]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/rt2x00/rt2500usb.c
08240f813ef48f0bc840835de48f1e95ff736d7f
[net-next-2.6.git] / drivers / net / wireless / rt2x00 / rt2500usb.c
1 /*
2         Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3         <http://rt2x00.serialmonkey.com>
4
5         This program is free software; you can redistribute it and/or modify
6         it under the terms of the GNU General Public License as published by
7         the Free Software Foundation; either version 2 of the License, or
8         (at your option) any later version.
9
10         This program is distributed in the hope that it will be useful,
11         but WITHOUT ANY WARRANTY; without even the implied warranty of
12         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13         GNU General Public License for more details.
14
15         You should have received a copy of the GNU General Public License
16         along with this program; if not, write to the
17         Free Software Foundation, Inc.,
18         59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22         Module: rt2500usb
23         Abstract: rt2500usb device specific routines.
24         Supported chipsets: RT2570.
25  */
26
27 #include <linux/delay.h>
28 #include <linux/etherdevice.h>
29 #include <linux/init.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/usb.h>
34
35 #include "rt2x00.h"
36 #include "rt2x00usb.h"
37 #include "rt2500usb.h"
38
39 /*
40  * Allow hardware encryption to be disabled.
41  */
42 static int modparam_nohwcrypt = 0;
43 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
44 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
45
46 /*
47  * Register access.
48  * All access to the CSR registers will go through the methods
49  * rt2500usb_register_read and rt2500usb_register_write.
50  * BBP and RF register require indirect register access,
51  * and use the CSR registers BBPCSR and RFCSR to achieve this.
52  * These indirect registers work with busy bits,
53  * and we will try maximal REGISTER_BUSY_COUNT times to access
54  * the register while taking a REGISTER_BUSY_DELAY us delay
55  * between each attampt. When the busy bit is still set at that time,
56  * the access attempt is considered to have failed,
57  * and we will print an error.
58  * If the csr_mutex is already held then the _lock variants must
59  * be used instead.
60  */
61 static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
62                                            const unsigned int offset,
63                                            u16 *value)
64 {
65         __le16 reg;
66         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
67                                       USB_VENDOR_REQUEST_IN, offset,
68                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
69         *value = le16_to_cpu(reg);
70 }
71
72 static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
73                                                 const unsigned int offset,
74                                                 u16 *value)
75 {
76         __le16 reg;
77         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
78                                        USB_VENDOR_REQUEST_IN, offset,
79                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
80         *value = le16_to_cpu(reg);
81 }
82
83 static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
84                                                 const unsigned int offset,
85                                                 void *value, const u16 length)
86 {
87         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
88                                       USB_VENDOR_REQUEST_IN, offset,
89                                       value, length,
90                                       REGISTER_TIMEOUT16(length));
91 }
92
93 static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
94                                             const unsigned int offset,
95                                             u16 value)
96 {
97         __le16 reg = cpu_to_le16(value);
98         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
99                                       USB_VENDOR_REQUEST_OUT, offset,
100                                       &reg, sizeof(reg), REGISTER_TIMEOUT);
101 }
102
103 static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
104                                                  const unsigned int offset,
105                                                  u16 value)
106 {
107         __le16 reg = cpu_to_le16(value);
108         rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
109                                        USB_VENDOR_REQUEST_OUT, offset,
110                                        &reg, sizeof(reg), REGISTER_TIMEOUT);
111 }
112
113 static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
114                                                  const unsigned int offset,
115                                                  void *value, const u16 length)
116 {
117         rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
118                                       USB_VENDOR_REQUEST_OUT, offset,
119                                       value, length,
120                                       REGISTER_TIMEOUT16(length));
121 }
122
123 static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev,
124                                   const unsigned int offset,
125                                   struct rt2x00_field16 field,
126                                   u16 *reg)
127 {
128         unsigned int i;
129
130         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
131                 rt2500usb_register_read_lock(rt2x00dev, offset, reg);
132                 if (!rt2x00_get_field16(*reg, field))
133                         return 1;
134                 udelay(REGISTER_BUSY_DELAY);
135         }
136
137         ERROR(rt2x00dev, "Indirect register access failed: "
138               "offset=0x%.08x, value=0x%.08x\n", offset, *reg);
139         *reg = ~0;
140
141         return 0;
142 }
143
144 #define WAIT_FOR_BBP(__dev, __reg) \
145         rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg))
146 #define WAIT_FOR_RF(__dev, __reg) \
147         rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg))
148
149 static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
150                                 const unsigned int word, const u8 value)
151 {
152         u16 reg;
153
154         mutex_lock(&rt2x00dev->csr_mutex);
155
156         /*
157          * Wait until the BBP becomes available, afterwards we
158          * can safely write the new data into the register.
159          */
160         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
161                 reg = 0;
162                 rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
163                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
164                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
165
166                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
167         }
168
169         mutex_unlock(&rt2x00dev->csr_mutex);
170 }
171
172 static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
173                                const unsigned int word, u8 *value)
174 {
175         u16 reg;
176
177         mutex_lock(&rt2x00dev->csr_mutex);
178
179         /*
180          * Wait until the BBP becomes available, afterwards we
181          * can safely write the read request into the register.
182          * After the data has been written, we wait until hardware
183          * returns the correct value, if at any time the register
184          * doesn't become available in time, reg will be 0xffffffff
185          * which means we return 0xff to the caller.
186          */
187         if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
188                 reg = 0;
189                 rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
190                 rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
191
192                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
193
194                 if (WAIT_FOR_BBP(rt2x00dev, &reg))
195                         rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
196         }
197
198         *value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
199
200         mutex_unlock(&rt2x00dev->csr_mutex);
201 }
202
203 static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
204                                const unsigned int word, const u32 value)
205 {
206         u16 reg;
207
208         mutex_lock(&rt2x00dev->csr_mutex);
209
210         /*
211          * Wait until the RF becomes available, afterwards we
212          * can safely write the new data into the register.
