]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/net/cxgb3/cxgb3_main.c
Merge branch 'for-rmk' of git://git.pengutronix.de/git/imx/linux-2.6
[net-next-2.6.git] / drivers / net / cxgb3 / cxgb3_main.c
1 /*
2  * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63         MAX_TXQ_ENTRIES = 16384,
64         MAX_CTRL_TXQ_ENTRIES = 1024,
65         MAX_RSPQ_ENTRIES = 16384,
66         MAX_RX_BUFFERS = 16384,
67         MAX_RX_JUMBO_BUFFERS = 16384,
68         MIN_TXQ_ENTRIES = 4,
69         MIN_CTRL_TXQ_ENTRIES = 4,
70         MIN_RSPQ_ENTRIES = 32,
71         MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77                          NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78                          NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83         { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86         CH_DEVICE(0x20, 0),     /* PE9000 */
87         CH_DEVICE(0x21, 1),     /* T302E */
88         CH_DEVICE(0x22, 2),     /* T310E */
89         CH_DEVICE(0x23, 3),     /* T320X */
90         CH_DEVICE(0x24, 1),     /* T302X */
91         CH_DEVICE(0x25, 3),     /* T320E */
92         CH_DEVICE(0x26, 2),     /* T310X */
93         CH_DEVICE(0x30, 2),     /* T3B10 */
94         CH_DEVICE(0x31, 3),     /* T3B20 */
95         CH_DEVICE(0x32, 1),     /* T3B02 */
96         CH_DEVICE(0x35, 6),     /* T3C20-derived T3C10 */
97         CH_DEVICE(0x36, 3),     /* S320E-CR */
98         CH_DEVICE(0x37, 7),     /* N320E-G2 */
99         {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114  * The driver uses the best interrupt scheme available on a platform in the
115  * order MSI-X, MSI, legacy pin interrupts.  This parameter determines which
116  * of these schemes the driver may consider as follows:
117  *
118  * msi = 2: choose from among all three options
119  * msi = 1: only consider MSI and pin interrupts
120  * msi = 0: force pin interrupts
121  */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128  * The driver enables offload as a default.
129  * To disable it, use ofld_disable = 1.
130  */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138  * We have work elements that we need to cancel when an interface is taken
139  * down.  Normally the work elements would be executed by keventd but that
140  * can deadlock because of linkwatch.  If our close method takes the rtnl
141  * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142  * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143  * for our work to complete.  Get our own work queue to solve this.
144  */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148  *      link_report - show link status and link speed/duplex
149  *      @p: the port whose settings are to be reported
150  *
151  *      Shows the link status, speed, and duplex of a port.
152  */
153 static void link_report(struct net_device *dev)
154 {
155         if (!netif_carrier_ok(dev))
156                 printk(KERN_INFO "%s: link down\n", dev->name);
157         else {
158                 const char *s = "10Mbps";
159                 const struct port_info *p = netdev_priv(dev);
160
161                 switch (p->link_config.speed) {
162                 case SPEED_10000:
163                         s = "10Gbps";
164                         break;
165                 case SPEED_1000:
166                         s = "1000Mbps";
167                         break;
168                 case SPEED_100:
169                         s = "100Mbps";
170                         break;
171                 }
172
173                 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174                        p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175         }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179                                  struct port_info *pi)
180 {
181         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182                          F_ENDROPPKT);
183         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184         t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185         t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189                                   struct port_info *pi)
190 {
191         t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192                          F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197         struct net_device *dev = adap->port[port_id];
198         struct port_info *pi = netdev_priv(dev);
199
200         if (state == netif_carrier_ok(dev))
201                 return;
202
203         if (state) {
204                 struct cmac *mac = &pi->mac;
205
206                 netif_carrier_on(dev);
207
208                 disable_tx_fifo_drain(adap, pi);
209
210                 /* Clear local faults */
211                 t3_xgm_intr_disable(adap, pi->port_id);
212                 t3_read_reg(adap, A_XGM_INT_STATUS +
213                                     pi->mac.offset);
214                 t3_write_reg(adap,
215                              A_XGM_INT_CAUSE + pi->mac.offset,
216                              F_XGM_INT);
217
218                 t3_set_reg_field(adap,
219                                  A_XGM_INT_ENABLE +
220                                  pi->mac.offset,
221                                  F_XGM_INT, F_XGM_INT);
222                 t3_xgm_intr_enable(adap, pi->port_id);
223
224                 t3_mac_enable(mac, MAC_DIRECTION_TX);
225         } else {
226                 netif_carrier_off(dev);
227
228                 /* Flush TX FIFO */
229                 enable_tx_fifo_drain(adap, pi);
230         }
231         link_report(dev);
232 }
233
234 /**
235  *      t3_os_link_changed - handle link status changes
236  *      @adapter: the adapter associated with the link change
237  *      @port_id: the port index whose limk status has changed
238  *      @link_stat: the new status of the link
239  *      @speed: the new speed setting
240  *      @duplex: the new duplex setting
241  *      @pause: the new flow-control setting
242  *
243  *      This is the OS-dependent handler for link status changes.  The OS
244  *      neutral handler takes care of most of the processing for these events,
245  *      then calls this handler for any OS-specific processing.
246  */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248                         int speed, int duplex, int pause)
249 {
250         struct net_device *dev = adapter->port[port_id];
251         struct port_info *pi = netdev_priv(dev);
252         struct cmac *mac = &pi->mac;
253
254         /* Skip changes from disabled ports. */
255         if (!netif_running(dev))
256                 return;
257
258         if (link_stat != netif_carrier_ok(dev)) {
259                 if (link_stat) {
260                         disable_tx_fifo_drain(adapter, pi);
261
262                         t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264                         /* Clear local faults */
265                         t3_xgm_intr_disable(adapter, pi->port_id);
266                         t3_read_reg(adapter, A_XGM_INT_STATUS +
267                                     pi->mac.offset);
268                         t3_write_reg(adapter,
269                                      A_XGM_INT_CAUSE + pi->mac.offset,
270                                      F_XGM_INT);
271
272                         t3_set_reg_field(adapter,
273                                          A_XGM_INT_ENABLE + pi->mac.offset,
274                                          F_XGM_INT, F_XGM_INT);
275                         t3_xgm_intr_enable(adapter, pi->port_id);
276
277                         netif_carrier_on(dev);
278                 } else {
279                         netif_carrier_off(dev);
280
281                         t3_xgm_intr_disable(adapter, pi->port_id);
282                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283                         t3_set_reg_field(adapter,
284                                          A_XGM_INT_ENABLE + pi->mac.offset,
285                                          F_XGM_INT, 0);
286
287                         if (is_10G(adapter))
288                                 pi->phy.ops->power_down(&pi->phy, 1);
289
290                         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291                         t3_mac_disable(mac, MAC_DIRECTION_RX);
292                         t3_link_start(&pi->phy, mac, &pi->link_config);
293
294                         /* Flush TX FIFO */
295                         enable_tx_fifo_drain(adapter, pi);
296                 }
297
298                 link_report(dev);
299         }
300 }
301
302 /**
303  *      t3_os_phymod_changed - handle PHY module changes
304  *      @phy: the PHY reporting the module change
305  *      @mod_type: new module type
306  *
307  *      This is the OS-dependent handler for PHY module changes.  It is
308  *      invoked when a PHY module is removed or inserted for any OS-specific
309  *      processing.
310  */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313         static const char *mod_str[] = {
314                 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315         };
316
317         const struct net_device *dev = adap->port[port_id];
318         const struct port_info *pi = netdev_priv(dev);
319
320         if (pi->phy.modtype == phy_modtype_none)
321                 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322         else
323                 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324                        mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329         struct port_info *pi = netdev_priv(dev);
330
331         t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335  *      link_start - enable a port
336  *      @dev: the device to enable
337  *
338  *      Performs the MAC and PHY actions needed to enable a port.
339  */
340 static void link_start(struct net_device *dev)
341 {
342         struct port_info *pi = netdev_priv(dev);
343         struct cmac *mac = &pi->mac;
344
345         t3_mac_reset(mac);
346         t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347         t3_mac_set_mtu(mac, dev->mtu);
348         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349         t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350         t3_mac_set_rx_mode(mac, dev);
351         t3_link_start(&pi->phy, mac, &pi->link_config);
352         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357         if (adapter->flags & USING_MSIX) {
358                 pci_disable_msix(adapter->pdev);
359                 adapter->flags &= ~USING_MSIX;
360         } else if (adapter->flags & USING_MSI) {
361                 pci_disable_msi(adapter->pdev);
362                 adapter->flags &= ~USING_MSI;
363         }
364 }
365
366 /*
367  * Interrupt handler for asynchronous events used with MSI-X.
368  */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371         t3_slow_intr_handler(cookie);
372         return IRQ_HANDLED;
373 }
374
375 /*
376  * Name the MSI-X interrupts.
377  */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380         int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382         snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383         adap->msix_info[0].desc[n] = 0;
384
385         for_each_port(adap, j) {
386                 struct net_device *d = adap->port[j];
387                 const struct port_info *pi = netdev_priv(d);
388
389                 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390                         snprintf(adap->msix_info[msi_idx].desc, n,
391                                  "%s-%d", d->name, pi->first_qset + i);
392                         adap->msix_info[msi_idx].desc[n] = 0;
393                 }
394         }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399         int i, j, err, qidx = 0;
400
401         for_each_port(adap, i) {
402                 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404                 for (j = 0; j < nqsets; ++j) {
405                         err = request_irq(adap->msix_info[qidx + 1].vec,
406                                           t3_intr_handler(adap,
407                                                           adap->sge.qs[qidx].
408                                                           rspq.polling), 0,
409                                           adap->msix_info[qidx + 1].desc,
410                                           &adap->sge.qs[qidx]);
411                         if (err) {
412                                 while (--qidx >= 0)
413                                         free_irq(adap->msix_info[qidx + 1].vec,
414                                                  &adap->sge.qs[qidx]);
415                                 return err;
416                         }
417                         qidx++;
418                 }
419         }
420         return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425         if (adapter->flags & USING_MSIX) {
426                 int i, n = 0;
427
428                 free_irq(adapter->msix_info[0].vec, adapter);
429                 for_each_port(adapter, i)
430                         n += adap2pinfo(adapter, i)->nqsets;
431
432                 for (i = 0; i < n; ++i)
433                         free_irq(adapter->msix_info[i + 1].vec,
434                                  &adapter->sge.qs[i]);
435         } else
436                 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440                               unsigned long n)
441 {
442         int attempts = 10;
443
444         while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445                 if (!--attempts)
446                         return -ETIMEDOUT;
447                 msleep(10);
448         }
449         return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454         int i;
455         struct sk_buff *skb;
456         struct cpl_set_tcb_field *greq;
457         unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459         t3_tp_set_offload_mode(adap, 1);
460
461         for (i = 0; i < 16; i++) {
462                 struct cpl_smt_write_req *req;
463
464                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465                 if (!skb)
466                         skb = adap->nofail_skb;
467                 if (!skb)
468                         goto alloc_skb_fail;
469
470                 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471                 memset(req, 0, sizeof(*req));
472                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474                 req->mtu_idx = NMTUS - 1;
475                 req->iff = i;
476                 t3_mgmt_tx(adap, skb);
477                 if (skb == adap->nofail_skb) {
478                         await_mgmt_replies(adap, cnt, i + 1);
479                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480                         if (!adap->nofail_skb)
481                                 goto alloc_skb_fail;
482                 }
483         }
484
485         for (i = 0; i < 2048; i++) {
486                 struct cpl_l2t_write_req *req;
487
488                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489                 if (!skb)
490                         skb = adap->nofail_skb;
491                 if (!skb)
492                         goto alloc_skb_fail;
493
494                 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495                 memset(req, 0, sizeof(*req));
496                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498                 req->params = htonl(V_L2T_W_IDX(i));
499                 t3_mgmt_tx(adap, skb);
500                 if (skb == adap->nofail_skb) {
501                         await_mgmt_replies(adap, cnt, 16 + i + 1);
502                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503                         if (!adap->nofail_skb)
504                                 goto alloc_skb_fail;
505                 }
506         }
507
508         for (i = 0; i < 2048; i++) {
509                 struct cpl_rte_write_req *req;
510
511                 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512                 if (!skb)
513                         skb = adap->nofail_skb;
514                 if (!skb)
515                         goto alloc_skb_fail;
516
517                 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518                 memset(req, 0, sizeof(*req));
519                 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520                 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521                 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522                 t3_mgmt_tx(adap, skb);
523                 if (skb == adap->nofail_skb) {
524                         await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525                         adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526                         if (!adap->nofail_skb)
527                                 goto alloc_skb_fail;
528                 }
529         }
530
531         skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532         if (!skb)
533                 skb = adap->nofail_skb;
534         if (!skb)
535                 goto alloc_skb_fail;
536
537         greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538         memset(greq, 0, sizeof(*greq));
539         greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540         OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541         greq->mask = cpu_to_be64(1);
542         t3_mgmt_tx(adap, skb);
543
544         i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545         if (skb == adap->nofail_skb) {
546                 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547                 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548         }
549
550         t3_tp_set_offload_mode(adap, 0);
551         return i;
552
553 alloc_skb_fail:
554         t3_tp_set_offload_mode(adap, 0);
555         return -ENOMEM;
556 }
557
558 /**
559  *      setup_rss - configure RSS
560  *      @adap: the adapter
561  *
562  *      Sets up RSS to distribute packets to multiple receive queues.  We
563  *      configure the RSS CPU lookup table to distribute to the number of HW
564  *      receive queues, and the response queue lookup table to narrow that
565  *      down to the response queues actually configured for each port.
