]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/ixgbevf/ixgbevf_main.c
40f47b8fe4173770a439641b3725241e65e20ebe
[net-next-2.6.git] / drivers / net / ixgbevf / ixgbevf_main.c
1 /*******************************************************************************
2
3   Intel 82599 Virtual Function driver
4   Copyright(c) 1999 - 2009 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28
29 /******************************************************************************
30  Copyright (c)2006 - 2007 Myricom, Inc. for some LRO specific code
31 ******************************************************************************/
32 #include <linux/types.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/vmalloc.h>
37 #include <linux/string.h>
38 #include <linux/in.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47
48 #include "ixgbevf.h"
49
50 char ixgbevf_driver_name[] = "ixgbevf";
51 static const char ixgbevf_driver_string[] =
52         "Intel(R) 82599 Virtual Function";
53
54 #define DRV_VERSION "1.0.0-k0"
55 const char ixgbevf_driver_version[] = DRV_VERSION;
56 static char ixgbevf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
57
58 static const struct ixgbevf_info *ixgbevf_info_tbl[] = {
59         [board_82599_vf] = &ixgbevf_vf_info,
60 };
61
62 /* ixgbevf_pci_tbl - PCI Device ID Table
63  *
64  * Wildcard entries (PCI_ANY_ID) should come last
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static struct pci_device_id ixgbevf_pci_tbl[] = {
71         {PCI_VDEVICE(INTEL, IXGBE_DEV_ID_82599_VF),
72         board_82599_vf},
73
74         /* required last entry */
75         {0, }
76 };
77 MODULE_DEVICE_TABLE(pci, ixgbevf_pci_tbl);
78
79 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
80 MODULE_DESCRIPTION("Intel(R) 82599 Virtual Function Driver");
81 MODULE_LICENSE("GPL");
82 MODULE_VERSION(DRV_VERSION);
83
84 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
85
86 /* forward decls */
87 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector);
88 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
89                                u32 itr_reg);
90
91 static inline void ixgbevf_release_rx_desc(struct ixgbe_hw *hw,
92                                            struct ixgbevf_ring *rx_ring,
93                                            u32 val)
94 {
95         /*
96          * Force memory writes to complete before letting h/w
97          * know there are new descriptors to fetch.  (Only
98          * applicable for weak-ordered memory model archs,
99          * such as IA-64).
100          */
101         wmb();
102         IXGBE_WRITE_REG(hw, IXGBE_VFRDT(rx_ring->reg_idx), val);
103 }
104
105 /*
106  * ixgbe_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
107  * @adapter: pointer to adapter struct
108  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
109  * @queue: queue to map the corresponding interrupt to
110  * @msix_vector: the vector to map to the corresponding queue
111  *
112  */
113 static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter, s8 direction,
114                              u8 queue, u8 msix_vector)
115 {
116         u32 ivar, index;
117         struct ixgbe_hw *hw = &adapter->hw;
118         if (direction == -1) {
119                 /* other causes */
120                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
121                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR_MISC);
122                 ivar &= ~0xFF;
123                 ivar |= msix_vector;
124                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR_MISC, ivar);
125         } else {
126                 /* tx or rx causes */
127                 msix_vector |= IXGBE_IVAR_ALLOC_VAL;
128                 index = ((16 * (queue & 1)) + (8 * direction));
129                 ivar = IXGBE_READ_REG(hw, IXGBE_VTIVAR(queue >> 1));
130                 ivar &= ~(0xFF << index);
131                 ivar |= (msix_vector << index);
132                 IXGBE_WRITE_REG(hw, IXGBE_VTIVAR(queue >> 1), ivar);
133         }
134 }
135
136 static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_adapter *adapter,
137                                                struct ixgbevf_tx_buffer
138                                                *tx_buffer_info)
139 {
140         if (tx_buffer_info->dma) {
141                 if (tx_buffer_info->mapped_as_page)
142                         dma_unmap_page(&adapter->pdev->dev,
143                                        tx_buffer_info->dma,
144                                        tx_buffer_info->length,
145                                        DMA_TO_DEVICE);
146                 else
147                         dma_unmap_single(&adapter->pdev->dev,
148                                          tx_buffer_info->dma,
149                                          tx_buffer_info->length,
150                                          DMA_TO_DEVICE);
151                 tx_buffer_info->dma = 0;
152         }
153         if (tx_buffer_info->skb) {
154                 dev_kfree_skb_any(tx_buffer_info->skb);
155                 tx_buffer_info->skb = NULL;
156         }
157         tx_buffer_info->time_stamp = 0;
158         /* tx_buffer_info must be completely set up in the transmit path */
159 }
160
161 static inline bool ixgbevf_check_tx_hang(struct ixgbevf_adapter *adapter,
162                                          struct ixgbevf_ring *tx_ring,
163                                          unsigned int eop)
164 {
165         struct ixgbe_hw *hw = &adapter->hw;
166         u32 head, tail;
167
168         /* Detect a transmit hang in hardware, this serializes the
169          * check with the clearing of time_stamp and movement of eop */
170         head = readl(hw->hw_addr + tx_ring->head);
171         tail = readl(hw->hw_addr + tx_ring->tail);
172         adapter->detect_tx_hung = false;
173         if ((head != tail) &&
174             tx_ring->tx_buffer_info[eop].time_stamp &&
175             time_after(jiffies, tx_ring->tx_buffer_info[eop].time_stamp + HZ)) {
176                 /* detected Tx unit hang */
177                 union ixgbe_adv_tx_desc *tx_desc;
178                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
179                 printk(KERN_ERR "Detected Tx Unit Hang\n"
180                        "  Tx Queue             <%d>\n"
181                        "  TDH, TDT             <%x>, <%x>\n"
182                        "  next_to_use          <%x>\n"
183                        "  next_to_clean        <%x>\n"
184                        "tx_buffer_info[next_to_clean]\n"
185                        "  time_stamp           <%lx>\n"
186                        "  jiffies              <%lx>\n",
187                        tx_ring->queue_index,
188                        head, tail,
189                        tx_ring->next_to_use, eop,
190                        tx_ring->tx_buffer_info[eop].time_stamp, jiffies);
191                 return true;
192         }
193
194         return false;
195 }
196
197 #define IXGBE_MAX_TXD_PWR       14
198 #define IXGBE_MAX_DATA_PER_TXD  (1 << IXGBE_MAX_TXD_PWR)
199
200 /* Tx Descriptors needed, worst case */
201 #define TXD_USE_COUNT(S) (((S) >> IXGBE_MAX_TXD_PWR) + \
202                          (((S) & (IXGBE_MAX_DATA_PER_TXD - 1)) ? 1 : 0))
203 #ifdef MAX_SKB_FRAGS
204 #define DESC_NEEDED (TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD) /* skb->data */ + \
205         MAX_SKB_FRAGS * TXD_USE_COUNT(PAGE_SIZE) + 1)      /* for context */
206 #else
207 #define DESC_NEEDED TXD_USE_COUNT(IXGBE_MAX_DATA_PER_TXD)
208 #endif
209
210 static void ixgbevf_tx_timeout(struct net_device *netdev);
211
212 /**
213  * ixgbevf_clean_tx_irq - Reclaim resources after transmit completes
214  * @adapter: board private structure
215  * @tx_ring: tx ring to clean
216  **/
217 static bool ixgbevf_clean_tx_irq(struct ixgbevf_adapter *adapter,
218                                  struct ixgbevf_ring *tx_ring)
219 {
220         struct net_device *netdev = adapter->netdev;
221         struct ixgbe_hw *hw = &adapter->hw;
222         union ixgbe_adv_tx_desc *tx_desc, *eop_desc;
223         struct ixgbevf_tx_buffer *tx_buffer_info;
224         unsigned int i, eop, count = 0;
225         unsigned int total_bytes = 0, total_packets = 0;
226
227         i = tx_ring->next_to_clean;
228         eop = tx_ring->tx_buffer_info[i].next_to_watch;
229         eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
230
231         while ((eop_desc->wb.status & cpu_to_le32(IXGBE_TXD_STAT_DD)) &&
232                (count < tx_ring->work_limit)) {
233                 bool cleaned = false;
234                 for ( ; !cleaned; count++) {
235                         struct sk_buff *skb;
236                         tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
237                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
238                         cleaned = (i == eop);
239                         skb = tx_buffer_info->skb;
240
241                         if (cleaned && skb) {
242                                 unsigned int segs, bytecount;
243
244                                 /* gso_segs is currently only valid for tcp */
245                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
246                                 /* multiply data chunks by size of headers */
247                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
248                                             skb->len;
249                                 total_packets += segs;
250                                 total_bytes += bytecount;
251                         }
252
253                         ixgbevf_unmap_and_free_tx_resource(adapter,
254                                                            tx_buffer_info);
255
256                         tx_desc->wb.status = 0;
257
258                         i++;
259                         if (i == tx_ring->count)
260                                 i = 0;
261                 }
262
263                 eop = tx_ring->tx_buffer_info[i].next_to_watch;
264                 eop_desc = IXGBE_TX_DESC_ADV(*tx_ring, eop);
265         }
266
267         tx_ring->next_to_clean = i;
268
269 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
270         if (unlikely(count && netif_carrier_ok(netdev) &&
271                      (IXGBE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
272                 /* Make sure that anybody stopping the queue after this
273                  * sees the new next_to_clean.
274                  */
275                 smp_mb();
276 #ifdef HAVE_TX_MQ
277                 if (__netif_subqueue_stopped(netdev, tx_ring->queue_index) &&
278                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
279                         netif_wake_subqueue(netdev, tx_ring->queue_index);
280                         ++adapter->restart_queue;
281                 }
282 #else
283                 if (netif_queue_stopped(netdev) &&
284                     !test_bit(__IXGBEVF_DOWN, &adapter->state)) {
285                         netif_wake_queue(netdev);
286                         ++adapter->restart_queue;
287                 }
288 #endif
289         }
290
291         if (adapter->detect_tx_hung) {
292                 if (ixgbevf_check_tx_hang(adapter, tx_ring, i)) {
293                         /* schedule immediate reset if we believe we hung */
294                         printk(KERN_INFO
295                                "tx hang %d detected, resetting adapter\n",
296                                adapter->tx_timeout_count + 1);
297                         ixgbevf_tx_timeout(adapter->netdev);
298                 }
299         }
300
301         /* re-arm the interrupt */
302         if ((count >= tx_ring->work_limit) &&
303             (!test_bit(__IXGBEVF_DOWN, &adapter->state))) {
304                 IXGBE_WRITE_REG(hw, IXGBE_VTEICS, tx_ring->v_idx);
305         }
306
307         tx_ring->total_bytes += total_bytes;
308         tx_ring->total_packets += total_packets;
309
310         adapter->net_stats.tx_bytes += total_bytes;
311         adapter->net_stats.tx_packets += total_packets;
312
313         return (count < tx_ring->work_limit);
314 }
315
316 /**
317  * ixgbevf_receive_skb - Send a completed packet up the stack
318  * @q_vector: structure containing interrupt and ring information
319  * @skb: packet to send up
320  * @status: hardware indication of status of receive
321  * @rx_ring: rx descriptor ring (for a specific queue) to setup
322  * @rx_desc: rx descriptor
323  **/
324 static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector,
325                                 struct sk_buff *skb, u8 status,
326                                 struct ixgbevf_ring *ring,
327                                 union ixgbe_adv_rx_desc *rx_desc)
328 {
329         struct ixgbevf_adapter *adapter = q_vector->adapter;
330         bool is_vlan = (status & IXGBE_RXD_STAT_VP);
331         u16 tag = le16_to_cpu(rx_desc->wb.upper.vlan);
332         int ret;
333
334         if (!(adapter->flags & IXGBE_FLAG_IN_NETPOLL)) {
335                 if (adapter->vlgrp && is_vlan)
336                         vlan_gro_receive(&q_vector->napi,
337                                          adapter->vlgrp,
338                                          tag, skb);
339                 else
340                         napi_gro_receive(&q_vector->napi, skb);
341         } else {
342                 if (adapter->vlgrp && is_vlan)
343                         ret = vlan_hwaccel_rx(skb, adapter->vlgrp, tag);
344                 else
345                         ret = netif_rx(skb);
346         }
347 }
348
349 /**
350  * ixgbevf_rx_checksum - indicate in skb if hw indicated a good cksum
351  * @adapter: address of board private structure
352  * @status_err: hardware indication of status of receive
353  * @skb: skb currently being received and modified
354  **/
355 static inline void ixgbevf_rx_checksum(struct ixgbevf_adapter *adapter,
356                                        u32 status_err, struct sk_buff *skb)
357 {
358         skb->ip_summed = CHECKSUM_NONE;
359
360         /* Rx csum disabled */
361         if (!(adapter->flags & IXGBE_FLAG_RX_CSUM_ENABLED))
362                 return;
363
364         /* if IP and error */
365         if ((status_err & IXGBE_RXD_STAT_IPCS) &&
366             (status_err & IXGBE_RXDADV_ERR_IPE)) {
367                 adapter->hw_csum_rx_error++;
368                 return;
369         }
370
371         if (!(status_err & IXGBE_RXD_STAT_L4CS))
372                 return;
373
374         if (status_err & IXGBE_RXDADV_ERR_TCPE) {
375                 adapter->hw_csum_rx_error++;
376                 return;
377         }
378
379         /* It must be a TCP or UDP packet with a valid checksum */
380         skb->ip_summed = CHECKSUM_UNNECESSARY;
381         adapter->hw_csum_rx_good++;
382 }
383
384 /**
385  * ixgbevf_alloc_rx_buffers - Replace used receive buffers; packet split
386  * @adapter: address of board private structure
387  **/
388 static void ixgbevf_alloc_rx_buffers(struct ixgbevf_adapter *adapter,
389                                      struct ixgbevf_ring *rx_ring,
390                                      int cleaned_count)
391 {
392         struct pci_dev *pdev = adapter->pdev;
393         union ixgbe_adv_rx_desc *rx_desc;
394         struct ixgbevf_rx_buffer *bi;
395         struct sk_buff *skb;
396         unsigned int i;
397         unsigned int bufsz = rx_ring->rx_buf_len + NET_IP_ALIGN;
398
399         i = rx_ring->next_to_use;
400         bi = &rx_ring->rx_buffer_info[i];
401
402         while (cleaned_count--) {
403                 rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
404
405                 if (!bi->page_dma &&
406                     (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED)) {
407                         if (!bi->page) {
408                                 bi->page = netdev_alloc_page(adapter->netdev);
409                                 if (!bi->page) {
410                                         adapter->alloc_rx_page_failed++;
411                                         goto no_buffers;
412                                 }
413                                 bi->page_offset = 0;
414                         } else {
415                                 /* use a half page if we're re-using */
416                                 bi->page_offset ^= (PAGE_SIZE / 2);
417                         }
418
419                         bi->page_dma = dma_map_page(&pdev->dev, bi->page,
420                                                     bi->page_offset,
421                                                     (PAGE_SIZE / 2),
422                                                     DMA_FROM_DEVICE);
423                 }
424
425                 skb = bi->skb;
426                 if (!skb) {
427                         skb = netdev_alloc_skb(adapter->netdev,
428                                                                bufsz);
429
430                         if (!skb) {
431                                 adapter->alloc_rx_buff_failed++;
432                                 goto no_buffers;
433                         }
434
435                         /*
436                          * Make buffer alignment 2 beyond a 16 byte boundary
437                          * this will result in a 16 byte aligned IP header after
438                          * the 14 byte MAC header is removed
439                          */
440                         skb_reserve(skb, NET_IP_ALIGN);
441
442                         bi->skb = skb;
443                 }
444                 if (!bi->dma) {
445                         bi->dma = dma_map_single(&pdev->dev, skb->data,
446                                                  rx_ring->rx_buf_len,
447                                                  DMA_FROM_DEVICE);
448                 }
449                 /* Refresh the desc even if buffer_addrs didn't change because
450                  * each write-back erases this info. */
451                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
452                         rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
453                         rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
454                 } else {
455                         rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
456                 }
457
458                 i++;
459                 if (i == rx_ring->count)
460                         i = 0;
461                 bi = &rx_ring->rx_buffer_info[i];
462         }
463
464 no_buffers:
465         if (rx_ring->next_to_use != i) {
466                 rx_ring->next_to_use = i;
467                 if (i-- == 0)
468                         i = (rx_ring->count - 1);
469
470                 ixgbevf_release_rx_desc(&adapter->hw, rx_ring, i);
471         }
472 }
473
474 static inline void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter,