213          */
214         if (WAIT_FOR_RF(rt2x00dev, &reg)) {
215                 reg = 0;
216                 rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
217                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
218
219                 reg = 0;
220                 rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
221                 rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
222                 rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
223                 rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
224
225                 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
226                 rt2x00_rf_write(rt2x00dev, word, value);
227         }
228
229         mutex_unlock(&rt2x00dev->csr_mutex);
230 }
231
232 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
233 static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
234                                      const unsigned int offset,
235                                      u32 *value)
236 {
237         rt2500usb_register_read(rt2x00dev, offset, (u16 *)value);
238 }
239
240 static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
241                                       const unsigned int offset,
242                                       u32 value)
243 {
244         rt2500usb_register_write(rt2x00dev, offset, value);
245 }
246
247 static const struct rt2x00debug rt2500usb_rt2x00debug = {
248         .owner  = THIS_MODULE,
249         .csr    = {
250                 .read           = _rt2500usb_register_read,
251                 .write          = _rt2500usb_register_write,
252                 .flags          = RT2X00DEBUGFS_OFFSET,
253                 .word_base      = CSR_REG_BASE,
254                 .word_size      = sizeof(u16),
255                 .word_count     = CSR_REG_SIZE / sizeof(u16),
256         },
257         .eeprom = {
258                 .read           = rt2x00_eeprom_read,
259                 .write          = rt2x00_eeprom_write,
260                 .word_base      = EEPROM_BASE,
261                 .word_size      = sizeof(u16),
262                 .word_count     = EEPROM_SIZE / sizeof(u16),
263         },
264         .bbp    = {
265                 .read           = rt2500usb_bbp_read,
266                 .write          = rt2500usb_bbp_write,
267                 .word_base      = BBP_BASE,
268                 .word_size      = sizeof(u8),
269                 .word_count     = BBP_SIZE / sizeof(u8),
270         },
271         .rf     = {
272                 .read           = rt2x00_rf_read,
273                 .write          = rt2500usb_rf_write,
274                 .word_base      = RF_BASE,
275                 .word_size      = sizeof(u32),
276                 .word_count     = RF_SIZE / sizeof(u32),
277         },
278 };
279 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
280
281 static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
282 {
283         u16 reg;
284
285         rt2500usb_register_read(rt2x00dev, MAC_CSR19, &reg);
286         return rt2x00_get_field32(reg, MAC_CSR19_BIT7);
287 }
288
289 #ifdef CONFIG_RT2X00_LIB_LEDS
290 static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
291                                      enum led_brightness brightness)
292 {
293         struct rt2x00_led *led =
294             container_of(led_cdev, struct rt2x00_led, led_dev);
295         unsigned int enabled = brightness != LED_OFF;
296         u16 reg;
297
298         rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
299
300         if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
301                 rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
302         else if (led->type == LED_TYPE_ACTIVITY)
303                 rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
304
305         rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
306 }
307
308 static int rt2500usb_blink_set(struct led_classdev *led_cdev,
309                                unsigned long *delay_on,
310                                unsigned long *delay_off)
311 {
312         struct rt2x00_led *led =
313             container_of(led_cdev, struct rt2x00_led, led_dev);
314         u16 reg;
315
316         rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
317         rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
318         rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
319         rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
320
321         return 0;
322 }
323
324 static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
325                                struct rt2x00_led *led,
326                                enum led_type type)
327 {
328         led->rt2x00dev = rt2x00dev;
329         led->type = type;
330         led->led_dev.brightness_set = rt2500usb_brightness_set;
331         led->led_dev.blink_set = rt2500usb_blink_set;
332         led->flags = LED_INITIALIZED;
333 }
334 #endif /* CONFIG_RT2X00_LIB_LEDS */
335
336 /*
337  * Configuration handlers.
338  */
339
340 /*
341  * rt2500usb does not differentiate between shared and pairwise
342  * keys, so we should use the same function for both key types.
343  */
344 static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev,
345                                 struct rt2x00lib_crypto *crypto,
346                                 struct ieee80211_key_conf *key)
347 {
348         u32 mask;
349         u16 reg;
350         enum cipher curr_cipher;
351
352         if (crypto->cmd == SET_KEY) {
353                 /*
354                  * Pairwise key will always be entry 0, but this
355                  * could collide with a shared key on the same
356                  * position...
357                  */
358                 mask = TXRX_CSR0_KEY_ID.bit_mask;
359
360                 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
361                 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM);
362                 reg &= mask;
363
364                 if (reg && reg == mask)
365                         return -ENOSPC;
366
367                 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
368
369                 key->hw_key_idx += reg ? ffz(reg) : 0;
370                 /*
371                  * Hardware requires that all keys use the same cipher
372                  * (e.g. TKIP-only, AES-only, but not TKIP+AES).
373                  * If this is not the first key, compare the cipher with the
374                  * first one and fall back to SW crypto if not the same.
375                  */
376                 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher)
377                         return -EOPNOTSUPP;
378
379                 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx),
380                                               crypto->key, sizeof(crypto->key));
381
382                 /*
383                  * The driver does not support the IV/EIV generation
384                  * in hardware. However it demands the data to be provided
385                  * both separately as well as inside the frame.
386                  * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib
387                  * to ensure rt2x00lib will not strip the data from the
388                  * frame after the copy, now we must tell mac80211
389                  * to generate the IV/EIV data.
390                  */
391                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
392                 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
393         }
394
395         /*
396          * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate
397          * a particular key is valid.
398          */
399         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
400         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, crypto->cipher);
401         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
402
403         mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID);
404         if (crypto->cmd == SET_KEY)
405                 mask |= 1 << key->hw_key_idx;
406         else if (crypto->cmd == DISABLE_KEY)
407                 mask &= ~(1 << key->hw_key_idx);
408         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, mask);
409         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
410
411         return 0;
412 }
413
414 static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
415                                     const unsigned int filter_flags)
416 {
417         u16 reg;
418
419         /*
420          * Start configuration steps.
421          * Note that the version error will always be dropped
422          * and broadcast frames will always be accepted since
423          * there is no filter for it at this time.
