]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000e/ethtool.c
drivers/net: request_irq - Remove unnecessary leading & from second arg
[net-next-2.6.git] / drivers / net / e1000e / ethtool.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
35
36 #include "e1000.h"
37
38 enum {NETDEV_STATS, E1000_STATS};
39
40 struct e1000_stats {
41         char stat_string[ETH_GSTRING_LEN];
42         int type;
43         int sizeof_stat;
44         int stat_offset;
45 };
46
47 #define E1000_STAT(m)           E1000_STATS, \
48                                 sizeof(((struct e1000_adapter *)0)->m), \
49                                 offsetof(struct e1000_adapter, m)
50 #define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
51                                 sizeof(((struct net_device *)0)->m), \
52                                 offsetof(struct net_device, m)
53
54 static const struct e1000_stats e1000_gstrings_stats[] = {
55         { "rx_packets", E1000_STAT(stats.gprc) },
56         { "tx_packets", E1000_STAT(stats.gptc) },
57         { "rx_bytes", E1000_STAT(stats.gorc) },
58         { "tx_bytes", E1000_STAT(stats.gotc) },
59         { "rx_broadcast", E1000_STAT(stats.bprc) },
60         { "tx_broadcast", E1000_STAT(stats.bptc) },
61         { "rx_multicast", E1000_STAT(stats.mprc) },
62         { "tx_multicast", E1000_STAT(stats.mptc) },
63         { "rx_errors", E1000_NETDEV_STAT(stats.rx_errors) },
64         { "tx_errors", E1000_NETDEV_STAT(stats.tx_errors) },
65         { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
66         { "multicast", E1000_STAT(stats.mprc) },
67         { "collisions", E1000_STAT(stats.colc) },
68         { "rx_length_errors", E1000_NETDEV_STAT(stats.rx_length_errors) },
69         { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
70         { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
71         { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
72         { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
73         { "rx_missed_errors", E1000_STAT(stats.mpc) },
74         { "tx_aborted_errors", E1000_STAT(stats.ecol) },
75         { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
76         { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
77         { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
78         { "tx_window_errors", E1000_STAT(stats.latecol) },
79         { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
80         { "tx_deferred_ok", E1000_STAT(stats.dc) },
81         { "tx_single_coll_ok", E1000_STAT(stats.scc) },
82         { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
83         { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
84         { "tx_restart_queue", E1000_STAT(restart_queue) },
85         { "rx_long_length_errors", E1000_STAT(stats.roc) },
86         { "rx_short_length_errors", E1000_STAT(stats.ruc) },
87         { "rx_align_errors", E1000_STAT(stats.algnerrc) },
88         { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
89         { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
90         { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
91         { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
92         { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
93         { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
94         { "rx_long_byte_count", E1000_STAT(stats.gorc) },
95         { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
96         { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
97         { "rx_header_split", E1000_STAT(rx_hdr_split) },
98         { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
99         { "tx_smbus", E1000_STAT(stats.mgptc) },
100         { "rx_smbus", E1000_STAT(stats.mgprc) },
101         { "dropped_smbus", E1000_STAT(stats.mgpdc) },
102         { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
103         { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
104 };
105
106 #define E1000_GLOBAL_STATS_LEN  ARRAY_SIZE(e1000_gstrings_stats)
107 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
108 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
109         "Register test  (offline)", "Eeprom test    (offline)",
110         "Interrupt test (offline)", "Loopback test  (offline)",
111         "Link test   (on/offline)"
112 };
113 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
114
115 static int e1000_get_settings(struct net_device *netdev,
116                               struct ethtool_cmd *ecmd)
117 {
118         struct e1000_adapter *adapter = netdev_priv(netdev);
119         struct e1000_hw *hw = &adapter->hw;
120         u32 status;
121
122         if (hw->phy.media_type == e1000_media_type_copper) {
123
124                 ecmd->supported = (SUPPORTED_10baseT_Half |
125                                    SUPPORTED_10baseT_Full |
126                                    SUPPORTED_100baseT_Half |
127                                    SUPPORTED_100baseT_Full |
128                                    SUPPORTED_1000baseT_Full |
129                                    SUPPORTED_Autoneg |
130                                    SUPPORTED_TP);
131                 if (hw->phy.type == e1000_phy_ife)
132                         ecmd->supported &= ~SUPPORTED_1000baseT_Full;
133                 ecmd->advertising = ADVERTISED_TP;
134
135                 if (hw->mac.autoneg == 1) {
136                         ecmd->advertising |= ADVERTISED_Autoneg;
137                         /* the e1000 autoneg seems to match ethtool nicely */
138                         ecmd->advertising |= hw->phy.autoneg_advertised;
139                 }
140
141                 ecmd->port = PORT_TP;
142                 ecmd->phy_address = hw->phy.addr;
143                 ecmd->transceiver = XCVR_INTERNAL;
144
145         } else {
146                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
147                                      SUPPORTED_FIBRE |
148                                      SUPPORTED_Autoneg);
149
150                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
151                                      ADVERTISED_FIBRE |
152                                      ADVERTISED_Autoneg);
153
154                 ecmd->port = PORT_FIBRE;
155                 ecmd->transceiver = XCVR_EXTERNAL;
156         }
157
158         status = er32(STATUS);
159         if (status & E1000_STATUS_LU) {
160                 if (status & E1000_STATUS_SPEED_1000)
161                         ecmd->speed = 1000;
162                 else if (status & E1000_STATUS_SPEED_100)
163                         ecmd->speed = 100;
164                 else
165                         ecmd->speed = 10;
166
167                 if (status & E1000_STATUS_FD)
168                         ecmd->duplex = DUPLEX_FULL;
169                 else
170                         ecmd->duplex = DUPLEX_HALF;
171         } else {
172                 ecmd->speed = -1;
173                 ecmd->duplex = -1;
174         }
175
176         ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
177                          hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
178
179         /* MDI-X => 2; MDI =>1; Invalid =>0 */
180         if ((hw->phy.media_type == e1000_media_type_copper) &&
181             !hw->mac.get_link_status)
182                 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
183                                                       ETH_TP_MDI;
184         else
185                 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
186
187         return 0;
188 }
189
190 static u32 e1000_get_link(struct net_device *netdev)
191 {
192         struct e1000_adapter *adapter = netdev_priv(netdev);
193
194         return e1000_has_link(adapter);
195 }
196
197 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
198 {
199         struct e1000_mac_info *mac = &adapter->hw.mac;
200
201         mac->autoneg = 0;
202
203         /* Fiber NICs only allow 1000 gbps Full duplex */
204         if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
205                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
206                 e_err("Unsupported Speed/Duplex configuration\n");
207                 return -EINVAL;
208         }
209
210         switch (spddplx) {
211         case SPEED_10 + DUPLEX_HALF:
212                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
213                 break;
214         case SPEED_10 + DUPLEX_FULL:
215                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
216                 break;
217         case SPEED_100 + DUPLEX_HALF:
218                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
219                 break;
220         case SPEED_100 + DUPLEX_FULL:
221                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
222                 break;
223         case SPEED_1000 + DUPLEX_FULL:
224                 mac->autoneg = 1;
225                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
226                 break;
227         case SPEED_1000 + DUPLEX_HALF: /* not supported */
228         default:
229                 e_err("Unsupported Speed/Duplex configuration\n");
230                 return -EINVAL;
231         }
232         return 0;
233 }
234
235 static int e1000_set_settings(struct net_device *netdev,
236                               struct ethtool_cmd *ecmd)
237 {
238         struct e1000_adapter *adapter = netdev_priv(netdev);
239         struct e1000_hw *hw = &adapter->hw;
240
241         /*
242          * When SoL/IDER sessions are active, autoneg/speed/duplex
243          * cannot be changed
244          */
245         if (e1000_check_reset_block(hw)) {
246                 e_err("Cannot change link characteristics when SoL/IDER is "
247                       "active.\n");
248                 return -EINVAL;
249         }
250
251         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
252                 msleep(1);
253
254         if (ecmd->autoneg == AUTONEG_ENABLE) {
255                 hw->mac.autoneg = 1;
256                 if (hw->phy.media_type == e1000_media_type_fiber)
257                         hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
258                                                      ADVERTISED_FIBRE |
259                                                      ADVERTISED_Autoneg;
260                 else
261                         hw->phy.autoneg_advertised = ecmd->advertising |
262                                                      ADVERTISED_TP |
