]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/wireless/ath/ath9k/hw.c
2f83f975b89185871720137ad97e47bcc02e50e5
[net-next-2.6.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32
33 static int __init ath9k_init(void)
34 {
35         return 0;
36 }
37 module_init(ath9k_init);
38
39 static void __exit ath9k_exit(void)
40 {
41         return;
42 }
43 module_exit(ath9k_exit);
44
45 /* Private hardware callbacks */
46
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49         ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54         ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58 {
59         struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60
61         return priv_ops->macversion_supported(ah->hw_version.macVersion);
62 }
63
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65                                         struct ath9k_channel *chan)
66 {
67         return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68 }
69
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71 {
72         if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73                 return;
74
75         ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76 }
77
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79 {
80         /* You will not have this callback if using the old ANI */
81         if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82                 return;
83
84         ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85 }
86
87 /********************/
88 /* Helper Functions */
89 /********************/
90
91 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
92 {
93         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94
95         if (!ah->curchan) /* should really check for CCK instead */
96                 return usecs *ATH9K_CLOCK_RATE_CCK;
97         if (conf->channel->band == IEEE80211_BAND_2GHZ)
98                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
99
100         if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101                 return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102         else
103                 return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
104 }
105
106 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
107 {
108         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
109
110         if (conf_is_ht40(conf))
111                 return ath9k_hw_mac_clks(ah, usecs) * 2;
112         else
113                 return ath9k_hw_mac_clks(ah, usecs);
114 }
115
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117 {
118         int i;
119
120         BUG_ON(timeout < AH_TIME_QUANTUM);
121
122         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123                 if ((REG_READ(ah, reg) & mask) == val)
124                         return true;
125
126                 udelay(AH_TIME_QUANTUM);
127         }
128
129         ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130                   "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131                   timeout, reg, REG_READ(ah, reg), mask, val);
132
133         return false;
134 }
135 EXPORT_SYMBOL(ath9k_hw_wait);
136
137 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138 {
139         u32 retval;
140         int i;
141
142         for (i = 0, retval = 0; i < n; i++) {
143                 retval = (retval << 1) | (val & 1);
144                 val >>= 1;
145         }
146         return retval;
147 }
148
149 bool ath9k_get_channel_edges(struct ath_hw *ah,
150                              u16 flags, u16 *low,
151                              u16 *high)
152 {
153         struct ath9k_hw_capabilities *pCap = &ah->caps;
154
155         if (flags & CHANNEL_5GHZ) {
156                 *low = pCap->low_5ghz_chan;
157                 *high = pCap->high_5ghz_chan;
158                 return true;
159         }
160         if ((flags & CHANNEL_2GHZ)) {
161                 *low = pCap->low_2ghz_chan;
162                 *high = pCap->high_2ghz_chan;
163                 return true;
164         }
165         return false;
166 }
167
168 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169                            u8 phy, int kbps,
170                            u32 frameLen, u16 rateix,
171                            bool shortPreamble)
172 {
173         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174
175         if (kbps == 0)
176                 return 0;
177
178         switch (phy) {
179         case WLAN_RC_PHY_CCK:
180                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181                 if (shortPreamble)
182                         phyTime >>= 1;
183                 numBits = frameLen << 3;
184                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185                 break;
186         case WLAN_RC_PHY_OFDM:
187                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
190                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191                         txTime = OFDM_SIFS_TIME_QUARTER
192                                 + OFDM_PREAMBLE_TIME_QUARTER
193                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194                 } else if (ah->curchan &&
195                            IS_CHAN_HALF_RATE(ah->curchan)) {
196                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
198                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199                         txTime = OFDM_SIFS_TIME_HALF +
200                                 OFDM_PREAMBLE_TIME_HALF
201                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
202                 } else {
203                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
205                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207                                 + (numSymbols * OFDM_SYMBOL_TIME);
208                 }
209                 break;
210         default:
211                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212                           "Unknown phy %u (rate ix %u)\n", phy, rateix);
213                 txTime = 0;
214                 break;
215         }
216
217         return txTime;
218 }
219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
220
221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222                                   struct ath9k_channel *chan,
223                                   struct chan_centers *centers)
224 {
225         int8_t extoff;
226
227         if (!IS_CHAN_HT40(chan)) {
228                 centers->ctl_center = centers->ext_center =
229                         centers->synth_center = chan->channel;
230                 return;
231         }
232
233         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235                 centers->synth_center =
236                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237                 extoff = 1;
238         } else {
239                 centers->synth_center =
240                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241                 extoff = -1;
242         }
243
244         centers->ctl_center =
245                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246         /* 25 MHz spacing is supported by hw but not on upper layers */
247         centers->ext_center =
248                 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 }
250
251 /******************/
252 /* Chip Revisions */
253 /******************/
254
255 static void ath9k_hw_read_revisions(struct ath_hw *ah)
256 {
257         u32 val;
258
259         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
260
261         if (val == 0xFF) {
262                 val = REG_READ(ah, AR_SREV);
263                 ah->hw_version.macVersion =
264                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267         } else {
268                 if (!AR_SREV_9100(ah))
269                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270
271                 ah->hw_version.macRev = val & AR_SREV_REVISION;
272
273                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274                         ah->is_pciexpress = true;
275         }
276 }
277
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
281
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 {
284         if (AR_SREV_9100(ah))
285                 return;
286
287         ENABLE_REGWRITE_BUFFER(ah);
288
289         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298
299         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300
301         REGWRITE_BUFFER_FLUSH(ah);
302         DISABLE_REGWRITE_BUFFER(ah);
303 }
304
305 /* This should work for all families including legacy */
306 static bool ath9k_hw_chip_test(struct ath_hw *ah)
307 {
308         struct ath_common *common = ath9k_hw_common(ah);
309         u32 regAddr[2] = { AR_STA_ID0 };
310         u32 regHold[2];
311         u32 patternData[4] = { 0x55555555,
312                                0xaaaaaaaa,
313                                0x66666666,
314                                0x99999999 };
315         int i, j, loop_max;
316
317         if (!AR_SREV_9300_20_OR_LATER(ah)) {
318                 loop_max = 2;
319                 regAddr[1] = AR_PHY_BASE + (8 << 2);
320         } else
321                 loop_max = 1;
322
323         for (i = 0; i < loop_max; i++) {
324                 u32 addr = regAddr[i];
325                 u32 wrData, rdData;
326
327                 regHold[i] = REG_READ(ah, addr);
328                 for (j = 0; j < 0x100; j++) {
329                         wrData = (j << 16) | j;
330                         REG_WRITE(ah, addr, wrData);
331                         rdData = REG_READ(ah, addr);
332                         if (rdData != wrData) {
333                                 ath_print(common, ATH_DBG_FATAL,
334                                           "address test failed "
335                                           "addr: 0x%08x - wr:0x%08x != "
336                                           "rd:0x%08x\n",
337                                           addr, wrData, rdData);
338                                 return false;
339                         }
340                 }
341                 for (j = 0; j < 4; j++) {
342                         wrData = patternData[j];
343                         REG_WRITE(ah, addr, wrData);
344                         rdData = REG_READ(ah, addr);
345                         if (wrData != rdData) {
346                                 ath_print(common, ATH_DBG_FATAL,
347                                           "address test failed "
348                                           "addr: 0x%08x - wr:0x%08x != "
349                                           "rd:0x%08x\n",
350                                           addr, wrData, rdData);
351                                 return false;
352                         }
353                 }
354                 REG_WRITE(ah, regAddr[i], regHold[i]);
355         }
356         udelay(100);
357
358         return true;
359 }
360
361 static void ath9k_hw_init_config(struct ath_hw *ah)
362 {
363         int i;
364
365         ah->config.dma_beacon_response_time = 2;
366         ah->config.sw_beacon_response_time = 10;
367         ah->config.additional_swba_backoff = 0;
368         ah->config.ack_6mb = 0x0;
369         ah->config.cwm_ignore_extcca = 0;
370         ah->config.pcie_powersave_enable = 0;
371         ah->config.pcie_clock_req = 0;
372         ah->config.pcie_waen = 0;
373         ah->config.analog_shiftreg = 1;
374         ah->config.ofdm_trig_low = 200;
375         ah->config.ofdm_trig_high = 500;
376         ah->config.cck_trig_high = 200;
377         ah->config.cck_trig_low = 100;
378         ah->config.enable_ani = true;
379
380         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381                 ah->config.spurchans[i][0] = AR_NO_SPUR;
382                 ah->config.spurchans[i][1] = AR_NO_SPUR;
383         }
384
385         if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386                 ah->config.ht_enable = 1;
387         else
388                 ah->config.ht_enable = 0;
389
390         ah->config.rx_intr_mitigation = true;
391         ah->config.pcieSerDesWrite = true;
392
393         /*
394          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
395          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
396          * This means we use it for all AR5416 devices, and the few
397          * minor PCI AR9280 devices out there.
398          *
399          * Serialization is required because these devices do not handle
400          * well the case of two concurrent reads/writes due to the latency
401          * involved. During one read/write another read/write can be issued
402          * on another CPU while the previous read/write may still be working
403          * on our hardware, if we hit this case the hardware poops in a loop.
404          * We prevent this by serializing reads and writes.
405          *
406          * This issue is not present on PCI-Express devices or pre-AR5416
407          * devices (legacy, 802.11abg).
