]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/e1000/e1000_main.c
net: replace uses of __constant_{endian}
[net-next-2.6.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.21-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
37
38 /* e1000_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * Macro expands to...
43  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
44  */
45 static struct pci_device_id e1000_pci_tbl[] = {
46         INTEL_E1000_ETHERNET_DEVICE(0x1000),
47         INTEL_E1000_ETHERNET_DEVICE(0x1001),
48         INTEL_E1000_ETHERNET_DEVICE(0x1004),
49         INTEL_E1000_ETHERNET_DEVICE(0x1008),
50         INTEL_E1000_ETHERNET_DEVICE(0x1009),
51         INTEL_E1000_ETHERNET_DEVICE(0x100C),
52         INTEL_E1000_ETHERNET_DEVICE(0x100D),
53         INTEL_E1000_ETHERNET_DEVICE(0x100E),
54         INTEL_E1000_ETHERNET_DEVICE(0x100F),
55         INTEL_E1000_ETHERNET_DEVICE(0x1010),
56         INTEL_E1000_ETHERNET_DEVICE(0x1011),
57         INTEL_E1000_ETHERNET_DEVICE(0x1012),
58         INTEL_E1000_ETHERNET_DEVICE(0x1013),
59         INTEL_E1000_ETHERNET_DEVICE(0x1014),
60         INTEL_E1000_ETHERNET_DEVICE(0x1015),
61         INTEL_E1000_ETHERNET_DEVICE(0x1016),
62         INTEL_E1000_ETHERNET_DEVICE(0x1017),
63         INTEL_E1000_ETHERNET_DEVICE(0x1018),
64         INTEL_E1000_ETHERNET_DEVICE(0x1019),
65         INTEL_E1000_ETHERNET_DEVICE(0x101A),
66         INTEL_E1000_ETHERNET_DEVICE(0x101D),
67         INTEL_E1000_ETHERNET_DEVICE(0x101E),
68         INTEL_E1000_ETHERNET_DEVICE(0x1026),
69         INTEL_E1000_ETHERNET_DEVICE(0x1027),
70         INTEL_E1000_ETHERNET_DEVICE(0x1028),
71         INTEL_E1000_ETHERNET_DEVICE(0x1075),
72         INTEL_E1000_ETHERNET_DEVICE(0x1076),
73         INTEL_E1000_ETHERNET_DEVICE(0x1077),
74         INTEL_E1000_ETHERNET_DEVICE(0x1078),
75         INTEL_E1000_ETHERNET_DEVICE(0x1079),
76         INTEL_E1000_ETHERNET_DEVICE(0x107A),
77         INTEL_E1000_ETHERNET_DEVICE(0x107B),
78         INTEL_E1000_ETHERNET_DEVICE(0x107C),
79         INTEL_E1000_ETHERNET_DEVICE(0x108A),
80         INTEL_E1000_ETHERNET_DEVICE(0x1099),
81         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82         /* required last entry */
83         {0,}
84 };
85
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
87
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98                              struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100                              struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102                              struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104                              struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
106
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121                                 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123                                 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135                                struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138                                struct e1000_rx_ring *rx_ring,
139                                int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141                                    struct e1000_rx_ring *rx_ring,
142                                    int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145                            int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152                                        struct sk_buff *skb);
153
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
158
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
164
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
169
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174         "Maximum size of packet that is copied to a new buffer on receive");
175
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177                      pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
180
181 static struct pci_error_handlers e1000_err_handler = {
182         .error_detected = e1000_io_error_detected,
183         .slot_reset = e1000_io_slot_reset,
184         .resume = e1000_io_resume,
185 };
186
187 static struct pci_driver e1000_driver = {
188         .name     = e1000_driver_name,
189         .id_table = e1000_pci_tbl,
190         .probe    = e1000_probe,
191         .remove   = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193         /* Power Managment Hooks */
194         .suspend  = e1000_suspend,
195         .resume   = e1000_resume,
196 #endif
197         .shutdown = e1000_shutdown,
198         .err_handler = &e1000_err_handler
199 };
200
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
205
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
209
210 /**
211  * e1000_init_module - Driver Registration Routine
212  *
213  * e1000_init_module is the first routine called when the driver is
214  * loaded. All it does is register with the PCI subsystem.
215  **/
216
217 static int __init e1000_init_module(void)
218 {
219         int ret;
220         printk(KERN_INFO "%s - version %s\n",
221                e1000_driver_string, e1000_driver_version);
222
223         printk(KERN_INFO "%s\n", e1000_copyright);
224
225         ret = pci_register_driver(&e1000_driver);
226         if (copybreak != COPYBREAK_DEFAULT) {
227                 if (copybreak == 0)
228                         printk(KERN_INFO "e1000: copybreak disabled\n");
229                 else
230                         printk(KERN_INFO "e1000: copybreak enabled for "
231                                "packets <= %u bytes\n", copybreak);
232         }
233         return ret;
234 }
235
236 module_init(e1000_init_module);
237
238 /**
239  * e1000_exit_module - Driver Exit Cleanup Routine
240  *
241  * e1000_exit_module is called just before the driver is removed
242  * from memory.
243  **/
244
245 static void __exit e1000_exit_module(void)
246 {
247         pci_unregister_driver(&e1000_driver);
248 }
249
250 module_exit(e1000_exit_module);
251
252 static int e1000_request_irq(struct e1000_adapter *adapter)
253 {
254         struct e1000_hw *hw = &adapter->hw;
255         struct net_device *netdev = adapter->netdev;
256         irq_handler_t handler = e1000_intr;
257         int irq_flags = IRQF_SHARED;
258         int err;
259
260         if (hw->mac_type >= e1000_82571) {
261                 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262                 if (adapter->have_msi) {
263                         handler = e1000_intr_msi;
264                         irq_flags = 0;
265                 }
266         }
267
268         err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269                           netdev);
270         if (err) {
271                 if (adapter->have_msi)
272                         pci_disable_msi(adapter->pdev);
273                 DPRINTK(PROBE, ERR,
274                         "Unable to allocate interrupt Error: %d\n", err);
275         }
276
277         return err;
278 }
279
280 static void e1000_free_irq(struct e1000_adapter *adapter)
281 {
282         struct net_device *netdev = adapter->netdev;
283
284         free_irq(adapter->pdev->irq, netdev);
285
286         if (adapter->have_msi)
287                 pci_disable_msi(adapter->pdev);
288 }
289
290 /**
291  * e1000_irq_disable - Mask off interrupt generation on the NIC
292  * @adapter: board private structure
293  **/
294
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
296 {
297         struct e1000_hw *hw = &adapter->hw;
298
299         ew32(IMC, ~0);
300         E1000_WRITE_FLUSH();
301         synchronize_irq(adapter->pdev->irq);
302 }
303
304 /**
305  * e1000_irq_enable - Enable default interrupt generation settings
306  * @adapter: board private structure
307  **/
308
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
310 {
311         struct e1000_hw *hw = &adapter->hw;
312
313         ew32(IMS, IMS_ENABLE_MASK);
314         E1000_WRITE_FLUSH();
315 }
316
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
318 {
319         struct e1000_hw *hw = &adapter->hw;
320         struct net_device *netdev = adapter->netdev;
321         u16 vid = hw->mng_cookie.vlan_id;
322         u16 old_vid = adapter->mng_vlan_id;
323         if (adapter->vlgrp) {
324                 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325                         if (hw->mng_cookie.status &
326                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327                                 e1000_vlan_rx_add_vid(netdev, vid);
328                                 adapter->mng_vlan_id = vid;
329                         } else
330                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
331
332                         if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333                                         (vid != old_vid) &&
334                             !vlan_group_get_device(adapter->vlgrp, old_vid))
335                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
336                 } else
337                         adapter->mng_vlan_id = vid;
338         }
339 }
340
341 /**
342  * e1000_release_hw_control - release control of the h/w to f/w
343  * @adapter: address of board private structure
344  *
345  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346  * For ASF and Pass Through versions of f/w this means that the
347  * driver is no longer loaded. For AMT version (only with 82573) i
348  * of the f/w this means that the network i/f is closed.
349  *
350  **/
351
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
353 {
354         u32 ctrl_ext;
355         u32 swsm;
356         struct e1000_hw *hw = &adapter->hw;
357
358         /* Let firmware taken over control of h/w */
359         switch (hw->mac_type) {
360         case e1000_82573:
361                 swsm = er32(SWSM);
362                 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363                 break;
364         case e1000_82571:
365         case e1000_82572:
366         case e1000_80003es2lan:
367         case e1000_ich8lan:
368                 ctrl_ext = er32(CTRL_EXT);
369                 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370                 break;
371         default:
372                 break;
373         }
374 }
375
376 /**
377  * e1000_get_hw_control - get control of the h/w from f/w
378  * @adapter: address of board private structure
379  *
380  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381  * For ASF and Pass Through versions of f/w this means that
382  * the driver is loaded. For AMT version (only with 82573)
383  * of the f/w this means that the network i/f is open.
384  *
385  **/
386
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
388 {
389         u32 ctrl_ext;
390         u32 swsm;
391         struct e1000_hw *hw = &adapter->hw;
392
393         /* Let firmware know the driver has taken over */
394         switch (hw->mac_type) {
395         case e1000_82573:
396                 swsm = er32(SWSM);
397                 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398                 break;
399         case e1000_82571:
400         case e1000_82572:
401         case e1000_80003es2lan:
402         case e1000_ich8lan:
403                 ctrl_ext = er32(CTRL_EXT);
404                 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405                 break;
406         default:
407                 break;
408         }
409 }
410
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
412 {
413         struct e1000_hw *hw = &adapter->hw;
414
415         if (adapter->en_mng_pt) {
416                 u32 manc = er32(MANC);
417
418                 /* disable hardware interception of ARP */
419                 manc &= ~(E1000_MANC_ARP_EN);
420
421                 /* enable receiving management packets to the host */
422                 /* this will probably generate destination unreachable messages
423                  * from the host OS, but the packets will be handled on SMBUS */
424                 if (hw->has_manc2h) {
425                         u32 manc2h = er32(MANC2H);
426
427                         manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430                         manc2h |= E1000_MNG2HOST_PORT_623;
431                         manc2h |= E1000_MNG2HOST_PORT_664;
432                         ew32(MANC2H, manc2h);
433                 }
434
435                 ew32(MANC, manc);
436         }
437 }
438
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
440 {
441         struct e1000_hw *hw = &adapter->hw;
442
443         if (adapter->en_mng_pt) {
444                 u32 manc = er32(MANC);
445
446                 /* re-enable hardware interception of ARP */
447                 manc |= E1000_MANC_ARP_EN;
448
449                 if (hw->has_manc2h)
450                         manc &= ~E1000_MANC_EN_MNG2HOST;
451
452                 /* don't explicitly have to mess with MANC2H since
453                  * MANC has an enable disable that gates MANC2H */
454
455                 ew32(MANC, manc);
456         }
457 }
458
459 /**
460  * e1000_configure - configure the hardware for RX and TX
461  * @adapter = private board structure
462  **/
463 static void e1000_configure(struct e1000_adapter *adapter)
464 {
465         struct net_device *netdev = adapter->netdev;
466         int i;
467
468         e1000_set_rx_mode(netdev);
469
470         e1000_restore_vlan(adapter);
471         e1000_init_manageability(adapter);
472
473         e1000_configure_tx(adapter);
474         e1000_setup_rctl(adapter);
475         e1000_configure_rx(adapter);
476         /* call E1000_DESC_UNUSED which always leaves
477          * at least 1 descriptor unused to make sure
478          * next_to_use != next_to_clean */
479         for (i = 0; i < adapter->num_rx_queues; i++) {
480                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481                 adapter->alloc_rx_buf(adapter, ring,
482                                       E1000_DESC_UNUSED(ring));
483         }
484
485         adapter->tx_queue_len = netdev->tx_queue_len;
486 }
487
488 int e1000_up(struct e1000_adapter *adapter)
489 {
490         struct e1000_hw *hw = &adapter->hw;
491
492         /* hardware has been reset, we need to reload some things */
493         e1000_configure(adapter);
494
495         clear_bit(__E1000_DOWN, &adapter->flags);
496
497         napi_enable(&adapter->napi);
498
499         e1000_irq_enable(adapter);
500
501         /* fire a link change interrupt to start the watchdog */
502         ew32(ICS, E1000_ICS_LSC);
503         return 0;
504 }
505
506 /**
507  * e1000_power_up_phy - restore link in case the phy was powered down
508  * @adapter: address of board private structure
509  *
510  * The phy may be powered down to save power and turn off link when the
511  * driver is unloaded and wake on lan is not enabled (among others)
512  * *** this routine MUST be followed by a call to e1000_reset ***
513  *
514  **/
515
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
517 {
518         struct e1000_hw *hw = &adapter->hw;
519         u16 mii_reg = 0;
520
521         /* Just clear the power down bit to wake the phy back up */
522         if (hw->media_type == e1000_media_type_copper) {
523                 /* according to the manual, the phy will retain its
524                  * settings across a power-down/up cycle */
525                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526                 mii_reg &= ~MII_CR_POWER_DOWN;
527                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
528         }
529 }
530
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
532 {
533         struct e1000_hw *hw = &adapter->hw;
534
535         /* Power down the PHY so no link is implied when interface is down *
536          * The PHY cannot be powered down if any of the following is true *
537          * (a) WoL is enabled
538          * (b) AMT is active
539          * (c) SoL/IDER session is active */
540         if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541            hw->media_type == e1000_media_type_copper) {
542                 u16 mii_reg = 0;
543
544                 switch (hw->mac_type) {
545                 case e1000_82540:
546                 case e1000_82545:
547                 case e1000_82545_rev_3:
548                 case e1000_82546:
549                 case e1000_82546_rev_3:
550                 case e1000_82541:
551                 case e1000_82541_rev_2:
552                 case e1000_82547:
553                 case e1000_82547_rev_2:
554                         if (er32(MANC) & E1000_MANC_SMBUS_EN)
555                                 goto out;
556                         break;
557                 case e1000_82571:
558                 case e1000_82572:
559                 case e1000_82573:
560                 case e1000_80003es2lan:
561                 case e1000_ich8lan:
562                         if (e1000_check_mng_mode(hw) ||
563                             e1000_check_phy_reset_block(hw))
564                                 goto out;
565                         break;
566                 default:
567                         goto out;
568                 }
569                 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570                 mii_reg |= MII_CR_POWER_DOWN;
571                 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572                 mdelay(1);
573         }
574 out:
575         return;
576 }
577
578 void e1000_down(struct e1000_adapter *adapter)
579 {
580         struct net_device *netdev = adapter->netdev;
581
582         /* signal that we're down so the interrupt handler does not
583          * reschedule our watchdog timer */
584         set_bit(__E1000_DOWN, &adapter->flags);
585
586         napi_disable(&adapter->napi);
587
588         e1000_irq_disable(adapter);
589
590         del_timer_sync(&adapter->tx_fifo_stall_timer);
591         del_timer_sync(&adapter->watchdog_timer);
592         del_timer_sync(&adapter->phy_info_timer);
593
594         netdev->tx_queue_len = adapter->tx_queue_len;
595         adapter->link_speed = 0;
596         adapter->link_duplex = 0;
597         netif_carrier_off(netdev);
598         netif_stop_queue(netdev);
599
600         e1000_reset(adapter);
601         e1000_clean_all_tx_rings(adapter);
602         e1000_clean_all_rx_rings(adapter);
603 }
604
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
606 {
607         WARN_ON(in_interrupt());
608         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609                 msleep(1);
610         e1000_down(adapter);
611         e1000_up(adapter);
612         clear_bit(__E1000_RESETTING, &adapter->flags);
613 }
614
615 void e1000_reset(struct e1000_adapter *adapter)
616 {
617         struct e1000_hw *hw = &adapter->hw;
618         u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619         u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620         bool legacy_pba_adjust = false;
621
622         /* Repartition Pba for greater than 9k mtu
623          * To take effect CTRL.RST is required.
624          */
625
626         switch (hw->mac_type) {
627         case e1000_82542_rev2_0:
628         case e1000_82542_rev2_1:
629         case e1000_82543:
630         case e1000_82544:
631         case e1000_82540:
632         case e1000_82541:
633         case e1000_82541_rev_2:
634                 legacy_pba_adjust = true;
635                 pba = E1000_PBA_48K;
636                 break;
637         case e1000_82545:
638         case e1000_82545_rev_3:
639         case e1000_82546:
640         case e1000_82546_rev_3:
641                 pba = E1000_PBA_48K;
642                 break;
643         case e1000_82547:
644         case e1000_82547_rev_2:
645                 legacy_pba_adjust = true;
646                 pba = E1000_PBA_30K;
647                 break;
648         case e1000_82571:
649         case e1000_82572:
650         case e1000_80003es2lan:
651                 pba = E1000_PBA_38K;
652                 break;
653         case e1000_82573:
654                 pba = E1000_PBA_20K;
655                 break;
656         case e1000_ich8lan:
657                 pba = E1000_PBA_8K;
658         case e1000_undefined:
659         case e1000_num_macs:
660                 break;
661         }
662
663         if (legacy_pba_adjust) {
664                 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665                         pba -= 8; /* allocate more FIFO for Tx */
666
667                 if (hw->mac_type == e1000_82547) {
668                         adapter->tx_fifo_head = 0;
669                         adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670                         adapter->tx_fifo_size =
671                                 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672                         atomic_set(&adapter->tx_fifo_stall, 0);
673                 }
674         } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675                 /* adjust PBA for jumbo frames */
676                 ew32(PBA, pba);
677
678                 /* To maintain wire speed transmits, the Tx FIFO should be
679                  * large enough to accomodate two full transmit packets,
680                  * rounded up to the next 1KB and expressed in KB.  Likewise,
681                  * the Rx FIFO should be large enough to accomodate at least
682                  * one full receive packet and is similarly rounded up and
683                  * expressed in KB. */
684                 pba = er32(PBA);
685                 /* upper 16 bits has Tx packet buffer allocation size in KB */
686                 tx_space = pba >> 16;
687                 /* lower 16 bits has Rx packet buffer allocation size in KB */
688                 pba &= 0xffff;
689                 /* don't include ethernet FCS because hardware appends/strips */
690                 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691                                VLAN_TAG_SIZE;
692                 min_tx_space = min_rx_space;
693                 min_tx_space *= 2;
694                 min_tx_space = ALIGN(min_tx_space, 1024);
695                 min_tx_space >>= 10;
696                 min_rx_space = ALIGN(min_rx_space, 1024);
697                 min_rx_space >>= 10;
698
699                 /* If current Tx allocation is less than the min Tx FIFO size,
700                  * and the min Tx FIFO size is less than the current Rx FIFO
701                  * allocation, take space away from current Rx allocation */
702                 if (tx_space < min_tx_space &&
703                     ((min_tx_space - tx_space) < pba)) {
704                         pba = pba - (min_tx_space - tx_space);
705
706                         /* PCI/PCIx hardware has PBA alignment constraints */
707                         switch (hw->mac_type) {
708                         case e1000_82545 ... e1000_82546_rev_3:
709                                 pba &= ~(E1000_PBA_8K - 1);
710                                 break;
711                         default:
712                                 break;
713                         }
714
715                         /* if short on rx space, rx wins and must trump tx
716                          * adjustment or use Early Receive if available */
717                         if (pba < min_rx_space) {
718                                 switch (hw->mac_type) {
719                                 case e1000_82573:
720                                         /* ERT enabled in e1000_configure_rx */
721                                         break;
722                                 default:
723                                         pba = min_rx_space;
724                                         break;
725                                 }
726                         }
727                 }
728         }
729
730         ew32(PBA, pba);
731
732         /* flow control settings */
733         /* Set the FC high water mark to 90% of the FIFO size.