475                                              u64 qmask)
476 {
477         u32 mask;
478         struct ixgbe_hw *hw = &adapter->hw;
479
480         mask = (qmask & 0xFFFFFFFF);
481         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
482 }
483
484 static inline u16 ixgbevf_get_hdr_info(union ixgbe_adv_rx_desc *rx_desc)
485 {
486         return rx_desc->wb.lower.lo_dword.hs_rss.hdr_info;
487 }
488
489 static inline u16 ixgbevf_get_pkt_info(union ixgbe_adv_rx_desc *rx_desc)
490 {
491         return rx_desc->wb.lower.lo_dword.hs_rss.pkt_info;
492 }
493
494 static bool ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector,
495                                  struct ixgbevf_ring *rx_ring,
496                                  int *work_done, int work_to_do)
497 {
498         struct ixgbevf_adapter *adapter = q_vector->adapter;
499         struct pci_dev *pdev = adapter->pdev;
500         union ixgbe_adv_rx_desc *rx_desc, *next_rxd;
501         struct ixgbevf_rx_buffer *rx_buffer_info, *next_buffer;
502         struct sk_buff *skb;
503         unsigned int i;
504         u32 len, staterr;
505         u16 hdr_info;
506         bool cleaned = false;
507         int cleaned_count = 0;
508         unsigned int total_rx_bytes = 0, total_rx_packets = 0;
509
510         i = rx_ring->next_to_clean;
511         rx_desc = IXGBE_RX_DESC_ADV(*rx_ring, i);
512         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
513         rx_buffer_info = &rx_ring->rx_buffer_info[i];
514
515         while (staterr & IXGBE_RXD_STAT_DD) {
516                 u32 upper_len = 0;
517                 if (*work_done >= work_to_do)
518                         break;
519                 (*work_done)++;
520
521                 if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
522                         hdr_info = le16_to_cpu(ixgbevf_get_hdr_info(rx_desc));
523                         len = (hdr_info & IXGBE_RXDADV_HDRBUFLEN_MASK) >>
524                                IXGBE_RXDADV_HDRBUFLEN_SHIFT;
525                         if (hdr_info & IXGBE_RXDADV_SPH)
526                                 adapter->rx_hdr_split++;
527                         if (len > IXGBEVF_RX_HDR_SIZE)
528                                 len = IXGBEVF_RX_HDR_SIZE;
529                         upper_len = le16_to_cpu(rx_desc->wb.upper.length);
530                 } else {
531                         len = le16_to_cpu(rx_desc->wb.upper.length);
532                 }
533                 cleaned = true;
534                 skb = rx_buffer_info->skb;
535                 prefetch(skb->data - NET_IP_ALIGN);
536                 rx_buffer_info->skb = NULL;
537
538                 if (rx_buffer_info->dma) {
539                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
540                                          rx_ring->rx_buf_len,
541                                          DMA_FROM_DEVICE);
542                         rx_buffer_info->dma = 0;
543                         skb_put(skb, len);
544                 }
545
546                 if (upper_len) {
547                         dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
548                                        PAGE_SIZE / 2, DMA_FROM_DEVICE);
549                         rx_buffer_info->page_dma = 0;
550                         skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
551                                            rx_buffer_info->page,
552                                            rx_buffer_info->page_offset,
553                                            upper_len);
554
555                         if ((rx_ring->rx_buf_len > (PAGE_SIZE / 2)) ||
556                             (page_count(rx_buffer_info->page) != 1))
557                                 rx_buffer_info->page = NULL;
558                         else
559                                 get_page(rx_buffer_info->page);
560
561                         skb->len += upper_len;
562                         skb->data_len += upper_len;
563                         skb->truesize += upper_len;
564                 }
565
566                 i++;
567                 if (i == rx_ring->count)
568                         i = 0;
569
570                 next_rxd = IXGBE_RX_DESC_ADV(*rx_ring, i);
571                 prefetch(next_rxd);
572                 cleaned_count++;
573
574                 next_buffer = &rx_ring->rx_buffer_info[i];
575
576                 if (!(staterr & IXGBE_RXD_STAT_EOP)) {
577                         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
578                                 rx_buffer_info->skb = next_buffer->skb;
579                                 rx_buffer_info->dma = next_buffer->dma;
580                                 next_buffer->skb = skb;
581                                 next_buffer->dma = 0;
582                         } else {
583                                 skb->next = next_buffer->skb;
584                                 skb->next->prev = skb;
585                         }
586                         adapter->non_eop_descs++;
587                         goto next_desc;
588                 }
589
590                 /* ERR_MASK will only have valid bits if EOP set */
591                 if (unlikely(staterr & IXGBE_RXDADV_ERR_FRAME_ERR_MASK)) {
592                         dev_kfree_skb_irq(skb);
593                         goto next_desc;
594                 }
595
596                 ixgbevf_rx_checksum(adapter, staterr, skb);
597
598                 /* probably a little skewed due to removing CRC */
599                 total_rx_bytes += skb->len;
600                 total_rx_packets++;
601
602                 /*
603                  * Work around issue of some types of VM to VM loop back
604                  * packets not getting split correctly
605                  */
606                 if (staterr & IXGBE_RXD_STAT_LB) {
607                         u32 header_fixup_len = skb_headlen(skb);
608                         if (header_fixup_len < 14)
609                                 skb_push(skb, header_fixup_len);
610                 }
611                 skb->protocol = eth_type_trans(skb, adapter->netdev);
612
613                 ixgbevf_receive_skb(q_vector, skb, staterr, rx_ring, rx_desc);
614
615 next_desc:
616                 rx_desc->wb.upper.status_error = 0;
617
618                 /* return some buffers to hardware, one at a time is too slow */
619                 if (cleaned_count >= IXGBEVF_RX_BUFFER_WRITE) {
620                         ixgbevf_alloc_rx_buffers(adapter, rx_ring,
621                                                  cleaned_count);
622                         cleaned_count = 0;
623                 }
624
625                 /* use prefetched values */
626                 rx_desc = next_rxd;
627                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
628
629                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
630         }
631
632         rx_ring->next_to_clean = i;
633         cleaned_count = IXGBE_DESC_UNUSED(rx_ring);
634
635         if (cleaned_count)
636                 ixgbevf_alloc_rx_buffers(adapter, rx_ring, cleaned_count);
637
638         rx_ring->total_packets += total_rx_packets;
639         rx_ring->total_bytes += total_rx_bytes;
640         adapter->net_stats.rx_bytes += total_rx_bytes;
641         adapter->net_stats.rx_packets += total_rx_packets;
642
643         return cleaned;
644 }
645
646 /**
647  * ixgbevf_clean_rxonly - msix (aka one shot) rx clean routine
648  * @napi: napi struct with our devices info in it
649  * @budget: amount of work driver is allowed to do this pass, in packets
650  *
651  * This function is optimized for cleaning one queue only on a single
652  * q_vector!!!
653  **/
654 static int ixgbevf_clean_rxonly(struct napi_struct *napi, int budget)
655 {
656         struct ixgbevf_q_vector *q_vector =
657                 container_of(napi, struct ixgbevf_q_vector, napi);
658         struct ixgbevf_adapter *adapter = q_vector->adapter;
659         struct ixgbevf_ring *rx_ring = NULL;
660         int work_done = 0;
661         long r_idx;
662
663         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
664         rx_ring = &(adapter->rx_ring[r_idx]);
665
666         ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
667
668         /* If all Rx work done, exit the polling mode */
669         if (work_done < budget) {
670                 napi_complete(napi);
671                 if (adapter->itr_setting & 1)
672                         ixgbevf_set_itr_msix(q_vector);
673                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
674                         ixgbevf_irq_enable_queues(adapter, rx_ring->v_idx);
675         }
676
677         return work_done;
678 }
679
680 /**
681  * ixgbevf_clean_rxonly_many - msix (aka one shot) rx clean routine
682  * @napi: napi struct with our devices info in it
683  * @budget: amount of work driver is allowed to do this pass, in packets
684  *
685  * This function will clean more than one rx queue associated with a
686  * q_vector.
687  **/
688 static int ixgbevf_clean_rxonly_many(struct napi_struct *napi, int budget)
689 {
690         struct ixgbevf_q_vector *q_vector =
691                 container_of(napi, struct ixgbevf_q_vector, napi);
692         struct ixgbevf_adapter *adapter = q_vector->adapter;
693         struct ixgbevf_ring *rx_ring = NULL;
694         int work_done = 0, i;
695         long r_idx;
696         u64 enable_mask = 0;
697
698         /* attempt to distribute budget to each queue fairly, but don't allow
699          * the budget to go below 1 because we'll exit polling */
700         budget /= (q_vector->rxr_count ?: 1);
701         budget = max(budget, 1);
702         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
703         for (i = 0; i < q_vector->rxr_count; i++) {
704                 rx_ring = &(adapter->rx_ring[r_idx]);
705                 ixgbevf_clean_rx_irq(q_vector, rx_ring, &work_done, budget);
706                 enable_mask |= rx_ring->v_idx;
707                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
708                                       r_idx + 1);
709         }
710
711 #ifndef HAVE_NETDEV_NAPI_LIST
712         if (!netif_running(adapter->netdev))
713                 work_done = 0;
714
715 #endif
716         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
717         rx_ring = &(adapter->rx_ring[r_idx]);
718
719         /* If all Rx work done, exit the polling mode */
720         if (work_done < budget) {
721                 napi_complete(napi);
722                 if (adapter->itr_setting & 1)
723                         ixgbevf_set_itr_msix(q_vector);
724                 if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
725                         ixgbevf_irq_enable_queues(adapter, enable_mask);
726         }
727
728         return work_done;
729 }
730
731
732 /**
733  * ixgbevf_configure_msix - Configure MSI-X hardware
734  * @adapter: board private structure
735  *
736  * ixgbevf_configure_msix sets up the hardware to properly generate MSI-X
737  * interrupts.
738  **/
739 static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter)
740 {
741         struct ixgbevf_q_vector *q_vector;
742         struct ixgbe_hw *hw = &adapter->hw;
743         int i, j, q_vectors, v_idx, r_idx;
744         u32 mask;
745
746         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
747
748         /*
749          * Populate the IVAR table and set the ITR values to the
750          * corresponding register.
751          */
752         for (v_idx = 0; v_idx < q_vectors; v_idx++) {
753                 q_vector = adapter->q_vector[v_idx];
754                 /* XXX for_each_set_bit(...) */
755                 r_idx = find_first_bit(q_vector->rxr_idx,
756                                        adapter->num_rx_queues);
757
758                 for (i = 0; i < q_vector->rxr_count; i++) {
759                         j = adapter->rx_ring[r_idx].reg_idx;
760                         ixgbevf_set_ivar(adapter, 0, j, v_idx);
761                         r_idx = find_next_bit(q_vector->rxr_idx,
762                                               adapter->num_rx_queues,
763                                               r_idx + 1);
764                 }
765                 r_idx = find_first_bit(q_vector->txr_idx,
766                                        adapter->num_tx_queues);
767
768                 for (i = 0; i < q_vector->txr_count; i++) {
769                         j = adapter->tx_ring[r_idx].reg_idx;
770                         ixgbevf_set_ivar(adapter, 1, j, v_idx);
771                         r_idx = find_next_bit(q_vector->txr_idx,
772                                               adapter->num_tx_queues,
773                                               r_idx + 1);
774                 }
775
776                 /* if this is a tx only vector halve the interrupt rate */
777                 if (q_vector->txr_count && !q_vector->rxr_count)
778                         q_vector->eitr = (adapter->eitr_param >> 1);
779                 else if (q_vector->rxr_count)
780                         /* rx only */
781                         q_vector->eitr = adapter->eitr_param;
782
783                 ixgbevf_write_eitr(adapter, v_idx, q_vector->eitr);
784         }
785
786         ixgbevf_set_ivar(adapter, -1, 1, v_idx);
787
788         /* set up to autoclear timer, and the vectors */
789         mask = IXGBE_EIMS_ENABLE_MASK;
790         mask &= ~IXGBE_EIMS_OTHER;
791         IXGBE_WRITE_REG(hw, IXGBE_VTEIAC, mask);
792 }
793
794 enum latency_range {
795         lowest_latency = 0,
796         low_latency = 1,
797         bulk_latency = 2,
798         latency_invalid = 255
799 };
800
801 /**
802  * ixgbevf_update_itr - update the dynamic ITR value based on statistics
803  * @adapter: pointer to adapter
804  * @eitr: eitr setting (ints per sec) to give last timeslice
805  * @itr_setting: current throttle rate in ints/second
806  * @packets: the number of packets during this measurement interval
807  * @bytes: the number of bytes during this measurement interval
808  *
809  *      Stores a new ITR value based on packets and byte
810  *      counts during the last interrupt.  The advantage of per interrupt
811  *      computation is faster updates and more accurate ITR for the current
812  *      traffic pattern.  Constants in this function were computed
813  *      based on theoretical maximum wire speed and thresholds were set based
814  *      on testing data as well as attempting to minimize response time
815  *      while increasing bulk throughput.
816  **/
817 static u8 ixgbevf_update_itr(struct ixgbevf_adapter *adapter,
818                              u32 eitr, u8 itr_setting,
819                              int packets, int bytes)
820 {
821         unsigned int retval = itr_setting;
822         u32 timepassed_us;
823         u64 bytes_perint;
824
825         if (packets == 0)
826                 goto update_itr_done;
827
828
829         /* simple throttlerate management
830          *    0-20MB/s lowest (100000 ints/s)
831          *   20-100MB/s low   (20000 ints/s)
832          *  100-1249MB/s bulk (8000 ints/s)
833          */
834         /* what was last interrupt timeslice? */
835         timepassed_us = 1000000/eitr;
836         bytes_perint = bytes / timepassed_us; /* bytes/usec */
837
838         switch (itr_setting) {
839         case lowest_latency:
840                 if (bytes_perint > adapter->eitr_low)
841                         retval = low_latency;
842                 break;
843         case low_latency:
844                 if (bytes_perint > adapter->eitr_high)
845                         retval = bulk_latency;
846                 else if (bytes_perint <= adapter->eitr_low)
847                         retval = lowest_latency;
848                 break;
849         case bulk_latency:
850                 if (bytes_perint <= adapter->eitr_high)
851                         retval = low_latency;
852                 break;
853         }
854
855 update_itr_done:
856         return retval;
857 }
858
859 /**
860  * ixgbevf_write_eitr - write VTEITR register in hardware specific way
861  * @adapter: pointer to adapter struct
862  * @v_idx: vector index into q_vector array
863  * @itr_reg: new value to be written in *register* format, not ints/s
864  *
865  * This function is made to be called by ethtool and by the driver
866  * when it needs to update VTEITR registers at runtime.  Hardware
867  * specific quirks/differences are taken care of here.
868  */
869 static void ixgbevf_write_eitr(struct ixgbevf_adapter *adapter, int v_idx,
870                                u32 itr_reg)
871 {
872         struct ixgbe_hw *hw = &adapter->hw;
873
874         itr_reg = EITR_INTS_PER_SEC_TO_REG(itr_reg);
875
876         /*
877          * set the WDIS bit to not clear the timer bits and cause an
878          * immediate assertion of the interrupt
879          */
880         itr_reg |= IXGBE_EITR_CNT_WDIS;
881
882         IXGBE_WRITE_REG(hw, IXGBE_VTEITR(v_idx), itr_reg);
883 }
884
885 static void ixgbevf_set_itr_msix(struct ixgbevf_q_vector *q_vector)
886 {
887         struct ixgbevf_adapter *adapter = q_vector->adapter;
888         u32 new_itr;
889         u8 current_itr, ret_itr;
890         int i, r_idx, v_idx = q_vector->v_idx;
891         struct ixgbevf_ring *rx_ring, *tx_ring;
892
893         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
894         for (i = 0; i < q_vector->txr_count; i++) {
895                 tx_ring = &(adapter->tx_ring[r_idx]);
896                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
897                                              q_vector->tx_itr,
898                                              tx_ring->total_packets,
899                                              tx_ring->total_bytes);
900                 /* if the result for this queue would decrease interrupt
901                  * rate for this vector then use that result */
902                 q_vector->tx_itr = ((q_vector->tx_itr > ret_itr) ?
903                                     q_vector->tx_itr - 1 : ret_itr);
904                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
905                                       r_idx + 1);
906         }
907
908         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
909         for (i = 0; i < q_vector->rxr_count; i++) {
910                 rx_ring = &(adapter->rx_ring[r_idx]);
911                 ret_itr = ixgbevf_update_itr(adapter, q_vector->eitr,
912                                              q_vector->rx_itr,
913                                              rx_ring->total_packets,
914                                              rx_ring->total_bytes);
915                 /* if the result for this queue would decrease interrupt
916                  * rate for this vector then use that result */
917                 q_vector->rx_itr = ((q_vector->rx_itr > ret_itr) ?