424          */
425         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
426         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
427                            !(filter_flags & FIF_FCSFAIL));
428         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
429                            !(filter_flags & FIF_PLCPFAIL));
430         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
431                            !(filter_flags & FIF_CONTROL));
432         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
433                            !(filter_flags & FIF_PROMISC_IN_BSS));
434         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
435                            !(filter_flags & FIF_PROMISC_IN_BSS) &&
436                            !rt2x00dev->intf_ap_count);
437         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
438         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
439                            !(filter_flags & FIF_ALLMULTI));
440         rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
441         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
442 }
443
444 static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
445                                   struct rt2x00_intf *intf,
446                                   struct rt2x00intf_conf *conf,
447                                   const unsigned int flags)
448 {
449         unsigned int bcn_preload;
450         u16 reg;
451
452         if (flags & CONFIG_UPDATE_TYPE) {
453                 /*
454                  * Enable beacon config
455                  */
456                 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
457                 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
458                 rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
459                 rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
460                                    2 * (conf->type != NL80211_IFTYPE_STATION));
461                 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
462
463                 /*
464                  * Enable synchronisation.
465                  */
466                 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
467                 rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
468                 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
469
470                 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
471                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
472                 rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
473                 rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
474                 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
475         }
476
477         if (flags & CONFIG_UPDATE_MAC)
478                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
479                                               (3 * sizeof(__le16)));
480
481         if (flags & CONFIG_UPDATE_BSSID)
482                 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
483                                               (3 * sizeof(__le16)));
484 }
485
486 static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
487                                  struct rt2x00lib_erp *erp)
488 {
489         u16 reg;
490
491         rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
492         rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
493                            !!erp->short_preamble);
494         rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
495
496         rt2500usb_register_write(rt2x00dev, TXRX_CSR11, erp->basic_rates);
497
498         rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
499         rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL, erp->beacon_int * 4);
500         rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
501
502         rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time);
503         rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs);
504         rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs);
505 }
506
507 static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev,
508                                  struct antenna_setup *ant)
509 {
510         u8 r2;
511         u8 r14;
512         u16 csr5;
513         u16 csr6;
514
515         /*
516          * We should never come here because rt2x00lib is supposed
517          * to catch this and send us the correct antenna explicitely.
518          */
519         BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
520                ant->tx == ANTENNA_SW_DIVERSITY);
521
522         rt2500usb_bbp_read(rt2x00dev, 2, &r2);
523         rt2500usb_bbp_read(rt2x00dev, 14, &r14);
524         rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
525         rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
526
527         /*
528          * Configure the TX antenna.
529          */
530         switch (ant->tx) {
531         case ANTENNA_HW_DIVERSITY:
532                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
533                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
534                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
535                 break;
536         case ANTENNA_A:
537                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
538                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
539                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
540                 break;
541         case ANTENNA_B:
542         default:
543                 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
544                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
545                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
546                 break;
547         }
548
549         /*
550          * Configure the RX antenna.
551          */
552         switch (ant->rx) {
553         case ANTENNA_HW_DIVERSITY:
554                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
555                 break;
556         case ANTENNA_A:
557                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
558                 break;
559         case ANTENNA_B:
560         default:
561                 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
562                 break;
563         }
564
565         /*
566          * RT2525E and RT5222 need to flip TX I/Q
567          */
568         if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
569                 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
570                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
571                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
572
573                 /*
574                  * RT2525E does not need RX I/Q Flip.
575                  */
576                 if (rt2x00_rf(rt2x00dev, RF2525E))
577                         rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
578         } else {
579                 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
580                 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
581         }
582
583         rt2500usb_bbp_write(rt2x00dev, 2, r2);
584         rt2500usb_bbp_write(rt2x00dev, 14, r14);
585         rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
586         rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
587 }
588
589 static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
590                                      struct rf_channel *rf, const int txpower)
591 {
592         /*
593          * Set TXpower.
594          */
595         rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
596
597         /*
598          * For RT2525E we should first set the channel to half band higher.
599          */
600         if (rt2x00_rf(rt2x00dev, RF2525E)) {
601                 static const u32 vals[] = {
602                         0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
603                         0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
604                         0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
605                         0x00000902, 0x00000906
606                 };
607
608                 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
609                 if (rf->rf4)
610                         rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
611         }
612
613         rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
614         rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
615         rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
616         if (rf->rf4)
617                 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
618 }
619
620 static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
621                                      const int txpower)
622 {
623         u32 rf3;
624
625         rt2x00_rf_read(rt2x00dev, 3, &rf3);
626         rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
627         rt2500usb_rf_write(rt2x00dev, 3, rf3);
628 }
629
630 static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev,
631                                 struct rt2x00lib_conf *libconf)
632 {
633         enum dev_state state =
634             (libconf->conf->flags & IEEE80211_CONF_PS) ?
635                 STATE_SLEEP : STATE_AWAKE;
636         u16 reg;
637
638         if (state == STATE_SLEEP) {
639                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
640                 rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON,
641                                    rt2x00dev->beacon_int - 20);
642                 rt2x00_set_field16(&reg, MAC_CSR18_BEACONS_BEFORE_WAKEUP,
643                                    libconf->conf->listen_interval - 1);
644
645                 /* We must first disable autowake before it can be enabled */
646                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
647                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
648
649                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 1);
650                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
651         } else {
652                 rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
653                 rt2x00_set_field16(&reg, MAC_CSR18_AUTO_WAKE, 0);
654                 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
655         }
656
657         rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
658 }
659
660 static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
661                              struct rt2x00lib_conf *libconf,
662                              const unsigned int flags)
663 {
664         if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
665                 rt2500usb_config_channel(rt2x00dev, &libconf->rf,
666                                          libconf->conf->power_level);
667         if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
668             !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
669                 rt2500usb_config_txpower(rt2x00dev,
670                                          libconf->conf->power_level);
671         if (flags & IEEE80211_CONF_CHANGE_PS)
672                 rt2500usb_config_ps(rt2x00dev, libconf);
673 }
674
675 /*
676  * Link tuning
677  */
678 static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
679                                  struct link_qual *qual)
680 {
681         u16 reg;
682
683         /*
684          * Update FCS error count from register.
685          */
686         rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
687         qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
688
689         /*
690          * Update False CCA count from register.