734          * Required to clear last 3 LSB */
735         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736         /* We can't use 90% on small FIFOs because the remainder
737          * would be less than 1 full frame.  In this case, we size
738          * it to allow at least a full frame above the high water
739          *  mark. */
740         if (pba < E1000_PBA_16K)
741                 fc_high_water_mark = (pba * 1024) - 1600;
742
743         hw->fc_high_water = fc_high_water_mark;
744         hw->fc_low_water = fc_high_water_mark - 8;
745         if (hw->mac_type == e1000_80003es2lan)
746                 hw->fc_pause_time = 0xFFFF;
747         else
748                 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749         hw->fc_send_xon = 1;
750         hw->fc = hw->original_fc;
751
752         /* Allow time for pending master requests to run */
753         e1000_reset_hw(hw);
754         if (hw->mac_type >= e1000_82544)
755                 ew32(WUC, 0);
756
757         if (e1000_init_hw(hw))
758                 DPRINTK(PROBE, ERR, "Hardware Error\n");
759         e1000_update_mng_vlan(adapter);
760
761         /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762         if (hw->mac_type >= e1000_82544 &&
763             hw->mac_type <= e1000_82547_rev_2 &&
764             hw->autoneg == 1 &&
765             hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766                 u32 ctrl = er32(CTRL);
767                 /* clear phy power management bit if we are in gig only mode,
768                  * which if enabled will attempt negotiation to 100Mb, which
769                  * can cause a loss of link at power off or driver unload */
770                 ctrl &= ~E1000_CTRL_SWDPIN3;
771                 ew32(CTRL, ctrl);
772         }
773
774         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775         ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
776
777         e1000_reset_adaptive(hw);
778         e1000_phy_get_info(hw, &adapter->phy_info);
779
780         if (!adapter->smart_power_down &&
781             (hw->mac_type == e1000_82571 ||
782              hw->mac_type == e1000_82572)) {
783                 u16 phy_data = 0;
784                 /* speed up time to link by disabling smart power down, ignore
785                  * the return value of this function because there is nothing
786                  * different we would do if it failed */
787                 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788                                    &phy_data);
789                 phy_data &= ~IGP02E1000_PM_SPD;
790                 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791                                     phy_data);
792         }
793
794         e1000_release_manageability(adapter);
795 }
796
797 /**
798  *  Dump the eeprom for users having checksum issues
799  **/
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
801 {
802         struct net_device *netdev = adapter->netdev;
803         struct ethtool_eeprom eeprom;
804         const struct ethtool_ops *ops = netdev->ethtool_ops;
805         u8 *data;
806         int i;
807         u16 csum_old, csum_new = 0;
808
809         eeprom.len = ops->get_eeprom_len(netdev);
810         eeprom.offset = 0;
811
812         data = kmalloc(eeprom.len, GFP_KERNEL);
813         if (!data) {
814                 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815                        " data\n");
816                 return;
817         }
818
819         ops->get_eeprom(netdev, &eeprom, data);
820
821         csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822                    (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823         for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824                 csum_new += data[i] + (data[i + 1] << 8);
825         csum_new = EEPROM_SUM - csum_new;
826
827         printk(KERN_ERR "/*********************/\n");
828         printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829         printk(KERN_ERR "Calculated              : 0x%04x\n", csum_new);
830
831         printk(KERN_ERR "Offset    Values\n");
832         printk(KERN_ERR "========  ======\n");
833         print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
834
835         printk(KERN_ERR "Include this output when contacting your support "
836                "provider.\n");
837         printk(KERN_ERR "This is not a software error! Something bad "
838                "happened to your hardware or\n");
839         printk(KERN_ERR "EEPROM image. Ignoring this "
840                "problem could result in further problems,\n");
841         printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842         printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843                "which is invalid\n");
844         printk(KERN_ERR "and requires you to set the proper MAC "
845                "address manually before continuing\n");
846         printk(KERN_ERR "to enable this network device.\n");
847         printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848                "to your hardware vendor\n");
849         printk(KERN_ERR "or Intel Customer Support.\n");
850         printk(KERN_ERR "/*********************/\n");
851
852         kfree(data);
853 }
854
855 /**
856  * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857  * @pdev: PCI device information struct
858  *
859  * Return true if an adapter needs ioport resources
860  **/
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
862 {
863         switch (pdev->device) {
864         case E1000_DEV_ID_82540EM:
865         case E1000_DEV_ID_82540EM_LOM:
866         case E1000_DEV_ID_82540EP:
867         case E1000_DEV_ID_82540EP_LOM:
868         case E1000_DEV_ID_82540EP_LP:
869         case E1000_DEV_ID_82541EI:
870         case E1000_DEV_ID_82541EI_MOBILE:
871         case E1000_DEV_ID_82541ER:
872         case E1000_DEV_ID_82541ER_LOM:
873         case E1000_DEV_ID_82541GI:
874         case E1000_DEV_ID_82541GI_LF:
875         case E1000_DEV_ID_82541GI_MOBILE:
876         case E1000_DEV_ID_82544EI_COPPER:
877         case E1000_DEV_ID_82544EI_FIBER:
878         case E1000_DEV_ID_82544GC_COPPER:
879         case E1000_DEV_ID_82544GC_LOM:
880         case E1000_DEV_ID_82545EM_COPPER:
881         case E1000_DEV_ID_82545EM_FIBER:
882         case E1000_DEV_ID_82546EB_COPPER:
883         case E1000_DEV_ID_82546EB_FIBER:
884         case E1000_DEV_ID_82546EB_QUAD_COPPER:
885                 return true;
886         default:
887                 return false;
888         }
889 }
890
891 static const struct net_device_ops e1000_netdev_ops = {
892         .ndo_open               = e1000_open,
893         .ndo_stop               = e1000_close,
894         .ndo_start_xmit         = e1000_xmit_frame,
895         .ndo_get_stats          = e1000_get_stats,
896         .ndo_set_rx_mode        = e1000_set_rx_mode,
897         .ndo_set_mac_address    = e1000_set_mac,
898         .ndo_tx_timeout         = e1000_tx_timeout,
899         .ndo_change_mtu         = e1000_change_mtu,
900         .ndo_do_ioctl           = e1000_ioctl,
901         .ndo_validate_addr      = eth_validate_addr,
902
903         .ndo_vlan_rx_register   = e1000_vlan_rx_register,
904         .ndo_vlan_rx_add_vid    = e1000_vlan_rx_add_vid,
905         .ndo_vlan_rx_kill_vid   = e1000_vlan_rx_kill_vid,
906 #ifdef CONFIG_NET_POLL_CONTROLLER
907         .ndo_poll_controller    = e1000_netpoll,
908 #endif
909 };
910
911 /**
912  * e1000_probe - Device Initialization Routine
913  * @pdev: PCI device information struct
914  * @ent: entry in e1000_pci_tbl
915  *
916  * Returns 0 on success, negative on failure
917  *
918  * e1000_probe initializes an adapter identified by a pci_dev structure.
919  * The OS initialization, configuring of the adapter private structure,
920  * and a hardware reset occur.
921  **/
922 static int __devinit e1000_probe(struct pci_dev *pdev,
923                                  const struct pci_device_id *ent)
924 {
925         struct net_device *netdev;
926         struct e1000_adapter *adapter;
927         struct e1000_hw *hw;
928
929         static int cards_found = 0;
930         static int global_quad_port_a = 0; /* global ksp3 port a indication */
931         int i, err, pci_using_dac;
932         u16 eeprom_data = 0;
933         u16 eeprom_apme_mask = E1000_EEPROM_APME;
934         int bars, need_ioport;
935
936         /* do not allocate ioport bars when not needed */
937         need_ioport = e1000_is_need_ioport(pdev);
938         if (need_ioport) {
939                 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940                 err = pci_enable_device(pdev);
941         } else {
942                 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943                 err = pci_enable_device(pdev);
944         }
945         if (err)
946                 return err;
947
948         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
949             !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
950                 pci_using_dac = 1;
951         } else {
952                 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
953                 if (err) {
954                         err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
955                         if (err) {
956                                 E1000_ERR("No usable DMA configuration, "
957                                           "aborting\n");
958                                 goto err_dma;
959                         }
960                 }
961                 pci_using_dac = 0;
962         }
963
964         err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965         if (err)
966                 goto err_pci_reg;
967
968         pci_set_master(pdev);
969
970         err = -ENOMEM;
971         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972         if (!netdev)
973                 goto err_alloc_etherdev;
974
975         SET_NETDEV_DEV(netdev, &pdev->dev);
976
977         pci_set_drvdata(pdev, netdev);
978         adapter = netdev_priv(netdev);
979         adapter->netdev = netdev;
980         adapter->pdev = pdev;
981         adapter->msg_enable = (1 << debug) - 1;
982         adapter->bars = bars;
983         adapter->need_ioport = need_ioport;
984
985         hw = &adapter->hw;
986         hw->back = adapter;
987
988         err = -EIO;
989         hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990         if (!hw->hw_addr)
991                 goto err_ioremap;
992
993         if (adapter->need_ioport) {
994                 for (i = BAR_1; i <= BAR_5; i++) {
995                         if (pci_resource_len(pdev, i) == 0)
996                                 continue;
997                         if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998                                 hw->io_base = pci_resource_start(pdev, i);
999                                 break;
1000                         }
1001                 }
1002         }
1003
1004         netdev->netdev_ops = &e1000_netdev_ops;
1005         e1000_set_ethtool_ops(netdev);
1006         netdev->watchdog_timeo = 5 * HZ;
1007         netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1008
1009         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1010
1011         adapter->bd_number = cards_found;
1012
1013         /* setup the private structure */
1014
1015         err = e1000_sw_init(adapter);
1016         if (err)
1017                 goto err_sw_init;
1018
1019         err = -EIO;
1020         /* Flash BAR mapping must happen after e1000_sw_init
1021          * because it depends on mac_type */
1022         if ((hw->mac_type == e1000_ich8lan) &&
1023            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1024                 hw->flash_address = pci_ioremap_bar(pdev, 1);
1025                 if (!hw->flash_address)
1026                         goto err_flashmap;
1027         }
1028
1029         if (e1000_check_phy_reset_block(hw))
1030                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1031
1032         if (hw->mac_type >= e1000_82543) {
1033                 netdev->features = NETIF_F_SG |
1034                                    NETIF_F_HW_CSUM |
1035                                    NETIF_F_HW_VLAN_TX |
1036                                    NETIF_F_HW_VLAN_RX |
1037                                    NETIF_F_HW_VLAN_FILTER;
1038                 if (hw->mac_type == e1000_ich8lan)
1039                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1040         }
1041
1042         if ((hw->mac_type >= e1000_82544) &&
1043            (hw->mac_type != e1000_82547))
1044                 netdev->features |= NETIF_F_TSO;
1045
1046         if (hw->mac_type > e1000_82547_rev_2)
1047                 netdev->features |= NETIF_F_TSO6;
1048         if (pci_using_dac)
1049                 netdev->features |= NETIF_F_HIGHDMA;
1050
1051         netdev->vlan_features |= NETIF_F_TSO;
1052         netdev->vlan_features |= NETIF_F_TSO6;
1053         netdev->vlan_features |= NETIF_F_HW_CSUM;
1054         netdev->vlan_features |= NETIF_F_SG;
1055
1056         adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1057
1058         /* initialize eeprom parameters */
1059         if (e1000_init_eeprom_params(hw)) {
1060                 E1000_ERR("EEPROM initialization failed\n");
1061                 goto err_eeprom;
1062         }
1063
1064         /* before reading the EEPROM, reset the controller to
1065          * put the device in a known good starting state */
1066
1067         e1000_reset_hw(hw);
1068
1069         /* make sure the EEPROM is good */
1070         if (e1000_validate_eeprom_checksum(hw) < 0) {
1071                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1072                 e1000_dump_eeprom(adapter);
1073                 /*
1074                  * set MAC address to all zeroes to invalidate and temporary
1075                  * disable this device for the user. This blocks regular
1076                  * traffic while still permitting ethtool ioctls from reaching
1077                  * the hardware as well as allowing the user to run the
1078                  * interface after manually setting a hw addr using
1079                  * `ip set address`
1080                  */
1081                 memset(hw->mac_addr, 0, netdev->addr_len);
1082         } else {
1083                 /* copy the MAC address out of the EEPROM */
1084                 if (e1000_read_mac_addr(hw))
1085                         DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1086         }
1087         /* don't block initalization here due to bad MAC address */
1088         memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1089         memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1090
1091         if (!is_valid_ether_addr(netdev->perm_addr))
1092                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1093
1094         e1000_get_bus_info(hw);
1095
1096         init_timer(&adapter->tx_fifo_stall_timer);
1097         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1098         adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1099
1100         init_timer(&adapter->watchdog_timer);
1101         adapter->watchdog_timer.function = &e1000_watchdog;
1102         adapter->watchdog_timer.data = (unsigned long) adapter;
1103
1104         init_timer(&adapter->phy_info_timer);
1105         adapter->phy_info_timer.function = &e1000_update_phy_info;
1106         adapter->phy_info_timer.data = (unsigned long)adapter;
1107
1108         INIT_WORK(&adapter->reset_task, e1000_reset_task);
1109
1110         e1000_check_options(adapter);
1111
1112         /* Initial Wake on LAN setting
1113          * If APM wake is enabled in the EEPROM,
1114          * enable the ACPI Magic Packet filter
1115          */
1116
1117         switch (hw->mac_type) {
1118         case e1000_82542_rev2_0:
1119         case e1000_82542_rev2_1:
1120         case e1000_82543:
1121                 break;
1122         case e1000_82544:
1123                 e1000_read_eeprom(hw,
1124                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1125                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1126                 break;
1127         case e1000_ich8lan:
1128                 e1000_read_eeprom(hw,
1129                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1130                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1131                 break;
1132         case e1000_82546:
1133         case e1000_82546_rev_3:
1134         case e1000_82571:
1135         case e1000_80003es2lan:
1136                 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1137                         e1000_read_eeprom(hw,
1138                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1139                         break;
1140                 }
1141                 /* Fall Through */
1142         default:
1143                 e1000_read_eeprom(hw,
1144                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1145                 break;
1146         }
1147         if (eeprom_data & eeprom_apme_mask)
1148                 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149
1150         /* now that we have the eeprom settings, apply the special cases
1151          * where the eeprom may be wrong or the board simply won't support
1152          * wake on lan on a particular port */
1153         switch (pdev->device) {
1154         case E1000_DEV_ID_82546GB_PCIE:
1155                 adapter->eeprom_wol = 0;
1156                 break;
1157         case E1000_DEV_ID_82546EB_FIBER:
1158         case E1000_DEV_ID_82546GB_FIBER:
1159         case E1000_DEV_ID_82571EB_FIBER:
1160                 /* Wake events only supported on port A for dual fiber
1161                  * regardless of eeprom setting */
1162                 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1163                         adapter->eeprom_wol = 0;
1164                 break;
1165         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1166         case E1000_DEV_ID_82571EB_QUAD_COPPER:
1167         case E1000_DEV_ID_82571EB_QUAD_FIBER:
1168         case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1169         case E1000_DEV_ID_82571PT_QUAD_COPPER:
1170                 /* if quad port adapter, disable WoL on all but port A */
1171                 if (global_quad_port_a != 0)
1172                         adapter->eeprom_wol = 0;
1173                 else
1174                         adapter->quad_port_a = 1;
1175                 /* Reset for multiple quad port adapters */
1176                 if (++global_quad_port_a == 4)
1177                         global_quad_port_a = 0;
1178                 break;
1179         }
1180
1181         /* initialize the wol settings based on the eeprom settings */
1182         adapter->wol = adapter->eeprom_wol;
1183         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1184
1185         /* print bus type/speed/width info */
1186         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1187                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1188                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1189                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1190                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1191                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1192                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1193                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1194                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1195                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1196                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1197                  "32-bit"));
1198
1199         printk("%pM\n", netdev->dev_addr);
1200
1201         if (hw->bus_type == e1000_bus_type_pci_express) {
1202                 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1203                         "longer be supported by this driver in the future.\n",
1204                         pdev->vendor, pdev->device);
1205                 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1206                         "driver instead.\n");
1207         }
1208
1209         /* reset the hardware with the new settings */
1210         e1000_reset(adapter);
1211
1212         /* If the controller is 82573 and f/w is AMT, do not set
1213          * DRV_LOAD until the interface is up.  For all other cases,
1214          * let the f/w know that the h/w is now under the control
1215          * of the driver. */
1216         if (hw->mac_type != e1000_82573 ||
1217             !e1000_check_mng_mode(hw))
1218                 e1000_get_hw_control(adapter);
1219
1220         /* tell the stack to leave us alone until e1000_open() is called */
1221         netif_carrier_off(netdev);
1222         netif_stop_queue(netdev);
1223
1224         strcpy(netdev->name, "eth%d");
1225         err = register_netdev(netdev);
1226         if (err)
1227                 goto err_register;
1228
1229         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1230
1231         cards_found++;
1232         return 0;
1233
1234 err_register:
1235         e1000_release_hw_control(adapter);
1236 err_eeprom:
1237         if (!e1000_check_phy_reset_block(hw))
1238                 e1000_phy_hw_reset(hw);
1239
1240         if (hw->flash_address)
1241                 iounmap(hw->flash_address);
1242 err_flashmap:
1243         kfree(adapter->tx_ring);
1244         kfree(adapter->rx_ring);
1245 err_sw_init:
1246         iounmap(hw->hw_addr);
1247 err_ioremap:
1248         free_netdev(netdev);
1249 err_alloc_etherdev:
1250         pci_release_selected_regions(pdev, bars);
1251 err_pci_reg:
1252 err_dma:
1253         pci_disable_device(pdev);
1254         return err;
1255 }
1256
1257 /**
1258  * e1000_remove - Device Removal Routine
1259  * @pdev: PCI device information struct
1260  *
1261  * e1000_remove is called by the PCI subsystem to alert the driver
1262  * that it should release a PCI device.  The could be caused by a
1263  * Hot-Plug event, or because the driver is going to be removed from
1264  * memory.
1265  **/
1266
1267 static void __devexit e1000_remove(struct pci_dev *pdev)
1268 {
1269         struct net_device *netdev = pci_get_drvdata(pdev);
1270         struct e1000_adapter *adapter = netdev_priv(netdev);
1271         struct e1000_hw *hw = &adapter->hw;
1272
1273         cancel_work_sync(&adapter->reset_task);
1274
1275         e1000_release_manageability(adapter);
1276
1277         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1278          * would have already happened in close and is redundant. */
1279         e1000_release_hw_control(adapter);
1280
1281         unregister_netdev(netdev);
1282
1283         if (!e1000_check_phy_reset_block(hw))
1284                 e1000_phy_hw_reset(hw);
1285
1286         kfree(adapter->tx_ring);
1287         kfree(adapter->rx_ring);
1288
1289         iounmap(hw->hw_addr);
1290         if (hw->flash_address)
1291                 iounmap(hw->flash_address);
1292         pci_release_selected_regions(pdev, adapter->bars);
1293
1294         free_netdev(netdev);
1295
1296         pci_disable_device(pdev);
1297 }
1298
1299 /**
1300  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1301  * @adapter: board private structure to initialize
1302  *
1303  * e1000_sw_init initializes the Adapter private data structure.
1304  * Fields are initialized based on PCI device information and
1305  * OS network device settings (MTU size).