566  *      We always configure the RSS mapping for two ports since the mapping
567  *      table has plenty of entries.
568  */
569 static void setup_rss(struct adapter *adap)
570 {
571         int i;
572         unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573         unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574         u8 cpus[SGE_QSETS + 1];
575         u16 rspq_map[RSS_TABLE_SIZE];
576
577         for (i = 0; i < SGE_QSETS; ++i)
578                 cpus[i] = i;
579         cpus[SGE_QSETS] = 0xff; /* terminator */
580
581         for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582                 rspq_map[i] = i % nq0;
583                 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584         }
585
586         t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587                       F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588                       V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593         int i, j;
594
595         for (i = 0; i < SGE_QSETS; i++) {
596                 struct sge_qset *qs = &adap->sge.qs[i];
597
598                 if (qs->adap)
599                         for (j = 0; j < SGE_TXQ_PER_SET; j++)
600                                 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601         }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606         int i;
607
608         for (i = 0; i < SGE_QSETS; i++) {
609                 struct sge_qset *qs = &adap->sge.qs[i];
610
611                 if (qs->adap)
612                         netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613                                        64);
614         }
615
616         /*
617          * netif_napi_add() can be called only once per napi_struct because it
618          * adds each new napi_struct to a list.  Be careful not to call it a
619          * second time, e.g., during EEH recovery, by making a note of it.
620          */
621         adap->flags |= NAPI_INIT;
622 }
623
624 /*
625  * Wait until all NAPI handlers are descheduled.  This includes the handlers of
626  * both netdevices representing interfaces and the dummy ones for the extra
627  * queues.
628  */
629 static void quiesce_rx(struct adapter *adap)
630 {
631         int i;
632
633         for (i = 0; i < SGE_QSETS; i++)
634                 if (adap->sge.qs[i].adap)
635                         napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640         int i;
641         for (i = 0; i < SGE_QSETS; i++)
642                 if (adap->sge.qs[i].adap)
643                         napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647  *      set_qset_lro - Turn a queue set's LRO capability on and off
648  *      @dev: the device the qset is attached to
649  *      @qset_idx: the queue set index
650  *      @val: the LRO switch
651  *
652  *      Sets LRO on or off for a particular queue set.
653  *      the device's features flag is updated to reflect the LRO
654  *      capability when all queues belonging to the device are
655  *      in the same state.
656  */
657 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
658 {
659         struct port_info *pi = netdev_priv(dev);
660         struct adapter *adapter = pi->adapter;
661
662         adapter->params.sge.qset[qset_idx].lro = !!val;
663         adapter->sge.qs[qset_idx].lro_enabled = !!val;
664 }
665
666 /**
667  *      setup_sge_qsets - configure SGE Tx/Rx/response queues
668  *      @adap: the adapter
669  *
670  *      Determines how many sets of SGE queues to use and initializes them.
671  *      We support multiple queue sets per port if we have MSI-X, otherwise
672  *      just one queue set per port.
673  */
674 static int setup_sge_qsets(struct adapter *adap)
675 {
676         int i, j, err, irq_idx = 0, qset_idx = 0;
677         unsigned int ntxq = SGE_TXQ_PER_SET;
678
679         if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
680                 irq_idx = -1;
681
682         for_each_port(adap, i) {
683                 struct net_device *dev = adap->port[i];
684                 struct port_info *pi = netdev_priv(dev);
685
686                 pi->qs = &adap->sge.qs[pi->first_qset];
687                 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
688                         set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
689                         err = t3_sge_alloc_qset(adap, qset_idx, 1,
690                                 (adap->flags & USING_MSIX) ? qset_idx + 1 :
691                                                              irq_idx,
692                                 &adap->params.sge.qset[qset_idx], ntxq, dev,
693                                 netdev_get_tx_queue(dev, j));
694                         if (err) {
695                                 t3_free_sge_resources(adap);
696                                 return err;
697                         }
698                 }
699         }
700
701         return 0;
702 }
703
704 static ssize_t attr_show(struct device *d, char *buf,
705                          ssize_t(*format) (struct net_device *, char *))
706 {
707         ssize_t len;
708
709         /* Synchronize with ioctls that may shut down the device */
710         rtnl_lock();
711         len = (*format) (to_net_dev(d), buf);
712         rtnl_unlock();
713         return len;
714 }
715
716 static ssize_t attr_store(struct device *d,
717                           const char *buf, size_t len,
718                           ssize_t(*set) (struct net_device *, unsigned int),
719                           unsigned int min_val, unsigned int max_val)
720 {
721         char *endp;
722         ssize_t ret;
723         unsigned int val;
724
725         if (!capable(CAP_NET_ADMIN))
726                 return -EPERM;
727
728         val = simple_strtoul(buf, &endp, 0);
729         if (endp == buf || val < min_val || val > max_val)
730                 return -EINVAL;
731
732         rtnl_lock();
733         ret = (*set) (to_net_dev(d), val);
734         if (!ret)
735                 ret = len;
736         rtnl_unlock();
737         return ret;
738 }
739
740 #define CXGB3_SHOW(name, val_expr) \
741 static ssize_t format_##name(struct net_device *dev, char *buf) \
742 { \
743         struct port_info *pi = netdev_priv(dev); \
744         struct adapter *adap = pi->adapter; \
745         return sprintf(buf, "%u\n", val_expr); \
746 } \
747 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
748                            char *buf) \
749 { \
750         return attr_show(d, buf, format_##name); \
751 }
752
753 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
754 {
755         struct port_info *pi = netdev_priv(dev);
756         struct adapter *adap = pi->adapter;
757         int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
758
759         if (adap->flags & FULL_INIT_DONE)
760                 return -EBUSY;
761         if (val && adap->params.rev == 0)
762                 return -EINVAL;
763         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
764             min_tids)
765                 return -EINVAL;
766         adap->params.mc5.nfilters = val;
767         return 0;
768 }
769
770 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
771                               const char *buf, size_t len)
772 {
773         return attr_store(d, buf, len, set_nfilters, 0, ~0);
774 }
775
776 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
777 {
778         struct port_info *pi = netdev_priv(dev);
779         struct adapter *adap = pi->adapter;
780
781         if (adap->flags & FULL_INIT_DONE)
782                 return -EBUSY;
783         if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
784             MC5_MIN_TIDS)
785                 return -EINVAL;
786         adap->params.mc5.nservers = val;
787         return 0;
788 }
789
790 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
791                               const char *buf, size_t len)
792 {
793         return attr_store(d, buf, len, set_nservers, 0, ~0);
794 }
795
796 #define CXGB3_ATTR_R(name, val_expr) \
797 CXGB3_SHOW(name, val_expr) \
798 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
799
800 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
801 CXGB3_SHOW(name, val_expr) \
802 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
803
804 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
805 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
806 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
807
808 static struct attribute *cxgb3_attrs[] = {
809         &dev_attr_cam_size.attr,
810         &dev_attr_nfilters.attr,
811         &dev_attr_nservers.attr,
812         NULL
813 };
814
815 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
816
817 static ssize_t tm_attr_show(struct device *d,
818                             char *buf, int sched)
819 {
820         struct port_info *pi = netdev_priv(to_net_dev(d));
821         struct adapter *adap = pi->adapter;
822         unsigned int v, addr, bpt, cpt;
823         ssize_t len;
824
825         addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
826         rtnl_lock();
827         t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
828         v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
829         if (sched & 1)
830                 v >>= 16;
831         bpt = (v >> 8) & 0xff;
832         cpt = v & 0xff;
833         if (!cpt)
834                 len = sprintf(buf, "disabled\n");
835         else {
836                 v = (adap->params.vpd.cclk * 1000) / cpt;
837                 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
838         }
839         rtnl_unlock();
840         return len;
841 }
842
843 static ssize_t tm_attr_store(struct device *d,
844                              const char *buf, size_t len, int sched)
845 {
846         struct port_info *pi = netdev_priv(to_net_dev(d));
847         struct adapter *adap = pi->adapter;
848         unsigned int val;
849         char *endp;
850         ssize_t ret;
851
852         if (!capable(CAP_NET_ADMIN))
853                 return -EPERM;
854
855         val = simple_strtoul(buf, &endp, 0);
856         if (endp == buf || val > 10000000)
857                 return -EINVAL;
858
859         rtnl_lock();
860         ret = t3_config_sched(adap, val, sched);
861         if (!ret)
862                 ret = len;
863         rtnl_unlock();
864         return ret;
865 }
866
867 #define TM_ATTR(name, sched) \
868 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
869                            char *buf) \
870 { \
871         return tm_attr_show(d, buf, sched); \
872 } \
873 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
874                             const char *buf, size_t len) \
875 { \
876         return tm_attr_store(d, buf, len, sched); \
877 } \
878 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
879
880 TM_ATTR(sched0, 0);
881 TM_ATTR(sched1, 1);
882 TM_ATTR(sched2, 2);
883 TM_ATTR(sched3, 3);
884 TM_ATTR(sched4, 4);
885 TM_ATTR(sched5, 5);
886 TM_ATTR(sched6, 6);
887 TM_ATTR(sched7, 7);
888
889 static struct attribute *offload_attrs[] = {
890         &dev_attr_sched0.attr,
891         &dev_attr_sched1.attr,
892         &dev_attr_sched2.attr,
893         &dev_attr_sched3.attr,
894         &dev_attr_sched4.attr,
895         &dev_attr_sched5.attr,
896         &dev_attr_sched6.attr,
897         &dev_attr_sched7.attr,
898         NULL
899 };
900
901 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
902
903 /*
904  * Sends an sk_buff to an offload queue driver
905  * after dealing with any active network taps.
