]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/mtd/ubi/scan.c
Merge branch 'fix/asoc' into for-linus
[net-next-2.6.git] / drivers / mtd / ubi / scan.c
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Author: Artem Bityutskiy (Битюцкий Артём)
19  */
20
21 /*
22  * UBI scanning sub-system.
23  *
24  * This sub-system is responsible for scanning the flash media, checking UBI
25  * headers and providing complete information about the UBI flash image.
26  *
27  * The scanning information is represented by a &struct ubi_scan_info' object.
28  * Information about found volumes is represented by &struct ubi_scan_volume
29  * objects which are kept in volume RB-tree with root at the @volumes field.
30  * The RB-tree is indexed by the volume ID.
31  *
32  * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33  * These objects are kept in per-volume RB-trees with the root at the
34  * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35  * an RB-tree of per-volume objects and each of these objects is the root of
36  * RB-tree of per-eraseblock objects.
37  *
38  * Corrupted physical eraseblocks are put to the @corr list, free physical
39  * eraseblocks are put to the @free list and the physical eraseblock to be
40  * erased are put to the @erase list.
41  */
42
43 #include <linux/err.h>
44 #include <linux/slab.h>
45 #include <linux/crc32.h>
46 #include <linux/math64.h>
47 #include <linux/random.h>
48 #include "ubi.h"
49
50 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
51 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
52 #else
53 #define paranoid_check_si(ubi, si) 0
54 #endif
55
56 /* Temporary variables used during scanning */
57 static struct ubi_ec_hdr *ech;
58 static struct ubi_vid_hdr *vidh;
59
60 /**
61  * add_to_list - add physical eraseblock to a list.
62  * @si: scanning information
63  * @pnum: physical eraseblock number to add
64  * @ec: erase counter of the physical eraseblock
65  * @list: the list to add to
66  *
67  * This function adds physical eraseblock @pnum to free, erase, corrupted or
68  * alien lists. Returns zero in case of success and a negative error code in
69  * case of failure.
70  */
71 static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
72                        struct list_head *list)
73 {
74         struct ubi_scan_leb *seb;
75
76         if (list == &si->free) {
77                 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
78                 si->free_peb_count += 1;
79         } else if (list == &si->erase) {
80                 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
81                 si->erase_peb_count += 1;
82         } else if (list == &si->corr) {
83                 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
84                 si->corr_peb_count += 1;
85         } else if (list == &si->alien) {
86                 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
87                 si->alien_peb_count += 1;
88         } else
89                 BUG();
90
91         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
92         if (!seb)
93                 return -ENOMEM;
94
95         seb->pnum = pnum;
96         seb->ec = ec;
97         list_add_tail(&seb->u.list, list);
98         return 0;
99 }
100
101 /**
102  * validate_vid_hdr - check volume identifier header.
103  * @vid_hdr: the volume identifier header to check
104  * @sv: information about the volume this logical eraseblock belongs to
105  * @pnum: physical eraseblock number the VID header came from
106  *
107  * This function checks that data stored in @vid_hdr is consistent. Returns
108  * non-zero if an inconsistency was found and zero if not.
109  *
110  * Note, UBI does sanity check of everything it reads from the flash media.
111  * Most of the checks are done in the I/O sub-system. Here we check that the
112  * information in the VID header is consistent to the information in other VID
113  * headers of the same volume.
114  */
115 static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
116                             const struct ubi_scan_volume *sv, int pnum)
117 {
118         int vol_type = vid_hdr->vol_type;
119         int vol_id = be32_to_cpu(vid_hdr->vol_id);
120         int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
121         int data_pad = be32_to_cpu(vid_hdr->data_pad);
122
123         if (sv->leb_count != 0) {
124                 int sv_vol_type;
125
126                 /*
127                  * This is not the first logical eraseblock belonging to this
128                  * volume. Ensure that the data in its VID header is consistent
129                  * to the data in previous logical eraseblock headers.
130                  */
131
132                 if (vol_id != sv->vol_id) {
133                         dbg_err("inconsistent vol_id");
134                         goto bad;
135                 }
136
137                 if (sv->vol_type == UBI_STATIC_VOLUME)
138                         sv_vol_type = UBI_VID_STATIC;
139                 else
140                         sv_vol_type = UBI_VID_DYNAMIC;
141
142                 if (vol_type != sv_vol_type) {
143                         dbg_err("inconsistent vol_type");
144                         goto bad;
145                 }
146
147                 if (used_ebs != sv->used_ebs) {
148                         dbg_err("inconsistent used_ebs");
149                         goto bad;
150                 }
151
152                 if (data_pad != sv->data_pad) {
153                         dbg_err("inconsistent data_pad");
154                         goto bad;
155                 }
156         }
157
158         return 0;
159
160 bad:
161         ubi_err("inconsistent VID header at PEB %d", pnum);
162         ubi_dbg_dump_vid_hdr(vid_hdr);
163         ubi_dbg_dump_sv(sv);
164         return -EINVAL;
165 }
166
167 /**
168  * add_volume - add volume to the scanning information.
169  * @si: scanning information
170  * @vol_id: ID of the volume to add
171  * @pnum: physical eraseblock number
172  * @vid_hdr: volume identifier header
173  *
174  * If the volume corresponding to the @vid_hdr logical eraseblock is already
175  * present in the scanning information, this function does nothing. Otherwise
176  * it adds corresponding volume to the scanning information. Returns a pointer
177  * to the scanning volume object in case of success and a negative error code
178  * in case of failure.