691          */
692         rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
693         qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
694 }
695
696 static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
697                                   struct link_qual *qual)
698 {
699         u16 eeprom;
700         u16 value;
701
702         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
703         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
704         rt2500usb_bbp_write(rt2x00dev, 24, value);
705
706         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
707         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
708         rt2500usb_bbp_write(rt2x00dev, 25, value);
709
710         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
711         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
712         rt2500usb_bbp_write(rt2x00dev, 61, value);
713
714         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
715         value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
716         rt2500usb_bbp_write(rt2x00dev, 17, value);
717
718         qual->vgc_level = value;
719 }
720
721 /*
722  * Initialization functions.
723  */
724 static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
725 {
726         u16 reg;
727
728         rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
729                                     USB_MODE_TEST, REGISTER_TIMEOUT);
730         rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
731                                     0x00f0, REGISTER_TIMEOUT);
732
733         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
734         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
735         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
736
737         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
738         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
739
740         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
741         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
742         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
743         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
744         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
745
746         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
747         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
748         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
749         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
750         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
751
752         rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
753         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
754         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
755         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
756         rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
757         rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
758
759         rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
760         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
761         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
762         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
763         rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
764         rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
765
766         rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
767         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
768         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
769         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
770         rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
771         rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
772
773         rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
774         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
775         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
776         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
777         rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
778         rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
779
780         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
781         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
782         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
783         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
784         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
785         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
786
787         rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
788         rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
789
790         if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
791                 return -EBUSY;
792
793         rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
794         rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
795         rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
796         rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
797         rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
798
799         if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) {
800                 rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
801                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
802         } else {
803                 reg = 0;
804                 rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
805                 rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
806         }
807         rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
808
809         rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
810         rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
811         rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
812         rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
813
814         rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
815         rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
816                            rt2x00dev->rx->data_size);
817         rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
818
819         rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
820         rt2x00_set_field16(&reg, TXRX_CSR0_ALGORITHM, CIPHER_NONE);
821         rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
822         rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0);
823         rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
824
825         rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
826         rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
827         rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
828
829         rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
830         rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
831         rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
832
833         rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
834         rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
835         rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
836
837         return 0;
838 }
839
840 static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
841 {
842         unsigned int i;
843         u8 value;
844
845         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
846                 rt2500usb_bbp_read(rt2x00dev, 0, &value);
847                 if ((value != 0xff) && (value != 0x00))
848                         return 0;
849                 udelay(REGISTER_BUSY_DELAY);
850         }
851
852         ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
853         return -EACCES;
854 }
855
856 static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
857 {
858         unsigned int i;
859         u16 eeprom;
860         u8 value;
861         u8 reg_id;
862
863         if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
864                 return -EACCES;
865
866         rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
867         rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
868         rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
869         rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
870         rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
871         rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
872         rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
873         rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
874         rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
875         rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
876         rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
877         rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
878         rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
879         rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
880         rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
881         rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
882         rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
883         rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
884         rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
885         rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
886         rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
887         rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
888         rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
889         rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
890         rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
891         rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
892         rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
893         rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
894         rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
895         rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
896         rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
897
898         for (i = 0; i < EEPROM_BBP_SIZE; i++) {
899                 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
900
901                 if (eeprom != 0xffff && eeprom != 0x0000) {
902                         reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
903                         value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
904                         rt2500usb_bbp_write(rt2x00dev, reg_id, value);
905                 }
906         }
907
908         return 0;
909 }
910
911 /*
912  * Device state switch handlers.
913  */
914 static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
915                                 enum dev_state state)
916 {
917         u16 reg;
918
919         rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
920         rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
921                            (state == STATE_RADIO_RX_OFF) ||
922                            (state == STATE_RADIO_RX_OFF_LINK));
923         rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
924 }
925
926 static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
927 {
928         /*
929          * Initialize all registers.
930          */
931         if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
932                      rt2500usb_init_bbp(rt2x00dev)))
933                 return -EIO;
934
935         return 0;
936 }
937
938 static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
939 {
940         rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
941         rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
942
943         /*
944          * Disable synchronisation.
945          */
946         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
947
948         rt2x00usb_disable_radio(rt2x00dev);
949 }
950
951 static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
952                                enum dev_state state)
953 {
954         u16 reg;
955         u16 reg2;
956         unsigned int i;
957         char put_to_sleep;
958         char bbp_state;
959         char rf_state;
960
961         put_to_sleep = (state != STATE_AWAKE);
962
963         reg = 0;
964         rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
965         rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
966         rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
967         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
968         rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
969         rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
970
971         /*
972          * Device is not guaranteed to be in the requested state yet.
973          * We must wait until the register indicates that the
974          * device has entered the correct state.
975          */
976         for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
977                 rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
978                 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
979                 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
980                 if (bbp_state == state && rf_state == state)
981                         return 0;
982                 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
983                 msleep(30);
984         }
985
986         return -EBUSY;
987 }
988
989 static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
990                                       enum dev_state state)
991 {
992         int retval = 0;
993
994         switch (state) {
995         case STATE_RADIO_ON:
996                 retval = rt2500usb_enable_radio(rt2x00dev);
997                 break;
998         case STATE_RADIO_OFF:
999                 rt2500usb_disable_radio(rt2x00dev);
1000                 break;
1001         case STATE_RADIO_RX_ON:
1002         case STATE_RADIO_RX_ON_LINK:
1003         case STATE_RADIO_RX_OFF:
1004         case STATE_RADIO_RX_OFF_LINK:
1005                 rt2500usb_toggle_rx(rt2x00dev, state);
1006                 break;
1007         case STATE_RADIO_IRQ_ON:
1008         case STATE_RADIO_IRQ_ON_ISR:
1009         case STATE_RADIO_IRQ_OFF:
1010         case STATE_RADIO_IRQ_OFF_ISR:
1011                 /* No support, but no error either */
1012                 break;
1013         case STATE_DEEP_SLEEP:
1014         case STATE_SLEEP:
1015         case STATE_STANDBY:
1016         case STATE_AWAKE:
1017                 retval = rt2500usb_set_state(rt2x00dev, state);
1018                 break;
1019         default:
1020                 retval = -ENOTSUPP;
1021                 break;
1022         }
1023
1024         if (unlikely(retval))
1025                 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1026                       state, retval);
1027
1028         return retval;
1029 }
1030
1031 /*
1032  * TX descriptor initialization
1033  */
1034 static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1035                                     struct sk_buff *skb,
1036                                     struct txentry_desc *txdesc)
1037 {
1038         struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
1039         __le32 *txd = (__le32 *) skb->data;
1040         u32 word;
1041
1042         /*
1043          * Start writing the descriptor words.