906  */
907 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
908 {
909         int ret;
910
911         local_bh_disable();
912         ret = t3_offload_tx(tdev, skb);
913         local_bh_enable();
914         return ret;
915 }
916
917 static int write_smt_entry(struct adapter *adapter, int idx)
918 {
919         struct cpl_smt_write_req *req;
920         struct port_info *pi = netdev_priv(adapter->port[idx]);
921         struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
922
923         if (!skb)
924                 return -ENOMEM;
925
926         req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
927         req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
928         OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
929         req->mtu_idx = NMTUS - 1;       /* should be 0 but there's a T3 bug */
930         req->iff = idx;
931         memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
932         memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
933         skb->priority = 1;
934         offload_tx(&adapter->tdev, skb);
935         return 0;
936 }
937
938 static int init_smt(struct adapter *adapter)
939 {
940         int i;
941
942         for_each_port(adapter, i)
943             write_smt_entry(adapter, i);
944         return 0;
945 }
946
947 static void init_port_mtus(struct adapter *adapter)
948 {
949         unsigned int mtus = adapter->port[0]->mtu;
950
951         if (adapter->port[1])
952                 mtus |= adapter->port[1]->mtu << 16;
953         t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
954 }
955
956 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
957                               int hi, int port)
958 {
959         struct sk_buff *skb;
960         struct mngt_pktsched_wr *req;
961         int ret;
962
963         skb = alloc_skb(sizeof(*req), GFP_KERNEL);
964         if (!skb)
965                 skb = adap->nofail_skb;
966         if (!skb)
967                 return -ENOMEM;
968
969         req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
970         req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
971         req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
972         req->sched = sched;
973         req->idx = qidx;
974         req->min = lo;
975         req->max = hi;
976         req->binding = port;
977         ret = t3_mgmt_tx(adap, skb);
978         if (skb == adap->nofail_skb) {
979                 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
980                                              GFP_KERNEL);
981                 if (!adap->nofail_skb)
982                         ret = -ENOMEM;
983         }
984
985         return ret;
986 }
987
988 static int bind_qsets(struct adapter *adap)
989 {
990         int i, j, err = 0;
991
992         for_each_port(adap, i) {
993                 const struct port_info *pi = adap2pinfo(adap, i);
994
995                 for (j = 0; j < pi->nqsets; ++j) {
996                         int ret = send_pktsched_cmd(adap, 1,
997                                                     pi->first_qset + j, -1,
998                                                     -1, i);
999                         if (ret)
1000                                 err = ret;
1001                 }
1002         }
1003
1004         return err;
1005 }
1006
1007 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "."                    \
1008         __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
1009 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
1010 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "."                \
1011         __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
1012 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
1013 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
1014 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
1015 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
1016 MODULE_FIRMWARE(FW_FNAME);
1017 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1018 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1019 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1020 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1021 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1022
1023 static inline const char *get_edc_fw_name(int edc_idx)
1024 {
1025         const char *fw_name = NULL;
1026
1027         switch (edc_idx) {
1028         case EDC_OPT_AEL2005:
1029                 fw_name = AEL2005_OPT_EDC_NAME;
1030                 break;
1031         case EDC_TWX_AEL2005:
1032                 fw_name = AEL2005_TWX_EDC_NAME;
1033                 break;
1034         case EDC_TWX_AEL2020:
1035                 fw_name = AEL2020_TWX_EDC_NAME;
1036                 break;
1037         }
1038         return fw_name;
1039 }
1040
1041 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1042 {
1043         struct adapter *adapter = phy->adapter;
1044         const struct firmware *fw;
1045         char buf[64];
1046         u32 csum;
1047         const __be32 *p;
1048         u16 *cache = phy->phy_cache;
1049         int i, ret;
1050
1051         snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1052
1053         ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1054         if (ret < 0) {
1055                 dev_err(&adapter->pdev->dev,
1056                         "could not upgrade firmware: unable to load %s\n",
1057                         buf);
1058                 return ret;
1059         }
1060
1061         /* check size, take checksum in account */
1062         if (fw->size > size + 4) {
1063                 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1064                        (unsigned int)fw->size, size + 4);
1065                 ret = -EINVAL;
1066         }
1067
1068         /* compute checksum */
1069         p = (const __be32 *)fw->data;
1070         for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1071                 csum += ntohl(p[i]);
1072
1073         if (csum != 0xffffffff) {
1074                 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1075                        csum);
1076                 ret = -EINVAL;
1077         }
1078
1079         for (i = 0; i < size / 4 ; i++) {
1080                 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1081                 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1082         }
1083
1084         release_firmware(fw);
1085
1086         return ret;
1087 }
1088
1089 static int upgrade_fw(struct adapter *adap)
1090 {
1091         int ret;
1092         const struct firmware *fw;
1093         struct device *dev = &adap->pdev->dev;
1094
1095         ret = request_firmware(&fw, FW_FNAME, dev);
1096         if (ret < 0) {
1097                 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1098                         FW_FNAME);
1099                 return ret;
1100         }
1101         ret = t3_load_fw(adap, fw->data, fw->size);
1102         release_firmware(fw);
1103
1104         if (ret == 0)
1105                 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1106                          FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1107         else
1108                 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1109                         FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1110
1111         return ret;
1112 }
1113
1114 static inline char t3rev2char(struct adapter *adapter)
1115 {
1116         char rev = 0;
1117
1118         switch(adapter->params.rev) {
1119         case T3_REV_B:
1120         case T3_REV_B2:
1121                 rev = 'b';
1122                 break;
1123         case T3_REV_C:
1124                 rev = 'c';
1125                 break;
1126         }
1127         return rev;
1128 }
1129
1130 static int update_tpsram(struct adapter *adap)
1131 {
1132         const struct firmware *tpsram;
1133         char buf[64];
1134         struct device *dev = &adap->pdev->dev;
1135         int ret;
1136         char rev;
1137
1138         rev = t3rev2char(adap);
1139         if (!rev)
1140                 return 0;
1141
1142         snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1143
1144         ret = request_firmware(&tpsram, buf, dev);
1145         if (ret < 0) {
1146                 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1147                         buf);
1148                 return ret;
1149         }
1150
1151         ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1152         if (ret)
1153                 goto release_tpsram;
1154
1155         ret = t3_set_proto_sram(adap, tpsram->data);
1156         if (ret == 0)
1157                 dev_info(dev,
1158                          "successful update of protocol engine "
1159                          "to %d.%d.%d\n",
1160                          TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1161         else
1162                 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1163                         TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1164         if (ret)
1165                 dev_err(dev, "loading protocol SRAM failed\n");
1166
1167 release_tpsram:
1168         release_firmware(tpsram);
1169
1170         return ret;
1171 }
1172
1173 /**
1174  *      cxgb_up - enable the adapter
1175  *      @adapter: adapter being enabled
1176  *
1177  *      Called when the first port is enabled, this function performs the
1178  *      actions necessary to make an adapter operational, such as completing
1179  *      the initialization of HW modules, and enabling interrupts.
1180  *
1181  *      Must be called with the rtnl lock held.
1182  */
1183 static int cxgb_up(struct adapter *adap)
1184 {
1185         int err;
1186
1187         if (!(adap->flags & FULL_INIT_DONE)) {
1188                 err = t3_check_fw_version(adap);
1189                 if (err == -EINVAL) {
1190                         err = upgrade_fw(adap);
1191                         CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1192                                 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1193                                 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1194                 }
1195
1196                 err = t3_check_tpsram_version(adap);
1197                 if (err == -EINVAL) {
1198                         err = update_tpsram(adap);
1199                         CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1200                                 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1201                                 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1202                 }
1203
1204                 /*
1205                  * Clear interrupts now to catch errors if t3_init_hw fails.
1206                  * We clear them again later as initialization may trigger
1207                  * conditions that can interrupt.
1208                  */
1209                 t3_intr_clear(adap);
1210
1211                 err = t3_init_hw(adap, 0);
1212                 if (err)
1213                         goto out;
1214
1215                 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1216                 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1217
1218                 err = setup_sge_qsets(adap);
1219                 if (err)
1220                         goto out;
1221
1222                 setup_rss(adap);
1223                 if (!(adap->flags & NAPI_INIT))
1224                         init_napi(adap);
1225
1226                 t3_start_sge_timers(adap);
1227                 adap->flags |= FULL_INIT_DONE;
1228         }
1229
1230         t3_intr_clear(adap);
1231
1232         if (adap->flags & USING_MSIX) {
1233                 name_msix_vecs(adap);
1234                 err = request_irq(adap->msix_info[0].vec,
1235                                   t3_async_intr_handler, 0,
1236                                   adap->msix_info[0].desc, adap);
1237                 if (err)
1238                         goto irq_err;
1239
1240                 err = request_msix_data_irqs(adap);
1241                 if (err) {
1242                         free_irq(adap->msix_info[0].vec, adap);
1243                         goto irq_err;
1244                 }
1245         } else if ((err = request_irq(adap->pdev->irq,
1246                                       t3_intr_handler(adap,
1247                                                       adap->sge.qs[0].rspq.
1248                                                       polling),
1249                                       (adap->flags & USING_MSI) ?
1250                                        0 : IRQF_SHARED,
1251                                       adap->name, adap)))
1252                 goto irq_err;
1253
1254         enable_all_napi(adap);
1255         t3_sge_start(adap);
1256         t3_intr_enable(adap);
1257
1258         if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1259             is_offload(adap) && init_tp_parity(adap) == 0)
1260                 adap->flags |= TP_PARITY_INIT;
1261
1262         if (adap->flags & TP_PARITY_INIT) {
1263                 t3_write_reg(adap, A_TP_INT_CAUSE,
1264                              F_CMCACHEPERR | F_ARPLUTPERR);
1265                 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1266         }
1267
1268         if (!(adap->flags & QUEUES_BOUND)) {
1269                 err = bind_qsets(adap);
1270                 if (err) {
1271                         CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1272                         t3_intr_disable(adap);
1273                         free_irq_resources(adap);
1274                         goto out;
1275                 }
1276                 adap->flags |= QUEUES_BOUND;
1277         }
1278
1279 out:
1280         return err;
1281 irq_err:
1282         CH_ERR(adap, "request_irq failed, err %d\n", err);
1283         goto out;
1284 }
1285
1286 /*
1287  * Release resources when all the ports and offloading have been stopped.
1288  */
1289 static void cxgb_down(struct adapter *adapter)
1290 {
1291         t3_sge_stop(adapter);
1292         spin_lock_irq(&adapter->work_lock);     /* sync with PHY intr task */
1293         t3_intr_disable(adapter);
1294         spin_unlock_irq(&adapter->work_lock);
1295
1296         free_irq_resources(adapter);
1297         quiesce_rx(adapter);
1298         t3_sge_stop(adapter);
1299         flush_workqueue(cxgb3_wq);      /* wait for external IRQ handler */
1300 }
1301
1302 static void schedule_chk_task(struct adapter *adap)
1303 {
1304         unsigned int timeo;
1305
1306         timeo = adap->params.linkpoll_period ?
1307             (HZ * adap->params.linkpoll_period) / 10 :
1308             adap->params.stats_update_period * HZ;
1309         if (timeo)
1310                 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1311 }
1312
1313 static int offload_open(struct net_device *dev)
1314 {
1315         struct port_info *pi = netdev_priv(dev);
1316         struct adapter *adapter = pi->adapter;
1317         struct t3cdev *tdev = dev2t3cdev(dev);
1318         int adap_up = adapter->open_device_map & PORT_MASK;
1319         int err;
1320
1321         if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1322                 return 0;
1323
1324         if (!adap_up && (err = cxgb_up(adapter)) < 0)
1325                 goto out;
1326
1327         t3_tp_set_offload_mode(adapter, 1);
1328         tdev->lldev = adapter->port[0];
1329         err = cxgb3_offload_activate(adapter);
1330         if (err)
1331                 goto out;
1332
1333         init_port_mtus(adapter);
1334         t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1335                      adapter->params.b_wnd,
1336                      adapter->params.rev == 0 ?
1337                      adapter->port[0]->mtu : 0xffff);
1338         init_smt(adapter);
1339
1340         if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1341                 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1342
1343         /* Call back all registered clients */
1344         cxgb3_add_clients(tdev);
1345
1346 out:
1347         /* restore them in case the offload module has changed them */
1348         if (err) {
1349                 t3_tp_set_offload_mode(adapter, 0);
1350                 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1351                 cxgb3_set_dummy_ops(tdev);
1352         }
1353         return err;
1354 }
1355
1356 static int offload_close(struct t3cdev *tdev)
1357 {
1358         struct adapter *adapter = tdev2adap(tdev);
1359
1360         if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1361                 return 0;
1362
1363         /* Call back all registered clients */
