + 4)));
511                 }
512                 else
513                 {
514                         int idx;
515                         int ByteCnt = nDataBufBitCnt / 8;
516
517                         if ((nDataBufBitCnt % 8) != 0)
518                                 panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
519                                 nDataBufBitCnt);
520
521                         if (nDataBufBitCnt > 64)
522                                 panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
523                                 nDataBufBitCnt);
524
525                         for(idx = 0; idx < ByteCnt; idx++)
526                         {
527                                 write_nic_byte(dev, (SW_3W_DB0+idx), *(pDataBuf+idx));
528                         }
529                 }
530
531                 // Fill up length field.
532                 u1bTmp = (u8)(nDataBufBitCnt - 1); // Number of bits - 1.
533                 if(bHold)
534                         u1bTmp |= SW_3W_CMD0_HOLD;
535                 write_nic_byte(dev, SW_3W_CMD0, u1bTmp);
536
537                 // Set up command: WE or RE.
538                 if(bWrite)
539                 {
540                         write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_WE);
541                 }
542                 else
543                 {
544                         write_nic_byte(dev, SW_3W_CMD1, SW_3W_CMD1_RE);
545                 }
546
547                 // Check if WE and RE are cleared and DONE is set.
548                 for(TryCnt = 0; TryCnt < TC_3W_POLL_MAX_TRY_CNT; TryCnt++)
549                 {
550                         u1bTmp = read_nic_byte(dev, SW_3W_CMD1);
551                         if( (u1bTmp & (SW_3W_CMD1_RE|SW_3W_CMD1_WE)) == 0 &&
552                                 (u1bTmp & SW_3W_CMD1_DONE) != 0 )
553                         {
554                                 break;
555                         }
556                         udelay(10);
557                 }
558                 if(TryCnt == TC_3W_POLL_MAX_TRY_CNT)
559                 {
560                         //RT_ASSERT(TryCnt != TC_3W_POLL_MAX_TRY_CNT,
561                         //      ("HwThreeWire(): CmdReg: %#X RE|WE bits are not clear or DONE is not set!!\n", u1bTmp));
562                         // Workaround suggested by wcchu: clear WE here. 2006.07.07, by rcnjko.
563                         write_nic_byte(dev, SW_3W_CMD1, 0);
564                 }
565
566                 // Read back data for read operation.
567                 // <RJ_TODO> I am not sure if this is correct output format of a read operation.
568                 if(bWrite == 0)
569                 {
570                         if(nDataBufBitCnt == 16)
571                         {
572                                 *((u16 *)pDataBuf) = read_nic_word(dev, SW_3W_DB0);
573                         }
574                         else if(nDataBufBitCnt == 64)
575                         {
576                                 *((u32 *)pDataBuf) = read_nic_dword(dev, SW_3W_DB0);
577                                 *((u32 *)(pDataBuf + 4)) = read_nic_dword(dev, SW_3W_DB1);
578                         }
579                         else
580                         {
581                                 int idx;
582                                 int ByteCnt = nDataBufBitCnt / 8;
583
584                                 if ((nDataBufBitCnt % 8) != 0)
585                                         panic("HwThreeWire(): nDataBufBitCnt(%d) should be multiple of 8!!!\n",
586                                         nDataBufBitCnt);
587
588                                 if (nDataBufBitCnt > 64)
589                                         panic("HwThreeWire(): nDataBufBitCnt(%d) should <= 64!!!\n",
590                                         nDataBufBitCnt);
591
592                                 for(idx = 0; idx < ByteCnt; idx++)
593                                 {
594                                         *(pDataBuf+idx) = read_nic_byte(dev, (SW_3W_DB0+idx));
595                                 }
596                         }
597                 }
598
599         }while(0);
600
601         return bResult;
602 }
603
604
605 void
606 RF_WriteReg(
607         struct net_device *dev,
608         u8              offset,
609         u32             data
610         )
611 {
612         //RFReg                 reg;
613         u32                     data2Write;
614         u8                      len;
615         u8                      low2high;
616         //u32                   RF_Read = 0;
617         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
618
619
620         switch(priv->rf_chip)
621         {
622         case RFCHIPID_RTL8225:
623         case RF_ZEBRA2:         // Annie 2006-05-12.
624         case RF_ZEBRA4:        //by amy
625                 switch(priv->RegThreeWireMode)
626                 {
627                 case SW_THREE_WIRE:
628                         { // Perform SW 3-wire programming by driver.
629                                 data2Write = (data << 4) | (u32)(offset & 0x0f);
630                                 len = 16;
631                                 low2high = 0;
632                                 ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
633                         }
634                         break;
635
636                 case HW_THREE_WIRE:
637                         { // Pure HW 3-wire.
638                                 data2Write = (data << 4) | (u32)(offset & 0x0f);
639                                 len = 16;
640                                 HwThreeWire(
641                                         dev,
642                                         (u8 *)(&data2Write),    // pDataBuf,
643                                         len,                            // nDataBufBitCnt,
644                                         0,                                      // bHold,
645                                         1);                                     // bWrite
646                         }
647                         break;
648                         case HW_THREE_WIRE_PI: //Parallel Interface
649                         { // Pure HW 3-wire.
650                                 data2Write = (data << 4) | (u32)(offset & 0x0f);
651                                 len = 16;
652                                         HwHSSIThreeWire(
653                                                 dev,
654                                                 (u8*)(&data2Write),     // pDataBuf,
655                                                 len,                                            // nDataBufBitCnt,
656                                                 0,                                      // bSI
657                                                 1);                                     // bWrite
658
659                                 //printk("33333\n");
660                         }
661                         break;
662
663                         case HW_THREE_WIRE_SI: //Serial Interface
664                         { // Pure HW 3-wire.
665                                 data2Write = (data << 4) | (u32)(offset & 0x0f);
666                                 len = 16;
667 //                                printk(" enter  ZEBRA_RFSerialWrite\n ");
668 //                                low2high = 0;
669 //                                ZEBRA_RFSerialWrite(dev, data2Write, len, low2high);
670
671                                 HwHSSIThreeWire(
672                                         dev,
673                                         (u8*)(&data2Write),     // pDataBuf,
674                                         len,                                            // nDataBufBitCnt,
675                                         1,                                      // bSI
676                                         1);                                     // bWrite
677
678 //                                 printk(" exit ZEBRA_RFSerialWrite\n ");
679                         }
680                         break;
681
682
683                 default:
684                         DMESGE("RF_WriteReg(): invalid RegThreeWireMode(%d) !!!", priv->RegThreeWireMode);
685                         break;
686                 }
687                 break;
688
689         default:
690                 DMESGE("RF_WriteReg(): unknown RFChipID: %#X", priv->rf_chip);
691                 break;
692         }
693 }
694
695
696 void
697 ZEBRA_RFSerialRead(
698         struct net_device *dev,
699         u32             data2Write,
700         u8              wLength,
701         u32             *data2Read,
702         u8              rLength,
703         u8              low2high
704         )
705 {
706         ThreeWireReg    twreg;
707         int                             i;
708         u16                     oval,oval2,oval3,tmp, wReg80;
709         u32                     mask;
710         u8                      u1bTmp;
711         ThreeWireReg    tdata;
712         //PHAL_DATA_8187        pHalData = GetHalData8187(pAdapter);
713         { // RTL8187S HSSI Read/Write Function
714                 u1bTmp = read_nic_byte(dev, RF_SW_CONFIG);
715                 u1bTmp |=   RF_SW_CFG_SI;   //reg08[1]=1 Serial Interface(SI)
716                 write_nic_byte(dev, RF_SW_CONFIG, u1bTmp);
717         }
718
719         wReg80 = oval = read_nic_word(dev, RFPinsOutput);
720         oval2 = read_nic_word(dev, RFPinsEnable);
721         oval3 = read_nic_word(dev, RFPinsSelect);
722
723         write_nic_word(dev, RFPinsEnable, oval2|0xf);
724         write_nic_word(dev, RFPinsSelect, oval3|0xf);
725
726         *data2Read = 0;
727
728         // We must clear BIT0-3 here, otherwise,
729         // SW_Enalbe will be true when we first call ZEBRA_RFSerialRead() after 8187MPVC open,
730         // which will cause the value read become 0. 2005.04.11, by rcnjko.
731         oval &= ~0xf;
732
733         // Avoid collision with hardware three-wire.
734         twreg.longData = 0;
735         twreg.struc.enableB = 1;
736         write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(4);
737
738         twreg.longData = 0;
739         twreg.struc.enableB = 0;
740         twreg.struc.clk = 0;
741         twreg.struc.read_write = 0;
742         write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(5);
743
744         mask = (low2high) ? 0x01 : ((u32)0x01<<(32-1));
745         for(i = 0; i < wLength/2; i++)
746         {
747                 twreg.struc.data = ((data2Write&mask) != 0) ? 1 : 0;
748                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
749                 twreg.struc.clk = 1;
750                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
751                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
752
753                 mask = (low2high) ? (mask<<1): (mask>>1);
754
755                 if(i == 2)
756                 {
757                         // Commented out by Jackie, 2004.08.26. <RJ_NOTE> We must comment out the following two lines for we cannot pull down VCOPDN during RF Serail Read.
758                         //PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0xe);     // turn off data enable
759                         //PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0xe);
760
761                         twreg.struc.read_write=1;
762                         write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
763                         twreg.struc.clk = 0;
764                         write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
765                         break;
766                 }
767                 twreg.struc.data = ((data2Write&mask) != 0) ? 1: 0;
768                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
769                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
770
771                 twreg.struc.clk = 0;
772                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
773
774                 mask = (low2high) ? (mask<<1) : (mask>>1);
775         }
776
777         twreg.struc.clk = 0;
778         twreg.struc.data = 0;
779         write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
780         mask = (low2high) ? 0x01 : ((u32)0x01 << (12-1));
781
782         //
783         // 061016, by rcnjko:
784         // We must set data pin to HW controled, otherwise RF can't driver it and
785         // value RF register won't be able to read back properly.
786         //
787         write_nic_word(dev, RFPinsEnable, ( ((oval2|0x0E) & (~0x01))) );
788
789         for(i = 0; i < rLength; i++)
790         {
791                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(1);
792                 twreg.struc.clk = 1;
793                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
794                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
795                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
796                 tmp = read_nic_word(dev, RFPinsInput);
797                 tdata.longData = tmp;
798                 *data2Read |= tdata.struc.clk ? mask : 0;
799
800                 twreg.struc.clk = 0;
801                 write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
802
803                 mask = (low2high) ? (mask<<1) : (mask>>1);
804         }
805         twreg.struc.enableB = 1;
806         twreg.struc.clk = 0;
807         twreg.struc.data = 0;
808         twreg.struc.read_write = 1;
809         write_nic_word(dev, RFPinsOutput, twreg.longData|oval); udelay(2);
810
811         //PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, oval2|0x8);   // Set To Output Enable
812         write_nic_word(dev, RFPinsEnable, oval2);   // Set To Output Enable, <RJ_NOTE> We cannot enable BIT3 here, otherwise, we will failed to switch channel. 2005.04.12.
813         //PlatformEFIOWrite2Byte(pAdapter, RFPinsEnable, 0x1bff);
814         write_nic_word(dev, RFPinsSelect, oval3);   // Set To SW Switch
815         //PlatformEFIOWrite2Byte(pAdapter, RFPinsSelect, 0x0488);
816         write_nic_word(dev, RFPinsOutput, 0x3a0);
817         //PlatformEFIOWrite2Byte(pAdapter, RFPinsOutput, 0x0480);
818 }
819
820
821 u32
822 RF_ReadReg(
823         struct net_device *dev,
824         u8              offset
825         )
826 {
827         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
828         u32                     data2Write;
829         u8                      wlen;
830         u8                      rlen;
831         u8                      low2high;
832         u32                     dataRead;
833
834         switch(priv->rf_chip)
835         {
836         case RFCHIPID_RTL8225:
837         case RF_ZEBRA2:
838         case RF_ZEBRA4:
839                 switch(priv->RegThreeWireMode)
840                 {
841                         case HW_THREE_WIRE_PI: // For 87S  Parallel Interface.