1306  **/
1307
1308 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1309 {
1310         struct e1000_hw *hw = &adapter->hw;
1311         struct net_device *netdev = adapter->netdev;
1312         struct pci_dev *pdev = adapter->pdev;
1313
1314         /* PCI config space info */
1315
1316         hw->vendor_id = pdev->vendor;
1317         hw->device_id = pdev->device;
1318         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1319         hw->subsystem_id = pdev->subsystem_device;
1320         hw->revision_id = pdev->revision;
1321
1322         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1323
1324         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1325         hw->max_frame_size = netdev->mtu +
1326                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1327         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1328
1329         /* identify the MAC */
1330
1331         if (e1000_set_mac_type(hw)) {
1332                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1333                 return -EIO;
1334         }
1335
1336         switch (hw->mac_type) {
1337         default:
1338                 break;
1339         case e1000_82541:
1340         case e1000_82547:
1341         case e1000_82541_rev_2:
1342         case e1000_82547_rev_2:
1343                 hw->phy_init_script = 1;
1344                 break;
1345         }
1346
1347         e1000_set_media_type(hw);
1348
1349         hw->wait_autoneg_complete = false;
1350         hw->tbi_compatibility_en = true;
1351         hw->adaptive_ifs = true;
1352
1353         /* Copper options */
1354
1355         if (hw->media_type == e1000_media_type_copper) {
1356                 hw->mdix = AUTO_ALL_MODES;
1357                 hw->disable_polarity_correction = false;
1358                 hw->master_slave = E1000_MASTER_SLAVE;
1359         }
1360
1361         adapter->num_tx_queues = 1;
1362         adapter->num_rx_queues = 1;
1363
1364         if (e1000_alloc_queues(adapter)) {
1365                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1366                 return -ENOMEM;
1367         }
1368
1369         /* Explicitly disable IRQ since the NIC can be in any state. */
1370         e1000_irq_disable(adapter);
1371
1372         spin_lock_init(&adapter->stats_lock);
1373
1374         set_bit(__E1000_DOWN, &adapter->flags);
1375
1376         return 0;
1377 }
1378
1379 /**
1380  * e1000_alloc_queues - Allocate memory for all rings
1381  * @adapter: board private structure to initialize
1382  *
1383  * We allocate one ring per queue at run-time since we don't know the
1384  * number of queues at compile-time.
1385  **/
1386
1387 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1388 {
1389         adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1390                                    sizeof(struct e1000_tx_ring), GFP_KERNEL);
1391         if (!adapter->tx_ring)
1392                 return -ENOMEM;
1393
1394         adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1395                                    sizeof(struct e1000_rx_ring), GFP_KERNEL);
1396         if (!adapter->rx_ring) {
1397                 kfree(adapter->tx_ring);
1398                 return -ENOMEM;
1399         }
1400
1401         return E1000_SUCCESS;
1402 }
1403
1404 /**
1405  * e1000_open - Called when a network interface is made active
1406  * @netdev: network interface device structure
1407  *
1408  * Returns 0 on success, negative value on failure
1409  *
1410  * The open entry point is called when a network interface is made
1411  * active by the system (IFF_UP).  At this point all resources needed
1412  * for transmit and receive operations are allocated, the interrupt
1413  * handler is registered with the OS, the watchdog timer is started,
1414  * and the stack is notified that the interface is ready.
1415  **/
1416
1417 static int e1000_open(struct net_device *netdev)
1418 {
1419         struct e1000_adapter *adapter = netdev_priv(netdev);
1420         struct e1000_hw *hw = &adapter->hw;
1421         int err;
1422
1423         /* disallow open during test */
1424         if (test_bit(__E1000_TESTING, &adapter->flags))
1425                 return -EBUSY;
1426
1427         /* allocate transmit descriptors */
1428         err = e1000_setup_all_tx_resources(adapter);
1429         if (err)
1430                 goto err_setup_tx;
1431
1432         /* allocate receive descriptors */
1433         err = e1000_setup_all_rx_resources(adapter);
1434         if (err)
1435                 goto err_setup_rx;
1436
1437         e1000_power_up_phy(adapter);
1438
1439         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1440         if ((hw->mng_cookie.status &
1441                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1442                 e1000_update_mng_vlan(adapter);
1443         }
1444
1445         /* If AMT is enabled, let the firmware know that the network
1446          * interface is now open */
1447         if (hw->mac_type == e1000_82573 &&
1448             e1000_check_mng_mode(hw))
1449                 e1000_get_hw_control(adapter);
1450
1451         /* before we allocate an interrupt, we must be ready to handle it.
1452          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1453          * as soon as we call pci_request_irq, so we have to setup our
1454          * clean_rx handler before we do so.  */
1455         e1000_configure(adapter);
1456
1457         err = e1000_request_irq(adapter);
1458         if (err)
1459                 goto err_req_irq;
1460
1461         /* From here on the code is the same as e1000_up() */
1462         clear_bit(__E1000_DOWN, &adapter->flags);
1463
1464         napi_enable(&adapter->napi);
1465
1466         e1000_irq_enable(adapter);
1467
1468         netif_start_queue(netdev);
1469
1470         /* fire a link status change interrupt to start the watchdog */
1471         ew32(ICS, E1000_ICS_LSC);
1472
1473         return E1000_SUCCESS;
1474
1475 err_req_irq:
1476         e1000_release_hw_control(adapter);
1477         e1000_power_down_phy(adapter);
1478         e1000_free_all_rx_resources(adapter);
1479 err_setup_rx:
1480         e1000_free_all_tx_resources(adapter);
1481 err_setup_tx:
1482         e1000_reset(adapter);
1483
1484         return err;
1485 }
1486
1487 /**
1488  * e1000_close - Disables a network interface
1489  * @netdev: network interface device structure
1490  *
1491  * Returns 0, this is not allowed to fail
1492  *
1493  * The close entry point is called when an interface is de-activated
1494  * by the OS.  The hardware is still under the drivers control, but
1495  * needs to be disabled.  A global MAC reset is issued to stop the
1496  * hardware, and all transmit and receive resources are freed.
1497  **/
1498
1499 static int e1000_close(struct net_device *netdev)
1500 {
1501         struct e1000_adapter *adapter = netdev_priv(netdev);
1502         struct e1000_hw *hw = &adapter->hw;
1503
1504         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1505         e1000_down(adapter);
1506         e1000_power_down_phy(adapter);
1507         e1000_free_irq(adapter);
1508
1509         e1000_free_all_tx_resources(adapter);
1510         e1000_free_all_rx_resources(adapter);
1511
1512         /* kill manageability vlan ID if supported, but not if a vlan with
1513          * the same ID is registered on the host OS (let 8021q kill it) */
1514         if ((hw->mng_cookie.status &
1515                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1516              !(adapter->vlgrp &&
1517                vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1518                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1519         }
1520
1521         /* If AMT is enabled, let the firmware know that the network
1522          * interface is now closed */
1523         if (hw->mac_type == e1000_82573 &&
1524             e1000_check_mng_mode(hw))
1525                 e1000_release_hw_control(adapter);
1526
1527         return 0;
1528 }
1529
1530 /**
1531  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1532  * @adapter: address of board private structure
1533  * @start: address of beginning of memory
1534  * @len: length of memory
1535  **/
1536 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1537                                   unsigned long len)
1538 {
1539         struct e1000_hw *hw = &adapter->hw;
1540         unsigned long begin = (unsigned long)start;
1541         unsigned long end = begin + len;
1542
1543         /* First rev 82545 and 82546 need to not allow any memory
1544          * write location to cross 64k boundary due to errata 23 */
1545         if (hw->mac_type == e1000_82545 ||
1546             hw->mac_type == e1000_82546) {
1547                 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1548         }
1549
1550         return true;
1551 }
1552
1553 /**
1554  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1555  * @adapter: board private structure
1556  * @txdr:    tx descriptor ring (for a specific queue) to setup
1557  *
1558  * Return 0 on success, negative on failure
1559  **/
1560
1561 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1562                                     struct e1000_tx_ring *txdr)
1563 {
1564         struct pci_dev *pdev = adapter->pdev;
1565         int size;
1566
1567         size = sizeof(struct e1000_buffer) * txdr->count;
1568         txdr->buffer_info = vmalloc(size);
1569         if (!txdr->buffer_info) {
1570                 DPRINTK(PROBE, ERR,
1571                 "Unable to allocate memory for the transmit descriptor ring\n");
1572                 return -ENOMEM;
1573         }
1574         memset(txdr->buffer_info, 0, size);
1575
1576         /* round up to nearest 4K */
1577
1578         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1579         txdr->size = ALIGN(txdr->size, 4096);
1580
1581         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1582         if (!txdr->desc) {
1583 setup_tx_desc_die:
1584                 vfree(txdr->buffer_info);
1585                 DPRINTK(PROBE, ERR,
1586                 "Unable to allocate memory for the transmit descriptor ring\n");
1587                 return -ENOMEM;
1588         }
1589
1590         /* Fix for errata 23, can't cross 64kB boundary */
1591         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1592                 void *olddesc = txdr->desc;
1593                 dma_addr_t olddma = txdr->dma;
1594                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1595                                      "at %p\n", txdr->size, txdr->desc);
1596                 /* Try again, without freeing the previous */
1597                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1598                 /* Failed allocation, critical failure */
1599                 if (!txdr->desc) {
1600                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1601                         goto setup_tx_desc_die;
1602                 }
1603
1604                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1605                         /* give up */
1606                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1607                                             txdr->dma);
1608                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1609                         DPRINTK(PROBE, ERR,
1610                                 "Unable to allocate aligned memory "
1611                                 "for the transmit descriptor ring\n");
1612                         vfree(txdr->buffer_info);
1613                         return -ENOMEM;
1614                 } else {
1615                         /* Free old allocation, new allocation was successful */
1616                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1617                 }
1618         }
1619         memset(txdr->desc, 0, txdr->size);
1620
1621         txdr->next_to_use = 0;
1622         txdr->next_to_clean = 0;
1623
1624         return 0;
1625 }
1626
1627 /**
1628  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1629  *                                (Descriptors) for all queues
1630  * @adapter: board private structure
1631  *
1632  * Return 0 on success, negative on failure
1633  **/
1634
1635 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1636 {
1637         int i, err = 0;
1638
1639         for (i = 0; i < adapter->num_tx_queues; i++) {
1640                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1641                 if (err) {
1642                         DPRINTK(PROBE, ERR,
1643                                 "Allocation for Tx Queue %u failed\n", i);
1644                         for (i-- ; i >= 0; i--)
1645                                 e1000_free_tx_resources(adapter,
1646                                                         &adapter->tx_ring[i]);
1647                         break;
1648                 }
1649         }
1650
1651         return err;
1652 }
1653
1654 /**
1655  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1656  * @adapter: board private structure
1657  *
1658  * Configure the Tx unit of the MAC after a reset.
1659  **/
1660
1661 static void e1000_configure_tx(struct e1000_adapter *adapter)
1662 {
1663         u64 tdba;
1664         struct e1000_hw *hw = &adapter->hw;
1665         u32 tdlen, tctl, tipg, tarc;
1666         u32 ipgr1, ipgr2;
1667
1668         /* Setup the HW Tx Head and Tail descriptor pointers */
1669
1670         switch (adapter->num_tx_queues) {
1671         case 1:
1672         default:
1673                 tdba = adapter->tx_ring[0].dma;
1674                 tdlen = adapter->tx_ring[0].count *
1675                         sizeof(struct e1000_tx_desc);
1676                 ew32(TDLEN, tdlen);
1677                 ew32(TDBAH, (tdba >> 32));
1678                 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1679                 ew32(TDT, 0);
1680                 ew32(TDH, 0);
1681                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1682                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1683                 break;
1684         }
1685
1686         /* Set the default values for the Tx Inter Packet Gap timer */
1687         if (hw->mac_type <= e1000_82547_rev_2 &&
1688             (hw->media_type == e1000_media_type_fiber ||
1689              hw->media_type == e1000_media_type_internal_serdes))
1690                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1691         else
1692                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1693
1694         switch (hw->mac_type) {
1695         case e1000_82542_rev2_0:
1696         case e1000_82542_rev2_1:
1697                 tipg = DEFAULT_82542_TIPG_IPGT;
1698                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1699                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1700                 break;
1701         case e1000_80003es2lan:
1702                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1703                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1704                 break;
1705         default:
1706                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1707                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1708                 break;
1709         }
1710         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1711         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1712         ew32(TIPG, tipg);
1713
1714         /* Set the Tx Interrupt Delay register */
1715
1716         ew32(TIDV, adapter->tx_int_delay);
1717         if (hw->mac_type >= e1000_82540)
1718                 ew32(TADV, adapter->tx_abs_int_delay);
1719
1720         /* Program the Transmit Control Register */
1721
1722         tctl = er32(TCTL);
1723         tctl &= ~E1000_TCTL_CT;
1724         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1725                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1726
1727         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1728                 tarc = er32(TARC0);
1729                 /* set the speed mode bit, we'll clear it if we're not at
1730                  * gigabit link later */
1731                 tarc |= (1 << 21);
1732                 ew32(TARC0, tarc);
1733         } else if (hw->mac_type == e1000_80003es2lan) {
1734                 tarc = er32(TARC0);
1735                 tarc |= 1;
1736                 ew32(TARC0, tarc);
1737                 tarc = er32(TARC1);
1738                 tarc |= 1;
1739                 ew32(TARC1, tarc);
1740         }
1741
1742         e1000_config_collision_dist(hw);
1743
1744         /* Setup Transmit Descriptor Settings for eop descriptor */
1745         adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1746
1747         /* only set IDE if we are delaying interrupts using the timers */
1748         if (adapter->tx_int_delay)
1749                 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1750
1751         if (hw->mac_type < e1000_82543)
1752                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1753         else
1754                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1755
1756         /* Cache if we're 82544 running in PCI-X because we'll
1757          * need this to apply a workaround later in the send path. */
1758         if (hw->mac_type == e1000_82544 &&
1759             hw->bus_type == e1000_bus_type_pcix)
1760                 adapter->pcix_82544 = 1;
1761
1762         ew32(TCTL, tctl);
1763
1764 }
1765
1766 /**
1767  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1768  * @adapter: board private structure
1769  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1770  *
1771  * Returns 0 on success, negative on failure
1772  **/
1773
1774 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1775                                     struct e1000_rx_ring *rxdr)
1776 {
1777         struct e1000_hw *hw = &adapter->hw;
1778         struct pci_dev *pdev = adapter->pdev;
1779         int size, desc_len;
1780
1781         size = sizeof(struct e1000_buffer) * rxdr->count;
1782         rxdr->buffer_info = vmalloc(size);
1783         if (!rxdr->buffer_info) {
1784                 DPRINTK(PROBE, ERR,
1785                 "Unable to allocate memory for the receive descriptor ring\n");
1786                 return -ENOMEM;
1787         }
1788         memset(rxdr->buffer_info, 0, size);
1789
1790         if (hw->mac_type <= e1000_82547_rev_2)
1791                 desc_len = sizeof(struct e1000_rx_desc);
1792         else
1793                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1794
1795         /* Round up to nearest 4K */
1796
1797         rxdr->size = rxdr->count * desc_len;
1798         rxdr->size = ALIGN(rxdr->size, 4096);
1799
1800         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1801
1802         if (!rxdr->desc) {
1803                 DPRINTK(PROBE, ERR,
1804                 "Unable to allocate memory for the receive descriptor ring\n");
1805 setup_rx_desc_die:
1806                 vfree(rxdr->buffer_info);
1807                 return -ENOMEM;
1808         }
1809
1810         /* Fix for errata 23, can't cross 64kB boundary */
1811         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1812                 void *olddesc = rxdr->desc;
1813                 dma_addr_t olddma = rxdr->dma;
1814                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1815                                      "at %p\n", rxdr->size, rxdr->desc);
1816                 /* Try again, without freeing the previous */
1817                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1818                 /* Failed allocation, critical failure */
1819                 if (!rxdr->desc) {
1820                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1821                         DPRINTK(PROBE, ERR,
1822                                 "Unable to allocate memory "
1823                                 "for the receive descriptor ring\n");
1824                         goto setup_rx_desc_die;
1825                 }
1826
1827                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1828                         /* give up */
1829                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1830                                             rxdr->dma);
1831                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1832                         DPRINTK(PROBE, ERR,
1833                                 "Unable to allocate aligned memory "
1834                                 "for the receive descriptor ring\n");
1835                         goto setup_rx_desc_die;
1836                 } else {
1837                         /* Free old allocation, new allocation was successful */
1838                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1839                 }
1840         }
1841         memset(rxdr->desc, 0, rxdr->size);
1842
1843         rxdr->next_to_clean = 0;
1844         rxdr->next_to_use = 0;
1845
1846         return 0;
1847 }
1848
1849 /**
1850  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1851  *                                (Descriptors) for all queues
1852  * @adapter: board private structure
1853  *
1854  * Return 0 on success, negative on failure
1855  **/
1856
1857 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1858 {
1859         int i, err = 0;
1860
1861         for (i = 0; i < adapter->num_rx_queues; i++) {
1862                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1863                 if (err) {
1864                         DPRINTK(PROBE, ERR,
1865                                 "Allocation for Rx Queue %u failed\n", i);
1866                         for (i-- ; i >= 0; i--)
1867                                 e1000_free_rx_resources(adapter,
1868                                                         &adapter->rx_ring[i]);
1869                         break;
1870                 }
1871         }
1872
1873         return err;
1874 }
1875
1876 /**
1877  * e1000_setup_rctl - configure the receive control registers
1878  * @adapter: Board private structure
1879  **/
1880 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1881                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1882 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1883 {
1884         struct e1000_hw *hw = &adapter->hw;
1885         u32 rctl;
1886
1887         rctl = er32(RCTL);
1888
1889         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1890
1891         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1892                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1893                 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1894
1895         if (hw->tbi_compatibility_on == 1)
1896                 rctl |= E1000_RCTL_SBP;
1897         else
1898                 rctl &= ~E1000_RCTL_SBP;
1899
1900         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1901                 rctl &= ~E1000_RCTL_LPE;
1902         else
1903                 rctl |= E1000_RCTL_LPE;
1904
1905         /* Setup buffer sizes */
1906         rctl &= ~E1000_RCTL_SZ_4096;
1907         rctl |= E1000_RCTL_BSEX;
1908         switch (adapter->rx_buffer_len) {
1909                 case E1000_RXBUFFER_256:
1910                         rctl |= E1000_RCTL_SZ_256;
1911                         rctl &= ~E1000_RCTL_BSEX;
1912                         break;
1913                 case E1000_RXBUFFER_512:
1914                         rctl |= E1000_RCTL_SZ_512;
1915                         rctl &= ~E1000_RCTL_BSEX;
1916                         break;
1917                 case E1000_RXBUFFER_1024:
1918                         rctl |= E1000_RCTL_SZ_1024;
1919                         rctl &= ~E1000_RCTL_BSEX;
1920                         break;
1921                 case E1000_RXBUFFER_2048:
1922                 default:
1923                         rctl |= E1000_RCTL_SZ_2048;
1924                         rctl &= ~E1000_RCTL_BSEX;
1925                         break;
1926                 case E1000_RXBUFFER_4096:
1927                         rctl |= E1000_RCTL_SZ_4096;
1928                         break;
1929                 case E1000_RXBUFFER_8192:
1930                         rctl |= E1000_RCTL_SZ_8192;
1931                         break;
1932                 case E1000_RXBUFFER_16384:
1933                         rctl |= E1000_RCTL_SZ_16384;
1934                         break;
1935         }
1936
1937         ew32(RCTL, rctl);
1938 }
1939
1940 /**
1941  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1942  * @adapter: board private structure
1943  *
1944  * Configure the Rx unit of the MAC after a reset.