1364         cxgb3_remove_clients(tdev);
1365
1366         sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1367
1368         /* Flush work scheduled while releasing TIDs */
1369         flush_scheduled_work();
1370
1371         tdev->lldev = NULL;
1372         cxgb3_set_dummy_ops(tdev);
1373         t3_tp_set_offload_mode(adapter, 0);
1374         clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1375
1376         if (!adapter->open_device_map)
1377                 cxgb_down(adapter);
1378
1379         cxgb3_offload_deactivate(adapter);
1380         return 0;
1381 }
1382
1383 static int cxgb_open(struct net_device *dev)
1384 {
1385         struct port_info *pi = netdev_priv(dev);
1386         struct adapter *adapter = pi->adapter;
1387         int other_ports = adapter->open_device_map & PORT_MASK;
1388         int err;
1389
1390         if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1391                 return err;
1392
1393         set_bit(pi->port_id, &adapter->open_device_map);
1394         if (is_offload(adapter) && !ofld_disable) {
1395                 err = offload_open(dev);
1396                 if (err)
1397                         printk(KERN_WARNING
1398                                "Could not initialize offload capabilities\n");
1399         }
1400
1401         dev->real_num_tx_queues = pi->nqsets;
1402         link_start(dev);
1403         t3_port_intr_enable(adapter, pi->port_id);
1404         netif_tx_start_all_queues(dev);
1405         if (!other_ports)
1406                 schedule_chk_task(adapter);
1407
1408         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1409         return 0;
1410 }
1411
1412 static int cxgb_close(struct net_device *dev)
1413 {
1414         struct port_info *pi = netdev_priv(dev);
1415         struct adapter *adapter = pi->adapter;
1416
1417         
1418         if (!adapter->open_device_map)
1419                 return 0;
1420
1421         /* Stop link fault interrupts */
1422         t3_xgm_intr_disable(adapter, pi->port_id);
1423         t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1424
1425         t3_port_intr_disable(adapter, pi->port_id);
1426         netif_tx_stop_all_queues(dev);
1427         pi->phy.ops->power_down(&pi->phy, 1);
1428         netif_carrier_off(dev);
1429         t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1430
1431         spin_lock_irq(&adapter->work_lock);     /* sync with update task */
1432         clear_bit(pi->port_id, &adapter->open_device_map);
1433         spin_unlock_irq(&adapter->work_lock);
1434
1435         if (!(adapter->open_device_map & PORT_MASK))
1436                 cancel_delayed_work_sync(&adapter->adap_check_task);
1437
1438         if (!adapter->open_device_map)
1439                 cxgb_down(adapter);
1440
1441         cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1442         return 0;
1443 }
1444
1445 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1446 {
1447         struct port_info *pi = netdev_priv(dev);
1448         struct adapter *adapter = pi->adapter;
1449         struct net_device_stats *ns = &pi->netstats;
1450         const struct mac_stats *pstats;
1451
1452         spin_lock(&adapter->stats_lock);
1453         pstats = t3_mac_update_stats(&pi->mac);
1454         spin_unlock(&adapter->stats_lock);
1455
1456         ns->tx_bytes = pstats->tx_octets;
1457         ns->tx_packets = pstats->tx_frames;
1458         ns->rx_bytes = pstats->rx_octets;
1459         ns->rx_packets = pstats->rx_frames;
1460         ns->multicast = pstats->rx_mcast_frames;
1461
1462         ns->tx_errors = pstats->tx_underrun;
1463         ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1464             pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1465             pstats->rx_fifo_ovfl;
1466
1467         /* detailed rx_errors */
1468         ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1469         ns->rx_over_errors = 0;
1470         ns->rx_crc_errors = pstats->rx_fcs_errs;
1471         ns->rx_frame_errors = pstats->rx_symbol_errs;
1472         ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1473         ns->rx_missed_errors = pstats->rx_cong_drops;
1474
1475         /* detailed tx_errors */
1476         ns->tx_aborted_errors = 0;
1477         ns->tx_carrier_errors = 0;
1478         ns->tx_fifo_errors = pstats->tx_underrun;
1479         ns->tx_heartbeat_errors = 0;
1480         ns->tx_window_errors = 0;
1481         return ns;
1482 }
1483
1484 static u32 get_msglevel(struct net_device *dev)
1485 {
1486         struct port_info *pi = netdev_priv(dev);
1487         struct adapter *adapter = pi->adapter;
1488
1489         return adapter->msg_enable;
1490 }
1491
1492 static void set_msglevel(struct net_device *dev, u32 val)
1493 {
1494         struct port_info *pi = netdev_priv(dev);
1495         struct adapter *adapter = pi->adapter;
1496
1497         adapter->msg_enable = val;
1498 }
1499
1500 static char stats_strings[][ETH_GSTRING_LEN] = {
1501         "TxOctetsOK         ",
1502         "TxFramesOK         ",
1503         "TxMulticastFramesOK",
1504         "TxBroadcastFramesOK",
1505         "TxPauseFrames      ",
1506         "TxUnderrun         ",
1507         "TxExtUnderrun      ",
1508
1509         "TxFrames64         ",
1510         "TxFrames65To127    ",
1511         "TxFrames128To255   ",
1512         "TxFrames256To511   ",
1513         "TxFrames512To1023  ",
1514         "TxFrames1024To1518 ",
1515         "TxFrames1519ToMax  ",
1516
1517         "RxOctetsOK         ",
1518         "RxFramesOK         ",
1519         "RxMulticastFramesOK",
1520         "RxBroadcastFramesOK",
1521         "RxPauseFrames      ",
1522         "RxFCSErrors        ",
1523         "RxSymbolErrors     ",
1524         "RxShortErrors      ",
1525         "RxJabberErrors     ",
1526         "RxLengthErrors     ",
1527         "RxFIFOoverflow     ",
1528
1529         "RxFrames64         ",
1530         "RxFrames65To127    ",
1531         "RxFrames128To255   ",
1532         "RxFrames256To511   ",
1533         "RxFrames512To1023  ",
1534         "RxFrames1024To1518 ",
1535         "RxFrames1519ToMax  ",
1536
1537         "PhyFIFOErrors      ",
1538         "TSO                ",
1539         "VLANextractions    ",
1540         "VLANinsertions     ",
1541         "TxCsumOffload      ",
1542         "RxCsumGood         ",
1543         "LroAggregated      ",
1544         "LroFlushed         ",
1545         "LroNoDesc          ",
1546         "RxDrops            ",
1547
1548         "CheckTXEnToggled   ",
1549         "CheckResets        ",
1550
1551         "LinkFaults         ",
1552 };
1553
1554 static int get_sset_count(struct net_device *dev, int sset)
1555 {
1556         switch (sset) {
1557         case ETH_SS_STATS:
1558                 return ARRAY_SIZE(stats_strings);
1559         default:
1560                 return -EOPNOTSUPP;
1561         }
1562 }
1563
1564 #define T3_REGMAP_SIZE (3 * 1024)
1565
1566 static int get_regs_len(struct net_device *dev)
1567 {
1568         return T3_REGMAP_SIZE;
1569 }
1570
1571 static int get_eeprom_len(struct net_device *dev)
1572 {
1573         return EEPROMSIZE;
1574 }
1575
1576 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1577 {
1578         struct port_info *pi = netdev_priv(dev);
1579         struct adapter *adapter = pi->adapter;
1580         u32 fw_vers = 0;
1581         u32 tp_vers = 0;
1582
1583         spin_lock(&adapter->stats_lock);
1584         t3_get_fw_version(adapter, &fw_vers);
1585         t3_get_tp_version(adapter, &tp_vers);
1586         spin_unlock(&adapter->stats_lock);
1587
1588         strcpy(info->driver, DRV_NAME);
1589         strcpy(info->version, DRV_VERSION);
1590         strcpy(info->bus_info, pci_name(adapter->pdev));
1591         if (!fw_vers)
1592                 strcpy(info->fw_version, "N/A");
1593         else {
1594                 snprintf(info->fw_version, sizeof(info->fw_version),
1595                          "%s %u.%u.%u TP %u.%u.%u",
1596                          G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1597                          G_FW_VERSION_MAJOR(fw_vers),
1598                          G_FW_VERSION_MINOR(fw_vers),
1599                          G_FW_VERSION_MICRO(fw_vers),
1600                          G_TP_VERSION_MAJOR(tp_vers),
1601                          G_TP_VERSION_MINOR(tp_vers),
1602                          G_TP_VERSION_MICRO(tp_vers));
1603         }
1604 }
1605
1606 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1607 {
1608         if (stringset == ETH_SS_STATS)
1609                 memcpy(data, stats_strings, sizeof(stats_strings));
1610 }
1611
1612 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1613                                             struct port_info *p, int idx)
1614 {
1615         int i;
1616         unsigned long tot = 0;
1617
1618         for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1619                 tot += adapter->sge.qs[i].port_stats[idx];
1620         return tot;
1621 }
1622
1623 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1624                       u64 *data)
1625 {
1626         struct port_info *pi = netdev_priv(dev);
1627         struct adapter *adapter = pi->adapter;
1628         const struct mac_stats *s;
1629
1630         spin_lock(&adapter->stats_lock);
1631         s = t3_mac_update_stats(&pi->mac);
1632         spin_unlock(&adapter->stats_lock);
1633
1634         *data++ = s->tx_octets;
1635         *data++ = s->tx_frames;
1636         *data++ = s->tx_mcast_frames;
1637         *data++ = s->tx_bcast_frames;
1638         *data++ = s->tx_pause;
1639         *data++ = s->tx_underrun;
1640         *data++ = s->tx_fifo_urun;
1641
1642         *data++ = s->tx_frames_64;
1643         *data++ = s->tx_frames_65_127;
1644         *data++ = s->tx_frames_128_255;
1645         *data++ = s->tx_frames_256_511;
1646         *data++ = s->tx_frames_512_1023;
1647         *data++ = s->tx_frames_1024_1518;
1648         *data++ = s->tx_frames_1519_max;
1649
1650         *data++ = s->rx_octets;
1651         *data++ = s->rx_frames;
1652         *data++ = s->rx_mcast_frames;
1653         *data++ = s->rx_bcast_frames;
1654         *data++ = s->rx_pause;
1655         *data++ = s->rx_fcs_errs;
1656         *data++ = s->rx_symbol_errs;
1657         *data++ = s->rx_short;
1658         *data++ = s->rx_jabber;
1659         *data++ = s->rx_too_long;
1660         *data++ = s->rx_fifo_ovfl;
1661
1662         *data++ = s->rx_frames_64;
1663         *data++ = s->rx_frames_65_127;
1664         *data++ = s->rx_frames_128_255;
1665         *data++ = s->rx_frames_256_511;
1666         *data++ = s->rx_frames_512_1023;
1667         *data++ = s->rx_frames_1024_1518;
1668         *data++ = s->rx_frames_1519_max;
1669
1670         *data++ = pi->phy.fifo_errors;
1671
1672         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1673         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1674         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1675         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1676         *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1677         *data++ = 0;
1678         *data++ = 0;
1679         *data++ = 0;
1680         *data++ = s->rx_cong_drops;
1681
1682         *data++ = s->num_toggled;
1683         *data++ = s->num_resets;
1684
1685         *data++ = s->link_faults;
1686 }
1687
1688 static inline void reg_block_dump(struct adapter *ap, void *buf,
1689                                   unsigned int start, unsigned int end)
1690 {
1691         u32 *p = buf + start;
1692
1693         for (; start <= end; start += sizeof(u32))
1694                 *p++ = t3_read_reg(ap, start);
1695 }
1696
1697 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1698                      void *buf)
1699 {
1700         struct port_info *pi = netdev_priv(dev);
1701         struct adapter *ap = pi->adapter;
1702
1703         /*
1704          * Version scheme:
1705          * bits 0..9: chip version
1706          * bits 10..15: chip revision
1707          * bit 31: set for PCIe cards
1708          */
1709         regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1710
1711         /*
1712          * We skip the MAC statistics registers because they are clear-on-read.
1713          * Also reading multi-register stats would need to synchronize with the
1714          * periodic mac stats accumulation.  Hard to justify the complexity.
1715          */
1716         memset(buf, 0, T3_REGMAP_SIZE);
1717         reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1718         reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1719         reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1720         reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1721         reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1722         reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1723                        XGM_REG(A_XGM_SERDES_STAT3, 1));
1724         reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1725                        XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1726 }
1727
1728 static int restart_autoneg(struct net_device *dev)
1729 {
1730         struct port_info *p = netdev_priv(dev);
1731
1732         if (!netif_running(dev))
1733                 return -EAGAIN;
1734         if (p->link_config.autoneg != AUTONEG_ENABLE)
1735                 return -EINVAL;
1736         p->phy.ops->autoneg_restart(&p->phy);
1737         return 0;
1738 }
1739
1740 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1741 {
1742         struct port_info *pi = netdev_priv(dev);
1743         struct adapter *adapter = pi->adapter;
1744         int i;
1745
1746         if (data == 0)
1747                 data = 2;
1748
1749         for (i = 0; i < data * 2; i++) {
1750                 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1751                                  (i & 1) ? F_GPIO0_OUT_VAL : 0);
1752                 if (msleep_interruptible(500))
1753                         break;
1754         }
1755         t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1756                          F_GPIO0_OUT_VAL);
1757         return 0;
1758 }
1759
1760 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1761 {
1762         struct port_info *p = netdev_priv(dev);
1763
1764         cmd->supported = p->link_config.supported;
1765         cmd->advertising = p->link_config.advertising;
1766
1767         if (netif_carrier_ok(dev)) {
1768                 cmd->speed = p->link_config.speed;
1769                 cmd->duplex = p->link_config.duplex;
1770         } else {
1771                 cmd->speed = -1;
1772                 cmd->duplex = -1;
1773         }
1774
1775         cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1776         cmd->phy_address = p->phy.mdio.prtad;
1777         cmd->transceiver = XCVR_EXTERNAL;
1778         cmd->autoneg = p->link_config.autoneg;
1779         cmd->maxtxpkt = 0;
1780         cmd->maxrxpkt = 0;
1781         return 0;
1782 }
1783
1784 static int speed_duplex_to_caps(int speed, int duplex)
1785 {
1786         int cap = 0;
1787
1788         switch (speed) {
1789         case SPEED_10:
1790                 if (duplex == DUPLEX_FULL)
1791                         cap = SUPPORTED_10baseT_Full;
1792                 else
1793                         cap = SUPPORTED_10baseT_Half;
1794                 break;
1795         case SPEED_100:
1796                 if (duplex == DUPLEX_FULL)
1797                         cap = SUPPORTED_100baseT_Full;
1798                 else
1799                         cap = SUPPORTED_100baseT_Half;
1800                 break;
1801         case SPEED_1000:
1802                 if (duplex == DUPLEX_FULL)
1803                         cap = SUPPORTED_1000baseT_Full;
1804                 else
1805                         cap = SUPPORTED_1000baseT_Half;
1806                 break;
1807         case SPEED_10000:
1808                 if (duplex == DUPLEX_FULL)
1809                         cap = SUPPORTED_10000baseT_Full;
1810         }
1811         return cap;
1812 }
1813
1814 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1815                       ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1816                       ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1817                       ADVERTISED_10000baseT_Full)
1818
1819 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1820 {
1821         struct port_info *p = netdev_priv(dev);
1822         struct link_config *lc = &p->link_config;
1823
1824         if (!(lc->supported & SUPPORTED_Autoneg)) {
1825                 /*
1826                  * PHY offers a single speed/duplex.  See if that's what's
1827                  * being requested.