842                         {
843                                 data2Write = ((u32)(offset&0x0f));
844                                 wlen=16;
845                                 HwHSSIThreeWire(
846                                         dev,
847                                         (u8*)(&data2Write),     // pDataBuf,
848                                         wlen,                                   // nDataBufBitCnt,
849                                         0,                                      // bSI
850                                         0);                                     // bWrite
851                                 dataRead= data2Write;
852                         }
853                         break;
854
855                         case HW_THREE_WIRE_SI: // For 87S Serial Interface.
856                         {
857                                 data2Write = ((u32)(offset&0x0f)) ;
858                                 wlen=16;
859                                 HwHSSIThreeWire(
860                                         dev,
861                                         (u8*)(&data2Write),     // pDataBuf,
862                                         wlen,                                   // nDataBufBitCnt,
863                                         1,                                      // bSI
864                                         0                                       // bWrite
865                                         );
866                                 dataRead= data2Write;
867                         }
868                         break;
869
870                         // Perform SW 3-wire programming by driver.
871                         default:
872                         {
873                                 data2Write = ((u32)(offset&0x1f)) << 27; // For Zebra E-cut. 2005.04.11, by rcnjko.
874                                 wlen = 6;
875                                 rlen = 12;
876                                 low2high = 0;
877                                 ZEBRA_RFSerialRead(dev, data2Write, wlen,&dataRead,rlen, low2high);
878                         }
879                         break;
880                 }
881                 break;
882         default:
883                 dataRead = 0;
884                 break;
885         }
886
887         return dataRead;
888 }
889
890
891 // by Owen on 04/07/14 for writing BB register successfully
892 void
893 WriteBBPortUchar(
894         struct net_device *dev,
895         u32             Data
896         )
897 {
898         //u8    TimeoutCounter;
899         u8      RegisterContent;
900         u8      UCharData;
901
902         UCharData = (u8)((Data & 0x0000ff00) >> 8);
903         PlatformIOWrite4Byte(dev, PhyAddr, Data);
904         //for(TimeoutCounter = 10; TimeoutCounter > 0; TimeoutCounter--)
905         {
906                 PlatformIOWrite4Byte(dev, PhyAddr, Data & 0xffffff7f);
907                 RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
908                 //if(UCharData == RegisterContent)
909                 //      break;
910         }
911 }
912
913 u8
914 ReadBBPortUchar(
915         struct net_device *dev,
916         u32             addr
917         )
918 {
919         //u8    TimeoutCounter;
920         u8      RegisterContent;
921
922         PlatformIOWrite4Byte(dev, PhyAddr, addr & 0xffffff7f);
923         RegisterContent = PlatformIORead1Byte(dev, PhyDataR);
924
925         return RegisterContent;
926 }
927 //{by amy 080312
928 //
929 //      Description:
930 //              Perform Antenna settings with antenna diversity on 87SE.
931 //    Created by Roger, 2008.01.25.
932 //
933 bool
934 SetAntennaConfig87SE(
935         struct net_device *dev,
936         u8                      DefaultAnt,             // 0: Main, 1: Aux.
937         bool            bAntDiversity   // 1:Enable, 0: Disable.
938 )
939 {
940         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
941         bool   bAntennaSwitched = true;
942
943         //printk("SetAntennaConfig87SE(): DefaultAnt(%d), bAntDiversity(%d)\n", DefaultAnt, bAntDiversity);
944
945         // Threshold for antenna diversity.
946         write_phy_cck(dev, 0x0c, 0x09); // Reg0c : 09
947
948         if( bAntDiversity )  //  Enable Antenna Diversity.
949         {
950                 if( DefaultAnt == 1 )  // aux antenna
951                 {
952                         // Mac register, aux antenna
953                         write_nic_byte(dev, ANTSEL, 0x00);
954
955                         // Config CCK RX antenna.
956                         write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
957                         write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7
958
959                         // Config OFDM RX antenna.
960                         write_phy_ofdm(dev, 0x0D, 0x54);   // Reg0d : 54
961                         write_phy_ofdm(dev, 0x18, 0xb2);  // Reg18 : b2
962                 }
963                 else //  use main antenna
964                 {
965                         // Mac register, main antenna
966                         write_nic_byte(dev, ANTSEL, 0x03);
967                         //base band
968                         // Config CCK RX antenna.
969                         write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
970                         write_phy_cck(dev, 0x01, 0xc7); // Reg01 : c7
971
972                         // Config OFDM RX antenna.
973                         write_phy_ofdm(dev, 0x0d, 0x5c);   // Reg0d : 5c
974                         write_phy_ofdm(dev, 0x18, 0xb2);  // Reg18 : b2
975                 }
976         }
977         else   // Disable Antenna Diversity.
978         {
979                 if( DefaultAnt == 1 ) // aux Antenna
980                 {
981                         // Mac register, aux antenna
982                         write_nic_byte(dev, ANTSEL, 0x00);
983
984                         // Config CCK RX antenna.
985                         write_phy_cck(dev, 0x11, 0xbb); // Reg11 : bb
986                         write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47
987
988                         // Config OFDM RX antenna.
989                         write_phy_ofdm(dev, 0x0D, 0x54);   // Reg0d : 54
990                         write_phy_ofdm(dev, 0x18, 0x32);  // Reg18 : 32
991                 }
992                 else // main Antenna
993                 {
994                         // Mac register, main antenna
995                         write_nic_byte(dev, ANTSEL, 0x03);
996
997                         // Config CCK RX antenna.
998                         write_phy_cck(dev, 0x11, 0x9b); // Reg11 : 9b
999                         write_phy_cck(dev, 0x01, 0x47); // Reg01 : 47
1000
1001                         // Config OFDM RX antenna.
1002                         write_phy_ofdm(dev, 0x0D, 0x5c);   // Reg0d : 5c
1003                         write_phy_ofdm(dev, 0x18, 0x32);  // Reg18 : 32
1004                 }
1005         }
1006         priv->CurrAntennaIndex = DefaultAnt; // Update default settings.
1007         return  bAntennaSwitched;
1008 }
1009 //by amy 080312
1010 /*---------------------------------------------------------------
1011   * Hardware Initialization.
1012   * the code is ported from Windows source code
1013   ----------------------------------------------------------------*/
1014
1015 void
1016 ZEBRA_Config_85BASIC_HardCode(
1017         struct net_device *dev
1018         )
1019 {
1020
1021         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1022         u32                     i;
1023         u32     addr,data;
1024         u32     u4bRegOffset, u4bRegValue, u4bRF23, u4bRF24;
1025        u8                       u1b24E;
1026         int d_cut = 0;
1027
1028
1029         //=============================================================================
1030         // 87S_PCIE :: RADIOCFG.TXT
1031         //=============================================================================
1032
1033
1034         // Page1 : reg16-reg30
1035         RF_WriteReg(dev, 0x00, 0x013f);                 mdelay(1); // switch to page1
1036         u4bRF23= RF_ReadReg(dev, 0x08);                 mdelay(1);
1037         u4bRF24= RF_ReadReg(dev, 0x09);                 mdelay(1);
1038
1039         if (u4bRF23 == 0x818 && u4bRF24 == 0x70C) {
1040                 d_cut = 1;
1041                 printk(KERN_INFO "rtl8187se: card type changed from C- to D-cut\n");
1042         }
1043
1044         // Page0 : reg0-reg15
1045
1046 //      RF_WriteReg(dev, 0x00, 0x003f);                 mdelay(1);//1
1047         RF_WriteReg(dev, 0x00, 0x009f);         mdelay(1);// 1
1048
1049         RF_WriteReg(dev, 0x01, 0x06e0);                 mdelay(1);
1050
1051 //      RF_WriteReg(dev, 0x02, 0x004c);                 mdelay(1);//2
1052         RF_WriteReg(dev, 0x02, 0x004d);                 mdelay(1);// 2
1053
1054 //      RF_WriteReg(dev, 0x03, 0x0000);                 mdelay(1);//3
1055         RF_WriteReg(dev, 0x03, 0x07f1);                 mdelay(1);// 3
1056
1057         RF_WriteReg(dev, 0x04, 0x0975);                 mdelay(1);
1058         RF_WriteReg(dev, 0x05, 0x0c72);                 mdelay(1);
1059         RF_WriteReg(dev, 0x06, 0x0ae6);                 mdelay(1);
1060         RF_WriteReg(dev, 0x07, 0x00ca);                 mdelay(1);
1061         RF_WriteReg(dev, 0x08, 0x0e1c);                 mdelay(1);
1062         RF_WriteReg(dev, 0x09, 0x02f0);                 mdelay(1);
1063         RF_WriteReg(dev, 0x0a, 0x09d0);                 mdelay(1);
1064         RF_WriteReg(dev, 0x0b, 0x01ba);                 mdelay(1);
1065         RF_WriteReg(dev, 0x0c, 0x0640);                 mdelay(1);
1066         RF_WriteReg(dev, 0x0d, 0x08df);                 mdelay(1);
1067         RF_WriteReg(dev, 0x0e, 0x0020);                 mdelay(1);
1068         RF_WriteReg(dev, 0x0f, 0x0990);                 mdelay(1);
1069
1070
1071         // Page1 : reg16-reg30
1072         RF_WriteReg(dev, 0x00, 0x013f);                 mdelay(1);
1073
1074         RF_WriteReg(dev, 0x03, 0x0806);                 mdelay(1);
1075
1076         RF_WriteReg(dev, 0x04, 0x03a7);                 mdelay(1);
1077         RF_WriteReg(dev, 0x05, 0x059b);                 mdelay(1);
1078         RF_WriteReg(dev, 0x06, 0x0081);                 mdelay(1);
1079
1080
1081         RF_WriteReg(dev, 0x07, 0x01A0);                 mdelay(1);
1082 // Don't write RF23/RF24 to make a difference between 87S C cut and D cut. asked by SD3 stevenl.