263                                                      ADVERTISED_Autoneg;
264                 ecmd->advertising = hw->phy.autoneg_advertised;
265                 if (adapter->fc_autoneg)
266                         hw->fc.requested_mode = e1000_fc_default;
267         } else {
268                 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
269                         clear_bit(__E1000_RESETTING, &adapter->state);
270                         return -EINVAL;
271                 }
272         }
273
274         /* reset the link */
275
276         if (netif_running(adapter->netdev)) {
277                 e1000e_down(adapter);
278                 e1000e_up(adapter);
279         } else {
280                 e1000e_reset(adapter);
281         }
282
283         clear_bit(__E1000_RESETTING, &adapter->state);
284         return 0;
285 }
286
287 static void e1000_get_pauseparam(struct net_device *netdev,
288                                  struct ethtool_pauseparam *pause)
289 {
290         struct e1000_adapter *adapter = netdev_priv(netdev);
291         struct e1000_hw *hw = &adapter->hw;
292
293         pause->autoneg =
294                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
295
296         if (hw->fc.current_mode == e1000_fc_rx_pause) {
297                 pause->rx_pause = 1;
298         } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
299                 pause->tx_pause = 1;
300         } else if (hw->fc.current_mode == e1000_fc_full) {
301                 pause->rx_pause = 1;
302                 pause->tx_pause = 1;
303         }
304 }
305
306 static int e1000_set_pauseparam(struct net_device *netdev,
307                                 struct ethtool_pauseparam *pause)
308 {
309         struct e1000_adapter *adapter = netdev_priv(netdev);
310         struct e1000_hw *hw = &adapter->hw;
311         int retval = 0;
312
313         adapter->fc_autoneg = pause->autoneg;
314
315         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
316                 msleep(1);
317
318         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
319                 hw->fc.requested_mode = e1000_fc_default;
320                 if (netif_running(adapter->netdev)) {
321                         e1000e_down(adapter);
322                         e1000e_up(adapter);
323                 } else {
324                         e1000e_reset(adapter);
325                 }
326         } else {
327                 if (pause->rx_pause && pause->tx_pause)
328                         hw->fc.requested_mode = e1000_fc_full;
329                 else if (pause->rx_pause && !pause->tx_pause)
330                         hw->fc.requested_mode = e1000_fc_rx_pause;
331                 else if (!pause->rx_pause && pause->tx_pause)
332                         hw->fc.requested_mode = e1000_fc_tx_pause;
333                 else if (!pause->rx_pause && !pause->tx_pause)
334                         hw->fc.requested_mode = e1000_fc_none;
335
336                 hw->fc.current_mode = hw->fc.requested_mode;
337
338                 if (hw->phy.media_type == e1000_media_type_fiber) {
339                         retval = hw->mac.ops.setup_link(hw);
340                         /* implicit goto out */
341                 } else {
342                         retval = e1000e_force_mac_fc(hw);
343                         if (retval)
344                                 goto out;
345                         e1000e_set_fc_watermarks(hw);
346                 }
347         }
348
349 out:
350         clear_bit(__E1000_RESETTING, &adapter->state);
351         return retval;
352 }
353
354 static u32 e1000_get_rx_csum(struct net_device *netdev)
355 {
356         struct e1000_adapter *adapter = netdev_priv(netdev);
357         return (adapter->flags & FLAG_RX_CSUM_ENABLED);
358 }
359
360 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
361 {
362         struct e1000_adapter *adapter = netdev_priv(netdev);
363
364         if (data)
365                 adapter->flags |= FLAG_RX_CSUM_ENABLED;
366         else
367                 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
368
369         if (netif_running(netdev))
370                 e1000e_reinit_locked(adapter);
371         else
372                 e1000e_reset(adapter);
373         return 0;
374 }
375
376 static u32 e1000_get_tx_csum(struct net_device *netdev)
377 {
378         return ((netdev->features & NETIF_F_HW_CSUM) != 0);
379 }
380
381 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
382 {
383         if (data)
384                 netdev->features |= NETIF_F_HW_CSUM;
385         else
386                 netdev->features &= ~NETIF_F_HW_CSUM;
387
388         return 0;
389 }
390
391 static int e1000_set_tso(struct net_device *netdev, u32 data)
392 {
393         struct e1000_adapter *adapter = netdev_priv(netdev);
394
395         if (data) {
396                 netdev->features |= NETIF_F_TSO;
397                 netdev->features |= NETIF_F_TSO6;
398         } else {
399                 netdev->features &= ~NETIF_F_TSO;
400                 netdev->features &= ~NETIF_F_TSO6;
401         }
402
403         e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
404         adapter->flags |= FLAG_TSO_FORCE;
405         return 0;
406 }
407
408 static u32 e1000_get_msglevel(struct net_device *netdev)
409 {
410         struct e1000_adapter *adapter = netdev_priv(netdev);
411         return adapter->msg_enable;
412 }
413
414 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
415 {
416         struct e1000_adapter *adapter = netdev_priv(netdev);
417         adapter->msg_enable = data;
418 }
419
420 static int e1000_get_regs_len(struct net_device *netdev)
421 {
422 #define E1000_REGS_LEN 32 /* overestimate */
423         return E1000_REGS_LEN * sizeof(u32);
424 }
425
426 static void e1000_get_regs(struct net_device *netdev,
427                            struct ethtool_regs *regs, void *p)
428 {
429         struct e1000_adapter *adapter = netdev_priv(netdev);
430         struct e1000_hw *hw = &adapter->hw;
431         u32 *regs_buff = p;
432         u16 phy_data;
433         u8 revision_id;
434
435         memset(p, 0, E1000_REGS_LEN * sizeof(u32));
436
437         pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
438
439         regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
440
441         regs_buff[0]  = er32(CTRL);
442         regs_buff[1]  = er32(STATUS);
443
444         regs_buff[2]  = er32(RCTL);
445         regs_buff[3]  = er32(RDLEN);
446         regs_buff[4]  = er32(RDH);
447         regs_buff[5]  = er32(RDT);
448         regs_buff[6]  = er32(RDTR);
449
450         regs_buff[7]  = er32(TCTL);
451         regs_buff[8]  = er32(TDLEN);
452         regs_buff[9]  = er32(TDH);
453         regs_buff[10] = er32(TDT);
454         regs_buff[11] = er32(TIDV);
455
456         regs_buff[12] = adapter->hw.phy.type;  /* PHY type (IGP=1, M88=0) */
457
458         /* ethtool doesn't use anything past this point, so all this
459          * code is likely legacy junk for apps that may or may not
460          * exist */
461         if (hw->phy.type == e1000_phy_m88) {
462                 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
463                 regs_buff[13] = (u32)phy_data; /* cable length */
464                 regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
465                 regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
466                 regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
467                 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
468                 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
469                 regs_buff[18] = regs_buff[13]; /* cable polarity */
470                 regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
471                 regs_buff[20] = regs_buff[17]; /* polarity correction */
472                 /* phy receive errors */
473                 regs_buff[22] = adapter->phy_stats.receive_errors;
474                 regs_buff[23] = regs_buff[13]; /* mdix mode */
475         }
476         regs_buff[21] = 0; /* was idle_errors */
477         e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
478         regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
479         regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
480 }
481
482 static int e1000_get_eeprom_len(struct net_device *netdev)
483 {
484         struct e1000_adapter *adapter = netdev_priv(netdev);
485         return adapter->hw.nvm.word_size * 2;
486 }
487
488 static int e1000_get_eeprom(struct net_device *netdev,
489                             struct ethtool_eeprom *eeprom, u8 *bytes)
490 {
491         struct e1000_adapter *adapter = netdev_priv(netdev);
492         struct e1000_hw *hw = &adapter->hw;
493         u16 *eeprom_buff;
494         int first_word;
495         int last_word;
496         int ret_val = 0;
497         u16 i;
498
499         if (eeprom->len == 0)
500                 return -EINVAL;
501
502         eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
503
504         first_word = eeprom->offset >> 1;
505         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
506
507         eeprom_buff = kmalloc(sizeof(u16) *
508                         (last_word - first_word + 1), GFP_KERNEL);
509         if (!eeprom_buff)
510                 return -ENOMEM;
511
512         if (hw->nvm.type == e1000_nvm_eeprom_spi) {
513                 ret_val = e1000_read_nvm(hw, first_word,
514                                          last_word - first_word + 1,
515                                          eeprom_buff);
516         } else {
517                 for (i = 0; i < last_word - first_word + 1; i++) {
518                         ret_val = e1000_read_nvm(hw, first_word + i, 1,
519                                                       &eeprom_buff[i]);
520                         if (ret_val)
521                                 break;
522                 }
523         }
524
525         if (ret_val) {
526                 /* a read error occurred, throw away the result */
527                 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
528         } else {
529                 /* Device's eeprom is always little-endian, word addressable */
530                 for (i = 0; i < last_word - first_word + 1; i++)
531                         le16_to_cpus(&eeprom_buff[i]);
532         }
533
534         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
535         kfree(eeprom_buff);
536
537         return ret_val;
538 }
539
540 static int e1000_set_eeprom(struct net_device *netdev,