918                                     q_vector->rx_itr - 1 : ret_itr);
919                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
920                                       r_idx + 1);
921         }
922
923         current_itr = max(q_vector->rx_itr, q_vector->tx_itr);
924
925         switch (current_itr) {
926         /* counts and packets in update_itr are dependent on these numbers */
927         case lowest_latency:
928                 new_itr = 100000;
929                 break;
930         case low_latency:
931                 new_itr = 20000; /* aka hwitr = ~200 */
932                 break;
933         case bulk_latency:
934         default:
935                 new_itr = 8000;
936                 break;
937         }
938
939         if (new_itr != q_vector->eitr) {
940                 u32 itr_reg;
941
942                 /* save the algorithm value here, not the smoothed one */
943                 q_vector->eitr = new_itr;
944                 /* do an exponential smoothing */
945                 new_itr = ((q_vector->eitr * 90)/100) + ((new_itr * 10)/100);
946                 itr_reg = EITR_INTS_PER_SEC_TO_REG(new_itr);
947                 ixgbevf_write_eitr(adapter, v_idx, itr_reg);
948         }
949
950         return;
951 }
952
953 static irqreturn_t ixgbevf_msix_mbx(int irq, void *data)
954 {
955         struct net_device *netdev = data;
956         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
957         struct ixgbe_hw *hw = &adapter->hw;
958         u32 eicr;
959         u32 msg;
960
961         eicr = IXGBE_READ_REG(hw, IXGBE_VTEICS);
962         IXGBE_WRITE_REG(hw, IXGBE_VTEICR, eicr);
963
964         if (!hw->mbx.ops.check_for_ack(hw)) {
965                 /*
966                  * checking for the ack clears the PFACK bit.  Place
967                  * it back in the v2p_mailbox cache so that anyone
968                  * polling for an ack will not miss it.  Also
969                  * avoid the read below because the code to read
970                  * the mailbox will also clear the ack bit.  This was
971                  * causing lost acks.  Just cache the bit and exit
972                  * the IRQ handler.
973                  */
974                 hw->mbx.v2p_mailbox |= IXGBE_VFMAILBOX_PFACK;
975                 goto out;
976         }
977
978         /* Not an ack interrupt, go ahead and read the message */
979         hw->mbx.ops.read(hw, &msg, 1);
980
981         if ((msg & IXGBE_MBVFICR_VFREQ_MASK) == IXGBE_PF_CONTROL_MSG)
982                 mod_timer(&adapter->watchdog_timer,
983                           round_jiffies(jiffies + 1));
984
985 out:
986         return IRQ_HANDLED;
987 }
988
989 static irqreturn_t ixgbevf_msix_clean_tx(int irq, void *data)
990 {
991         struct ixgbevf_q_vector *q_vector = data;
992         struct ixgbevf_adapter  *adapter = q_vector->adapter;
993         struct ixgbevf_ring     *tx_ring;
994         int i, r_idx;
995
996         if (!q_vector->txr_count)
997                 return IRQ_HANDLED;
998
999         r_idx = find_first_bit(q_vector->txr_idx, adapter->num_tx_queues);
1000         for (i = 0; i < q_vector->txr_count; i++) {
1001                 tx_ring = &(adapter->tx_ring[r_idx]);
1002                 tx_ring->total_bytes = 0;
1003                 tx_ring->total_packets = 0;
1004                 ixgbevf_clean_tx_irq(adapter, tx_ring);
1005                 r_idx = find_next_bit(q_vector->txr_idx, adapter->num_tx_queues,
1006                                       r_idx + 1);
1007         }
1008
1009         if (adapter->itr_setting & 1)
1010                 ixgbevf_set_itr_msix(q_vector);
1011
1012         return IRQ_HANDLED;
1013 }
1014
1015 /**
1016  * ixgbe_msix_clean_rx - single unshared vector rx clean (all queues)
1017  * @irq: unused
1018  * @data: pointer to our q_vector struct for this interrupt vector
1019  **/
1020 static irqreturn_t ixgbevf_msix_clean_rx(int irq, void *data)
1021 {
1022         struct ixgbevf_q_vector *q_vector = data;
1023         struct ixgbevf_adapter  *adapter = q_vector->adapter;
1024         struct ixgbe_hw *hw = &adapter->hw;
1025         struct ixgbevf_ring  *rx_ring;
1026         int r_idx;
1027         int i;
1028
1029         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1030         for (i = 0; i < q_vector->rxr_count; i++) {
1031                 rx_ring = &(adapter->rx_ring[r_idx]);
1032                 rx_ring->total_bytes = 0;
1033                 rx_ring->total_packets = 0;
1034                 r_idx = find_next_bit(q_vector->rxr_idx, adapter->num_rx_queues,
1035                                       r_idx + 1);
1036         }
1037
1038         if (!q_vector->rxr_count)
1039                 return IRQ_HANDLED;
1040
1041         r_idx = find_first_bit(q_vector->rxr_idx, adapter->num_rx_queues);
1042         rx_ring = &(adapter->rx_ring[r_idx]);
1043         /* disable interrupts on this vector only */
1044         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, rx_ring->v_idx);
1045         napi_schedule(&q_vector->napi);
1046
1047
1048         return IRQ_HANDLED;
1049 }
1050
1051 static irqreturn_t ixgbevf_msix_clean_many(int irq, void *data)
1052 {
1053         ixgbevf_msix_clean_rx(irq, data);
1054         ixgbevf_msix_clean_tx(irq, data);
1055
1056         return IRQ_HANDLED;
1057 }
1058
1059 static inline void map_vector_to_rxq(struct ixgbevf_adapter *a, int v_idx,
1060                                      int r_idx)
1061 {
1062         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1063
1064         set_bit(r_idx, q_vector->rxr_idx);
1065         q_vector->rxr_count++;
1066         a->rx_ring[r_idx].v_idx = 1 << v_idx;
1067 }
1068
1069 static inline void map_vector_to_txq(struct ixgbevf_adapter *a, int v_idx,
1070                                      int t_idx)
1071 {
1072         struct ixgbevf_q_vector *q_vector = a->q_vector[v_idx];
1073
1074         set_bit(t_idx, q_vector->txr_idx);
1075         q_vector->txr_count++;
1076         a->tx_ring[t_idx].v_idx = 1 << v_idx;
1077 }
1078
1079 /**
1080  * ixgbevf_map_rings_to_vectors - Maps descriptor rings to vectors
1081  * @adapter: board private structure to initialize
1082  *
1083  * This function maps descriptor rings to the queue-specific vectors
1084  * we were allotted through the MSI-X enabling code.  Ideally, we'd have
1085  * one vector per ring/queue, but on a constrained vector budget, we
1086  * group the rings as "efficiently" as possible.  You would add new
1087  * mapping configurations in here.
1088  **/
1089 static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter)
1090 {
1091         int q_vectors;
1092         int v_start = 0;
1093         int rxr_idx = 0, txr_idx = 0;
1094         int rxr_remaining = adapter->num_rx_queues;
1095         int txr_remaining = adapter->num_tx_queues;
1096         int i, j;
1097         int rqpv, tqpv;
1098         int err = 0;
1099
1100         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1101
1102         /*
1103          * The ideal configuration...
1104          * We have enough vectors to map one per queue.
1105          */
1106         if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) {
1107                 for (; rxr_idx < rxr_remaining; v_start++, rxr_idx++)
1108                         map_vector_to_rxq(adapter, v_start, rxr_idx);
1109
1110                 for (; txr_idx < txr_remaining; v_start++, txr_idx++)
1111                         map_vector_to_txq(adapter, v_start, txr_idx);
1112                 goto out;
1113         }
1114
1115         /*
1116          * If we don't have enough vectors for a 1-to-1
1117          * mapping, we'll have to group them so there are
1118          * multiple queues per vector.
1119          */
1120         /* Re-adjusting *qpv takes care of the remainder. */
1121         for (i = v_start; i < q_vectors; i++) {
1122                 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - i);
1123                 for (j = 0; j < rqpv; j++) {
1124                         map_vector_to_rxq(adapter, i, rxr_idx);
1125                         rxr_idx++;
1126                         rxr_remaining--;
1127                 }
1128         }
1129         for (i = v_start; i < q_vectors; i++) {
1130                 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - i);
1131                 for (j = 0; j < tqpv; j++) {
1132                         map_vector_to_txq(adapter, i, txr_idx);
1133                         txr_idx++;
1134                         txr_remaining--;
1135                 }
1136         }
1137
1138 out:
1139         return err;
1140 }
1141
1142 /**
1143  * ixgbevf_request_msix_irqs - Initialize MSI-X interrupts
1144  * @adapter: board private structure
1145  *
1146  * ixgbevf_request_msix_irqs allocates MSI-X vectors and requests
1147  * interrupts from the kernel.
1148  **/
1149 static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter)
1150 {
1151         struct net_device *netdev = adapter->netdev;
1152         irqreturn_t (*handler)(int, void *);
1153         int i, vector, q_vectors, err;
1154         int ri = 0, ti = 0;
1155
1156         /* Decrement for Other and TCP Timer vectors */
1157         q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1158
1159 #define SET_HANDLER(_v) (((_v)->rxr_count && (_v)->txr_count)          \
1160                                           ? &ixgbevf_msix_clean_many : \
1161                           (_v)->rxr_count ? &ixgbevf_msix_clean_rx   : \
1162                           (_v)->txr_count ? &ixgbevf_msix_clean_tx   : \
1163                           NULL)
1164         for (vector = 0; vector < q_vectors; vector++) {
1165                 handler = SET_HANDLER(adapter->q_vector[vector]);
1166
1167                 if (handler == &ixgbevf_msix_clean_rx) {
1168                         sprintf(adapter->name[vector], "%s-%s-%d",
1169                                 netdev->name, "rx", ri++);
1170                 } else if (handler == &ixgbevf_msix_clean_tx) {
1171                         sprintf(adapter->name[vector], "%s-%s-%d",
1172                                 netdev->name, "tx", ti++);
1173                 } else if (handler == &ixgbevf_msix_clean_many) {
1174                         sprintf(adapter->name[vector], "%s-%s-%d",
1175                                 netdev->name, "TxRx", vector);
1176                 } else {
1177                         /* skip this unused q_vector */
1178                         continue;
1179                 }
1180                 err = request_irq(adapter->msix_entries[vector].vector,
1181                                   handler, 0, adapter->name[vector],
1182                                   adapter->q_vector[vector]);
1183                 if (err) {
1184                         hw_dbg(&adapter->hw,
1185                                "request_irq failed for MSIX interrupt "
1186                                "Error: %d\n", err);
1187                         goto free_queue_irqs;
1188                 }
1189         }
1190
1191         sprintf(adapter->name[vector], "%s:mbx", netdev->name);
1192         err = request_irq(adapter->msix_entries[vector].vector,
1193                           &ixgbevf_msix_mbx, 0, adapter->name[vector], netdev);
1194         if (err) {
1195                 hw_dbg(&adapter->hw,
1196                        "request_irq for msix_mbx failed: %d\n", err);
1197                 goto free_queue_irqs;
1198         }
1199
1200         return 0;
1201
1202 free_queue_irqs:
1203         for (i = vector - 1; i >= 0; i--)
1204                 free_irq(adapter->msix_entries[--vector].vector,
1205                          &(adapter->q_vector[i]));
1206         pci_disable_msix(adapter->pdev);
1207         kfree(adapter->msix_entries);
1208         adapter->msix_entries = NULL;
1209         return err;
1210 }
1211
1212 static inline void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter)
1213 {
1214         int i, q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1215
1216         for (i = 0; i < q_vectors; i++) {
1217                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[i];
1218                 bitmap_zero(q_vector->rxr_idx, MAX_RX_QUEUES);
1219                 bitmap_zero(q_vector->txr_idx, MAX_TX_QUEUES);
1220                 q_vector->rxr_count = 0;
1221                 q_vector->txr_count = 0;
1222                 q_vector->eitr = adapter->eitr_param;
1223         }
1224 }
1225
1226 /**
1227  * ixgbevf_request_irq - initialize interrupts
1228  * @adapter: board private structure
1229  *
1230  * Attempts to configure interrupts using the best available
1231  * capabilities of the hardware and kernel.
1232  **/
1233 static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter)
1234 {
1235         int err = 0;
1236
1237         err = ixgbevf_request_msix_irqs(adapter);
1238
1239         if (err)
1240                 hw_dbg(&adapter->hw,
1241                        "request_irq failed, Error %d\n", err);
1242
1243         return err;
1244 }
1245
1246 static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter)
1247 {
1248         struct net_device *netdev = adapter->netdev;
1249         int i, q_vectors;
1250
1251         q_vectors = adapter->num_msix_vectors;
1252
1253         i = q_vectors - 1;
1254
1255         free_irq(adapter->msix_entries[i].vector, netdev);
1256         i--;
1257
1258         for (; i >= 0; i--) {
1259                 free_irq(adapter->msix_entries[i].vector,
1260                          adapter->q_vector[i]);
1261         }
1262
1263         ixgbevf_reset_q_vectors(adapter);
1264 }
1265
1266 /**
1267  * ixgbevf_irq_disable - Mask off interrupt generation on the NIC
1268  * @adapter: board private structure
1269  **/
1270 static inline void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter)
1271 {
1272         int i;
1273         struct ixgbe_hw *hw = &adapter->hw;
1274
1275         IXGBE_WRITE_REG(hw, IXGBE_VTEIMC, ~0);
1276
1277         IXGBE_WRITE_FLUSH(hw);
1278
1279         for (i = 0; i < adapter->num_msix_vectors; i++)
1280                 synchronize_irq(adapter->msix_entries[i].vector);
1281 }
1282
1283 /**
1284  * ixgbevf_irq_enable - Enable default interrupt generation settings
1285  * @adapter: board private structure
1286  **/
1287 static inline void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter,
1288                                       bool queues, bool flush)
1289 {
1290         struct ixgbe_hw *hw = &adapter->hw;
1291         u32 mask;
1292         u64 qmask;
1293
1294         mask = (IXGBE_EIMS_ENABLE_MASK & ~IXGBE_EIMS_RTX_QUEUE);
1295         qmask = ~0;
1296
1297         IXGBE_WRITE_REG(hw, IXGBE_VTEIMS, mask);
1298
1299         if (queues)
1300                 ixgbevf_irq_enable_queues(adapter, qmask);
1301
1302         if (flush)
1303                 IXGBE_WRITE_FLUSH(hw);
1304 }
1305
1306 /**
1307  * ixgbevf_configure_tx - Configure 82599 VF Transmit Unit after Reset
1308  * @adapter: board private structure
1309  *
1310  * Configure the Tx unit of the MAC after a reset.
1311  **/
1312 static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter)
1313 {
1314         u64 tdba;
1315         struct ixgbe_hw *hw = &adapter->hw;
1316         u32 i, j, tdlen, txctrl;
1317
1318         /* Setup the HW Tx Head and Tail descriptor pointers */
1319         for (i = 0; i < adapter->num_tx_queues; i++) {
1320                 struct ixgbevf_ring *ring = &adapter->tx_ring[i];
1321                 j = ring->reg_idx;
1322                 tdba = ring->dma;
1323                 tdlen = ring->count * sizeof(union ixgbe_adv_tx_desc);
1324                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAL(j),
1325                                 (tdba & DMA_BIT_MASK(32)));
1326                 IXGBE_WRITE_REG(hw, IXGBE_VFTDBAH(j), (tdba >> 32));
1327                 IXGBE_WRITE_REG(hw, IXGBE_VFTDLEN(j), tdlen);
1328                 IXGBE_WRITE_REG(hw, IXGBE_VFTDH(j), 0);
1329                 IXGBE_WRITE_REG(hw, IXGBE_VFTDT(j), 0);
1330                 adapter->tx_ring[i].head = IXGBE_VFTDH(j);
1331                 adapter->tx_ring[i].tail = IXGBE_VFTDT(j);
1332                 /* Disable Tx Head Writeback RO bit, since this hoses
1333                  * bookkeeping if things aren't delivered in order.
1334                  */
1335                 txctrl = IXGBE_READ_REG(hw, IXGBE_VFDCA_TXCTRL(j));
1336                 txctrl &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
1337                 IXGBE_WRITE_REG(hw, IXGBE_VFDCA_TXCTRL(j), txctrl);
1338         }
1339 }
1340
1341 #define IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT 2
1342
1343 static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter, int index)
1344 {
1345         struct ixgbevf_ring *rx_ring;
1346         struct ixgbe_hw *hw = &adapter->hw;
1347         u32 srrctl;
1348
1349         rx_ring = &adapter->rx_ring[index];
1350
1351         srrctl = IXGBE_SRRCTL_DROP_EN;
1352
1353         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1354                 u16 bufsz = IXGBEVF_RXBUFFER_2048;
1355                 /* grow the amount we can receive on large page machines */
1356                 if (bufsz < (PAGE_SIZE / 2))
1357                         bufsz = (PAGE_SIZE / 2);
1358                 /* cap the bufsz at our largest descriptor size */
1359                 bufsz = min((u16)IXGBEVF_MAX_RXBUFFER, bufsz);
1360
1361                 srrctl |= bufsz >> IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1362                 srrctl |= IXGBE_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1363                 srrctl |= ((IXGBEVF_RX_HDR_SIZE <<
1364                            IXGBE_SRRCTL_BSIZEHDRSIZE_SHIFT) &
1365                            IXGBE_SRRCTL_BSIZEHDR_MASK);
1366         } else {
1367                 srrctl |= IXGBE_SRRCTL_DESCTYPE_ADV_ONEBUF;
1368
1369                 if (rx_ring->rx_buf_len == MAXIMUM_ETHERNET_VLAN_SIZE)
1370                         srrctl |= IXGBEVF_RXBUFFER_2048 >>
1371                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1372                 else
1373                         srrctl |= rx_ring->rx_buf_len >>
1374                                 IXGBE_SRRCTL_BSIZEPKT_SHIFT;
1375         }
1376         IXGBE_WRITE_REG(hw, IXGBE_VFSRRCTL(index), srrctl);
1377 }
1378
1379 /**
1380  * ixgbevf_configure_rx - Configure 82599 VF Receive Unit after Reset
1381  * @adapter: board private structure
1382  *
1383  * Configure the Rx unit of the MAC after a reset.