1083 //      RF_WriteReg(dev, 0x08, 0x0597);                 mdelay(1);
1084 //      RF_WriteReg(dev, 0x09, 0x050a);                 mdelay(1);
1085         RF_WriteReg(dev, 0x0a, 0x0001);                 mdelay(1);
1086         RF_WriteReg(dev, 0x0b, 0x0418);                 mdelay(1);
1087
1088         if (d_cut) {
1089                 RF_WriteReg(dev, 0x0c, 0x0fbe);                 mdelay(1);
1090                 RF_WriteReg(dev, 0x0d, 0x0008);                 mdelay(1);
1091                 RF_WriteReg(dev, 0x0e, 0x0807);                 mdelay(1); // RX LO buffer
1092         } else {
1093                 RF_WriteReg(dev, 0x0c, 0x0fbe);                 mdelay(1);
1094                 RF_WriteReg(dev, 0x0d, 0x0008);                 mdelay(1);
1095                 RF_WriteReg(dev, 0x0e, 0x0806);                 mdelay(1); // RX LO buffer
1096         }
1097
1098         RF_WriteReg(dev, 0x0f, 0x0acc);                 mdelay(1);
1099
1100 //      RF_WriteReg(dev, 0x00, 0x017f);                 mdelay(1);//6
1101         RF_WriteReg(dev, 0x00, 0x01d7);                 mdelay(1);// 6
1102
1103         RF_WriteReg(dev, 0x03, 0x0e00);                 mdelay(1);
1104         RF_WriteReg(dev, 0x04, 0x0e50);                 mdelay(1);
1105         for(i=0;i<=36;i++)
1106         {
1107                 RF_WriteReg(dev, 0x01, i);                     mdelay(1);
1108                 RF_WriteReg(dev, 0x02, ZEBRA_RF_RX_GAIN_TABLE[i]); mdelay(1);
1109                 //DbgPrint("RF - 0x%x = 0x%x", i, ZEBRA_RF_RX_GAIN_TABLE[i]);
1110         }
1111
1112         RF_WriteReg(dev, 0x05, 0x0203);                 mdelay(1);      /// 203, 343
1113         //RF_WriteReg(dev, 0x06, 0x0300);                       mdelay(1);      // 400
1114         RF_WriteReg(dev, 0x06, 0x0200);                 mdelay(1);      // 400
1115
1116         RF_WriteReg(dev, 0x00, 0x0137);                 mdelay(1);      // switch to reg16-reg30, and HSSI disable 137
1117         mdelay(10);     // Deay 10 ms. //0xfd
1118
1119 //      RF_WriteReg(dev, 0x0c, 0x09be);                 mdelay(1);      // 7
1120         //RF_WriteReg(dev, 0x0c, 0x07be);                       mdelay(1);
1121         //mdelay(10);   // Deay 10 ms. //0xfd
1122
1123         RF_WriteReg(dev, 0x0d, 0x0008);                 mdelay(1);      // Z4 synthesizer loop filter setting, 392
1124         mdelay(10);     // Deay 10 ms. //0xfd
1125
1126         RF_WriteReg(dev, 0x00, 0x0037);                 mdelay(1);      // switch to reg0-reg15, and HSSI disable
1127         mdelay(10);     // Deay 10 ms. //0xfd
1128
1129         RF_WriteReg(dev, 0x04, 0x0160);                 mdelay(1);      // CBC on, Tx Rx disable, High gain
1130         mdelay(10);     // Deay 10 ms. //0xfd
1131
1132         RF_WriteReg(dev, 0x07, 0x0080);                 mdelay(1);      // Z4 setted channel 1
1133         mdelay(10);     // Deay 10 ms. //0xfd
1134
1135         RF_WriteReg(dev, 0x02, 0x088D);                 mdelay(1);      // LC calibration
1136         mdelay(200);    // Deay 200 ms. //0xfd
1137         mdelay(10);     // Deay 10 ms. //0xfd
1138         mdelay(10);     // Deay 10 ms. //0xfd
1139
1140         RF_WriteReg(dev, 0x00, 0x0137);                 mdelay(1);      // switch to reg16-reg30 137, and HSSI disable 137
1141         mdelay(10);     // Deay 10 ms. //0xfd
1142
1143         RF_WriteReg(dev, 0x07, 0x0000);                 mdelay(1);
1144         RF_WriteReg(dev, 0x07, 0x0180);                 mdelay(1);
1145         RF_WriteReg(dev, 0x07, 0x0220);                 mdelay(1);
1146         RF_WriteReg(dev, 0x07, 0x03E0);                 mdelay(1);
1147
1148         // DAC calibration off 20070702
1149         RF_WriteReg(dev, 0x06, 0x00c1);                 mdelay(1);
1150         RF_WriteReg(dev, 0x0a, 0x0001);                 mdelay(1);
1151 //{by amy 080312
1152         // For crystal calibration, added by Roger, 2007.12.11.
1153         if( priv->bXtalCalibration ) // reg 30.
1154         { // enable crystal calibration.
1155                 // RF Reg[30], (1)Xin:[12:9], Xout:[8:5],  addr[4:0].
1156                 // (2)PA Pwr delay timer[15:14], default: 2.4us, set BIT15=0
1157                 // (3)RF signal on/off when calibration[13], default: on, set BIT13=0.
1158                 // So we should minus 4 BITs offset.
1159                 RF_WriteReg(dev, 0x0f, (priv->XtalCal_Xin<<5)|(priv->XtalCal_Xout<<1)|BIT11|BIT9);                      mdelay(1);
1160                 printk("ZEBRA_Config_85BASIC_HardCode(): (%02x)\n",
1161                                 (priv->XtalCal_Xin<<5) | (priv->XtalCal_Xout<<1) | BIT11| BIT9);
1162         }
1163         else
1164         { // using default value. Xin=6, Xout=6.
1165                 RF_WriteReg(dev, 0x0f, 0x0acc);                 mdelay(1);
1166         }
1167 //by amy 080312
1168 //      RF_WriteReg(dev, 0x0f, 0x0acc);                 mdelay(1);  //-by amy 080312
1169
1170         RF_WriteReg(dev, 0x00, 0x00bf);                 mdelay(1); // switch to reg0-reg15, and HSSI enable
1171 //      RF_WriteReg(dev, 0x0d, 0x009f);                 mdelay(1); // Rx BB start calibration, 00c//-edward
1172         RF_WriteReg(dev, 0x0d, 0x08df);                 mdelay(1); // Rx BB start calibration, 00c//+edward
1173         RF_WriteReg(dev, 0x02, 0x004d);                 mdelay(1); // temperature meter off
1174         RF_WriteReg(dev, 0x04, 0x0975);                 mdelay(1); // Rx mode
1175         mdelay(10);     // Deay 10 ms. //0xfe
1176         mdelay(10);     // Deay 10 ms. //0xfe
1177         mdelay(10);     // Deay 10 ms. //0xfe
1178         RF_WriteReg(dev, 0x00, 0x0197);                 mdelay(1); // Rx mode//+edward
1179         RF_WriteReg(dev, 0x05, 0x05ab);                 mdelay(1); // Rx mode//+edward
1180         RF_WriteReg(dev, 0x00, 0x009f);                 mdelay(1); // Rx mode//+edward
1181
1182         RF_WriteReg(dev, 0x01, 0x0000);                 mdelay(1); // Rx mode//+edward
1183         RF_WriteReg(dev, 0x02, 0x0000);                 mdelay(1); // Rx mode//+edward
1184         //power save parameters.
1185         u1b24E = read_nic_byte(dev, 0x24E);
1186         write_nic_byte(dev, 0x24E, (u1b24E & (~(BIT5|BIT6))));
1187
1188         //=============================================================================
1189
1190         //=============================================================================
1191         // CCKCONF.TXT
1192         //=============================================================================
1193
1194         /*      [POWER SAVE] Power Saving Parameters by jong. 2007-11-27
1195                 CCK reg0x00[7]=1'b1 :power saving for TX (default)
1196                 CCK reg0x00[6]=1'b1: power saving for RX (default)
1197                 CCK reg0x06[4]=1'b1: turn off channel estimation related circuits if not doing channel estimation.
1198                 CCK reg0x06[3]=1'b1: turn off unused circuits before cca = 1
1199                 CCK reg0x06[2]=1'b1: turn off cck's circuit if macrst =0
1200         */
1201
1202         write_phy_cck(dev,0x00,0xc8);
1203         write_phy_cck(dev,0x06,0x1c);
1204         write_phy_cck(dev,0x10,0x78);
1205         write_phy_cck(dev,0x2e,0xd0);
1206         write_phy_cck(dev,0x2f,0x06);
1207         write_phy_cck(dev,0x01,0x46);
1208
1209         // power control
1210         write_nic_byte(dev, CCK_TXAGC, 0x10);
1211         write_nic_byte(dev, OFDM_TXAGC, 0x1B);
1212         write_nic_byte(dev, ANTSEL, 0x03);
1213
1214
1215
1216         //=============================================================================
1217         // AGC.txt
1218         //=============================================================================
1219
1220 //      PlatformIOWrite4Byte( dev, PhyAddr, 0x00001280);        // Annie, 2006-05-05
1221         write_phy_ofdm(dev, 0x00, 0x12);
1222         //WriteBBPortUchar(dev, 0x00001280);
1223
1224         for (i=0; i<128; i++)
1225         {
1226                 //DbgPrint("AGC - [%x+1] = 0x%x\n", i, ZEBRA_AGC[i+1]);
1227
1228                 data = ZEBRA_AGC[i+1];
1229                 data = data << 8;
1230                 data = data | 0x0000008F;
1231
1232                 addr = i + 0x80; //enable writing AGC table
1233                 addr = addr << 8;
1234                 addr = addr | 0x0000008E;
1235
1236                 WriteBBPortUchar(dev, data);
1237                 WriteBBPortUchar(dev, addr);
1238                 WriteBBPortUchar(dev, 0x0000008E);
1239         }
1240
1241         PlatformIOWrite4Byte( dev, PhyAddr, 0x00001080);        // Annie, 2006-05-05
1242         //WriteBBPortUchar(dev, 0x00001080);
1243
1244         //=============================================================================
1245
1246         //=============================================================================
1247         // OFDMCONF.TXT
1248         //=============================================================================
1249
1250         for(i=0; i<60; i++)
1251         {
1252                 u4bRegOffset=i;
1253                 u4bRegValue=OFDM_CONFIG[i];
1254
1255                 //DbgPrint("OFDM - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
1256
1257                 WriteBBPortUchar(dev,
1258                                                 (0x00000080 |
1259                                                 (u4bRegOffset & 0x7f) |
1260                                                 ((u4bRegValue & 0xff) << 8)));
1261         }
1262
1263         //=============================================================================
1264 //by amy for antenna
1265         //=============================================================================
1266 //{by amy 080312
1267         // Config Sw/Hw  Combinational Antenna Diversity. Added by Roger, 2008.02.26.
1268         SetAntennaConfig87SE(dev, priv->bDefaultAntenna1, priv->bSwAntennaDiverity);
1269 //by amy 080312}
1270 //by amy for antenna
1271 }
1272
1273
1274 void
1275 UpdateInitialGain(
1276         struct net_device *dev
1277         )
1278 {
1279         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1280         //unsigned char* IGTable;
1281         //u8                    DIG_CurrentInitialGain = 4;
1282         //unsigned char u1Tmp;
1283
1284         //lzm add 080826
1285         if(priv->eRFPowerState != eRfOn)
1286         {
1287                 //Don't access BB/RF under disable PLL situation.