179  */
180 static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
181                                           int pnum,
182                                           const struct ubi_vid_hdr *vid_hdr)
183 {
184         struct ubi_scan_volume *sv;
185         struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
186
187         ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
188
189         /* Walk the volume RB-tree to look if this volume is already present */
190         while (*p) {
191                 parent = *p;
192                 sv = rb_entry(parent, struct ubi_scan_volume, rb);
193
194                 if (vol_id == sv->vol_id)
195                         return sv;
196
197                 if (vol_id > sv->vol_id)
198                         p = &(*p)->rb_left;
199                 else
200                         p = &(*p)->rb_right;
201         }
202
203         /* The volume is absent - add it */
204         sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
205         if (!sv)
206                 return ERR_PTR(-ENOMEM);
207
208         sv->highest_lnum = sv->leb_count = 0;
209         sv->vol_id = vol_id;
210         sv->root = RB_ROOT;
211         sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
212         sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
213         sv->compat = vid_hdr->compat;
214         sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
215                                                             : UBI_STATIC_VOLUME;
216         if (vol_id > si->highest_vol_id)
217                 si->highest_vol_id = vol_id;
218
219         rb_link_node(&sv->rb, parent, p);
220         rb_insert_color(&sv->rb, &si->volumes);
221         si->vols_found += 1;
222         dbg_bld("added volume %d", vol_id);
223         return sv;
224 }
225
226 /**
227  * compare_lebs - find out which logical eraseblock is newer.
228  * @ubi: UBI device description object
229  * @seb: first logical eraseblock to compare
230  * @pnum: physical eraseblock number of the second logical eraseblock to
231  * compare
232  * @vid_hdr: volume identifier header of the second logical eraseblock
233  *
234  * This function compares 2 copies of a LEB and informs which one is newer. In
235  * case of success this function returns a positive value, in case of failure, a
236  * negative error code is returned. The success return codes use the following
237  * bits:
238  *     o bit 0 is cleared: the first PEB (described by @seb) is newer than the
239  *       second PEB (described by @pnum and @vid_hdr);
240  *     o bit 0 is set: the second PEB is newer;
241  *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
242  *     o bit 1 is set: bit-flips were detected in the newer LEB;
243  *     o bit 2 is cleared: the older LEB is not corrupted;
244  *     o bit 2 is set: the older LEB is corrupted.
245  */
246 static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
247                         int pnum, const struct ubi_vid_hdr *vid_hdr)
248 {
249         void *buf;
250         int len, err, second_is_newer, bitflips = 0, corrupted = 0;
251         uint32_t data_crc, crc;
252         struct ubi_vid_hdr *vh = NULL;
253         unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
254
255         if (sqnum2 == seb->sqnum) {
256                 /*
257                  * This must be a really ancient UBI image which has been
258                  * created before sequence numbers support has been added. At
259                  * that times we used 32-bit LEB versions stored in logical
260                  * eraseblocks. That was before UBI got into mainline. We do not
261                  * support these images anymore. Well, those images will work
262                  * still work, but only if no unclean reboots happened.
263                  */
264                 ubi_err("unsupported on-flash UBI format\n");
265                 return -EINVAL;
266         }
267
268         /* Obviously the LEB with lower sequence counter is older */
269         second_is_newer = !!(sqnum2 > seb->sqnum);
270
271         /*
272          * Now we know which copy is newer. If the copy flag of the PEB with
273          * newer version is not set, then we just return, otherwise we have to
274          * check data CRC. For the second PEB we already have the VID header,
275          * for the first one - we'll need to re-read it from flash.
276          *
277          * Note: this may be optimized so that we wouldn't read twice.
278          */
279
280         if (second_is_newer) {
281                 if (!vid_hdr->copy_flag) {
282                         /* It is not a copy, so it is newer */
283                         dbg_bld("second PEB %d is newer, copy_flag is unset",
284                                 pnum);
285                         return 1;
286                 }
287         } else {
288                 pnum = seb->pnum;
289
290                 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
291                 if (!vh)
292                         return -ENOMEM;
293
294                 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
295                 if (err) {
296                         if (err == UBI_IO_BITFLIPS)
297                                 bitflips = 1;
298                         else {
299                                 dbg_err("VID of PEB %d header is bad, but it "
300                                         "was OK earlier", pnum);
301                                 if (err > 0)
302                                         err = -EIO;
303
304                                 goto out_free_vidh;
305                         }
306                 }
307
308                 if (!vh->copy_flag) {
309                         /* It is not a copy, so it is newer */
310                         dbg_bld("first PEB %d is newer, copy_flag is unset",
311                                 pnum);
312                         err = bitflips << 1;
313                         goto out_free_vidh;
314                 }
315
316                 vid_hdr = vh;
317         }
318
319         /* Read the data of the copy and check the CRC */
320
321         len = be32_to_cpu(vid_hdr->data_size);
322         buf = vmalloc(len);
323         if (!buf) {
324                 err = -ENOMEM;
325                 goto out_free_vidh;
326         }
327
328         err = ubi_io_read_data(ubi, buf, pnum, 0, len);
329         if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
330                 goto out_free_buf;
331
332         data_crc = be32_to_cpu(vid_hdr->data_crc);
333         crc = crc32(UBI_CRC32_INIT, buf, len);
334         if (crc != data_crc) {
335                 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
336                         pnum, crc, data_crc);
337                 corrupted = 1;
338                 bitflips = 0;
339                 second_is_newer = !second_is_newer;
340         } else {
341                 dbg_bld("PEB %d CRC is OK", pnum);
342                 bitflips = !!err;
343         }
344
345         vfree(buf);
346         ubi_free_vid_hdr(ubi, vh);
347
348         if (second_is_newer)
349                 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
350         else
351                 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
352
353         return second_is_newer | (bitflips << 1) | (corrupted << 2);
354
355 out_free_buf:
356         vfree(buf);
357 out_free_vidh:
358         ubi_free_vid_hdr(ubi, vh);
359         return err;
360 }
361
362 /**
363  * ubi_scan_add_used - add physical eraseblock to the scanning information.