1828                  */
1829                 if (cmd->autoneg == AUTONEG_DISABLE) {
1830                         int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1831                         if (lc->supported & cap)
1832                                 return 0;
1833                 }
1834                 return -EINVAL;
1835         }
1836
1837         if (cmd->autoneg == AUTONEG_DISABLE) {
1838                 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1839
1840                 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1841                         return -EINVAL;
1842                 lc->requested_speed = cmd->speed;
1843                 lc->requested_duplex = cmd->duplex;
1844                 lc->advertising = 0;
1845         } else {
1846                 cmd->advertising &= ADVERTISED_MASK;
1847                 cmd->advertising &= lc->supported;
1848                 if (!cmd->advertising)
1849                         return -EINVAL;
1850                 lc->requested_speed = SPEED_INVALID;
1851                 lc->requested_duplex = DUPLEX_INVALID;
1852                 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1853         }
1854         lc->autoneg = cmd->autoneg;
1855         if (netif_running(dev))
1856                 t3_link_start(&p->phy, &p->mac, lc);
1857         return 0;
1858 }
1859
1860 static void get_pauseparam(struct net_device *dev,
1861                            struct ethtool_pauseparam *epause)
1862 {
1863         struct port_info *p = netdev_priv(dev);
1864
1865         epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1866         epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1867         epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1868 }
1869
1870 static int set_pauseparam(struct net_device *dev,
1871                           struct ethtool_pauseparam *epause)
1872 {
1873         struct port_info *p = netdev_priv(dev);
1874         struct link_config *lc = &p->link_config;
1875
1876         if (epause->autoneg == AUTONEG_DISABLE)
1877                 lc->requested_fc = 0;
1878         else if (lc->supported & SUPPORTED_Autoneg)
1879                 lc->requested_fc = PAUSE_AUTONEG;
1880         else
1881                 return -EINVAL;
1882
1883         if (epause->rx_pause)
1884                 lc->requested_fc |= PAUSE_RX;
1885         if (epause->tx_pause)
1886                 lc->requested_fc |= PAUSE_TX;
1887         if (lc->autoneg == AUTONEG_ENABLE) {
1888                 if (netif_running(dev))
1889                         t3_link_start(&p->phy, &p->mac, lc);
1890         } else {
1891                 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1892                 if (netif_running(dev))
1893                         t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1894         }
1895         return 0;
1896 }
1897
1898 static u32 get_rx_csum(struct net_device *dev)
1899 {
1900         struct port_info *p = netdev_priv(dev);
1901
1902         return p->rx_offload & T3_RX_CSUM;
1903 }
1904
1905 static int set_rx_csum(struct net_device *dev, u32 data)
1906 {
1907         struct port_info *p = netdev_priv(dev);
1908
1909         if (data) {
1910                 p->rx_offload |= T3_RX_CSUM;
1911         } else {
1912                 int i;
1913
1914                 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1915                 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1916                         set_qset_lro(dev, i, 0);
1917         }
1918         return 0;
1919 }
1920
1921 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1922 {
1923         struct port_info *pi = netdev_priv(dev);
1924         struct adapter *adapter = pi->adapter;
1925         const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1926
1927         e->rx_max_pending = MAX_RX_BUFFERS;
1928         e->rx_mini_max_pending = 0;
1929         e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1930         e->tx_max_pending = MAX_TXQ_ENTRIES;
1931
1932         e->rx_pending = q->fl_size;
1933         e->rx_mini_pending = q->rspq_size;
1934         e->rx_jumbo_pending = q->jumbo_size;
1935         e->tx_pending = q->txq_size[0];
1936 }
1937
1938 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1939 {
1940         struct port_info *pi = netdev_priv(dev);
1941         struct adapter *adapter = pi->adapter;
1942         struct qset_params *q;
1943         int i;
1944
1945         if (e->rx_pending > MAX_RX_BUFFERS ||
1946             e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1947             e->tx_pending > MAX_TXQ_ENTRIES ||
1948             e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1949             e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1950             e->rx_pending < MIN_FL_ENTRIES ||
1951             e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1952             e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1953                 return -EINVAL;
1954
1955         if (adapter->flags & FULL_INIT_DONE)
1956                 return -EBUSY;
1957
1958         q = &adapter->params.sge.qset[pi->first_qset];
1959         for (i = 0; i < pi->nqsets; ++i, ++q) {
1960                 q->rspq_size = e->rx_mini_pending;
1961                 q->fl_size = e->rx_pending;
1962                 q->jumbo_size = e->rx_jumbo_pending;
1963                 q->txq_size[0] = e->tx_pending;
1964                 q->txq_size[1] = e->tx_pending;
1965                 q->txq_size[2] = e->tx_pending;
1966         }
1967         return 0;
1968 }
1969
1970 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1971 {
1972         struct port_info *pi = netdev_priv(dev);
1973         struct adapter *adapter = pi->adapter;
1974         struct qset_params *qsp = &adapter->params.sge.qset[0];
1975         struct sge_qset *qs = &adapter->sge.qs[0];
1976
1977         if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1978                 return -EINVAL;
1979
1980         qsp->coalesce_usecs = c->rx_coalesce_usecs;
1981         t3_update_qset_coalesce(qs, qsp);
1982         return 0;
1983 }
1984
1985 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1986 {
1987         struct port_info *pi = netdev_priv(dev);
1988         struct adapter *adapter = pi->adapter;
1989         struct qset_params *q = adapter->params.sge.qset;
1990
1991         c->rx_coalesce_usecs = q->coalesce_usecs;
1992         return 0;
1993 }
1994
1995 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1996                       u8 * data)
1997 {
1998         struct port_info *pi = netdev_priv(dev);
1999         struct adapter *adapter = pi->adapter;
2000         int i, err = 0;
2001
2002         u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2003         if (!buf)
2004                 return -ENOMEM;
2005
2006         e->magic = EEPROM_MAGIC;
2007         for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2008                 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2009
2010         if (!err)
2011                 memcpy(data, buf + e->offset, e->len);
2012         kfree(buf);
2013         return err;
2014 }
2015
2016 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2017                       u8 * data)
2018 {
2019         struct port_info *pi = netdev_priv(dev);
2020         struct adapter *adapter = pi->adapter;
2021         u32 aligned_offset, aligned_len;
2022         __le32 *p;
2023         u8 *buf;
2024         int err;
2025
2026         if (eeprom->magic != EEPROM_MAGIC)
2027                 return -EINVAL;
2028
2029         aligned_offset = eeprom->offset & ~3;
2030         aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2031
2032         if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2033                 buf = kmalloc(aligned_len, GFP_KERNEL);
2034                 if (!buf)
2035                         return -ENOMEM;
2036                 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2037                 if (!err && aligned_len > 4)
2038                         err = t3_seeprom_read(adapter,
2039                                               aligned_offset + aligned_len - 4,
2040                                               (__le32 *) & buf[aligned_len - 4]);
2041                 if (err)
2042                         goto out;
2043                 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2044         } else
2045                 buf = data;
2046
2047         err = t3_seeprom_wp(adapter, 0);
2048         if (err)
2049                 goto out;
2050
2051         for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2052                 err = t3_seeprom_write(adapter, aligned_offset, *p);
2053                 aligned_offset += 4;
2054         }
2055
2056         if (!err)
2057                 err = t3_seeprom_wp(adapter, 1);
2058 out:
2059         if (buf != data)
2060                 kfree(buf);
2061         return err;
2062 }
2063
2064 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2065 {
2066         wol->supported = 0;
2067         wol->wolopts = 0;
2068         memset(&wol->sopass, 0, sizeof(wol->sopass));
2069 }
2070
2071 static const struct ethtool_ops cxgb_ethtool_ops = {
2072         .get_settings = get_settings,
2073         .set_settings = set_settings,
2074         .get_drvinfo = get_drvinfo,
2075         .get_msglevel = get_msglevel,
2076         .set_msglevel = set_msglevel,
2077         .get_ringparam = get_sge_param,
2078         .set_ringparam = set_sge_param,
2079         .get_coalesce = get_coalesce,
2080         .set_coalesce = set_coalesce,
2081         .get_eeprom_len = get_eeprom_len,
2082         .get_eeprom = get_eeprom,
2083         .set_eeprom = set_eeprom,
2084         .get_pauseparam = get_pauseparam,
2085         .set_pauseparam = set_pauseparam,
2086         .get_rx_csum = get_rx_csum,
2087         .set_rx_csum = set_rx_csum,
2088         .set_tx_csum = ethtool_op_set_tx_csum,
2089         .set_sg = ethtool_op_set_sg,
2090         .get_link = ethtool_op_get_link,
2091         .get_strings = get_strings,
2092         .phys_id = cxgb3_phys_id,
2093         .nway_reset = restart_autoneg,
2094         .get_sset_count = get_sset_count,
2095         .get_ethtool_stats = get_stats,
2096         .get_regs_len = get_regs_len,
2097         .get_regs = get_regs,
2098         .get_wol = get_wol,
2099         .set_tso = ethtool_op_set_tso,
2100 };
2101
2102 static int in_range(int val, int lo, int hi)
2103 {
2104         return val < 0 || (val <= hi && val >= lo);
2105 }
2106
2107 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2108 {
2109         struct port_info *pi = netdev_priv(dev);
2110         struct adapter *adapter = pi->adapter;
2111         u32 cmd;
2112         int ret;
2113
2114         if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2115                 return -EFAULT;
2116
2117         switch (cmd) {
2118         case CHELSIO_SET_QSET_PARAMS:{
2119                 int i;
2120                 struct qset_params *q;
2121                 struct ch_qset_params t;
2122                 int q1 = pi->first_qset;
2123                 int nqsets = pi->nqsets;
2124
2125                 if (!capable(CAP_NET_ADMIN))
2126                         return -EPERM;
2127                 if (copy_from_user(&t, useraddr, sizeof(t)))
2128                         return -EFAULT;
2129                 if (t.qset_idx >= SGE_QSETS)
2130                         return -EINVAL;
2131                 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2132                     !in_range(t.cong_thres, 0, 255) ||
2133                     !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2134                               MAX_TXQ_ENTRIES) ||
2135                     !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2136                               MAX_TXQ_ENTRIES) ||
2137                     !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2138                               MAX_CTRL_TXQ_ENTRIES) ||
2139                     !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2140                               MAX_RX_BUFFERS) ||
2141                     !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2142                               MAX_RX_JUMBO_BUFFERS) ||
2143                     !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2144                               MAX_RSPQ_ENTRIES))
2145                         return -EINVAL;
2146
2147                 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2148                         for_each_port(adapter, i) {
2149                                 pi = adap2pinfo(adapter, i);
2150                                 if (t.qset_idx >= pi->first_qset &&
2151                                     t.qset_idx < pi->first_qset + pi->nqsets &&
2152                                     !(pi->rx_offload & T3_RX_CSUM))
2153                                         return -EINVAL;
2154                         }
2155
2156                 if ((adapter->flags & FULL_INIT_DONE) &&
2157                         (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2158                         t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2159                         t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2160                         t.polling >= 0 || t.cong_thres >= 0))
2161                         return -EBUSY;
2162
2163                 /* Allow setting of any available qset when offload enabled */
2164                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2165                         q1 = 0;
2166                         for_each_port(adapter, i) {
2167                                 pi = adap2pinfo(adapter, i);
2168                                 nqsets += pi->first_qset + pi->nqsets;
2169                         }
2170                 }
2171
2172                 if (t.qset_idx < q1)
2173                         return -EINVAL;
2174                 if (t.qset_idx > q1 + nqsets - 1)
2175                         return -EINVAL;
2176
2177                 q = &adapter->params.sge.qset[t.qset_idx];
2178
2179                 if (t.rspq_size >= 0)
2180                         q->rspq_size = t.rspq_size;
2181                 if (t.fl_size[0] >= 0)
2182                         q->fl_size = t.fl_size[0];
2183                 if (t.fl_size[1] >= 0)
2184                         q->jumbo_size = t.fl_size[1];
2185                 if (t.txq_size[0] >= 0)
2186                         q->txq_size[0] = t.txq_size[0];
2187                 if (t.txq_size[1] >= 0)
2188                         q->txq_size[1] = t.txq_size[1];
2189                 if (t.txq_size[2] >= 0)
2190                         q->txq_size[2] = t.txq_size[2];
2191                 if (t.cong_thres >= 0)
2192                         q->cong_thres = t.cong_thres;
2193                 if (t.intr_lat >= 0) {
2194                         struct sge_qset *qs =
2195                                 &adapter->sge.qs[t.qset_idx];
2196
2197                         q->coalesce_usecs = t.intr_lat;
2198                         t3_update_qset_coalesce(qs, q);
2199                 }
2200                 if (t.polling >= 0) {
2201                         if (adapter->flags & USING_MSIX)
2202                                 q->polling = t.polling;
2203                         else {
2204                                 /* No polling with INTx for T3A */
2205                                 if (adapter->params.rev == 0 &&
2206                                         !(adapter->flags & USING_MSI))
2207                                         t.polling = 0;
2208
2209                                 for (i = 0; i < SGE_QSETS; i++) {
2210                                         q = &adapter->params.sge.