1384  **/
1385 static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter)
1386 {
1387         u64 rdba;
1388         struct ixgbe_hw *hw = &adapter->hw;
1389         struct net_device *netdev = adapter->netdev;
1390         int max_frame = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1391         int i, j;
1392         u32 rdlen;
1393         int rx_buf_len;
1394
1395         /* Decide whether to use packet split mode or not */
1396         if (netdev->mtu > ETH_DATA_LEN) {
1397                 if (adapter->flags & IXGBE_FLAG_RX_PS_CAPABLE)
1398                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1399                 else
1400                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1401         } else {
1402                 if (adapter->flags & IXGBE_FLAG_RX_1BUF_CAPABLE)
1403                         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
1404                 else
1405                         adapter->flags |= IXGBE_FLAG_RX_PS_ENABLED;
1406         }
1407
1408         /* Set the RX buffer length according to the mode */
1409         if (adapter->flags & IXGBE_FLAG_RX_PS_ENABLED) {
1410                 /* PSRTYPE must be initialized in 82599 */
1411                 u32 psrtype = IXGBE_PSRTYPE_TCPHDR |
1412                         IXGBE_PSRTYPE_UDPHDR |
1413                         IXGBE_PSRTYPE_IPV4HDR |
1414                         IXGBE_PSRTYPE_IPV6HDR |
1415                         IXGBE_PSRTYPE_L2HDR;
1416                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, psrtype);
1417                 rx_buf_len = IXGBEVF_RX_HDR_SIZE;
1418         } else {
1419                 IXGBE_WRITE_REG(hw, IXGBE_VFPSRTYPE, 0);
1420                 if (netdev->mtu <= ETH_DATA_LEN)
1421                         rx_buf_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1422                 else
1423                         rx_buf_len = ALIGN(max_frame, 1024);
1424         }
1425
1426         rdlen = adapter->rx_ring[0].count * sizeof(union ixgbe_adv_rx_desc);
1427         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1428          * the Base and Length of the Rx Descriptor Ring */
1429         for (i = 0; i < adapter->num_rx_queues; i++) {
1430                 rdba = adapter->rx_ring[i].dma;
1431                 j = adapter->rx_ring[i].reg_idx;
1432                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAL(j),
1433                                 (rdba & DMA_BIT_MASK(32)));
1434                 IXGBE_WRITE_REG(hw, IXGBE_VFRDBAH(j), (rdba >> 32));
1435                 IXGBE_WRITE_REG(hw, IXGBE_VFRDLEN(j), rdlen);
1436                 IXGBE_WRITE_REG(hw, IXGBE_VFRDH(j), 0);
1437                 IXGBE_WRITE_REG(hw, IXGBE_VFRDT(j), 0);
1438                 adapter->rx_ring[i].head = IXGBE_VFRDH(j);
1439                 adapter->rx_ring[i].tail = IXGBE_VFRDT(j);
1440                 adapter->rx_ring[i].rx_buf_len = rx_buf_len;
1441
1442                 ixgbevf_configure_srrctl(adapter, j);
1443         }
1444 }
1445
1446 static void ixgbevf_vlan_rx_register(struct net_device *netdev,
1447                                      struct vlan_group *grp)
1448 {
1449         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1450         struct ixgbe_hw *hw = &adapter->hw;
1451         int i, j;
1452         u32 ctrl;
1453
1454         adapter->vlgrp = grp;
1455
1456         for (i = 0; i < adapter->num_rx_queues; i++) {
1457                 j = adapter->rx_ring[i].reg_idx;
1458                 ctrl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1459                 ctrl |= IXGBE_RXDCTL_VME;
1460                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), ctrl);
1461         }
1462 }
1463
1464 static void ixgbevf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1465 {
1466         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1467         struct ixgbe_hw *hw = &adapter->hw;
1468         struct net_device *v_netdev;
1469
1470         /* add VID to filter table */
1471         if (hw->mac.ops.set_vfta)
1472                 hw->mac.ops.set_vfta(hw, vid, 0, true);
1473         /*
1474          * Copy feature flags from netdev to the vlan netdev for this vid.
1475          * This allows things like TSO to bubble down to our vlan device.
1476          */
1477         v_netdev = vlan_group_get_device(adapter->vlgrp, vid);
1478         v_netdev->features |= adapter->netdev->features;
1479         vlan_group_set_device(adapter->vlgrp, vid, v_netdev);
1480 }
1481
1482 static void ixgbevf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1483 {
1484         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1485         struct ixgbe_hw *hw = &adapter->hw;
1486
1487         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1488                 ixgbevf_irq_disable(adapter);
1489
1490         vlan_group_set_device(adapter->vlgrp, vid, NULL);
1491
1492         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
1493                 ixgbevf_irq_enable(adapter, true, true);
1494
1495         /* remove VID from filter table */
1496         if (hw->mac.ops.set_vfta)
1497                 hw->mac.ops.set_vfta(hw, vid, 0, false);
1498 }
1499
1500 static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter)
1501 {
1502         ixgbevf_vlan_rx_register(adapter->netdev, adapter->vlgrp);
1503
1504         if (adapter->vlgrp) {
1505                 u16 vid;
1506                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1507                         if (!vlan_group_get_device(adapter->vlgrp, vid))
1508                                 continue;
1509                         ixgbevf_vlan_rx_add_vid(adapter->netdev, vid);
1510                 }
1511         }
1512 }
1513
1514 /**
1515  * ixgbevf_set_rx_mode - Multicast set
1516  * @netdev: network interface device structure
1517  *
1518  * The set_rx_method entry point is called whenever the multicast address
1519  * list or the network interface flags are updated.  This routine is
1520  * responsible for configuring the hardware for proper multicast mode.
1521  **/
1522 static void ixgbevf_set_rx_mode(struct net_device *netdev)
1523 {
1524         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
1525         struct ixgbe_hw *hw = &adapter->hw;
1526
1527         /* reprogram multicast list */
1528         if (hw->mac.ops.update_mc_addr_list)
1529                 hw->mac.ops.update_mc_addr_list(hw, netdev);
1530 }
1531
1532 static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter)
1533 {
1534         int q_idx;
1535         struct ixgbevf_q_vector *q_vector;
1536         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1537
1538         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1539                 struct napi_struct *napi;
1540                 q_vector = adapter->q_vector[q_idx];
1541                 if (!q_vector->rxr_count)
1542                         continue;
1543                 napi = &q_vector->napi;
1544                 if (q_vector->rxr_count > 1)
1545                         napi->poll = &ixgbevf_clean_rxonly_many;
1546
1547                 napi_enable(napi);
1548         }
1549 }
1550
1551 static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter)
1552 {
1553         int q_idx;
1554         struct ixgbevf_q_vector *q_vector;
1555         int q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
1556
1557         for (q_idx = 0; q_idx < q_vectors; q_idx++) {
1558                 q_vector = adapter->q_vector[q_idx];
1559                 if (!q_vector->rxr_count)
1560                         continue;
1561                 napi_disable(&q_vector->napi);
1562         }
1563 }
1564
1565 static void ixgbevf_configure(struct ixgbevf_adapter *adapter)
1566 {
1567         struct net_device *netdev = adapter->netdev;
1568         int i;
1569
1570         ixgbevf_set_rx_mode(netdev);
1571
1572         ixgbevf_restore_vlan(adapter);
1573
1574         ixgbevf_configure_tx(adapter);
1575         ixgbevf_configure_rx(adapter);
1576         for (i = 0; i < adapter->num_rx_queues; i++) {
1577                 struct ixgbevf_ring *ring = &adapter->rx_ring[i];
1578                 ixgbevf_alloc_rx_buffers(adapter, ring, ring->count);
1579                 ring->next_to_use = ring->count - 1;
1580                 writel(ring->next_to_use, adapter->hw.hw_addr + ring->tail);
1581         }
1582 }
1583
1584 #define IXGBE_MAX_RX_DESC_POLL 10
1585 static inline void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter,
1586                                                 int rxr)
1587 {
1588         struct ixgbe_hw *hw = &adapter->hw;
1589         int j = adapter->rx_ring[rxr].reg_idx;
1590         int k;
1591
1592         for (k = 0; k < IXGBE_MAX_RX_DESC_POLL; k++) {
1593                 if (IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j)) & IXGBE_RXDCTL_ENABLE)
1594                         break;
1595                 else
1596                         msleep(1);
1597         }
1598         if (k >= IXGBE_MAX_RX_DESC_POLL) {
1599                 hw_dbg(hw, "RXDCTL.ENABLE on Rx queue %d "
1600                        "not set within the polling period\n", rxr);
1601         }
1602
1603         ixgbevf_release_rx_desc(&adapter->hw, &adapter->rx_ring[rxr],
1604                                 (adapter->rx_ring[rxr].count - 1));
1605 }
1606
1607 static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter)
1608 {
1609         /* Only save pre-reset stats if there are some */
1610         if (adapter->stats.vfgprc || adapter->stats.vfgptc) {
1611                 adapter->stats.saved_reset_vfgprc += adapter->stats.vfgprc -
1612                         adapter->stats.base_vfgprc;
1613                 adapter->stats.saved_reset_vfgptc += adapter->stats.vfgptc -
1614                         adapter->stats.base_vfgptc;
1615                 adapter->stats.saved_reset_vfgorc += adapter->stats.vfgorc -
1616                         adapter->stats.base_vfgorc;
1617                 adapter->stats.saved_reset_vfgotc += adapter->stats.vfgotc -
1618                         adapter->stats.base_vfgotc;
1619                 adapter->stats.saved_reset_vfmprc += adapter->stats.vfmprc -
1620                         adapter->stats.base_vfmprc;
1621         }
1622 }
1623
1624 static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter)
1625 {
1626         struct ixgbe_hw *hw = &adapter->hw;
1627
1628         adapter->stats.last_vfgprc = IXGBE_READ_REG(hw, IXGBE_VFGPRC);
1629         adapter->stats.last_vfgorc = IXGBE_READ_REG(hw, IXGBE_VFGORC_LSB);
1630         adapter->stats.last_vfgorc |=
1631                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGORC_MSB))) << 32);
1632         adapter->stats.last_vfgptc = IXGBE_READ_REG(hw, IXGBE_VFGPTC);
1633         adapter->stats.last_vfgotc = IXGBE_READ_REG(hw, IXGBE_VFGOTC_LSB);
1634         adapter->stats.last_vfgotc |=
1635                 (((u64)(IXGBE_READ_REG(hw, IXGBE_VFGOTC_MSB))) << 32);
1636         adapter->stats.last_vfmprc = IXGBE_READ_REG(hw, IXGBE_VFMPRC);
1637
1638         adapter->stats.base_vfgprc = adapter->stats.last_vfgprc;
1639         adapter->stats.base_vfgorc = adapter->stats.last_vfgorc;
1640         adapter->stats.base_vfgptc = adapter->stats.last_vfgptc;
1641         adapter->stats.base_vfgotc = adapter->stats.last_vfgotc;
1642         adapter->stats.base_vfmprc = adapter->stats.last_vfmprc;
1643 }
1644
1645 static int ixgbevf_up_complete(struct ixgbevf_adapter *adapter)
1646 {
1647         struct net_device *netdev = adapter->netdev;
1648         struct ixgbe_hw *hw = &adapter->hw;
1649         int i, j = 0;
1650         int num_rx_rings = adapter->num_rx_queues;
1651         u32 txdctl, rxdctl;
1652
1653         for (i = 0; i < adapter->num_tx_queues; i++) {
1654                 j = adapter->tx_ring[i].reg_idx;
1655                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1656                 /* enable WTHRESH=8 descriptors, to encourage burst writeback */
1657                 txdctl |= (8 << 16);
1658                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1659         }
1660
1661         for (i = 0; i < adapter->num_tx_queues; i++) {
1662                 j = adapter->tx_ring[i].reg_idx;
1663                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1664                 txdctl |= IXGBE_TXDCTL_ENABLE;
1665                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j), txdctl);
1666         }
1667
1668         for (i = 0; i < num_rx_rings; i++) {
1669                 j = adapter->rx_ring[i].reg_idx;
1670                 rxdctl = IXGBE_READ_REG(hw, IXGBE_VFRXDCTL(j));
1671                 rxdctl |= IXGBE_RXDCTL_ENABLE;
1672                 IXGBE_WRITE_REG(hw, IXGBE_VFRXDCTL(j), rxdctl);
1673                 ixgbevf_rx_desc_queue_enable(adapter, i);
1674         }
1675
1676         ixgbevf_configure_msix(adapter);
1677
1678         if (hw->mac.ops.set_rar) {
1679                 if (is_valid_ether_addr(hw->mac.addr))
1680                         hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
1681                 else
1682                         hw->mac.ops.set_rar(hw, 0, hw->mac.perm_addr, 0);
1683         }
1684
1685         clear_bit(__IXGBEVF_DOWN, &adapter->state);
1686         ixgbevf_napi_enable_all(adapter);
1687
1688         /* enable transmits */
1689         netif_tx_start_all_queues(netdev);
1690
1691         ixgbevf_save_reset_stats(adapter);
1692         ixgbevf_init_last_counter_stats(adapter);
1693
1694         /* bring the link up in the watchdog, this could race with our first
1695          * link up interrupt but shouldn't be a problem */
1696         adapter->flags |= IXGBE_FLAG_NEED_LINK_UPDATE;
1697         adapter->link_check_timeout = jiffies;
1698         mod_timer(&adapter->watchdog_timer, jiffies);
1699         return 0;
1700 }
1701
1702 int ixgbevf_up(struct ixgbevf_adapter *adapter)
1703 {
1704         int err;
1705         struct ixgbe_hw *hw = &adapter->hw;
1706
1707         ixgbevf_configure(adapter);
1708
1709         err = ixgbevf_up_complete(adapter);
1710
1711         /* clear any pending interrupts, may auto mask */
1712         IXGBE_READ_REG(hw, IXGBE_VTEICR);
1713
1714         ixgbevf_irq_enable(adapter, true, true);
1715
1716         return err;
1717 }
1718
1719 /**
1720  * ixgbevf_clean_rx_ring - Free Rx Buffers per Queue
1721  * @adapter: board private structure
1722  * @rx_ring: ring to free buffers from
1723  **/
1724 static void ixgbevf_clean_rx_ring(struct ixgbevf_adapter *adapter,
1725                                   struct ixgbevf_ring *rx_ring)
1726 {
1727         struct pci_dev *pdev = adapter->pdev;
1728         unsigned long size;
1729         unsigned int i;
1730
1731         if (!rx_ring->rx_buffer_info)
1732                 return;
1733
1734         /* Free all the Rx ring sk_buffs */
1735         for (i = 0; i < rx_ring->count; i++) {
1736                 struct ixgbevf_rx_buffer *rx_buffer_info;
1737
1738                 rx_buffer_info = &rx_ring->rx_buffer_info[i];
1739                 if (rx_buffer_info->dma) {
1740                         dma_unmap_single(&pdev->dev, rx_buffer_info->dma,
1741                                          rx_ring->rx_buf_len,
1742                                          DMA_FROM_DEVICE);
1743                         rx_buffer_info->dma = 0;
1744                 }
1745                 if (rx_buffer_info->skb) {
1746                         struct sk_buff *skb = rx_buffer_info->skb;
1747                         rx_buffer_info->skb = NULL;
1748                         do {
1749                                 struct sk_buff *this = skb;
1750                                 skb = skb->prev;
1751                                 dev_kfree_skb(this);
1752                         } while (skb);
1753                 }
1754                 if (!rx_buffer_info->page)
1755                         continue;
1756                 dma_unmap_page(&pdev->dev, rx_buffer_info->page_dma,
1757                                PAGE_SIZE / 2, DMA_FROM_DEVICE);
1758                 rx_buffer_info->page_dma = 0;
1759                 put_page(rx_buffer_info->page);
1760                 rx_buffer_info->page = NULL;
1761                 rx_buffer_info->page_offset = 0;
1762         }
1763
1764         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
1765         memset(rx_ring->rx_buffer_info, 0, size);
1766
1767         /* Zero out the descriptor ring */
1768         memset(rx_ring->desc, 0, rx_ring->size);
1769
1770         rx_ring->next_to_clean = 0;
1771         rx_ring->next_to_use = 0;
1772
1773         if (rx_ring->head)
1774                 writel(0, adapter->hw.hw_addr + rx_ring->head);
1775         if (rx_ring->tail)
1776                 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1777 }
1778
1779 /**
1780  * ixgbevf_clean_tx_ring - Free Tx Buffers
1781  * @adapter: board private structure
1782  * @tx_ring: ring to be cleaned
1783  **/
1784 static void ixgbevf_clean_tx_ring(struct ixgbevf_adapter *adapter,
1785                                   struct ixgbevf_ring *tx_ring)
1786 {
1787         struct ixgbevf_tx_buffer *tx_buffer_info;
1788         unsigned long size;
1789         unsigned int i;
1790
1791         if (!tx_ring->tx_buffer_info)
1792                 return;
1793
1794         /* Free all the Tx ring sk_buffs */
1795
1796         for (i = 0; i < tx_ring->count; i++) {
1797                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
1798                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
1799         }
1800
1801         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
1802         memset(tx_ring->tx_buffer_info, 0, size);
1803
1804         memset(tx_ring->desc, 0, tx_ring->size);
1805
1806         tx_ring->next_to_use = 0;
1807         tx_ring->next_to_clean = 0;
1808
1809         if (tx_ring->head)
1810                 writel(0, adapter->hw.hw_addr + tx_ring->head);
1811         if (tx_ring->tail)
1812                 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1813 }
1814
1815 /**
1816  * ixgbevf_clean_all_rx_rings - Free Rx Buffers for all queues
1817  * @adapter: board private structure
1818  **/
1819 static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter)
1820 {
1821         int i;
1822
1823         for (i = 0; i < adapter->num_rx_queues; i++)
1824                 ixgbevf_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1825 }
1826
1827 /**
1828  * ixgbevf_clean_all_tx_rings - Free Tx Buffers for all queues
1829  * @adapter: board private structure
1830  **/
1831 static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter)
1832 {
1833         int i;
1834
1835         for (i = 0; i < adapter->num_tx_queues; i++)
1836                 ixgbevf_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1837 }
1838
1839 void ixgbevf_down(struct ixgbevf_adapter *adapter)
1840 {
1841         struct net_device *netdev = adapter->netdev;
1842         struct ixgbe_hw *hw = &adapter->hw;
1843         u32 txdctl;
1844         int i, j;
1845
1846         /* signal that we are down to the interrupt handler */
1847         set_bit(__IXGBEVF_DOWN, &adapter->state);
1848         /* disable receives */
1849
1850         netif_tx_disable(netdev);
1851
1852         msleep(10);
1853
1854         netif_tx_stop_all_queues(netdev);
1855
1856         ixgbevf_irq_disable(adapter);
1857
1858         ixgbevf_napi_disable_all(adapter);
1859
1860         del_timer_sync(&adapter->watchdog_timer);
1861         /* can't call flush scheduled work here because it can deadlock
1862          * if linkwatch_event tries to acquire the rtnl_lock which we are
1863          * holding */
1864         while (adapter->flags & IXGBE_FLAG_IN_WATCHDOG_TASK)
1865                 msleep(1);
1866
1867         /* disable transmits in the hardware now that interrupts are off */
1868         for (i = 0; i < adapter->num_tx_queues; i++) {
1869                 j = adapter->tx_ring[i].reg_idx;
1870                 txdctl = IXGBE_READ_REG(hw, IXGBE_VFTXDCTL(j));
1871                 IXGBE_WRITE_REG(hw, IXGBE_VFTXDCTL(j),
1872                                 (txdctl & ~IXGBE_TXDCTL_ENABLE));
1873         }
1874
1875         netif_carrier_off(netdev);
1876
1877         if (!pci_channel_offline(adapter->pdev))
1878                 ixgbevf_reset(adapter);
1879
1880         ixgbevf_clean_all_tx_rings(adapter);
1881         ixgbevf_clean_all_rx_rings(adapter);
1882 }
1883
1884 void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter)
1885 {
1886         struct ixgbe_hw *hw = &adapter->hw;
1887
1888         WARN_ON(in_interrupt());
1889
1890         while (test_and_set_bit(__IXGBEVF_RESETTING, &adapter->state))
1891                 msleep(1);
1892
1893         /*
1894          * Check if PF is up before re-init.  If not then skip until
1895          * later when the PF is up and ready to service requests from
1896          * the VF via mailbox.  If the VF is up and running then the
1897          * watchdog task will continue to schedule reset tasks until
1898          * the PF is up and running.