364  * @ubi: UBI device description object
365  * @si: scanning information
366  * @pnum: the physical eraseblock number
367  * @ec: erase counter
368  * @vid_hdr: the volume identifier header
369  * @bitflips: if bit-flips were detected when this physical eraseblock was read
370  *
371  * This function adds information about a used physical eraseblock to the
372  * 'used' tree of the corresponding volume. The function is rather complex
373  * because it has to handle cases when this is not the first physical
374  * eraseblock belonging to the same logical eraseblock, and the newer one has
375  * to be picked, while the older one has to be dropped. This function returns
376  * zero in case of success and a negative error code in case of failure.
377  */
378 int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
379                       int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
380                       int bitflips)
381 {
382         int err, vol_id, lnum;
383         unsigned long long sqnum;
384         struct ubi_scan_volume *sv;
385         struct ubi_scan_leb *seb;
386         struct rb_node **p, *parent = NULL;
387
388         vol_id = be32_to_cpu(vid_hdr->vol_id);
389         lnum = be32_to_cpu(vid_hdr->lnum);
390         sqnum = be64_to_cpu(vid_hdr->sqnum);
391
392         dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
393                 pnum, vol_id, lnum, ec, sqnum, bitflips);
394
395         sv = add_volume(si, vol_id, pnum, vid_hdr);
396         if (IS_ERR(sv))
397                 return PTR_ERR(sv);
398
399         if (si->max_sqnum < sqnum)
400                 si->max_sqnum = sqnum;
401
402         /*
403          * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
404          * if this is the first instance of this logical eraseblock or not.
405          */
406         p = &sv->root.rb_node;
407         while (*p) {
408                 int cmp_res;
409
410                 parent = *p;
411                 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
412                 if (lnum != seb->lnum) {
413                         if (lnum < seb->lnum)
414                                 p = &(*p)->rb_left;
415                         else
416                                 p = &(*p)->rb_right;
417                         continue;
418                 }
419
420                 /*
421                  * There is already a physical eraseblock describing the same
422                  * logical eraseblock present.
423                  */
424
425                 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
426                         "EC %d", seb->pnum, seb->sqnum, seb->ec);
427
428                 /*
429                  * Make sure that the logical eraseblocks have different
430                  * sequence numbers. Otherwise the image is bad.
431                  *
432                  * However, if the sequence number is zero, we assume it must
433                  * be an ancient UBI image from the era when UBI did not have
434                  * sequence numbers. We still can attach these images, unless
435                  * there is a need to distinguish between old and new
436                  * eraseblocks, in which case we'll refuse the image in
437                  * 'compare_lebs()'. In other words, we attach old clean
438                  * images, but refuse attaching old images with duplicated
439                  * logical eraseblocks because there was an unclean reboot.
440                  */
441                 if (seb->sqnum == sqnum && sqnum != 0) {
442                         ubi_err("two LEBs with same sequence number %llu",
443                                 sqnum);
444                         ubi_dbg_dump_seb(seb, 0);
445                         ubi_dbg_dump_vid_hdr(vid_hdr);
446                         return -EINVAL;
447                 }
448
449                 /*
450                  * Now we have to drop the older one and preserve the newer
451                  * one.
452                  */
453                 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
454                 if (cmp_res < 0)
455                         return cmp_res;
456
457                 if (cmp_res & 1) {
458                         /*
459                          * This logical eraseblock is newer than the one
460                          * found earlier.
461                          */
462                         err = validate_vid_hdr(vid_hdr, sv, pnum);
463                         if (err)
464                                 return err;
465
466                         if (cmp_res & 4)
467                                 err = add_to_list(si, seb->pnum, seb->ec,
468                                                   &si->corr);
469                         else
470                                 err = add_to_list(si, seb->pnum, seb->ec,
471                                                   &si->erase);
472                         if (err)
473                                 return err;
474
475                         seb->ec = ec;
476                         seb->pnum = pnum;
477                         seb->scrub = ((cmp_res & 2) || bitflips);
478                         seb->sqnum = sqnum;
479
480                         if (sv->highest_lnum == lnum)
481                                 sv->last_data_size =
482                                         be32_to_cpu(vid_hdr->data_size);
483
484                         return 0;
485                 } else {
486                         /*
487                          * This logical eraseblock is older than the one found
488                          * previously.
489                          */
490                         if (cmp_res & 4)
491                                 return add_to_list(si, pnum, ec, &si->corr);
492                         else
493                                 return add_to_list(si, pnum, ec, &si->erase);
494                 }
495         }
496
497         /*
498          * We've met this logical eraseblock for the first time, add it to the
499          * scanning information.
500          */
501
502         err = validate_vid_hdr(vid_hdr, sv, pnum);
503         if (err)
504                 return err;
505
506         seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
507         if (!seb)
508                 return -ENOMEM;
509
510         seb->ec = ec;
511         seb->pnum = pnum;
512         seb->lnum = lnum;
513         seb->sqnum = sqnum;
514         seb->scrub = bitflips;
515
516         if (sv->highest_lnum <= lnum) {
517                 sv->highest_lnum = lnum;
518                 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
519         }
520
521         sv->leb_count += 1;
522         rb_link_node(&seb->u.rb, parent, p);
523         rb_insert_color(&seb->u.rb, &sv->root);
524         si->used_peb_count += 1;
525         return 0;
526 }
527
528 /**
529  * ubi_scan_find_sv - find volume in the scanning information.