1288                 //RT_TRACE(COMP_DIG, DBG_LOUD, ("UpdateInitialGain - pHalData->eRFPowerState!=eRfOn\n"));
1289                 // Back to the original state
1290                 priv->InitialGain= priv->InitialGainBackUp;
1291                 return;
1292         }
1293
1294         switch(priv->rf_chip)
1295         {
1296         case RF_ZEBRA4:
1297                 // Dynamic set initial gain, follow 87B
1298                 switch(priv->InitialGain)
1299                 {
1300                         case 1: //m861dBm
1301                                 //DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm \n");
1302                                 write_phy_ofdm(dev, 0x17, 0x26);        mdelay(1);
1303                                 write_phy_ofdm(dev, 0x24, 0x86);        mdelay(1);
1304                                 write_phy_ofdm(dev, 0x05, 0xfa);        mdelay(1);
1305                                 break;
1306
1307                         case 2: //m862dBm
1308                                 //DMESG("RTL8187 + 8225 Initial Gain State 2: -82 dBm \n");
1309                                 write_phy_ofdm(dev, 0x17, 0x36);        mdelay(1);
1310                                 write_phy_ofdm(dev, 0x24, 0x86);        mdelay(1);
1311                                 write_phy_ofdm(dev, 0x05, 0xfa);        mdelay(1);
1312                                 break;
1313
1314                         case 3: //m863dBm
1315                                 //DMESG("RTL8187 + 8225 Initial Gain State 3: -82 dBm \n");
1316                                 write_phy_ofdm(dev, 0x17, 0x36);        mdelay(1);
1317                                 write_phy_ofdm(dev, 0x24, 0x86);        mdelay(1);
1318                                 write_phy_ofdm(dev, 0x05, 0xfb);        mdelay(1);
1319                                 break;
1320
1321                         case 4: //m864dBm
1322                                 //DMESG("RTL8187 + 8225 Initial Gain State 4: -78 dBm \n");
1323                                 write_phy_ofdm(dev, 0x17, 0x46);        mdelay(1);
1324                                 write_phy_ofdm(dev, 0x24, 0x86);        mdelay(1);
1325                                 write_phy_ofdm(dev, 0x05, 0xfb);        mdelay(1);
1326                                 break;
1327
1328                         case 5: //m82dBm
1329                                 //DMESG("RTL8187 + 8225 Initial Gain State 5: -74 dBm \n");
1330                                 write_phy_ofdm(dev, 0x17, 0x46);        mdelay(1);
1331                                 write_phy_ofdm(dev, 0x24, 0x96);        mdelay(1);
1332                                 write_phy_ofdm(dev, 0x05, 0xfb);        mdelay(1);
1333                                 break;
1334
1335                         case 6: //m78dBm
1336                                 //DMESG ("RTL8187 + 8225 Initial Gain State 6: -70 dBm \n");
1337                                 write_phy_ofdm(dev, 0x17, 0x56);        mdelay(1);
1338                                 write_phy_ofdm(dev, 0x24, 0x96);        mdelay(1);
1339                                 write_phy_ofdm(dev, 0x05, 0xfc);        mdelay(1);
1340                                 break;
1341
1342                         case 7: //m74dBm
1343                                 //DMESG("RTL8187 + 8225 Initial Gain State 7: -66 dBm \n");
1344                                 write_phy_ofdm(dev, 0x17, 0x56);        mdelay(1);
1345                                 write_phy_ofdm(dev, 0x24, 0xa6);        mdelay(1);
1346                                 write_phy_ofdm(dev, 0x05, 0xfc);        mdelay(1);
1347                                 break;
1348
1349                         case 8:
1350                                 //DMESG("RTL8187 + 8225 Initial Gain State 8:\n");
1351                                 write_phy_ofdm(dev, 0x17, 0x66);        mdelay(1);
1352                                 write_phy_ofdm(dev, 0x24, 0xb6);        mdelay(1);
1353                                 write_phy_ofdm(dev, 0x05, 0xfc);        mdelay(1);
1354                                 break;
1355
1356
1357                         default:        //MP
1358                                 //DMESG("RTL8187 + 8225 Initial Gain State 1: -82 dBm (default)\n");
1359                                 write_phy_ofdm(dev, 0x17, 0x26);        mdelay(1);
1360                                 write_phy_ofdm(dev, 0x24, 0x86);        mdelay(1);
1361                                 write_phy_ofdm(dev, 0x05, 0xfa);        mdelay(1);
1362                                 break;
1363                 }
1364                 break;
1365
1366
1367         default:
1368                 DMESG("UpdateInitialGain(): unknown RFChipID: %#X\n", priv->rf_chip);
1369                 break;
1370         }
1371 }
1372 //
1373 //      Description:
1374 //              Tx Power tracking mechanism routine on 87SE.
1375 //      Created by Roger, 2007.12.11.
1376 //
1377 void
1378 InitTxPwrTracking87SE(
1379         struct net_device *dev
1380 )
1381 {
1382         //struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1383         u32     u4bRfReg;
1384
1385         u4bRfReg = RF_ReadReg(dev, 0x02);
1386
1387         // Enable Thermal meter indication.
1388         //printk("InitTxPwrTracking87SE(): Enable thermal meter indication, Write RF[0x02] = %#x", u4bRfReg|PWR_METER_EN);
1389         RF_WriteReg(dev, 0x02, u4bRfReg|PWR_METER_EN);                  mdelay(1);
1390 }
1391
1392 void
1393 PhyConfig8185(
1394         struct net_device *dev
1395         )
1396 {
1397         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1398        write_nic_dword(dev, RCR, priv->ReceiveConfig);
1399            priv->RFProgType = read_nic_byte(dev, CONFIG4) & 0x03;
1400         // RF config
1401         switch(priv->rf_chip)
1402         {
1403         case RF_ZEBRA2:
1404         case RF_ZEBRA4:
1405                 ZEBRA_Config_85BASIC_HardCode( dev);
1406                 break;
1407         }
1408 //{by amy 080312
1409         // Set default initial gain state to 4, approved by SD3 DZ, by Bruce, 2007-06-06.
1410         if(priv->bDigMechanism)
1411         {
1412                 if(priv->InitialGain == 0)
1413                         priv->InitialGain = 4;
1414                 //printk("PhyConfig8185(): DIG is enabled, set default initial gain index to %d\n", priv->InitialGain);
1415         }
1416
1417         //
1418         // Enable thermal meter indication to implement TxPower tracking on 87SE.
1419         // We initialize thermal meter here to avoid unsuccessful configuration.
1420         // Added by Roger, 2007.12.11.
1421         //
1422         if(priv->bTxPowerTrack)
1423                 InitTxPwrTracking87SE(dev);
1424
1425 //by amy 080312}
1426         priv->InitialGainBackUp= priv->InitialGain;
1427         UpdateInitialGain(dev);
1428
1429         return;
1430 }
1431
1432
1433
1434
1435 void
1436 HwConfigureRTL8185(
1437                 struct net_device *dev
1438                 )
1439 {
1440         //RTL8185_TODO: Determine Retrylimit, TxAGC, AutoRateFallback control.
1441 //      u8              bUNIVERSAL_CONTROL_RL = 1;
1442         u8              bUNIVERSAL_CONTROL_RL = 0;
1443
1444         u8              bUNIVERSAL_CONTROL_AGC = 1;
1445         u8              bUNIVERSAL_CONTROL_ANT = 1;
1446         u8              bAUTO_RATE_FALLBACK_CTL = 1;
1447         u8              val8;
1448         //struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1449         //struct ieee80211_device *ieee = priv->ieee80211;
1450         //if(IS_WIRELESS_MODE_A(dev) || IS_WIRELESS_MODE_G(dev))
1451 //{by amy 080312        if((ieee->mode == IEEE_G)||(ieee->mode == IEEE_A))
1452 //      {
1453 //              write_nic_word(dev, BRSR, 0xffff);
1454 //      }
1455 //      else
1456 //      {
1457 //              write_nic_word(dev, BRSR, 0x000f);
1458 //      }
1459 //by amy 080312}
1460         write_nic_word(dev, BRSR, 0x0fff);
1461         // Retry limit
1462         val8 = read_nic_byte(dev, CW_CONF);
1463
1464         if(bUNIVERSAL_CONTROL_RL)
1465                 val8 = val8 & 0xfd;
1466         else
1467                 val8 = val8 | 0x02;
1468
1469         write_nic_byte(dev, CW_CONF, val8);
1470
1471         // Tx AGC
1472         val8 = read_nic_byte(dev, TXAGC_CTL);
1473         if(bUNIVERSAL_CONTROL_AGC)
1474         {
1475                 write_nic_byte(dev, CCK_TXAGC, 128);
1476                 write_nic_byte(dev, OFDM_TXAGC, 128);
1477                 val8 = val8 & 0xfe;
1478         }
1479         else
1480         {
1481                 val8 = val8 | 0x01 ;
1482         }
1483
1484
1485         write_nic_byte(dev, TXAGC_CTL, val8);
1486
1487         // Tx Antenna including Feedback control
1488         val8 = read_nic_byte(dev, TXAGC_CTL );
1489
1490         if(bUNIVERSAL_CONTROL_ANT)
1491         {
1492                 write_nic_byte(dev, ANTSEL, 0x00);
1493                 val8 = val8 & 0xfd;
1494         }
1495         else
1496         {
1497                 val8 = val8 & (val8|0x02); //xiong-2006-11-15
1498         }
1499
1500         write_nic_byte(dev, TXAGC_CTL, val8);
1501
1502         // Auto Rate fallback control
1503         val8 = read_nic_byte(dev, RATE_FALLBACK);
1504         val8 &= 0x7c;
1505         if( bAUTO_RATE_FALLBACK_CTL )
1506         {
1507                 val8 |= RATE_FALLBACK_CTL_ENABLE | RATE_FALLBACK_CTL_AUTO_STEP1;
1508
1509                 // <RJ_TODO_8185B> We shall set up the ARFR according to user's setting.
1510                 //write_nic_word(dev, ARFR, 0x0fff); // set 1M ~ 54M
1511 //by amy
1512                 // Aadded by Roger, 2007.11.15.
1513                 PlatformIOWrite2Byte(dev, ARFR, 0x0fff); //set 1M ~ 54Mbps.
1514 //by amy
1515         }
1516         else
1517         {
1518         }
1519         write_nic_byte(dev, RATE_FALLBACK, val8);
1520 }
1521
1522
1523
1524 static void
1525 MacConfig_85BASIC_HardCode(
1526         struct net_device *dev)
1527 {
1528         //============================================================================
1529         // MACREG.TXT
1530         //============================================================================
1531         int                     nLinesRead = 0;
1532
1533         u32     u4bRegOffset, u4bRegValue,u4bPageIndex = 0;
1534         int     i;
1535
1536         nLinesRead=sizeof(MAC_REG_TABLE)/2;
1537
1538         for(i = 0; i < nLinesRead; i++)  //nLinesRead=101
1539         {
1540                 u4bRegOffset=MAC_REG_TABLE[i][0];
1541                 u4bRegValue=MAC_REG_TABLE[i][1];
1542
1543                 if(u4bRegOffset == 0x5e)
1544                 {
1545                     u4bPageIndex = u4bRegValue;
1546                 }
1547                 else
1548                 {
1549                     u4bRegOffset |= (u4bPageIndex << 8);
1550                 }
1551                 //DbgPrint("MAC - 0x%x = 0x%x\n", u4bRegOffset, u4bRegValue);
1552                 write_nic_byte(dev, u4bRegOffset, (u8)u4bRegValue);
1553         }
1554         //============================================================================
1555 }
1556
1557
1558
1559 static void
1560 MacConfig_85BASIC(
1561         struct net_device *dev)
1562 {
1563
1564        u8                       u1DA;
1565         MacConfig_85BASIC_HardCode(dev);
1566
1567         //============================================================================
1568
1569         // Follow TID_AC_MAP of WMac.
1570         write_nic_word(dev, TID_AC_MAP, 0xfa50);
1571
1572         // Interrupt Migration, Jong suggested we use set 0x0000 first, 2005.12.14, by rcnjko.
1573         write_nic_word(dev, IntMig, 0x0000);
1574
1575         // Prevent TPC to cause CRC error. Added by Annie, 2006-06-10.
1576         PlatformIOWrite4Byte(dev, 0x1F0, 0x00000000);
1577         PlatformIOWrite4Byte(dev, 0x1F4, 0x00000000);
1578         PlatformIOWrite1Byte(dev, 0x1F8, 0x00);
1579
1580         // Asked for by SD3 CM Lin, 2006.06.27, by rcnjko.
1581         //PlatformIOWrite4Byte(dev, RFTiming, 0x00004001);
1582 //by amy
1583         // power save parameter based on "87SE power save parameters 20071127.doc", as follow.
1584
1585         //Enable DA10 TX power saving
1586         u1DA = read_nic_byte(dev, PHYPR);
1587         write_nic_byte(dev, PHYPR, (u1DA | BIT2) );
1588
1589         //POWER:
1590         write_nic_word(dev, 0x360, 0x1000);
1591         write_nic_word(dev, 0x362, 0x1000);
1592
1593         // AFE.