541                             struct ethtool_eeprom *eeprom, u8 *bytes)
542 {
543         struct e1000_adapter *adapter = netdev_priv(netdev);
544         struct e1000_hw *hw = &adapter->hw;
545         u16 *eeprom_buff;
546         void *ptr;
547         int max_len;
548         int first_word;
549         int last_word;
550         int ret_val = 0;
551         u16 i;
552
553         if (eeprom->len == 0)
554                 return -EOPNOTSUPP;
555
556         if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
557                 return -EFAULT;
558
559         if (adapter->flags & FLAG_READ_ONLY_NVM)
560                 return -EINVAL;
561
562         max_len = hw->nvm.word_size * 2;
563
564         first_word = eeprom->offset >> 1;
565         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
566         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
567         if (!eeprom_buff)
568                 return -ENOMEM;
569
570         ptr = (void *)eeprom_buff;
571
572         if (eeprom->offset & 1) {
573                 /* need read/modify/write of first changed EEPROM word */
574                 /* only the second byte of the word is being modified */
575                 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
576                 ptr++;
577         }
578         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
579                 /* need read/modify/write of last changed EEPROM word */
580                 /* only the first byte of the word is being modified */
581                 ret_val = e1000_read_nvm(hw, last_word, 1,
582                                   &eeprom_buff[last_word - first_word]);
583
584         if (ret_val)
585                 goto out;
586
587         /* Device's eeprom is always little-endian, word addressable */
588         for (i = 0; i < last_word - first_word + 1; i++)
589                 le16_to_cpus(&eeprom_buff[i]);
590
591         memcpy(ptr, bytes, eeprom->len);
592
593         for (i = 0; i < last_word - first_word + 1; i++)
594                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
595
596         ret_val = e1000_write_nvm(hw, first_word,
597                                   last_word - first_word + 1, eeprom_buff);
598
599         if (ret_val)
600                 goto out;
601
602         /*
603          * Update the checksum over the first part of the EEPROM if needed
604          * and flush shadow RAM for applicable controllers
605          */
606         if ((first_word <= NVM_CHECKSUM_REG) ||
607             (hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82573))
608                 ret_val = e1000e_update_nvm_checksum(hw);
609
610 out:
611         kfree(eeprom_buff);
612         return ret_val;
613 }
614
615 static void e1000_get_drvinfo(struct net_device *netdev,
616                               struct ethtool_drvinfo *drvinfo)
617 {
618         struct e1000_adapter *adapter = netdev_priv(netdev);
619         char firmware_version[32];
620
621         strncpy(drvinfo->driver,  e1000e_driver_name, 32);
622         strncpy(drvinfo->version, e1000e_driver_version, 32);
623
624         /*
625          * EEPROM image version # is reported as firmware version # for
626          * PCI-E controllers
627          */
628         sprintf(firmware_version, "%d.%d-%d",
629                 (adapter->eeprom_vers & 0xF000) >> 12,
630                 (adapter->eeprom_vers & 0x0FF0) >> 4,
631                 (adapter->eeprom_vers & 0x000F));
632
633         strncpy(drvinfo->fw_version, firmware_version, 32);
634         strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
635         drvinfo->regdump_len = e1000_get_regs_len(netdev);
636         drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
637 }
638
639 static void e1000_get_ringparam(struct net_device *netdev,
640                                 struct ethtool_ringparam *ring)
641 {
642         struct e1000_adapter *adapter = netdev_priv(netdev);
643         struct e1000_ring *tx_ring = adapter->tx_ring;
644         struct e1000_ring *rx_ring = adapter->rx_ring;
645
646         ring->rx_max_pending = E1000_MAX_RXD;
647         ring->tx_max_pending = E1000_MAX_TXD;
648         ring->rx_mini_max_pending = 0;
649         ring->rx_jumbo_max_pending = 0;
650         ring->rx_pending = rx_ring->count;
651         ring->tx_pending = tx_ring->count;
652         ring->rx_mini_pending = 0;
653         ring->rx_jumbo_pending = 0;
654 }
655
656 static int e1000_set_ringparam(struct net_device *netdev,
657                                struct ethtool_ringparam *ring)
658 {
659         struct e1000_adapter *adapter = netdev_priv(netdev);
660         struct e1000_ring *tx_ring, *tx_old;
661         struct e1000_ring *rx_ring, *rx_old;
662         int err;
663
664         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
665                 return -EINVAL;
666
667         while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
668                 msleep(1);
669
670         if (netif_running(adapter->netdev))
671                 e1000e_down(adapter);
672
673         tx_old = adapter->tx_ring;
674         rx_old = adapter->rx_ring;
675
676         err = -ENOMEM;
677         tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
678         if (!tx_ring)
679                 goto err_alloc_tx;
680         /*
681          * use a memcpy to save any previously configured
682          * items like napi structs from having to be
683          * reinitialized
684          */
685         memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
686
687         rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
688         if (!rx_ring)
689                 goto err_alloc_rx;
690         memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
691
692         adapter->tx_ring = tx_ring;
693         adapter->rx_ring = rx_ring;
694
695         rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
696         rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
697         rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
698
699         tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
700         tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
701         tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
702
703         if (netif_running(adapter->netdev)) {
704                 /* Try to get new resources before deleting old */
705                 err = e1000e_setup_rx_resources(adapter);
706                 if (err)
707                         goto err_setup_rx;
708                 err = e1000e_setup_tx_resources(adapter);
709                 if (err)
710                         goto err_setup_tx;
711
712                 /*
713                  * restore the old in order to free it,
714                  * then add in the new
715                  */
716                 adapter->rx_ring = rx_old;
717                 adapter->tx_ring = tx_old;
718                 e1000e_free_rx_resources(adapter);
719                 e1000e_free_tx_resources(adapter);
720                 kfree(tx_old);
721                 kfree(rx_old);
722                 adapter->rx_ring = rx_ring;
723                 adapter->tx_ring = tx_ring;
724                 err = e1000e_up(adapter);
725                 if (err)
726                         goto err_setup;
727         }
728
729         clear_bit(__E1000_RESETTING, &adapter->state);
730         return 0;
731 err_setup_tx:
732         e1000e_free_rx_resources(adapter);
733 err_setup_rx:
734         adapter->rx_ring = rx_old;
735         adapter->tx_ring = tx_old;
736         kfree(rx_ring);
737 err_alloc_rx:
738         kfree(tx_ring);
739 err_alloc_tx:
740         e1000e_up(adapter);
741 err_setup:
742         clear_bit(__E1000_RESETTING, &adapter->state);
743         return err;
744 }
745
746 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
747                              int reg, int offset, u32 mask, u32 write)
748 {
749         u32 pat, val;
750         static const u32 test[] =
751                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
752         for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
753                 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
754                                       (test[pat] & write));
755                 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
756                 if (val != (test[pat] & write & mask)) {
757                         e_err("pattern test reg %04X failed: got 0x%08X "
758                               "expected 0x%08X\n", reg + offset, val,
759                               (test[pat] & write & mask));
760                         *data = reg;
761                         return 1;
762                 }
763         }
764         return 0;
765 }
766
767 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
768                               int reg, u32 mask, u32 write)
769 {
770         u32 val;
771         __ew32(&adapter->hw, reg, write & mask);
772         val = __er32(&adapter->hw, reg);
773         if ((write & mask) != (val & mask)) {
774                 e_err("set/check reg %04X test failed: got 0x%08X "
775                       "expected 0x%08X\n", reg, (val & mask), (write & mask));
776                 *data = reg;
777                 return 1;
778         }
779         return 0;
780 }
781 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write)                       \
782         do {                                                                   \
783                 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
784                         return 1;                                              \
785         } while (0)
786 #define REG_PATTERN_TEST(reg, mask, write)                                     \
787         REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
788
789 #define REG_SET_AND_CHECK(reg, mask, write)                                    \
790         do {                                                                   \
791                 if (reg_set_and_check(adapter, data, reg, mask, write))        \
792                         return 1;                                              \
793         } while (0)
794
795 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
796 {
797         struct e1000_hw *hw = &adapter->hw;
798         struct e1000_mac_info *mac = &adapter->hw.mac;
799         u32 value;
800         u32 before;
801         u32 after;
802         u32 i;
803         u32 toggle;
804         u32 mask;
805
806         /*
807          * The status register is Read Only, so a write should fail.