1044          */
1045         rt2x00_desc_read(txd, 0, &word);
1046         rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
1047         rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1048                            test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1049         rt2x00_set_field32(&word, TXD_W0_ACK,
1050                            test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1051         rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1052                            test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1053         rt2x00_set_field32(&word, TXD_W0_OFDM,
1054                            (txdesc->rate_mode == RATE_MODE_OFDM));
1055         rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
1056                            test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
1057         rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
1058         rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1059         rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher);
1060         rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx);
1061         rt2x00_desc_write(txd, 0, word);
1062
1063         rt2x00_desc_read(txd, 1, &word);
1064         rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1065         rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
1066         rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
1067         rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
1068         rt2x00_desc_write(txd, 1, word);
1069
1070         rt2x00_desc_read(txd, 2, &word);
1071         rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
1072         rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
1073         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
1074         rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
1075         rt2x00_desc_write(txd, 2, word);
1076
1077         if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1078                 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1079                 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1080         }
1081
1082         /*
1083          * Register descriptor details in skb frame descriptor.
1084          */
1085         skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1086         skbdesc->desc = txd;
1087         skbdesc->desc_len = TXD_DESC_SIZE;
1088 }
1089
1090 /*
1091  * TX data initialization
1092  */
1093 static void rt2500usb_beacondone(struct urb *urb);
1094
1095 static void rt2500usb_write_beacon(struct queue_entry *entry,
1096                                    struct txentry_desc *txdesc)
1097 {
1098         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1099         struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
1100         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1101         int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint);
1102         int length;
1103         u16 reg, reg0;
1104
1105         /*
1106          * Disable beaconing while we are reloading the beacon data,
1107          * otherwise we might be sending out invalid data.
1108          */
1109         rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
1110         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
1111         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1112
1113         /*
1114          * Add space for the descriptor in front of the skb.
1115          */
1116         skb_push(entry->skb, TXD_DESC_SIZE);
1117         memset(entry->skb->data, 0, TXD_DESC_SIZE);
1118
1119         /*
1120          * Write the TX descriptor for the beacon.
1121          */
1122         rt2500usb_write_tx_desc(rt2x00dev, entry->skb, txdesc);
1123
1124         /*
1125          * Dump beacon to userspace through debugfs.
1126          */
1127         rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1128
1129         /*
1130          * USB devices cannot blindly pass the skb->len as the
1131          * length of the data to usb_fill_bulk_urb. Pass the skb
1132          * to the driver to determine what the length should be.
1133          */
1134         length = rt2x00dev->ops->lib->get_tx_data_len(entry);
1135
1136         usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
1137                           entry->skb->data, length, rt2500usb_beacondone,
1138                           entry);
1139
1140         /*
1141          * Second we need to create the guardian byte.
1142          * We only need a single byte, so lets recycle
1143          * the 'flags' field we are not using for beacons.
1144          */
1145         bcn_priv->guardian_data = 0;
1146         usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
1147                           &bcn_priv->guardian_data, 1, rt2500usb_beacondone,
1148                           entry);
1149
1150         /*
1151          * Send out the guardian byte.
1152          */
1153         usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
1154
1155         /*
1156          * Enable beaconing again.
1157          */
1158         rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
1159         rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
1160         reg0 = reg;
1161         rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
1162         /*
1163          * Beacon generation will fail initially.
1164          * To prevent this we need to change the TXRX_CSR19
1165          * register several times (reg0 is the same as reg
1166          * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0
1167          * and 1 in reg).
1168          */
1169         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1170         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1171         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1172         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0);
1173         rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
1174 }
1175
1176 static int rt2500usb_get_tx_data_len(struct queue_entry *entry)
1177 {
1178         int length;
1179
1180         /*
1181          * The length _must_ be a multiple of 2,
1182          * but it must _not_ be a multiple of the USB packet size.
1183          */
1184         length = roundup(entry->skb->len, 2);
1185         length += (2 * !(length % entry->queue->usb_maxpacket));
1186
1187         return length;
1188 }
1189
1190 /*
1191  * RX control handlers
1192  */
1193 static void rt2500usb_fill_rxdone(struct queue_entry *entry,
1194                                   struct rxdone_entry_desc *rxdesc)
1195 {
1196         struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1197         struct queue_entry_priv_usb *entry_priv = entry->priv_data;
1198         struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1199         __le32 *rxd =
1200             (__le32 *)(entry->skb->data +
1201                        (entry_priv->urb->actual_length -
1202                         entry->queue->desc_size));
1203         u32 word0;
1204         u32 word1;
1205
1206         /*
1207          * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1208          * frame data in rt2x00usb.
1209          */
1210         memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1211         rxd = (__le32 *)skbdesc->desc;
1212
1213         /*
1214          * It is now safe to read the descriptor on all architectures.
1215          */
1216         rt2x00_desc_read(rxd, 0, &word0);
1217         rt2x00_desc_read(rxd, 1, &word1);
1218
1219         if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1220                 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1221         if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1222                 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1223
1224         rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER);
1225         if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR))
1226                 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY;
1227
1228         if (rxdesc->cipher != CIPHER_NONE) {
1229                 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1230                 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1231                 rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1232
1233                 /* ICV is located at the end of frame */
1234
1235                 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1236                 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1237                         rxdesc->flags |= RX_FLAG_DECRYPTED;
1238                 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1239                         rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1240         }
1241
1242         /*
1243          * Obtain the status about this packet.
1244          * When frame was received with an OFDM bitrate,
1245          * the signal is the PLCP value. If it was received with
1246          * a CCK bitrate the signal is the rate in 100kbit/s.
1247          */
1248         rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1249         rxdesc->rssi =
1250             rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset;
1251         rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1252
1253         if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1254                 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1255         else
1256                 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1257         if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1258                 rxdesc->dev_flags |= RXDONE_MY_BSS;
1259
1260         /*
1261          * Adjust the skb memory window to the frame boundaries.