530  * @si: scanning information
531  * @vol_id: the requested volume ID
532  *
533  * This function returns a pointer to the volume description or %NULL if there
534  * are no data about this volume in the scanning information.
535  */
536 struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
537                                          int vol_id)
538 {
539         struct ubi_scan_volume *sv;
540         struct rb_node *p = si->volumes.rb_node;
541
542         while (p) {
543                 sv = rb_entry(p, struct ubi_scan_volume, rb);
544
545                 if (vol_id == sv->vol_id)
546                         return sv;
547
548                 if (vol_id > sv->vol_id)
549                         p = p->rb_left;
550                 else
551                         p = p->rb_right;
552         }
553
554         return NULL;
555 }
556
557 /**
558  * ubi_scan_find_seb - find LEB in the volume scanning information.
559  * @sv: a pointer to the volume scanning information
560  * @lnum: the requested logical eraseblock
561  *
562  * This function returns a pointer to the scanning logical eraseblock or %NULL
563  * if there are no data about it in the scanning volume information.
564  */
565 struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
566                                        int lnum)
567 {
568         struct ubi_scan_leb *seb;
569         struct rb_node *p = sv->root.rb_node;
570
571         while (p) {
572                 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
573
574                 if (lnum == seb->lnum)
575                         return seb;
576
577                 if (lnum > seb->lnum)
578                         p = p->rb_left;
579                 else
580                         p = p->rb_right;
581         }
582
583         return NULL;
584 }
585
586 /**
587  * ubi_scan_rm_volume - delete scanning information about a volume.
588  * @si: scanning information
589  * @sv: the volume scanning information to delete
590  */
591 void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
592 {
593         struct rb_node *rb;
594         struct ubi_scan_leb *seb;
595
596         dbg_bld("remove scanning information about volume %d", sv->vol_id);
597
598         while ((rb = rb_first(&sv->root))) {
599                 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
600                 rb_erase(&seb->u.rb, &sv->root);
601                 list_add_tail(&seb->u.list, &si->erase);
602         }
603
604         rb_erase(&sv->rb, &si->volumes);
605         kfree(sv);
606         si->vols_found -= 1;
607 }
608
609 /**
610  * ubi_scan_erase_peb - erase a physical eraseblock.
611  * @ubi: UBI device description object
612  * @si: scanning information
613  * @pnum: physical eraseblock number to erase;
614  * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
615  *
616  * This function erases physical eraseblock 'pnum', and writes the erase
617  * counter header to it. This function should only be used on UBI device
618  * initialization stages, when the EBA sub-system had not been yet initialized.
619  * This function returns zero in case of success and a negative error code in
620  * case of failure.
621  */
622 int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
623                        int pnum, int ec)
624 {
625         int err;
626         struct ubi_ec_hdr *ec_hdr;
627
628         if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
629                 /*
630                  * Erase counter overflow. Upgrade UBI and use 64-bit
631                  * erase counters internally.
632                  */
633                 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
634                 return -EINVAL;
635         }
636
637         ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
638         if (!ec_hdr)
639                 return -ENOMEM;
640
641         ec_hdr->ec = cpu_to_be64(ec);
642
643         err = ubi_io_sync_erase(ubi, pnum, 0);
644         if (err < 0)
645                 goto out_free;
646
647         err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
648
649 out_free:
650         kfree(ec_hdr);
651         return err;
652 }
653
654 /**
655  * ubi_scan_get_free_peb - get a free physical eraseblock.
656  * @ubi: UBI device description object
657  * @si: scanning information
658  *
659  * This function returns a free physical eraseblock. It is supposed to be
660  * called on the UBI initialization stages when the wear-leveling sub-system is
661  * not initialized yet. This function picks a physical eraseblocks from one of
662  * the lists, writes the EC header if it is needed, and removes it from the
663  * list.
664  *
665  * This function returns scanning physical eraseblock information in case of
666  * success and an error code in case of failure.
667  */
668 struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
669                                            struct ubi_scan_info *si)
670 {
671         int err = 0, i;
672         struct ubi_scan_leb *seb;
673
674         if (!list_empty(&si->free)) {
675                 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
676                 list_del(&seb->u.list);
677                 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
678                 return seb;
679         }
680
681         for (i = 0; i < 2; i++) {
682                 struct list_head *head;
683                 struct ubi_scan_leb *tmp_seb;
684
685                 if (i == 0)
686                         head = &si->erase;
687                 else
688                         head = &si->corr;
689
690                 /*
691                  * We try to erase the first physical eraseblock from the @head
692                  * list and pick it if we succeed, or try to erase the
693                  * next one if not. And so forth. We don't want to take care
694                  * about bad eraseblocks here - they'll be handled later.
695                  */
696                 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
697                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
698                                 seb->ec = si->mean_ec;
699
700                         err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
701                         if (err)
702                                 continue;
703
704                         seb->ec += 1;
705                         list_del(&seb->u.list);
706                         dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
707                         return seb;
708                 }
709         }
710
711         ubi_err("no eraseblocks found");
712         return ERR_PTR(-ENOSPC);
713 }
714
715 /**
716  * process_eb - read, check UBI headers, and add them to scanning information.
717  * @ubi: UBI device description object
718  * @si: scanning information
719  * @pnum: the physical eraseblock number
720  *
721  * This function returns a zero if the physical eraseblock was successfully
722  * handled and a negative error code in case of failure.