808          * Some bits that get toggled are ignored.
809          */
810         switch (mac->type) {
811         /* there are several bits on newer hardware that are r/w */
812         case e1000_82571:
813         case e1000_82572:
814         case e1000_80003es2lan:
815                 toggle = 0x7FFFF3FF;
816                 break;
817         default:
818                 toggle = 0x7FFFF033;
819                 break;
820         }
821
822         before = er32(STATUS);
823         value = (er32(STATUS) & toggle);
824         ew32(STATUS, toggle);
825         after = er32(STATUS) & toggle;
826         if (value != after) {
827                 e_err("failed STATUS register test got: 0x%08X expected: "
828                       "0x%08X\n", after, value);
829                 *data = 1;
830                 return 1;
831         }
832         /* restore previous status */
833         ew32(STATUS, before);
834
835         if (!(adapter->flags & FLAG_IS_ICH)) {
836                 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
837                 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
838                 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
839                 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
840         }
841
842         REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
843         REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
844         REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
845         REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
846         REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
847         REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
848         REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
849         REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
850         REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
851         REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
852
853         REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
854
855         before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
856         REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
857         REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
858
859         REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
860         REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
861         if (!(adapter->flags & FLAG_IS_ICH))
862                 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
863         REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
864         REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
865         mask = 0x8003FFFF;
866         switch (mac->type) {
867         case e1000_ich10lan:
868         case e1000_pchlan:
869                 mask |= (1 << 18);
870                 break;
871         default:
872                 break;
873         }
874         for (i = 0; i < mac->rar_entry_count; i++)
875                 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
876                                        mask, 0xFFFFFFFF);
877
878         for (i = 0; i < mac->mta_reg_count; i++)
879                 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
880
881         *data = 0;
882         return 0;
883 }
884
885 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
886 {
887         u16 temp;
888         u16 checksum = 0;
889         u16 i;
890
891         *data = 0;
892         /* Read and add up the contents of the EEPROM */
893         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
894                 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
895                         *data = 1;
896                         return *data;
897                 }
898                 checksum += temp;
899         }
900
901         /* If Checksum is not Correct return error else test passed */
902         if ((checksum != (u16) NVM_SUM) && !(*data))
903                 *data = 2;
904
905         return *data;
906 }
907
908 static irqreturn_t e1000_test_intr(int irq, void *data)
909 {
910         struct net_device *netdev = (struct net_device *) data;
911         struct e1000_adapter *adapter = netdev_priv(netdev);
912         struct e1000_hw *hw = &adapter->hw;
913
914         adapter->test_icr |= er32(ICR);
915
916         return IRQ_HANDLED;
917 }
918
919 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
920 {
921         struct net_device *netdev = adapter->netdev;
922         struct e1000_hw *hw = &adapter->hw;
923         u32 mask;
924         u32 shared_int = 1;
925         u32 irq = adapter->pdev->irq;
926         int i;
927         int ret_val = 0;
928         int int_mode = E1000E_INT_MODE_LEGACY;
929
930         *data = 0;
931
932         /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
933         if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
934                 int_mode = adapter->int_mode;
935                 e1000e_reset_interrupt_capability(adapter);
936                 adapter->int_mode = E1000E_INT_MODE_LEGACY;
937                 e1000e_set_interrupt_capability(adapter);
938         }
939         /* Hook up test interrupt handler just for this test */
940         if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
941                          netdev)) {
942                 shared_int = 0;
943         } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
944                  netdev->name, netdev)) {
945                 *data = 1;
946                 ret_val = -1;
947                 goto out;
948         }
949         e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
950
951         /* Disable all the interrupts */
952         ew32(IMC, 0xFFFFFFFF);
953         msleep(10);
954
955         /* Test each interrupt */
956         for (i = 0; i < 10; i++) {
957                 /* Interrupt to test */
958                 mask = 1 << i;
959
960                 if (adapter->flags & FLAG_IS_ICH) {
961                         switch (mask) {
962                         case E1000_ICR_RXSEQ:
963                                 continue;
964                         case 0x00000100:
965                                 if (adapter->hw.mac.type == e1000_ich8lan ||
966                                     adapter->hw.mac.type == e1000_ich9lan)
967                                         continue;
968                                 break;
969                         default:
970                                 break;
971                         }
972                 }
973
974                 if (!shared_int) {
975                         /*
976                          * Disable the interrupt to be reported in
977                          * the cause register and then force the same
978                          * interrupt and see if one gets posted.  If
979                          * an interrupt was posted to the bus, the
980                          * test failed.
981                          */
982                         adapter->test_icr = 0;
983                         ew32(IMC, mask);
984                         ew32(ICS, mask);
985                         msleep(10);
986
987                         if (adapter->test_icr & mask) {
988                                 *data = 3;
989                                 break;
990                         }
991                 }
992
993                 /*
994                  * Enable the interrupt to be reported in
995                  * the cause register and then force the same
996                  * interrupt and see if one gets posted.  If
997                  * an interrupt was not posted to the bus, the
998                  * test failed.
999                  */
1000                 adapter->test_icr = 0;
1001                 ew32(IMS, mask);
1002                 ew32(ICS, mask);
1003                 msleep(10);
1004
1005                 if (!(adapter->test_icr & mask)) {
1006                         *data = 4;
1007                         break;
1008                 }
1009
1010                 if (!shared_int) {
1011                         /*
1012                          * Disable the other interrupts to be reported in
1013                          * the cause register and then force the other
1014                          * interrupts and see if any get posted.  If
1015                          * an interrupt was posted to the bus, the
1016                          * test failed.