1945  **/
1946
1947 static void e1000_configure_rx(struct e1000_adapter *adapter)
1948 {
1949         u64 rdba;
1950         struct e1000_hw *hw = &adapter->hw;
1951         u32 rdlen, rctl, rxcsum, ctrl_ext;
1952
1953         rdlen = adapter->rx_ring[0].count *
1954                 sizeof(struct e1000_rx_desc);
1955         adapter->clean_rx = e1000_clean_rx_irq;
1956         adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1957
1958         /* disable receives while setting up the descriptors */
1959         rctl = er32(RCTL);
1960         ew32(RCTL, rctl & ~E1000_RCTL_EN);
1961
1962         /* set the Receive Delay Timer Register */
1963         ew32(RDTR, adapter->rx_int_delay);
1964
1965         if (hw->mac_type >= e1000_82540) {
1966                 ew32(RADV, adapter->rx_abs_int_delay);
1967                 if (adapter->itr_setting != 0)
1968                         ew32(ITR, 1000000000 / (adapter->itr * 256));
1969         }
1970
1971         if (hw->mac_type >= e1000_82571) {
1972                 ctrl_ext = er32(CTRL_EXT);
1973                 /* Reset delay timers after every interrupt */
1974                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1975                 /* Auto-Mask interrupts upon ICR access */
1976                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1977                 ew32(IAM, 0xffffffff);
1978                 ew32(CTRL_EXT, ctrl_ext);
1979                 E1000_WRITE_FLUSH();
1980         }
1981
1982         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1983          * the Base and Length of the Rx Descriptor Ring */
1984         switch (adapter->num_rx_queues) {
1985         case 1:
1986         default:
1987                 rdba = adapter->rx_ring[0].dma;
1988                 ew32(RDLEN, rdlen);
1989                 ew32(RDBAH, (rdba >> 32));
1990                 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1991                 ew32(RDT, 0);
1992                 ew32(RDH, 0);
1993                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1994                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1995                 break;
1996         }
1997
1998         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1999         if (hw->mac_type >= e1000_82543) {
2000                 rxcsum = er32(RXCSUM);
2001                 if (adapter->rx_csum)
2002                         rxcsum |= E1000_RXCSUM_TUOFL;
2003                 else
2004                         /* don't need to clear IPPCSE as it defaults to 0 */
2005                         rxcsum &= ~E1000_RXCSUM_TUOFL;
2006                 ew32(RXCSUM, rxcsum);
2007         }
2008
2009         /* Enable Receives */
2010         ew32(RCTL, rctl);
2011 }
2012
2013 /**
2014  * e1000_free_tx_resources - Free Tx Resources per Queue
2015  * @adapter: board private structure
2016  * @tx_ring: Tx descriptor ring for a specific queue
2017  *
2018  * Free all transmit software resources
2019  **/
2020
2021 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2022                                     struct e1000_tx_ring *tx_ring)
2023 {
2024         struct pci_dev *pdev = adapter->pdev;
2025
2026         e1000_clean_tx_ring(adapter, tx_ring);
2027
2028         vfree(tx_ring->buffer_info);
2029         tx_ring->buffer_info = NULL;
2030
2031         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2032
2033         tx_ring->desc = NULL;
2034 }
2035
2036 /**
2037  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2038  * @adapter: board private structure
2039  *
2040  * Free all transmit software resources
2041  **/
2042
2043 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2044 {
2045         int i;
2046
2047         for (i = 0; i < adapter->num_tx_queues; i++)
2048                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2049 }
2050
2051 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2052                                              struct e1000_buffer *buffer_info)
2053 {
2054         if (buffer_info->dma) {
2055                 pci_unmap_page(adapter->pdev,
2056                                 buffer_info->dma,
2057                                 buffer_info->length,
2058                                 PCI_DMA_TODEVICE);
2059                 buffer_info->dma = 0;
2060         }
2061         if (buffer_info->skb) {
2062                 dev_kfree_skb_any(buffer_info->skb);
2063                 buffer_info->skb = NULL;
2064         }
2065         /* buffer_info must be completely set up in the transmit path */
2066 }
2067
2068 /**
2069  * e1000_clean_tx_ring - Free Tx Buffers
2070  * @adapter: board private structure
2071  * @tx_ring: ring to be cleaned
2072  **/
2073
2074 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2075                                 struct e1000_tx_ring *tx_ring)
2076 {
2077         struct e1000_hw *hw = &adapter->hw;
2078         struct e1000_buffer *buffer_info;
2079         unsigned long size;
2080         unsigned int i;
2081
2082         /* Free all the Tx ring sk_buffs */
2083
2084         for (i = 0; i < tx_ring->count; i++) {
2085                 buffer_info = &tx_ring->buffer_info[i];
2086                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2087         }
2088
2089         size = sizeof(struct e1000_buffer) * tx_ring->count;
2090         memset(tx_ring->buffer_info, 0, size);
2091
2092         /* Zero out the descriptor ring */
2093
2094         memset(tx_ring->desc, 0, tx_ring->size);
2095
2096         tx_ring->next_to_use = 0;
2097         tx_ring->next_to_clean = 0;
2098         tx_ring->last_tx_tso = 0;
2099
2100         writel(0, hw->hw_addr + tx_ring->tdh);
2101         writel(0, hw->hw_addr + tx_ring->tdt);
2102 }
2103
2104 /**
2105  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2106  * @adapter: board private structure
2107  **/
2108
2109 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2110 {
2111         int i;
2112
2113         for (i = 0; i < adapter->num_tx_queues; i++)
2114                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2115 }
2116
2117 /**
2118  * e1000_free_rx_resources - Free Rx Resources
2119  * @adapter: board private structure
2120  * @rx_ring: ring to clean the resources from
2121  *
2122  * Free all receive software resources
2123  **/
2124
2125 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2126                                     struct e1000_rx_ring *rx_ring)
2127 {
2128         struct pci_dev *pdev = adapter->pdev;
2129
2130         e1000_clean_rx_ring(adapter, rx_ring);
2131
2132         vfree(rx_ring->buffer_info);
2133         rx_ring->buffer_info = NULL;
2134
2135         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2136
2137         rx_ring->desc = NULL;
2138 }
2139
2140 /**
2141  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2142  * @adapter: board private structure
2143  *
2144  * Free all receive software resources
2145  **/
2146
2147 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2148 {
2149         int i;
2150
2151         for (i = 0; i < adapter->num_rx_queues; i++)
2152                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2153 }
2154
2155 /**
2156  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2157  * @adapter: board private structure
2158  * @rx_ring: ring to free buffers from
2159  **/
2160
2161 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2162                                 struct e1000_rx_ring *rx_ring)
2163 {
2164         struct e1000_hw *hw = &adapter->hw;
2165         struct e1000_buffer *buffer_info;
2166         struct pci_dev *pdev = adapter->pdev;
2167         unsigned long size;
2168         unsigned int i;
2169
2170         /* Free all the Rx ring sk_buffs */
2171         for (i = 0; i < rx_ring->count; i++) {
2172                 buffer_info = &rx_ring->buffer_info[i];
2173                 if (buffer_info->skb) {
2174                         pci_unmap_single(pdev,
2175                                          buffer_info->dma,
2176                                          buffer_info->length,
2177                                          PCI_DMA_FROMDEVICE);
2178
2179                         dev_kfree_skb(buffer_info->skb);
2180                         buffer_info->skb = NULL;
2181                 }
2182         }
2183
2184         size = sizeof(struct e1000_buffer) * rx_ring->count;
2185         memset(rx_ring->buffer_info, 0, size);
2186
2187         /* Zero out the descriptor ring */
2188
2189         memset(rx_ring->desc, 0, rx_ring->size);
2190
2191         rx_ring->next_to_clean = 0;
2192         rx_ring->next_to_use = 0;
2193
2194         writel(0, hw->hw_addr + rx_ring->rdh);
2195         writel(0, hw->hw_addr + rx_ring->rdt);
2196 }
2197
2198 /**
2199  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2200  * @adapter: board private structure
2201  **/
2202
2203 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2204 {
2205         int i;
2206
2207         for (i = 0; i < adapter->num_rx_queues; i++)
2208                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2209 }
2210
2211 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2212  * and memory write and invalidate disabled for certain operations
2213  */
2214 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2215 {
2216         struct e1000_hw *hw = &adapter->hw;
2217         struct net_device *netdev = adapter->netdev;
2218         u32 rctl;
2219
2220         e1000_pci_clear_mwi(hw);
2221
2222         rctl = er32(RCTL);
2223         rctl |= E1000_RCTL_RST;
2224         ew32(RCTL, rctl);
2225         E1000_WRITE_FLUSH();
2226         mdelay(5);
2227
2228         if (netif_running(netdev))
2229                 e1000_clean_all_rx_rings(adapter);
2230 }
2231
2232 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2233 {
2234         struct e1000_hw *hw = &adapter->hw;
2235         struct net_device *netdev = adapter->netdev;
2236         u32 rctl;
2237
2238         rctl = er32(RCTL);
2239         rctl &= ~E1000_RCTL_RST;
2240         ew32(RCTL, rctl);
2241         E1000_WRITE_FLUSH();
2242         mdelay(5);
2243
2244         if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2245                 e1000_pci_set_mwi(hw);
2246
2247         if (netif_running(netdev)) {
2248                 /* No need to loop, because 82542 supports only 1 queue */
2249                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2250                 e1000_configure_rx(adapter);
2251                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2252         }
2253 }
2254
2255 /**
2256  * e1000_set_mac - Change the Ethernet Address of the NIC
2257  * @netdev: network interface device structure
2258  * @p: pointer to an address structure
2259  *
2260  * Returns 0 on success, negative on failure
2261  **/
2262
2263 static int e1000_set_mac(struct net_device *netdev, void *p)
2264 {
2265         struct e1000_adapter *adapter = netdev_priv(netdev);
2266         struct e1000_hw *hw = &adapter->hw;
2267         struct sockaddr *addr = p;
2268
2269         if (!is_valid_ether_addr(addr->sa_data))
2270                 return -EADDRNOTAVAIL;
2271
2272         /* 82542 2.0 needs to be in reset to write receive address registers */
2273
2274         if (hw->mac_type == e1000_82542_rev2_0)
2275                 e1000_enter_82542_rst(adapter);
2276
2277         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2278         memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2279
2280         e1000_rar_set(hw, hw->mac_addr, 0);
2281
2282         /* With 82571 controllers, LAA may be overwritten (with the default)
2283          * due to controller reset from the other port. */
2284         if (hw->mac_type == e1000_82571) {
2285                 /* activate the work around */
2286                 hw->laa_is_present = 1;
2287
2288                 /* Hold a copy of the LAA in RAR[14] This is done so that
2289                  * between the time RAR[0] gets clobbered  and the time it
2290                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2291                  * of the RARs and no incoming packets directed to this port
2292                  * are dropped. Eventaully the LAA will be in RAR[0] and
2293                  * RAR[14] */
2294                 e1000_rar_set(hw, hw->mac_addr,
2295                                         E1000_RAR_ENTRIES - 1);
2296         }
2297
2298         if (hw->mac_type == e1000_82542_rev2_0)
2299                 e1000_leave_82542_rst(adapter);
2300
2301         return 0;
2302 }
2303
2304 /**
2305  * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2306  * @netdev: network interface device structure
2307  *
2308  * The set_rx_mode entry point is called whenever the unicast or multicast
2309  * address lists or the network interface flags are updated. This routine is
2310  * responsible for configuring the hardware for proper unicast, multicast,
2311  * promiscuous mode, and all-multi behavior.
2312  **/
2313
2314 static void e1000_set_rx_mode(struct net_device *netdev)
2315 {
2316         struct e1000_adapter *adapter = netdev_priv(netdev);
2317         struct e1000_hw *hw = &adapter->hw;
2318         struct dev_addr_list *uc_ptr;
2319         struct dev_addr_list *mc_ptr;
2320         u32 rctl;
2321         u32 hash_value;
2322         int i, rar_entries = E1000_RAR_ENTRIES;
2323         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2324                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2325                                 E1000_NUM_MTA_REGISTERS;
2326
2327         if (hw->mac_type == e1000_ich8lan)
2328                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2329
2330         /* reserve RAR[14] for LAA over-write work-around */
2331         if (hw->mac_type == e1000_82571)
2332                 rar_entries--;
2333
2334         /* Check for Promiscuous and All Multicast modes */
2335
2336         rctl = er32(RCTL);
2337
2338         if (netdev->flags & IFF_PROMISC) {
2339                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2340                 rctl &= ~E1000_RCTL_VFE;
2341         } else {
2342                 if (netdev->flags & IFF_ALLMULTI) {
2343                         rctl |= E1000_RCTL_MPE;
2344                 } else {
2345                         rctl &= ~E1000_RCTL_MPE;
2346                 }
2347                 if (adapter->hw.mac_type != e1000_ich8lan)
2348                         rctl |= E1000_RCTL_VFE;
2349         }
2350
2351         uc_ptr = NULL;
2352         if (netdev->uc_count > rar_entries - 1) {
2353                 rctl |= E1000_RCTL_UPE;
2354         } else if (!(netdev->flags & IFF_PROMISC)) {
2355                 rctl &= ~E1000_RCTL_UPE;
2356                 uc_ptr = netdev->uc_list;
2357         }
2358
2359         ew32(RCTL, rctl);
2360
2361         /* 82542 2.0 needs to be in reset to write receive address registers */
2362
2363         if (hw->mac_type == e1000_82542_rev2_0)
2364                 e1000_enter_82542_rst(adapter);
2365
2366         /* load the first 14 addresses into the exact filters 1-14. Unicast
2367          * addresses take precedence to avoid disabling unicast filtering
2368          * when possible.
2369          *
2370          * RAR 0 is used for the station MAC adddress
2371          * if there are not 14 addresses, go ahead and clear the filters
2372          * -- with 82571 controllers only 0-13 entries are filled here
2373          */
2374         mc_ptr = netdev->mc_list;
2375
2376         for (i = 1; i < rar_entries; i++) {
2377                 if (uc_ptr) {
2378                         e1000_rar_set(hw, uc_ptr->da_addr, i);
2379                         uc_ptr = uc_ptr->next;
2380                 } else if (mc_ptr) {
2381                         e1000_rar_set(hw, mc_ptr->da_addr, i);
2382                         mc_ptr = mc_ptr->next;
2383                 } else {
2384                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2385                         E1000_WRITE_FLUSH();
2386                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2387                         E1000_WRITE_FLUSH();
2388                 }
2389         }
2390         WARN_ON(uc_ptr != NULL);
2391
2392         /* clear the old settings from the multicast hash table */
2393
2394         for (i = 0; i < mta_reg_count; i++) {
2395                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2396                 E1000_WRITE_FLUSH();
2397         }
2398
2399         /* load any remaining addresses into the hash table */
2400
2401         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2402                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2403                 e1000_mta_set(hw, hash_value);
2404         }
2405
2406         if (hw->mac_type == e1000_82542_rev2_0)
2407                 e1000_leave_82542_rst(adapter);
2408 }
2409
2410 /* Need to wait a few seconds after link up to get diagnostic information from
2411  * the phy */
2412
2413 static void e1000_update_phy_info(unsigned long data)
2414 {
2415         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2416         struct e1000_hw *hw = &adapter->hw;
2417         e1000_phy_get_info(hw, &adapter->phy_info);
2418 }
2419
2420 /**
2421  * e1000_82547_tx_fifo_stall - Timer Call-back
2422  * @data: pointer to adapter cast into an unsigned long
2423  **/
2424
2425 static void e1000_82547_tx_fifo_stall(unsigned long data)
2426 {
2427         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2428         struct e1000_hw *hw = &adapter->hw;
2429         struct net_device *netdev = adapter->netdev;
2430         u32 tctl;
2431
2432         if (atomic_read(&adapter->tx_fifo_stall)) {
2433                 if ((er32(TDT) == er32(TDH)) &&
2434                    (er32(TDFT) == er32(TDFH)) &&
2435                    (er32(TDFTS) == er32(TDFHS))) {
2436                         tctl = er32(TCTL);
2437                         ew32(TCTL, tctl & ~E1000_TCTL_EN);
2438                         ew32(TDFT, adapter->tx_head_addr);
2439                         ew32(TDFH, adapter->tx_head_addr);
2440                         ew32(TDFTS, adapter->tx_head_addr);
2441                         ew32(TDFHS, adapter->tx_head_addr);
2442                         ew32(TCTL, tctl);
2443                         E1000_WRITE_FLUSH();
2444
2445                         adapter->tx_fifo_head = 0;
2446                         atomic_set(&adapter->tx_fifo_stall, 0);
2447                         netif_wake_queue(netdev);
2448                 } else {
2449                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2450                 }
2451         }
2452 }
2453
2454 /**
2455  * e1000_watchdog - Timer Call-back
2456  * @data: pointer to adapter cast into an unsigned long
2457  **/
2458 static void e1000_watchdog(unsigned long data)
2459 {
2460         struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2461         struct e1000_hw *hw = &adapter->hw;
2462         struct net_device *netdev = adapter->netdev;
2463         struct e1000_tx_ring *txdr = adapter->tx_ring;
2464         u32 link, tctl;
2465         s32 ret_val;
2466
2467         ret_val = e1000_check_for_link(hw);
2468         if ((ret_val == E1000_ERR_PHY) &&
2469             (hw->phy_type == e1000_phy_igp_3) &&
2470             (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2471                 /* See e1000_kumeran_lock_loss_workaround() */
2472                 DPRINTK(LINK, INFO,
2473                         "Gigabit has been disabled, downgrading speed\n");
2474         }
2475
2476         if (hw->mac_type == e1000_82573) {
2477                 e1000_enable_tx_pkt_filtering(hw);
2478                 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2479                         e1000_update_mng_vlan(adapter);
2480         }
2481
2482         if ((hw->media_type == e1000_media_type_internal_serdes) &&
2483            !(er32(TXCW) & E1000_TXCW_ANE))
2484                 link = !hw->serdes_link_down;
2485         else
2486                 link = er32(STATUS) & E1000_STATUS_LU;
2487
2488         if (link) {
2489                 if (!netif_carrier_ok(netdev)) {
2490                         u32 ctrl;
2491                         bool txb2b = true;
2492                         e1000_get_speed_and_duplex(hw,
2493                                                    &adapter->link_speed,
2494                                                    &adapter->link_duplex);
2495
2496                         ctrl = er32(CTRL);
2497                         printk(KERN_INFO "e1000: %s NIC Link is Up %d Mbps %s, "
2498                                "Flow Control: %s\n",
2499                                netdev->name,
2500                                adapter->link_speed,
2501                                adapter->link_duplex == FULL_DUPLEX ?