1594         write_nic_word(dev, 0x370, 0x0560);
1595         write_nic_word(dev, 0x372, 0x0560);
1596         write_nic_word(dev, 0x374, 0x0DA4);
1597         write_nic_word(dev, 0x376, 0x0DA4);
1598         write_nic_word(dev, 0x378, 0x0560);
1599         write_nic_word(dev, 0x37A, 0x0560);
1600         write_nic_word(dev, 0x37C, 0x00EC);
1601 //      write_nic_word(dev, 0x37E, 0x00FE);//-edward
1602         write_nic_word(dev, 0x37E, 0x00EC);//+edward
1603        write_nic_byte(dev, 0x24E,0x01);
1604 //by amy
1605
1606 }
1607
1608
1609
1610
1611 u8
1612 GetSupportedWirelessMode8185(
1613         struct net_device *dev
1614 )
1615 {
1616         u8                      btSupportedWirelessMode = 0;
1617         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1618
1619         switch(priv->rf_chip)
1620         {
1621         case RF_ZEBRA2:
1622         case RF_ZEBRA4:
1623                 btSupportedWirelessMode = (WIRELESS_MODE_B | WIRELESS_MODE_G);
1624                 break;
1625         default:
1626                 btSupportedWirelessMode = WIRELESS_MODE_B;
1627                 break;
1628         }
1629
1630         return btSupportedWirelessMode;
1631 }
1632
1633 void
1634 ActUpdateChannelAccessSetting(
1635         struct net_device *dev,
1636         WIRELESS_MODE                   WirelessMode,
1637         PCHANNEL_ACCESS_SETTING ChnlAccessSetting
1638         )
1639 {
1640         struct r8180_priv *priv = ieee80211_priv(dev);
1641         struct ieee80211_device *ieee = priv->ieee80211;
1642         AC_CODING       eACI;
1643         AC_PARAM        AcParam;
1644         //PSTA_QOS      pStaQos = Adapter->MgntInfo.pStaQos;
1645         u8      bFollowLegacySetting = 0;
1646         u8   u1bAIFS;
1647
1648         //
1649         // <RJ_TODO_8185B>
1650         // TODO: We still don't know how to set up these registers, just follow WMAC to
1651         // verify 8185B FPAG.
1652         //
1653         // <RJ_TODO_8185B>
1654         // Jong said CWmin/CWmax register are not functional in 8185B,
1655         // so we shall fill channel access realted register into AC parameter registers,
1656         // even in nQBss.
1657         //
1658         ChnlAccessSetting->SIFS_Timer = 0x22; // Suggested by Jong, 2005.12.08.
1659         ChnlAccessSetting->DIFS_Timer = 0x1C; // 2006.06.02, by rcnjko.
1660         ChnlAccessSetting->SlotTimeTimer = 9; // 2006.06.02, by rcnjko.
1661         ChnlAccessSetting->EIFS_Timer = 0x5B; // Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
1662         ChnlAccessSetting->CWminIndex = 3; // 2006.06.02, by rcnjko.
1663         ChnlAccessSetting->CWmaxIndex = 7; // 2006.06.02, by rcnjko.
1664
1665         write_nic_byte(dev, SIFS, ChnlAccessSetting->SIFS_Timer);
1666         //Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_SLOT_TIME, &ChnlAccessSetting->SlotTimeTimer );     // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
1667         write_nic_byte(dev, SLOT, ChnlAccessSetting->SlotTimeTimer);    // Rewrited from directly use PlatformEFIOWrite1Byte(), by Annie, 2006-03-29.
1668
1669         u1bAIFS = aSifsTime + (2 * ChnlAccessSetting->SlotTimeTimer );
1670
1671         //write_nic_byte(dev, AC_VO_PARAM, u1bAIFS);
1672         //write_nic_byte(dev, AC_VI_PARAM, u1bAIFS);
1673         //write_nic_byte(dev, AC_BE_PARAM, u1bAIFS);
1674         //write_nic_byte(dev, AC_BK_PARAM, u1bAIFS);
1675
1676         write_nic_byte(dev, EIFS, ChnlAccessSetting->EIFS_Timer);
1677
1678         write_nic_byte(dev, AckTimeOutReg, 0x5B); // <RJ_EXPR_QOS> Suggested by wcchu, it is the default value of EIFS register, 2005.12.08.
1679
1680 #ifdef TODO
1681         // <RJ_TODO_NOW_8185B> Update ECWmin/ECWmax, AIFS, TXOP Limit of each AC to the value defined by SPEC.
1682         if( pStaQos->CurrentQosMode > QOS_DISABLE )
1683         { // QoS mode.
1684                 if(pStaQos->QBssWirelessMode == WirelessMode)
1685                 {
1686                         // Follow AC Parameters of the QBSS.
1687                         for(eACI = 0; eACI < AC_MAX; eACI++)
1688                         {
1689                                 Adapter->HalFunc.SetHwRegHandler(Adapter, HW_VAR_AC_PARAM, (pu1Byte)(&(pStaQos->WMMParamEle.AcParam[eACI])) );
1690                         }
1691                 }
1692                 else
1693                 {
1694                         // Follow Default WMM AC Parameters.
1695                         bFollowLegacySetting = 1;
1696                 }
1697         }
1698         else
1699 #endif
1700         { // Legacy 802.11.
1701                 bFollowLegacySetting = 1;
1702
1703         }
1704
1705         // this setting is copied from rtl8187B.  xiong-2006-11-13
1706         if(bFollowLegacySetting)
1707         {
1708
1709
1710                 //
1711                 // Follow 802.11 seeting to AC parameter, all AC shall use the same parameter.
1712                 // 2005.12.01, by rcnjko.
1713                 //
1714                 AcParam.longData = 0;
1715                 AcParam.f.AciAifsn.f.AIFSN = 2; // Follow 802.11 DIFS.
1716                 AcParam.f.AciAifsn.f.ACM = 0;
1717                 AcParam.f.Ecw.f.ECWmin = ChnlAccessSetting->CWminIndex; // Follow 802.11 CWmin.
1718                 AcParam.f.Ecw.f.ECWmax = ChnlAccessSetting->CWmaxIndex; // Follow 802.11 CWmax.
1719                 AcParam.f.TXOPLimit = 0;
1720
1721                 //lzm reserved 080826
1722 #if 1
1723                 // For turbo mode setting. port from 87B by Isaiah 2008-08-01
1724                 if( ieee->current_network.Turbo_Enable == 1 )
1725                         AcParam.f.TXOPLimit = 0x01FF;
1726                 // For 87SE with Intel 4965  Ad-Hoc mode have poor throughput (19MB)
1727                 if (ieee->iw_mode == IW_MODE_ADHOC)
1728                         AcParam.f.TXOPLimit = 0x0020;
1729 #endif
1730
1731                 for(eACI = 0; eACI < AC_MAX; eACI++)
1732                 {
1733                         AcParam.f.AciAifsn.f.ACI = (u8)eACI;
1734                         {
1735                                 PAC_PARAM       pAcParam = (PAC_PARAM)(&AcParam);
1736                                 AC_CODING       eACI;
1737                                 u8              u1bAIFS;
1738                                 u32             u4bAcParam;
1739
1740                                 // Retrive paramters to udpate.
1741                                 eACI = pAcParam->f.AciAifsn.f.ACI;
1742                                 u1bAIFS = pAcParam->f.AciAifsn.f.AIFSN * ChnlAccessSetting->SlotTimeTimer + aSifsTime;
1743                                 u4bAcParam = (  (((u32)(pAcParam->f.TXOPLimit)) << AC_PARAM_TXOP_LIMIT_OFFSET)  |
1744                                                 (((u32)(pAcParam->f.Ecw.f.ECWmax)) << AC_PARAM_ECW_MAX_OFFSET)  |
1745                                                 (((u32)(pAcParam->f.Ecw.f.ECWmin)) << AC_PARAM_ECW_MIN_OFFSET)  |
1746                                                 (((u32)u1bAIFS) << AC_PARAM_AIFS_OFFSET));
1747
1748                                 switch(eACI)
1749                                 {
1750                                         case AC1_BK:
1751                                                 //write_nic_dword(dev, AC_BK_PARAM, u4bAcParam);
1752                                                 break;
1753
1754                                         case AC0_BE:
1755                                                 //write_nic_dword(dev, AC_BE_PARAM, u4bAcParam);
1756                                                 break;
1757
1758                                         case AC2_VI:
1759                                                 //write_nic_dword(dev, AC_VI_PARAM, u4bAcParam);
1760                                                 break;
1761
1762                                         case AC3_VO:
1763                                                 //write_nic_dword(dev, AC_VO_PARAM, u4bAcParam);
1764                                                 break;
1765
1766                                         default:
1767                                                 DMESGW( "SetHwReg8185(): invalid ACI: %d !\n", eACI);
1768                                                 break;
1769                                 }
1770
1771                                 // Cehck ACM bit.
1772                                 // If it is set, immediately set ACM control bit to downgrading AC for passing WMM testplan. Annie, 2005-12-13.
1773                                 //write_nic_byte(dev, ACM_CONTROL, pAcParam->f.AciAifsn);
1774                                 {
1775                                         PACI_AIFSN      pAciAifsn = (PACI_AIFSN)(&pAcParam->f.AciAifsn);
1776                                         AC_CODING       eACI = pAciAifsn->f.ACI;
1777
1778                                         //modified Joseph
1779                                         //for 8187B AsynIORead issue
1780 #ifdef TODO
1781                                         u8      AcmCtrl = pHalData->AcmControl;
1782 #else
1783                                         u8      AcmCtrl = 0;
1784 #endif
1785                                         if( pAciAifsn->f.ACM )
1786                                         { // ACM bit is 1.
1787                                                 switch(eACI)
1788                                                 {
1789                                                         case AC0_BE:
1790                                                                 AcmCtrl |= (BEQ_ACM_EN|BEQ_ACM_CTL|ACM_HW_EN);  // or 0x21
1791                                                                 break;
1792
1793                                                         case AC2_VI:
1794                                                                 AcmCtrl |= (VIQ_ACM_EN|VIQ_ACM_CTL|ACM_HW_EN);  // or 0x42
1795                                                                 break;
1796
1797                                                         case AC3_VO:
1798                                                                 AcmCtrl |= (VOQ_ACM_EN|VOQ_ACM_CTL|ACM_HW_EN);  // or 0x84
1799                                                                 break;
1800
1801                                                         default:
1802                                                                 DMESGW("SetHwReg8185(): [HW_VAR_ACM_CTRL] ACM set failed: eACI is %d\n", eACI );
1803                                                                 break;
1804                                                 }
1805                                         }
1806                                         else
1807                                         { // ACM bit is 0.