1017                          */
1018                         adapter->test_icr = 0;
1019                         ew32(IMC, ~mask & 0x00007FFF);
1020                         ew32(ICS, ~mask & 0x00007FFF);
1021                         msleep(10);
1022
1023                         if (adapter->test_icr) {
1024                                 *data = 5;
1025                                 break;
1026                         }
1027                 }
1028         }
1029
1030         /* Disable all the interrupts */
1031         ew32(IMC, 0xFFFFFFFF);
1032         msleep(10);
1033
1034         /* Unhook test interrupt handler */
1035         free_irq(irq, netdev);
1036
1037 out:
1038         if (int_mode == E1000E_INT_MODE_MSIX) {
1039                 e1000e_reset_interrupt_capability(adapter);
1040                 adapter->int_mode = int_mode;
1041                 e1000e_set_interrupt_capability(adapter);
1042         }
1043
1044         return ret_val;
1045 }
1046
1047 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1048 {
1049         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1050         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1051         struct pci_dev *pdev = adapter->pdev;
1052         int i;
1053
1054         if (tx_ring->desc && tx_ring->buffer_info) {
1055                 for (i = 0; i < tx_ring->count; i++) {
1056                         if (tx_ring->buffer_info[i].dma)
1057                                 pci_unmap_single(pdev,
1058                                         tx_ring->buffer_info[i].dma,
1059                                         tx_ring->buffer_info[i].length,
1060                                         PCI_DMA_TODEVICE);
1061                         if (tx_ring->buffer_info[i].skb)
1062                                 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1063                 }
1064         }
1065
1066         if (rx_ring->desc && rx_ring->buffer_info) {
1067                 for (i = 0; i < rx_ring->count; i++) {
1068                         if (rx_ring->buffer_info[i].dma)
1069                                 pci_unmap_single(pdev,
1070                                         rx_ring->buffer_info[i].dma,
1071                                         2048, PCI_DMA_FROMDEVICE);
1072                         if (rx_ring->buffer_info[i].skb)
1073                                 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1074                 }
1075         }
1076
1077         if (tx_ring->desc) {
1078                 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1079                                   tx_ring->dma);
1080                 tx_ring->desc = NULL;
1081         }
1082         if (rx_ring->desc) {
1083                 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1084                                   rx_ring->dma);
1085                 rx_ring->desc = NULL;
1086         }
1087
1088         kfree(tx_ring->buffer_info);
1089         tx_ring->buffer_info = NULL;
1090         kfree(rx_ring->buffer_info);
1091         rx_ring->buffer_info = NULL;
1092 }
1093
1094 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1095 {
1096         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1097         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1098         struct pci_dev *pdev = adapter->pdev;
1099         struct e1000_hw *hw = &adapter->hw;
1100         u32 rctl;
1101         int i;
1102         int ret_val;
1103
1104         /* Setup Tx descriptor ring and Tx buffers */
1105
1106         if (!tx_ring->count)
1107                 tx_ring->count = E1000_DEFAULT_TXD;
1108
1109         tx_ring->buffer_info = kcalloc(tx_ring->count,
1110                                        sizeof(struct e1000_buffer),
1111                                        GFP_KERNEL);
1112         if (!(tx_ring->buffer_info)) {
1113                 ret_val = 1;
1114                 goto err_nomem;
1115         }
1116
1117         tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1118         tx_ring->size = ALIGN(tx_ring->size, 4096);
1119         tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1120                                            &tx_ring->dma, GFP_KERNEL);
1121         if (!tx_ring->desc) {
1122                 ret_val = 2;
1123                 goto err_nomem;
1124         }
1125         tx_ring->next_to_use = 0;
1126         tx_ring->next_to_clean = 0;
1127
1128         ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1129         ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1130         ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1131         ew32(TDH, 0);
1132         ew32(TDT, 0);
1133         ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1134              E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1135              E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1136
1137         for (i = 0; i < tx_ring->count; i++) {
1138                 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1139                 struct sk_buff *skb;
1140                 unsigned int skb_size = 1024;
1141
1142                 skb = alloc_skb(skb_size, GFP_KERNEL);
1143                 if (!skb) {
1144                         ret_val = 3;
1145                         goto err_nomem;
1146                 }
1147                 skb_put(skb, skb_size);
1148                 tx_ring->buffer_info[i].skb = skb;
1149                 tx_ring->buffer_info[i].length = skb->len;
1150                 tx_ring->buffer_info[i].dma =
1151                         pci_map_single(pdev, skb->data, skb->len,
1152                                        PCI_DMA_TODEVICE);
1153                 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1154                         ret_val = 4;
1155                         goto err_nomem;
1156                 }
1157                 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1158                 tx_desc->lower.data = cpu_to_le32(skb->len);
1159                 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1160                                                    E1000_TXD_CMD_IFCS |
1161                                                    E1000_TXD_CMD_RS);
1162                 tx_desc->upper.data = 0;
1163         }
1164
1165         /* Setup Rx descriptor ring and Rx buffers */
1166
1167         if (!rx_ring->count)
1168                 rx_ring->count = E1000_DEFAULT_RXD;
1169
1170         rx_ring->buffer_info = kcalloc(rx_ring->count,
1171                                        sizeof(struct e1000_buffer),
1172                                        GFP_KERNEL);
1173         if (!(rx_ring->buffer_info)) {
1174                 ret_val = 5;
1175                 goto err_nomem;
1176         }
1177
1178         rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1179         rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1180                                            &rx_ring->dma, GFP_KERNEL);
1181         if (!rx_ring->desc) {
1182                 ret_val = 6;
1183                 goto err_nomem;
1184         }
1185         rx_ring->next_to_use = 0;
1186         rx_ring->next_to_clean = 0;
1187
1188         rctl = er32(RCTL);
1189         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1190         ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1191         ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1192         ew32(RDLEN, rx_ring->size);
1193         ew32(RDH, 0);
1194         ew32(RDT, 0);
1195         rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1196                 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1197                 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1198                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1199                 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1200         ew32(RCTL, rctl);
1201
1202         for (i = 0; i < rx_ring->count; i++) {
1203                 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1204                 struct sk_buff *skb;
1205
1206                 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1207                 if (!skb) {
1208                         ret_val = 7;
1209                         goto err_nomem;
1210                 }
1211                 skb_reserve(skb, NET_IP_ALIGN);
1212                 rx_ring->buffer_info[i].skb = skb;
1213                 rx_ring->buffer_info[i].dma =
1214                         pci_map_single(pdev, skb->data, 2048,
1215                                        PCI_DMA_FROMDEVICE);
1216                 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1217                         ret_val = 8;
1218                         goto err_nomem;
1219                 }
1220                 rx_desc->buffer_addr =
1221                         cpu_to_le64(rx_ring->buffer_info[i].dma);
1222                 memset(skb->data, 0x00, skb->len);
1223         }
1224
1225         return 0;
1226
1227 err_nomem:
1228         e1000_free_desc_rings(adapter);
1229         return ret_val;
1230 }
1231
1232 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1233 {
1234         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1235         e1e_wphy(&adapter->hw, 29, 0x001F);
1236         e1e_wphy(&adapter->hw, 30, 0x8FFC);
1237         e1e_wphy(&adapter->hw, 29, 0x001A);
1238         e1e_wphy(&adapter->hw, 30, 0x8FF0);
1239 }
1240
1241 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1242 {
1243         struct e1000_hw *hw = &adapter->hw;
1244         u32 ctrl_reg = 0;
1245         u32 stat_reg = 0;
1246         u16 phy_reg = 0;
1247
1248         hw->mac.autoneg = 0;
1249
1250         if (hw->phy.type == e1000_phy_m88) {
1251                 /* Auto-MDI/MDIX Off */
1252                 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1253                 /* reset to update Auto-MDI/MDIX */
1254                 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1255                 /* autoneg off */
1256                 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1257         } else if (hw->phy.type == e1000_phy_gg82563)
1258                 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1259
1260         ctrl_reg = er32(CTRL);
1261
1262         switch (hw->phy.type) {
1263         case e1000_phy_ife:
1264                 /* force 100, set loopback */
1265                 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1266
1267                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1268                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1269                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1270                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1271                              E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1272                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1273                 break;
1274         case e1000_phy_bm:
1275                 /* Set Default MAC Interface speed to 1GB */
1276                 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1277                 phy_reg &= ~0x0007;
1278                 phy_reg |= 0x006;
1279                 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1280                 /* Assert SW reset for above settings to take effect */
1281                 e1000e_commit_phy(hw);
1282                 mdelay(1);
1283                 /* Force Full Duplex */
1284                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1285                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1286                 /* Set Link Up (in force link) */
1287                 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1288                 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1289                 /* Force Link */
1290                 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1291                 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1292                 /* Set Early Link Enable */
1293                 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1294                 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1295                 /* fall through */
1296         default:
1297                 /* force 1000, set loopback */
1298                 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1299                 mdelay(250);
1300
1301                 /* Now set up the MAC to the same speed/duplex as the PHY. */
1302                 ctrl_reg = er32(CTRL);
1303                 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1304                 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1305                              E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1306                              E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1307                              E1000_CTRL_FD);     /* Force Duplex to FULL */
1308
1309                 if (adapter->flags & FLAG_IS_ICH)
1310                         ctrl_reg |= E1000_CTRL_SLU;     /* Set Link Up */
1311         }
1312
1313         if (hw->phy.media_type == e1000_media_type_copper &&
1314             hw->phy.type == e1000_phy_m88) {
1315                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1316         } else {
1317                 /*
1318                  * Set the ILOS bit on the fiber Nic if half duplex link is
1319                  * detected.