2502                                 "Full Duplex" : "Half Duplex",
2503                                 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2504                                 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2505                                 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2506                                 E1000_CTRL_TFCE) ? "TX" : "None" )));
2507
2508                         /* tweak tx_queue_len according to speed/duplex
2509                          * and adjust the timeout factor */
2510                         netdev->tx_queue_len = adapter->tx_queue_len;
2511                         adapter->tx_timeout_factor = 1;
2512                         switch (adapter->link_speed) {
2513                         case SPEED_10:
2514                                 txb2b = false;
2515                                 netdev->tx_queue_len = 10;
2516                                 adapter->tx_timeout_factor = 8;
2517                                 break;
2518                         case SPEED_100:
2519                                 txb2b = false;
2520                                 netdev->tx_queue_len = 100;
2521                                 /* maybe add some timeout factor ? */
2522                                 break;
2523                         }
2524
2525                         if ((hw->mac_type == e1000_82571 ||
2526                              hw->mac_type == e1000_82572) &&
2527                             !txb2b) {
2528                                 u32 tarc0;
2529                                 tarc0 = er32(TARC0);
2530                                 tarc0 &= ~(1 << 21);
2531                                 ew32(TARC0, tarc0);
2532                         }
2533
2534                         /* disable TSO for pcie and 10/100 speeds, to avoid
2535                          * some hardware issues */
2536                         if (!adapter->tso_force &&
2537                             hw->bus_type == e1000_bus_type_pci_express){
2538                                 switch (adapter->link_speed) {
2539                                 case SPEED_10:
2540                                 case SPEED_100:
2541                                         DPRINTK(PROBE,INFO,
2542                                         "10/100 speed: disabling TSO\n");
2543                                         netdev->features &= ~NETIF_F_TSO;
2544                                         netdev->features &= ~NETIF_F_TSO6;
2545                                         break;
2546                                 case SPEED_1000:
2547                                         netdev->features |= NETIF_F_TSO;
2548                                         netdev->features |= NETIF_F_TSO6;
2549                                         break;
2550                                 default:
2551                                         /* oops */
2552                                         break;
2553                                 }
2554                         }
2555
2556                         /* enable transmits in the hardware, need to do this
2557                          * after setting TARC0 */
2558                         tctl = er32(TCTL);
2559                         tctl |= E1000_TCTL_EN;
2560                         ew32(TCTL, tctl);
2561
2562                         netif_carrier_on(netdev);
2563                         netif_wake_queue(netdev);
2564                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2565                         adapter->smartspeed = 0;
2566                 } else {
2567                         /* make sure the receive unit is started */
2568                         if (hw->rx_needs_kicking) {
2569                                 u32 rctl = er32(RCTL);
2570                                 ew32(RCTL, rctl | E1000_RCTL_EN);
2571                         }
2572                 }
2573         } else {
2574                 if (netif_carrier_ok(netdev)) {
2575                         adapter->link_speed = 0;
2576                         adapter->link_duplex = 0;
2577                         printk(KERN_INFO "e1000: %s NIC Link is Down\n",
2578                                netdev->name);
2579                         netif_carrier_off(netdev);
2580                         netif_stop_queue(netdev);
2581                         mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2582
2583                         /* 80003ES2LAN workaround--
2584                          * For packet buffer work-around on link down event;
2585                          * disable receives in the ISR and
2586                          * reset device here in the watchdog
2587                          */
2588                         if (hw->mac_type == e1000_80003es2lan)
2589                                 /* reset device */
2590                                 schedule_work(&adapter->reset_task);
2591                 }
2592
2593                 e1000_smartspeed(adapter);
2594         }
2595
2596         e1000_update_stats(adapter);
2597
2598         hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2599         adapter->tpt_old = adapter->stats.tpt;
2600         hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2601         adapter->colc_old = adapter->stats.colc;
2602
2603         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2604         adapter->gorcl_old = adapter->stats.gorcl;
2605         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2606         adapter->gotcl_old = adapter->stats.gotcl;
2607
2608         e1000_update_adaptive(hw);
2609
2610         if (!netif_carrier_ok(netdev)) {
2611                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2612                         /* We've lost link, so the controller stops DMA,
2613                          * but we've got queued Tx work that's never going
2614                          * to get done, so reset controller to flush Tx.
2615                          * (Do the reset outside of interrupt context). */
2616                         adapter->tx_timeout_count++;
2617                         schedule_work(&adapter->reset_task);
2618                 }
2619         }
2620
2621         /* Cause software interrupt to ensure rx ring is cleaned */
2622         ew32(ICS, E1000_ICS_RXDMT0);
2623
2624         /* Force detection of hung controller every watchdog period */
2625         adapter->detect_tx_hung = true;
2626
2627         /* With 82571 controllers, LAA may be overwritten due to controller
2628          * reset from the other port. Set the appropriate LAA in RAR[0] */
2629         if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2630                 e1000_rar_set(hw, hw->mac_addr, 0);
2631
2632         /* Reset the timer */
2633         mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2634 }
2635
2636 enum latency_range {
2637         lowest_latency = 0,
2638         low_latency = 1,
2639         bulk_latency = 2,
2640         latency_invalid = 255
2641 };
2642
2643 /**
2644  * e1000_update_itr - update the dynamic ITR value based on statistics
2645  *      Stores a new ITR value based on packets and byte
2646  *      counts during the last interrupt.  The advantage of per interrupt
2647  *      computation is faster updates and more accurate ITR for the current
2648  *      traffic pattern.  Constants in this function were computed
2649  *      based on theoretical maximum wire speed and thresholds were set based
2650  *      on testing data as well as attempting to minimize response time
2651  *      while increasing bulk throughput.
2652  *      this functionality is controlled by the InterruptThrottleRate module
2653  *      parameter (see e1000_param.c)
2654  * @adapter: pointer to adapter
2655  * @itr_setting: current adapter->itr
2656  * @packets: the number of packets during this measurement interval
2657  * @bytes: the number of bytes during this measurement interval
2658  **/
2659 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2660                                      u16 itr_setting, int packets, int bytes)
2661 {
2662         unsigned int retval = itr_setting;
2663         struct e1000_hw *hw = &adapter->hw;
2664
2665         if (unlikely(hw->mac_type < e1000_82540))
2666                 goto update_itr_done;
2667
2668         if (packets == 0)
2669                 goto update_itr_done;
2670
2671         switch (itr_setting) {
2672         case lowest_latency:
2673                 /* jumbo frames get bulk treatment*/
2674                 if (bytes/packets > 8000)
2675                         retval = bulk_latency;
2676                 else if ((packets < 5) && (bytes > 512))
2677                         retval = low_latency;
2678                 break;
2679         case low_latency:  /* 50 usec aka 20000 ints/s */
2680                 if (bytes > 10000) {
2681                         /* jumbo frames need bulk latency setting */
2682                         if (bytes/packets > 8000)
2683                                 retval = bulk_latency;
2684                         else if ((packets < 10) || ((bytes/packets) > 1200))
2685                                 retval = bulk_latency;
2686                         else if ((packets > 35))
2687                                 retval = lowest_latency;
2688                 } else if (bytes/packets > 2000)
2689                         retval = bulk_latency;
2690                 else if (packets <= 2 && bytes < 512)
2691                         retval = lowest_latency;
2692                 break;
2693         case bulk_latency: /* 250 usec aka 4000 ints/s */
2694                 if (bytes > 25000) {
2695                         if (packets > 35)
2696                                 retval = low_latency;
2697                 } else if (bytes < 6000) {
2698                         retval = low_latency;
2699                 }
2700                 break;
2701         }
2702
2703 update_itr_done:
2704         return retval;
2705 }
2706
2707 static void e1000_set_itr(struct e1000_adapter *adapter)
2708 {
2709         struct e1000_hw *hw = &adapter->hw;
2710         u16 current_itr;
2711         u32 new_itr = adapter->itr;
2712
2713         if (unlikely(hw->mac_type < e1000_82540))
2714                 return;
2715
2716         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2717         if (unlikely(adapter->link_speed != SPEED_1000)) {
2718                 current_itr = 0;
2719                 new_itr = 4000;
2720                 goto set_itr_now;
2721         }
2722
2723         adapter->tx_itr = e1000_update_itr(adapter,
2724                                     adapter->tx_itr,
2725                                     adapter->total_tx_packets,
2726                                     adapter->total_tx_bytes);
2727         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2728         if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2729                 adapter->tx_itr = low_latency;
2730
2731         adapter->rx_itr = e1000_update_itr(adapter,
2732                                     adapter->rx_itr,
2733                                     adapter->total_rx_packets,
2734                                     adapter->total_rx_bytes);
2735         /* conservative mode (itr 3) eliminates the lowest_latency setting */
2736         if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2737                 adapter->rx_itr = low_latency;
2738
2739         current_itr = max(adapter->rx_itr, adapter->tx_itr);
2740
2741         switch (current_itr) {
2742         /* counts and packets in update_itr are dependent on these numbers */
2743         case lowest_latency:
2744                 new_itr = 70000;
2745                 break;
2746         case low_latency:
2747                 new_itr = 20000; /* aka hwitr = ~200 */
2748                 break;
2749         case bulk_latency:
2750                 new_itr = 4000;
2751                 break;
2752         default:
2753                 break;
2754         }
2755
2756 set_itr_now:
2757         if (new_itr != adapter->itr) {
2758                 /* this attempts to bias the interrupt rate towards Bulk
2759                  * by adding intermediate steps when interrupt rate is
2760                  * increasing */
2761                 new_itr = new_itr > adapter->itr ?
2762                              min(adapter->itr + (new_itr >> 2), new_itr) :
2763                              new_itr;
2764                 adapter->itr = new_itr;
2765                 ew32(ITR, 1000000000 / (new_itr * 256));
2766         }
2767
2768         return;
2769 }
2770
2771 #define E1000_TX_FLAGS_CSUM             0x00000001
2772 #define E1000_TX_FLAGS_VLAN             0x00000002
2773 #define E1000_TX_FLAGS_TSO              0x00000004
2774 #define E1000_TX_FLAGS_IPV4             0x00000008
2775 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2776 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2777
2778 static int e1000_tso(struct e1000_adapter *adapter,
2779                      struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2780 {
2781         struct e1000_context_desc *context_desc;
2782         struct e1000_buffer *buffer_info;
2783         unsigned int i;
2784         u32 cmd_length = 0;
2785         u16 ipcse = 0, tucse, mss;
2786         u8 ipcss, ipcso, tucss, tucso, hdr_len;
2787         int err;
2788
2789         if (skb_is_gso(skb)) {
2790                 if (skb_header_cloned(skb)) {
2791                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2792                         if (err)
2793                                 return err;
2794                 }
2795
2796                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2797                 mss = skb_shinfo(skb)->gso_size;
2798                 if (skb->protocol == htons(ETH_P_IP)) {
2799                         struct iphdr *iph = ip_hdr(skb);
2800                         iph->tot_len = 0;
2801                         iph->check = 0;
2802                         tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2803                                                                  iph->daddr, 0,
2804                                                                  IPPROTO_TCP,
2805                                                                  0);
2806                         cmd_length = E1000_TXD_CMD_IP;
2807                         ipcse = skb_transport_offset(skb) - 1;
2808                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2809                         ipv6_hdr(skb)->payload_len = 0;
2810                         tcp_hdr(skb)->check =
2811                                 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2812                                                  &ipv6_hdr(skb)->daddr,
2813                                                  0, IPPROTO_TCP, 0);
2814                         ipcse = 0;
2815                 }
2816                 ipcss = skb_network_offset(skb);
2817                 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2818                 tucss = skb_transport_offset(skb);
2819                 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2820                 tucse = 0;
2821
2822                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2823                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2824
2825                 i = tx_ring->next_to_use;
2826                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2827                 buffer_info = &tx_ring->buffer_info[i];
2828
2829                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2830                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2831                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2832                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2833                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2834                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2835                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2836                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2837                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2838
2839                 buffer_info->time_stamp = jiffies;
2840                 buffer_info->next_to_watch = i;
2841
2842                 if (++i == tx_ring->count) i = 0;
2843                 tx_ring->next_to_use = i;
2844
2845                 return true;
2846         }
2847         return false;
2848 }
2849
2850 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2851                           struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2852 {
2853         struct e1000_context_desc *context_desc;
2854         struct e1000_buffer *buffer_info;
2855         unsigned int i;
2856         u8 css;
2857         u32 cmd_len = E1000_TXD_CMD_DEXT;
2858
2859         if (skb->ip_summed != CHECKSUM_PARTIAL)
2860                 return false;
2861
2862         switch (skb->protocol) {
2863         case cpu_to_be16(ETH_P_IP):
2864                 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2865                         cmd_len |= E1000_TXD_CMD_TCP;
2866                 break;
2867         case cpu_to_be16(ETH_P_IPV6):
2868                 /* XXX not handling all IPV6 headers */
2869                 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2870                         cmd_len |= E1000_TXD_CMD_TCP;
2871                 break;
2872         default:
2873                 if (unlikely(net_ratelimit()))
2874                         DPRINTK(DRV, WARNING,
2875                                 "checksum_partial proto=%x!\n", skb->protocol);
2876                 break;
2877         }
2878
2879         css = skb_transport_offset(skb);
2880
2881         i = tx_ring->next_to_use;
2882         buffer_info = &tx_ring->buffer_info[i];
2883         context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2884
2885         context_desc->lower_setup.ip_config = 0;
2886         context_desc->upper_setup.tcp_fields.tucss = css;
2887         context_desc->upper_setup.tcp_fields.tucso =
2888                 css + skb->csum_offset;
2889         context_desc->upper_setup.tcp_fields.tucse = 0;
2890         context_desc->tcp_seg_setup.data = 0;
2891         context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2892
2893         buffer_info->time_stamp = jiffies;
2894         buffer_info->next_to_watch = i;
2895
2896         if (unlikely(++i == tx_ring->count)) i = 0;
2897         tx_ring->next_to_use = i;
2898
2899         return true;
2900 }
2901
2902 #define E1000_MAX_TXD_PWR       12
2903 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2904
2905 static int e1000_tx_map(struct e1000_adapter *adapter,
2906                         struct e1000_tx_ring *tx_ring,
2907                         struct sk_buff *skb, unsigned int first,
2908                         unsigned int max_per_txd, unsigned int nr_frags,
2909                         unsigned int mss)
2910 {
2911         struct e1000_hw *hw = &adapter->hw;
2912         struct e1000_buffer *buffer_info;
2913         unsigned int len = skb->len;
2914         unsigned int offset = 0, size, count = 0, i;
2915         unsigned int f;
2916         len -= skb->data_len;
2917
2918         i = tx_ring->next_to_use;
2919
2920         while (len) {
2921                 buffer_info = &tx_ring->buffer_info[i];
2922                 size = min(len, max_per_txd);
2923                 /* Workaround for Controller erratum --
2924                  * descriptor for non-tso packet in a linear SKB that follows a
2925                  * tso gets written back prematurely before the data is fully
2926                  * DMA'd to the controller */
2927                 if (!skb->data_len && tx_ring->last_tx_tso &&
2928                     !skb_is_gso(skb)) {
2929                         tx_ring->last_tx_tso = 0;
2930                         size -= 4;
2931                 }
2932
2933                 /* Workaround for premature desc write-backs
2934                  * in TSO mode.  Append 4-byte sentinel desc */
2935                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2936                         size -= 4;
2937                 /* work-around for errata 10 and it applies
2938                  * to all controllers in PCI-X mode
2939                  * The fix is to make sure that the first descriptor of a
2940                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2941                  */
2942                 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2943                                 (size > 2015) && count == 0))
2944                         size = 2015;
2945
2946                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2947                  * terminating buffers within evenly-aligned dwords. */
2948                 if (unlikely(adapter->pcix_82544 &&
2949                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2950                    size > 4))
2951                         size -= 4;
2952
2953                 buffer_info->length = size;
2954                 buffer_info->dma =
2955                         pci_map_single(adapter->pdev,
2956                                 skb->data + offset,
2957                                 size,
2958                                 PCI_DMA_TODEVICE);
2959                 buffer_info->time_stamp = jiffies;
2960                 buffer_info->next_to_watch = i;
2961
2962                 len -= size;
2963                 offset += size;
2964                 count++;
2965                 if (unlikely(++i == tx_ring->count)) i = 0;
2966         }
2967
2968         for (f = 0; f < nr_frags; f++) {
2969                 struct skb_frag_struct *frag;
2970
2971                 frag = &skb_shinfo(skb)->frags[f];
2972                 len = frag->size;
2973                 offset = frag->page_offset;
2974
2975                 while (len) {
2976                         buffer_info = &tx_ring->buffer_info[i];
2977                         size = min(len, max_per_txd);
2978                         /* Workaround for premature desc write-backs
2979                          * in TSO mode.  Append 4-byte sentinel desc */
2980                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2981                                 size -= 4;
2982                         /* Workaround for potential 82544 hang in PCI-X.
2983                          * Avoid terminating buffers within evenly-aligned
2984                          * dwords. */
2985                         if (unlikely(adapter->pcix_82544 &&
2986                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2987                            size > 4))
2988                                 size -= 4;
2989
2990                         buffer_info->length = size;
2991                         buffer_info->dma =
2992                                 pci_map_page(adapter->pdev,
2993                                         frag->page,
2994                                         offset,
2995                                         size,
2996                                         PCI_DMA_TODEVICE);
2997                         buffer_info->time_stamp = jiffies;
2998                         buffer_info->next_to_watch = i;
2999
3000                         len -= size;
3001                         offset += size;
3002                         count++;
3003                         if (unlikely(++i == tx_ring->count)) i = 0;
3004                 }
3005         }
3006
3007         i = (i == 0) ? tx_ring->count - 1 : i - 1;
3008         tx_ring->buffer_info[i].skb = skb;
3009         tx_ring->buffer_info[first].next_to_watch = i;
3010
3011         return count;
3012 }
3013
3014 static void e1000_tx_queue(struct e1000_adapter *adapter,
3015                            struct e1000_tx_ring *tx_ring, int tx_flags,
3016                            int count)
3017 {
3018         struct e1000_hw *hw = &adapter->hw;
3019         struct e1000_tx_desc *tx_desc = NULL;
3020         struct e1000_buffer *buffer_info;
3021         u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3022         unsigned int i;
3023
3024         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3025                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3026                              E1000_TXD_CMD_TSE;
3027                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3028
3029                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3030                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3031         }
3032
3033         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3034                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3035                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3036         }
3037
3038         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3039                 txd_lower |= E1000_TXD_CMD_VLE;
3040                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3041         }
3042
3043         i = tx_ring->next_to_use;
3044
3045         while (count--) {
3046                 buffer_info = &tx_ring->buffer_info[i];
3047                 tx_desc = E1000_TX_DESC(*tx_ring, i);
3048                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3049                 tx_desc->lower.data =
3050                         cpu_to_le32(txd_lower | buffer_info->length);
3051                 tx_desc->upper.data = cpu_to_le32(txd_upper);
3052                 if (unlikely(++i == tx_ring->count)) i = 0;
3053         }
3054
3055         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3056
3057         /* Force memory writes to complete before letting h/w
3058          * know there are new descriptors to fetch.  (Only
3059          * applicable for weak-ordered memory model archs,
3060          * such as IA-64). */
3061         wmb();
3062
3063         tx_ring->next_to_use = i;
3064         writel(i, hw->hw_addr + tx_ring->tdt);
3065         /* we need this if more than one processor can write to our tail
3066          * at a time, it syncronizes IO on IA64/Altix systems */
3067         mmiowb();
3068 }
3069
3070 /**
3071  * 82547 workaround to avoid controller hang in half-duplex environment.
3072  * The workaround is to avoid queuing a large packet that would span
3073  * the internal Tx FIFO ring boundary by notifying the stack to resend
3074  * the packet at a later time.  This gives the Tx FIFO an opportunity to
3075  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3076  * to the beginning of the Tx FIFO.