1808                                                 switch(eACI)
1809                                                 {
1810                                                         case AC0_BE:
1811                                                                 AcmCtrl &= ( (~BEQ_ACM_EN) & (~BEQ_ACM_CTL) & (~ACM_HW_EN) );   // and 0xDE
1812                                                                 break;
1813
1814                                                         case AC2_VI:
1815                                                                 AcmCtrl &= ( (~VIQ_ACM_EN) & (~VIQ_ACM_CTL) & (~ACM_HW_EN) );   // and 0xBD
1816                                                                 break;
1817
1818                                                         case AC3_VO:
1819                                                                 AcmCtrl &= ( (~VOQ_ACM_EN) & (~VOQ_ACM_CTL) & (~ACM_HW_EN) );   // and 0x7B
1820                                                                 break;
1821
1822                                                         default:
1823                                                                 break;
1824                                                 }
1825                                         }
1826
1827                                         //printk(KERN_WARNING "SetHwReg8185(): [HW_VAR_ACM_CTRL] Write 0x%X\n", AcmCtrl);
1828
1829 #ifdef TO_DO
1830                                         pHalData->AcmControl = AcmCtrl;
1831 #endif
1832                                         //write_nic_byte(dev, ACM_CONTROL, AcmCtrl);
1833                                         write_nic_byte(dev, ACM_CONTROL, 0);
1834                                 }
1835                         }
1836                 }
1837
1838
1839         }
1840 }
1841
1842 void
1843 ActSetWirelessMode8185(
1844         struct net_device *dev,
1845         u8                              btWirelessMode
1846         )
1847 {
1848         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1849         struct ieee80211_device *ieee = priv->ieee80211;
1850         //PMGNT_INFO            pMgntInfo = &(Adapter->MgntInfo);
1851         u8      btSupportedWirelessMode = GetSupportedWirelessMode8185(dev);
1852
1853         if( (btWirelessMode & btSupportedWirelessMode) == 0 )
1854         { // Don't switch to unsupported wireless mode, 2006.02.15, by rcnjko.
1855                 DMESGW("ActSetWirelessMode8185(): WirelessMode(%d) is not supported (%d)!\n",
1856                         btWirelessMode, btSupportedWirelessMode);
1857                 return;
1858         }
1859
1860         // 1. Assign wireless mode to swtich if necessary.
1861         if (btWirelessMode == WIRELESS_MODE_AUTO)
1862         {
1863                 if((btSupportedWirelessMode & WIRELESS_MODE_A))
1864                 {
1865                         btWirelessMode = WIRELESS_MODE_A;
1866                 }
1867                 else if((btSupportedWirelessMode & WIRELESS_MODE_G))
1868                 {
1869                         btWirelessMode = WIRELESS_MODE_G;
1870                 }
1871                 else if((btSupportedWirelessMode & WIRELESS_MODE_B))
1872                 {
1873                         btWirelessMode = WIRELESS_MODE_B;
1874                 }
1875                 else
1876                 {
1877                         DMESGW("ActSetWirelessMode8185(): No valid wireless mode supported, btSupportedWirelessMode(%x)!!!\n",
1878                                          btSupportedWirelessMode);
1879                         btWirelessMode = WIRELESS_MODE_B;
1880                 }
1881         }
1882
1883
1884         // 2. Swtich band: RF or BB specific actions,
1885         // for example, refresh tables in omc8255, or change initial gain if necessary.
1886         switch(priv->rf_chip)
1887         {
1888         case RF_ZEBRA2:
1889         case RF_ZEBRA4:
1890                 {
1891                         // Nothing to do for Zebra to switch band.
1892                         // Update current wireless mode if we swtich to specified band successfully.
1893                         ieee->mode = (WIRELESS_MODE)btWirelessMode;
1894                 }
1895                 break;
1896
1897         default:
1898                 DMESGW("ActSetWirelessMode8185(): unsupported RF: 0x%X !!!\n", priv->rf_chip);
1899                 break;
1900         }
1901
1902         // 3. Change related setting.
1903         if( ieee->mode == WIRELESS_MODE_A ){
1904                 DMESG("WIRELESS_MODE_A\n");
1905         }
1906         else if( ieee->mode == WIRELESS_MODE_B ){
1907                 DMESG("WIRELESS_MODE_B\n");
1908         }
1909         else if( ieee->mode == WIRELESS_MODE_G ){
1910                 DMESG("WIRELESS_MODE_G\n");
1911         }
1912
1913         ActUpdateChannelAccessSetting( dev, ieee->mode, &priv->ChannelAccessSetting);
1914 }
1915
1916 void rtl8185b_irq_enable(struct net_device *dev)
1917 {
1918         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1919
1920         priv->irq_enabled = 1;
1921         write_nic_dword(dev, IMR, priv->IntrMask);
1922 }
1923 //by amy for power save
1924 void
1925 DrvIFIndicateDisassociation(
1926         struct net_device *dev,
1927         u16                     reason
1928         )
1929 {
1930         //printk("==> DrvIFIndicateDisassociation()\n");
1931
1932         // nothing is needed after disassociation request.
1933
1934         //printk("<== DrvIFIndicateDisassociation()\n");
1935 }
1936 void
1937 MgntDisconnectIBSS(
1938         struct net_device *dev
1939 )
1940 {
1941         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1942         u8                      i;
1943
1944         //printk("XXXXXXXXXX MgntDisconnect IBSS\n");
1945
1946         DrvIFIndicateDisassociation(dev, unspec_reason);
1947
1948 //      PlatformZeroMemory( pMgntInfo->Bssid, 6 );
1949         for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i] = 0x55;
1950
1951         priv->ieee80211->state = IEEE80211_NOLINK;
1952
1953         //Stop Beacon.
1954
1955         // Vista add a Adhoc profile, HW radio off untill OID_DOT11_RESET_REQUEST
1956         // Driver would set MSR=NO_LINK, then HW Radio ON, MgntQueue Stuck.
1957         // Because Bcn DMA isn't complete, mgnt queue would stuck until Bcn packet send.
1958
1959         // Disable Beacon Queue Own bit, suggested by jong
1960 //      Adapter->HalFunc.SetTxDescOWNHandler(Adapter, BEACON_QUEUE, 0, 0);
1961         ieee80211_stop_send_beacons(priv->ieee80211);
1962
1963         priv->ieee80211->link_change(dev);
1964         notify_wx_assoc_event(priv->ieee80211);
1965
1966         // Stop SW Beacon.Use hw beacon so do not need to do so.by amy
1967
1968 //              MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE );
1969
1970 }
1971 void
1972 MlmeDisassociateRequest(
1973         struct net_device *dev,
1974         u8*                     asSta,
1975         u8                      asRsn
1976         )
1977 {
1978         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
1979         u8 i;
1980
1981         SendDisassociation(priv->ieee80211, asSta, asRsn );
1982
1983         if( memcmp(priv->ieee80211->current_network.bssid, asSta, 6 ) == 0 ){
1984                 //ShuChen TODO: change media status.
1985                 //ShuChen TODO: What to do when disassociate.
1986                 DrvIFIndicateDisassociation(dev, unspec_reason);
1987
1988
1989         //      pMgntInfo->AsocTimestamp = 0;
1990                 for(i=0;i<6;i++)  priv->ieee80211->current_network.bssid[i] = 0x22;
1991 //              pMgntInfo->mBrates.Length = 0;
1992 //              Adapter->HalFunc.SetHwRegHandler( Adapter, HW_VAR_BASIC_RATE, (pu1Byte)(&pMgntInfo->mBrates) );
1993
1994                 ieee80211_disassociate(priv->ieee80211);
1995
1996
1997         }
1998
1999 }
2000
2001 void
2002 MgntDisconnectAP(
2003         struct net_device *dev,
2004         u8                      asRsn
2005 )
2006 {
2007         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2008
2009 //
2010 // Commented out by rcnjko, 2005.01.27:
2011 // I move SecClearAllKeys() to MgntActSet_802_11_DISASSOCIATE().
2012 //
2013 //      //2004/09/15, kcwu, the key should be cleared, or the new handshaking will not success
2014 //      SecClearAllKeys(Adapter);
2015
2016         // In WPA WPA2 need to Clear all key ... because new key will set after new handshaking.
2017 #ifdef TODO
2018         if(   pMgntInfo->SecurityInfo.AuthMode > RT_802_11AuthModeAutoSwitch ||
2019                 (pMgntInfo->bAPSuportCCKM && pMgntInfo->bCCX8021xenable) )  // In CCKM mode will Clear key
2020         {
2021                 SecClearAllKeys(Adapter);
2022                 RT_TRACE(COMP_SEC, DBG_LOUD,("======>CCKM clear key..."))
2023         }
2024 #endif
2025         // 2004.10.11, by rcnjko.
2026         //MlmeDisassociateRequest( Adapter, pMgntInfo->Bssid, disas_lv_ss );
2027         MlmeDisassociateRequest( dev, priv->ieee80211->current_network.bssid, asRsn );
2028
2029         priv->ieee80211->state = IEEE80211_NOLINK;
2030 //      pMgntInfo->AsocTimestamp = 0;
2031 }
2032 bool
2033 MgntDisconnect(
2034         struct net_device *dev,
2035         u8                      asRsn
2036 )
2037 {
2038         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2039         //
2040         // Schedule an workitem to wake up for ps mode, 070109, by rcnjko.
2041         //
2042 #ifdef TODO
2043         if(pMgntInfo->mPss != eAwake)
2044         {
2045                 //
2046                 // Using AwkaeTimer to prevent mismatch ps state.
2047                 // In the timer the state will be changed according to the RF is being awoke or not. By Bruce, 2007-10-31.
2048                 //
2049                 // PlatformScheduleWorkItem( &(pMgntInfo->AwakeWorkItem) );
2050                 PlatformSetTimer( Adapter, &(pMgntInfo->AwakeTimer), 0 );
2051         }
2052 #endif
2053
2054         // Indication of disassociation event.
2055         //DrvIFIndicateDisassociation(Adapter, asRsn);
2056         if(IS_DOT11D_ENABLE(priv->ieee80211))
2057                 Dot11d_Reset(priv->ieee80211);
2058         // In adhoc mode, update beacon frame.
2059         if( priv->ieee80211->state == IEEE80211_LINKED )
2060         {
2061                 if( priv->ieee80211->iw_mode == IW_MODE_ADHOC )
2062                 {
2063 //                      RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectIBSS\n"));
2064                         //printk("MgntDisconnect() ===> MgntDisconnectIBSS\n");
2065                         MgntDisconnectIBSS(dev);
2066                 }
2067                 if( priv->ieee80211->iw_mode == IW_MODE_INFRA )
2068                 {
2069                         // We clear key here instead of MgntDisconnectAP() because that
2070                         // MgntActSet_802_11_DISASSOCIATE() is an interface called by OS,
2071                         // e.g. OID_802_11_DISASSOCIATE in Windows while as MgntDisconnectAP() is
2072                         // used to handle disassociation related things to AP, e.g. send Disassoc
2073                         // frame to AP.  2005.01.27, by rcnjko.
2074 //                      SecClearAllKeys(Adapter);
2075
2076 //                      RT_TRACE(COMP_MLME, DBG_LOUD, ("MgntDisconnect() ===> MgntDisconnectAP\n"));
2077                         //printk("MgntDisconnect() ===> MgntDisconnectAP\n");
2078                         MgntDisconnectAP(dev, asRsn);
2079                 }
2080
2081                 // Inidicate Disconnect, 2005.02.23, by rcnjko.
2082 //              MgntIndicateMediaStatus( Adapter, RT_MEDIA_DISCONNECT, GENERAL_INDICATE);
2083         }
2084
2085         return true;
2086 }
2087 //
2088 //      Description:
2089 //              Chang RF Power State.
2090 //              Note that, only MgntActSet_RF_State() is allowed to set HW_VAR_RF_STATE.
2091 //
2092 //      Assumption:
2093 //              PASSIVE LEVEL.