723  */
724 static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
725                       int pnum)
726 {
727         long long uninitialized_var(ec);
728         int err, bitflips = 0, vol_id, ec_corr = 0;
729
730         dbg_bld("scan PEB %d", pnum);
731
732         /* Skip bad physical eraseblocks */
733         err = ubi_io_is_bad(ubi, pnum);
734         if (err < 0)
735                 return err;
736         else if (err) {
737                 /*
738                  * FIXME: this is actually duty of the I/O sub-system to
739                  * initialize this, but MTD does not provide enough
740                  * information.
741                  */
742                 si->bad_peb_count += 1;
743                 return 0;
744         }
745
746         err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
747         if (err < 0)
748                 return err;
749         else if (err == UBI_IO_BITFLIPS)
750                 bitflips = 1;
751         else if (err == UBI_IO_PEB_EMPTY)
752                 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
753         else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR) {
754                 /*
755                  * We have to also look at the VID header, possibly it is not
756                  * corrupted. Set %bitflips flag in order to make this PEB be
757                  * moved and EC be re-created.
758                  */
759                 ec_corr = err;
760                 ec = UBI_SCAN_UNKNOWN_EC;
761                 bitflips = 1;
762         }
763
764         if (!ec_corr) {
765                 int image_seq;
766
767                 /* Make sure UBI version is OK */
768                 if (ech->version != UBI_VERSION) {
769                         ubi_err("this UBI version is %d, image version is %d",
770                                 UBI_VERSION, (int)ech->version);
771                         return -EINVAL;
772                 }
773
774                 ec = be64_to_cpu(ech->ec);
775                 if (ec > UBI_MAX_ERASECOUNTER) {
776                         /*
777                          * Erase counter overflow. The EC headers have 64 bits
778                          * reserved, but we anyway make use of only 31 bit
779                          * values, as this seems to be enough for any existing
780                          * flash. Upgrade UBI and use 64-bit erase counters
781                          * internally.
782                          */
783                         ubi_err("erase counter overflow, max is %d",
784                                 UBI_MAX_ERASECOUNTER);
785                         ubi_dbg_dump_ec_hdr(ech);
786                         return -EINVAL;
787                 }
788
789                 /*
790                  * Make sure that all PEBs have the same image sequence number.
791                  * This allows us to detect situations when users flash UBI
792                  * images incorrectly, so that the flash has the new UBI image
793                  * and leftovers from the old one. This feature was added
794                  * relatively recently, and the sequence number was always
795                  * zero, because old UBI implementations always set it to zero.
796                  * For this reasons, we do not panic if some PEBs have zero
797                  * sequence number, while other PEBs have non-zero sequence
798                  * number.
799                  */
800                 image_seq = be32_to_cpu(ech->image_seq);
801                 if (!ubi->image_seq && image_seq)
802                         ubi->image_seq = image_seq;
803                 if (ubi->image_seq && image_seq &&
804                     ubi->image_seq != image_seq) {
805                         ubi_err("bad image sequence number %d in PEB %d, "
806                                 "expected %d", image_seq, pnum, ubi->image_seq);
807                         ubi_dbg_dump_ec_hdr(ech);
808                         return -EINVAL;
809                 }
810         }
811
812         /* OK, we've done with the EC header, let's look at the VID header */
813
814         err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
815         if (err < 0)
816                 return err;
817         else if (err == UBI_IO_BITFLIPS)
818                 bitflips = 1;
819         else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR ||
820                  (err == UBI_IO_PEB_FREE && ec_corr)) {
821                 /* VID header is corrupted */
822                 if (err == UBI_IO_BAD_HDR_READ ||
823                     ec_corr == UBI_IO_BAD_HDR_READ)
824                         si->read_err_count += 1;
825                 err = add_to_list(si, pnum, ec, &si->corr);
826                 if (err)
827                         return err;
828                 goto adjust_mean_ec;
829         } else if (err == UBI_IO_PEB_FREE) {
830                 /* No VID header - the physical eraseblock is free */
831                 err = add_to_list(si, pnum, ec, &si->free);
832                 if (err)
833                         return err;
834                 goto adjust_mean_ec;
835         }
836
837         vol_id = be32_to_cpu(vidh->vol_id);
838         if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
839                 int lnum = be32_to_cpu(vidh->lnum);
840
841                 /* Unsupported internal volume */
842                 switch (vidh->compat) {
843                 case UBI_COMPAT_DELETE:
844                         ubi_msg("\"delete\" compatible internal volume %d:%d"
845                                 " found, will remove it", vol_id, lnum);
846                         err = add_to_list(si, pnum, ec, &si->erase);
847                         if (err)
848                                 return err;
849                         return 0;
850
851                 case UBI_COMPAT_RO:
852                         ubi_msg("read-only compatible internal volume %d:%d"
853                                 " found, switch to read-only mode",
854                                 vol_id, lnum);
855                         ubi->ro_mode = 1;
856                         break;
857
858                 case UBI_COMPAT_PRESERVE:
859                         ubi_msg("\"preserve\" compatible internal volume %d:%d"
860                                 " found", vol_id, lnum);
861                         err = add_to_list(si, pnum, ec, &si->alien);
862                         if (err)
863                                 return err;
864                         return 0;
865
866                 case UBI_COMPAT_REJECT:
867                         ubi_err("incompatible internal volume %d:%d found",
868                                 vol_id, lnum);
869                         return -EINVAL;
870                 }
871         }
872
873         if (ec_corr)
874                 ubi_warn("valid VID header but corrupted EC header at PEB %d",
875                          pnum);
876         err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
877         if (err)
878                 return err;
879
880 adjust_mean_ec:
881         if (!ec_corr) {
882                 si->ec_sum += ec;
883                 si->ec_count += 1;
884                 if (ec > si->max_ec)
885                         si->max_ec = ec;
886                 if (ec < si->min_ec)
887                         si->min_ec = ec;
888         }
889
890         return 0;
891 }
892
893 /**
894  * check_what_we_have - check what PEB were found by scanning.