1320                  */
1321                 stat_reg = er32(STATUS);
1322                 if ((stat_reg & E1000_STATUS_FD) == 0)
1323                         ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1324         }
1325
1326         ew32(CTRL, ctrl_reg);
1327
1328         /*
1329          * Disable the receiver on the PHY so when a cable is plugged in, the
1330          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1331          */
1332         if (hw->phy.type == e1000_phy_m88)
1333                 e1000_phy_disable_receiver(adapter);
1334
1335         udelay(500);
1336
1337         return 0;
1338 }
1339
1340 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1341 {
1342         struct e1000_hw *hw = &adapter->hw;
1343         u32 ctrl = er32(CTRL);
1344         int link = 0;
1345
1346         /* special requirements for 82571/82572 fiber adapters */
1347
1348         /*
1349          * jump through hoops to make sure link is up because serdes
1350          * link is hardwired up
1351          */
1352         ctrl |= E1000_CTRL_SLU;
1353         ew32(CTRL, ctrl);
1354
1355         /* disable autoneg */
1356         ctrl = er32(TXCW);
1357         ctrl &= ~(1 << 31);
1358         ew32(TXCW, ctrl);
1359
1360         link = (er32(STATUS) & E1000_STATUS_LU);
1361
1362         if (!link) {
1363                 /* set invert loss of signal */
1364                 ctrl = er32(CTRL);
1365                 ctrl |= E1000_CTRL_ILOS;
1366                 ew32(CTRL, ctrl);
1367         }
1368
1369         /*
1370          * special write to serdes control register to enable SerDes analog
1371          * loopback
1372          */
1373 #define E1000_SERDES_LB_ON 0x410
1374         ew32(SCTL, E1000_SERDES_LB_ON);
1375         msleep(10);
1376
1377         return 0;
1378 }
1379
1380 /* only call this for fiber/serdes connections to es2lan */
1381 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1382 {
1383         struct e1000_hw *hw = &adapter->hw;
1384         u32 ctrlext = er32(CTRL_EXT);
1385         u32 ctrl = er32(CTRL);
1386
1387         /*
1388          * save CTRL_EXT to restore later, reuse an empty variable (unused
1389          * on mac_type 80003es2lan)
1390          */
1391         adapter->tx_fifo_head = ctrlext;
1392
1393         /* clear the serdes mode bits, putting the device into mac loopback */
1394         ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1395         ew32(CTRL_EXT, ctrlext);
1396
1397         /* force speed to 1000/FD, link up */
1398         ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1399         ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1400                  E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1401         ew32(CTRL, ctrl);
1402
1403         /* set mac loopback */
1404         ctrl = er32(RCTL);
1405         ctrl |= E1000_RCTL_LBM_MAC;
1406         ew32(RCTL, ctrl);
1407
1408         /* set testing mode parameters (no need to reset later) */
1409 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1410 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1411         ew32(KMRNCTRLSTA,
1412              (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1413
1414         return 0;
1415 }
1416
1417 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1418 {
1419         struct e1000_hw *hw = &adapter->hw;
1420         u32 rctl;
1421
1422         if (hw->phy.media_type == e1000_media_type_fiber ||
1423             hw->phy.media_type == e1000_media_type_internal_serdes) {
1424                 switch (hw->mac.type) {
1425                 case e1000_80003es2lan:
1426                         return e1000_set_es2lan_mac_loopback(adapter);
1427                         break;
1428                 case e1000_82571:
1429                 case e1000_82572:
1430                         return e1000_set_82571_fiber_loopback(adapter);
1431                         break;
1432                 default:
1433                         rctl = er32(RCTL);
1434                         rctl |= E1000_RCTL_LBM_TCVR;
1435                         ew32(RCTL, rctl);
1436                         return 0;
1437                 }
1438         } else if (hw->phy.media_type == e1000_media_type_copper) {
1439                 return e1000_integrated_phy_loopback(adapter);
1440         }
1441
1442         return 7;
1443 }
1444
1445 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1446 {
1447         struct e1000_hw *hw = &adapter->hw;
1448         u32 rctl;
1449         u16 phy_reg;
1450
1451         rctl = er32(RCTL);
1452         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1453         ew32(RCTL, rctl);
1454
1455         switch (hw->mac.type) {
1456         case e1000_80003es2lan:
1457                 if (hw->phy.media_type == e1000_media_type_fiber ||
1458                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1459                         /* restore CTRL_EXT, stealing space from tx_fifo_head */
1460                         ew32(CTRL_EXT, adapter->tx_fifo_head);
1461                         adapter->tx_fifo_head = 0;
1462                 }
1463                 /* fall through */
1464         case e1000_82571:
1465         case e1000_82572:
1466                 if (hw->phy.media_type == e1000_media_type_fiber ||
1467                     hw->phy.media_type == e1000_media_type_internal_serdes) {
1468 #define E1000_SERDES_LB_OFF 0x400
1469                         ew32(SCTL, E1000_SERDES_LB_OFF);
1470                         msleep(10);
1471                         break;
1472                 }
1473                 /* Fall Through */
1474         default:
1475                 hw->mac.autoneg = 1;
1476                 if (hw->phy.type == e1000_phy_gg82563)
1477                         e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1478                 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1479                 if (phy_reg & MII_CR_LOOPBACK) {
1480                         phy_reg &= ~MII_CR_LOOPBACK;
1481                         e1e_wphy(hw, PHY_CONTROL, phy_reg);
1482                         e1000e_commit_phy(hw);
1483                 }
1484                 break;
1485         }
1486 }
1487
1488 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1489                                       unsigned int frame_size)
1490 {
1491         memset(skb->data, 0xFF, frame_size);
1492         frame_size &= ~1;
1493         memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1494         memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1495         memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1496 }
1497
1498 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1499                                     unsigned int frame_size)
1500 {
1501         frame_size &= ~1;
1502         if (*(skb->data + 3) == 0xFF)
1503                 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1504                    (*(skb->data + frame_size / 2 + 12) == 0xAF))
1505                         return 0;
1506         return 13;
1507 }
1508
1509 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1510 {
1511         struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1512         struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1513         struct pci_dev *pdev = adapter->pdev;
1514         struct e1000_hw *hw = &adapter->hw;
1515         int i, j, k, l;
1516         int lc;
1517         int good_cnt;
1518         int ret_val = 0;
1519         unsigned long time;
1520
1521         ew32(RDT, rx_ring->count - 1);
1522
1523         /*
1524          * Calculate the loop count based on the largest descriptor ring
1525          * The idea is to wrap the largest ring a number of times using 64
1526          * send/receive pairs during each loop
1527          */
1528
1529         if (rx_ring->count <= tx_ring->count)
1530                 lc = ((tx_ring->count / 64) * 2) + 1;
1531         else
1532                 lc = ((rx_ring->count / 64) * 2) + 1;
1533
1534         k = 0;
1535         l = 0;
1536         for (j = 0; j <= lc; j++) { /* loop count loop */
1537                 for (i = 0; i < 64; i++) { /* send the packets */
1538                         e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1539                                                   1024);
1540                         pci_dma_sync_single_for_device(pdev,
1541                                         tx_ring->buffer_info[k].dma,
1542                                         tx_ring->buffer_info[k].length,
1543                                         PCI_DMA_TODEVICE);
1544                         k++;
1545                         if (k == tx_ring->count)
1546                                 k = 0;
1547                 }
1548                 ew32(TDT, k);
1549                 msleep(200);
1550                 time = jiffies; /* set the start time for the receive */
1551                 good_cnt = 0;
1552                 do { /* receive the sent packets */
1553                         pci_dma_sync_single_for_cpu(pdev,