1899          */
1900         if (!hw->mac.ops.reset_hw(hw)) {
1901                 ixgbevf_down(adapter);
1902                 ixgbevf_up(adapter);
1903         }
1904
1905         clear_bit(__IXGBEVF_RESETTING, &adapter->state);
1906 }
1907
1908 void ixgbevf_reset(struct ixgbevf_adapter *adapter)
1909 {
1910         struct ixgbe_hw *hw = &adapter->hw;
1911         struct net_device *netdev = adapter->netdev;
1912
1913         if (hw->mac.ops.reset_hw(hw))
1914                 hw_dbg(hw, "PF still resetting\n");
1915         else
1916                 hw->mac.ops.init_hw(hw);
1917
1918         if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1919                 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1920                        netdev->addr_len);
1921                 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1922                        netdev->addr_len);
1923         }
1924 }
1925
1926 static void ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter,
1927                                          int vectors)
1928 {
1929         int err, vector_threshold;
1930
1931         /* We'll want at least 3 (vector_threshold):
1932          * 1) TxQ[0] Cleanup
1933          * 2) RxQ[0] Cleanup
1934          * 3) Other (Link Status Change, etc.)
1935          */
1936         vector_threshold = MIN_MSIX_COUNT;
1937
1938         /* The more we get, the more we will assign to Tx/Rx Cleanup
1939          * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1940          * Right now, we simply care about how many we'll get; we'll
1941          * set them up later while requesting irq's.
1942          */
1943         while (vectors >= vector_threshold) {
1944                 err = pci_enable_msix(adapter->pdev, adapter->msix_entries,
1945                                       vectors);
1946                 if (!err) /* Success in acquiring all requested vectors. */
1947                         break;
1948                 else if (err < 0)
1949                         vectors = 0; /* Nasty failure, quit now */
1950                 else /* err == number of vectors we should try again with */
1951                         vectors = err;
1952         }
1953
1954         if (vectors < vector_threshold) {
1955                 /* Can't allocate enough MSI-X interrupts?  Oh well.
1956                  * This just means we'll go with either a single MSI
1957                  * vector or fall back to legacy interrupts.
1958                  */
1959                 hw_dbg(&adapter->hw,
1960                        "Unable to allocate MSI-X interrupts\n");
1961                 kfree(adapter->msix_entries);
1962                 adapter->msix_entries = NULL;
1963         } else {
1964                 /*
1965                  * Adjust for only the vectors we'll use, which is minimum
1966                  * of max_msix_q_vectors + NON_Q_VECTORS, or the number of
1967                  * vectors we were allocated.
1968                  */
1969                 adapter->num_msix_vectors = vectors;
1970         }
1971 }
1972
1973 /*
1974  * ixgbe_set_num_queues: Allocate queues for device, feature dependant
1975  * @adapter: board private structure to initialize
1976  *
1977  * This is the top level queue allocation routine.  The order here is very
1978  * important, starting with the "most" number of features turned on at once,
1979  * and ending with the smallest set of features.  This way large combinations
1980  * can be allocated if they're turned on, and smaller combinations are the
1981  * fallthrough conditions.
1982  *
1983  **/
1984 static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter)
1985 {
1986         /* Start with base case */
1987         adapter->num_rx_queues = 1;
1988         adapter->num_tx_queues = 1;
1989         adapter->num_rx_pools = adapter->num_rx_queues;
1990         adapter->num_rx_queues_per_pool = 1;
1991 }
1992
1993 /**
1994  * ixgbevf_alloc_queues - Allocate memory for all rings
1995  * @adapter: board private structure to initialize
1996  *
1997  * We allocate one ring per queue at run-time since we don't know the
1998  * number of queues at compile-time.  The polling_netdev array is
1999  * intended for Multiqueue, but should work fine with a single queue.
2000  **/
2001 static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter)
2002 {
2003         int i;
2004
2005         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
2006                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2007         if (!adapter->tx_ring)
2008                 goto err_tx_ring_allocation;
2009
2010         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
2011                                    sizeof(struct ixgbevf_ring), GFP_KERNEL);
2012         if (!adapter->rx_ring)
2013                 goto err_rx_ring_allocation;
2014
2015         for (i = 0; i < adapter->num_tx_queues; i++) {
2016                 adapter->tx_ring[i].count = adapter->tx_ring_count;
2017                 adapter->tx_ring[i].queue_index = i;
2018                 adapter->tx_ring[i].reg_idx = i;
2019         }
2020
2021         for (i = 0; i < adapter->num_rx_queues; i++) {
2022                 adapter->rx_ring[i].count = adapter->rx_ring_count;
2023                 adapter->rx_ring[i].queue_index = i;
2024                 adapter->rx_ring[i].reg_idx = i;
2025         }
2026
2027         return 0;
2028
2029 err_rx_ring_allocation:
2030         kfree(adapter->tx_ring);
2031 err_tx_ring_allocation:
2032         return -ENOMEM;
2033 }
2034
2035 /**
2036  * ixgbevf_set_interrupt_capability - set MSI-X or FAIL if not supported
2037  * @adapter: board private structure to initialize
2038  *
2039  * Attempt to configure the interrupts using the best available
2040  * capabilities of the hardware and the kernel.
2041  **/
2042 static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter)
2043 {
2044         int err = 0;
2045         int vector, v_budget;
2046
2047         /*
2048          * It's easy to be greedy for MSI-X vectors, but it really
2049          * doesn't do us much good if we have a lot more vectors
2050          * than CPU's.  So let's be conservative and only ask for
2051          * (roughly) twice the number of vectors as there are CPU's.
2052          */
2053         v_budget = min(adapter->num_rx_queues + adapter->num_tx_queues,
2054                        (int)(num_online_cpus() * 2)) + NON_Q_VECTORS;
2055
2056         /* A failure in MSI-X entry allocation isn't fatal, but it does
2057          * mean we disable MSI-X capabilities of the adapter. */
2058         adapter->msix_entries = kcalloc(v_budget,
2059                                         sizeof(struct msix_entry), GFP_KERNEL);
2060         if (!adapter->msix_entries) {
2061                 err = -ENOMEM;
2062                 goto out;
2063         }
2064
2065         for (vector = 0; vector < v_budget; vector++)
2066                 adapter->msix_entries[vector].entry = vector;
2067
2068         ixgbevf_acquire_msix_vectors(adapter, v_budget);
2069
2070 out:
2071         return err;
2072 }
2073
2074 /**
2075  * ixgbevf_alloc_q_vectors - Allocate memory for interrupt vectors
2076  * @adapter: board private structure to initialize
2077  *
2078  * We allocate one q_vector per queue interrupt.  If allocation fails we
2079  * return -ENOMEM.
2080  **/
2081 static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter)
2082 {
2083         int q_idx, num_q_vectors;
2084         struct ixgbevf_q_vector *q_vector;
2085         int napi_vectors;
2086         int (*poll)(struct napi_struct *, int);
2087
2088         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2089         napi_vectors = adapter->num_rx_queues;
2090         poll = &ixgbevf_clean_rxonly;
2091
2092         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2093                 q_vector = kzalloc(sizeof(struct ixgbevf_q_vector), GFP_KERNEL);
2094                 if (!q_vector)
2095                         goto err_out;
2096                 q_vector->adapter = adapter;
2097                 q_vector->v_idx = q_idx;
2098                 q_vector->eitr = adapter->eitr_param;
2099                 if (q_idx < napi_vectors)
2100                         netif_napi_add(adapter->netdev, &q_vector->napi,
2101                                        (*poll), 64);
2102                 adapter->q_vector[q_idx] = q_vector;
2103         }
2104
2105         return 0;
2106
2107 err_out:
2108         while (q_idx) {
2109                 q_idx--;
2110                 q_vector = adapter->q_vector[q_idx];
2111                 netif_napi_del(&q_vector->napi);
2112                 kfree(q_vector);
2113                 adapter->q_vector[q_idx] = NULL;
2114         }
2115         return -ENOMEM;
2116 }
2117
2118 /**
2119  * ixgbevf_free_q_vectors - Free memory allocated for interrupt vectors
2120  * @adapter: board private structure to initialize
2121  *
2122  * This function frees the memory allocated to the q_vectors.  In addition if
2123  * NAPI is enabled it will delete any references to the NAPI struct prior
2124  * to freeing the q_vector.
2125  **/
2126 static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter)
2127 {
2128         int q_idx, num_q_vectors;
2129         int napi_vectors;
2130
2131         num_q_vectors = adapter->num_msix_vectors - NON_Q_VECTORS;
2132         napi_vectors = adapter->num_rx_queues;
2133
2134         for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
2135                 struct ixgbevf_q_vector *q_vector = adapter->q_vector[q_idx];
2136
2137                 adapter->q_vector[q_idx] = NULL;
2138                 if (q_idx < napi_vectors)
2139                         netif_napi_del(&q_vector->napi);
2140                 kfree(q_vector);
2141         }
2142 }
2143
2144 /**
2145  * ixgbevf_reset_interrupt_capability - Reset MSIX setup
2146  * @adapter: board private structure
2147  *
2148  **/
2149 static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter)
2150 {
2151         pci_disable_msix(adapter->pdev);
2152         kfree(adapter->msix_entries);
2153         adapter->msix_entries = NULL;
2154
2155         return;
2156 }
2157
2158 /**
2159  * ixgbevf_init_interrupt_scheme - Determine if MSIX is supported and init
2160  * @adapter: board private structure to initialize
2161  *
2162  **/
2163 static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter)
2164 {
2165         int err;
2166
2167         /* Number of supported queues */
2168         ixgbevf_set_num_queues(adapter);
2169
2170         err = ixgbevf_set_interrupt_capability(adapter);
2171         if (err) {
2172                 hw_dbg(&adapter->hw,
2173                        "Unable to setup interrupt capabilities\n");
2174                 goto err_set_interrupt;
2175         }
2176
2177         err = ixgbevf_alloc_q_vectors(adapter);
2178         if (err) {
2179                 hw_dbg(&adapter->hw, "Unable to allocate memory for queue "
2180                        "vectors\n");
2181                 goto err_alloc_q_vectors;
2182         }
2183
2184         err = ixgbevf_alloc_queues(adapter);
2185         if (err) {
2186                 printk(KERN_ERR "Unable to allocate memory for queues\n");
2187                 goto err_alloc_queues;
2188         }
2189
2190         hw_dbg(&adapter->hw, "Multiqueue %s: Rx Queue count = %u, "
2191                "Tx Queue count = %u\n",
2192                (adapter->num_rx_queues > 1) ? "Enabled" :
2193                "Disabled", adapter->num_rx_queues, adapter->num_tx_queues);
2194
2195         set_bit(__IXGBEVF_DOWN, &adapter->state);
2196
2197         return 0;
2198 err_alloc_queues:
2199         ixgbevf_free_q_vectors(adapter);
2200 err_alloc_q_vectors:
2201         ixgbevf_reset_interrupt_capability(adapter);
2202 err_set_interrupt:
2203         return err;
2204 }
2205
2206 /**
2207  * ixgbevf_sw_init - Initialize general software structures
2208  * (struct ixgbevf_adapter)
2209  * @adapter: board private structure to initialize
2210  *
2211  * ixgbevf_sw_init initializes the Adapter private data structure.
2212  * Fields are initialized based on PCI device information and
2213  * OS network device settings (MTU size).