2211                                                 qset[i];
2212                                         q->polling = t.polling;
2213                                 }
2214                         }
2215                 }
2216                 if (t.lro >= 0)
2217                         set_qset_lro(dev, t.qset_idx, t.lro);
2218
2219                 break;
2220         }
2221         case CHELSIO_GET_QSET_PARAMS:{
2222                 struct qset_params *q;
2223                 struct ch_qset_params t;
2224                 int q1 = pi->first_qset;
2225                 int nqsets = pi->nqsets;
2226                 int i;
2227
2228                 if (copy_from_user(&t, useraddr, sizeof(t)))
2229                         return -EFAULT;
2230
2231                 /* Display qsets for all ports when offload enabled */
2232                 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2233                         q1 = 0;
2234                         for_each_port(adapter, i) {
2235                                 pi = adap2pinfo(adapter, i);
2236                                 nqsets = pi->first_qset + pi->nqsets;
2237                         }
2238                 }
2239
2240                 if (t.qset_idx >= nqsets)
2241                         return -EINVAL;
2242
2243                 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2244                 t.rspq_size = q->rspq_size;
2245                 t.txq_size[0] = q->txq_size[0];
2246                 t.txq_size[1] = q->txq_size[1];
2247                 t.txq_size[2] = q->txq_size[2];
2248                 t.fl_size[0] = q->fl_size;
2249                 t.fl_size[1] = q->jumbo_size;
2250                 t.polling = q->polling;
2251                 t.lro = q->lro;
2252                 t.intr_lat = q->coalesce_usecs;
2253                 t.cong_thres = q->cong_thres;
2254                 t.qnum = q1;
2255
2256                 if (adapter->flags & USING_MSIX)
2257                         t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2258                 else
2259                         t.vector = adapter->pdev->irq;
2260
2261                 if (copy_to_user(useraddr, &t, sizeof(t)))
2262                         return -EFAULT;
2263                 break;
2264         }
2265         case CHELSIO_SET_QSET_NUM:{
2266                 struct ch_reg edata;
2267                 unsigned int i, first_qset = 0, other_qsets = 0;
2268
2269                 if (!capable(CAP_NET_ADMIN))
2270                         return -EPERM;
2271                 if (adapter->flags & FULL_INIT_DONE)
2272                         return -EBUSY;
2273                 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2274                         return -EFAULT;
2275                 if (edata.val < 1 ||
2276                         (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2277                         return -EINVAL;
2278
2279                 for_each_port(adapter, i)
2280                         if (adapter->port[i] && adapter->port[i] != dev)
2281                                 other_qsets += adap2pinfo(adapter, i)->nqsets;
2282
2283                 if (edata.val + other_qsets > SGE_QSETS)
2284                         return -EINVAL;
2285
2286                 pi->nqsets = edata.val;
2287
2288                 for_each_port(adapter, i)
2289                         if (adapter->port[i]) {
2290                                 pi = adap2pinfo(adapter, i);
2291                                 pi->first_qset = first_qset;
2292                                 first_qset += pi->nqsets;
2293                         }
2294                 break;
2295         }
2296         case CHELSIO_GET_QSET_NUM:{
2297                 struct ch_reg edata;
2298
2299                 memset(&edata, 0, sizeof(struct ch_reg));
2300
2301                 edata.cmd = CHELSIO_GET_QSET_NUM;
2302                 edata.val = pi->nqsets;
2303                 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2304                         return -EFAULT;
2305                 break;
2306         }
2307         case CHELSIO_LOAD_FW:{
2308                 u8 *fw_data;
2309                 struct ch_mem_range t;
2310
2311                 if (!capable(CAP_SYS_RAWIO))
2312                         return -EPERM;
2313                 if (copy_from_user(&t, useraddr, sizeof(t)))
2314                         return -EFAULT;
2315                 /* Check t.len sanity ? */
2316                 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2317                 if (IS_ERR(fw_data))
2318                         return PTR_ERR(fw_data);
2319
2320                 ret = t3_load_fw(adapter, fw_data, t.len);
2321                 kfree(fw_data);
2322                 if (ret)
2323                         return ret;
2324                 break;
2325         }
2326         case CHELSIO_SETMTUTAB:{
2327                 struct ch_mtus m;
2328                 int i;
2329
2330                 if (!is_offload(adapter))
2331                         return -EOPNOTSUPP;
2332                 if (!capable(CAP_NET_ADMIN))
2333                         return -EPERM;
2334                 if (offload_running(adapter))
2335                         return -EBUSY;
2336                 if (copy_from_user(&m, useraddr, sizeof(m)))
2337                         return -EFAULT;
2338                 if (m.nmtus != NMTUS)
2339                         return -EINVAL;
2340                 if (m.mtus[0] < 81)     /* accommodate SACK */
2341                         return -EINVAL;
2342
2343                 /* MTUs must be in ascending order */
2344                 for (i = 1; i < NMTUS; ++i)
2345                         if (m.mtus[i] < m.mtus[i - 1])
2346                                 return -EINVAL;
2347
2348                 memcpy(adapter->params.mtus, m.mtus,
2349                         sizeof(adapter->params.mtus));
2350                 break;
2351         }
2352         case CHELSIO_GET_PM:{
2353                 struct tp_params *p = &adapter->params.tp;
2354                 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2355
2356                 if (!is_offload(adapter))
2357                         return -EOPNOTSUPP;
2358                 m.tx_pg_sz = p->tx_pg_size;
2359                 m.tx_num_pg = p->tx_num_pgs;
2360                 m.rx_pg_sz = p->rx_pg_size;
2361                 m.rx_num_pg = p->rx_num_pgs;
2362                 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2363                 if (copy_to_user(useraddr, &m, sizeof(m)))
2364                         return -EFAULT;
2365                 break;
2366         }
2367         case CHELSIO_SET_PM:{
2368                 struct ch_pm m;
2369                 struct tp_params *p = &adapter->params.tp;
2370
2371                 if (!is_offload(adapter))
2372                         return -EOPNOTSUPP;
2373                 if (!capable(CAP_NET_ADMIN))
2374                         return -EPERM;
2375                 if (adapter->flags & FULL_INIT_DONE)
2376                         return -EBUSY;
2377                 if (copy_from_user(&m, useraddr, sizeof(m)))
2378                         return -EFAULT;
2379                 if (!is_power_of_2(m.rx_pg_sz) ||
2380                         !is_power_of_2(m.tx_pg_sz))
2381                         return -EINVAL; /* not power of 2 */
2382                 if (!(m.rx_pg_sz & 0x14000))
2383                         return -EINVAL; /* not 16KB or 64KB */
2384                 if (!(m.tx_pg_sz & 0x1554000))
2385                         return -EINVAL;
2386                 if (m.tx_num_pg == -1)
2387                         m.tx_num_pg = p->tx_num_pgs;
2388                 if (m.rx_num_pg == -1)
2389                         m.rx_num_pg = p->rx_num_pgs;
2390                 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2391                         return -EINVAL;
2392                 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2393                         m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2394                         return -EINVAL;
2395                 p->rx_pg_size = m.rx_pg_sz;
2396                 p->tx_pg_size = m.tx_pg_sz;
2397                 p->rx_num_pgs = m.rx_num_pg;
2398                 p->tx_num_pgs = m.tx_num_pg;
2399                 break;
2400         }
2401         case CHELSIO_GET_MEM:{
2402                 struct ch_mem_range t;
2403                 struct mc7 *mem;
2404                 u64 buf[32];
2405
2406                 if (!is_offload(adapter))
2407                         return -EOPNOTSUPP;
2408                 if (!(adapter->flags & FULL_INIT_DONE))
2409                         return -EIO;    /* need the memory controllers */
2410                 if (copy_from_user(&t, useraddr, sizeof(t)))
2411                         return -EFAULT;
2412                 if ((t.addr & 7) || (t.len & 7))
2413                         return -EINVAL;
2414                 if (t.mem_id == MEM_CM)
2415                         mem = &adapter->cm;
2416                 else if (t.mem_id == MEM_PMRX)
2417                         mem = &adapter->pmrx;
2418                 else if (t.mem_id == MEM_PMTX)
2419                         mem = &adapter->pmtx;
2420                 else
2421                         return -EINVAL;
2422
2423                 /*
2424                  * Version scheme:
2425                  * bits 0..9: chip version
2426                  * bits 10..15: chip revision
2427                  */
2428                 t.version = 3 | (adapter->params.rev << 10);
2429                 if (copy_to_user(useraddr, &t, sizeof(t)))
2430                         return -EFAULT;
2431
2432                 /*
2433                  * Read 256 bytes at a time as len can be large and we don't
2434                  * want to use huge intermediate buffers.
2435                  */
2436                 useraddr += sizeof(t);  /* advance to start of buffer */
2437                 while (t.len) {
2438                         unsigned int chunk =
2439                                 min_t(unsigned int, t.len, sizeof(buf));
2440
2441                         ret =
2442                                 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2443                                                 buf);
2444                         if (ret)
2445                                 return ret;
2446                         if (copy_to_user(useraddr, buf, chunk))
2447                                 return -EFAULT;
2448                         useraddr += chunk;
2449                         t.addr += chunk;
2450                         t.len -= chunk;
2451                 }
2452                 break;
2453         }
2454         case CHELSIO_SET_TRACE_FILTER:{
2455                 struct ch_trace t;
2456                 const struct trace_params *tp;
2457
2458                 if (!capable(CAP_NET_ADMIN))
2459                         return -EPERM;
2460                 if (!offload_running(adapter))
2461                         return -EAGAIN;
2462                 if (copy_from_user(&t, useraddr, sizeof(t)))
2463                         return -EFAULT;
2464
2465                 tp = (const struct trace_params *)&t.sip;
2466                 if (t.config_tx)
2467                         t3_config_trace_filter(adapter, tp, 0,
2468                                                 t.invert_match,
2469                                                 t.trace_tx);
2470                 if (t.config_rx)
2471                         t3_config_trace_filter(adapter, tp, 1,
2472                                                 t.invert_match,
2473                                                 t.trace_rx);
2474                 break;
2475         }
2476         default:
2477                 return -EOPNOTSUPP;
2478         }
2479         return 0;
2480 }
2481
2482 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2483 {
2484         struct mii_ioctl_data *data = if_mii(req);
2485         struct port_info *pi = netdev_priv(dev);
2486         struct adapter *adapter = pi->adapter;
2487
2488         switch (cmd) {
2489         case SIOCGMIIREG:
2490         case SIOCSMIIREG:
2491                 /* Convert phy_id from older PRTAD/DEVAD format */
2492                 if (is_10G(adapter) &&
2493                     !mdio_phy_id_is_c45(data->phy_id) &&
2494                     (data->phy_id & 0x1f00) &&
2495                     !(data->phy_id & 0xe0e0))
2496                         data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2497                                                        data->phy_id & 0x1f);
2498                 /* FALLTHRU */
2499         case SIOCGMIIPHY:
2500                 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2501         case SIOCCHIOCTL:
2502                 return cxgb_extension_ioctl(dev, req->ifr_data);
2503         default:
2504                 return -EOPNOTSUPP;
2505         }
2506 }
2507
2508 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2509 {
2510         struct port_info *pi = netdev_priv(dev);
2511         struct adapter *adapter = pi->adapter;
2512         int ret;
2513
2514         if (new_mtu < 81)       /* accommodate SACK */
2515                 return -EINVAL;
2516         if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2517                 return ret;
2518         dev->mtu = new_mtu;
2519         init_port_mtus(adapter);
2520         if (adapter->params.rev == 0 && offload_running(adapter))
2521                 t3_load_mtus(adapter, adapter->params.mtus,
2522                              adapter->params.a_wnd, adapter->params.b_wnd,
2523                              adapter->port[0]->mtu);
2524         return 0;
2525 }
2526
2527 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2528 {
2529         struct port_info *pi = netdev_priv(dev);
2530         struct adapter *adapter = pi->adapter;
2531         struct sockaddr *addr = p;
2532
2533         if (!is_valid_ether_addr(addr->sa_data))
2534                 return -EINVAL;
2535
2536         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2537         t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2538         if (offload_running(adapter))
2539                 write_smt_entry(adapter, pi->port_id);
2540         return 0;
2541 }
2542
2543 /**
2544  * t3_synchronize_rx - wait for current Rx processing on a port to complete
2545  * @adap: the adapter
2546  * @p: the port
2547  *
2548  * Ensures that current Rx processing on any of the queues associated with
2549  * the given port completes before returning.  We do this by acquiring and
2550  * releasing the locks of the response queues associated with the port.
2551  */
2552 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2553 {
2554         int i;
2555
2556         for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2557                 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2558
2559                 spin_lock_irq(&q->lock);
2560                 spin_unlock_irq(&q->lock);
2561         }
2562 }
2563
2564 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2565 {
2566         struct port_info *pi = netdev_priv(dev);
2567         struct adapter *adapter = pi->adapter;
2568
2569         pi->vlan_grp = grp;
2570         if (adapter->params.rev > 0)
2571                 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2572         else {
2573                 /* single control for all ports */
2574                 unsigned int i, have_vlans = 0;
2575                 for_each_port(adapter, i)
2576                     have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2577
2578                 t3_set_vlan_accel(adapter, 1, have_vlans);
2579         }
2580         t3_synchronize_rx(adapter, pi);
2581 }
2582
2583 #ifdef CONFIG_NET_POLL_CONTROLLER
2584 static void cxgb_netpoll(struct net_device *dev)
2585 {
2586         struct port_info *pi = netdev_priv(dev);
2587         struct adapter *adapter = pi->adapter;
2588         int qidx;
2589
2590         for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2591                 struct sge_qset *qs = &adapter->sge.qs[qidx];
2592                 void *source;
2593
2594                 if (adapter->flags & USING_MSIX)
2595                         source = qs;
2596                 else
2597                         source = adapter;
2598
2599                 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2600         }
2601 }
2602 #endif
2603
2604 /*
2605  * Periodic accumulation of MAC statistics.