895  * @ubi: UBI device description object
896  * @si: scanning information
897  *
898  * This is a helper function which takes a look what PEBs were found by
899  * scanning, and decides whether the flash is empty and should be formatted and
900  * whether there are too many corrupted PEBs and we should not attach this
901  * MTD device. Returns zero if we should proceed with attaching the MTD device,
902  * and %-EINVAL if we should not.
903  */
904 static int check_what_we_have(struct ubi_device *ubi, struct ubi_scan_info *si)
905 {
906         struct ubi_scan_leb *seb;
907         int max_corr;
908
909         max_corr = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
910         max_corr = max_corr / 20 ?: 8;
911
912         /*
913          * Few corrupted PEBs are not a problem and may be just a result of
914          * unclean reboots. However, many of them may indicate some problems
915          * with the flash HW or driver.
916          */
917         if (si->corr_peb_count >= 8) {
918                 ubi_warn("%d PEBs are corrupted", si->corr_peb_count);
919                 printk(KERN_WARNING "corrupted PEBs are:");
920                 list_for_each_entry(seb, &si->corr, u.list)
921                         printk(KERN_CONT " %d", seb->pnum);
922                 printk(KERN_CONT "\n");
923
924                 /*
925                  * If too many PEBs are corrupted, we refuse attaching,
926                  * otherwise, only print a warning.
927                  */
928                 if (si->corr_peb_count >= max_corr) {
929                         ubi_err("too many corrupted PEBs, refusing this device");
930                         return -EINVAL;
931                 }
932         }
933
934         if (si->free_peb_count + si->used_peb_count +
935             si->alien_peb_count == 0) {
936                 /* No UBI-formatted eraseblocks were found */
937                 if (si->corr_peb_count == si->read_err_count &&
938                     si->corr_peb_count < 8) {
939                         /* No or just few corrupted PEBs, and all of them had a
940                          * read error. We assume that those are bad PEBs, which
941                          * were just not marked as bad so far.
942                          *
943                          * This piece of code basically tries to distinguish
944                          * between the following 2 situations:
945                          *
946                          * 1. Flash is empty, but there are few bad PEBs, which
947                          *    are not marked as bad so far, and which were read
948                          *    with error. We want to go ahead and format this
949                          *    flash. While formating, the faulty PEBs will
950                          *    probably be marked as bad.
951                          *
952                          * 2. Flash probably contains non-UBI data and we do
953                          * not want to format it and destroy possibly needed
954                          * data (e.g., consider the case when the bootloader
955                          * MTD partition was accidentally fed to UBI).
956                          */
957                         si->is_empty = 1;
958                         ubi_msg("empty MTD device detected");
959                         get_random_bytes(&ubi->image_seq, sizeof(ubi->image_seq));
960                 } else {
961                         ubi_err("MTD device possibly contains non-UBI data, "
962                                 "refusing it");
963                         return -EINVAL;
964                 }
965         }
966
967         if (si->corr_peb_count > 0)
968                 ubi_msg("corrupted PEBs will be formatted");
969         return 0;
970 }
971
972 /**
973  * ubi_scan - scan an MTD device.
974  * @ubi: UBI device description object
975  *
976  * This function does full scanning of an MTD device and returns complete
977  * information about it. In case of failure, an error code is returned.
978  */
979 struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
980 {
981         int err, pnum;
982         struct rb_node *rb1, *rb2;
983         struct ubi_scan_volume *sv;
984         struct ubi_scan_leb *seb;
985         struct ubi_scan_info *si;
986
987         si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
988         if (!si)
989                 return ERR_PTR(-ENOMEM);
990
991         INIT_LIST_HEAD(&si->corr);
992         INIT_LIST_HEAD(&si->free);
993         INIT_LIST_HEAD(&si->erase);
994         INIT_LIST_HEAD(&si->alien);
995         si->volumes = RB_ROOT;
996
997         err = -ENOMEM;
998         ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
999         if (!ech)
1000                 goto out_si;
1001
1002         vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1003         if (!vidh)
1004                 goto out_ech;
1005
1006         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1007                 cond_resched();
1008
1009                 dbg_gen("process PEB %d", pnum);
1010                 err = process_eb(ubi, si, pnum);
1011                 if (err < 0)
1012                         goto out_vidh;
1013         }
1014
1015         dbg_msg("scanning is finished");
1016
1017         /* Calculate mean erase counter */
1018         if (si->ec_count)
1019                 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
1020
1021         err = check_what_we_have(ubi, si);
1022         if (err)
1023                 goto out_vidh;
1024
1025         /*
1026          * In case of unknown erase counter we use the mean erase counter
1027          * value.
1028          */
1029         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1030                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1031                         if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1032                                 seb->ec = si->mean_ec;
1033         }
1034
1035         list_for_each_entry(seb, &si->free, u.list) {
1036                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1037                         seb->ec = si->mean_ec;
1038         }
1039
1040         list_for_each_entry(seb, &si->corr, u.list)
1041                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1042                         seb->ec = si->mean_ec;
1043
1044         list_for_each_entry(seb, &si->erase, u.list)
1045                 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1046                         seb->ec = si->mean_ec;
1047
1048         err = paranoid_check_si(ubi, si);
1049         if (err)
1050                 goto out_vidh;
1051
1052         ubi_free_vid_hdr(ubi, vidh);
1053         kfree(ech);
1054
1055         return si;
1056
1057 out_vidh:
1058         ubi_free_vid_hdr(ubi, vidh);
1059 out_ech:
1060         kfree(ech);
1061 out_si:
1062         ubi_scan_destroy_si(si);
1063         return ERR_PTR(err);
1064 }
1065
1066 /**
1067  * destroy_sv - free the scanning volume information
1068  * @sv: scanning volume information
1069  *
1070  * This function destroys the volume RB-tree (@sv->root) and the scanning
1071  * volume information.