3077  **/
3078
3079 #define E1000_FIFO_HDR                  0x10
3080 #define E1000_82547_PAD_LEN             0x3E0
3081
3082 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3083                                        struct sk_buff *skb)
3084 {
3085         u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3086         u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3087
3088         skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3089
3090         if (adapter->link_duplex != HALF_DUPLEX)
3091                 goto no_fifo_stall_required;
3092
3093         if (atomic_read(&adapter->tx_fifo_stall))
3094                 return 1;
3095
3096         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3097                 atomic_set(&adapter->tx_fifo_stall, 1);
3098                 return 1;
3099         }
3100
3101 no_fifo_stall_required:
3102         adapter->tx_fifo_head += skb_fifo_len;
3103         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3104                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3105         return 0;
3106 }
3107
3108 #define MINIMUM_DHCP_PACKET_SIZE 282
3109 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3110                                     struct sk_buff *skb)
3111 {
3112         struct e1000_hw *hw =  &adapter->hw;
3113         u16 length, offset;
3114         if (vlan_tx_tag_present(skb)) {
3115                 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3116                         ( hw->mng_cookie.status &
3117                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3118                         return 0;
3119         }
3120         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3121                 struct ethhdr *eth = (struct ethhdr *)skb->data;
3122                 if ((htons(ETH_P_IP) == eth->h_proto)) {
3123                         const struct iphdr *ip =
3124                                 (struct iphdr *)((u8 *)skb->data+14);
3125                         if (IPPROTO_UDP == ip->protocol) {
3126                                 struct udphdr *udp =
3127                                         (struct udphdr *)((u8 *)ip +
3128                                                 (ip->ihl << 2));
3129                                 if (ntohs(udp->dest) == 67) {
3130                                         offset = (u8 *)udp + 8 - skb->data;
3131                                         length = skb->len - offset;
3132
3133                                         return e1000_mng_write_dhcp_info(hw,
3134                                                         (u8 *)udp + 8,
3135                                                         length);
3136                                 }
3137                         }
3138                 }
3139         }
3140         return 0;
3141 }
3142
3143 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3144 {
3145         struct e1000_adapter *adapter = netdev_priv(netdev);
3146         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3147
3148         netif_stop_queue(netdev);
3149         /* Herbert's original patch had:
3150          *  smp_mb__after_netif_stop_queue();
3151          * but since that doesn't exist yet, just open code it. */
3152         smp_mb();
3153
3154         /* We need to check again in a case another CPU has just
3155          * made room available. */
3156         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3157                 return -EBUSY;
3158
3159         /* A reprieve! */
3160         netif_start_queue(netdev);
3161         ++adapter->restart_queue;
3162         return 0;
3163 }
3164
3165 static int e1000_maybe_stop_tx(struct net_device *netdev,
3166                                struct e1000_tx_ring *tx_ring, int size)
3167 {
3168         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3169                 return 0;
3170         return __e1000_maybe_stop_tx(netdev, size);
3171 }
3172
3173 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3174 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3175 {
3176         struct e1000_adapter *adapter = netdev_priv(netdev);
3177         struct e1000_hw *hw = &adapter->hw;
3178         struct e1000_tx_ring *tx_ring;
3179         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3180         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3181         unsigned int tx_flags = 0;
3182         unsigned int len = skb->len - skb->data_len;
3183         unsigned int nr_frags;
3184         unsigned int mss;
3185         int count = 0;
3186         int tso;
3187         unsigned int f;
3188
3189         /* This goes back to the question of how to logically map a tx queue
3190          * to a flow.  Right now, performance is impacted slightly negatively
3191          * if using multiple tx queues.  If the stack breaks away from a
3192          * single qdisc implementation, we can look at this again. */
3193         tx_ring = adapter->tx_ring;
3194
3195         if (unlikely(skb->len <= 0)) {
3196                 dev_kfree_skb_any(skb);
3197                 return NETDEV_TX_OK;
3198         }
3199
3200         /* 82571 and newer doesn't need the workaround that limited descriptor
3201          * length to 4kB */
3202         if (hw->mac_type >= e1000_82571)
3203                 max_per_txd = 8192;
3204
3205         mss = skb_shinfo(skb)->gso_size;
3206         /* The controller does a simple calculation to
3207          * make sure there is enough room in the FIFO before
3208          * initiating the DMA for each buffer.  The calc is:
3209          * 4 = ceil(buffer len/mss).  To make sure we don't
3210          * overrun the FIFO, adjust the max buffer len if mss
3211          * drops. */
3212         if (mss) {
3213                 u8 hdr_len;
3214                 max_per_txd = min(mss << 2, max_per_txd);
3215                 max_txd_pwr = fls(max_per_txd) - 1;
3216
3217                 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3218                 * points to just header, pull a few bytes of payload from
3219                 * frags into skb->data */
3220                 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3221                 if (skb->data_len && hdr_len == len) {
3222                         switch (hw->mac_type) {
3223                                 unsigned int pull_size;
3224                         case e1000_82544:
3225                                 /* Make sure we have room to chop off 4 bytes,
3226                                  * and that the end alignment will work out to
3227                                  * this hardware's requirements
3228                                  * NOTE: this is a TSO only workaround
3229                                  * if end byte alignment not correct move us
3230                                  * into the next dword */
3231                                 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3232                                         break;
3233                                 /* fall through */
3234                         case e1000_82571:
3235                         case e1000_82572:
3236                         case e1000_82573:
3237                         case e1000_ich8lan:
3238                                 pull_size = min((unsigned int)4, skb->data_len);
3239                                 if (!__pskb_pull_tail(skb, pull_size)) {
3240                                         DPRINTK(DRV, ERR,
3241                                                 "__pskb_pull_tail failed.\n");
3242                                         dev_kfree_skb_any(skb);
3243                                         return NETDEV_TX_OK;
3244                                 }
3245                                 len = skb->len - skb->data_len;
3246                                 break;
3247                         default:
3248                                 /* do nothing */
3249                                 break;
3250                         }
3251                 }
3252         }
3253
3254         /* reserve a descriptor for the offload context */
3255         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3256                 count++;
3257         count++;
3258
3259         /* Controller Erratum workaround */
3260         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3261                 count++;
3262
3263         count += TXD_USE_COUNT(len, max_txd_pwr);
3264
3265         if (adapter->pcix_82544)
3266                 count++;
3267
3268         /* work-around for errata 10 and it applies to all controllers
3269          * in PCI-X mode, so add one more descriptor to the count
3270          */
3271         if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3272                         (len > 2015)))
3273                 count++;
3274
3275         nr_frags = skb_shinfo(skb)->nr_frags;
3276         for (f = 0; f < nr_frags; f++)
3277                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3278                                        max_txd_pwr);
3279         if (adapter->pcix_82544)
3280                 count += nr_frags;
3281
3282
3283         if (hw->tx_pkt_filtering &&
3284             (hw->mac_type == e1000_82573))
3285                 e1000_transfer_dhcp_info(adapter, skb);
3286
3287         /* need: count + 2 desc gap to keep tail from touching
3288          * head, otherwise try next time */
3289         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3290                 return NETDEV_TX_BUSY;
3291
3292         if (unlikely(hw->mac_type == e1000_82547)) {
3293                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3294                         netif_stop_queue(netdev);
3295                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3296                         return NETDEV_TX_BUSY;
3297                 }
3298         }
3299
3300         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3301                 tx_flags |= E1000_TX_FLAGS_VLAN;
3302                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3303         }
3304
3305         first = tx_ring->next_to_use;
3306
3307         tso = e1000_tso(adapter, tx_ring, skb);
3308         if (tso < 0) {
3309                 dev_kfree_skb_any(skb);
3310                 return NETDEV_TX_OK;
3311         }
3312
3313         if (likely(tso)) {
3314                 tx_ring->last_tx_tso = 1;
3315                 tx_flags |= E1000_TX_FLAGS_TSO;
3316         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3317                 tx_flags |= E1000_TX_FLAGS_CSUM;
3318
3319         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3320          * 82571 hardware supports TSO capabilities for IPv6 as well...
3321          * no longer assume, we must. */
3322         if (likely(skb->protocol == htons(ETH_P_IP)))
3323                 tx_flags |= E1000_TX_FLAGS_IPV4;
3324
3325         e1000_tx_queue(adapter, tx_ring, tx_flags,
3326                        e1000_tx_map(adapter, tx_ring, skb, first,
3327                                     max_per_txd, nr_frags, mss));
3328
3329         netdev->trans_start = jiffies;
3330
3331         /* Make sure there is space in the ring for the next send. */
3332         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3333
3334         return NETDEV_TX_OK;
3335 }
3336
3337 /**
3338  * e1000_tx_timeout - Respond to a Tx Hang
3339  * @netdev: network interface device structure
3340  **/
3341
3342 static void e1000_tx_timeout(struct net_device *netdev)
3343 {
3344         struct e1000_adapter *adapter = netdev_priv(netdev);
3345
3346         /* Do the reset outside of interrupt context */
3347         adapter->tx_timeout_count++;
3348         schedule_work(&adapter->reset_task);
3349 }
3350
3351 static void e1000_reset_task(struct work_struct *work)
3352 {
3353         struct e1000_adapter *adapter =
3354                 container_of(work, struct e1000_adapter, reset_task);
3355
3356         e1000_reinit_locked(adapter);
3357 }
3358
3359 /**
3360  * e1000_get_stats - Get System Network Statistics
3361  * @netdev: network interface device structure
3362  *
3363  * Returns the address of the device statistics structure.
3364  * The statistics are actually updated from the timer callback.
3365  **/
3366
3367 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3368 {
3369         struct e1000_adapter *adapter = netdev_priv(netdev);
3370
3371         /* only return the current stats */
3372         return &adapter->net_stats;
3373 }
3374
3375 /**
3376  * e1000_change_mtu - Change the Maximum Transfer Unit
3377  * @netdev: network interface device structure
3378  * @new_mtu: new value for maximum frame size
3379  *
3380  * Returns 0 on success, negative on failure
3381  **/
3382
3383 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3384 {
3385         struct e1000_adapter *adapter = netdev_priv(netdev);
3386         struct e1000_hw *hw = &adapter->hw;
3387         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3388         u16 eeprom_data = 0;
3389
3390         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3391             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3392                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3393                 return -EINVAL;
3394         }
3395
3396         /* Adapter-specific max frame size limits. */
3397         switch (hw->mac_type) {
3398         case e1000_undefined ... e1000_82542_rev2_1:
3399         case e1000_ich8lan:
3400                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3401                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3402                         return -EINVAL;
3403                 }
3404                 break;
3405         case e1000_82573:
3406                 /* Jumbo Frames not supported if:
3407                  * - this is not an 82573L device
3408                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3409                 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3410                                   &eeprom_data);
3411                 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3412                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3413                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3414                                 DPRINTK(PROBE, ERR,
3415                                         "Jumbo Frames not supported.\n");
3416                                 return -EINVAL;
3417                         }
3418                         break;
3419                 }
3420                 /* ERT will be enabled later to enable wire speed receives */
3421
3422                 /* fall through to get support */
3423         case e1000_82571:
3424         case e1000_82572:
3425         case e1000_80003es2lan:
3426 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3427                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3428                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3429                         return -EINVAL;
3430                 }
3431                 break;
3432         default:
3433                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3434                 break;
3435         }
3436
3437         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3438          * means we reserve 2 more, this pushes us to allocate from the next
3439          * larger slab size
3440          * i.e. RXBUFFER_2048 --> size-4096 slab */
3441
3442         if (max_frame <= E1000_RXBUFFER_256)
3443                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3444         else if (max_frame <= E1000_RXBUFFER_512)
3445                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3446         else if (max_frame <= E1000_RXBUFFER_1024)
3447                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3448         else if (max_frame <= E1000_RXBUFFER_2048)
3449                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3450         else if (max_frame <= E1000_RXBUFFER_4096)
3451                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3452         else if (max_frame <= E1000_RXBUFFER_8192)
3453                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3454         else if (max_frame <= E1000_RXBUFFER_16384)
3455                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3456
3457         /* adjust allocation if LPE protects us, and we aren't using SBP */
3458         if (!hw->tbi_compatibility_on &&
3459             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3460              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3461                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3462
3463         netdev->mtu = new_mtu;
3464         hw->max_frame_size = max_frame;
3465
3466         if (netif_running(netdev))
3467                 e1000_reinit_locked(adapter);
3468
3469         return 0;
3470 }
3471
3472 /**
3473  * e1000_update_stats - Update the board statistics counters
3474  * @adapter: board private structure
3475  **/
3476
3477 void e1000_update_stats(struct e1000_adapter *adapter)
3478 {
3479         struct e1000_hw *hw = &adapter->hw;
3480         struct pci_dev *pdev = adapter->pdev;
3481         unsigned long flags;
3482         u16 phy_tmp;
3483
3484 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3485
3486         /*
3487          * Prevent stats update while adapter is being reset, or if the pci
3488          * connection is down.
3489          */
3490         if (adapter->link_speed == 0)
3491                 return;
3492         if (pci_channel_offline(pdev))
3493                 return;
3494
3495         spin_lock_irqsave(&adapter->stats_lock, flags);
3496
3497         /* these counters are modified from e1000_tbi_adjust_stats,
3498          * called from the interrupt context, so they must only
3499          * be written while holding adapter->stats_lock
3500          */
3501
3502         adapter->stats.crcerrs += er32(CRCERRS);
3503         adapter->stats.gprc += er32(GPRC);
3504         adapter->stats.gorcl += er32(GORCL);
3505         adapter->stats.gorch += er32(GORCH);
3506         adapter->stats.bprc += er32(BPRC);
3507         adapter->stats.mprc += er32(MPRC);
3508         adapter->stats.roc += er32(ROC);
3509
3510         if (hw->mac_type != e1000_ich8lan) {
3511                 adapter->stats.prc64 += er32(PRC64);
3512                 adapter->stats.prc127 += er32(PRC127);
3513                 adapter->stats.prc255 += er32(PRC255);
3514                 adapter->stats.prc511 += er32(PRC511);
3515                 adapter->stats.prc1023 += er32(PRC1023);
3516                 adapter->stats.prc1522 += er32(PRC1522);
3517         }
3518
3519         adapter->stats.symerrs += er32(SYMERRS);
3520         adapter->stats.mpc += er32(MPC);
3521         adapter->stats.scc += er32(SCC);
3522         adapter->stats.ecol += er32(ECOL);
3523         adapter->stats.mcc += er32(MCC);
3524         adapter->stats.latecol += er32(LATECOL);
3525         adapter->stats.dc += er32(DC);
3526         adapter->stats.sec += er32(SEC);
3527         adapter->stats.rlec += er32(RLEC);
3528         adapter->stats.xonrxc += er32(XONRXC);
3529         adapter->stats.xontxc += er32(XONTXC);
3530         adapter->stats.xoffrxc += er32(XOFFRXC);
3531         adapter->stats.xofftxc += er32(XOFFTXC);
3532         adapter->stats.fcruc += er32(FCRUC);
3533         adapter->stats.gptc += er32(GPTC);
3534         adapter->stats.gotcl += er32(GOTCL);
3535         adapter->stats.gotch += er32(GOTCH);
3536         adapter->stats.rnbc += er32(RNBC);
3537         adapter->stats.ruc += er32(RUC);
3538         adapter->stats.rfc += er32(RFC);
3539         adapter->stats.rjc += er32(RJC);
3540         adapter->stats.torl += er32(TORL);
3541         adapter->stats.torh += er32(TORH);
3542         adapter->stats.totl += er32(TOTL);
3543         adapter->stats.toth += er32(TOTH);
3544         adapter->stats.tpr += er32(TPR);
3545
3546         if (hw->mac_type != e1000_ich8lan) {
3547                 adapter->stats.ptc64 += er32(PTC64);
3548                 adapter->stats.ptc127 += er32(PTC127);
3549                 adapter->stats.ptc255 += er32(PTC255);
3550                 adapter->stats.ptc511 += er32(PTC511);
3551                 adapter->stats.ptc1023 += er32(PTC1023);
3552                 adapter->stats.ptc1522 += er32(PTC1522);
3553         }
3554
3555         adapter->stats.mptc += er32(MPTC);
3556         adapter->stats.bptc += er32(BPTC);
3557
3558         /* used for adaptive IFS */
3559
3560         hw->tx_packet_delta = er32(TPT);
3561         adapter->stats.tpt += hw->tx_packet_delta;
3562         hw->collision_delta = er32(COLC);
3563         adapter->stats.colc += hw->collision_delta;
3564
3565         if (hw->mac_type >= e1000_82543) {
3566                 adapter->stats.algnerrc += er32(ALGNERRC);
3567                 adapter->stats.rxerrc += er32(RXERRC);
3568                 adapter->stats.tncrs += er32(TNCRS);
3569                 adapter->stats.cexterr += er32(CEXTERR);
3570                 adapter->stats.tsctc += er32(TSCTC);
3571                 adapter->stats.tsctfc += er32(TSCTFC);
3572         }
3573         if (hw->mac_type > e1000_82547_rev_2) {
3574                 adapter->stats.iac += er32(IAC);
3575                 adapter->stats.icrxoc += er32(ICRXOC);
3576
3577                 if (hw->mac_type != e1000_ich8lan) {
3578                         adapter->stats.icrxptc += er32(ICRXPTC);
3579                         adapter->stats.icrxatc += er32(ICRXATC);
3580                         adapter->stats.ictxptc += er32(ICTXPTC);
3581                         adapter->stats.ictxatc += er32(ICTXATC);
3582                         adapter->stats.ictxqec += er32(ICTXQEC);
3583                         adapter->stats.ictxqmtc += er32(ICTXQMTC);
3584                         adapter->stats.icrxdmtc += er32(ICRXDMTC);
3585                 }
3586         }
3587
3588         /* Fill out the OS statistics structure */
3589         adapter->net_stats.multicast = adapter->stats.mprc;
3590         adapter->net_stats.collisions = adapter->stats.colc;
3591
3592         /* Rx Errors */
3593
3594         /* RLEC on some newer hardware can be incorrect so build
3595         * our own version based on RUC and ROC */
3596         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3597                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3598                 adapter->stats.ruc + adapter->stats.roc +
3599                 adapter->stats.cexterr;
3600         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3601         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3602         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3603         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3604         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3605
3606         /* Tx Errors */
3607         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3608         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3609         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3610         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3611         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3612         if (hw->bad_tx_carr_stats_fd &&
3613             adapter->link_duplex == FULL_DUPLEX) {
3614                 adapter->net_stats.tx_carrier_errors = 0;
3615                 adapter->stats.tncrs = 0;
3616         }
3617
3618         /* Tx Dropped needs to be maintained elsewhere */
3619
3620         /* Phy Stats */
3621         if (hw->media_type == e1000_media_type_copper) {
3622                 if ((adapter->link_speed == SPEED_1000) &&
3623                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3624                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3625                         adapter->phy_stats.idle_errors += phy_tmp;
3626                 }
3627
3628                 if ((hw->mac_type <= e1000_82546) &&
3629                    (hw->phy_type == e1000_phy_m88) &&
3630                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3631                         adapter->phy_stats.receive_errors += phy_tmp;
3632         }
3633
3634         /* Management Stats */
3635         if (hw->has_smbus) {
3636                 adapter->stats.mgptc += er32(MGTPTC);
3637                 adapter->stats.mgprc += er32(MGTPRC);
3638                 adapter->stats.mgpdc += er32(MGTPDC);
3639         }
3640
3641         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3642 }
3643
3644 /**
3645  * e1000_intr_msi - Interrupt Handler
3646  * @irq: interrupt number
3647  * @data: pointer to a network interface device structure
3648  **/
3649
3650 static irqreturn_t e1000_intr_msi(int irq, void *data)
3651 {
3652         struct net_device *netdev = data;
3653         struct e1000_adapter *adapter = netdev_priv(netdev);
3654         struct e1000_hw *hw = &adapter->hw;
3655         u32 icr = er32(ICR);
3656
3657         /* in NAPI mode read ICR disables interrupts using IAM */
3658
3659         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3660                 hw->get_link_status = 1;
3661                 /* 80003ES2LAN workaround-- For packet buffer work-around on
3662                  * link down event; disable receives here in the ISR and reset
3663                  * adapter in watchdog */
3664                 if (netif_carrier_ok(netdev) &&
3665                     (hw->mac_type == e1000_80003es2lan)) {
3666                         /* disable receives */
3667                         u32 rctl = er32(RCTL);
3668                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3669                 }
3670                 /* guard against interrupt when we're going down */
3671                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3672                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3673         }
3674
3675         if (likely(napi_schedule_prep(&adapter->napi))) {
3676                 adapter->total_tx_bytes = 0;
3677                 adapter->total_tx_packets = 0;
3678                 adapter->total_rx_bytes = 0;
3679                 adapter->total_rx_packets = 0;
3680                 __napi_schedule(&adapter->napi);
3681         } else
3682                 e1000_irq_enable(adapter);
3683
3684         return IRQ_HANDLED;
3685 }
3686
3687 /**
3688  * e1000_intr - Interrupt Handler
3689  * @irq: interrupt number
3690  * @data: pointer to a network interface device structure
3691  **/
3692
3693 static irqreturn_t e1000_intr(int irq, void *data)
3694 {
3695         struct net_device *netdev = data;
3696         struct e1000_adapter *adapter = netdev_priv(netdev);
3697         struct e1000_hw *hw = &adapter->hw;
3698         u32 rctl, icr = er32(ICR);
3699
3700         if (unlikely((!icr) || test_bit(__E1000_RESETTING, &adapter->flags)))
3701                 return IRQ_NONE;  /* Not our interrupt */
3702
3703         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3704          * not set, then the adapter didn't send an interrupt */
3705         if (unlikely(hw->mac_type >= e1000_82571 &&
3706                      !(icr & E1000_ICR_INT_ASSERTED)))
3707                 return IRQ_NONE;
3708
3709         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3710          * need for the IMC write */
3711
3712         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3713                 hw->get_link_status = 1;
3714                 /* 80003ES2LAN workaround--
3715                  * For packet buffer work-around on link down event;
3716                  * disable receives here in the ISR and
3717                  * reset adapter in watchdog
3718                  */
3719                 if (netif_carrier_ok(netdev) &&
3720                     (hw->mac_type == e1000_80003es2lan)) {
3721                         /* disable receives */
3722                         rctl = er32(RCTL);
3723                         ew32(RCTL, rctl & ~E1000_RCTL_EN);
3724                 }
3725                 /* guard against interrupt when we're going down */
3726                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3727                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3728         }
3729
3730         if (unlikely(hw->mac_type < e1000_82571)) {
3731                 /* disable interrupts, without the synchronize_irq bit */
3732                 ew32(IMC, ~0);
3733                 E1000_WRITE_FLUSH();
3734         }
3735         if (likely(napi_schedule_prep(&adapter->napi))) {
3736                 adapter->total_tx_bytes = 0;
3737                 adapter->total_tx_packets = 0;
3738                 adapter->total_rx_bytes = 0;
3739                 adapter->total_rx_packets = 0;
3740                 __napi_schedule(&adapter->napi);
3741         } else
3742                 /* this really should not happen! if it does it is basically a
3743                  * bug, but not a hard error, so enable ints and continue */
3744                 e1000_irq_enable(adapter);
3745
3746         return IRQ_HANDLED;
3747 }
3748
3749 /**
3750  * e1000_clean - NAPI Rx polling callback
3751  * @adapter: board private structure
3752  **/
3753 static int e1000_clean(struct napi_struct *napi, int budget)
3754 {
3755         struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3756         struct net_device *poll_dev = adapter->netdev;
3757         int tx_cleaned = 0, work_done = 0;
3758
3759         adapter = netdev_priv(poll_dev);
3760
3761         tx_cleaned = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3762
3763         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3764                           &work_done, budget);
3765
3766         if (tx_cleaned)
3767                 work_done = budget;
3768
3769         /* If budget not fully consumed, exit the polling mode */
3770         if (work_done < budget) {
3771                 if (likely(adapter->itr_setting & 3))
3772                         e1000_set_itr(adapter);
3773                 napi_complete(napi);
3774                 e1000_irq_enable(adapter);
3775         }
3776
3777         return work_done;
3778 }
3779
3780 /**
3781  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3782  * @adapter: board private structure
3783  **/
3784 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3785                                struct e1000_tx_ring *tx_ring)
3786 {
3787         struct e1000_hw *hw = &adapter->hw;
3788         struct net_device *netdev = adapter->netdev;
3789         struct e1000_tx_desc *tx_desc, *eop_desc;
3790         struct e1000_buffer *buffer_info;
3791         unsigned int i, eop;
3792         unsigned int count = 0;
3793         bool cleaned = false;
3794         unsigned int total_tx_bytes=0, total_tx_packets=0;
3795
3796         i = tx_ring->next_to_clean;
3797         eop = tx_ring->buffer_info[i].next_to_watch;
3798         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3799
3800         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3801                 for (cleaned = false; !cleaned; ) {
3802                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3803                         buffer_info = &tx_ring->buffer_info[i];
3804                         cleaned = (i == eop);
3805
3806                         if (cleaned) {
3807                                 struct sk_buff *skb = buffer_info->skb;
3808                                 unsigned int segs, bytecount;
3809                                 segs = skb_shinfo(skb)->gso_segs ?: 1;
3810                                 /* multiply data chunks by size of headers */
3811                                 bytecount = ((segs - 1) * skb_headlen(skb)) +
3812                                             skb->len;
3813                                 total_tx_packets += segs;
3814                                 total_tx_bytes += bytecount;
3815                         }
3816                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3817                         tx_desc->upper.data = 0;
3818
3819                         if (unlikely(++i == tx_ring->count)) i = 0;
3820                 }
3821
3822                 eop = tx_ring->buffer_info[i].next_to_watch;
3823                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3824 #define E1000_TX_WEIGHT 64
3825                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3826                 if (count++ == E1000_TX_WEIGHT)
3827                         break;
3828         }
3829
3830         tx_ring->next_to_clean = i;
3831
3832 #define TX_WAKE_THRESHOLD 32
3833         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3834                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3835                 /* Make sure that anybody stopping the queue after this
3836                  * sees the new next_to_clean.
3837                  */
3838                 smp_mb();
3839                 if (netif_queue_stopped(netdev)) {
3840                         netif_wake_queue(netdev);
3841                         ++adapter->restart_queue;
3842                 }
3843         }
3844
3845         if (adapter->detect_tx_hung) {
3846                 /* Detect a transmit hang in hardware, this serializes the
3847                  * check with the clearing of time_stamp and movement of i */
3848                 adapter->detect_tx_hung = false;
3849                 if (tx_ring->buffer_info[eop].dma &&
3850                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3851                                (adapter->tx_timeout_factor * HZ))
3852                     && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3853
3854                         /* detected Tx unit hang */
3855                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3856                                         "  Tx Queue             <%lu>\n"
3857                                         "  TDH                  <%x>\n"
3858                                         "  TDT                  <%x>\n"
3859                                         "  next_to_use          <%x>\n"
3860                                         "  next_to_clean        <%x>\n"
3861                                         "buffer_info[next_to_clean]\n"
3862                                         "  time_stamp           <%lx>\n"
3863                                         "  next_to_watch        <%x>\n"
3864                                         "  jiffies              <%lx>\n"
3865                                         "  next_to_watch.status <%x>\n",
3866                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3867                                         sizeof(struct e1000_tx_ring)),
3868                                 readl(hw->hw_addr + tx_ring->tdh),
3869                                 readl(hw->hw_addr + tx_ring->tdt),
3870                                 tx_ring->next_to_use,
3871                                 tx_ring->next_to_clean,
3872                                 tx_ring->buffer_info[eop].time_stamp,
3873                                 eop,
3874                                 jiffies,
3875                                 eop_desc->upper.fields.status);
3876                         netif_stop_queue(netdev);
3877                 }
3878         }
3879         adapter->total_tx_bytes += total_tx_bytes;
3880         adapter->total_tx_packets += total_tx_packets;
3881         adapter->net_stats.tx_bytes += total_tx_bytes;
3882         adapter->net_stats.tx_packets += total_tx_packets;
3883         return cleaned;
3884 }
3885
3886 /**
3887  * e1000_rx_checksum - Receive Checksum Offload for 82543
3888  * @adapter:     board private structure
3889  * @status_err:  receive descriptor status and error fields
3890  * @csum:        receive descriptor csum field
3891  * @sk_buff:     socket buffer with received data
3892  **/
3893
3894 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3895                               u32 csum, struct sk_buff *skb)
3896 {
3897         struct e1000_hw *hw = &adapter->hw;
3898         u16 status = (u16)status_err;
3899         u8 errors = (u8)(status_err >> 24);
3900         skb->ip_summed = CHECKSUM_NONE;
3901
3902         /* 82543 or newer only */
3903         if (unlikely(hw->mac_type < e1000_82543)) return;
3904         /* Ignore Checksum bit is set */
3905         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3906         /* TCP/UDP checksum error bit is set */
3907         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3908                 /* let the stack verify checksum errors */
3909                 adapter->hw_csum_err++;
3910                 return;
3911         }
3912         /* TCP/UDP Checksum has not been calculated */
3913         if (hw->mac_type <= e1000_82547_rev_2) {
3914                 if (!(status & E1000_RXD_STAT_TCPCS))
3915                         return;
3916         } else {
3917                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3918                         return;
3919         }
3920         /* It must be a TCP or UDP packet with a valid checksum */
3921         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3922                 /* TCP checksum is good */
3923                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3924         } else if (hw->mac_type > e1000_82547_rev_2) {
3925                 /* IP fragment with UDP payload */
3926                 /* Hardware complements the payload checksum, so we undo it
3927                  * and then put the value in host order for further stack use.
3928                  */
3929                 __sum16 sum = (__force __sum16)htons(csum);
3930                 skb->csum = csum_unfold(~sum);
3931                 skb->ip_summed = CHECKSUM_COMPLETE;
3932         }
3933         adapter->hw_csum_good++;
3934 }
3935
3936 /**
3937  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3938  * @adapter: board private structure
3939  **/
3940 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3941                                struct e1000_rx_ring *rx_ring,
3942                                int *work_done, int work_to_do)
3943 {
3944         struct e1000_hw *hw = &adapter->hw;
3945         struct net_device *netdev = adapter->netdev;
3946         struct pci_dev *pdev = adapter->pdev;
3947         struct e1000_rx_desc *rx_desc, *next_rxd;
3948         struct e1000_buffer *buffer_info, *next_buffer;
3949         unsigned long flags;
3950         u32 length;
3951         u8 last_byte;
3952         unsigned int i;
3953         int cleaned_count = 0;
3954         bool cleaned = false;
3955         unsigned int total_rx_bytes=0, total_rx_packets=0;
3956
3957         i = rx_ring->next_to_clean;
3958         rx_desc = E1000_RX_DESC(*rx_ring, i);
3959         buffer_info = &rx_ring->buffer_info[i];
3960
3961         while (rx_desc->status & E1000_RXD_STAT_DD) {
3962                 struct sk_buff *skb;
3963                 u8 status;
3964
3965                 if (*work_done >= work_to_do)
3966                         break;
3967                 (*work_done)++;
3968
3969                 status = rx_desc->status;
3970                 skb = buffer_info->skb;
3971                 buffer_info->skb = NULL;
3972
3973                 prefetch(skb->data - NET_IP_ALIGN);
3974
3975                 if (++i == rx_ring->count) i = 0;
3976                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3977                 prefetch(next_rxd);
3978
3979                 next_buffer = &rx_ring->buffer_info[i];
3980
3981                 cleaned = true;
3982                 cleaned_count++;
3983                 pci_unmap_single(pdev,
3984                                  buffer_info->dma,
3985                                  buffer_info->length,
3986                                  PCI_DMA_FROMDEVICE);
3987
3988                 length = le16_to_cpu(rx_desc->length);
3989
3990                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3991                         /* All receives must fit into a single buffer */
3992                         E1000_DBG("%s: Receive packet consumed multiple"
3993                                   " buffers\n", netdev->name);
3994                         /* recycle */
3995                         buffer_info->skb = skb;
3996                         goto next_desc;
3997                 }
3998
3999                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4000                         last_byte = *(skb->data + length - 1);
4001                         if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4002                                        last_byte)) {
4003                                 spin_lock_irqsave(&adapter->stats_lock, flags);
4004                                 e1000_tbi_adjust_stats(hw, &adapter->stats,
4005                                                        length, skb->data);
4006                                 spin_unlock_irqrestore(&adapter->stats_lock,
4007                                                        flags);
4008                                 length--;
4009                         } else {
4010                                 /* recycle */
4011                                 buffer_info->skb = skb;
4012                                 goto next_desc;
4013                         }
4014                 }
4015
4016                 /* adjust length to remove Ethernet CRC, this must be
4017                  * done after the TBI_ACCEPT workaround above */
4018                 length -= 4;
4019
4020                 /* probably a little skewed due to removing CRC */
4021                 total_rx_bytes += length;
4022                 total_rx_packets++;
4023
4024                 /* code added for copybreak, this should improve
4025                  * performance for small packets with large amounts
4026                  * of reassembly being done in the stack */
4027                 if (length < copybreak) {
4028                         struct sk_buff *new_skb =
4029                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4030                         if (new_skb) {
4031                                 skb_reserve(new_skb, NET_IP_ALIGN);
4032                                 skb_copy_to_linear_data_offset(new_skb,
4033                                                                -NET_IP_ALIGN,
4034                                                                (skb->data -
4035                                                                 NET_IP_ALIGN),
4036                                                                (length +
4037                                                                 NET_IP_ALIGN));
4038                                 /* save the skb in buffer_info as good */
4039                                 buffer_info->skb = skb;
4040                                 skb = new_skb;
4041                         }
4042                         /* else just continue with the old one */
4043                 }
4044                 /* end copybreak code */
4045                 skb_put(skb, length);
4046
4047                 /* Receive Checksum Offload */
4048                 e1000_rx_checksum(adapter,
4049                                   (u32)(status) |
4050                                   ((u32)(rx_desc->errors) << 24),
4051                                   le16_to_cpu(rx_desc->csum), skb);
4052
4053                 skb->protocol = eth_type_trans(skb, netdev);
4054
4055                 if (unlikely(adapter->vlgrp &&
4056                             (status & E1000_RXD_STAT_VP))) {
4057                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4058                                                  le16_to_cpu(rx_desc->special));
4059                 } else {
4060                         netif_receive_skb(skb);
4061                 }
4062
4063 next_desc:
4064                 rx_desc->status = 0;
4065
4066                 /* return some buffers to hardware, one at a time is too slow */
4067                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4068                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4069                         cleaned_count = 0;
4070                 }
4071
4072                 /* use prefetched values */
4073                 rx_desc = next_rxd;
4074                 buffer_info = next_buffer;
4075         }
4076         rx_ring->next_to_clean = i;
4077
4078         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4079         if (cleaned_count)
4080                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4081
4082         adapter->total_rx_packets += total_rx_packets;
4083         adapter->total_rx_bytes += total_rx_bytes;
4084         adapter->net_stats.rx_bytes += total_rx_bytes;
4085         adapter->net_stats.rx_packets += total_rx_packets;
4086         return cleaned;
4087 }
4088
4089 /**
4090  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4091  * @adapter: address of board private structure
4092  **/
4093
4094 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4095                                    struct e1000_rx_ring *rx_ring,
4096                                    int cleaned_count)
4097 {
4098         struct e1000_hw *hw = &adapter->hw;
4099         struct net_device *netdev = adapter->netdev;
4100         struct pci_dev *pdev = adapter->pdev;
4101         struct e1000_rx_desc *rx_desc;
4102         struct e1000_buffer *buffer_info;
4103         struct sk_buff *skb;
4104         unsigned int i;
4105         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4106
4107         i = rx_ring->next_to_use;
4108         buffer_info = &rx_ring->buffer_info[i];
4109
4110         while (cleaned_count--) {
4111                 skb = buffer_info->skb;
4112                 if (skb) {
4113                         skb_trim(skb, 0);
4114                         goto map_skb;
4115                 }
4116
4117                 skb = netdev_alloc_skb(netdev, bufsz);
4118                 if (unlikely(!skb)) {
4119                         /* Better luck next round */
4120                         adapter->alloc_rx_buff_failed++;
4121                         break;
4122                 }
4123
4124                 /* Fix for errata 23, can't cross 64kB boundary */
4125                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4126                         struct sk_buff *oldskb = skb;
4127                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4128                                              "at %p\n", bufsz, skb->data);
4129                         /* Try again, without freeing the previous */
4130                         skb = netdev_alloc_skb(netdev, bufsz);
4131                         /* Failed allocation, critical failure */
4132                         if (!skb) {
4133                                 dev_kfree_skb(oldskb);
4134                                 break;
4135                         }
4136
4137                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4138                                 /* give up */
4139                                 dev_kfree_skb(skb);
4140                                 dev_kfree_skb(oldskb);
4141                                 break; /* while !buffer_info->skb */
4142                         }
4143
4144                         /* Use new allocation */
4145                         dev_kfree_skb(oldskb);
4146                 }
4147                 /* Make buffer alignment 2 beyond a 16 byte boundary
4148                  * this will result in a 16 byte aligned IP header after
4149                  * the 14 byte MAC header is removed
4150                  */
4151                 skb_reserve(skb, NET_IP_ALIGN);
4152
4153                 buffer_info->skb = skb;
4154                 buffer_info->length = adapter->rx_buffer_len;
4155 map_skb:
4156                 buffer_info->dma = pci_map_single(pdev,
4157                                                   skb->data,
4158                                                   adapter->rx_buffer_len,
4159                                                   PCI_DMA_FROMDEVICE);
4160
4161                 /* Fix for errata 23, can't cross 64kB boundary */
4162                 if (!e1000_check_64k_bound(adapter,
4163                                         (void *)(unsigned long)buffer_info->dma,
4164                                         adapter->rx_buffer_len)) {
4165                         DPRINTK(RX_ERR, ERR,
4166                                 "dma align check failed: %u bytes at %p\n",
4167                                 adapter->rx_buffer_len,
4168                                 (void *)(unsigned long)buffer_info->dma);
4169                         dev_kfree_skb(skb);
4170                         buffer_info->skb = NULL;
4171
4172                         pci_unmap_single(pdev, buffer_info->dma,
4173                                          adapter->rx_buffer_len,
4174                                          PCI_DMA_FROMDEVICE);
4175
4176                         break; /* while !buffer_info->skb */
4177                 }
4178                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4179                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4180
4181                 if (unlikely(++i == rx_ring->count))
4182                         i = 0;
4183                 buffer_info = &rx_ring->buffer_info[i];
4184         }
4185
4186         if (likely(rx_ring->next_to_use != i)) {
4187                 rx_ring->next_to_use = i;
4188                 if (unlikely(i-- == 0))
4189                         i = (rx_ring->count - 1);
4190
4191                 /* Force memory writes to complete before letting h/w
4192                  * know there are new descriptors to fetch.  (Only
4193                  * applicable for weak-ordered memory model archs,
4194                  * such as IA-64). */
4195                 wmb();
4196                 writel(i, hw->hw_addr + rx_ring->rdt);
4197         }
4198 }
4199
4200 /**
4201  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4202  * @adapter:
4203  **/
4204
4205 static void e1000_smartspeed(struct e1000_adapter *adapter)
4206 {
4207         struct e1000_hw *hw = &adapter->hw;
4208         u16 phy_status;
4209         u16 phy_ctrl;
4210
4211         if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4212            !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4213                 return;
4214
4215         if (adapter->smartspeed == 0) {
4216                 /* If Master/Slave config fault is asserted twice,
4217                  * we assume back-to-back */
4218                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4219                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4220                 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4221                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4222                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4223                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4224                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4225                         e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4226                                             phy_ctrl);
4227                         adapter->smartspeed++;
4228                         if (!e1000_phy_setup_autoneg(hw) &&
4229                            !e1000_read_phy_reg(hw, PHY_CTRL,
4230                                                &phy_ctrl)) {
4231                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4232                                              MII_CR_RESTART_AUTO_NEG);
4233                                 e1000_write_phy_reg(hw, PHY_CTRL,
4234                                                     phy_ctrl);
4235                         }
4236                 }
4237                 return;
4238         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4239                 /* If still no link, perhaps using 2/3 pair cable */
4240                 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4241                 phy_ctrl |= CR_1000T_MS_ENABLE;
4242                 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4243                 if (!e1000_phy_setup_autoneg(hw) &&
4244                    !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4245                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4246                                      MII_CR_RESTART_AUTO_NEG);
4247                         e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4248                 }
4249         }
4250         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4251         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4252                 adapter->smartspeed = 0;
4253 }
4254
4255 /**
4256  * e1000_ioctl -
4257  * @netdev:
4258  * @ifreq:
4259  * @cmd:
4260  **/
4261
4262 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4263 {
4264         switch (cmd) {
4265         case SIOCGMIIPHY:
4266         case SIOCGMIIREG:
4267         case SIOCSMIIREG:
4268                 return e1000_mii_ioctl(netdev, ifr, cmd);
4269         default:
4270                 return -EOPNOTSUPP;
4271         }
4272 }
4273
4274 /**
4275  * e1000_mii_ioctl -
4276  * @netdev:
4277  * @ifreq:
4278  * @cmd:
4279  **/
4280
4281 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4282                            int cmd)
4283 {
4284         struct e1000_adapter *adapter = netdev_priv(netdev);
4285         struct e1000_hw *hw = &adapter->hw;
4286         struct mii_ioctl_data *data = if_mii(ifr);
4287         int retval;