408          */
409         if (num_possible_cpus() > 1)
410                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
411 }
412
413 static void ath9k_hw_init_defaults(struct ath_hw *ah)
414 {
415         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
416
417         regulatory->country_code = CTRY_DEFAULT;
418         regulatory->power_limit = MAX_RATE_POWER;
419         regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
420
421         ah->hw_version.magic = AR5416_MAGIC;
422         ah->hw_version.subvendorid = 0;
423
424         ah->ah_flags = 0;
425         if (!AR_SREV_9100(ah))
426                 ah->ah_flags = AH_USE_EEPROM;
427
428         ah->atim_window = 0;
429         ah->sta_id1_defaults =
430                 AR_STA_ID1_CRPT_MIC_ENABLE |
431                 AR_STA_ID1_MCAST_KSRCH;
432         ah->beacon_interval = 100;
433         ah->enable_32kHz_clock = DONT_USE_32KHZ;
434         ah->slottime = (u32) -1;
435         ah->globaltxtimeout = (u32) -1;
436         ah->power_mode = ATH9K_PM_UNDEFINED;
437 }
438
439 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
440 {
441         struct ath_common *common = ath9k_hw_common(ah);
442         u32 sum;
443         int i;
444         u16 eeval;
445         u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
446
447         sum = 0;
448         for (i = 0; i < 3; i++) {
449                 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
450                 sum += eeval;
451                 common->macaddr[2 * i] = eeval >> 8;
452                 common->macaddr[2 * i + 1] = eeval & 0xff;
453         }
454         if (sum == 0 || sum == 0xffff * 3)
455                 return -EADDRNOTAVAIL;
456
457         return 0;
458 }
459
460 static int ath9k_hw_post_init(struct ath_hw *ah)
461 {
462         int ecode;
463
464         if (!AR_SREV_9271(ah)) {
465                 if (!ath9k_hw_chip_test(ah))
466                         return -ENODEV;
467         }
468
469         if (!AR_SREV_9300_20_OR_LATER(ah)) {
470                 ecode = ar9002_hw_rf_claim(ah);
471                 if (ecode != 0)
472                         return ecode;
473         }
474
475         ecode = ath9k_hw_eeprom_init(ah);
476         if (ecode != 0)
477                 return ecode;
478
479         ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
480                   "Eeprom VER: %d, REV: %d\n",
481                   ah->eep_ops->get_eeprom_ver(ah),
482                   ah->eep_ops->get_eeprom_rev(ah));
483
484         ecode = ath9k_hw_rf_alloc_ext_banks(ah);
485         if (ecode) {
486                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
487                           "Failed allocating banks for "
488                           "external radio\n");
489                 return ecode;
490         }
491
492         if (!AR_SREV_9100(ah)) {
493                 ath9k_hw_ani_setup(ah);
494                 ath9k_hw_ani_init(ah);
495         }
496
497         return 0;
498 }
499
500 static void ath9k_hw_attach_ops(struct ath_hw *ah)
501 {
502         if (AR_SREV_9300_20_OR_LATER(ah))
503                 ar9003_hw_attach_ops(ah);
504         else
505                 ar9002_hw_attach_ops(ah);
506 }
507
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
510 {
511         struct ath_common *common = ath9k_hw_common(ah);
512         int r = 0;
513
514         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
515                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
516
517         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
518                 ath_print(common, ATH_DBG_FATAL,
519                           "Couldn't reset chip\n");
520                 return -EIO;
521         }
522
523         ath9k_hw_init_defaults(ah);
524         ath9k_hw_init_config(ah);
525
526         ath9k_hw_attach_ops(ah);
527
528         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
529                 ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
530                 return -EIO;
531         }
532
533         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
534                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
535                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
536                         ah->config.serialize_regmode =
537                                 SER_REG_MODE_ON;
538                 } else {
539                         ah->config.serialize_regmode =
540                                 SER_REG_MODE_OFF;
541                 }
542         }
543
544         ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
545                 ah->config.serialize_regmode);
546
547         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
548                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
549         else
550                 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
551
552         if (!ath9k_hw_macversion_supported(ah)) {
553                 ath_print(common, ATH_DBG_FATAL,
554                           "Mac Chip Rev 0x%02x.%x is not supported by "
555                           "this driver\n", ah->hw_version.macVersion,
556                           ah->hw_version.macRev);
557                 return -EOPNOTSUPP;
558         }
559
560         if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
561                 ah->is_pciexpress = false;
562
563         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
564         ath9k_hw_init_cal_settings(ah);
565
566         ah->ani_function = ATH9K_ANI_ALL;
567         if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
568                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
569         if (!AR_SREV_9300_20_OR_LATER(ah))
570                 ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
571
572         ath9k_hw_init_mode_regs(ah);
573
574         /*
575          * Read back AR_WA into a permanent copy and set bits 14 and 17.
576          * We need to do this to avoid RMW of this register. We cannot
577          * read the reg when chip is asleep.
578          */
579         ah->WARegVal = REG_READ(ah, AR_WA);
580         ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
581                          AR_WA_ASPM_TIMER_BASED_DISABLE);
582
583         if (ah->is_pciexpress)
584                 ath9k_hw_configpcipowersave(ah, 0, 0);
585         else
586                 ath9k_hw_disablepcie(ah);
587
588         if (!AR_SREV_9300_20_OR_LATER(ah))
589                 ar9002_hw_cck_chan14_spread(ah);
590
591         r = ath9k_hw_post_init(ah);
592         if (r)
593                 return r;
594
595         ath9k_hw_init_mode_gain_regs(ah);
596         r = ath9k_hw_fill_cap_info(ah);
597         if (r)
598                 return r;
599
600         r = ath9k_hw_init_macaddr(ah);
601         if (r) {
602                 ath_print(common, ATH_DBG_FATAL,
603                           "Failed to initialize MAC address\n");
604                 return r;
605         }
606
607         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
608                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
609         else
610                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
611
612         ath9k_init_nfcal_hist_buffer(ah);
613         ah->bb_watchdog_timeout_ms = 25;
614
615         common->state = ATH_HW_INITIALIZED;
616
617         return 0;
618 }
619
620 int ath9k_hw_init(struct ath_hw *ah)
621 {
622         int ret;
623         struct ath_common *common = ath9k_hw_common(ah);
624
625         /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
626         switch (ah->hw_version.devid) {
627         case AR5416_DEVID_PCI:
628         case AR5416_DEVID_PCIE:
629         case AR5416_AR9100_DEVID:
630         case AR9160_DEVID_PCI:
631         case AR9280_DEVID_PCI:
632         case AR9280_DEVID_PCIE:
633         case AR9285_DEVID_PCIE:
634         case AR9287_DEVID_PCI:
635         case AR9287_DEVID_PCIE:
636         case AR2427_DEVID_PCIE:
637         case AR9300_DEVID_PCIE:
638                 break;
639         default:
640                 if (common->bus_ops->ath_bus_type == ATH_USB)
641                         break;
642                 ath_print(common, ATH_DBG_FATAL,
643                           "Hardware device ID 0x%04x not supported\n",
644                           ah->hw_version.devid);
645                 return -EOPNOTSUPP;
646         }
647
648         ret = __ath9k_hw_init(ah);
649         if (ret) {
650                 ath_print(common, ATH_DBG_FATAL,
651                           "Unable to initialize hardware; "
652                           "initialization status: %d\n", ret);
653                 return ret;
654         }
655
656         return 0;
657 }
658 EXPORT_SYMBOL(ath9k_hw_init);
659
660 static void ath9k_hw_init_qos(struct ath_hw *ah)
661 {
662         ENABLE_REGWRITE_BUFFER(ah);
663
664         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
665         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
666
667         REG_WRITE(ah, AR_QOS_NO_ACK,
668                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
669                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
670                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
671
672         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
673         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
674         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
675         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
676         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
677
678         REGWRITE_BUFFER_FLUSH(ah);
679         DISABLE_REGWRITE_BUFFER(ah);
680 }
681
682 static void ath9k_hw_init_pll(struct ath_hw *ah,
683                               struct ath9k_channel *chan)
684 {
685         u32 pll = ath9k_hw_compute_pll_control(ah, chan);
686
687         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
688
689         /* Switch the core clock for ar9271 to 117Mhz */
690         if (AR_SREV_9271(ah)) {
691                 udelay(500);
692                 REG_WRITE(ah, 0x50040, 0x304);
693         }
694
695         udelay(RTC_PLL_SETTLE_DELAY);
696
697         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
698 }
699
700 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
701                                           enum nl80211_iftype opmode)
702 {
703         u32 imr_reg = AR_IMR_TXERR |
704                 AR_IMR_TXURN |
705                 AR_IMR_RXERR |
706                 AR_IMR_RXORN |
707                 AR_IMR_BCNMISC;
708
709         if (AR_SREV_9300_20_OR_LATER(ah)) {
710                 imr_reg |= AR_IMR_RXOK_HP;
711                 if (ah->config.rx_intr_mitigation)
712                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
713                 else
714                         imr_reg |= AR_IMR_RXOK_LP;
715
716         } else {
717                 if (ah->config.rx_intr_mitigation)
718                         imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
719                 else
720                         imr_reg |= AR_IMR_RXOK;
721         }
722
723         if (ah->config.tx_intr_mitigation)
724                 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
725         else
726                 imr_reg |= AR_IMR_TXOK;
727
728         if (opmode == NL80211_IFTYPE_AP)
729                 imr_reg |= AR_IMR_MIB;
730
731         ENABLE_REGWRITE_BUFFER(ah);
732
733         REG_WRITE(ah, AR_IMR, imr_reg);
734         ah->imrs2_reg |= AR_IMR_S2_GTT;
735         REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
736
737         if (!AR_SREV_9100(ah)) {
738                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
739                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
740                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
741         }
742
743         REGWRITE_BUFFER_FLUSH(ah);
744         DISABLE_REGWRITE_BUFFER(ah);
745
746         if (AR_SREV_9300_20_OR_LATER(ah)) {
747                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
748                 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
749                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
750                 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
751         }
752 }
753
754 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
755 {
756         u32 val = ath9k_hw_mac_to_clks(ah, us);
757         val = min(val, (u32) 0xFFFF);
758         REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
759 }
760
761 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
762 {
763         u32 val = ath9k_hw_mac_to_clks(ah, us);
764         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
765         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
766 }
767
768 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
769 {
770         u32 val = ath9k_hw_mac_to_clks(ah, us);
771         val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
772         REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
773 }
774
775 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
776 {
777         if (tu > 0xFFFF) {
778                 ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
779                           "bad global tx timeout %u\n", tu);
780                 ah->globaltxtimeout = (u32) -1;
781                 return false;
782         } else {
783                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
784                 ah->globaltxtimeout = tu;
785                 return true;
786         }
787 }
788
789 void ath9k_hw_init_global_settings(struct ath_hw *ah)
790 {
791         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
792         int acktimeout;
793         int slottime;
794         int sifstime;
795
796         ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
797                   ah->misc_mode);
798
799         if (ah->misc_mode != 0)
800                 REG_WRITE(ah, AR_PCU_MISC,
801                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
802
803         if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
804                 sifstime = 16;
805         else
806                 sifstime = 10;
807
808         /* As defined by IEEE 802.11-2007 17.3.8.6 */
809         slottime = ah->slottime + 3 * ah->coverage_class;
810         acktimeout = slottime + sifstime;
811
812         /*
813          * Workaround for early ACK timeouts, add an offset to match the
814          * initval's 64us ack timeout value.