2606  */
2607 static void mac_stats_update(struct adapter *adapter)
2608 {
2609         int i;
2610
2611         for_each_port(adapter, i) {
2612                 struct net_device *dev = adapter->port[i];
2613                 struct port_info *p = netdev_priv(dev);
2614
2615                 if (netif_running(dev)) {
2616                         spin_lock(&adapter->stats_lock);
2617                         t3_mac_update_stats(&p->mac);
2618                         spin_unlock(&adapter->stats_lock);
2619                 }
2620         }
2621 }
2622
2623 static void check_link_status(struct adapter *adapter)
2624 {
2625         int i;
2626
2627         for_each_port(adapter, i) {
2628                 struct net_device *dev = adapter->port[i];
2629                 struct port_info *p = netdev_priv(dev);
2630                 int link_fault;
2631
2632                 spin_lock_irq(&adapter->work_lock);
2633                 link_fault = p->link_fault;
2634                 spin_unlock_irq(&adapter->work_lock);
2635
2636                 if (link_fault) {
2637                         t3_link_fault(adapter, i);
2638                         continue;
2639                 }
2640
2641                 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2642                         t3_xgm_intr_disable(adapter, i);
2643                         t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2644
2645                         t3_link_changed(adapter, i);
2646                         t3_xgm_intr_enable(adapter, i);
2647                 }
2648         }
2649 }
2650
2651 static void check_t3b2_mac(struct adapter *adapter)
2652 {
2653         int i;
2654
2655         if (!rtnl_trylock())    /* synchronize with ifdown */
2656                 return;
2657
2658         for_each_port(adapter, i) {
2659                 struct net_device *dev = adapter->port[i];
2660                 struct port_info *p = netdev_priv(dev);
2661                 int status;
2662
2663                 if (!netif_running(dev))
2664                         continue;
2665
2666                 status = 0;
2667                 if (netif_running(dev) && netif_carrier_ok(dev))
2668                         status = t3b2_mac_watchdog_task(&p->mac);
2669                 if (status == 1)
2670                         p->mac.stats.num_toggled++;
2671                 else if (status == 2) {
2672                         struct cmac *mac = &p->mac;
2673
2674                         t3_mac_set_mtu(mac, dev->mtu);
2675                         t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2676                         cxgb_set_rxmode(dev);
2677                         t3_link_start(&p->phy, mac, &p->link_config);
2678                         t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2679                         t3_port_intr_enable(adapter, p->port_id);
2680                         p->mac.stats.num_resets++;
2681                 }
2682         }
2683         rtnl_unlock();
2684 }
2685
2686
2687 static void t3_adap_check_task(struct work_struct *work)
2688 {
2689         struct adapter *adapter = container_of(work, struct adapter,
2690                                                adap_check_task.work);
2691         const struct adapter_params *p = &adapter->params;
2692         int port;
2693         unsigned int v, status, reset;
2694
2695         adapter->check_task_cnt++;
2696
2697         check_link_status(adapter);
2698
2699         /* Accumulate MAC stats if needed */
2700         if (!p->linkpoll_period ||
2701             (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2702             p->stats_update_period) {
2703                 mac_stats_update(adapter);
2704                 adapter->check_task_cnt = 0;
2705         }
2706
2707         if (p->rev == T3_REV_B2)
2708                 check_t3b2_mac(adapter);
2709
2710         /*
2711          * Scan the XGMAC's to check for various conditions which we want to
2712          * monitor in a periodic polling manner rather than via an interrupt
2713          * condition.  This is used for conditions which would otherwise flood
2714          * the system with interrupts and we only really need to know that the
2715          * conditions are "happening" ...  For each condition we count the
2716          * detection of the condition and reset it for the next polling loop.
2717          */
2718         for_each_port(adapter, port) {
2719                 struct cmac *mac =  &adap2pinfo(adapter, port)->mac;
2720                 u32 cause;
2721
2722                 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2723                 reset = 0;
2724                 if (cause & F_RXFIFO_OVERFLOW) {
2725                         mac->stats.rx_fifo_ovfl++;
2726                         reset |= F_RXFIFO_OVERFLOW;
2727                 }
2728
2729                 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2730         }
2731
2732         /*
2733          * We do the same as above for FL_EMPTY interrupts.
2734          */
2735         status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2736         reset = 0;
2737
2738         if (status & F_FLEMPTY) {
2739                 struct sge_qset *qs = &adapter->sge.qs[0];
2740                 int i = 0;
2741
2742                 reset |= F_FLEMPTY;
2743
2744                 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2745                     0xffff;
2746
2747                 while (v) {
2748                         qs->fl[i].empty += (v & 1);
2749                         if (i)
2750                                 qs++;
2751                         i ^= 1;
2752                         v >>= 1;
2753                 }
2754         }
2755
2756         t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2757
2758         /* Schedule the next check update if any port is active. */
2759         spin_lock_irq(&adapter->work_lock);
2760         if (adapter->open_device_map & PORT_MASK)
2761                 schedule_chk_task(adapter);
2762         spin_unlock_irq(&adapter->work_lock);
2763 }
2764
2765 static void db_full_task(struct work_struct *work)
2766 {
2767         struct adapter *adapter = container_of(work, struct adapter,
2768                                                db_full_task);
2769
2770         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2771 }
2772
2773 static void db_empty_task(struct work_struct *work)
2774 {
2775         struct adapter *adapter = container_of(work, struct adapter,
2776                                                db_empty_task);
2777
2778         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2779 }
2780
2781 static void db_drop_task(struct work_struct *work)
2782 {
2783         struct adapter *adapter = container_of(work, struct adapter,
2784                                                db_drop_task);
2785         unsigned long delay = 1000;
2786         unsigned short r;
2787
2788         cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2789
2790         /*
2791          * Sleep a while before ringing the driver qset dbs.
2792          * The delay is between 1000-2023 usecs.
2793          */
2794         get_random_bytes(&r, 2);
2795         delay += r & 1023;
2796         set_current_state(TASK_UNINTERRUPTIBLE);
2797         schedule_timeout(usecs_to_jiffies(delay));
2798         ring_dbs(adapter);
2799 }
2800
2801 /*
2802  * Processes external (PHY) interrupts in process context.
2803  */
2804 static void ext_intr_task(struct work_struct *work)
2805 {
2806         struct adapter *adapter = container_of(work, struct adapter,
2807                                                ext_intr_handler_task);
2808         int i;
2809
2810         /* Disable link fault interrupts */
2811         for_each_port(adapter, i) {
2812                 struct net_device *dev = adapter->port[i];
2813                 struct port_info *p = netdev_priv(dev);
2814
2815                 t3_xgm_intr_disable(adapter, i);
2816                 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2817         }
2818
2819         /* Re-enable link fault interrupts */
2820         t3_phy_intr_handler(adapter);
2821
2822         for_each_port(adapter, i)
2823                 t3_xgm_intr_enable(adapter, i);
2824
2825         /* Now reenable external interrupts */
2826         spin_lock_irq(&adapter->work_lock);
2827         if (adapter->slow_intr_mask) {
2828                 adapter->slow_intr_mask |= F_T3DBG;
2829                 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2830                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2831                              adapter->slow_intr_mask);
2832         }
2833         spin_unlock_irq(&adapter->work_lock);
2834 }
2835
2836 /*
2837  * Interrupt-context handler for external (PHY) interrupts.
2838  */
2839 void t3_os_ext_intr_handler(struct adapter *adapter)
2840 {
2841         /*
2842          * Schedule a task to handle external interrupts as they may be slow
2843          * and we use a mutex to protect MDIO registers.  We disable PHY
2844          * interrupts in the meantime and let the task reenable them when
2845          * it's done.
2846          */
2847         spin_lock(&adapter->work_lock);
2848         if (adapter->slow_intr_mask) {
2849                 adapter->slow_intr_mask &= ~F_T3DBG;
2850                 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2851                              adapter->slow_intr_mask);
2852                 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2853         }
2854         spin_unlock(&adapter->work_lock);
2855 }
2856
2857 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2858 {
2859         struct net_device *netdev = adapter->port[port_id];
2860         struct port_info *pi = netdev_priv(netdev);
2861
2862         spin_lock(&adapter->work_lock);
2863         pi->link_fault = 1;
2864         spin_unlock(&adapter->work_lock);
2865 }
2866
2867 static int t3_adapter_error(struct adapter *adapter, int reset)
2868 {
2869         int i, ret = 0;
2870
2871         if (is_offload(adapter) &&
2872             test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2873                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2874                 offload_close(&adapter->tdev);
2875         }
2876
2877         /* Stop all ports */
2878         for_each_port(adapter, i) {
2879                 struct net_device *netdev = adapter->port[i];
2880
2881                 if (netif_running(netdev))
2882                         cxgb_close(netdev);
2883         }
2884
2885         /* Stop SGE timers */
2886         t3_stop_sge_timers(adapter);
2887
2888         adapter->flags &= ~FULL_INIT_DONE;
2889
2890         if (reset)
2891                 ret = t3_reset_adapter(adapter);
2892
2893         pci_disable_device(adapter->pdev);
2894
2895         return ret;
2896 }
2897
2898 static int t3_reenable_adapter(struct adapter *adapter)
2899 {
2900         if (pci_enable_device(adapter->pdev)) {
2901                 dev_err(&adapter->pdev->dev,
2902                         "Cannot re-enable PCI device after reset.\n");
2903                 goto err;
2904         }
2905         pci_set_master(adapter->pdev);
2906         pci_restore_state(adapter->pdev);
2907         pci_save_state(adapter->pdev);
2908
2909         /* Free sge resources */
2910         t3_free_sge_resources(adapter);
2911
2912         if (t3_replay_prep_adapter(adapter))
2913                 goto err;
2914
2915         return 0;
2916 err:
2917         return -1;
2918 }
2919
2920 static void t3_resume_ports(struct adapter *adapter)
2921 {
2922         int i;
2923
2924         /* Restart the ports */
2925         for_each_port(adapter, i) {
2926                 struct net_device *netdev = adapter->port[i];
2927
2928                 if (netif_running(netdev)) {
2929                         if (cxgb_open(netdev)) {
2930                                 dev_err(&adapter->pdev->dev,
2931                                         "can't bring device back up"
2932                                         " after reset\n");
2933                                 continue;
2934                         }
2935                 }
2936         }
2937
2938         if (is_offload(adapter) && !ofld_disable)
2939                 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2940 }
2941
2942 /*
2943  * processes a fatal error.
2944  * Bring the ports down, reset the chip, bring the ports back up.
2945  */
2946 static void fatal_error_task(struct work_struct *work)
2947 {
2948         struct adapter *adapter = container_of(work, struct adapter,
2949                                                fatal_error_handler_task);
2950         int err = 0;
2951
2952         rtnl_lock();
2953         err = t3_adapter_error(adapter, 1);
2954         if (!err)
2955                 err = t3_reenable_adapter(adapter);
2956         if (!err)
2957                 t3_resume_ports(adapter);
2958
2959         CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2960         rtnl_unlock();
2961 }
2962
2963 void t3_fatal_err(struct adapter *adapter)
2964 {
2965         unsigned int fw_status[4];
2966
2967         if (adapter->flags & FULL_INIT_DONE) {
2968                 t3_sge_stop(adapter);
2969                 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2970                 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2971                 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2972                 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2973
2974                 spin_lock(&adapter->work_lock);
2975                 t3_intr_disable(adapter);
2976                 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2977                 spin_unlock(&adapter->work_lock);
2978         }
2979         CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2980         if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2981                 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2982                          fw_status[0], fw_status[1],
2983                          fw_status[2], fw_status[3]);
2984 }
2985
2986 /**
2987  * t3_io_error_detected - called when PCI error is detected
2988  * @pdev: Pointer to PCI device
2989  * @state: The current pci connection state
2990  *
2991  * This function is called after a PCI bus error affecting
2992  * this device has been detected.
2993  */
2994 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2995                                              pci_channel_state_t state)
2996 {
2997         struct adapter *adapter = pci_get_drvdata(pdev);
2998         int ret;
2999
3000         if (state == pci_channel_io_perm_failure)
3001                 return PCI_ERS_RESULT_DISCONNECT;
3002
3003         ret = t3_adapter_error(adapter, 0);
3004
3005         /* Request a slot reset. */
3006         return PCI_ERS_RESULT_NEED_RESET;
3007 }
3008
3009 /**
3010  * t3_io_slot_reset - called after the pci bus has been reset.
3011  * @pdev: Pointer to PCI device
3012  *
3013  * Restart the card from scratch, as if from a cold-boot.
3014  */
3015 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3016 {
3017         struct adapter *adapter = pci_get_drvdata(pdev);
3018
3019         if (!t3_reenable_adapter(adapter))
3020                 return PCI_ERS_RESULT_RECOVERED;
3021
3022         return PCI_ERS_RESULT_DISCONNECT;
3023 }
3024
3025 /**
3026  * t3_io_resume - called when traffic can start flowing again.
3027  * @pdev: Pointer to PCI device
3028  *
3029  * This callback is called when the error recovery driver tells us that
3030  * its OK to resume normal operation.
3031  */
3032 static void t3_io_resume(struct pci_dev *pdev)
3033 {
3034         struct adapter *adapter = pci_get_drvdata(pdev);
3035
3036         CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3037                  t3_read_reg(adapter, A_PCIE_PEX_ERR));
3038
3039         t3_resume_ports(adapter);
3040 }
3041
3042 static struct pci_error_handlers t3_err_handler = {
3043         .error_detected = t3_io_error_detected,
3044         .slot_reset = t3_io_slot_reset,
3045         .resume = t3_io_resume,
3046 };
3047
3048 /*
3049  * Set the number of qsets based on the number of CPUs and the number of ports,
3050  * not to exceed the number of available qsets, assuming there are enough qsets
3051  * per port in HW.