1262          */
1263         skb_trim(entry->skb, rxdesc->size);
1264 }
1265
1266 /*
1267  * Interrupt functions.
1268  */
1269 static void rt2500usb_beacondone(struct urb *urb)
1270 {
1271         struct queue_entry *entry = (struct queue_entry *)urb->context;
1272         struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
1273
1274         if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
1275                 return;
1276
1277         /*
1278          * Check if this was the guardian beacon,
1279          * if that was the case we need to send the real beacon now.
1280          * Otherwise we should free the sk_buffer, the device
1281          * should be doing the rest of the work now.
1282          */
1283         if (bcn_priv->guardian_urb == urb) {
1284                 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
1285         } else if (bcn_priv->urb == urb) {
1286                 dev_kfree_skb(entry->skb);
1287                 entry->skb = NULL;
1288         }
1289 }
1290
1291 /*
1292  * Device probe functions.
1293  */
1294 static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1295 {
1296         u16 word;
1297         u8 *mac;
1298         u8 bbp;
1299
1300         rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1301
1302         /*
1303          * Start validation of the data that has been read.
1304          */
1305         mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1306         if (!is_valid_ether_addr(mac)) {
1307                 random_ether_addr(mac);
1308                 EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1309         }
1310
1311         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1312         if (word == 0xffff) {
1313                 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1314                 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1315                                    ANTENNA_SW_DIVERSITY);
1316                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1317                                    ANTENNA_SW_DIVERSITY);
1318                 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1319                                    LED_MODE_DEFAULT);
1320                 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1321                 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1322                 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1323                 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1324                 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1325         }
1326
1327         rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1328         if (word == 0xffff) {
1329                 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1330                 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1331                 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1332                 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1333                 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1334         }
1335
1336         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1337         if (word == 0xffff) {
1338                 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1339                                    DEFAULT_RSSI_OFFSET);
1340                 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1341                 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1342         }
1343
1344         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
1345         if (word == 0xffff) {
1346                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
1347                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
1348                 EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
1349         }
1350
1351         /*
1352          * Switch lower vgc bound to current BBP R17 value,
1353          * lower the value a bit for better quality.
1354          */
1355         rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
1356         bbp -= 6;
1357
1358         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
1359         if (word == 0xffff) {
1360                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
1361                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1362                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1363                 EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
1364         } else {
1365                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
1366                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
1367         }
1368
1369         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
1370         if (word == 0xffff) {
1371                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
1372                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
1373                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
1374                 EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
1375         }
1376
1377         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
1378         if (word == 0xffff) {
1379                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
1380                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
1381                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
1382                 EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
1383         }
1384
1385         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
1386         if (word == 0xffff) {
1387                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
1388                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
1389                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
1390                 EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
1391         }
1392
1393         rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
1394         if (word == 0xffff) {
1395                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
1396                 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
1397                 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
1398                 EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
1399         }
1400
1401         return 0;
1402 }
1403
1404 static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1405 {
1406         u16 reg;
1407         u16 value;
1408         u16 eeprom;
1409
1410         /*
1411          * Read EEPROM word for configuration.
1412          */
1413         rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1414
1415         /*
1416          * Identify RF chipset.
1417          */
1418         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1419         rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1420         rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
1421
1422         if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) {
1423                 ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
1424                 return -ENODEV;
1425         }
1426
1427         if (!rt2x00_rf(rt2x00dev, RF2522) &&
1428             !rt2x00_rf(rt2x00dev, RF2523) &&
1429             !rt2x00_rf(rt2x00dev, RF2524) &&
1430             !rt2x00_rf(rt2x00dev, RF2525) &&
1431             !rt2x00_rf(rt2x00dev, RF2525E) &&
1432             !rt2x00_rf(rt2x00dev, RF5222)) {
1433                 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1434                 return -ENODEV;
1435         }
1436
1437         /*
1438          * Identify default antenna configuration.
1439          */
1440         rt2x00dev->default_ant.tx =
1441             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1442         rt2x00dev->default_ant.rx =
1443             rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1444
1445         /*
1446          * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
1447          * I am not 100% sure about this, but the legacy drivers do not
1448          * indicate antenna swapping in software is required when
1449          * diversity is enabled.
1450          */
1451         if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
1452                 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
1453         if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
1454                 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
1455
1456         /*
1457          * Store led mode, for correct led behaviour.
1458          */
1459 #ifdef CONFIG_RT2X00_LIB_LEDS
1460         value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1461
1462         rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1463         if (value == LED_MODE_TXRX_ACTIVITY ||
1464             value == LED_MODE_DEFAULT ||
1465             value == LED_MODE_ASUS)
1466                 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1467                                    LED_TYPE_ACTIVITY);
1468 #endif /* CONFIG_RT2X00_LIB_LEDS */
1469
1470         /*
1471          * Detect if this device has an hardware controlled radio.
1472          */
1473         if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1474                 __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1475
1476         /*
1477          * Read the RSSI <-> dBm offset information.
1478          */
1479         rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1480         rt2x00dev->rssi_offset =
1481             rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1482
1483         return 0;
1484 }
1485
1486 /*
1487  * RF value list for RF2522
1488  * Supports: 2.4 GHz
1489  */
1490 static const struct rf_channel rf_vals_bg_2522[] = {
1491         { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1492         { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1493         { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1494         { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1495         { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1496         { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1497         { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1498         { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1499         { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1500         { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1501         { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1502         { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1503         { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1504         { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1505 };
1506
1507 /*
1508  * RF value list for RF2523
1509  * Supports: 2.4 GHz
1510  */
1511 static const struct rf_channel rf_vals_bg_2523[] = {
1512         { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1513         { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1514         { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1515         { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1516         { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1517         { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1518         { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1519         { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1520         { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1521         { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1522         { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1523         { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1524         { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1525         { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1526 };
1527
1528 /*
1529  * RF value list for RF2524
1530  * Supports: 2.4 GHz
1531  */
1532 static const struct rf_channel rf_vals_bg_2524[] = {
1533         { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1534         { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1535         { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1536         { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1537         { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1538         { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1539         { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1540         { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1541         { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1542         { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1543         { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1544         { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1545         { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1546         { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1547 };
1548
1549 /*
1550  * RF value list for RF2525
1551  * Supports: 2.4 GHz
1552  */
1553 static const struct rf_channel rf_vals_bg_2525[] = {
1554         { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1555         { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1556         { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1557         { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1558         { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1559         { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1560         { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1561         { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1562         { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1563         { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1564         { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1565         { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1566         { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1567         { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1568 };
1569
1570 /*
1571  * RF value list for RF2525e
1572  * Supports: 2.4 GHz
1573  */
1574 static const struct rf_channel rf_vals_bg_2525e[] = {
1575         { 1,  0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
1576         { 2,  0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
1577         { 3,  0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
1578         { 4,  0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
1579         { 5,  0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
1580         { 6,  0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
1581         { 7,  0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
1582         { 8,  0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
1583         { 9,  0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
1584         { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
1585         { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
1586         { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
1587         { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
1588         { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
1589 };
1590
1591 /*
1592  * RF value list for RF5222
1593  * Supports: 2.4 GHz & 5.2 GHz
1594  */
1595 static const struct rf_channel rf_vals_5222[] = {
1596         { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1597         { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1598         { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1599         { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1600         { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1601         { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1602         { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1603         { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1604         { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1605         { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1606         { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1607         { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1608         { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1609         { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1610
1611         /* 802.11 UNI / HyperLan 2 */
1612         { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1613         { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1614         { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1615         { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1616         { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1617         { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1618         { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1619         { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1620
1621         /* 802.11 HyperLan 2 */
1622         { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1623         { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1624         { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1625         { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1626         { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1627         { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1628         { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1629         { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1630         { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1631         { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1632
1633         /* 802.11 UNII */
1634         { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1635         { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1636         { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1637         { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1638         { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1639 };
1640
1641 static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1642 {
1643         struct hw_mode_spec *spec = &rt2x00dev->spec;
1644         struct channel_info *info;
1645         char *tx_power;
1646         unsigned int i;
1647
1648         /*
1649          * Initialize all hw fields.
1650          */
1651         rt2x00dev->hw->flags =
1652             IEEE80211_HW_RX_INCLUDES_FCS |
1653             IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1654             IEEE80211_HW_SIGNAL_DBM |
1655             IEEE80211_HW_SUPPORTS_PS |
1656             IEEE80211_HW_PS_NULLFUNC_STACK;
1657
1658         SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1659         SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1660                                 rt2x00_eeprom_addr(rt2x00dev,
1661                                                    EEPROM_MAC_ADDR_0));
1662
1663         /*
1664          * Initialize hw_mode information.
1665          */
1666         spec->supported_bands = SUPPORT_BAND_2GHZ;
1667         spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1668
1669         if (rt2x00_rf(rt2x00dev, RF2522)) {
1670                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1671                 spec->channels = rf_vals_bg_2522;
1672         } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1673                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1674                 spec->channels = rf_vals_bg_2523;
1675         } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1676                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1677                 spec->channels = rf_vals_bg_2524;
1678         } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1679                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1680                 spec->channels = rf_vals_bg_2525;
1681         } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1682                 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1683                 spec->channels = rf_vals_bg_2525e;
1684         } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1685                 spec->supported_bands |= SUPPORT_BAND_5GHZ;
1686                 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1687                 spec->channels = rf_vals_5222;
1688         }
1689
1690         /*
1691          * Create channel information array
1692          */
1693         info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL);
1694         if (!info)
1695                 return -ENOMEM;
1696
1697         spec->channels_info = info;
1698
1699         tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1700         for (i = 0; i < 14; i++)
1701                 info[i].tx_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1702
1703         if (spec->num_channels > 14) {
1704                 for (i = 14; i < spec->num_channels; i++)
1705                         info[i].tx_power1 = DEFAULT_TXPOWER;
1706         }
1707
1708         return 0;
1709 }
1710
1711 static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
1712 {
1713         int retval;
1714
1715         /*
1716          * Allocate eeprom data.
1717          */
1718         retval = rt2500usb_validate_eeprom(rt2x00dev);
1719         if (retval)
1720                 return retval;
1721
1722         retval = rt2500usb_init_eeprom(rt2x00dev);
1723         if (retval)
1724                 return retval;
1725
1726         /*
1727          * Initialize hw specifications.
1728          */
1729         retval = rt2500usb_probe_hw_mode(rt2x00dev);
1730         if (retval)
1731                 return retval;
1732
1733         /*
1734          * This device requires the atim queue
1735          */
1736         __set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
1737         __set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
1738         if (!modparam_nohwcrypt) {
1739                 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1740                 __set_bit(DRIVER_REQUIRE_COPY_IV, &rt2x00dev->flags);
1741         }
1742         __set_bit(DRIVER_SUPPORT_WATCHDOG, &rt2x00dev->flags);
1743
1744         /*
1745          * Set the rssi offset.