815          * This was initially only meant to work around an issue with delayed
816          * BA frames in some implementations, but it has been found to fix ACK
817          * timeout issues in other cases as well.
818          */
819         if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
820                 acktimeout += 64 - sifstime - ah->slottime;
821
822         ath9k_hw_setslottime(ah, slottime);
823         ath9k_hw_set_ack_timeout(ah, acktimeout);
824         ath9k_hw_set_cts_timeout(ah, acktimeout);
825         if (ah->globaltxtimeout != (u32) -1)
826                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
827 }
828 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
829
830 void ath9k_hw_deinit(struct ath_hw *ah)
831 {
832         struct ath_common *common = ath9k_hw_common(ah);
833
834         if (common->state < ATH_HW_INITIALIZED)
835                 goto free_hw;
836
837         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
838
839 free_hw:
840         ath9k_hw_rf_free_ext_banks(ah);
841 }
842 EXPORT_SYMBOL(ath9k_hw_deinit);
843
844 /*******/
845 /* INI */
846 /*******/
847
848 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
849 {
850         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
851
852         if (IS_CHAN_B(chan))
853                 ctl |= CTL_11B;
854         else if (IS_CHAN_G(chan))
855                 ctl |= CTL_11G;
856         else
857                 ctl |= CTL_11A;
858
859         return ctl;
860 }
861
862 /****************************************/
863 /* Reset and Channel Switching Routines */
864 /****************************************/
865
866 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
867 {
868         struct ath_common *common = ath9k_hw_common(ah);
869         u32 regval;
870
871         ENABLE_REGWRITE_BUFFER(ah);
872
873         /*
874          * set AHB_MODE not to do cacheline prefetches
875         */
876         if (!AR_SREV_9300_20_OR_LATER(ah)) {
877                 regval = REG_READ(ah, AR_AHB_MODE);
878                 REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
879         }
880
881         /*
882          * let mac dma reads be in 128 byte chunks
883          */
884         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
885         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
886
887         REGWRITE_BUFFER_FLUSH(ah);
888         DISABLE_REGWRITE_BUFFER(ah);
889
890         /*
891          * Restore TX Trigger Level to its pre-reset value.
892          * The initial value depends on whether aggregation is enabled, and is
893          * adjusted whenever underruns are detected.
894          */
895         if (!AR_SREV_9300_20_OR_LATER(ah))
896                 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
897
898         ENABLE_REGWRITE_BUFFER(ah);
899
900         /*
901          * let mac dma writes be in 128 byte chunks
902          */
903         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
904         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
905
906         /*
907          * Setup receive FIFO threshold to hold off TX activities
908          */
909         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
910
911         if (AR_SREV_9300_20_OR_LATER(ah)) {
912                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
913                 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
914
915                 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
916                         ah->caps.rx_status_len);
917         }
918
919         /*
920          * reduce the number of usable entries in PCU TXBUF to avoid
921          * wrap around issues.
922          */
923         if (AR_SREV_9285(ah)) {
924                 /* For AR9285 the number of Fifos are reduced to half.
925                  * So set the usable tx buf size also to half to
926                  * avoid data/delimiter underruns
927                  */
928                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
929                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
930         } else if (!AR_SREV_9271(ah)) {
931                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
932                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
933         }
934
935         REGWRITE_BUFFER_FLUSH(ah);
936         DISABLE_REGWRITE_BUFFER(ah);
937
938         if (AR_SREV_9300_20_OR_LATER(ah))
939                 ath9k_hw_reset_txstatus_ring(ah);
940 }
941
942 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
943 {
944         u32 val;
945
946         val = REG_READ(ah, AR_STA_ID1);
947         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
948         switch (opmode) {
949         case NL80211_IFTYPE_AP:
950                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
951                           | AR_STA_ID1_KSRCH_MODE);
952                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
953                 break;
954         case NL80211_IFTYPE_ADHOC:
955         case NL80211_IFTYPE_MESH_POINT:
956                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
957                           | AR_STA_ID1_KSRCH_MODE);
958                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
959                 break;
960         case NL80211_IFTYPE_STATION:
961         case NL80211_IFTYPE_MONITOR:
962                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
963                 break;
964         }
965 }
966
967 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
968                                    u32 *coef_mantissa, u32 *coef_exponent)
969 {
970         u32 coef_exp, coef_man;
971
972         for (coef_exp = 31; coef_exp > 0; coef_exp--)
973                 if ((coef_scaled >> coef_exp) & 0x1)
974                         break;
975
976         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
977
978         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
979
980         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
981         *coef_exponent = coef_exp - 16;
982 }
983
984 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
985 {
986         u32 rst_flags;
987         u32 tmpReg;
988
989         if (AR_SREV_9100(ah)) {
990                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
991                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
992                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
993                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
994                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
995         }
996
997         ENABLE_REGWRITE_BUFFER(ah);
998
999         if (AR_SREV_9300_20_OR_LATER(ah)) {
1000                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1001                 udelay(10);
1002         }
1003
1004         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1005                   AR_RTC_FORCE_WAKE_ON_INT);
1006
1007         if (AR_SREV_9100(ah)) {
1008                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1009                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1010         } else {
1011                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1012                 if (tmpReg &
1013                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1014                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1015                         u32 val;
1016                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1017
1018                         val = AR_RC_HOSTIF;
1019                         if (!AR_SREV_9300_20_OR_LATER(ah))
1020                                 val |= AR_RC_AHB;
1021                         REG_WRITE(ah, AR_RC, val);
1022
1023                 } else if (!AR_SREV_9300_20_OR_LATER(ah))
1024                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1025
1026                 rst_flags = AR_RTC_RC_MAC_WARM;
1027                 if (type == ATH9K_RESET_COLD)
1028                         rst_flags |= AR_RTC_RC_MAC_COLD;
1029         }
1030
1031         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1032
1033         REGWRITE_BUFFER_FLUSH(ah);
1034         DISABLE_REGWRITE_BUFFER(ah);
1035
1036         udelay(50);
1037
1038         REG_WRITE(ah, AR_RTC_RC, 0);
1039         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1040                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1041                           "RTC stuck in MAC reset\n");
1042                 return false;
1043         }
1044
1045         if (!AR_SREV_9100(ah))
1046                 REG_WRITE(ah, AR_RC, 0);
1047
1048         if (AR_SREV_9100(ah))
1049                 udelay(50);
1050
1051         return true;
1052 }
1053
1054 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1055 {
1056         ENABLE_REGWRITE_BUFFER(ah);
1057
1058         if (AR_SREV_9300_20_OR_LATER(ah)) {
1059                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1060                 udelay(10);
1061         }
1062
1063         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1064                   AR_RTC_FORCE_WAKE_ON_INT);
1065
1066         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1067                 REG_WRITE(ah, AR_RC, AR_RC_AHB);
1068
1069         REG_WRITE(ah, AR_RTC_RESET, 0);
1070         udelay(2);
1071
1072         REGWRITE_BUFFER_FLUSH(ah);
1073         DISABLE_REGWRITE_BUFFER(ah);
1074
1075         if (!AR_SREV_9300_20_OR_LATER(ah))
1076                 udelay(2);
1077
1078         if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1079                 REG_WRITE(ah, AR_RC, 0);
1080
1081         REG_WRITE(ah, AR_RTC_RESET, 1);
1082
1083         if (!ath9k_hw_wait(ah,
1084                            AR_RTC_STATUS,
1085                            AR_RTC_STATUS_M,
1086                            AR_RTC_STATUS_ON,
1087                            AH_WAIT_TIMEOUT)) {
1088                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1089                           "RTC not waking up\n");
1090                 return false;
1091         }
1092
1093         ath9k_hw_read_revisions(ah);
1094
1095         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1096 }
1097
1098 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1099 {
1100         if (AR_SREV_9300_20_OR_LATER(ah)) {
1101                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1102                 udelay(10);
1103         }
1104
1105         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1106                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1107
1108         switch (type) {
1109         case ATH9K_RESET_POWER_ON:
1110                 return ath9k_hw_set_reset_power_on(ah);
1111         case ATH9K_RESET_WARM:
1112         case ATH9K_RESET_COLD:
1113                 return ath9k_hw_set_reset(ah, type);
1114         default:
1115                 return false;
1116         }
1117 }
1118
1119 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1120                                 struct ath9k_channel *chan)
1121 {
1122         if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1123                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1124                         return false;
1125         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1126                 return false;
1127
1128         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1129                 return false;
1130
1131         ah->chip_fullsleep = false;
1132         ath9k_hw_init_pll(ah, chan);
1133         ath9k_hw_set_rfmode(ah, chan);
1134
1135         return true;
1136 }
1137
1138 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1139                                     struct ath9k_channel *chan)
1140 {
1141         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1142         struct ath_common *common = ath9k_hw_common(ah);
1143         struct ieee80211_channel *channel = chan->chan;
1144         u32 qnum;
1145         int r;
1146
1147         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1148                 if (ath9k_hw_numtxpending(ah, qnum)) {
1149                         ath_print(common, ATH_DBG_QUEUE,
1150                                   "Transmit frames pending on "
1151                                   "queue %d\n", qnum);
1152                         return false;
1153                 }
1154         }
1155
1156         if (!ath9k_hw_rfbus_req(ah)) {
1157                 ath_print(common, ATH_DBG_FATAL,
1158                           "Could not kill baseband RX\n");
1159                 return false;
1160         }
1161
1162         ath9k_hw_set_channel_regs(ah, chan);
1163
1164         r = ath9k_hw_rf_set_freq(ah, chan);
1165         if (r) {
1166                 ath_print(common, ATH_DBG_FATAL,
1167                           "Failed to set channel\n");
1168                 return false;
1169         }
1170
1171         ah->eep_ops->set_txpower(ah, chan,
1172                              ath9k_regd_get_ctl(regulatory, chan),
1173                              channel->max_antenna_gain * 2,
1174                              channel->max_power * 2,
1175                              min((u32) MAX_RATE_POWER,
1176                              (u32) regulatory->power_limit));
1177