2094 //
2095 bool
2096 SetRFPowerState(
2097         struct net_device *dev,
2098         RT_RF_POWER_STATE       eRFPowerState
2099         )
2100 {
2101         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2102         bool                    bResult = false;
2103
2104 //      printk("---------> SetRFPowerState(): eRFPowerState(%d)\n", eRFPowerState);
2105         if(eRFPowerState == priv->eRFPowerState)
2106         {
2107 //              printk("<--------- SetRFPowerState(): discard the request for eRFPowerState(%d) is the same.\n", eRFPowerState);
2108                 return bResult;
2109         }
2110
2111         switch(priv->rf_chip)
2112         {
2113                 case RF_ZEBRA2:
2114                 case RF_ZEBRA4:
2115                          bResult = SetZebraRFPowerState8185(dev, eRFPowerState);
2116                         break;
2117
2118                 default:
2119                         printk("SetRFPowerState8185(): unknown RFChipID: 0x%X!!!\n", priv->rf_chip);
2120                         break;;
2121 }
2122 //      printk("<--------- SetRFPowerState(): bResult(%d)\n", bResult);
2123
2124         return bResult;
2125 }
2126 void
2127 HalEnableRx8185Dummy(
2128         struct net_device *dev
2129         )
2130 {
2131 }
2132 void
2133 HalDisableRx8185Dummy(
2134         struct net_device *dev
2135         )
2136 {
2137 }
2138
2139 bool
2140 MgntActSet_RF_State(
2141         struct net_device *dev,
2142         RT_RF_POWER_STATE       StateToSet,
2143         u32     ChangeSource
2144         )
2145 {
2146         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2147         bool                            bActionAllowed = false;
2148         bool                            bConnectBySSID = false;
2149         RT_RF_POWER_STATE       rtState;
2150         u16                             RFWaitCounter = 0;
2151         unsigned long flag;
2152 //       printk("===>MgntActSet_RF_State(): StateToSet(%d), ChangeSource(0x%x)\n",StateToSet, ChangeSource);
2153         //
2154         // Prevent the race condition of RF state change. By Bruce, 2007-11-28.
2155         // Only one thread can change the RF state at one time, and others should wait to be executed.
2156         //
2157 #if 1
2158         while(true)
2159         {
2160 //              down(&priv->rf_state);
2161                 spin_lock_irqsave(&priv->rf_ps_lock,flag);
2162                 if(priv->RFChangeInProgress)
2163                 {
2164 //                      printk("====================>haha111111111\n");
2165 //                      up(&priv->rf_state);
2166 //                      RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): RF Change in progress! Wait to set..StateToSet(%d).\n", StateToSet));
2167                         spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
2168                         // Set RF after the previous action is done.
2169                         while(priv->RFChangeInProgress)
2170                         {
2171                                 RFWaitCounter ++;
2172 //                              RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Wait 1 ms (%d times)...\n", RFWaitCounter));
2173                                 udelay(1000); // 1 ms
2174
2175                                 // Wait too long, return FALSE to avoid to be stuck here.
2176                                 if(RFWaitCounter > 1000) // 1sec
2177                                 {
2178 //                                      RT_ASSERT(FALSE, ("MgntActSet_RF_State(): Wait too logn to set RF\n"));
2179                                         printk("MgntActSet_RF_State(): Wait too long to set RF\n");
2180                                         // TODO: Reset RF state?
2181                                         return false;
2182                                 }
2183                         }
2184                 }
2185                 else
2186                 {
2187 //                      printk("========================>haha2\n");
2188                         priv->RFChangeInProgress = true;
2189 //                      up(&priv->rf_state);
2190                         spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
2191                         break;
2192                 }
2193         }
2194 #endif
2195         rtState = priv->eRFPowerState;
2196
2197
2198         switch(StateToSet)
2199         {
2200         case eRfOn:
2201                 //
2202                 // Turn On RF no matter the IPS setting because we need to update the RF state to Ndis under Vista, or
2203                 // the Windows does not allow the driver to perform site survey any more. By Bruce, 2007-10-02.
2204                 //
2205                 priv->RfOffReason &= (~ChangeSource);
2206
2207                 if(! priv->RfOffReason)
2208                 {
2209                         priv->RfOffReason = 0;
2210                         bActionAllowed = true;
2211
2212                         if(rtState == eRfOff && ChangeSource >=RF_CHANGE_BY_HW && !priv->bInHctTest)
2213                         {
2214                                 bConnectBySSID = true;
2215                         }
2216                 }
2217                 else
2218 //                      RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State - eRfon reject pMgntInfo->RfOffReason= 0x%x, ChangeSource=0x%X\n", pMgntInfo->RfOffReason, ChangeSource));
2219                         ;
2220                 break;
2221
2222         case eRfOff:
2223                  // 070125, rcnjko: we always keep connected in AP mode.
2224
2225                         if (priv->RfOffReason > RF_CHANGE_BY_IPS)
2226                         {
2227                                 //
2228                                 // 060808, Annie:
2229                                 // Disconnect to current BSS when radio off. Asked by QuanTa.
2230                                 //
2231
2232                                 //
2233                                 // Calling MgntDisconnect() instead of MgntActSet_802_11_DISASSOCIATE(),
2234                                 // because we do NOT need to set ssid to dummy ones.
2235                                 // Revised by Roger, 2007.12.04.
2236                                 //
2237                                 MgntDisconnect( dev, disas_lv_ss );
2238
2239                                 // Clear content of bssDesc[] and bssDesc4Query[] to avoid reporting old bss to UI.
2240                                 // 2007.05.28, by shien chang.
2241 //                              PlatformZeroMemory( pMgntInfo->bssDesc, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
2242 //                              pMgntInfo->NumBssDesc = 0;
2243 //                              PlatformZeroMemory( pMgntInfo->bssDesc4Query, sizeof(RT_WLAN_BSS)*MAX_BSS_DESC );
2244 //                              pMgntInfo->NumBssDesc4Query = 0;
2245                         }
2246
2247
2248
2249                 priv->RfOffReason |= ChangeSource;
2250                 bActionAllowed = true;
2251                 break;
2252
2253         case eRfSleep:
2254                 priv->RfOffReason |= ChangeSource;
2255                 bActionAllowed = true;
2256                 break;
2257
2258         default:
2259                 break;
2260         }
2261
2262         if(bActionAllowed)
2263         {
2264 //              RT_TRACE(COMP_RF, DBG_LOUD, ("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, pMgntInfo->RfOffReason));
2265                 // Config HW to the specified mode.
2266 //              printk("MgntActSet_RF_State(): Action is allowed.... StateToSet(%d), RfOffReason(%#X)\n", StateToSet, priv->RfOffReason);
2267                 SetRFPowerState(dev, StateToSet);
2268
2269                 // Turn on RF.
2270                 if(StateToSet == eRfOn)
2271                 {
2272                         HalEnableRx8185Dummy(dev);
2273                         if(bConnectBySSID)
2274                         {
2275                         // by amy not supported
2276 //                              MgntActSet_802_11_SSID(Adapter, Adapter->MgntInfo.Ssid.Octet, Adapter->MgntInfo.Ssid.Length, TRUE );
2277                         }
2278                 }
2279                 // Turn off RF.
2280                 else if(StateToSet == eRfOff)
2281                 {
2282                         HalDisableRx8185Dummy(dev);
2283                 }
2284         }
2285         else
2286         {
2287         //      printk("MgntActSet_RF_State(): Action is rejected.... StateToSet(%d), ChangeSource(%#X), RfOffReason(%#X)\n", StateToSet, ChangeSource, priv->RfOffReason);
2288         }
2289
2290         // Release RF spinlock
2291 //      down(&priv->rf_state);
2292         spin_lock_irqsave(&priv->rf_ps_lock,flag);
2293         priv->RFChangeInProgress = false;
2294 //      up(&priv->rf_state);
2295         spin_unlock_irqrestore(&priv->rf_ps_lock,flag);
2296 //      printk("<===MgntActSet_RF_State()\n");
2297         return bActionAllowed;
2298 }
2299 void
2300 InactivePowerSave(
2301         struct net_device *dev
2302         )
2303 {
2304         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2305         //u8 index = 0;
2306
2307         //
2308         // This flag "bSwRfProcessing", indicates the status of IPS procedure, should be set if the IPS workitem
2309         // is really scheduled.
2310         // The old code, sets this flag before scheduling the IPS workitem and however, at the same time the
2311         // previous IPS workitem did not end yet, fails to schedule the current workitem. Thus, bSwRfProcessing
2312         // blocks the IPS procedure of switching RF.
2313         // By Bruce, 2007-12-25.
2314         //
2315         priv->bSwRfProcessing = true;
2316
2317         MgntActSet_RF_State(dev, priv->eInactivePowerState, RF_CHANGE_BY_IPS);
2318
2319         //
2320         // To solve CAM values miss in RF OFF, rewrite CAM values after RF ON. By Bruce, 2007-09-20.
2321         //
2322
2323         priv->bSwRfProcessing = false;
2324 }
2325
2326 //
2327 //      Description:
2328 //              Enter the inactive power save mode. RF will be off
2329 //      2007.08.17, by shien chang.
2330 //
2331 void
2332 IPSEnter(
2333         struct net_device *dev
2334         )
2335 {
2336         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2337         RT_RF_POWER_STATE rtState;
2338         //printk("==============================>enter IPS\n");
2339         if (priv->bInactivePs)
2340         {
2341                 rtState = priv->eRFPowerState;
2342
2343                 //
2344                 // Added by Bruce, 2007-12-25.
2345                 // Do not enter IPS in the following conditions:
2346                 // (1) RF is already OFF or Sleep
2347                 // (2) bSwRfProcessing (indicates the IPS is still under going)
2348                 // (3) Connectted (only disconnected can trigger IPS)
2349                 // (4) IBSS (send Beacon)
2350                 // (5) AP mode (send Beacon)
2351                 //
2352                 if (rtState == eRfOn && !priv->bSwRfProcessing
2353                         && (priv->ieee80211->state != IEEE80211_LINKED ))
2354                 {
2355         //              printk("IPSEnter(): Turn off RF.\n");
2356                         priv->eInactivePowerState = eRfOff;
2357                         InactivePowerSave(dev);
2358                 }
2359         }
2360 //      printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
2361 }
2362 void
2363 IPSLeave(
2364         struct net_device *dev
2365         )
2366 {
2367         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2368         RT_RF_POWER_STATE rtState;
2369         //printk("===================================>leave IPS\n");
2370         if (priv->bInactivePs)
2371         {
2372                 rtState = priv->eRFPowerState;
2373                 if ((rtState == eRfOff || rtState == eRfSleep) && (!priv->bSwRfProcessing) && priv->RfOffReason <= RF_CHANGE_BY_IPS)
2374                 {
2375 //                      printk("IPSLeave(): Turn on RF.\n");
2376                         priv->eInactivePowerState = eRfOn;
2377                         InactivePowerSave(dev);
2378                 }
2379         }
2380 //      printk("priv->eRFPowerState is %d\n",priv->eRFPowerState);
2381 }
2382 //by amy for power save
2383 void rtl8185b_adapter_start(struct net_device *dev)
2384 {
2385       struct r8180_priv *priv = ieee80211_priv(dev);
2386         struct ieee80211_device *ieee = priv->ieee80211;
2387
2388         u8 SupportedWirelessMode;
2389         u8                      InitWirelessMode;
2390         u8                      bInvalidWirelessMode = 0;
2391         //int i;
2392         u8 tmpu8;
2393         //u8 u1tmp,u2tmp;
2394         u8 btCR9346;
2395         u8 TmpU1b;
2396         u8 btPSR;
2397
2398         //rtl8180_rtx_disable(dev);
2399 //{by amy 080312
2400         write_nic_byte(dev,0x24e, (BIT5|BIT6|BIT0));
2401 //by amy 080312}
2402         rtl8180_reset(dev);
2403
2404         priv->dma_poll_mask = 0;
2405         priv->dma_poll_stop_mask = 0;
2406
2407         //rtl8180_beacon_tx_disable(dev);
2408
2409         HwConfigureRTL8185(dev);
2410
2411         write_nic_dword(dev, MAC0, ((u32*)dev->dev_addr)[0]);
2412         write_nic_word(dev, MAC4, ((u32*)dev->dev_addr)[1] & 0xffff );
2413
2414         write_nic_byte(dev, MSR, read_nic_byte(dev, MSR) & 0xf3);       // default network type to 'No  Link'
2415
2416         //write_nic_byte(dev, BRSR, 0x0);               // Set BRSR= 1M
2417
2418         write_nic_word(dev, BcnItv, 100);
2419         write_nic_word(dev, AtimWnd, 2);
2420
2421         //PlatformEFIOWrite2Byte(dev, FEMR, 0xFFFF);
2422         PlatformIOWrite2Byte(dev, FEMR, 0xFFFF);
2423
2424         write_nic_byte(dev, WPA_CONFIG, 0);
2425
2426         MacConfig_85BASIC(dev);
2427
2428         // Override the RFSW_CTRL (MAC offset 0x272-0x273), 2006.06.07, by rcnjko.