3052  */
3053 static void set_nqsets(struct adapter *adap)
3054 {
3055         int i, j = 0;
3056         int num_cpus = num_online_cpus();
3057         int hwports = adap->params.nports;
3058         int nqsets = adap->msix_nvectors - 1;
3059
3060         if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3061                 if (hwports == 2 &&
3062                     (hwports * nqsets > SGE_QSETS ||
3063                      num_cpus >= nqsets / hwports))
3064                         nqsets /= hwports;
3065                 if (nqsets > num_cpus)
3066                         nqsets = num_cpus;
3067                 if (nqsets < 1 || hwports == 4)
3068                         nqsets = 1;
3069         } else
3070                 nqsets = 1;
3071
3072         for_each_port(adap, i) {
3073                 struct port_info *pi = adap2pinfo(adap, i);
3074
3075                 pi->first_qset = j;
3076                 pi->nqsets = nqsets;
3077                 j = pi->first_qset + nqsets;
3078
3079                 dev_info(&adap->pdev->dev,
3080                          "Port %d using %d queue sets.\n", i, nqsets);
3081         }
3082 }
3083
3084 static int __devinit cxgb_enable_msix(struct adapter *adap)
3085 {
3086         struct msix_entry entries[SGE_QSETS + 1];
3087         int vectors;
3088         int i, err;
3089
3090         vectors = ARRAY_SIZE(entries);
3091         for (i = 0; i < vectors; ++i)
3092                 entries[i].entry = i;
3093
3094         while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3095                 vectors = err;
3096
3097         if (err < 0)
3098                 pci_disable_msix(adap->pdev);
3099
3100         if (!err && vectors < (adap->params.nports + 1)) {
3101                 pci_disable_msix(adap->pdev);
3102                 err = -1;
3103         }
3104
3105         if (!err) {
3106                 for (i = 0; i < vectors; ++i)
3107                         adap->msix_info[i].vec = entries[i].vector;
3108                 adap->msix_nvectors = vectors;
3109         }
3110
3111         return err;
3112 }
3113
3114 static void __devinit print_port_info(struct adapter *adap,
3115                                       const struct adapter_info *ai)
3116 {
3117         static const char *pci_variant[] = {
3118                 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3119         };
3120
3121         int i;
3122         char buf[80];
3123
3124         if (is_pcie(adap))
3125                 snprintf(buf, sizeof(buf), "%s x%d",
3126                          pci_variant[adap->params.pci.variant],
3127                          adap->params.pci.width);
3128         else
3129                 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3130                          pci_variant[adap->params.pci.variant],
3131                          adap->params.pci.speed, adap->params.pci.width);
3132
3133         for_each_port(adap, i) {
3134                 struct net_device *dev = adap->port[i];
3135                 const struct port_info *pi = netdev_priv(dev);
3136
3137                 if (!test_bit(i, &adap->registered_device_map))
3138                         continue;
3139                 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3140                        dev->name, ai->desc, pi->phy.desc,
3141                        is_offload(adap) ? "R" : "", adap->params.rev, buf,
3142                        (adap->flags & USING_MSIX) ? " MSI-X" :
3143                        (adap->flags & USING_MSI) ? " MSI" : "");
3144                 if (adap->name == dev->name && adap->params.vpd.mclk)
3145                         printk(KERN_INFO
3146                                "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3147                                adap->name, t3_mc7_size(&adap->cm) >> 20,
3148                                t3_mc7_size(&adap->pmtx) >> 20,
3149                                t3_mc7_size(&adap->pmrx) >> 20,
3150                                adap->params.vpd.sn);
3151         }
3152 }
3153
3154 static const struct net_device_ops cxgb_netdev_ops = {
3155         .ndo_open               = cxgb_open,
3156         .ndo_stop               = cxgb_close,
3157         .ndo_start_xmit         = t3_eth_xmit,
3158         .ndo_get_stats          = cxgb_get_stats,
3159         .ndo_validate_addr      = eth_validate_addr,
3160         .ndo_set_multicast_list = cxgb_set_rxmode,
3161         .ndo_do_ioctl           = cxgb_ioctl,
3162         .ndo_change_mtu         = cxgb_change_mtu,
3163         .ndo_set_mac_address    = cxgb_set_mac_addr,
3164         .ndo_vlan_rx_register   = vlan_rx_register,
3165 #ifdef CONFIG_NET_POLL_CONTROLLER
3166         .ndo_poll_controller    = cxgb_netpoll,
3167 #endif
3168 };
3169
3170 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3171 {
3172         struct port_info *pi = netdev_priv(dev);
3173
3174         memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3175         pi->iscsic.mac_addr[3] |= 0x80;
3176 }
3177
3178 static int __devinit init_one(struct pci_dev *pdev,
3179                               const struct pci_device_id *ent)
3180 {
3181         static int version_printed;
3182
3183         int i, err, pci_using_dac = 0;
3184         resource_size_t mmio_start, mmio_len;
3185         const struct adapter_info *ai;
3186         struct adapter *adapter = NULL;
3187         struct port_info *pi;
3188
3189         if (!version_printed) {
3190                 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3191                 ++version_printed;
3192         }
3193
3194         if (!cxgb3_wq) {
3195                 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3196                 if (!cxgb3_wq) {
3197                         printk(KERN_ERR DRV_NAME
3198                                ": cannot initialize work queue\n");
3199                         return -ENOMEM;
3200                 }
3201         }
3202
3203         err = pci_enable_device(pdev);
3204         if (err) {
3205                 dev_err(&pdev->dev, "cannot enable PCI device\n");
3206                 goto out;
3207         }
3208
3209         err = pci_request_regions(pdev, DRV_NAME);
3210         if (err) {
3211                 /* Just info, some other driver may have claimed the device. */
3212                 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3213                 goto out_disable_device;
3214         }
3215
3216         if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3217                 pci_using_dac = 1;
3218                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3219                 if (err) {
3220                         dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3221                                "coherent allocations\n");
3222                         goto out_release_regions;
3223                 }
3224         } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3225                 dev_err(&pdev->dev, "no usable DMA configuration\n");
3226                 goto out_release_regions;
3227         }
3228
3229         pci_set_master(pdev);
3230         pci_save_state(pdev);
3231
3232         mmio_start = pci_resource_start(pdev, 0);
3233         mmio_len = pci_resource_len(pdev, 0);
3234         ai = t3_get_adapter_info(ent->driver_data);
3235
3236         adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3237         if (!adapter) {
3238                 err = -ENOMEM;
3239                 goto out_release_regions;
3240         }
3241
3242         adapter->nofail_skb =
3243                 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3244         if (!adapter->nofail_skb) {
3245                 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3246                 err = -ENOMEM;
3247                 goto out_free_adapter;
3248         }
3249
3250         adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3251         if (!adapter->regs) {
3252                 dev_err(&pdev->dev, "cannot map device registers\n");
3253                 err = -ENOMEM;
3254                 goto out_free_adapter;
3255         }
3256
3257         adapter->pdev = pdev;
3258         adapter->name = pci_name(pdev);
3259         adapter->msg_enable = dflt_msg_enable;
3260         adapter->mmio_len = mmio_len;
3261
3262         mutex_init(&adapter->mdio_lock);
3263         spin_lock_init(&adapter->work_lock);
3264         spin_lock_init(&adapter->stats_lock);
3265
3266         INIT_LIST_HEAD(&adapter->adapter_list);
3267         INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3268         INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3269
3270         INIT_WORK(&adapter->db_full_task, db_full_task);
3271         INIT_WORK(&adapter->db_empty_task, db_empty_task);
3272         INIT_WORK(&adapter->db_drop_task, db_drop_task);
3273
3274         INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3275
3276         for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3277                 struct net_device *netdev;
3278
3279                 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3280                 if (!netdev) {
3281                         err = -ENOMEM;
3282                         goto out_free_dev;
3283                 }
3284
3285                 SET_NETDEV_DEV(netdev, &pdev->dev);
3286
3287                 adapter->port[i] = netdev;
3288                 pi = netdev_priv(netdev);
3289                 pi->adapter = adapter;
3290                 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3291                 pi->port_id = i;
3292                 netif_carrier_off(netdev);
3293                 netif_tx_stop_all_queues(netdev);
3294                 netdev->irq = pdev->irq;
3295                 netdev->mem_start = mmio_start;
3296                 netdev->mem_end = mmio_start + mmio_len - 1;
3297                 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3298                 netdev->features |= NETIF_F_GRO;
3299                 if (pci_using_dac)
3300                         netdev->features |= NETIF_F_HIGHDMA;
3301
3302                 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3303                 netdev->netdev_ops = &cxgb_netdev_ops;
3304                 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3305         }
3306
3307         pci_set_drvdata(pdev, adapter);
3308         if (t3_prep_adapter(adapter, ai, 1) < 0) {
3309                 err = -ENODEV;
3310                 goto out_free_dev;
3311         }
3312
3313         /*
3314          * The card is now ready to go.  If any errors occur during device
3315          * registration we do not fail the whole card but rather proceed only
3316          * with the ports we manage to register successfully.  However we must
3317          * register at least one net device.
3318          */
3319         for_each_port(adapter, i) {
3320                 err = register_netdev(adapter->port[i]);
3321                 if (err)
3322                         dev_warn(&pdev->dev,
3323                                  "cannot register net device %s, skipping\n",
3324                                  adapter->port[i]->name);
3325                 else {
3326                         /*
3327                          * Change the name we use for messages to the name of
3328                          * the first successfully registered interface.
3329                          */
3330                         if (!adapter->registered_device_map)
3331                                 adapter->name = adapter->port[i]->name;
3332
3333                         __set_bit(i, &adapter->registered_device_map);
3334                 }
3335         }
3336         if (!adapter->registered_device_map) {
3337                 dev_err(&pdev->dev, "could not register any net devices\n");
3338                 goto out_free_dev;
3339         }
3340
3341         for_each_port(adapter, i)
3342                 cxgb3_init_iscsi_mac(adapter->port[i]);
3343
3344         /* Driver's ready. Reflect it on LEDs */
3345         t3_led_ready(adapter);
3346
3347         if (is_offload(adapter)) {
3348                 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3349                 cxgb3_adapter_ofld(adapter);
3350         }
3351
3352         /* See what interrupts we'll be using */
3353         if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3354                 adapter->flags |= USING_MSIX;
3355         else if (msi > 0 && pci_enable_msi(pdev) == 0)
3356                 adapter->flags |= USING_MSI;
3357
3358         set_nqsets(adapter);
3359
3360         err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3361                                  &cxgb3_attr_group);
3362
3363         print_port_info(adapter, ai);
3364         return 0;
3365
3366 out_free_dev:
3367         iounmap(adapter->regs);
3368         for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3369                 if (adapter->port[i])
3370                         free_netdev(adapter->port[i]);
3371
3372 out_free_adapter:
3373         kfree(adapter);
3374
3375 out_release_regions:
3376         pci_release_regions(pdev);
3377 out_disable_device:
3378         pci_disable_device(pdev);
3379         pci_set_drvdata(pdev, NULL);
3380 out:
3381         return err;
3382 }
3383
3384 static void __devexit remove_one(struct pci_dev *pdev)
3385 {
3386         struct adapter *adapter = pci_get_drvdata(pdev);
3387
3388         if (adapter) {
3389                 int i;
3390
3391                 t3_sge_stop(adapter);
3392                 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3393                                    &cxgb3_attr_group);
3394
3395                 if (is_offload(adapter)) {
3396                         cxgb3_adapter_unofld(adapter);
3397                         if (test_bit(OFFLOAD_DEVMAP_BIT,
3398                                      &adapter->open_device_map))
3399                                 offload_close(&adapter->tdev);
3400                 }
3401
3402                 for_each_port(adapter, i)
3403                     if (test_bit(i, &adapter->registered_device_map))
3404                         unregister_netdev(adapter->port[i]);
3405
3406                 t3_stop_sge_timers(adapter);
3407                 t3_free_sge_resources(adapter);
3408                 cxgb_disable_msi(adapter);
3409
3410                 for_each_port(adapter, i)
3411                         if (adapter->port[i])
3412                                 free_netdev(adapter->port[i]);
3413
3414                 iounmap(adapter->regs);
3415                 if (adapter->nofail_skb)
3416                         kfree_skb(adapter->nofail_skb);
3417                 kfree(adapter);
3418                 pci_release_regions(pdev);
3419                 pci_disable_device(pdev);
3420                 pci_set_drvdata(pdev, NULL);
3421         }
3422 }
3423
3424 static struct pci_driver driver = {
3425         .name = DRV_NAME,
3426         .id_table = cxgb3_pci_tbl,
3427         .probe = init_one,
3428         .remove = __devexit_p(remove_one),
3429         .err_handler = &t3_err_handler,
3430 };
3431
3432 static int __init cxgb3_init_module(void)
3433 {
3434         int ret;
3435
3436         cxgb3_offload_init();
3437
3438         ret = pci_register_driver(&driver);
3439         return ret;
3440 }
3441
3442 static void __exit cxgb3_cleanup_module(void)
3443 {
3444         pci_unregister_driver(&driver);
3445         if (cxgb3_wq)
3446                 destroy_workqueue(cxgb3_wq);
3447 }
3448
3449 module_init(cxgb3_init_module);
3450 module_exit(cxgb3_cleanup_module);