4288         u16 mii_reg;
4289         u16 spddplx;
4290         unsigned long flags;
4291
4292         if (hw->media_type != e1000_media_type_copper)
4293                 return -EOPNOTSUPP;
4294
4295         switch (cmd) {
4296         case SIOCGMIIPHY:
4297                 data->phy_id = hw->phy_addr;
4298                 break;
4299         case SIOCGMIIREG:
4300                 if (!capable(CAP_NET_ADMIN))
4301                         return -EPERM;
4302                 spin_lock_irqsave(&adapter->stats_lock, flags);
4303                 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4304                                    &data->val_out)) {
4305                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4306                         return -EIO;
4307                 }
4308                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4309                 break;
4310         case SIOCSMIIREG:
4311                 if (!capable(CAP_NET_ADMIN))
4312                         return -EPERM;
4313                 if (data->reg_num & ~(0x1F))
4314                         return -EFAULT;
4315                 mii_reg = data->val_in;
4316                 spin_lock_irqsave(&adapter->stats_lock, flags);
4317                 if (e1000_write_phy_reg(hw, data->reg_num,
4318                                         mii_reg)) {
4319                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4320                         return -EIO;
4321                 }
4322                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4323                 if (hw->media_type == e1000_media_type_copper) {
4324                         switch (data->reg_num) {
4325                         case PHY_CTRL:
4326                                 if (mii_reg & MII_CR_POWER_DOWN)
4327                                         break;
4328                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4329                                         hw->autoneg = 1;
4330                                         hw->autoneg_advertised = 0x2F;
4331                                 } else {
4332                                         if (mii_reg & 0x40)
4333                                                 spddplx = SPEED_1000;
4334                                         else if (mii_reg & 0x2000)
4335                                                 spddplx = SPEED_100;
4336                                         else
4337                                                 spddplx = SPEED_10;
4338                                         spddplx += (mii_reg & 0x100)
4339                                                    ? DUPLEX_FULL :
4340                                                    DUPLEX_HALF;
4341                                         retval = e1000_set_spd_dplx(adapter,
4342                                                                     spddplx);
4343                                         if (retval)
4344                                                 return retval;
4345                                 }
4346                                 if (netif_running(adapter->netdev))
4347                                         e1000_reinit_locked(adapter);
4348                                 else
4349                                         e1000_reset(adapter);
4350                                 break;
4351                         case M88E1000_PHY_SPEC_CTRL:
4352                         case M88E1000_EXT_PHY_SPEC_CTRL:
4353                                 if (e1000_phy_reset(hw))
4354                                         return -EIO;
4355                                 break;
4356                         }
4357                 } else {
4358                         switch (data->reg_num) {
4359                         case PHY_CTRL:
4360                                 if (mii_reg & MII_CR_POWER_DOWN)
4361                                         break;
4362                                 if (netif_running(adapter->netdev))
4363                                         e1000_reinit_locked(adapter);
4364                                 else
4365                                         e1000_reset(adapter);
4366                                 break;
4367                         }
4368                 }
4369                 break;
4370         default:
4371                 return -EOPNOTSUPP;
4372         }
4373         return E1000_SUCCESS;
4374 }
4375
4376 void e1000_pci_set_mwi(struct e1000_hw *hw)
4377 {
4378         struct e1000_adapter *adapter = hw->back;
4379         int ret_val = pci_set_mwi(adapter->pdev);
4380
4381         if (ret_val)
4382                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4383 }
4384
4385 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4386 {
4387         struct e1000_adapter *adapter = hw->back;
4388
4389         pci_clear_mwi(adapter->pdev);
4390 }
4391
4392 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4393 {
4394         struct e1000_adapter *adapter = hw->back;
4395         return pcix_get_mmrbc(adapter->pdev);
4396 }
4397
4398 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4399 {
4400         struct e1000_adapter *adapter = hw->back;
4401         pcix_set_mmrbc(adapter->pdev, mmrbc);
4402 }
4403
4404 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4405 {
4406     struct e1000_adapter *adapter = hw->back;
4407     u16 cap_offset;
4408
4409     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4410     if (!cap_offset)
4411         return -E1000_ERR_CONFIG;
4412
4413     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4414
4415     return E1000_SUCCESS;
4416 }
4417
4418 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4419 {
4420         outl(value, port);
4421 }
4422
4423 static void e1000_vlan_rx_register(struct net_device *netdev,
4424                                    struct vlan_group *grp)
4425 {
4426         struct e1000_adapter *adapter = netdev_priv(netdev);
4427         struct e1000_hw *hw = &adapter->hw;
4428         u32 ctrl, rctl;
4429
4430         if (!test_bit(__E1000_DOWN, &adapter->flags))
4431                 e1000_irq_disable(adapter);
4432         adapter->vlgrp = grp;
4433
4434         if (grp) {
4435                 /* enable VLAN tag insert/strip */
4436                 ctrl = er32(CTRL);
4437                 ctrl |= E1000_CTRL_VME;
4438                 ew32(CTRL, ctrl);
4439
4440                 if (adapter->hw.mac_type != e1000_ich8lan) {
4441                         /* enable VLAN receive filtering */
4442                         rctl = er32(RCTL);
4443                         rctl &= ~E1000_RCTL_CFIEN;
4444                         ew32(RCTL, rctl);
4445                         e1000_update_mng_vlan(adapter);
4446                 }
4447         } else {
4448                 /* disable VLAN tag insert/strip */
4449                 ctrl = er32(CTRL);
4450                 ctrl &= ~E1000_CTRL_VME;
4451                 ew32(CTRL, ctrl);
4452
4453                 if (adapter->hw.mac_type != e1000_ich8lan) {
4454                         if (adapter->mng_vlan_id !=
4455                             (u16)E1000_MNG_VLAN_NONE) {
4456                                 e1000_vlan_rx_kill_vid(netdev,
4457                                                        adapter->mng_vlan_id);
4458                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4459                         }
4460                 }
4461         }
4462
4463         if (!test_bit(__E1000_DOWN, &adapter->flags))
4464                 e1000_irq_enable(adapter);
4465 }
4466
4467 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4468 {
4469         struct e1000_adapter *adapter = netdev_priv(netdev);
4470         struct e1000_hw *hw = &adapter->hw;
4471         u32 vfta, index;
4472
4473         if ((hw->mng_cookie.status &
4474              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4475             (vid == adapter->mng_vlan_id))
4476                 return;
4477         /* add VID to filter table */
4478         index = (vid >> 5) & 0x7F;
4479         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4480         vfta |= (1 << (vid & 0x1F));
4481         e1000_write_vfta(hw, index, vfta);
4482 }
4483
4484 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4485 {
4486         struct e1000_adapter *adapter = netdev_priv(netdev);
4487         struct e1000_hw *hw = &adapter->hw;
4488         u32 vfta, index;
4489
4490         if (!test_bit(__E1000_DOWN, &adapter->flags))
4491                 e1000_irq_disable(adapter);
4492         vlan_group_set_device(adapter->vlgrp, vid, NULL);
4493         if (!test_bit(__E1000_DOWN, &adapter->flags))
4494                 e1000_irq_enable(adapter);
4495
4496         if ((hw->mng_cookie.status &
4497              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4498             (vid == adapter->mng_vlan_id)) {
4499                 /* release control to f/w */
4500                 e1000_release_hw_control(adapter);
4501                 return;
4502         }
4503
4504         /* remove VID from filter table */
4505         index = (vid >> 5) & 0x7F;
4506         vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4507         vfta &= ~(1 << (vid & 0x1F));
4508         e1000_write_vfta(hw, index, vfta);
4509 }
4510
4511 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4512 {
4513         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4514
4515         if (adapter->vlgrp) {
4516                 u16 vid;
4517                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4518                         if (!vlan_group_get_device(adapter->vlgrp, vid))
4519                                 continue;
4520                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4521                 }
4522         }
4523 }
4524
4525 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4526 {
4527         struct e1000_hw *hw = &adapter->hw;
4528
4529         hw->autoneg = 0;
4530
4531         /* Fiber NICs only allow 1000 gbps Full duplex */
4532         if ((hw->media_type == e1000_media_type_fiber) &&
4533                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4534                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4535                 return -EINVAL;
4536         }
4537
4538         switch (spddplx) {
4539         case SPEED_10 + DUPLEX_HALF:
4540                 hw->forced_speed_duplex = e1000_10_half;
4541                 break;
4542         case SPEED_10 + DUPLEX_FULL:
4543                 hw->forced_speed_duplex = e1000_10_full;
4544                 break;
4545         case SPEED_100 + DUPLEX_HALF:
4546                 hw->forced_speed_duplex = e1000_100_half;
4547                 break;
4548         case SPEED_100 + DUPLEX_FULL:
4549                 hw->forced_speed_duplex = e1000_100_full;
4550                 break;
4551         case SPEED_1000 + DUPLEX_FULL:
4552                 hw->autoneg = 1;
4553                 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4554                 break;
4555         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4556         default:
4557                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4558                 return -EINVAL;
4559         }
4560         return 0;
4561 }
4562
4563 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4564 {
4565         struct net_device *netdev = pci_get_drvdata(pdev);
4566         struct e1000_adapter *adapter = netdev_priv(netdev);
4567         struct e1000_hw *hw = &adapter->hw;
4568         u32 ctrl, ctrl_ext, rctl, status;
4569         u32 wufc = adapter->wol;
4570 #ifdef CONFIG_PM
4571         int retval = 0;
4572 #endif
4573
4574         netif_device_detach(netdev);
4575
4576         if (netif_running(netdev)) {
4577                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4578                 e1000_down(adapter);
4579         }
4580
4581 #ifdef CONFIG_PM
4582         retval = pci_save_state(pdev);
4583         if (retval)
4584                 return retval;
4585 #endif
4586
4587         status = er32(STATUS);
4588         if (status & E1000_STATUS_LU)
4589                 wufc &= ~E1000_WUFC_LNKC;
4590
4591         if (wufc) {
4592                 e1000_setup_rctl(adapter);
4593                 e1000_set_rx_mode(netdev);
4594
4595                 /* turn on all-multi mode if wake on multicast is enabled */
4596                 if (wufc & E1000_WUFC_MC) {
4597                         rctl = er32(RCTL);
4598                         rctl |= E1000_RCTL_MPE;
4599                         ew32(RCTL, rctl);
4600                 }
4601
4602                 if (hw->mac_type >= e1000_82540) {
4603                         ctrl = er32(CTRL);
4604                         /* advertise wake from D3Cold */
4605                         #define E1000_CTRL_ADVD3WUC 0x00100000
4606                         /* phy power management enable */
4607                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4608                         ctrl |= E1000_CTRL_ADVD3WUC |
4609                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4610                         ew32(CTRL, ctrl);
4611                 }
4612
4613                 if (hw->media_type == e1000_media_type_fiber ||
4614                    hw->media_type == e1000_media_type_internal_serdes) {
4615                         /* keep the laser running in D3 */
4616                         ctrl_ext = er32(CTRL_EXT);
4617                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4618                         ew32(CTRL_EXT, ctrl_ext);
4619                 }
4620
4621                 /* Allow time for pending master requests to run */
4622                 e1000_disable_pciex_master(hw);
4623
4624                 ew32(WUC, E1000_WUC_PME_EN);
4625                 ew32(WUFC, wufc);
4626                 pci_enable_wake(pdev, PCI_D3hot, 1);
4627                 pci_enable_wake(pdev, PCI_D3cold, 1);
4628         } else {
4629                 ew32(WUC, 0);
4630                 ew32(WUFC, 0);
4631                 pci_enable_wake(pdev, PCI_D3hot, 0);
4632                 pci_enable_wake(pdev, PCI_D3cold, 0);
4633         }
4634
4635         e1000_release_manageability(adapter);
4636
4637         /* make sure adapter isn't asleep if manageability is enabled */
4638         if (adapter->en_mng_pt) {
4639                 pci_enable_wake(pdev, PCI_D3hot, 1);
4640                 pci_enable_wake(pdev, PCI_D3cold, 1);
4641         }
4642
4643         if (hw->phy_type == e1000_phy_igp_3)
4644                 e1000_phy_powerdown_workaround(hw);
4645
4646         if (netif_running(netdev))
4647                 e1000_free_irq(adapter);
4648
4649         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4650          * would have already happened in close and is redundant. */
4651         e1000_release_hw_control(adapter);
4652
4653         pci_disable_device(pdev);
4654
4655         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4656
4657         return 0;
4658 }
4659
4660 #ifdef CONFIG_PM
4661 static int e1000_resume(struct pci_dev *pdev)
4662 {
4663         struct net_device *netdev = pci_get_drvdata(pdev);
4664         struct e1000_adapter *adapter = netdev_priv(netdev);
4665         struct e1000_hw *hw = &adapter->hw;
4666         u32 err;
4667
4668         pci_set_power_state(pdev, PCI_D0);
4669         pci_restore_state(pdev);
4670
4671         if (adapter->need_ioport)
4672                 err = pci_enable_device(pdev);
4673         else
4674                 err = pci_enable_device_mem(pdev);
4675         if (err) {
4676                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4677                 return err;
4678         }
4679         pci_set_master(pdev);
4680
4681         pci_enable_wake(pdev, PCI_D3hot, 0);
4682         pci_enable_wake(pdev, PCI_D3cold, 0);
4683
4684         if (netif_running(netdev)) {
4685                 err = e1000_request_irq(adapter);
4686                 if (err)
4687                         return err;
4688         }
4689
4690         e1000_power_up_phy(adapter);
4691         e1000_reset(adapter);
4692         ew32(WUS, ~0);
4693
4694         e1000_init_manageability(adapter);
4695
4696         if (netif_running(netdev))
4697                 e1000_up(adapter);
4698
4699         netif_device_attach(netdev);
4700
4701         /* If the controller is 82573 and f/w is AMT, do not set
4702          * DRV_LOAD until the interface is up.  For all other cases,
4703          * let the f/w know that the h/w is now under the control
4704          * of the driver. */
4705         if (hw->mac_type != e1000_82573 ||
4706             !e1000_check_mng_mode(hw))
4707                 e1000_get_hw_control(adapter);
4708
4709         return 0;
4710 }
4711 #endif
4712
4713 static void e1000_shutdown(struct pci_dev *pdev)
4714 {
4715         e1000_suspend(pdev, PMSG_SUSPEND);
4716 }
4717
4718 #ifdef CONFIG_NET_POLL_CONTROLLER
4719 /*
4720  * Polling 'interrupt' - used by things like netconsole to send skbs
4721  * without having to re-enable interrupts. It's not called while
4722  * the interrupt routine is executing.
4723  */
4724 static void e1000_netpoll(struct net_device *netdev)
4725 {
4726         struct e1000_adapter *adapter = netdev_priv(netdev);
4727
4728         disable_irq(adapter->pdev->irq);
4729         e1000_intr(adapter->pdev->irq, netdev);
4730         enable_irq(adapter->pdev->irq);
4731 }
4732 #endif
4733
4734 /**
4735  * e1000_io_error_detected - called when PCI error is detected
4736  * @pdev: Pointer to PCI device
4737  * @state: The current pci conneection state
4738  *
4739  * This function is called after a PCI bus error affecting
4740  * this device has been detected.
4741  */
4742 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4743                                                 pci_channel_state_t state)
4744 {
4745         struct net_device *netdev = pci_get_drvdata(pdev);
4746         struct e1000_adapter *adapter = netdev_priv(netdev);
4747
4748         netif_device_detach(netdev);
4749
4750         if (netif_running(netdev))
4751                 e1000_down(adapter);
4752         pci_disable_device(pdev);
4753
4754         /* Request a slot slot reset. */
4755         return PCI_ERS_RESULT_NEED_RESET;
4756 }
4757
4758 /**
4759  * e1000_io_slot_reset - called after the pci bus has been reset.
4760  * @pdev: Pointer to PCI device
4761  *
4762  * Restart the card from scratch, as if from a cold-boot. Implementation
4763  * resembles the first-half of the e1000_resume routine.
4764  */
4765 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4766 {
4767         struct net_device *netdev = pci_get_drvdata(pdev);
4768         struct e1000_adapter *adapter = netdev_priv(netdev);
4769         struct e1000_hw *hw = &adapter->hw;
4770         int err;
4771
4772         if (adapter->need_ioport)
4773                 err = pci_enable_device(pdev);
4774         else
4775                 err = pci_enable_device_mem(pdev);
4776         if (err) {
4777                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4778                 return PCI_ERS_RESULT_DISCONNECT;
4779         }
4780         pci_set_master(pdev);
4781
4782         pci_enable_wake(pdev, PCI_D3hot, 0);
4783         pci_enable_wake(pdev, PCI_D3cold, 0);
4784
4785         e1000_reset(adapter);
4786         ew32(WUS, ~0);
4787
4788         return PCI_ERS_RESULT_RECOVERED;
4789 }
4790
4791 /**
4792  * e1000_io_resume - called when traffic can start flowing again.
4793  * @pdev: Pointer to PCI device
4794  *
4795  * This callback is called when the error recovery driver tells us that
4796  * its OK to resume normal operation. Implementation resembles the
4797  * second-half of the e1000_resume routine.
4798  */
4799 static void e1000_io_resume(struct pci_dev *pdev)
4800 {
4801         struct net_device *netdev = pci_get_drvdata(pdev);
4802         struct e1000_adapter *adapter = netdev_priv(netdev);
4803         struct e1000_hw *hw = &adapter->hw;
4804
4805         e1000_init_manageability(adapter);
4806
4807         if (netif_running(netdev)) {
4808                 if (e1000_up(adapter)) {
4809                         printk("e1000: can't bring device back up after reset\n");
4810                         return;
4811                 }
4812         }
4813
4814         netif_device_attach(netdev);
4815
4816         /* If the controller is 82573 and f/w is AMT, do not set
4817          * DRV_LOAD until the interface is up.  For all other cases,
4818          * let the f/w know that the h/w is now under the control
4819          * of the driver. */
4820         if (hw->mac_type != e1000_82573 ||
4821             !e1000_check_mng_mode(hw))
4822                 e1000_get_hw_control(adapter);
4823
4824 }
4825
4826 /* e1000_main.c */