2214  **/
2215 static int __devinit ixgbevf_sw_init(struct ixgbevf_adapter *adapter)
2216 {
2217         struct ixgbe_hw *hw = &adapter->hw;
2218         struct pci_dev *pdev = adapter->pdev;
2219         int err;
2220
2221         /* PCI config space info */
2222
2223         hw->vendor_id = pdev->vendor;
2224         hw->device_id = pdev->device;
2225         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2226         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2227         hw->subsystem_device_id = pdev->subsystem_device;
2228
2229         hw->mbx.ops.init_params(hw);
2230         hw->mac.max_tx_queues = MAX_TX_QUEUES;
2231         hw->mac.max_rx_queues = MAX_RX_QUEUES;
2232         err = hw->mac.ops.reset_hw(hw);
2233         if (err) {
2234                 dev_info(&pdev->dev,
2235                          "PF still in reset state, assigning new address\n");
2236                 random_ether_addr(hw->mac.addr);
2237         } else {
2238                 err = hw->mac.ops.init_hw(hw);
2239                 if (err) {
2240                         printk(KERN_ERR "init_shared_code failed: %d\n", err);
2241                         goto out;
2242                 }
2243         }
2244
2245         /* Enable dynamic interrupt throttling rates */
2246         adapter->eitr_param = 20000;
2247         adapter->itr_setting = 1;
2248
2249         /* set defaults for eitr in MegaBytes */
2250         adapter->eitr_low = 10;
2251         adapter->eitr_high = 20;
2252
2253         /* set default ring sizes */
2254         adapter->tx_ring_count = IXGBEVF_DEFAULT_TXD;
2255         adapter->rx_ring_count = IXGBEVF_DEFAULT_RXD;
2256
2257         /* enable rx csum by default */
2258         adapter->flags |= IXGBE_FLAG_RX_CSUM_ENABLED;
2259
2260         set_bit(__IXGBEVF_DOWN, &adapter->state);
2261
2262 out:
2263         return err;
2264 }
2265
2266 #define UPDATE_VF_COUNTER_32bit(reg, last_counter, counter)     \
2267         {                                                       \
2268                 u32 current_counter = IXGBE_READ_REG(hw, reg);  \
2269                 if (current_counter < last_counter)             \
2270                         counter += 0x100000000LL;               \
2271                 last_counter = current_counter;                 \
2272                 counter &= 0xFFFFFFFF00000000LL;                \
2273                 counter |= current_counter;                     \
2274         }
2275
2276 #define UPDATE_VF_COUNTER_36bit(reg_lsb, reg_msb, last_counter, counter) \
2277         {                                                                \
2278                 u64 current_counter_lsb = IXGBE_READ_REG(hw, reg_lsb);   \
2279                 u64 current_counter_msb = IXGBE_READ_REG(hw, reg_msb);   \
2280                 u64 current_counter = (current_counter_msb << 32) |      \
2281                         current_counter_lsb;                             \
2282                 if (current_counter < last_counter)                      \
2283                         counter += 0x1000000000LL;                       \
2284                 last_counter = current_counter;                          \
2285                 counter &= 0xFFFFFFF000000000LL;                         \
2286                 counter |= current_counter;                              \
2287         }
2288 /**
2289  * ixgbevf_update_stats - Update the board statistics counters.
2290  * @adapter: board private structure
2291  **/
2292 void ixgbevf_update_stats(struct ixgbevf_adapter *adapter)
2293 {
2294         struct ixgbe_hw *hw = &adapter->hw;
2295
2296         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPRC, adapter->stats.last_vfgprc,
2297                                 adapter->stats.vfgprc);
2298         UPDATE_VF_COUNTER_32bit(IXGBE_VFGPTC, adapter->stats.last_vfgptc,
2299                                 adapter->stats.vfgptc);
2300         UPDATE_VF_COUNTER_36bit(IXGBE_VFGORC_LSB, IXGBE_VFGORC_MSB,
2301                                 adapter->stats.last_vfgorc,
2302                                 adapter->stats.vfgorc);
2303         UPDATE_VF_COUNTER_36bit(IXGBE_VFGOTC_LSB, IXGBE_VFGOTC_MSB,
2304                                 adapter->stats.last_vfgotc,
2305                                 adapter->stats.vfgotc);
2306         UPDATE_VF_COUNTER_32bit(IXGBE_VFMPRC, adapter->stats.last_vfmprc,
2307                                 adapter->stats.vfmprc);
2308
2309         /* Fill out the OS statistics structure */
2310         adapter->net_stats.multicast = adapter->stats.vfmprc -
2311                 adapter->stats.base_vfmprc;
2312 }
2313
2314 /**
2315  * ixgbevf_watchdog - Timer Call-back
2316  * @data: pointer to adapter cast into an unsigned long
2317  **/
2318 static void ixgbevf_watchdog(unsigned long data)
2319 {
2320         struct ixgbevf_adapter *adapter = (struct ixgbevf_adapter *)data;
2321         struct ixgbe_hw *hw = &adapter->hw;
2322         u64 eics = 0;
2323         int i;
2324
2325         /*
2326          * Do the watchdog outside of interrupt context due to the lovely
2327          * delays that some of the newer hardware requires
2328          */
2329
2330         if (test_bit(__IXGBEVF_DOWN, &adapter->state))
2331                 goto watchdog_short_circuit;
2332
2333         /* get one bit for every active tx/rx interrupt vector */
2334         for (i = 0; i < adapter->num_msix_vectors - NON_Q_VECTORS; i++) {
2335                 struct ixgbevf_q_vector *qv = adapter->q_vector[i];
2336                 if (qv->rxr_count || qv->txr_count)
2337                         eics |= (1 << i);
2338         }
2339
2340         IXGBE_WRITE_REG(hw, IXGBE_VTEICS, (u32)eics);
2341
2342 watchdog_short_circuit:
2343         schedule_work(&adapter->watchdog_task);
2344 }
2345
2346 /**
2347  * ixgbevf_tx_timeout - Respond to a Tx Hang
2348  * @netdev: network interface device structure
2349  **/
2350 static void ixgbevf_tx_timeout(struct net_device *netdev)
2351 {
2352         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2353
2354         /* Do the reset outside of interrupt context */
2355         schedule_work(&adapter->reset_task);
2356 }
2357
2358 static void ixgbevf_reset_task(struct work_struct *work)
2359 {
2360         struct ixgbevf_adapter *adapter;
2361         adapter = container_of(work, struct ixgbevf_adapter, reset_task);
2362
2363         /* If we're already down or resetting, just bail */
2364         if (test_bit(__IXGBEVF_DOWN, &adapter->state) ||
2365             test_bit(__IXGBEVF_RESETTING, &adapter->state))
2366                 return;
2367
2368         adapter->tx_timeout_count++;
2369
2370         ixgbevf_reinit_locked(adapter);
2371 }
2372
2373 /**
2374  * ixgbevf_watchdog_task - worker thread to bring link up
2375  * @work: pointer to work_struct containing our data
2376  **/
2377 static void ixgbevf_watchdog_task(struct work_struct *work)
2378 {
2379         struct ixgbevf_adapter *adapter = container_of(work,
2380                                                        struct ixgbevf_adapter,
2381                                                        watchdog_task);
2382         struct net_device *netdev = adapter->netdev;
2383         struct ixgbe_hw *hw = &adapter->hw;
2384         u32 link_speed = adapter->link_speed;
2385         bool link_up = adapter->link_up;
2386
2387         adapter->flags |= IXGBE_FLAG_IN_WATCHDOG_TASK;
2388
2389         /*
2390          * Always check the link on the watchdog because we have
2391          * no LSC interrupt
2392          */
2393         if (hw->mac.ops.check_link) {
2394                 if ((hw->mac.ops.check_link(hw, &link_speed,
2395                                             &link_up, false)) != 0) {
2396                         adapter->link_up = link_up;
2397                         adapter->link_speed = link_speed;
2398                         netif_carrier_off(netdev);
2399                         netif_tx_stop_all_queues(netdev);
2400                         schedule_work(&adapter->reset_task);
2401                         goto pf_has_reset;
2402                 }
2403         } else {
2404                 /* always assume link is up, if no check link
2405                  * function */
2406                 link_speed = IXGBE_LINK_SPEED_10GB_FULL;
2407                 link_up = true;
2408         }
2409         adapter->link_up = link_up;
2410         adapter->link_speed = link_speed;
2411
2412         if (link_up) {
2413                 if (!netif_carrier_ok(netdev)) {
2414                         hw_dbg(&adapter->hw, "NIC Link is Up, %u Gbps\n",
2415                                (link_speed == IXGBE_LINK_SPEED_10GB_FULL) ?
2416                                10 : 1);
2417                         netif_carrier_on(netdev);
2418                         netif_tx_wake_all_queues(netdev);
2419                 } else {
2420                         /* Force detection of hung controller */
2421                         adapter->detect_tx_hung = true;
2422                 }
2423         } else {
2424                 adapter->link_up = false;
2425                 adapter->link_speed = 0;
2426                 if (netif_carrier_ok(netdev)) {
2427                         hw_dbg(&adapter->hw, "NIC Link is Down\n");
2428                         netif_carrier_off(netdev);
2429                         netif_tx_stop_all_queues(netdev);
2430                 }
2431         }
2432
2433         ixgbevf_update_stats(adapter);
2434
2435 pf_has_reset:
2436         /* Force detection of hung controller every watchdog period */
2437         adapter->detect_tx_hung = true;
2438
2439         /* Reset the timer */
2440         if (!test_bit(__IXGBEVF_DOWN, &adapter->state))
2441                 mod_timer(&adapter->watchdog_timer,
2442                           round_jiffies(jiffies + (2 * HZ)));
2443
2444         adapter->flags &= ~IXGBE_FLAG_IN_WATCHDOG_TASK;
2445 }
2446
2447 /**
2448  * ixgbevf_free_tx_resources - Free Tx Resources per Queue
2449  * @adapter: board private structure
2450  * @tx_ring: Tx descriptor ring for a specific queue
2451  *
2452  * Free all transmit software resources
2453  **/
2454 void ixgbevf_free_tx_resources(struct ixgbevf_adapter *adapter,
2455                                struct ixgbevf_ring *tx_ring)
2456 {
2457         struct pci_dev *pdev = adapter->pdev;
2458
2459         ixgbevf_clean_tx_ring(adapter, tx_ring);
2460
2461         vfree(tx_ring->tx_buffer_info);
2462         tx_ring->tx_buffer_info = NULL;
2463
2464         dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2465                           tx_ring->dma);
2466
2467         tx_ring->desc = NULL;
2468 }
2469
2470 /**
2471  * ixgbevf_free_all_tx_resources - Free Tx Resources for All Queues
2472  * @adapter: board private structure
2473  *
2474  * Free all transmit software resources
2475  **/
2476 static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter)
2477 {
2478         int i;
2479
2480         for (i = 0; i < adapter->num_tx_queues; i++)
2481                 if (adapter->tx_ring[i].desc)
2482                         ixgbevf_free_tx_resources(adapter,
2483                                                   &adapter->tx_ring[i]);
2484
2485 }
2486
2487 /**
2488  * ixgbevf_setup_tx_resources - allocate Tx resources (Descriptors)
2489  * @adapter: board private structure
2490  * @tx_ring:    tx descriptor ring (for a specific queue) to setup
2491  *
2492  * Return 0 on success, negative on failure
2493  **/
2494 int ixgbevf_setup_tx_resources(struct ixgbevf_adapter *adapter,
2495                                struct ixgbevf_ring *tx_ring)
2496 {
2497         struct pci_dev *pdev = adapter->pdev;
2498         int size;
2499
2500         size = sizeof(struct ixgbevf_tx_buffer) * tx_ring->count;
2501         tx_ring->tx_buffer_info = vmalloc(size);
2502         if (!tx_ring->tx_buffer_info)
2503                 goto err;
2504         memset(tx_ring->tx_buffer_info, 0, size);
2505
2506         /* round up to nearest 4K */
2507         tx_ring->size = tx_ring->count * sizeof(union ixgbe_adv_tx_desc);
2508         tx_ring->size = ALIGN(tx_ring->size, 4096);
2509
2510         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
2511                                            &tx_ring->dma, GFP_KERNEL);
2512         if (!tx_ring->desc)
2513                 goto err;
2514
2515         tx_ring->next_to_use = 0;
2516         tx_ring->next_to_clean = 0;
2517         tx_ring->work_limit = tx_ring->count;
2518         return 0;
2519
2520 err:
2521         vfree(tx_ring->tx_buffer_info);
2522         tx_ring->tx_buffer_info = NULL;
2523         hw_dbg(&adapter->hw, "Unable to allocate memory for the transmit "
2524                "descriptor ring\n");
2525         return -ENOMEM;
2526 }
2527
2528 /**
2529  * ixgbevf_setup_all_tx_resources - allocate all queues Tx resources
2530  * @adapter: board private structure
2531  *
2532  * If this function returns with an error, then it's possible one or
2533  * more of the rings is populated (while the rest are not).  It is the
2534  * callers duty to clean those orphaned rings.
2535  *
2536  * Return 0 on success, negative on failure
2537  **/
2538 static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter)
2539 {
2540         int i, err = 0;
2541
2542         for (i = 0; i < adapter->num_tx_queues; i++) {
2543                 err = ixgbevf_setup_tx_resources(adapter, &adapter->tx_ring[i]);
2544                 if (!err)
2545                         continue;
2546                 hw_dbg(&adapter->hw,
2547                        "Allocation for Tx Queue %u failed\n", i);
2548                 break;
2549         }
2550
2551         return err;
2552 }
2553
2554 /**
2555  * ixgbevf_setup_rx_resources - allocate Rx resources (Descriptors)
2556  * @adapter: board private structure
2557  * @rx_ring:    rx descriptor ring (for a specific queue) to setup
2558  *
2559  * Returns 0 on success, negative on failure
2560  **/
2561 int ixgbevf_setup_rx_resources(struct ixgbevf_adapter *adapter,
2562                                struct ixgbevf_ring *rx_ring)
2563 {
2564         struct pci_dev *pdev = adapter->pdev;
2565         int size;
2566
2567         size = sizeof(struct ixgbevf_rx_buffer) * rx_ring->count;
2568         rx_ring->rx_buffer_info = vmalloc(size);
2569         if (!rx_ring->rx_buffer_info) {
2570                 hw_dbg(&adapter->hw,
2571                        "Unable to vmalloc buffer memory for "
2572                        "the receive descriptor ring\n");
2573                 goto alloc_failed;
2574         }
2575         memset(rx_ring->rx_buffer_info, 0, size);
2576
2577         /* Round up to nearest 4K */
2578         rx_ring->size = rx_ring->count * sizeof(union ixgbe_adv_rx_desc);
2579         rx_ring->size = ALIGN(rx_ring->size, 4096);
2580
2581         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
2582                                            &rx_ring->dma, GFP_KERNEL);
2583
2584         if (!rx_ring->desc) {
2585                 hw_dbg(&adapter->hw,
2586                        "Unable to allocate memory for "
2587                        "the receive descriptor ring\n");
2588                 vfree(rx_ring->rx_buffer_info);
2589                 rx_ring->rx_buffer_info = NULL;
2590                 goto alloc_failed;
2591         }
2592
2593         rx_ring->next_to_clean = 0;
2594         rx_ring->next_to_use = 0;
2595
2596         return 0;
2597 alloc_failed:
2598         return -ENOMEM;
2599 }
2600
2601 /**
2602  * ixgbevf_setup_all_rx_resources - allocate all queues Rx resources
2603  * @adapter: board private structure
2604  *
2605  * If this function returns with an error, then it's possible one or
2606  * more of the rings is populated (while the rest are not).  It is the
2607  * callers duty to clean those orphaned rings.
2608  *
2609  * Return 0 on success, negative on failure
2610  **/
2611 static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter)
2612 {
2613         int i, err = 0;
2614
2615         for (i = 0; i < adapter->num_rx_queues; i++) {
2616                 err = ixgbevf_setup_rx_resources(adapter, &adapter->rx_ring[i]);
2617                 if (!err)
2618                         continue;
2619                 hw_dbg(&adapter->hw,
2620                        "Allocation for Rx Queue %u failed\n", i);
2621                 break;
2622         }
2623         return err;
2624 }
2625
2626 /**
2627  * ixgbevf_free_rx_resources - Free Rx Resources
2628  * @adapter: board private structure
2629  * @rx_ring: ring to clean the resources from
2630  *
2631  * Free all receive software resources
2632  **/
2633 void ixgbevf_free_rx_resources(struct ixgbevf_adapter *adapter,
2634                                struct ixgbevf_ring *rx_ring)
2635 {
2636         struct pci_dev *pdev = adapter->pdev;
2637
2638         ixgbevf_clean_rx_ring(adapter, rx_ring);
2639
2640         vfree(rx_ring->rx_buffer_info);
2641         rx_ring->rx_buffer_info = NULL;
2642
2643         dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2644                           rx_ring->dma);
2645
2646         rx_ring->desc = NULL;
2647 }
2648
2649 /**
2650  * ixgbevf_free_all_rx_resources - Free Rx Resources for All Queues
2651  * @adapter: board private structure
2652  *
2653  * Free all receive software resources
2654  **/
2655 static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter)
2656 {
2657         int i;
2658
2659         for (i = 0; i < adapter->num_rx_queues; i++)
2660                 if (adapter->rx_ring[i].desc)
2661                         ixgbevf_free_rx_resources(adapter,
2662                                                   &adapter->rx_ring[i]);
2663 }
2664
2665 /**
2666  * ixgbevf_open - Called when a network interface is made active
2667  * @netdev: network interface device structure
2668  *
2669  * Returns 0 on success, negative value on failure
2670  *
2671  * The open entry point is called when a network interface is made
2672  * active by the system (IFF_UP).  At this point all resources needed
2673  * for transmit and receive operations are allocated, the interrupt
2674  * handler is registered with the OS, the watchdog timer is started,
2675  * and the stack is notified that the interface is ready.