2429         // BT_DEMO_BOARD type
2430         PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x569a);
2431 //by amy
2432 //#ifdef CONFIG_RTL818X_S
2433                 // for jong required
2434 //      PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
2435 //#endif
2436 //by amy
2437         //BT_QA_BOARD
2438         //PlatformIOWrite2Byte(dev, RFSW_CTRL, 0x9a56);
2439
2440         //-----------------------------------------------------------------------------
2441         // Set up PHY related.
2442         //-----------------------------------------------------------------------------
2443         // Enable Config3.PARAM_En to revise AnaaParm.
2444         write_nic_byte(dev, CR9346, 0xc0);      // enable config register write
2445 //by amy
2446         tmpu8 = read_nic_byte(dev, CONFIG3);
2447         write_nic_byte(dev, CONFIG3, (tmpu8 |CONFIG3_PARM_En) );
2448 //by amy
2449         // Turn on Analog power.
2450         // Asked for by William, otherwise, MAC 3-wire can't work, 2006.06.27, by rcnjko.
2451         write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
2452         write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
2453 //by amy
2454         write_nic_word(dev, ANAPARAM3, 0x0010);
2455 //by amy
2456
2457         write_nic_byte(dev, CONFIG3, tmpu8);
2458         write_nic_byte(dev, CR9346, 0x00);
2459 //{by amy 080312 for led
2460         // enable EEM0 and EEM1 in 9346CR
2461         btCR9346 = read_nic_byte(dev, CR9346);
2462         write_nic_byte(dev, CR9346, (btCR9346|0xC0) );
2463
2464         // B cut use LED1 to control HW RF on/off
2465         TmpU1b = read_nic_byte(dev, CONFIG5);
2466         TmpU1b = TmpU1b & ~BIT3;
2467         write_nic_byte(dev,CONFIG5, TmpU1b);
2468
2469         // disable EEM0 and EEM1 in 9346CR
2470         btCR9346 &= ~(0xC0);
2471         write_nic_byte(dev, CR9346, btCR9346);
2472
2473         //Enable Led (suggested by Jong)
2474         // B-cut RF Radio on/off  5e[3]=0
2475         btPSR = read_nic_byte(dev, PSR);
2476         write_nic_byte(dev, PSR, (btPSR | BIT3));
2477 //by amy 080312 for led}
2478         // setup initial timing for RFE.
2479         write_nic_word(dev, RFPinsOutput, 0x0480);
2480         SetOutputEnableOfRfPins(dev);
2481         write_nic_word(dev, RFPinsSelect, 0x2488);
2482
2483         // PHY config.
2484         PhyConfig8185(dev);
2485
2486         // We assume RegWirelessMode has already been initialized before,
2487         // however, we has to validate the wireless mode here and provide a
2488         // reasonable initialized value if necessary. 2005.01.13, by rcnjko.
2489         SupportedWirelessMode = GetSupportedWirelessMode8185(dev);
2490         if(     (ieee->mode != WIRELESS_MODE_B) &&
2491                 (ieee->mode != WIRELESS_MODE_G) &&
2492                 (ieee->mode != WIRELESS_MODE_A) &&
2493                 (ieee->mode != WIRELESS_MODE_AUTO))
2494         { // It should be one of B, G, A, or AUTO.
2495                 bInvalidWirelessMode = 1;
2496         }
2497         else
2498         { // One of B, G, A, or AUTO.
2499                 // Check if the wireless mode is supported by RF.
2500                 if( (ieee->mode != WIRELESS_MODE_AUTO) &&
2501                         (ieee->mode & SupportedWirelessMode) == 0 )
2502                 {
2503                         bInvalidWirelessMode = 1;
2504                 }
2505         }
2506
2507         if(bInvalidWirelessMode || ieee->mode==WIRELESS_MODE_AUTO)
2508         { // Auto or other invalid value.
2509                 // Assigne a wireless mode to initialize.
2510                 if((SupportedWirelessMode & WIRELESS_MODE_A))
2511                 {
2512                         InitWirelessMode = WIRELESS_MODE_A;
2513                 }
2514                 else if((SupportedWirelessMode & WIRELESS_MODE_G))
2515                 {
2516                         InitWirelessMode = WIRELESS_MODE_G;
2517                 }
2518                 else if((SupportedWirelessMode & WIRELESS_MODE_B))
2519                 {
2520                         InitWirelessMode = WIRELESS_MODE_B;
2521                 }
2522                 else
2523                 {
2524                         DMESGW("InitializeAdapter8185(): No valid wireless mode supported, SupportedWirelessMode(%x)!!!\n",
2525                                  SupportedWirelessMode);
2526                         InitWirelessMode = WIRELESS_MODE_B;
2527                 }
2528
2529                 // Initialize RegWirelessMode if it is not a valid one.
2530                 if(bInvalidWirelessMode)
2531                 {
2532                         ieee->mode = (WIRELESS_MODE)InitWirelessMode;
2533                 }
2534         }
2535         else
2536         { // One of B, G, A.
2537                 InitWirelessMode = ieee->mode;
2538         }
2539 //by amy for power save
2540 //      printk("initialize ENABLE_IPS\n");
2541         priv->eRFPowerState = eRfOff;
2542         priv->RfOffReason = 0;
2543         {
2544         //      u32 tmp2;
2545         //      u32 tmp = jiffies;
2546                 MgntActSet_RF_State(dev, eRfOn, 0);
2547         //      tmp2 = jiffies;
2548         //      printk("rf on cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
2549         }
2550 //      DrvIFIndicateCurrentPhyStatus(priv);
2551                 //
2552                 // If inactive power mode is enabled, disable rf while in disconnected state.
2553                 // 2007.07.16, by shien chang.
2554                 //
2555         if (priv->bInactivePs)
2556         {
2557         //      u32 tmp2;
2558         //      u32 tmp = jiffies;
2559                 MgntActSet_RF_State(dev,eRfOff, RF_CHANGE_BY_IPS);
2560         //      tmp2 = jiffies;
2561         //      printk("rf off cost jiffies:%lx\n", (tmp2-tmp)*1000/HZ);
2562
2563         }
2564 //      IPSEnter(dev);
2565 //by amy for power save
2566 #ifdef TODO
2567         // Turn off RF if necessary. 2005.08.23, by rcnjko.
2568         // We shall turn off RF after setting CMDR, otherwise,
2569         // RF will be turnned on after we enable MAC Tx/Rx.
2570         if(Adapter->MgntInfo.RegRfOff == TRUE)
2571         {
2572                 SetRFPowerState8185(Adapter, RF_OFF);
2573         }
2574         else
2575         {
2576                 SetRFPowerState8185(Adapter, RF_ON);
2577         }
2578 #endif
2579
2580 /*   //these is equal with above TODO.
2581         write_nic_byte(dev, CR9346, 0xc0);      // enable config register write
2582         write_nic_byte(dev, CONFIG3, read_nic_byte(dev, CONFIG3) | CONFIG3_PARM_En);
2583         RF_WriteReg(dev, 0x4, 0x9FF);
2584         write_nic_dword(dev, ANAPARAM2, ANAPARM2_ASIC_ON);
2585         write_nic_dword(dev, ANAPARAM, ANAPARM_ASIC_ON);
2586         write_nic_byte(dev, CONFIG3, (read_nic_byte(dev, CONFIG3)&(~CONFIG3_PARM_En)));
2587         write_nic_byte(dev, CR9346, 0x00);
2588 */
2589
2590         ActSetWirelessMode8185(dev, (u8)(InitWirelessMode));
2591
2592         //-----------------------------------------------------------------------------
2593
2594         rtl8185b_irq_enable(dev);
2595
2596         netif_start_queue(dev);
2597
2598  }
2599
2600
2601 void rtl8185b_rx_enable(struct net_device *dev)
2602 {
2603         u8 cmd;
2604         //u32 rxconf;
2605         /* for now we accept data, management & ctl frame*/
2606         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2607
2608         if (dev->flags & IFF_PROMISC) DMESG ("NIC in promisc mode");
2609
2610         if(priv->ieee80211->iw_mode == IW_MODE_MONITOR || \
2611            dev->flags & IFF_PROMISC){
2612                 priv->ReceiveConfig = priv->ReceiveConfig & (~RCR_APM);
2613                 priv->ReceiveConfig = priv->ReceiveConfig | RCR_AAP;
2614         }
2615
2616         /*if(priv->ieee80211->iw_mode == IW_MODE_MASTER){
2617                 rxconf = rxconf | (1<<ACCEPT_ALLMAC_FRAME_SHIFT);
2618                 rxconf = rxconf | (1<<RX_CHECK_BSSID_SHIFT);
2619         }*/
2620
2621         if(priv->ieee80211->iw_mode == IW_MODE_MONITOR){
2622                 priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACF | RCR_APWRMGT | RCR_AICV;
2623         }
2624
2625         if( priv->crcmon == 1 && priv->ieee80211->iw_mode == IW_MODE_MONITOR)
2626                 priv->ReceiveConfig = priv->ReceiveConfig | RCR_ACRC32;
2627
2628         write_nic_dword(dev, RCR, priv->ReceiveConfig);
2629
2630         fix_rx_fifo(dev);
2631
2632 #ifdef DEBUG_RX
2633         DMESG("rxconf: %x %x",priv->ReceiveConfig ,read_nic_dword(dev,RCR));
2634 #endif
2635         cmd=read_nic_byte(dev,CMD);
2636         write_nic_byte(dev,CMD,cmd | (1<<CMD_RX_ENABLE_SHIFT));
2637
2638 }
2639
2640 void rtl8185b_tx_enable(struct net_device *dev)
2641 {
2642         u8 cmd;
2643         //u8 tx_agc_ctl;
2644         u8 byte;
2645         //u32 txconf;
2646         struct r8180_priv *priv = (struct r8180_priv *)ieee80211_priv(dev);
2647
2648         write_nic_dword(dev, TCR, priv->TransmitConfig);
2649         byte = read_nic_byte(dev, MSR);
2650         byte |= MSR_LINK_ENEDCA;
2651         write_nic_byte(dev, MSR, byte);
2652
2653         fix_tx_fifo(dev);
2654
2655 #ifdef DEBUG_TX
2656         DMESG("txconf: %x %x",priv->TransmitConfig,read_nic_dword(dev,TCR));
2657 #endif
2658
2659         cmd=read_nic_byte(dev,CMD);
2660         write_nic_byte(dev,CMD,cmd | (1<<CMD_TX_ENABLE_SHIFT));
2661
2662         //write_nic_dword(dev,TX_CONF,txconf);
2663
2664
2665 /*
2666         rtl8180_set_mode(dev,EPROM_CMD_CONFIG);
2667         write_nic_byte(dev, TX_DMA_POLLING, priv->dma_poll_mask);
2668         rtl8180_set_mode(dev,EPROM_CMD_NORMAL);
2669         */
2670 }
2671
2672