1746          */
1747         rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1748
1749         return 0;
1750 }
1751
1752 static const struct ieee80211_ops rt2500usb_mac80211_ops = {
1753         .tx                     = rt2x00mac_tx,
1754         .start                  = rt2x00mac_start,
1755         .stop                   = rt2x00mac_stop,
1756         .add_interface          = rt2x00mac_add_interface,
1757         .remove_interface       = rt2x00mac_remove_interface,
1758         .config                 = rt2x00mac_config,
1759         .configure_filter       = rt2x00mac_configure_filter,
1760         .set_tim                = rt2x00mac_set_tim,
1761         .set_key                = rt2x00mac_set_key,
1762         .sw_scan_start          = rt2x00mac_sw_scan_start,
1763         .sw_scan_complete       = rt2x00mac_sw_scan_complete,
1764         .get_stats              = rt2x00mac_get_stats,
1765         .bss_info_changed       = rt2x00mac_bss_info_changed,
1766         .conf_tx                = rt2x00mac_conf_tx,
1767         .rfkill_poll            = rt2x00mac_rfkill_poll,
1768 };
1769
1770 static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
1771         .probe_hw               = rt2500usb_probe_hw,
1772         .initialize             = rt2x00usb_initialize,
1773         .uninitialize           = rt2x00usb_uninitialize,
1774         .clear_entry            = rt2x00usb_clear_entry,
1775         .set_device_state       = rt2500usb_set_device_state,
1776         .rfkill_poll            = rt2500usb_rfkill_poll,
1777         .link_stats             = rt2500usb_link_stats,
1778         .reset_tuner            = rt2500usb_reset_tuner,
1779         .watchdog               = rt2x00usb_watchdog,
1780         .write_tx_desc          = rt2500usb_write_tx_desc,
1781         .write_beacon           = rt2500usb_write_beacon,
1782         .get_tx_data_len        = rt2500usb_get_tx_data_len,
1783         .kick_tx_queue          = rt2x00usb_kick_tx_queue,
1784         .kill_tx_queue          = rt2x00usb_kill_tx_queue,
1785         .fill_rxdone            = rt2500usb_fill_rxdone,
1786         .config_shared_key      = rt2500usb_config_key,
1787         .config_pairwise_key    = rt2500usb_config_key,
1788         .config_filter          = rt2500usb_config_filter,
1789         .config_intf            = rt2500usb_config_intf,
1790         .config_erp             = rt2500usb_config_erp,
1791         .config_ant             = rt2500usb_config_ant,
1792         .config                 = rt2500usb_config,
1793 };
1794
1795 static const struct data_queue_desc rt2500usb_queue_rx = {
1796         .entry_num              = RX_ENTRIES,
1797         .data_size              = DATA_FRAME_SIZE,
1798         .desc_size              = RXD_DESC_SIZE,
1799         .priv_size              = sizeof(struct queue_entry_priv_usb),
1800 };
1801
1802 static const struct data_queue_desc rt2500usb_queue_tx = {
1803         .entry_num              = TX_ENTRIES,
1804         .data_size              = DATA_FRAME_SIZE,
1805         .desc_size              = TXD_DESC_SIZE,
1806         .priv_size              = sizeof(struct queue_entry_priv_usb),
1807 };
1808
1809 static const struct data_queue_desc rt2500usb_queue_bcn = {
1810         .entry_num              = BEACON_ENTRIES,
1811         .data_size              = MGMT_FRAME_SIZE,
1812         .desc_size              = TXD_DESC_SIZE,
1813         .priv_size              = sizeof(struct queue_entry_priv_usb_bcn),
1814 };
1815
1816 static const struct data_queue_desc rt2500usb_queue_atim = {
1817         .entry_num              = ATIM_ENTRIES,
1818         .data_size              = DATA_FRAME_SIZE,
1819         .desc_size              = TXD_DESC_SIZE,
1820         .priv_size              = sizeof(struct queue_entry_priv_usb),
1821 };
1822
1823 static const struct rt2x00_ops rt2500usb_ops = {
1824         .name                   = KBUILD_MODNAME,
1825         .max_sta_intf           = 1,
1826         .max_ap_intf            = 1,
1827         .eeprom_size            = EEPROM_SIZE,
1828         .rf_size                = RF_SIZE,
1829         .tx_queues              = NUM_TX_QUEUES,
1830         .extra_tx_headroom      = TXD_DESC_SIZE,
1831         .rx                     = &rt2500usb_queue_rx,
1832         .tx                     = &rt2500usb_queue_tx,
1833         .bcn                    = &rt2500usb_queue_bcn,
1834         .atim                   = &rt2500usb_queue_atim,
1835         .lib                    = &rt2500usb_rt2x00_ops,
1836         .hw                     = &rt2500usb_mac80211_ops,
1837 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1838         .debugfs                = &rt2500usb_rt2x00debug,
1839 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1840 };
1841
1842 /*
1843  * rt2500usb module information.
1844  */
1845 static struct usb_device_id rt2500usb_device_table[] = {
1846         /* ASUS */
1847         { USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1848         { USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
1849         /* Belkin */
1850         { USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
1851         { USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
1852         { USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
1853         /* Cisco Systems */
1854         { USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
1855         { USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
1856         { USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
1857         /* CNet */
1858         { USB_DEVICE(0x1371, 0x9022), USB_DEVICE_DATA(&rt2500usb_ops) },
1859         /* Conceptronic */
1860         { USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
1861         /* D-LINK */
1862         { USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
1863         /* Gigabyte */
1864         { USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
1865         { USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
1866         /* Hercules */
1867         { USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
1868         /* Melco */
1869         { USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
1870         { USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
1871         { USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
1872         { USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
1873         { USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
1874         /* MSI */
1875         { USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
1876         { USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
1877         { USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
1878         /* Ralink */
1879         { USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
1880         { USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
1881         { USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
1882         { USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1883         /* Sagem */
1884         { USB_DEVICE(0x079b, 0x004b), USB_DEVICE_DATA(&rt2500usb_ops) },
1885         /* Siemens */
1886         { USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
1887         /* SMC */
1888         { USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
1889         /* Spairon */
1890         { USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
1891         /* SURECOM */
1892         { USB_DEVICE(0x0769, 0x11f3), USB_DEVICE_DATA(&rt2500usb_ops) },
1893         /* Trust */
1894         { USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
1895         /* VTech */
1896         { USB_DEVICE(0x0f88, 0x3012), USB_DEVICE_DATA(&rt2500usb_ops) },
1897         /* Zinwell */
1898         { USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
1899         { 0, }
1900 };
1901
1902 MODULE_AUTHOR(DRV_PROJECT);
1903 MODULE_VERSION(DRV_VERSION);
1904 MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
1905 MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
1906 MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
1907 MODULE_LICENSE("GPL");
1908
1909 static struct usb_driver rt2500usb_driver = {
1910         .name           = KBUILD_MODNAME,
1911         .id_table       = rt2500usb_device_table,
1912         .probe          = rt2x00usb_probe,
1913         .disconnect     = rt2x00usb_disconnect,
1914         .suspend        = rt2x00usb_suspend,
1915         .resume         = rt2x00usb_resume,
1916 };
1917
1918 static int __init rt2500usb_init(void)
1919 {
1920         return usb_register(&rt2500usb_driver);
1921 }
1922
1923 static void __exit rt2500usb_exit(void)
1924 {
1925         usb_deregister(&rt2500usb_driver);
1926 }
1927
1928 module_init(rt2500usb_init);
1929 module_exit(rt2500usb_exit);