2676  **/
2677 static int ixgbevf_open(struct net_device *netdev)
2678 {
2679         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2680         struct ixgbe_hw *hw = &adapter->hw;
2681         int err;
2682
2683         /* disallow open during test */
2684         if (test_bit(__IXGBEVF_TESTING, &adapter->state))
2685                 return -EBUSY;
2686
2687         if (hw->adapter_stopped) {
2688                 ixgbevf_reset(adapter);
2689                 /* if adapter is still stopped then PF isn't up and
2690                  * the vf can't start. */
2691                 if (hw->adapter_stopped) {
2692                         err = IXGBE_ERR_MBX;
2693                         printk(KERN_ERR "Unable to start - perhaps the PF"
2694                                " Driver isn't up yet\n");
2695                         goto err_setup_reset;
2696                 }
2697         }
2698
2699         /* allocate transmit descriptors */
2700         err = ixgbevf_setup_all_tx_resources(adapter);
2701         if (err)
2702                 goto err_setup_tx;
2703
2704         /* allocate receive descriptors */
2705         err = ixgbevf_setup_all_rx_resources(adapter);
2706         if (err)
2707                 goto err_setup_rx;
2708
2709         ixgbevf_configure(adapter);
2710
2711         /*
2712          * Map the Tx/Rx rings to the vectors we were allotted.
2713          * if request_irq will be called in this function map_rings
2714          * must be called *before* up_complete
2715          */
2716         ixgbevf_map_rings_to_vectors(adapter);
2717
2718         err = ixgbevf_up_complete(adapter);
2719         if (err)
2720                 goto err_up;
2721
2722         /* clear any pending interrupts, may auto mask */
2723         IXGBE_READ_REG(hw, IXGBE_VTEICR);
2724         err = ixgbevf_request_irq(adapter);
2725         if (err)
2726                 goto err_req_irq;
2727
2728         ixgbevf_irq_enable(adapter, true, true);
2729
2730         return 0;
2731
2732 err_req_irq:
2733         ixgbevf_down(adapter);
2734 err_up:
2735         ixgbevf_free_irq(adapter);
2736 err_setup_rx:
2737         ixgbevf_free_all_rx_resources(adapter);
2738 err_setup_tx:
2739         ixgbevf_free_all_tx_resources(adapter);
2740         ixgbevf_reset(adapter);
2741
2742 err_setup_reset:
2743
2744         return err;
2745 }
2746
2747 /**
2748  * ixgbevf_close - Disables a network interface
2749  * @netdev: network interface device structure
2750  *
2751  * Returns 0, this is not allowed to fail
2752  *
2753  * The close entry point is called when an interface is de-activated
2754  * by the OS.  The hardware is still under the drivers control, but
2755  * needs to be disabled.  A global MAC reset is issued to stop the
2756  * hardware, and all transmit and receive resources are freed.
2757  **/
2758 static int ixgbevf_close(struct net_device *netdev)
2759 {
2760         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
2761
2762         ixgbevf_down(adapter);
2763         ixgbevf_free_irq(adapter);
2764
2765         ixgbevf_free_all_tx_resources(adapter);
2766         ixgbevf_free_all_rx_resources(adapter);
2767
2768         return 0;
2769 }
2770
2771 static int ixgbevf_tso(struct ixgbevf_adapter *adapter,
2772                        struct ixgbevf_ring *tx_ring,
2773                        struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
2774 {
2775         struct ixgbe_adv_tx_context_desc *context_desc;
2776         unsigned int i;
2777         int err;
2778         struct ixgbevf_tx_buffer *tx_buffer_info;
2779         u32 vlan_macip_lens = 0, type_tucmd_mlhl;
2780         u32 mss_l4len_idx, l4len;
2781
2782         if (skb_is_gso(skb)) {
2783                 if (skb_header_cloned(skb)) {
2784                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2785                         if (err)
2786                                 return err;
2787                 }
2788                 l4len = tcp_hdrlen(skb);
2789                 *hdr_len += l4len;
2790
2791                 if (skb->protocol == htons(ETH_P_IP)) {
2792                         struct iphdr *iph = ip_hdr(skb);
2793                         iph->tot_len = 0;
2794                         iph->check = 0;
2795                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2796                                                                  iph->daddr, 0,
2797                                                                  IPPROTO_TCP,
2798                                                                  0);
2799                         adapter->hw_tso_ctxt++;
2800                 } else if (skb_is_gso_v6(skb)) {
2801                         ipv6_hdr(skb)->payload_len = 0;
2802                         tcp_hdr(skb)->check =
2803                             ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2804                                              &ipv6_hdr(skb)->daddr,
2805                                              0, IPPROTO_TCP, 0);
2806                         adapter->hw_tso6_ctxt++;
2807                 }
2808
2809                 i = tx_ring->next_to_use;
2810
2811                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2812                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2813
2814                 /* VLAN MACLEN IPLEN */
2815                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2816                         vlan_macip_lens |=
2817                                 (tx_flags & IXGBE_TX_FLAGS_VLAN_MASK);
2818                 vlan_macip_lens |= ((skb_network_offset(skb)) <<
2819                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2820                 *hdr_len += skb_network_offset(skb);
2821                 vlan_macip_lens |=
2822                         (skb_transport_header(skb) - skb_network_header(skb));
2823                 *hdr_len +=
2824                         (skb_transport_header(skb) - skb_network_header(skb));
2825                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2826                 context_desc->seqnum_seed = 0;
2827
2828                 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2829                 type_tucmd_mlhl = (IXGBE_TXD_CMD_DEXT |
2830                                     IXGBE_ADVTXD_DTYP_CTXT);
2831
2832                 if (skb->protocol == htons(ETH_P_IP))
2833                         type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2834                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_L4T_TCP;
2835                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2836
2837                 /* MSS L4LEN IDX */
2838                 mss_l4len_idx =
2839                         (skb_shinfo(skb)->gso_size << IXGBE_ADVTXD_MSS_SHIFT);
2840                 mss_l4len_idx |= (l4len << IXGBE_ADVTXD_L4LEN_SHIFT);
2841                 /* use index 1 for TSO */
2842                 mss_l4len_idx |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
2843                 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
2844
2845                 tx_buffer_info->time_stamp = jiffies;
2846                 tx_buffer_info->next_to_watch = i;
2847
2848                 i++;
2849                 if (i == tx_ring->count)
2850                         i = 0;
2851                 tx_ring->next_to_use = i;
2852
2853                 return true;
2854         }
2855
2856         return false;
2857 }
2858
2859 static bool ixgbevf_tx_csum(struct ixgbevf_adapter *adapter,
2860                             struct ixgbevf_ring *tx_ring,
2861                             struct sk_buff *skb, u32 tx_flags)
2862 {
2863         struct ixgbe_adv_tx_context_desc *context_desc;
2864         unsigned int i;
2865         struct ixgbevf_tx_buffer *tx_buffer_info;
2866         u32 vlan_macip_lens = 0, type_tucmd_mlhl = 0;
2867
2868         if (skb->ip_summed == CHECKSUM_PARTIAL ||
2869             (tx_flags & IXGBE_TX_FLAGS_VLAN)) {
2870                 i = tx_ring->next_to_use;
2871                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2872                 context_desc = IXGBE_TX_CTXTDESC_ADV(*tx_ring, i);
2873
2874                 if (tx_flags & IXGBE_TX_FLAGS_VLAN)
2875                         vlan_macip_lens |= (tx_flags &
2876                                             IXGBE_TX_FLAGS_VLAN_MASK);
2877                 vlan_macip_lens |= (skb_network_offset(skb) <<
2878                                     IXGBE_ADVTXD_MACLEN_SHIFT);
2879                 if (skb->ip_summed == CHECKSUM_PARTIAL)
2880                         vlan_macip_lens |= (skb_transport_header(skb) -
2881                                             skb_network_header(skb));
2882
2883                 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
2884                 context_desc->seqnum_seed = 0;
2885
2886                 type_tucmd_mlhl |= (IXGBE_TXD_CMD_DEXT |
2887                                     IXGBE_ADVTXD_DTYP_CTXT);
2888
2889                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2890                         switch (skb->protocol) {
2891                         case __constant_htons(ETH_P_IP):
2892                                 type_tucmd_mlhl |= IXGBE_ADVTXD_TUCMD_IPV4;
2893                                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2894                                         type_tucmd_mlhl |=
2895                                             IXGBE_ADVTXD_TUCMD_L4T_TCP;
2896                                 break;
2897                         case __constant_htons(ETH_P_IPV6):
2898                                 /* XXX what about other V6 headers?? */
2899                                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2900                                         type_tucmd_mlhl |=
2901                                                 IXGBE_ADVTXD_TUCMD_L4T_TCP;
2902                                 break;
2903                         default:
2904                                 if (unlikely(net_ratelimit())) {
2905                                         printk(KERN_WARNING
2906                                                "partial checksum but "
2907                                                "proto=%x!\n",
2908                                                skb->protocol);
2909                                 }
2910                                 break;
2911                         }
2912                 }
2913
2914                 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd_mlhl);
2915                 /* use index zero for tx checksum offload */
2916                 context_desc->mss_l4len_idx = 0;
2917
2918                 tx_buffer_info->time_stamp = jiffies;
2919                 tx_buffer_info->next_to_watch = i;
2920
2921                 adapter->hw_csum_tx_good++;
2922                 i++;
2923                 if (i == tx_ring->count)
2924                         i = 0;
2925                 tx_ring->next_to_use = i;
2926
2927                 return true;
2928         }
2929
2930         return false;
2931 }
2932
2933 static int ixgbevf_tx_map(struct ixgbevf_adapter *adapter,
2934                           struct ixgbevf_ring *tx_ring,
2935                           struct sk_buff *skb, u32 tx_flags,
2936                           unsigned int first)
2937 {
2938         struct pci_dev *pdev = adapter->pdev;
2939         struct ixgbevf_tx_buffer *tx_buffer_info;
2940         unsigned int len;
2941         unsigned int total = skb->len;
2942         unsigned int offset = 0, size, count = 0;
2943         unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2944         unsigned int f;
2945         int i;
2946
2947         i = tx_ring->next_to_use;
2948
2949         len = min(skb_headlen(skb), total);
2950         while (len) {
2951                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
2952                 size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2953
2954                 tx_buffer_info->length = size;
2955                 tx_buffer_info->mapped_as_page = false;
2956                 tx_buffer_info->dma = dma_map_single(&adapter->pdev->dev,
2957                                                      skb->data + offset,
2958                                                      size, DMA_TO_DEVICE);
2959                 if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2960                         goto dma_error;
2961                 tx_buffer_info->time_stamp = jiffies;
2962                 tx_buffer_info->next_to_watch = i;
2963
2964                 len -= size;
2965                 total -= size;
2966                 offset += size;
2967                 count++;
2968                 i++;
2969                 if (i == tx_ring->count)
2970                         i = 0;
2971         }
2972
2973         for (f = 0; f < nr_frags; f++) {
2974                 struct skb_frag_struct *frag;
2975
2976                 frag = &skb_shinfo(skb)->frags[f];
2977                 len = min((unsigned int)frag->size, total);
2978                 offset = frag->page_offset;
2979
2980                 while (len) {
2981                         tx_buffer_info = &tx_ring->tx_buffer_info[i];
2982                         size = min(len, (unsigned int)IXGBE_MAX_DATA_PER_TXD);
2983
2984                         tx_buffer_info->length = size;
2985                         tx_buffer_info->dma = dma_map_page(&adapter->pdev->dev,
2986                                                            frag->page,
2987                                                            offset,
2988                                                            size,
2989                                                            DMA_TO_DEVICE);
2990                         tx_buffer_info->mapped_as_page = true;
2991                         if (dma_mapping_error(&pdev->dev, tx_buffer_info->dma))
2992                                 goto dma_error;
2993                         tx_buffer_info->time_stamp = jiffies;
2994                         tx_buffer_info->next_to_watch = i;
2995
2996                         len -= size;
2997                         total -= size;
2998                         offset += size;
2999                         count++;
3000                         i++;
3001                         if (i == tx_ring->count)
3002                                 i = 0;
3003                 }
3004                 if (total == 0)
3005                         break;
3006         }
3007
3008         if (i == 0)
3009                 i = tx_ring->count - 1;
3010         else
3011                 i = i - 1;
3012         tx_ring->tx_buffer_info[i].skb = skb;
3013         tx_ring->tx_buffer_info[first].next_to_watch = i;
3014
3015         return count;
3016
3017 dma_error:
3018         dev_err(&pdev->dev, "TX DMA map failed\n");
3019
3020         /* clear timestamp and dma mappings for failed tx_buffer_info map */
3021         tx_buffer_info->dma = 0;
3022         tx_buffer_info->time_stamp = 0;
3023         tx_buffer_info->next_to_watch = 0;
3024         count--;
3025
3026         /* clear timestamp and dma mappings for remaining portion of packet */
3027         while (count >= 0) {
3028                 count--;
3029                 i--;
3030                 if (i < 0)
3031                         i += tx_ring->count;
3032                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3033                 ixgbevf_unmap_and_free_tx_resource(adapter, tx_buffer_info);
3034         }
3035
3036         return count;
3037 }
3038
3039 static void ixgbevf_tx_queue(struct ixgbevf_adapter *adapter,
3040                              struct ixgbevf_ring *tx_ring, int tx_flags,
3041                              int count, u32 paylen, u8 hdr_len)
3042 {
3043         union ixgbe_adv_tx_desc *tx_desc = NULL;
3044         struct ixgbevf_tx_buffer *tx_buffer_info;
3045         u32 olinfo_status = 0, cmd_type_len = 0;
3046         unsigned int i;
3047
3048         u32 txd_cmd = IXGBE_TXD_CMD_EOP | IXGBE_TXD_CMD_RS | IXGBE_TXD_CMD_IFCS;
3049
3050         cmd_type_len |= IXGBE_ADVTXD_DTYP_DATA;
3051
3052         cmd_type_len |= IXGBE_ADVTXD_DCMD_IFCS | IXGBE_ADVTXD_DCMD_DEXT;
3053
3054         if (tx_flags & IXGBE_TX_FLAGS_VLAN)
3055                 cmd_type_len |= IXGBE_ADVTXD_DCMD_VLE;
3056
3057         if (tx_flags & IXGBE_TX_FLAGS_TSO) {
3058                 cmd_type_len |= IXGBE_ADVTXD_DCMD_TSE;
3059
3060                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3061                         IXGBE_ADVTXD_POPTS_SHIFT;
3062
3063                 /* use index 1 context for tso */
3064                 olinfo_status |= (1 << IXGBE_ADVTXD_IDX_SHIFT);
3065                 if (tx_flags & IXGBE_TX_FLAGS_IPV4)
3066                         olinfo_status |= IXGBE_TXD_POPTS_IXSM <<
3067                                 IXGBE_ADVTXD_POPTS_SHIFT;
3068
3069         } else if (tx_flags & IXGBE_TX_FLAGS_CSUM)
3070                 olinfo_status |= IXGBE_TXD_POPTS_TXSM <<
3071                         IXGBE_ADVTXD_POPTS_SHIFT;
3072
3073         olinfo_status |= ((paylen - hdr_len) << IXGBE_ADVTXD_PAYLEN_SHIFT);
3074
3075         i = tx_ring->next_to_use;
3076         while (count--) {
3077                 tx_buffer_info = &tx_ring->tx_buffer_info[i];
3078                 tx_desc = IXGBE_TX_DESC_ADV(*tx_ring, i);
3079                 tx_desc->read.buffer_addr = cpu_to_le64(tx_buffer_info->dma);
3080                 tx_desc->read.cmd_type_len =
3081                         cpu_to_le32(cmd_type_len | tx_buffer_info->length);
3082                 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
3083                 i++;
3084                 if (i == tx_ring->count)
3085                         i = 0;
3086         }
3087
3088         tx_desc->read.cmd_type_len |= cpu_to_le32(txd_cmd);
3089
3090         /*
3091          * Force memory writes to complete before letting h/w
3092          * know there are new descriptors to fetch.  (Only
3093          * applicable for weak-ordered memory model archs,
3094          * such as IA-64).
3095          */
3096         wmb();
3097
3098         tx_ring->next_to_use = i;
3099         writel(i, adapter->hw.hw_addr + tx_ring->tail);
3100 }
3101
3102 static int __ixgbevf_maybe_stop_tx(struct net_device *netdev,
3103                                    struct ixgbevf_ring *tx_ring, int size)
3104 {
3105         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3106
3107         netif_stop_subqueue(netdev, tx_ring->queue_index);
3108         /* Herbert's original patch had:
3109          *  smp_mb__after_netif_stop_queue();
3110          * but since that doesn't exist yet, just open code it. */
3111         smp_mb();
3112
3113         /* We need to check again in a case another CPU has just
3114          * made room available. */
3115         if (likely(IXGBE_DESC_UNUSED(tx_ring) < size))
3116                 return -EBUSY;
3117
3118         /* A reprieve! - use start_queue because it doesn't call schedule */
3119         netif_start_subqueue(netdev, tx_ring->queue_index);
3120         ++adapter->restart_queue;
3121         return 0;
3122 }
3123
3124 static int ixgbevf_maybe_stop_tx(struct net_device *netdev,
3125                                  struct ixgbevf_ring *tx_ring, int size)
3126 {
3127         if (likely(IXGBE_DESC_UNUSED(tx_ring) >= size))
3128                 return 0;
3129         return __ixgbevf_maybe_stop_tx(netdev, tx_ring, size);
3130 }
3131
3132 static int ixgbevf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3133 {
3134         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3135         struct ixgbevf_ring *tx_ring;
3136         unsigned int first;
3137         unsigned int tx_flags = 0;
3138         u8 hdr_len = 0;
3139         int r_idx = 0, tso;
3140         int count = 0;
3141
3142         unsigned int f;
3143
3144         tx_ring = &adapter->tx_ring[r_idx];
3145
3146         if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
3147                 tx_flags |= vlan_tx_tag_get(skb);
3148                 tx_flags <<= IXGBE_TX_FLAGS_VLAN_SHIFT;
3149                 tx_flags |= IXGBE_TX_FLAGS_VLAN;
3150         }
3151
3152         /* four things can cause us to need a context descriptor */
3153         if (skb_is_gso(skb) ||
3154             (skb->ip_summed == CHECKSUM_PARTIAL) ||
3155             (tx_flags & IXGBE_TX_FLAGS_VLAN))
3156                 count++;
3157
3158         count += TXD_USE_COUNT(skb_headlen(skb));
3159         for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
3160                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
3161
3162         if (ixgbevf_maybe_stop_tx(netdev, tx_ring, count)) {
3163                 adapter->tx_busy++;
3164                 return NETDEV_TX_BUSY;
3165         }
3166
3167         first = tx_ring->next_to_use;
3168
3169         if (skb->protocol == htons(ETH_P_IP))
3170                 tx_flags |= IXGBE_TX_FLAGS_IPV4;
3171         tso = ixgbevf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len);
3172         if (tso < 0) {
3173                 dev_kfree_skb_any(skb);
3174                 return NETDEV_TX_OK;
3175         }
3176
3177         if (tso)
3178                 tx_flags |= IXGBE_TX_FLAGS_TSO;
3179         else if (ixgbevf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
3180                  (skb->ip_summed == CHECKSUM_PARTIAL))
3181                 tx_flags |= IXGBE_TX_FLAGS_CSUM;
3182
3183         ixgbevf_tx_queue(adapter, tx_ring, tx_flags,
3184                          ixgbevf_tx_map(adapter, tx_ring, skb, tx_flags, first),
3185                          skb->len, hdr_len);
3186
3187         ixgbevf_maybe_stop_tx(netdev, tx_ring, DESC_NEEDED);
3188
3189         return NETDEV_TX_OK;
3190 }
3191
3192 /**
3193  * ixgbevf_get_stats - Get System Network Statistics
3194  * @netdev: network interface device structure
3195  *
3196  * Returns the address of the device statistics structure.
3197  * The statistics are actually updated from the timer callback.
3198  **/
3199 static struct net_device_stats *ixgbevf_get_stats(struct net_device *netdev)
3200 {
3201         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3202
3203         /* only return the current stats */
3204         return &adapter->net_stats;
3205 }
3206
3207 /**
3208  * ixgbevf_set_mac - Change the Ethernet Address of the NIC
3209  * @netdev: network interface device structure
3210  * @p: pointer to an address structure
3211  *
3212  * Returns 0 on success, negative on failure
3213  **/
3214 static int ixgbevf_set_mac(struct net_device *netdev, void *p)
3215 {
3216         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3217         struct ixgbe_hw *hw = &adapter->hw;
3218         struct sockaddr *addr = p;
3219
3220         if (!is_valid_ether_addr(addr->sa_data))
3221                 return -EADDRNOTAVAIL;
3222
3223         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3224         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3225
3226         if (hw->mac.ops.set_rar)
3227                 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0);
3228
3229         return 0;
3230 }
3231
3232 /**
3233  * ixgbevf_change_mtu - Change the Maximum Transfer Unit
3234  * @netdev: network interface device structure
3235  * @new_mtu: new value for maximum frame size
3236  *
3237  * Returns 0 on success, negative on failure
3238  **/
3239 static int ixgbevf_change_mtu(struct net_device *netdev, int new_mtu)
3240 {
3241         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3242         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3243
3244         /* MTU < 68 is an error and causes problems on some kernels */
3245         if ((new_mtu < 68) || (max_frame > MAXIMUM_ETHERNET_VLAN_SIZE))
3246                 return -EINVAL;
3247
3248         hw_dbg(&adapter->hw, "changing MTU from %d to %d\n",
3249                netdev->mtu, new_mtu);
3250         /* must set new MTU before calling down or up */
3251         netdev->mtu = new_mtu;
3252
3253         if (netif_running(netdev))
3254                 ixgbevf_reinit_locked(adapter);
3255
3256         return 0;
3257 }
3258
3259 static void ixgbevf_shutdown(struct pci_dev *pdev)
3260 {
3261         struct net_device *netdev = pci_get_drvdata(pdev);
3262         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3263
3264         netif_device_detach(netdev);
3265
3266         if (netif_running(netdev)) {
3267                 ixgbevf_down(adapter);
3268                 ixgbevf_free_irq(adapter);
3269                 ixgbevf_free_all_tx_resources(adapter);
3270                 ixgbevf_free_all_rx_resources(adapter);
3271         }
3272
3273 #ifdef CONFIG_PM
3274         pci_save_state(pdev);
3275 #endif
3276
3277         pci_disable_device(pdev);
3278 }
3279
3280 static const struct net_device_ops ixgbe_netdev_ops = {
3281         .ndo_open               = &ixgbevf_open,
3282         .ndo_stop               = &ixgbevf_close,
3283         .ndo_start_xmit         = &ixgbevf_xmit_frame,
3284         .ndo_get_stats          = &ixgbevf_get_stats,
3285         .ndo_set_rx_mode        = &ixgbevf_set_rx_mode,
3286         .ndo_set_multicast_list = &ixgbevf_set_rx_mode,
3287         .ndo_validate_addr      = eth_validate_addr,
3288         .ndo_set_mac_address    = &ixgbevf_set_mac,
3289         .ndo_change_mtu         = &ixgbevf_change_mtu,
3290         .ndo_tx_timeout         = &ixgbevf_tx_timeout,
3291         .ndo_vlan_rx_register   = &ixgbevf_vlan_rx_register,
3292         .ndo_vlan_rx_add_vid    = &ixgbevf_vlan_rx_add_vid,
3293         .ndo_vlan_rx_kill_vid   = &ixgbevf_vlan_rx_kill_vid,
3294 };
3295
3296 static void ixgbevf_assign_netdev_ops(struct net_device *dev)
3297 {
3298         struct ixgbevf_adapter *adapter;
3299         adapter = netdev_priv(dev);
3300         dev->netdev_ops = &ixgbe_netdev_ops;
3301         ixgbevf_set_ethtool_ops(dev);
3302         dev->watchdog_timeo = 5 * HZ;
3303 }
3304
3305 /**
3306  * ixgbevf_probe - Device Initialization Routine
3307  * @pdev: PCI device information struct
3308  * @ent: entry in ixgbevf_pci_tbl
3309  *
3310  * Returns 0 on success, negative on failure
3311  *
3312  * ixgbevf_probe initializes an adapter identified by a pci_dev structure.
3313  * The OS initialization, configuring of the adapter private structure,
3314  * and a hardware reset occur.
3315  **/
3316 static int __devinit ixgbevf_probe(struct pci_dev *pdev,
3317                                    const struct pci_device_id *ent)
3318 {
3319         struct net_device *netdev;
3320         struct ixgbevf_adapter *adapter = NULL;
3321         struct ixgbe_hw *hw = NULL;
3322         const struct ixgbevf_info *ii = ixgbevf_info_tbl[ent->driver_data];
3323         static int cards_found;
3324         int err, pci_using_dac;
3325
3326         err = pci_enable_device(pdev);
3327         if (err)
3328                 return err;
3329
3330         if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3331             !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3332                 pci_using_dac = 1;
3333         } else {
3334                 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3335                 if (err) {
3336                         err = dma_set_coherent_mask(&pdev->dev,
3337                                                     DMA_BIT_MASK(32));
3338                         if (err) {
3339                                 dev_err(&pdev->dev, "No usable DMA "
3340                                         "configuration, aborting\n");
3341                                 goto err_dma;
3342                         }
3343                 }
3344                 pci_using_dac = 0;
3345         }
3346
3347         err = pci_request_regions(pdev, ixgbevf_driver_name);
3348         if (err) {
3349                 dev_err(&pdev->dev, "pci_request_regions failed 0x%x\n", err);
3350                 goto err_pci_reg;
3351         }
3352
3353         pci_set_master(pdev);
3354
3355 #ifdef HAVE_TX_MQ
3356         netdev = alloc_etherdev_mq(sizeof(struct ixgbevf_adapter),
3357                                    MAX_TX_QUEUES);
3358 #else
3359         netdev = alloc_etherdev(sizeof(struct ixgbevf_adapter));
3360 #endif
3361         if (!netdev) {
3362                 err = -ENOMEM;
3363                 goto err_alloc_etherdev;
3364         }
3365
3366         SET_NETDEV_DEV(netdev, &pdev->dev);
3367
3368         pci_set_drvdata(pdev, netdev);
3369         adapter = netdev_priv(netdev);
3370
3371         adapter->netdev = netdev;
3372         adapter->pdev = pdev;
3373         hw = &adapter->hw;
3374         hw->back = adapter;
3375         adapter->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3376
3377         /*
3378          * call save state here in standalone driver because it relies on
3379          * adapter struct to exist, and needs to call netdev_priv
3380          */
3381         pci_save_state(pdev);
3382
3383         hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3384                               pci_resource_len(pdev, 0));
3385         if (!hw->hw_addr) {
3386                 err = -EIO;
3387                 goto err_ioremap;
3388         }
3389
3390         ixgbevf_assign_netdev_ops(netdev);
3391
3392         adapter->bd_number = cards_found;
3393
3394         /* Setup hw api */
3395         memcpy(&hw->mac.ops, ii->mac_ops, sizeof(hw->mac.ops));
3396         hw->mac.type  = ii->mac;
3397
3398         memcpy(&hw->mbx.ops, &ixgbevf_mbx_ops,
3399                sizeof(struct ixgbe_mac_operations));
3400
3401         adapter->flags &= ~IXGBE_FLAG_RX_PS_CAPABLE;
3402         adapter->flags &= ~IXGBE_FLAG_RX_PS_ENABLED;
3403         adapter->flags |= IXGBE_FLAG_RX_1BUF_CAPABLE;
3404
3405         /* setup the private structure */
3406         err = ixgbevf_sw_init(adapter);
3407
3408 #ifdef MAX_SKB_FRAGS
3409         netdev->features = NETIF_F_SG |
3410                            NETIF_F_IP_CSUM |
3411                            NETIF_F_HW_VLAN_TX |
3412                            NETIF_F_HW_VLAN_RX |
3413                            NETIF_F_HW_VLAN_FILTER;
3414
3415         netdev->features |= NETIF_F_IPV6_CSUM;
3416         netdev->features |= NETIF_F_TSO;
3417         netdev->features |= NETIF_F_TSO6;
3418         netdev->vlan_features |= NETIF_F_TSO;
3419         netdev->vlan_features |= NETIF_F_TSO6;
3420         netdev->vlan_features |= NETIF_F_IP_CSUM;
3421         netdev->vlan_features |= NETIF_F_SG;
3422
3423         if (pci_using_dac)
3424                 netdev->features |= NETIF_F_HIGHDMA;
3425
3426 #endif /* MAX_SKB_FRAGS */
3427
3428         /* The HW MAC address was set and/or determined in sw_init */
3429         memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
3430         memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
3431
3432         if (!is_valid_ether_addr(netdev->dev_addr)) {
3433                 printk(KERN_ERR "invalid MAC address\n");
3434                 err = -EIO;
3435                 goto err_sw_init;
3436         }
3437
3438         init_timer(&adapter->watchdog_timer);
3439         adapter->watchdog_timer.function = &ixgbevf_watchdog;
3440         adapter->watchdog_timer.data = (unsigned long)adapter;
3441
3442         INIT_WORK(&adapter->reset_task, ixgbevf_reset_task);
3443         INIT_WORK(&adapter->watchdog_task, ixgbevf_watchdog_task);
3444
3445         err = ixgbevf_init_interrupt_scheme(adapter);
3446         if (err)
3447                 goto err_sw_init;
3448
3449         /* pick up the PCI bus settings for reporting later */
3450         if (hw->mac.ops.get_bus_info)
3451                 hw->mac.ops.get_bus_info(hw);
3452
3453
3454         netif_carrier_off(netdev);
3455         netif_tx_stop_all_queues(netdev);
3456
3457         strcpy(netdev->name, "eth%d");
3458
3459         err = register_netdev(netdev);
3460         if (err)
3461                 goto err_register;
3462
3463         adapter->netdev_registered = true;
3464
3465         ixgbevf_init_last_counter_stats(adapter);
3466
3467         /* print the MAC address */
3468         hw_dbg(hw, "%2.2x:%2.2x:%2.2x:%2.2x:%2.2x:%2.2x\n",
3469                netdev->dev_addr[0],
3470                netdev->dev_addr[1],
3471                netdev->dev_addr[2],
3472                netdev->dev_addr[3],
3473                netdev->dev_addr[4],
3474                netdev->dev_addr[5]);
3475
3476         hw_dbg(hw, "MAC: %d\n", hw->mac.type);
3477
3478         hw_dbg(hw, "LRO is disabled\n");
3479
3480         hw_dbg(hw, "Intel(R) 82599 Virtual Function\n");
3481         cards_found++;
3482         return 0;
3483
3484 err_register:
3485 err_sw_init:
3486         ixgbevf_reset_interrupt_capability(adapter);
3487         iounmap(hw->hw_addr);
3488 err_ioremap:
3489         free_netdev(netdev);
3490 err_alloc_etherdev:
3491         pci_release_regions(pdev);
3492 err_pci_reg:
3493 err_dma:
3494         pci_disable_device(pdev);
3495         return err;
3496 }
3497
3498 /**
3499  * ixgbevf_remove - Device Removal Routine
3500  * @pdev: PCI device information struct
3501  *
3502  * ixgbevf_remove is called by the PCI subsystem to alert the driver
3503  * that it should release a PCI device.  The could be caused by a
3504  * Hot-Plug event, or because the driver is going to be removed from
3505  * memory.
3506  **/
3507 static void __devexit ixgbevf_remove(struct pci_dev *pdev)
3508 {
3509         struct net_device *netdev = pci_get_drvdata(pdev);
3510         struct ixgbevf_adapter *adapter = netdev_priv(netdev);
3511
3512         set_bit(__IXGBEVF_DOWN, &adapter->state);
3513
3514         del_timer_sync(&adapter->watchdog_timer);
3515
3516         cancel_work_sync(&adapter->watchdog_task);
3517
3518         flush_scheduled_work();
3519
3520         if (adapter->netdev_registered) {
3521                 unregister_netdev(netdev);
3522                 adapter->netdev_registered = false;
3523         }
3524
3525         ixgbevf_reset_interrupt_capability(adapter);
3526
3527         iounmap(adapter->hw.hw_addr);
3528         pci_release_regions(pdev);
3529
3530         hw_dbg(&adapter->hw, "Remove complete\n");
3531
3532         kfree(adapter->tx_ring);
3533         kfree(adapter->rx_ring);
3534
3535         free_netdev(netdev);
3536
3537         pci_disable_device(pdev);
3538 }
3539
3540 static struct pci_driver ixgbevf_driver = {
3541         .name     = ixgbevf_driver_name,
3542         .id_table = ixgbevf_pci_tbl,
3543         .probe    = ixgbevf_probe,
3544         .remove   = __devexit_p(ixgbevf_remove),
3545         .shutdown = ixgbevf_shutdown,
3546 };
3547
3548 /**
3549  * ixgbe_init_module - Driver Registration Routine
3550  *
3551  * ixgbe_init_module is the first routine called when the driver is
3552  * loaded. All it does is register with the PCI subsystem.
3553  **/
3554 static int __init ixgbevf_init_module(void)
3555 {
3556         int ret;
3557         printk(KERN_INFO "ixgbevf: %s - version %s\n", ixgbevf_driver_string,
3558                ixgbevf_driver_version);
3559
3560         printk(KERN_INFO "%s\n", ixgbevf_copyright);
3561
3562         ret = pci_register_driver(&ixgbevf_driver);
3563         return ret;
3564 }
3565
3566 module_init(ixgbevf_init_module);
3567
3568 /**
3569  * ixgbe_exit_module - Driver Exit Cleanup Routine
3570  *
3571  * ixgbe_exit_module is called just before the driver is removed
3572  * from memory.
3573  **/
3574 static void __exit ixgbevf_exit_module(void)
3575 {
3576         pci_unregister_driver(&ixgbevf_driver);
3577 }
3578
3579 #ifdef DEBUG
3580 /**
3581  * ixgbe_get_hw_dev_name - return device name string
3582  * used by hardware layer to print debugging information
3583  **/
3584 char *ixgbevf_get_hw_dev_name(struct ixgbe_hw *hw)
3585 {
3586         struct ixgbevf_adapter *adapter = hw->back;
3587         return adapter->netdev->name;
3588 }
3589
3590 #endif
3591 module_exit(ixgbevf_exit_module);
3592
3593 /* ixgbevf_main.c */