1554                                         rx_ring->buffer_info[l].dma, 2048,
1555                                         PCI_DMA_FROMDEVICE);
1556
1557                         ret_val = e1000_check_lbtest_frame(
1558                                         rx_ring->buffer_info[l].skb, 1024);
1559                         if (!ret_val)
1560                                 good_cnt++;
1561                         l++;
1562                         if (l == rx_ring->count)
1563                                 l = 0;
1564                         /*
1565                          * time + 20 msecs (200 msecs on 2.4) is more than
1566                          * enough time to complete the receives, if it's
1567                          * exceeded, break and error off
1568                          */
1569                 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1570                 if (good_cnt != 64) {
1571                         ret_val = 13; /* ret_val is the same as mis-compare */
1572                         break;
1573                 }
1574                 if (jiffies >= (time + 20)) {
1575                         ret_val = 14; /* error code for time out error */
1576                         break;
1577                 }
1578         } /* end loop count loop */
1579         return ret_val;
1580 }
1581
1582 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1583 {
1584         /*
1585          * PHY loopback cannot be performed if SoL/IDER
1586          * sessions are active
1587          */
1588         if (e1000_check_reset_block(&adapter->hw)) {
1589                 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1590                 *data = 0;
1591                 goto out;
1592         }
1593
1594         *data = e1000_setup_desc_rings(adapter);
1595         if (*data)
1596                 goto out;
1597
1598         *data = e1000_setup_loopback_test(adapter);
1599         if (*data)
1600                 goto err_loopback;
1601
1602         *data = e1000_run_loopback_test(adapter);
1603         e1000_loopback_cleanup(adapter);
1604
1605 err_loopback:
1606         e1000_free_desc_rings(adapter);
1607 out:
1608         return *data;
1609 }
1610
1611 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1612 {
1613         struct e1000_hw *hw = &adapter->hw;
1614
1615         *data = 0;
1616         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1617                 int i = 0;
1618                 hw->mac.serdes_has_link = false;
1619
1620                 /*
1621                  * On some blade server designs, link establishment
1622                  * could take as long as 2-3 minutes
1623                  */
1624                 do {
1625                         hw->mac.ops.check_for_link(hw);
1626                         if (hw->mac.serdes_has_link)
1627                                 return *data;
1628                         msleep(20);
1629                 } while (i++ < 3750);
1630
1631                 *data = 1;
1632         } else {
1633                 hw->mac.ops.check_for_link(hw);
1634                 if (hw->mac.autoneg)
1635                         msleep(4000);
1636
1637                 if (!(er32(STATUS) &
1638                       E1000_STATUS_LU))
1639                         *data = 1;
1640         }
1641         return *data;
1642 }
1643
1644 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1645 {
1646         switch (sset) {
1647         case ETH_SS_TEST:
1648                 return E1000_TEST_LEN;
1649         case ETH_SS_STATS:
1650                 return E1000_STATS_LEN;
1651         default:
1652                 return -EOPNOTSUPP;
1653         }
1654 }
1655
1656 static void e1000_diag_test(struct net_device *netdev,
1657                             struct ethtool_test *eth_test, u64 *data)
1658 {
1659         struct e1000_adapter *adapter = netdev_priv(netdev);
1660         u16 autoneg_advertised;
1661         u8 forced_speed_duplex;
1662         u8 autoneg;
1663         bool if_running = netif_running(netdev);
1664
1665         set_bit(__E1000_TESTING, &adapter->state);
1666         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1667                 /* Offline tests */
1668
1669                 /* save speed, duplex, autoneg settings */
1670                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1671                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1672                 autoneg = adapter->hw.mac.autoneg;
1673
1674                 e_info("offline testing starting\n");
1675
1676                 /*
1677                  * Link test performed before hardware reset so autoneg doesn't
1678                  * interfere with test result
1679                  */
1680                 if (e1000_link_test(adapter, &data[4]))
1681                         eth_test->flags |= ETH_TEST_FL_FAILED;
1682
1683                 if (if_running)
1684                         /* indicate we're in test mode */
1685                         dev_close(netdev);
1686                 else
1687                         e1000e_reset(adapter);
1688
1689                 if (e1000_reg_test(adapter, &data[0]))
1690                         eth_test->flags |= ETH_TEST_FL_FAILED;
1691
1692                 e1000e_reset(adapter);
1693                 if (e1000_eeprom_test(adapter, &data[1]))
1694                         eth_test->flags |= ETH_TEST_FL_FAILED;
1695
1696                 e1000e_reset(adapter);
1697                 if (e1000_intr_test(adapter, &data[2]))
1698                         eth_test->flags |= ETH_TEST_FL_FAILED;
1699
1700                 e1000e_reset(adapter);
1701                 /* make sure the phy is powered up */
1702                 e1000e_power_up_phy(adapter);
1703                 if (e1000_loopback_test(adapter, &data[3]))
1704                         eth_test->flags |= ETH_TEST_FL_FAILED;
1705
1706                 /* restore speed, duplex, autoneg settings */
1707                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1708                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1709                 adapter->hw.mac.autoneg = autoneg;
1710
1711                 /* force this routine to wait until autoneg complete/timeout */
1712                 adapter->hw.phy.autoneg_wait_to_complete = 1;
1713                 e1000e_reset(adapter);
1714                 adapter->hw.phy.autoneg_wait_to_complete = 0;
1715
1716                 clear_bit(__E1000_TESTING, &adapter->state);
1717                 if (if_running)
1718                         dev_open(netdev);
1719         } else {
1720                 e_info("online testing starting\n");
1721                 /* Online tests */
1722                 if (e1000_link_test(adapter, &data[4]))
1723                         eth_test->flags |= ETH_TEST_FL_FAILED;
1724
1725                 /* Online tests aren't run; pass by default */
1726                 data[0] = 0;
1727                 data[1] = 0;
1728                 data[2] = 0;
1729                 data[3] = 0;
1730
1731                 clear_bit(__E1000_TESTING, &adapter->state);
1732         }
1733         msleep_interruptible(4 * 1000);
1734 }
1735
1736 static void e1000_get_wol(struct net_device *netdev,
1737                           struct ethtool_wolinfo *wol)
1738 {
1739         struct e1000_adapter *adapter = netdev_priv(netdev);
1740
1741         wol->supported = 0;
1742         wol->wolopts = 0;
1743
1744         if (!(adapter->flags & FLAG_HAS_WOL) ||
1745             !device_can_wakeup(&adapter->pdev->dev))
1746                 return;
1747
1748         wol->supported = WAKE_UCAST | WAKE_MCAST |
1749                          WAKE_BCAST | WAKE_MAGIC |
1750                          WAKE_PHY | WAKE_ARP;
1751
1752         /* apply any specific unsupported masks here */
1753         if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1754                 wol->supported &= ~WAKE_UCAST;
1755
1756                 if (adapter->wol & E1000_WUFC_EX)
1757                         e_err("Interface does not support directed (unicast) "
1758                               "frame wake-up packets\n");
1759         }
1760
1761         if (adapter->wol & E1000_WUFC_EX)
1762                 wol->wolopts |= WAKE_UCAST;
1763         if (adapter->wol & E1000_WUFC_MC)
1764                 wol->wolopts |= WAKE_MCAST;
1765         if (adapter->wol & E1000_WUFC_BC)
1766                 wol->wolopts |= WAKE_BCAST;
1767         if (adapter->wol & E1000_WUFC_MAG)
1768                 wol->wolopts |= WAKE_MAGIC;
1769         if (adapter->wol & E1000_WUFC_LNKC)
1770                 wol->wolopts |= WAKE_PHY;
1771         if (adapter->wol & E1000_WUFC_ARP)
1772                 wol->wolopts |= WAKE_ARP;
1773 }
1774
1775 static int e1000_set_wol(struct net_device *netdev,
1776                          struct ethtool_wolinfo *wol)
1777 {
1778         struct e1000_adapter *adapter = netdev_priv(netdev);
1779
1780         if (wol->wolopts & WAKE_MAGICSECURE)
1781                 return -EOPNOTSUPP;
1782
1783         if (!(adapter->flags & FLAG_HAS_WOL) ||
1784             !device_can_wakeup(&adapter->pdev->dev))
1785                 return wol->wolopts ? -EOPNOTSUPP : 0;
1786
1787         /* these settings will always override what we currently have */
1788         adapter->wol = 0;
1789
1790         if (wol->wolopts & WAKE_UCAST)
1791                 adapter->wol |= E1000_WUFC_EX;
1792         if (wol->wolopts & WAKE_MCAST)
1793                 adapter->wol |= E1000_WUFC_MC;
1794         if (wol->wolopts & WAKE_BCAST)
1795                 adapter->wol |= E1000_WUFC_BC;
1796         if (wol->wolopts & WAKE_MAGIC)
1797                 adapter->wol |= E1000_WUFC_MAG;
1798         if (wol->wolopts & WAKE_PHY)
1799                 adapter->wol |= E1000_WUFC_LNKC;
1800         if (wol->wolopts & WAKE_ARP)
1801                 adapter->wol |= E1000_WUFC_ARP;
1802
1803         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1804
1805         return 0;
1806 }
1807
1808 /* toggle LED 4 times per second = 2 "blinks" per second */
1809 #define E1000_ID_INTERVAL       (HZ/4)
1810
1811 /* bit defines for adapter->led_status */
1812 #define E1000_LED_ON            0
1813
1814 static void e1000e_led_blink_task(struct work_struct *work)
1815 {
1816         struct e1000_adapter *adapter = container_of(work,
1817                                         struct e1000_adapter, led_blink_task);
1818
1819         if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1820                 adapter->hw.mac.ops.led_off(&adapter->hw);
1821         else
1822                 adapter->hw.mac.ops.led_on(&adapter->hw);
1823 }
1824
1825 static void e1000_led_blink_callback(unsigned long data)
1826 {
1827         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1828
1829         schedule_work(&adapter->led_blink_task);
1830         mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1831 }
1832
1833 static int e1000_phys_id(struct net_device *netdev, u32 data)
1834 {
1835         struct e1000_adapter *adapter = netdev_priv(netdev);
1836         struct e1000_hw *hw = &adapter->hw;
1837
1838         if (!data)
1839                 data = INT_MAX;
1840
1841         if ((hw->phy.type == e1000_phy_ife) ||
1842             (hw->mac.type == e1000_pchlan) ||
1843             (hw->mac.type == e1000_82574)) {
1844                 INIT_WORK(&adapter->led_blink_task, e1000e_led_blink_task);
1845                 if (!adapter->blink_timer.function) {
1846                         init_timer(&adapter->blink_timer);
1847                         adapter->blink_timer.function =
1848                                 e1000_led_blink_callback;
1849                         adapter->blink_timer.data = (unsigned long) adapter;
1850                 }
1851                 mod_timer(&adapter->blink_timer, jiffies);
1852                 msleep_interruptible(data * 1000);
1853                 del_timer_sync(&adapter->blink_timer);
1854                 if (hw->phy.type == e1000_phy_ife)
1855                         e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1856         } else {
1857                 e1000e_blink_led(hw);
1858                 msleep_interruptible(data * 1000);
1859         }
1860
1861         hw->mac.ops.led_off(hw);
1862         clear_bit(E1000_LED_ON, &adapter->led_status);
1863         hw->mac.ops.cleanup_led(hw);
1864
1865         return 0;
1866 }
1867
1868 static int e1000_get_coalesce(struct net_device *netdev,
1869                               struct ethtool_coalesce *ec)
1870 {
1871         struct e1000_adapter *adapter = netdev_priv(netdev);
1872
1873         if (adapter->itr_setting <= 3)
1874                 ec->rx_coalesce_usecs = adapter->itr_setting;
1875         else
1876                 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1877
1878         return 0;
1879 }
1880
1881 static int e1000_set_coalesce(struct net_device *netdev,
1882                               struct ethtool_coalesce *ec)
1883 {
1884         struct e1000_adapter *adapter = netdev_priv(netdev);
1885         struct e1000_hw *hw = &adapter->hw;
1886
1887         if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1888             ((ec->rx_coalesce_usecs > 3) &&
1889              (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1890             (ec->rx_coalesce_usecs == 2))
1891                 return -EINVAL;
1892
1893         if (ec->rx_coalesce_usecs <= 3) {
1894                 adapter->itr = 20000;
1895                 adapter->itr_setting = ec->rx_coalesce_usecs;
1896         } else {
1897                 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1898                 adapter->itr_setting = adapter->itr & ~3;
1899         }
1900
1901         if (adapter->itr_setting != 0)
1902                 ew32(ITR, 1000000000 / (adapter->itr * 256));
1903         else
1904                 ew32(ITR, 0);
1905
1906         return 0;
1907 }
1908
1909 static int e1000_nway_reset(struct net_device *netdev)
1910 {
1911         struct e1000_adapter *adapter = netdev_priv(netdev);
1912         if (netif_running(netdev))
1913                 e1000e_reinit_locked(adapter);
1914         return 0;
1915 }
1916
1917 static void e1000_get_ethtool_stats(struct net_device *netdev,
1918                                     struct ethtool_stats *stats,
1919                                     u64 *data)
1920 {
1921         struct e1000_adapter *adapter = netdev_priv(netdev);
1922         int i;
1923         char *p = NULL;
1924
1925         e1000e_update_stats(adapter);
1926         for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1927                 switch (e1000_gstrings_stats[i].type) {
1928                 case NETDEV_STATS:
1929                         p = (char *) netdev +
1930                                         e1000_gstrings_stats[i].stat_offset;
1931                         break;
1932                 case E1000_STATS:
1933                         p = (char *) adapter +
1934                                         e1000_gstrings_stats[i].stat_offset;
1935                         break;
1936                 }
1937
1938                 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1939                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1940         }
1941 }
1942
1943 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1944                               u8 *data)
1945 {
1946         u8 *p = data;
1947         int i;
1948
1949         switch (stringset) {
1950         case ETH_SS_TEST:
1951                 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1952                 break;
1953         case ETH_SS_STATS:
1954                 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1955                         memcpy(p, e1000_gstrings_stats[i].stat_string,
1956                                ETH_GSTRING_LEN);
1957                         p += ETH_GSTRING_LEN;
1958                 }
1959                 break;
1960         }
1961 }
1962
1963 static const struct ethtool_ops e1000_ethtool_ops = {
1964         .get_settings           = e1000_get_settings,
1965         .set_settings           = e1000_set_settings,
1966         .get_drvinfo            = e1000_get_drvinfo,
1967         .get_regs_len           = e1000_get_regs_len,
1968         .get_regs               = e1000_get_regs,
1969         .get_wol                = e1000_get_wol,
1970         .set_wol                = e1000_set_wol,
1971         .get_msglevel           = e1000_get_msglevel,
1972         .set_msglevel           = e1000_set_msglevel,
1973         .nway_reset             = e1000_nway_reset,
1974         .get_link               = e1000_get_link,
1975         .get_eeprom_len         = e1000_get_eeprom_len,
1976         .get_eeprom             = e1000_get_eeprom,
1977         .set_eeprom             = e1000_set_eeprom,
1978         .get_ringparam          = e1000_get_ringparam,
1979         .set_ringparam          = e1000_set_ringparam,
1980         .get_pauseparam         = e1000_get_pauseparam,
1981         .set_pauseparam         = e1000_set_pauseparam,
1982         .get_rx_csum            = e1000_get_rx_csum,
1983         .set_rx_csum            = e1000_set_rx_csum,
1984         .get_tx_csum            = e1000_get_tx_csum,
1985         .set_tx_csum            = e1000_set_tx_csum,
1986         .get_sg                 = ethtool_op_get_sg,
1987         .set_sg                 = ethtool_op_set_sg,
1988         .get_tso                = ethtool_op_get_tso,
1989         .set_tso                = e1000_set_tso,
1990         .self_test              = e1000_diag_test,
1991         .get_strings            = e1000_get_strings,
1992         .phys_id                = e1000_phys_id,
1993         .get_ethtool_stats      = e1000_get_ethtool_stats,
1994         .get_sset_count         = e1000e_get_sset_count,
1995         .get_coalesce           = e1000_get_coalesce,
1996         .set_coalesce           = e1000_set_coalesce,
1997 };
1998
1999 void e1000e_set_ethtool_ops(struct net_device *netdev)
2000 {
2001         SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
2002 }