1072  */
1073 static void destroy_sv(struct ubi_scan_volume *sv)
1074 {
1075         struct ubi_scan_leb *seb;
1076         struct rb_node *this = sv->root.rb_node;
1077
1078         while (this) {
1079                 if (this->rb_left)
1080                         this = this->rb_left;
1081                 else if (this->rb_right)
1082                         this = this->rb_right;
1083                 else {
1084                         seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1085                         this = rb_parent(this);
1086                         if (this) {
1087                                 if (this->rb_left == &seb->u.rb)
1088                                         this->rb_left = NULL;
1089                                 else
1090                                         this->rb_right = NULL;
1091                         }
1092
1093                         kfree(seb);
1094                 }
1095         }
1096         kfree(sv);
1097 }
1098
1099 /**
1100  * ubi_scan_destroy_si - destroy scanning information.
1101  * @si: scanning information
1102  */
1103 void ubi_scan_destroy_si(struct ubi_scan_info *si)
1104 {
1105         struct ubi_scan_leb *seb, *seb_tmp;
1106         struct ubi_scan_volume *sv;
1107         struct rb_node *rb;
1108
1109         list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1110                 list_del(&seb->u.list);
1111                 kfree(seb);
1112         }
1113         list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1114                 list_del(&seb->u.list);
1115                 kfree(seb);
1116         }
1117         list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1118                 list_del(&seb->u.list);
1119                 kfree(seb);
1120         }
1121         list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1122                 list_del(&seb->u.list);
1123                 kfree(seb);
1124         }
1125
1126         /* Destroy the volume RB-tree */
1127         rb = si->volumes.rb_node;
1128         while (rb) {
1129                 if (rb->rb_left)
1130                         rb = rb->rb_left;
1131                 else if (rb->rb_right)
1132                         rb = rb->rb_right;
1133                 else {
1134                         sv = rb_entry(rb, struct ubi_scan_volume, rb);
1135
1136                         rb = rb_parent(rb);
1137                         if (rb) {
1138                                 if (rb->rb_left == &sv->rb)
1139                                         rb->rb_left = NULL;
1140                                 else
1141                                         rb->rb_right = NULL;
1142                         }
1143
1144                         destroy_sv(sv);
1145                 }
1146         }
1147
1148         kfree(si);
1149 }
1150
1151 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1152
1153 /**
1154  * paranoid_check_si - check the scanning information.
1155  * @ubi: UBI device description object
1156  * @si: scanning information
1157  *
1158  * This function returns zero if the scanning information is all right, and a
1159  * negative error code if not or if an error occurred.
1160  */
1161 static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
1162 {
1163         int pnum, err, vols_found = 0;
1164         struct rb_node *rb1, *rb2;
1165         struct ubi_scan_volume *sv;
1166         struct ubi_scan_leb *seb, *last_seb;
1167         uint8_t *buf;
1168
1169         /*
1170          * At first, check that scanning information is OK.
1171          */
1172         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1173                 int leb_count = 0;
1174
1175                 cond_resched();
1176
1177                 vols_found += 1;
1178
1179                 if (si->is_empty) {
1180                         ubi_err("bad is_empty flag");
1181                         goto bad_sv;
1182                 }
1183
1184                 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1185                     sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1186                     sv->data_pad < 0 || sv->last_data_size < 0) {
1187                         ubi_err("negative values");
1188                         goto bad_sv;
1189                 }
1190
1191                 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1192                     sv->vol_id < UBI_INTERNAL_VOL_START) {
1193                         ubi_err("bad vol_id");
1194                         goto bad_sv;
1195                 }
1196
1197                 if (sv->vol_id > si->highest_vol_id) {
1198                         ubi_err("highest_vol_id is %d, but vol_id %d is there",
1199                                 si->highest_vol_id, sv->vol_id);
1200                         goto out;
1201                 }
1202
1203                 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1204                     sv->vol_type != UBI_STATIC_VOLUME) {
1205                         ubi_err("bad vol_type");
1206                         goto bad_sv;
1207                 }
1208
1209                 if (sv->data_pad > ubi->leb_size / 2) {
1210                         ubi_err("bad data_pad");
1211                         goto bad_sv;
1212                 }
1213
1214                 last_seb = NULL;
1215                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1216                         cond_resched();
1217
1218                         last_seb = seb;
1219                         leb_count += 1;
1220
1221                         if (seb->pnum < 0 || seb->ec < 0) {
1222                                 ubi_err("negative values");
1223                                 goto bad_seb;
1224                         }
1225
1226                         if (seb->ec < si->min_ec) {
1227                                 ubi_err("bad si->min_ec (%d), %d found",
1228                                         si->min_ec, seb->ec);
1229                                 goto bad_seb;
1230                         }
1231
1232                         if (seb->ec > si->max_ec) {
1233                                 ubi_err("bad si->max_ec (%d), %d found",
1234                                         si->max_ec, seb->ec);
1235                                 goto bad_seb;
1236                         }
1237
1238                         if (seb->pnum >= ubi->peb_count) {
1239                                 ubi_err("too high PEB number %d, total PEBs %d",
1240                                         seb->pnum, ubi->peb_count);
1241                                 goto bad_seb;
1242                         }
1243
1244                         if (sv->vol_type == UBI_STATIC_VOLUME) {
1245                                 if (seb->lnum >= sv->used_ebs) {
1246                                         ubi_err("bad lnum or used_ebs");
1247                                         goto bad_seb;