1178         ath9k_hw_rfbus_done(ah);
1179
1180         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1181                 ath9k_hw_set_delta_slope(ah, chan);
1182
1183         ath9k_hw_spur_mitigate_freq(ah, chan);
1184
1185         if (!chan->oneTimeCalsDone)
1186                 chan->oneTimeCalsDone = true;
1187
1188         return true;
1189 }
1190
1191 bool ath9k_hw_check_alive(struct ath_hw *ah)
1192 {
1193         int count = 50;
1194         u32 reg;
1195
1196         if (AR_SREV_9285_10_OR_LATER(ah))
1197                 return true;
1198
1199         do {
1200                 reg = REG_READ(ah, AR_OBS_BUS_1);
1201
1202                 if ((reg & 0x7E7FFFEF) == 0x00702400)
1203                         continue;
1204
1205                 switch (reg & 0x7E000B00) {
1206                 case 0x1E000000:
1207                 case 0x52000B00:
1208                 case 0x18000B00:
1209                         continue;
1210                 default:
1211                         return true;
1212                 }
1213         } while (count-- > 0);
1214
1215         return false;
1216 }
1217 EXPORT_SYMBOL(ath9k_hw_check_alive);
1218
1219 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1220                     bool bChannelChange)
1221 {
1222         struct ath_common *common = ath9k_hw_common(ah);
1223         u32 saveLedState;
1224         struct ath9k_channel *curchan = ah->curchan;
1225         u32 saveDefAntenna;
1226         u32 macStaId1;
1227         u64 tsf = 0;
1228         int i, r;
1229
1230         ah->txchainmask = common->tx_chainmask;
1231         ah->rxchainmask = common->rx_chainmask;
1232
1233         if (!ah->chip_fullsleep) {
1234                 ath9k_hw_abortpcurecv(ah);
1235                 if (!ath9k_hw_stopdmarecv(ah)) {
1236                         ath_print(common, ATH_DBG_XMIT,
1237                                 "Failed to stop receive dma\n");
1238                         bChannelChange = false;
1239                 }
1240         }
1241
1242         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1243                 return -EIO;
1244
1245         if (curchan && !ah->chip_fullsleep)
1246                 ath9k_hw_getnf(ah, curchan);
1247
1248         if (bChannelChange &&
1249             (ah->chip_fullsleep != true) &&
1250             (ah->curchan != NULL) &&
1251             (chan->channel != ah->curchan->channel) &&
1252             ((chan->channelFlags & CHANNEL_ALL) ==
1253              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1254             !AR_SREV_9280(ah)) {
1255
1256                 if (ath9k_hw_channel_change(ah, chan)) {
1257                         ath9k_hw_loadnf(ah, ah->curchan);
1258                         ath9k_hw_start_nfcal(ah);
1259                         return 0;
1260                 }
1261         }
1262
1263         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1264         if (saveDefAntenna == 0)
1265                 saveDefAntenna = 1;
1266
1267         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1268
1269         /* For chips on which RTC reset is done, save TSF before it gets cleared */
1270         if (AR_SREV_9100(ah) ||
1271             (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1272                 tsf = ath9k_hw_gettsf64(ah);
1273
1274         saveLedState = REG_READ(ah, AR_CFG_LED) &
1275                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1276                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1277
1278         ath9k_hw_mark_phy_inactive(ah);
1279
1280         /* Only required on the first reset */
1281         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1282                 REG_WRITE(ah,
1283                           AR9271_RESET_POWER_DOWN_CONTROL,
1284                           AR9271_RADIO_RF_RST);
1285                 udelay(50);
1286         }
1287
1288         if (!ath9k_hw_chip_reset(ah, chan)) {
1289                 ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1290                 return -EINVAL;
1291         }
1292
1293         /* Only required on the first reset */
1294         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1295                 ah->htc_reset_init = false;
1296                 REG_WRITE(ah,
1297                           AR9271_RESET_POWER_DOWN_CONTROL,
1298                           AR9271_GATE_MAC_CTL);
1299                 udelay(50);
1300         }
1301
1302         /* Restore TSF */
1303         if (tsf)
1304                 ath9k_hw_settsf64(ah, tsf);
1305
1306         if (AR_SREV_9280_10_OR_LATER(ah))
1307                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1308
1309         if (!AR_SREV_9300_20_OR_LATER(ah))
1310                 ar9002_hw_enable_async_fifo(ah);
1311
1312         r = ath9k_hw_process_ini(ah, chan);
1313         if (r)
1314                 return r;
1315
1316         /*
1317          * Some AR91xx SoC devices frequently fail to accept TSF writes
1318          * right after the chip reset. When that happens, write a new
1319          * value after the initvals have been applied, with an offset
1320          * based on measured time difference
1321          */
1322         if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1323                 tsf += 1500;
1324                 ath9k_hw_settsf64(ah, tsf);
1325         }
1326
1327         /* Setup MFP options for CCMP */
1328         if (AR_SREV_9280_20_OR_LATER(ah)) {
1329                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1330                  * frames when constructing CCMP AAD. */
1331                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1332                               0xc7ff);
1333                 ah->sw_mgmt_crypto = false;
1334         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1335                 /* Disable hardware crypto for management frames */
1336                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1337                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1338                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1339                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1340                 ah->sw_mgmt_crypto = true;
1341         } else
1342                 ah->sw_mgmt_crypto = true;
1343
1344         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1345                 ath9k_hw_set_delta_slope(ah, chan);
1346
1347         ath9k_hw_spur_mitigate_freq(ah, chan);
1348         ah->eep_ops->set_board_values(ah, chan);
1349
1350         ath9k_hw_set_operating_mode(ah, ah->opmode);
1351
1352         ENABLE_REGWRITE_BUFFER(ah);
1353
1354         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1355         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1356                   | macStaId1
1357                   | AR_STA_ID1_RTS_USE_DEF
1358                   | (ah->config.
1359                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1360                   | ah->sta_id1_defaults);
1361         ath_hw_setbssidmask(common);
1362         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1363         ath9k_hw_write_associd(ah);
1364         REG_WRITE(ah, AR_ISR, ~0);
1365         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1366
1367         REGWRITE_BUFFER_FLUSH(ah);
1368         DISABLE_REGWRITE_BUFFER(ah);
1369
1370         r = ath9k_hw_rf_set_freq(ah, chan);
1371         if (r)
1372                 return r;
1373
1374         ENABLE_REGWRITE_BUFFER(ah);
1375
1376         for (i = 0; i < AR_NUM_DCU; i++)
1377                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1378
1379         REGWRITE_BUFFER_FLUSH(ah);
1380         DISABLE_REGWRITE_BUFFER(ah);
1381
1382         ah->intr_txqs = 0;
1383         for (i = 0; i < ah->caps.total_queues; i++)
1384                 ath9k_hw_resettxqueue(ah, i);
1385
1386         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1387         ath9k_hw_ani_cache_ini_regs(ah);
1388         ath9k_hw_init_qos(ah);
1389
1390         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1391                 ath9k_enable_rfkill(ah);
1392
1393         ath9k_hw_init_global_settings(ah);
1394
1395         if (!AR_SREV_9300_20_OR_LATER(ah)) {
1396                 ar9002_hw_update_async_fifo(ah);
1397                 ar9002_hw_enable_wep_aggregation(ah);
1398         }
1399
1400         REG_WRITE(ah, AR_STA_ID1,
1401                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1402
1403         ath9k_hw_set_dma(ah);
1404
1405         REG_WRITE(ah, AR_OBS, 8);
1406
1407         if (ah->config.rx_intr_mitigation) {
1408                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1409                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1410         }
1411
1412         if (ah->config.tx_intr_mitigation) {
1413                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1414                 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1415         }
1416
1417         ath9k_hw_init_bb(ah, chan);
1418
1419         if (!ath9k_hw_init_cal(ah, chan))
1420                 return -EIO;
1421
1422         ENABLE_REGWRITE_BUFFER(ah);
1423
1424         ath9k_hw_restore_chainmask(ah);
1425         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1426
1427         REGWRITE_BUFFER_FLUSH(ah);
1428         DISABLE_REGWRITE_BUFFER(ah);
1429
1430         /*
1431          * For big endian systems turn on swapping for descriptors
1432          */
1433         if (AR_SREV_9100(ah)) {
1434                 u32 mask;
1435                 mask = REG_READ(ah, AR_CFG);
1436                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1437                         ath_print(common, ATH_DBG_RESET,
1438                                 "CFG Byte Swap Set 0x%x\n", mask);
1439                 } else {
1440                         mask =
1441                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1442                         REG_WRITE(ah, AR_CFG, mask);
1443                         ath_print(common, ATH_DBG_RESET,
1444                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1445                 }
1446         } else {
1447                 if (common->bus_ops->ath_bus_type == ATH_USB) {
1448                         /* Configure AR9271 target WLAN */
1449                         if (AR_SREV_9271(ah))
1450                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1451                         else
1452                                 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1453                 }
1454 #ifdef __BIG_ENDIAN
1455                 else
1456                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1457 #endif
1458         }
1459
1460         if (ah->btcoex_hw.enabled)
1461                 ath9k_hw_btcoex_enable(ah);
1462
1463         if (AR_SREV_9300_20_OR_LATER(ah)) {
1464                 ath9k_hw_loadnf(ah, curchan);
1465                 ath9k_hw_start_nfcal(ah);
1466                 ar9003_hw_bb_watchdog_config(ah);
1467         }
1468
1469         return 0;
1470 }
1471 EXPORT_SYMBOL(ath9k_hw_reset);
1472
1473 /************************/
1474 /* Key Cache Management */
1475 /************************/
1476
1477 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1478 {
1479         u32 keyType;
1480
1481         if (entry >= ah->caps.keycache_size) {
1482                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1483                           "keychache entry %u out of range\n", entry);
1484                 return false;
1485         }
1486
1487         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1488
1489         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1490         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1491         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1492         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1493         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1494         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1495         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1496         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1497
1498         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1499                 u16 micentry = entry + 64;
1500
1501                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1502                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1503                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1504                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1505
1506         }
1507
1508         return true;
1509 }
1510 EXPORT_SYMBOL(ath9k_hw_keyreset);
1511
1512 static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1513 {
1514         u32 macHi, macLo;
1515         u32 unicast_flag = AR_KEYTABLE_VALID;
1516
1517         if (entry >= ah->caps.keycache_size) {
1518                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1519                           "keychache entry %u out of range\n", entry);
1520                 return false;
1521         }
1522
1523         if (mac != NULL) {
1524                 /*
1525                  * AR_KEYTABLE_VALID indicates that the address is a unicast
1526                  * address, which must match the transmitter address for
1527                  * decrypting frames.
1528                  * Not setting this bit allows the hardware to use the key
1529                  * for multicast frame decryption.
1530                  */
1531                 if (mac[0] & 0x01)
1532                         unicast_flag = 0;
1533
1534                 macHi = (mac[5] << 8) | mac[4];
1535                 macLo = (mac[3] << 24) |
1536                         (mac[2] << 16) |
1537                         (mac[1] << 8) |
1538                         mac[0];
1539                 macLo >>= 1;
1540                 macLo |= (macHi & 1) << 31;
1541                 macHi >>= 1;
1542         } else {
1543                 macLo = macHi = 0;
1544         }
1545         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1546         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1547
1548         return true;
1549 }
1550
1551 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1552                                  const struct ath9k_keyval *k,
1553                                  const u8 *mac)
1554 {
1555         const struct ath9k_hw_capabilities *pCap = &ah->caps;
1556         struct ath_common *common = ath9k_hw_common(ah);
1557         u32 key0, key1, key2, key3, key4;
1558         u32 keyType;
1559
1560         if (entry >= pCap->keycache_size) {
1561                 ath_print(common, ATH_DBG_FATAL,
1562                           "keycache entry %u out of range\n", entry);
1563                 return false;
1564         }
1565
1566         switch (k->kv_type) {
1567         case ATH9K_CIPHER_AES_OCB:
1568                 keyType = AR_KEYTABLE_TYPE_AES;
1569                 break;
1570         case ATH9K_CIPHER_AES_CCM:
1571                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1572                         ath_print(common, ATH_DBG_ANY,
1573                                   "AES-CCM not supported by mac rev 0x%x\n",
1574                                   ah->hw_version.macRev);
1575                         return false;
1576                 }
1577                 keyType = AR_KEYTABLE_TYPE_CCM;
1578                 break;
1579         case ATH9K_CIPHER_TKIP:
1580                 keyType = AR_KEYTABLE_TYPE_TKIP;
1581                 if (ATH9K_IS_MIC_ENABLED(ah)
1582                     && entry + 64 >= pCap->keycache_size) {
1583                         ath_print(common, ATH_DBG_ANY,
1584                                   "entry %u inappropriate for TKIP\n", entry);
1585                         return false;
1586                 }
1587                 break;
1588         case ATH9K_CIPHER_WEP:
1589                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1590                         ath_print(common, ATH_DBG_ANY,
1591                                   "WEP key length %u too small\n", k->kv_len);
1592                         return false;
1593                 }
1594                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1595                         keyType = AR_KEYTABLE_TYPE_40;
1596                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1597                         keyType = AR_KEYTABLE_TYPE_104;
1598                 else
1599                         keyType = AR_KEYTABLE_TYPE_128;
1600                 break;
1601         case ATH9K_CIPHER_CLR:
1602                 keyType = AR_KEYTABLE_TYPE_CLR;
1603                 break;
1604         default:
1605                 ath_print(common, ATH_DBG_FATAL,
1606                           "cipher %u not supported\n", k->kv_type);
1607                 return false;
1608         }
1609
1610         key0 = get_unaligned_le32(k->kv_val + 0);
1611         key1 = get_unaligned_le16(k->kv_val + 4);
1612         key2 = get_unaligned_le32(k->kv_val + 6);
1613         key3 = get_unaligned_le16(k->kv_val + 10);
1614         key4 = get_unaligned_le32(k->kv_val + 12);
1615         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1616                 key4 &= 0xff;
1617
1618         /*
1619          * Note: Key cache registers access special memory area that requires
1620          * two 32-bit writes to actually update the values in the internal
1621          * memory. Consequently, the exact order and pairs used here must be
1622          * maintained.
1623          */
1624
1625         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1626                 u16 micentry = entry + 64;
1627
1628                 /*
1629                  * Write inverted key[47:0] first to avoid Michael MIC errors
1630                  * on frames that could be sent or received at the same time.
1631                  * The correct key will be written in the end once everything
1632                  * else is ready.
1633                  */
1634                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1635                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1636
1637                 /* Write key[95:48] */
1638                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1639                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1640
1641                 /* Write key[127:96] and key type */
1642                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1643                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1644
1645                 /* Write MAC address for the entry */
1646                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1647
1648                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1649                         /*
1650                          * TKIP uses two key cache entries:
1651                          * Michael MIC TX/RX keys in the same key cache entry
1652                          * (idx = main index + 64):
1653                          * key0 [31:0] = RX key [31:0]
1654                          * key1 [15:0] = TX key [31:16]
1655                          * key1 [31:16] = reserved
1656                          * key2 [31:0] = RX key [63:32]
1657                          * key3 [15:0] = TX key [15:0]
1658                          * key3 [31:16] = reserved
1659                          * key4 [31:0] = TX key [63:32]
1660                          */
1661                         u32 mic0, mic1, mic2, mic3, mic4;
1662
1663                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1664                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1665                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1666                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1667                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
1668
1669                         /* Write RX[31:0] and TX[31:16] */
1670                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1671                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1672
1673                         /* Write RX[63:32] and TX[15:0] */
1674                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1675                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1676
1677                         /* Write TX[63:32] and keyType(reserved) */
1678                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1679                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1680                                   AR_KEYTABLE_TYPE_CLR);
1681
1682                 } else {
1683                         /*
1684                          * TKIP uses four key cache entries (two for group
1685                          * keys):
1686                          * Michael MIC TX/RX keys are in different key cache
1687                          * entries (idx = main index + 64 for TX and
1688                          * main index + 32 + 96 for RX):
1689                          * key0 [31:0] = TX/RX MIC key [31:0]
1690                          * key1 [31:0] = reserved
1691                          * key2 [31:0] = TX/RX MIC key [63:32]
1692                          * key3 [31:0] = reserved
1693                          * key4 [31:0] = reserved
1694                          *
1695                          * Upper layer code will call this function separately
1696                          * for TX and RX keys when these registers offsets are
1697                          * used.
1698                          */
1699                         u32 mic0, mic2;
1700
1701                         mic0 = get_unaligned_le32(k->kv_mic + 0);
1702                         mic2 = get_unaligned_le32(k->kv_mic + 4);
1703
1704                         /* Write MIC key[31:0] */
1705                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1706                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1707
1708                         /* Write MIC key[63:32] */
1709                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1710                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1711
1712                         /* Write TX[63:32] and keyType(reserved) */
1713                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1714                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1715                                   AR_KEYTABLE_TYPE_CLR);
1716                 }
1717
1718                 /* MAC address registers are reserved for the MIC entry */
1719                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1720                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1721
1722                 /*
1723                  * Write the correct (un-inverted) key[47:0] last to enable
1724                  * TKIP now that all other registers are set with correct
1725                  * values.
1726                  */
1727                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1728                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1729         } else {
1730                 /* Write key[47:0] */
1731                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1732                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1733
1734                 /* Write key[95:48] */
1735                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1736                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1737
1738                 /* Write key[127:96] and key type */
1739                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1740                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1741
1742                 /* Write MAC address for the entry */
1743                 (void) ath9k_hw_keysetmac(ah, entry, mac);
1744         }
1745
1746         return true;
1747 }
1748 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1749
1750 /******************************/
1751 /* Power Management (Chipset) */
1752 /******************************/
1753
1754 /*
1755  * Notify Power Mgt is disabled in self-generated frames.
1756  * If requested, force chip to sleep.
1757  */
1758 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1759 {
1760         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1761         if (setChip) {
1762                 /*
1763                  * Clear the RTC force wake bit to allow the
1764                  * mac to go to sleep.
1765                  */
1766                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1767                             AR_RTC_FORCE_WAKE_EN);
1768                 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1769                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1770
1771                 /* Shutdown chip. Active low */
1772                 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1773                         REG_CLR_BIT(ah, (AR_RTC_RESET),
1774                                     AR_RTC_RESET_EN);
1775         }
1776
1777         /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1778         if (AR_SREV_9300_20_OR_LATER(ah))
1779                 REG_WRITE(ah, AR_WA,
1780                           ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1781 }
1782
1783 /*
1784  * Notify Power Management is enabled in self-generating
1785  * frames. If request, set power mode of chip to
1786  * auto/normal.  Duration in units of 128us (1/8 TU).
1787  */
1788 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1789 {
1790         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1791         if (setChip) {
1792                 struct ath9k_hw_capabilities *pCap = &ah->caps;
1793
1794                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1795                         /* Set WakeOnInterrupt bit; clear ForceWake bit */
1796                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1797                                   AR_RTC_FORCE_WAKE_ON_INT);
1798                 } else {
1799                         /*
1800                          * Clear the RTC force wake bit to allow the
1801                          * mac to go to sleep.
1802                          */
1803                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1804                                     AR_RTC_FORCE_WAKE_EN);
1805                 }
1806         }
1807
1808         /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1809         if (AR_SREV_9300_20_OR_LATER(ah))
1810                 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1811 }
1812
1813 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1814 {
1815         u32 val;
1816         int i;
1817
1818         /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1819         if (AR_SREV_9300_20_OR_LATER(ah)) {
1820                 REG_WRITE(ah, AR_WA, ah->WARegVal);
1821                 udelay(10);
1822         }
1823
1824         if (setChip) {
1825                 if ((REG_READ(ah, AR_RTC_STATUS) &
1826                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1827                         if (ath9k_hw_set_reset_reg(ah,
1828                                            ATH9K_RESET_POWER_ON) != true) {
1829                                 return false;
1830                         }
1831                         if (!AR_SREV_9300_20_OR_LATER(ah))
1832                                 ath9k_hw_init_pll(ah, NULL);
1833                 }
1834                 if (AR_SREV_9100(ah))
1835                         REG_SET_BIT(ah, AR_RTC_RESET,
1836                                     AR_RTC_RESET_EN);
1837
1838                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1839                             AR_RTC_FORCE_WAKE_EN);
1840                 udelay(50);
1841
1842                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
1843                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1844                         if (val == AR_RTC_STATUS_ON)
1845                                 break;
1846                         udelay(50);
1847                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1848                                     AR_RTC_FORCE_WAKE_EN);
1849                 }
1850                 if (i == 0) {
1851                         ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1852                                   "Failed to wakeup in %uus\n",
1853                                   POWER_UP_TIME / 20);
1854                         return false;
1855                 }
1856         }
1857
1858         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1859
1860         return true;
1861 }
1862
1863 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1864 {
1865         struct ath_common *common = ath9k_hw_common(ah);
1866         int status = true, setChip = true;
1867         static const char *modes[] = {
1868                 "AWAKE",
1869                 "FULL-SLEEP",
1870                 "NETWORK SLEEP",
1871                 "UNDEFINED"
1872         };
1873
1874         if (ah->power_mode == mode)
1875                 return status;
1876
1877         ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1878                   modes[ah->power_mode], modes[mode]);
1879
1880         switch (mode) {
1881         case ATH9K_PM_AWAKE:
1882                 status = ath9k_hw_set_power_awake(ah, setChip);
1883                 break;
1884         case ATH9K_PM_FULL_SLEEP:
1885                 ath9k_set_power_sleep(ah, setChip);
1886                 ah->chip_fullsleep = true;
1887                 break;
1888         case ATH9K_PM_NETWORK_SLEEP:
1889                 ath9k_set_power_network_sleep(ah, setChip);
1890                 break;
1891         default:
1892                 ath_print(common, ATH_DBG_FATAL,
1893                           "Unknown power mode %u\n", mode);
1894                 return false;
1895         }
1896         ah->power_mode = mode;
1897
1898         return status;
1899 }
1900 EXPORT_SYMBOL(ath9k_hw_setpower);
1901
1902 /*******************/
1903 /* Beacon Handling */
1904 /*******************/
1905
1906 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1907 {
1908         int flags = 0;
1909
1910         ah->beacon_interval = beacon_period;
1911
1912         ENABLE_REGWRITE_BUFFER(ah);
1913
1914         switch (ah->opmode) {
1915         case NL80211_IFTYPE_STATION:
1916         case NL80211_IFTYPE_MONITOR:
1917                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1918                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1919                 REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1920                 flags |= AR_TBTT_TIMER_EN;
1921                 break;
1922         case NL80211_IFTYPE_ADHOC:
1923         case NL80211_IFTYPE_MESH_POINT:
1924                 REG_SET_BIT(ah, AR_TXCFG,
1925                             AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1926                 REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1927                           TU_TO_USEC(next_beacon +
1928                                      (ah->atim_window ? ah->
1929                                       atim_window : 1)));
1930                 flags |= AR_NDP_TIMER_EN;
1931         case NL80211_IFTYPE_AP:
1932                 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1933                 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1934                           TU_TO_USEC(next_beacon -
1935                                      ah->config.
1936                                      dma_beacon_response_time));
1937                 REG_WRITE(ah, AR_NEXT_SWBA,
1938                           TU_TO_USEC(next_beacon -
1939                                      ah->config.
1940                                      sw_beacon_response_time));
1941                 flags |=
1942                         AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1943                 break;
1944         default:
1945                 ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1946                           "%s: unsupported opmode: %d\n",
1947                           __func__, ah->opmode);
1948                 return;
1949                 break;
1950         }
1951
1952         REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1953         REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1954         REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1955         REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1956
1957         REGWRITE_BUFFER_FLUSH(ah);
1958         DISABLE_REGWRITE_BUFFER(ah);
1959
1960         beacon_period &= ~ATH9K_BEACON_ENA;
1961         if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1962                 ath9k_hw_reset_tsf(ah);
1963         }
1964
1965         REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1966 }
1967 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1968
1969 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1970                                     const struct ath9k_beacon_state *bs)
1971 {
1972         u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1973         struct ath9k_hw_capabilities *pCap = &ah->caps;
1974         struct ath_common *common = ath9k_hw_common(ah);
1975
1976         ENABLE_REGWRITE_BUFFER(ah);
1977
1978         REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1979
1980         REG_WRITE(ah, AR_BEACON_PERIOD,
1981                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1982         REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1983                   TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1984
1985         REGWRITE_BUFFER_FLUSH(ah);
1986         DISABLE_REGWRITE_BUFFER(ah);
1987
1988         REG_RMW_FIELD(ah, AR_RSSI_THR,
1989                       AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1990
1991         beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1992
1993         if (bs->bs_sleepduration > beaconintval)
1994                 beaconintval = bs->bs_sleepduration;
1995
1996         dtimperiod = bs->bs_dtimperiod;
1997         if (bs->bs_sleepduration > dtimperiod)
1998                 dtimperiod = bs->bs_sleepduration;
1999
2000         if (beaconintval == dtimperiod)
2001                 nextTbtt = bs->bs_nextdtim;
2002         else
2003                 nextTbtt = bs->bs_nexttbtt;
2004
2005         ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2006         ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2007         ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2008         ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2009
2010         ENABLE_REGWRITE_BUFFER(ah);
2011
2012         REG_WRITE(ah, AR_NEXT_DTIM,
2013                   TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2014         REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2015
2016         REG_WRITE(ah, AR_SLEEP1,
2017                   SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2018                   | AR_SLEEP1_ASSUME_DTIM);
2019
2020         if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2021                 beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2022         else
2023                 beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2024
2025         REG_WRITE(ah, AR_SLEEP2,
2026                   SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2027
2028         REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2029         REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2030
2031         REGWRITE_BUFFER_FLUSH(ah);
2032         DISABLE_REGWRITE_BUFFER(ah);
2033
2034         REG_SET_BIT(ah, AR_TIMER_MODE,
2035                     AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2036                     AR_DTIM_TIMER_EN);
2037
2038         /* TSF Out of Range Threshold */
2039         REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2040 }
2041 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2042
2043 /*******************/
2044 /* HW Capabilities */
2045 /*******************/
2046
2047 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2048 {
2049         struct ath9k_hw_capabilities *pCap = &ah->caps;
2050         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2051         struct ath_common *common = ath9k_hw_common(ah);
2052         struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2053
2054         u16 capField = 0, eeval;
2055
2056         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2057         regulatory->current_rd = eeval;
2058
2059         eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2060         if (AR_SREV_9285_10_OR_LATER(ah))
2061                 eeval |= AR9285_RDEXT_DEFAULT;
2062         regulatory->current_rd_ext = eeval;
2063
2064         capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2065
2066         if (ah->opmode != NL80211_IFTYPE_AP &&
2067             ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2068                 if (regulatory->current_rd == 0x64 ||
2069                     regulatory->current_rd == 0x65)
2070                         regulatory->current_rd += 5;
2071                 else if (regulatory->current_rd == 0x41)
2072                         regulatory->current_rd = 0x43;
2073                 ath_print(common, ATH_DBG_REGULATORY,
2074                           "regdomain mapped to 0x%x\n", regulatory->current_rd);
2075         }
2076
2077         eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2078         if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2079                 ath_print(common, ATH_DBG_FATAL,
2080                           "no band has been marked as supported in EEPROM.\n");
2081                 return -EINVAL;
2082         }
2083
2084         bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2085
2086         if (eeval & AR5416_OPFLAGS_11A) {
2087                 set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2088                 if (ah->config.ht_enable) {
2089                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2090                                 set_bit(ATH9K_MODE_11NA_HT20,
2091                                         pCap->wireless_modes);
2092                         if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2093                                 set_bit(ATH9K_MODE_11NA_HT40PLUS,
2094                                         pCap->wireless_modes);
2095                                 set_bit(ATH9K_MODE_11NA_HT40MINUS,
2096                                         pCap->wireless_modes);
2097                         }
2098                 }
2099         }
2100
2101         if (eeval & AR5416_OPFLAGS_11G) {
2102                 set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2103                 if (ah->config.ht_enable) {
2104                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2105                                 set_bit(ATH9K_MODE_11NG_HT20,
2106                                         pCap->wireless_modes);
2107                         if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2108                                 set_bit(ATH9K_MODE_11NG_HT40PLUS,
2109                                         pCap->wireless_modes);
2110                                 set_bit(ATH9K_MODE_11NG_HT40MINUS,
2111                                         pCap->wireless_modes);
2112                         }
2113                 }
2114         }
2115
2116         pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2117         /*
2118          * For AR9271 we will temporarilly uses the rx chainmax as read from
2119          * the EEPROM.
2120          */
2121         if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2122             !(eeval & AR5416_OPFLAGS_11A) &&
2123             !(AR_SREV_9271(ah)))
2124                 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2125                 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2126         else
2127                 /* Use rx_chainmask from EEPROM. */
2128                 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2129
2130         if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2131                 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2132
2133         pCap->low_2ghz_chan = 2312;
2134         pCap->high_2ghz_chan = 2732;
2135
2136         pCap->low_5ghz_chan = 4920;
2137         pCap->high_5ghz_chan = 6100;
2138
2139         pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2140         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2141         pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2142
2143         pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2144         pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2145         pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2146
2147         if (ah->config.ht_enable)
2148                 pCap->hw_caps |= ATH9K_HW_CAP_HT;
2149         else
2150                 pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2151
2152         pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2153         pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2154         pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2155         pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2156
2157         if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2158                 pCap->total_queues =
2159                         MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2160         else
2161                 pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2162
2163         if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2164                 pCap->keycache_size =
2165                         1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2166         else
2167                 pCap->keycache_size = AR_KEYTABLE_SIZE;
2168
2169         pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2170
2171         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2172                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2173         else
2174                 pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2175
2176         if (AR_SREV_9271(ah))
2177                 pCap->num_gpio_pins = AR9271_NUM_GPIO;
2178         else if (AR_DEVID_7010(ah))
2179                 pCap->num_gpio_pins = AR7010_NUM_GPIO;
2180         else if (AR_SREV_9285_10_OR_LATER(ah))
2181                 pCap->num_gpio_pins = AR9285_NUM_GPIO;
2182         else if (AR_SREV_9280_10_OR_LATER(ah))
2183                 pCap->num_gpio_pins = AR928X_NUM_GPIO;
2184         else
2185                 pCap->num_gpio_pins = AR_NUM_GPIO;
2186
2187         if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2188                 pCap->hw_caps |= ATH9K_HW_CAP_CST;
2189                 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2190         } else {
2191                 pCap->rts_aggr_limit = (8 * 1024);
2192         }
2193
2194         pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2195
2196 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2197         ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2198         if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2199                 ah->rfkill_gpio =
2200                         MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2201                 ah->rfkill_polarity =
2202                         MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2203
2204                 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2205         }
2206 #endif
2207         if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2208                 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2209         else
2210                 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2211
2212         if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2213                 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2214         else
2215                 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2216
2217         if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2218                 pCap->reg_cap =
2219                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2220                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2221                         AR_EEPROM_EEREGCAP_EN_KK_U2 |
2222                         AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2223         } else {
2224                 pCap->reg_cap =
2225                         AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2226                         AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2227         }
2228
2229         /* Advertise midband for AR5416 with FCC midband set in eeprom */
2230         if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2231             AR_SREV_5416(ah))
2232                 pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2233
2234         pCap->num_antcfg_5ghz =
2235                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2236         pCap->num_antcfg_2ghz =
2237                 ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2238
2239         if (AR_SREV_9280_10_OR_LATER(ah) &&
2240             ath9k_hw_btcoex_supported(ah)) {
2241                 btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2242                 btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2243
2244                 if (AR_SREV_9285(ah)) {
2245                         btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2246                         btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2247                 } else {
2248                         btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2249                 }
2250         } else {
2251                 btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2252         }
2253
2254         if (AR_SREV_9300_20_OR_LATER(ah)) {
2255                 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2256                                  ATH9K_HW_CAP_FASTCLOCK;
2257                 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2258                 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2259                 pCap->rx_status_len = sizeof(struct ar9003_rxs);
2260                 pCap->tx_desc_len = sizeof(struct ar9003_txc);
2261                 pCap->txs_len = sizeof(struct ar9003_txs);
2262                 if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2263                         pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2264         } else {
2265                 pCap->tx_desc_len = sizeof(struct ath_desc);
2266                 if (AR_SREV_9280_20(ah) &&
2267                     ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2268                       AR5416_EEP_MINOR_VER_16) ||
2269                      ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2270                         pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2271         }
2272
2273         if (AR_SREV_9300_20_OR_LATER(ah))
2274                 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2275
2276         if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2277                 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2278
2279         return 0;
2280 }
2281
2282 /****************************/
2283 /* GPIO / RFKILL / Antennae */
2284 /****************************/
2285
2286 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2287                                          u32 gpio, u32 type)
2288 {
2289         int addr;
2290         u32 gpio_shift, tmp;
2291
2292         if (gpio > 11)
2293                 addr = AR_GPIO_OUTPUT_MUX3;
2294         else if (gpio > 5)
2295                 addr = AR_GPIO_OUTPUT_MUX2;
2296         else
2297                 addr = AR_GPIO_OUTPUT_MUX1;
2298
2299         gpio_shift = (gpio % 6) * 5;
2300
2301         if (AR_SREV_9280_20_OR_LATER(ah)
2302             || (addr != AR_GPIO_OUTPUT_MUX1)) {
2303                 REG_RMW(ah, addr, (type << gpio_shift),
2304                         (0x1f << gpio_shift));
2305         } else {
2306                 tmp = REG_READ(ah, addr);
2307                 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2308                 tmp &= ~(0x1f << gpio_shift);
2309                 tmp |= (type << gpio_shift);
2310                 REG_WRITE(ah, addr, tmp);
2311         }
2312 }
2313
2314 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2315 {
2316         u32 gpio_shift;
2317
2318         BUG_ON(gpio >= ah->caps.num_gpio_pins);
2319
2320         if (AR_DEVID_7010(ah)) {
2321                 gpio_shift = gpio;
2322                 REG_RMW(ah, AR7010_GPIO_OE,
2323                         (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2324                         (AR7010_GPIO_OE_MASK << gpio_shift));
2325                 return;
2326         }
2327
2328         gpio_shift = gpio << 1;
2329         REG_RMW(ah,
2330                 AR_GPIO_OE_OUT,
2331                 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2332                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2333 }
2334 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2335
2336 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2337 {
2338 #define MS_REG_READ(x, y) \
2339         (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2340
2341         if (gpio >= ah->caps.num_gpio_pins)
2342                 return 0xffffffff;
2343
2344         if (AR_DEVID_7010(ah)) {
2345                 u32 val;
2346                 val = REG_READ(ah, AR7010_GPIO_IN);
2347                 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2348         } else if (AR_SREV_9300_20_OR_LATER(ah))
2349                 return MS_REG_READ(AR9300, gpio) != 0;
2350         else if (AR_SREV_9271(ah))
2351                 return MS_REG_READ(AR9271, gpio) != 0;
2352         else if (AR_SREV_9287_10_OR_LATER(ah))
2353                 return MS_REG_READ(AR9287, gpio) != 0;
2354         else if (AR_SREV_9285_10_OR_LATER(ah))
2355                 return MS_REG_READ(AR9285, gpio) != 0;
2356         else if (AR_SREV_9280_10_OR_LATER(ah))
2357                 return MS_REG_READ(AR928X, gpio) != 0;
2358         else
2359                 return MS_REG_READ(AR, gpio) != 0;
2360 }
2361 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2362
2363 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2364                          u32 ah_signal_type)
2365 {
2366         u32 gpio_shift;
2367
2368         if (AR_DEVID_7010(ah)) {
2369                 gpio_shift = gpio;
2370                 REG_RMW(ah, AR7010_GPIO_OE,
2371                         (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2372                         (AR7010_GPIO_OE_MASK << gpio_shift));
2373                 return;
2374         }
2375
2376         ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2377         gpio_shift = 2 * gpio;
2378         REG_RMW(ah,
2379                 AR_GPIO_OE_OUT,
2380                 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2381                 (AR_GPIO_OE_OUT_DRV << gpio_shift));
2382 }
2383 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2384
2385 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2386 {
2387         if (AR_DEVID_7010(ah)) {
2388                 val = val ? 0 : 1;
2389                 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2390                         AR_GPIO_BIT(gpio));
2391                 return;
2392         }
2393
2394         if (AR_SREV_9271(ah))
2395                 val = ~val;
2396
2397         REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2398                 AR_GPIO_BIT(gpio));
2399 }
2400 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2401
2402 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2403 {
2404         return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2405 }
2406 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2407
2408 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2409 {
2410         REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2411 }
2412 EXPORT_SYMBOL(ath9k_hw_setantenna);
2413
2414 /*********************/
2415 /* General Operation */
2416 /*********************/
2417
2418 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2419 {
2420         u32 bits = REG_READ(ah, AR_RX_FILTER);
2421         u32 phybits = REG_READ(ah, AR_PHY_ERR);
2422
2423         if (phybits & AR_PHY_ERR_RADAR)
2424                 bits |= ATH9K_RX_FILTER_PHYRADAR;
2425         if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2426                 bits |= ATH9K_RX_FILTER_PHYERR;
2427
2428         return bits;
2429 }
2430 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2431
2432 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2433 {
2434         u32 phybits;
2435
2436         ENABLE_REGWRITE_BUFFER(ah);
2437
2438         REG_WRITE(ah, AR_RX_FILTER, bits);
2439
2440         phybits = 0;
2441         if (bits & ATH9K_RX_FILTER_PHYRADAR)
2442                 phybits |= AR_PHY_ERR_RADAR;
2443         if (bits & ATH9K_RX_FILTER_PHYERR)
2444                 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2445         REG_WRITE(ah, AR_PHY_ERR, phybits);
2446
2447         if (phybits)
2448                 REG_WRITE(ah, AR_RXCFG,
2449                           REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2450         else
2451                 REG_WRITE(ah, AR_RXCFG,
2452                           REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2453
2454         REGWRITE_BUFFER_FLUSH(ah);
2455         DISABLE_REGWRITE_BUFFER(ah);
2456 }
2457 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2458
2459 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2460 {
2461         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2462                 return false;
2463
2464         ath9k_hw_init_pll(ah, NULL);
2465         return true;
2466 }
2467 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2468
2469 bool ath9k_hw_disable(struct ath_hw *ah)
2470 {
2471         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2472                 return false;
2473
2474         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2475                 return false;
2476
2477         ath9k_hw_init_pll(ah, NULL);
2478         return true;
2479 }
2480 EXPORT_SYMBOL(ath9k_hw_disable);
2481
2482 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2483 {
2484         struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2485         struct ath9k_channel *chan = ah->curchan;
2486         struct ieee80211_channel *channel = chan->chan;
2487
2488         regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2489
2490         ah->eep_ops->set_txpower(ah, chan,
2491                                  ath9k_regd_get_ctl(regulatory, chan),
2492                                  channel->max_antenna_gain * 2,
2493                                  channel->max_power * 2,
2494                                  min((u32) MAX_RATE_POWER,
2495                                  (u32) regulatory->power_limit));
2496 }
2497 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2498
2499 void ath9k_hw_setopmode(struct ath_hw *ah)
2500 {
2501         ath9k_hw_set_operating_mode(ah, ah->opmode);
2502 }
2503 EXPORT_SYMBOL(ath9k_hw_setopmode);
2504
2505 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2506 {
2507         REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2508         REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2509 }
2510 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2511
2512 void ath9k_hw_write_associd(struct ath_hw *ah)
2513 {
2514         struct ath_common *common = ath9k_hw_common(ah);
2515
2516         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2517         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2518                   ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2519 }
2520 EXPORT_SYMBOL(ath9k_hw_write_associd);
2521
2522 #define ATH9K_MAX_TSF_READ 10
2523
2524 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2525 {
2526         u32 tsf_lower, tsf_upper1, tsf_upper2;
2527         int i;
2528
2529         tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2530         for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2531                 tsf_lower = REG_READ(ah, AR_TSF_L32);
2532                 tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2533                 if (tsf_upper2 == tsf_upper1)
2534                         break;
2535                 tsf_upper1 = tsf_upper2;
2536         }
2537
2538         WARN_ON( i == ATH9K_MAX_TSF_READ );
2539
2540         return (((u64)tsf_upper1 << 32) | tsf_lower);
2541 }
2542 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2543
2544 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2545 {
2546         REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2547         REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2548 }
2549 EXPORT_SYMBOL(ath9k_hw_settsf64);
2550
2551 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2552 {
2553         if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2554                            AH_TSF_WRITE_TIMEOUT))
2555                 ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2556                           "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2557
2558         REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2559 }
2560 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2561
2562 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2563 {
2564         if (setting)
2565                 ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2566         else
2567                 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2568 }
2569 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2570
2571 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2572 {
2573         struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2574         u32 macmode;
2575
2576         if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2577                 macmode = AR_2040_JOINED_RX_CLEAR;
2578         else
2579                 macmode = 0;
2580
2581         REG_WRITE(ah, AR_2040_MODE, macmode);
2582 }
2583
2584 /* HW Generic timers configuration */
2585
2586 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2587 {
2588         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2589         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2590         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2591         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2592         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2593         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2594         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2595         {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2596         {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2597         {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2598                                 AR_NDP2_TIMER_MODE, 0x0002},
2599         {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2600                                 AR_NDP2_TIMER_MODE, 0x0004},
2601         {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2602                                 AR_NDP2_TIMER_MODE, 0x0008},
2603         {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2604                                 AR_NDP2_TIMER_MODE, 0x0010},
2605         {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2606                                 AR_NDP2_TIMER_MODE, 0x0020},
2607         {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2608                                 AR_NDP2_TIMER_MODE, 0x0040},
2609         {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2610                                 AR_NDP2_TIMER_MODE, 0x0080}
2611 };
2612
2613 /* HW generic timer primitives */
2614
2615 /* compute and clear index of rightmost 1 */
2616 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2617 {
2618         u32 b;
2619
2620         b = *mask;
2621         b &= (0-b);
2622         *mask &= ~b;
2623         b *= debruijn32;
2624         b >>= 27;
2625
2626         return timer_table->gen_timer_index[b];
2627 }
2628
2629 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2630 {
2631         return REG_READ(ah, AR_TSF_L32);
2632 }
2633 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2634
2635 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2636                                           void (*trigger)(void *),
2637                                           void (*overflow)(void *),
2638                                           void *arg,
2639                                           u8 timer_index)
2640 {
2641         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2642         struct ath_gen_timer *timer;
2643
2644         timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2645
2646         if (timer == NULL) {
2647                 ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2648                           "Failed to allocate memory"
2649                           "for hw timer[%d]\n", timer_index);
2650                 return NULL;
2651         }
2652
2653         /* allocate a hardware generic timer slot */
2654         timer_table->timers[timer_index] = timer;
2655         timer->index = timer_index;
2656         timer->trigger = trigger;
2657         timer->overflow = overflow;
2658         timer->arg = arg;
2659
2660         return timer;
2661 }
2662 EXPORT_SYMBOL(ath_gen_timer_alloc);
2663
2664 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2665                               struct ath_gen_timer *timer,
2666                               u32 timer_next,
2667                               u32 timer_period)
2668 {
2669         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2670         u32 tsf;
2671
2672         BUG_ON(!timer_period);
2673
2674         set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2675
2676         tsf = ath9k_hw_gettsf32(ah);
2677
2678         ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2679                   "curent tsf %x period %x"
2680                   "timer_next %x\n", tsf, timer_period, timer_next);
2681
2682         /*
2683          * Pull timer_next forward if the current TSF already passed it
2684          * because of software latency
2685          */
2686         if (timer_next < tsf)
2687                 timer_next = tsf + timer_period;
2688
2689         /*
2690          * Program generic timer registers
2691          */
2692         REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2693                  timer_next);
2694         REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2695                   timer_period);
2696         REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2697                     gen_tmr_configuration[timer->index].mode_mask);
2698
2699         /* Enable both trigger and thresh interrupt masks */
2700         REG_SET_BIT(ah, AR_IMR_S5,
2701                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2702                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2703 }
2704 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2705
2706 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2707 {
2708         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2709
2710         if ((timer->index < AR_FIRST_NDP_TIMER) ||
2711                 (timer->index >= ATH_MAX_GEN_TIMER)) {
2712                 return;
2713         }
2714
2715         /* Clear generic timer enable bits. */
2716         REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2717                         gen_tmr_configuration[timer->index].mode_mask);
2718
2719         /* Disable both trigger and thresh interrupt masks */
2720         REG_CLR_BIT(ah, AR_IMR_S5,
2721                 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2722                 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2723
2724         clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2725 }
2726 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2727
2728 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2729 {
2730         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2731
2732         /* free the hardware generic timer slot */
2733         timer_table->timers[timer->index] = NULL;
2734         kfree(timer);
2735 }
2736 EXPORT_SYMBOL(ath_gen_timer_free);
2737
2738 /*
2739  * Generic Timer Interrupts handling
2740  */
2741 void ath_gen_timer_isr(struct ath_hw *ah)
2742 {
2743         struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2744         struct ath_gen_timer *timer;
2745         struct ath_common *common = ath9k_hw_common(ah);
2746         u32 trigger_mask, thresh_mask, index;
2747
2748         /* get hardware generic timer interrupt status */
2749         trigger_mask = ah->intr_gen_timer_trigger;
2750         thresh_mask = ah->intr_gen_timer_thresh;
2751         trigger_mask &= timer_table->timer_mask.val;
2752         thresh_mask &= timer_table->timer_mask.val;
2753
2754         trigger_mask &= ~thresh_mask;
2755
2756         while (thresh_mask) {
2757                 index = rightmost_index(timer_table, &thresh_mask);
2758                 timer = timer_table->timers[index];
2759                 BUG_ON(!timer);
2760                 ath_print(common, ATH_DBG_HWTIMER,
2761                           "TSF overflow for Gen timer %d\n", index);
2762                 timer->overflow(timer->arg);
2763         }
2764
2765         while (trigger_mask) {
2766                 index = rightmost_index(timer_table, &trigger_mask);
2767                 timer = timer_table->timers[index];
2768                 BUG_ON(!timer);
2769                 ath_print(common, ATH_DBG_HWTIMER,
2770                           "Gen timer[%d] trigger\n", index);
2771                 timer->trigger(timer->arg);
2772         }
2773 }
2774 EXPORT_SYMBOL(ath_gen_timer_isr);
2775
2776 /********/
2777 /* HTC  */
2778 /********/
2779
2780 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2781 {
2782         ah->htc_reset_init = true;
2783 }
2784 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2785
2786 static struct {
2787         u32 version;
2788         const char * name;
2789 } ath_mac_bb_names[] = {
2790         /* Devices with external radios */
2791         { AR_SREV_VERSION_5416_PCI,     "5416" },
2792         { AR_SREV_VERSION_5416_PCIE,    "5418" },
2793         { AR_SREV_VERSION_9100,         "9100" },
2794         { AR_SREV_VERSION_9160,         "9160" },
2795         /* Single-chip solutions */
2796         { AR_SREV_VERSION_9280,         "9280" },
2797         { AR_SREV_VERSION_9285,         "9285" },
2798         { AR_SREV_VERSION_9287,         "9287" },
2799         { AR_SREV_VERSION_9271,         "9271" },
2800         { AR_SREV_VERSION_9300,         "9300" },
2801 };
2802
2803 /* For devices with external radios */
2804 static struct {
2805         u16 version;
2806         const char * name;
2807 } ath_rf_names[] = {
2808         { 0,                            "5133" },
2809         { AR_RAD5133_SREV_MAJOR,        "5133" },
2810         { AR_RAD5122_SREV_MAJOR,        "5122" },
2811         { AR_RAD2133_SREV_MAJOR,        "2133" },
2812         { AR_RAD2122_SREV_MAJOR,        "2122" }
2813 };
2814
2815 /*
2816  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2817  */
2818 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2819 {
2820         int i;
2821
2822         for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2823                 if (ath_mac_bb_names[i].version == mac_bb_version) {
2824                         return ath_mac_bb_names[i].name;
2825                 }
2826         }
2827
2828         return "????";
2829 }
2830
2831 /*
2832  * Return the RF name. "????" is returned if the RF is unknown.
2833  * Used for devices with external radios.
2834  */
2835 static const char *ath9k_hw_rf_name(u16 rf_version)
2836 {
2837         int i;
2838
2839         for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2840                 if (ath_rf_names[i].version == rf_version) {
2841                         return ath_rf_names[i].name;
2842                 }
2843         }
2844
2845         return "????";
2846 }
2847
2848 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2849 {
2850         int used;
2851
2852         /* chipsets >= AR9280 are single-chip */
2853         if (AR_SREV_9280_10_OR_LATER(ah)) {
2854                 used = snprintf(hw_name, len,
2855                                "Atheros AR%s Rev:%x",
2856                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2857                                ah->hw_version.macRev);
2858         }
2859         else {
2860                 used = snprintf(hw_name, len,
2861                                "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2862                                ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2863                                ah->hw_version.macRev,
2864                                ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2865                                                 AR_RADIO_SREV_MAJOR)),
2866                                ah->hw_version.phyRev);
2867         }
2868
2869         hw_name[used] = '\0';
2870 }
2871 EXPORT_SYMBOL(ath9k_hw_name);