1248                                 }
1249                         } else {
1250                                 if (sv->used_ebs != 0) {
1251                                         ubi_err("non-zero used_ebs");
1252                                         goto bad_seb;
1253                                 }
1254                         }
1255
1256                         if (seb->lnum > sv->highest_lnum) {
1257                                 ubi_err("incorrect highest_lnum or lnum");
1258                                 goto bad_seb;
1259                         }
1260                 }
1261
1262                 if (sv->leb_count != leb_count) {
1263                         ubi_err("bad leb_count, %d objects in the tree",
1264                                 leb_count);
1265                         goto bad_sv;
1266                 }
1267
1268                 if (!last_seb)
1269                         continue;
1270
1271                 seb = last_seb;
1272
1273                 if (seb->lnum != sv->highest_lnum) {
1274                         ubi_err("bad highest_lnum");
1275                         goto bad_seb;
1276                 }
1277         }
1278
1279         if (vols_found != si->vols_found) {
1280                 ubi_err("bad si->vols_found %d, should be %d",
1281                         si->vols_found, vols_found);
1282                 goto out;
1283         }
1284
1285         /* Check that scanning information is correct */
1286         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1287                 last_seb = NULL;
1288                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1289                         int vol_type;
1290
1291                         cond_resched();
1292
1293                         last_seb = seb;
1294
1295                         err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1296                         if (err && err != UBI_IO_BITFLIPS) {
1297                                 ubi_err("VID header is not OK (%d)", err);
1298                                 if (err > 0)
1299                                         err = -EIO;
1300                                 return err;
1301                         }
1302
1303                         vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1304                                    UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1305                         if (sv->vol_type != vol_type) {
1306                                 ubi_err("bad vol_type");
1307                                 goto bad_vid_hdr;
1308                         }
1309
1310                         if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
1311                                 ubi_err("bad sqnum %llu", seb->sqnum);
1312                                 goto bad_vid_hdr;
1313                         }
1314
1315                         if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
1316                                 ubi_err("bad vol_id %d", sv->vol_id);
1317                                 goto bad_vid_hdr;
1318                         }
1319
1320                         if (sv->compat != vidh->compat) {
1321                                 ubi_err("bad compat %d", vidh->compat);
1322                                 goto bad_vid_hdr;
1323                         }
1324
1325                         if (seb->lnum != be32_to_cpu(vidh->lnum)) {
1326                                 ubi_err("bad lnum %d", seb->lnum);
1327                                 goto bad_vid_hdr;
1328                         }
1329
1330                         if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1331                                 ubi_err("bad used_ebs %d", sv->used_ebs);
1332                                 goto bad_vid_hdr;
1333                         }
1334
1335                         if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
1336                                 ubi_err("bad data_pad %d", sv->data_pad);
1337                                 goto bad_vid_hdr;
1338                         }
1339                 }
1340
1341                 if (!last_seb)
1342                         continue;
1343
1344                 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
1345                         ubi_err("bad highest_lnum %d", sv->highest_lnum);
1346                         goto bad_vid_hdr;
1347                 }
1348
1349                 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
1350                         ubi_err("bad last_data_size %d", sv->last_data_size);
1351                         goto bad_vid_hdr;
1352                 }
1353         }
1354
1355         /*
1356          * Make sure that all the physical eraseblocks are in one of the lists
1357          * or trees.
1358          */
1359         buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1360         if (!buf)
1361                 return -ENOMEM;
1362
1363         for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1364                 err = ubi_io_is_bad(ubi, pnum);
1365                 if (err < 0) {
1366                         kfree(buf);
1367                         return err;
1368                 } else if (err)
1369                         buf[pnum] = 1;
1370         }
1371
1372         ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1373                 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1374                         buf[seb->pnum] = 1;
1375
1376         list_for_each_entry(seb, &si->free, u.list)
1377                 buf[seb->pnum] = 1;
1378
1379         list_for_each_entry(seb, &si->corr, u.list)
1380                 buf[seb->pnum] = 1;
1381
1382         list_for_each_entry(seb, &si->erase, u.list)
1383                 buf[seb->pnum] = 1;
1384
1385         list_for_each_entry(seb, &si->alien, u.list)
1386                 buf[seb->pnum] = 1;
1387
1388         err = 0;
1389         for (pnum = 0; pnum < ubi->peb_count; pnum++)
1390                 if (!buf[pnum]) {
1391                         ubi_err("PEB %d is not referred", pnum);
1392                         err = 1;
1393                 }
1394
1395         kfree(buf);
1396         if (err)
1397                 goto out;
1398         return 0;
1399
1400 bad_seb:
1401         ubi_err("bad scanning information about LEB %d", seb->lnum);
1402         ubi_dbg_dump_seb(seb, 0);
1403         ubi_dbg_dump_sv(sv);
1404         goto out;
1405
1406 bad_sv:
1407         ubi_err("bad scanning information about volume %d", sv->vol_id);
1408         ubi_dbg_dump_sv(sv);
1409         goto out;
1410
1411 bad_vid_hdr:
1412         ubi_err("bad scanning information about volume %d", sv->vol_id);
1413         ubi_dbg_dump_sv(sv);
1414         ubi_dbg_dump_vid_hdr(vidh);
1415
1416 out:
1417         ubi_dbg_dump_stack();
1418         return -EINVAL;
1419 }
1420
1421 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */