]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/mtd/onenand/onenand_base.c
[MTD] OneNAND: Remove line of code that was meant to be deleted in OOB_AUTO
[net-next-2.6.git] / drivers / mtd / onenand / onenand_base.c
1 /*
2  *  linux/drivers/mtd/onenand/onenand_base.c
3  *
4  *  Copyright (C) 2005-2007 Samsung Electronics
5  *  Kyungmin Park <kyungmin.park@samsung.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/onenand.h>
20 #include <linux/mtd/partitions.h>
21
22 #include <asm/io.h>
23
24 /**
25  * onenand_oob_64 - oob info for large (2KB) page
26  */
27 static struct nand_ecclayout onenand_oob_64 = {
28         .eccbytes       = 20,
29         .eccpos         = {
30                 8, 9, 10, 11, 12,
31                 24, 25, 26, 27, 28,
32                 40, 41, 42, 43, 44,
33                 56, 57, 58, 59, 60,
34                 },
35         .oobfree        = {
36                 {2, 3}, {14, 2}, {18, 3}, {30, 2},
37                 {34, 3}, {46, 2}, {50, 3}, {62, 2}
38         }
39 };
40
41 /**
42  * onenand_oob_32 - oob info for middle (1KB) page
43  */
44 static struct nand_ecclayout onenand_oob_32 = {
45         .eccbytes       = 10,
46         .eccpos         = {
47                 8, 9, 10, 11, 12,
48                 24, 25, 26, 27, 28,
49                 },
50         .oobfree        = { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
51 };
52
53 static const unsigned char ffchars[] = {
54         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
55         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
56         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
57         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
58         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
59         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
60         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
61         0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
62 };
63
64 /**
65  * onenand_readw - [OneNAND Interface] Read OneNAND register
66  * @param addr          address to read
67  *
68  * Read OneNAND register
69  */
70 static unsigned short onenand_readw(void __iomem *addr)
71 {
72         return readw(addr);
73 }
74
75 /**
76  * onenand_writew - [OneNAND Interface] Write OneNAND register with value
77  * @param value         value to write
78  * @param addr          address to write
79  *
80  * Write OneNAND register with value
81  */
82 static void onenand_writew(unsigned short value, void __iomem *addr)
83 {
84         writew(value, addr);
85 }
86
87 /**
88  * onenand_block_address - [DEFAULT] Get block address
89  * @param this          onenand chip data structure
90  * @param block         the block
91  * @return              translated block address if DDP, otherwise same
92  *
93  * Setup Start Address 1 Register (F100h)
94  */
95 static int onenand_block_address(struct onenand_chip *this, int block)
96 {
97         /* Device Flash Core select, NAND Flash Block Address */
98         if (block & this->density_mask)
99                 return ONENAND_DDP_CHIP1 | (block ^ this->density_mask);
100
101         return block;
102 }
103
104 /**
105  * onenand_bufferram_address - [DEFAULT] Get bufferram address
106  * @param this          onenand chip data structure
107  * @param block         the block
108  * @return              set DBS value if DDP, otherwise 0
109  *
110  * Setup Start Address 2 Register (F101h) for DDP
111  */
112 static int onenand_bufferram_address(struct onenand_chip *this, int block)
113 {
114         /* Device BufferRAM Select */
115         if (block & this->density_mask)
116                 return ONENAND_DDP_CHIP1;
117
118         return ONENAND_DDP_CHIP0;
119 }
120
121 /**
122  * onenand_page_address - [DEFAULT] Get page address
123  * @param page          the page address
124  * @param sector        the sector address
125  * @return              combined page and sector address
126  *
127  * Setup Start Address 8 Register (F107h)
128  */
129 static int onenand_page_address(int page, int sector)
130 {
131         /* Flash Page Address, Flash Sector Address */
132         int fpa, fsa;
133
134         fpa = page & ONENAND_FPA_MASK;
135         fsa = sector & ONENAND_FSA_MASK;
136
137         return ((fpa << ONENAND_FPA_SHIFT) | fsa);
138 }
139
140 /**
141  * onenand_buffer_address - [DEFAULT] Get buffer address
142  * @param dataram1      DataRAM index
143  * @param sectors       the sector address
144  * @param count         the number of sectors
145  * @return              the start buffer value
146  *
147  * Setup Start Buffer Register (F200h)
148  */
149 static int onenand_buffer_address(int dataram1, int sectors, int count)
150 {
151         int bsa, bsc;
152
153         /* BufferRAM Sector Address */
154         bsa = sectors & ONENAND_BSA_MASK;
155
156         if (dataram1)
157                 bsa |= ONENAND_BSA_DATARAM1;    /* DataRAM1 */
158         else
159                 bsa |= ONENAND_BSA_DATARAM0;    /* DataRAM0 */
160
161         /* BufferRAM Sector Count */
162         bsc = count & ONENAND_BSC_MASK;
163
164         return ((bsa << ONENAND_BSA_SHIFT) | bsc);
165 }
166
167 /**
168  * onenand_command - [DEFAULT] Send command to OneNAND device
169  * @param mtd           MTD device structure
170  * @param cmd           the command to be sent
171  * @param addr          offset to read from or write to
172  * @param len           number of bytes to read or write
173  *
174  * Send command to OneNAND device. This function is used for middle/large page
175  * devices (1KB/2KB Bytes per page)
176  */
177 static int onenand_command(struct mtd_info *mtd, int cmd, loff_t addr, size_t len)
178 {
179         struct onenand_chip *this = mtd->priv;
180         int value, readcmd = 0, block_cmd = 0;
181         int block, page;
182
183         /* Address translation */
184         switch (cmd) {
185         case ONENAND_CMD_UNLOCK:
186         case ONENAND_CMD_LOCK:
187         case ONENAND_CMD_LOCK_TIGHT:
188         case ONENAND_CMD_UNLOCK_ALL:
189                 block = -1;
190                 page = -1;
191                 break;
192
193         case ONENAND_CMD_ERASE:
194         case ONENAND_CMD_BUFFERRAM:
195         case ONENAND_CMD_OTP_ACCESS:
196                 block_cmd = 1;
197                 block = (int) (addr >> this->erase_shift);
198                 page = -1;
199                 break;
200
201         default:
202                 block = (int) (addr >> this->erase_shift);
203                 page = (int) (addr >> this->page_shift);
204                 page &= this->page_mask;
205                 break;
206         }
207
208         /* NOTE: The setting order of the registers is very important! */
209         if (cmd == ONENAND_CMD_BUFFERRAM) {
210                 /* Select DataRAM for DDP */
211                 value = onenand_bufferram_address(this, block);
212                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
213
214                 /* Switch to the next data buffer */
215                 ONENAND_SET_NEXT_BUFFERRAM(this);
216
217                 return 0;
218         }
219
220         if (block != -1) {
221                 /* Write 'DFS, FBA' of Flash */
222                 value = onenand_block_address(this, block);
223                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
224
225                 if (block_cmd) {
226                         /* Select DataRAM for DDP */
227                         value = onenand_bufferram_address(this, block);
228                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
229                 }
230         }
231
232         if (page != -1) {
233                 /* Now we use page size operation */
234                 int sectors = 4, count = 4;
235                 int dataram;
236
237                 switch (cmd) {
238                 case ONENAND_CMD_READ:
239                 case ONENAND_CMD_READOOB:
240                         dataram = ONENAND_SET_NEXT_BUFFERRAM(this);
241                         readcmd = 1;
242                         break;
243
244                 default:
245                         dataram = ONENAND_CURRENT_BUFFERRAM(this);
246                         break;
247                 }
248
249                 /* Write 'FPA, FSA' of Flash */
250                 value = onenand_page_address(page, sectors);
251                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS8);
252
253                 /* Write 'BSA, BSC' of DataRAM */
254                 value = onenand_buffer_address(dataram, sectors, count);
255                 this->write_word(value, this->base + ONENAND_REG_START_BUFFER);
256
257                 if (readcmd) {
258                         /* Select DataRAM for DDP */
259                         value = onenand_bufferram_address(this, block);
260                         this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
261                 }
262         }
263
264         /* Interrupt clear */
265         this->write_word(ONENAND_INT_CLEAR, this->base + ONENAND_REG_INTERRUPT);
266
267         /* Write command */
268         this->write_word(cmd, this->base + ONENAND_REG_COMMAND);
269
270         return 0;
271 }
272
273 /**
274  * onenand_wait - [DEFAULT] wait until the command is done
275  * @param mtd           MTD device structure
276  * @param state         state to select the max. timeout value
277  *
278  * Wait for command done. This applies to all OneNAND command
279  * Read can take up to 30us, erase up to 2ms and program up to 350us
280  * according to general OneNAND specs
281  */
282 static int onenand_wait(struct mtd_info *mtd, int state)
283 {
284         struct onenand_chip * this = mtd->priv;
285         unsigned long timeout;
286         unsigned int flags = ONENAND_INT_MASTER;
287         unsigned int interrupt = 0;
288         unsigned int ctrl;
289
290         /* The 20 msec is enough */
291         timeout = jiffies + msecs_to_jiffies(20);
292         while (time_before(jiffies, timeout)) {
293                 interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
294
295                 if (interrupt & flags)
296                         break;
297
298                 if (state != FL_READING)
299                         cond_resched();
300         }
301         /* To get correct interrupt status in timeout case */
302         interrupt = this->read_word(this->base + ONENAND_REG_INTERRUPT);
303
304         ctrl = this->read_word(this->base + ONENAND_REG_CTRL_STATUS);
305
306         if (ctrl & ONENAND_CTRL_ERROR) {
307                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: controller error = 0x%04x\n", ctrl);
308                 if (ctrl & ONENAND_CTRL_LOCK)
309                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: it's locked error.\n");
310                 return ctrl;
311         }
312
313         if (interrupt & ONENAND_INT_READ) {
314                 int ecc = this->read_word(this->base + ONENAND_REG_ECC_STATUS);
315                 if (ecc) {
316                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_wait: ECC error = 0x%04x\n", ecc);
317                         if (ecc & ONENAND_ECC_2BIT_ALL) {
318                                 mtd->ecc_stats.failed++;
319                                 return ecc;
320                         } else if (ecc & ONENAND_ECC_1BIT_ALL)
321                                 mtd->ecc_stats.corrected++;
322                 }
323         } else if (state == FL_READING) {
324                 printk(KERN_ERR "onenand_wait: read timeout! ctrl=0x%04x intr=0x%04x\n", ctrl, interrupt);
325                 return -EIO;
326         }
327
328         return 0;
329 }
330
331 /*
332  * onenand_interrupt - [DEFAULT] onenand interrupt handler
333  * @param irq           onenand interrupt number
334  * @param dev_id        interrupt data
335  *
336  * complete the work
337  */
338 static irqreturn_t onenand_interrupt(int irq, void *data)
339 {
340         struct onenand_chip *this = (struct onenand_chip *) data;
341
342         /* To handle shared interrupt */
343         if (!this->complete.done)
344                 complete(&this->complete);
345
346         return IRQ_HANDLED;
347 }
348
349 /*
350  * onenand_interrupt_wait - [DEFAULT] wait until the command is done
351  * @param mtd           MTD device structure
352  * @param state         state to select the max. timeout value
353  *
354  * Wait for command done.
355  */
356 static int onenand_interrupt_wait(struct mtd_info *mtd, int state)
357 {
358         struct onenand_chip *this = mtd->priv;
359
360         wait_for_completion(&this->complete);
361
362         return onenand_wait(mtd, state);
363 }
364
365 /*
366  * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
367  * @param mtd           MTD device structure
368  * @param state         state to select the max. timeout value
369  *
370  * Try interrupt based wait (It is used one-time)
371  */
372 static int onenand_try_interrupt_wait(struct mtd_info *mtd, int state)
373 {
374         struct onenand_chip *this = mtd->priv;
375         unsigned long remain, timeout;
376
377         /* We use interrupt wait first */
378         this->wait = onenand_interrupt_wait;
379
380         timeout = msecs_to_jiffies(100);
381         remain = wait_for_completion_timeout(&this->complete, timeout);
382         if (!remain) {
383                 printk(KERN_INFO "OneNAND: There's no interrupt. "
384                                 "We use the normal wait\n");
385
386                 /* Release the irq */
387                 free_irq(this->irq, this);
388
389                 this->wait = onenand_wait;
390         }
391
392         return onenand_wait(mtd, state);
393 }
394
395 /*
396  * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
397  * @param mtd           MTD device structure
398  *
399  * There's two method to wait onenand work
400  * 1. polling - read interrupt status register
401  * 2. interrupt - use the kernel interrupt method
402  */
403 static void onenand_setup_wait(struct mtd_info *mtd)
404 {
405         struct onenand_chip *this = mtd->priv;
406         int syscfg;
407
408         init_completion(&this->complete);
409
410         if (this->irq <= 0) {
411                 this->wait = onenand_wait;
412                 return;
413         }
414
415         if (request_irq(this->irq, &onenand_interrupt,
416                                 IRQF_SHARED, "onenand", this)) {
417                 /* If we can't get irq, use the normal wait */
418                 this->wait = onenand_wait;
419                 return;
420         }
421
422         /* Enable interrupt */
423         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
424         syscfg |= ONENAND_SYS_CFG1_IOBE;
425         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
426
427         this->wait = onenand_try_interrupt_wait;
428 }
429
430 /**
431  * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
432  * @param mtd           MTD data structure
433  * @param area          BufferRAM area
434  * @return              offset given area
435  *
436  * Return BufferRAM offset given area
437  */
438 static inline int onenand_bufferram_offset(struct mtd_info *mtd, int area)
439 {
440         struct onenand_chip *this = mtd->priv;
441
442         if (ONENAND_CURRENT_BUFFERRAM(this)) {
443                 if (area == ONENAND_DATARAM)
444                         return mtd->writesize;
445                 if (area == ONENAND_SPARERAM)
446                         return mtd->oobsize;
447         }
448
449         return 0;
450 }
451
452 /**
453  * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
454  * @param mtd           MTD data structure
455  * @param area          BufferRAM area
456  * @param buffer        the databuffer to put/get data
457  * @param offset        offset to read from or write to
458  * @param count         number of bytes to read/write
459  *
460  * Read the BufferRAM area
461  */
462 static int onenand_read_bufferram(struct mtd_info *mtd, int area,
463                 unsigned char *buffer, int offset, size_t count)
464 {
465         struct onenand_chip *this = mtd->priv;
466         void __iomem *bufferram;
467
468         bufferram = this->base + area;
469
470         bufferram += onenand_bufferram_offset(mtd, area);
471
472         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
473                 unsigned short word;
474
475                 /* Align with word(16-bit) size */
476                 count--;
477
478                 /* Read word and save byte */
479                 word = this->read_word(bufferram + offset + count);
480                 buffer[count] = (word & 0xff);
481         }
482
483         memcpy(buffer, bufferram + offset, count);
484
485         return 0;
486 }
487
488 /**
489  * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
490  * @param mtd           MTD data structure
491  * @param area          BufferRAM area
492  * @param buffer        the databuffer to put/get data
493  * @param offset        offset to read from or write to
494  * @param count         number of bytes to read/write
495  *
496  * Read the BufferRAM area with Sync. Burst Mode
497  */
498 static int onenand_sync_read_bufferram(struct mtd_info *mtd, int area,
499                 unsigned char *buffer, int offset, size_t count)
500 {
501         struct onenand_chip *this = mtd->priv;
502         void __iomem *bufferram;
503
504         bufferram = this->base + area;
505
506         bufferram += onenand_bufferram_offset(mtd, area);
507
508         this->mmcontrol(mtd, ONENAND_SYS_CFG1_SYNC_READ);
509
510         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
511                 unsigned short word;
512
513                 /* Align with word(16-bit) size */
514                 count--;
515
516                 /* Read word and save byte */
517                 word = this->read_word(bufferram + offset + count);
518                 buffer[count] = (word & 0xff);
519         }
520
521         memcpy(buffer, bufferram + offset, count);
522
523         this->mmcontrol(mtd, 0);
524
525         return 0;
526 }
527
528 /**
529  * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
530  * @param mtd           MTD data structure
531  * @param area          BufferRAM area
532  * @param buffer        the databuffer to put/get data
533  * @param offset        offset to read from or write to
534  * @param count         number of bytes to read/write
535  *
536  * Write the BufferRAM area
537  */
538 static int onenand_write_bufferram(struct mtd_info *mtd, int area,
539                 const unsigned char *buffer, int offset, size_t count)
540 {
541         struct onenand_chip *this = mtd->priv;
542         void __iomem *bufferram;
543
544         bufferram = this->base + area;
545
546         bufferram += onenand_bufferram_offset(mtd, area);
547
548         if (ONENAND_CHECK_BYTE_ACCESS(count)) {
549                 unsigned short word;
550                 int byte_offset;
551
552                 /* Align with word(16-bit) size */
553                 count--;
554
555                 /* Calculate byte access offset */
556                 byte_offset = offset + count;
557
558                 /* Read word and save byte */
559                 word = this->read_word(bufferram + byte_offset);
560                 word = (word & ~0xff) | buffer[count];
561                 this->write_word(word, bufferram + byte_offset);
562         }
563
564         memcpy(bufferram + offset, buffer, count);
565
566         return 0;
567 }
568
569 /**
570  * onenand_check_bufferram - [GENERIC] Check BufferRAM information
571  * @param mtd           MTD data structure
572  * @param addr          address to check
573  * @return              1 if there are valid data, otherwise 0
574  *
575  * Check bufferram if there is data we required
576  */
577 static int onenand_check_bufferram(struct mtd_info *mtd, loff_t addr)
578 {
579         struct onenand_chip *this = mtd->priv;
580         int block, page;
581         int i;
582
583         block = (int) (addr >> this->erase_shift);
584         page = (int) (addr >> this->page_shift) & this->page_mask;
585
586         i = ONENAND_CURRENT_BUFFERRAM(this);
587
588         /* Is there valid data? */
589         if (this->bufferram[i].block == block &&
590             this->bufferram[i].page == page &&
591             this->bufferram[i].valid)
592                 return 1;
593
594         return 0;
595 }
596
597 /**
598  * onenand_update_bufferram - [GENERIC] Update BufferRAM information
599  * @param mtd           MTD data structure
600  * @param addr          address to update
601  * @param valid         valid flag
602  *
603  * Update BufferRAM information
604  */
605 static int onenand_update_bufferram(struct mtd_info *mtd, loff_t addr,
606                 int valid)
607 {
608         struct onenand_chip *this = mtd->priv;
609         int block, page;
610         int i;
611
612         block = (int) (addr >> this->erase_shift);
613         page = (int) (addr >> this->page_shift) & this->page_mask;
614
615         /* Invalidate BufferRAM */
616         for (i = 0; i < MAX_BUFFERRAM; i++) {
617                 if (this->bufferram[i].block == block &&
618                     this->bufferram[i].page == page)
619                         this->bufferram[i].valid = 0;
620         }
621
622         /* Update BufferRAM */
623         i = ONENAND_CURRENT_BUFFERRAM(this);
624         this->bufferram[i].block = block;
625         this->bufferram[i].page = page;
626         this->bufferram[i].valid = valid;
627
628         return 0;
629 }
630
631 /**
632  * onenand_get_device - [GENERIC] Get chip for selected access
633  * @param mtd           MTD device structure
634  * @param new_state     the state which is requested
635  *
636  * Get the device and lock it for exclusive access
637  */
638 static int onenand_get_device(struct mtd_info *mtd, int new_state)
639 {
640         struct onenand_chip *this = mtd->priv;
641         DECLARE_WAITQUEUE(wait, current);
642
643         /*
644          * Grab the lock and see if the device is available
645          */
646         while (1) {
647                 spin_lock(&this->chip_lock);
648                 if (this->state == FL_READY) {
649                         this->state = new_state;
650                         spin_unlock(&this->chip_lock);
651                         break;
652                 }
653                 if (new_state == FL_PM_SUSPENDED) {
654                         spin_unlock(&this->chip_lock);
655                         return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
656                 }
657                 set_current_state(TASK_UNINTERRUPTIBLE);
658                 add_wait_queue(&this->wq, &wait);
659                 spin_unlock(&this->chip_lock);
660                 schedule();
661                 remove_wait_queue(&this->wq, &wait);
662         }
663
664         return 0;
665 }
666
667 /**
668  * onenand_release_device - [GENERIC] release chip
669  * @param mtd           MTD device structure
670  *
671  * Deselect, release chip lock and wake up anyone waiting on the device
672  */
673 static void onenand_release_device(struct mtd_info *mtd)
674 {
675         struct onenand_chip *this = mtd->priv;
676
677         /* Release the chip */
678         spin_lock(&this->chip_lock);
679         this->state = FL_READY;
680         wake_up(&this->wq);
681         spin_unlock(&this->chip_lock);
682 }
683
684 /**
685  * onenand_read - [MTD Interface] Read data from flash
686  * @param mtd           MTD device structure
687  * @param from          offset to read from
688  * @param len           number of bytes to read
689  * @param retlen        pointer to variable to store the number of read bytes
690  * @param buf           the databuffer to put data
691  *
692  * Read with ecc
693 */
694 static int onenand_read(struct mtd_info *mtd, loff_t from, size_t len,
695         size_t *retlen, u_char *buf)
696 {
697         struct onenand_chip *this = mtd->priv;
698         struct mtd_ecc_stats stats;
699         int read = 0, column;
700         int thislen;
701         int ret = 0, boundary = 0;
702
703         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
704
705         /* Do not allow reads past end of device */
706         if ((from + len) > mtd->size) {
707                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read: Attempt read beyond end of device\n");
708                 *retlen = 0;
709                 return -EINVAL;
710         }
711
712         /* Grab the lock and see if the device is available */
713         onenand_get_device(mtd, FL_READING);
714
715         stats = mtd->ecc_stats;
716
717         /* Read-while-load method */
718
719         /* Do first load to bufferRAM */
720         if (read < len) {
721                 if (!onenand_check_bufferram(mtd, from)) {
722                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
723                         ret = this->wait(mtd, FL_READING);
724                         onenand_update_bufferram(mtd, from, !ret);
725                 }
726         }
727
728         thislen = min_t(int, mtd->writesize, len - read);
729         column = from & (mtd->writesize - 1);
730         if (column + thislen > mtd->writesize)
731                 thislen = mtd->writesize - column;
732
733         while (!ret) {
734                 /* If there is more to load then start next load */
735                 from += thislen;
736                 if (read + thislen < len) {
737                         this->command(mtd, ONENAND_CMD_READ, from, mtd->writesize);
738                         /*
739                          * Chip boundary handling in DDP
740                          * Now we issued chip 1 read and pointed chip 1
741                          * bufferam so we have to point chip 0 bufferam.
742                          */
743                         if (ONENAND_IS_DDP(this) &&
744                             unlikely(from == (this->chipsize >> 1))) {
745                                 this->write_word(ONENAND_DDP_CHIP0, this->base + ONENAND_REG_START_ADDRESS2);
746                                 boundary = 1;
747                         } else
748                                 boundary = 0;
749                         ONENAND_SET_PREV_BUFFERRAM(this);
750                 }
751                 /* While load is going, read from last bufferRAM */
752                 this->read_bufferram(mtd, ONENAND_DATARAM, buf, column, thislen);
753                 /* See if we are done */
754                 read += thislen;
755                 if (read == len)
756                         break;
757                 /* Set up for next read from bufferRAM */
758                 if (unlikely(boundary))
759                         this->write_word(ONENAND_DDP_CHIP1, this->base + ONENAND_REG_START_ADDRESS2);
760                 ONENAND_SET_NEXT_BUFFERRAM(this);
761                 buf += thislen;
762                 thislen = min_t(int, mtd->writesize, len - read);
763                 column = 0;
764                 cond_resched();
765                 /* Now wait for load */
766                 ret = this->wait(mtd, FL_READING);
767                 onenand_update_bufferram(mtd, from, !ret);
768         }
769
770         /* Deselect and wake up anyone waiting on the device */
771         onenand_release_device(mtd);
772
773         /*
774          * Return success, if no ECC failures, else -EBADMSG
775          * fs driver will take care of that, because
776          * retlen == desired len and result == -EBADMSG
777          */
778         *retlen = read;
779
780         if (mtd->ecc_stats.failed - stats.failed)
781                 return -EBADMSG;
782
783         if (ret)
784                 return ret;
785
786         return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
787 }
788
789 /**
790  * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
791  * @param mtd           MTD device structure
792  * @param buf           destination address
793  * @param column        oob offset to read from
794  * @param thislen       oob length to read
795  */
796 static int onenand_transfer_auto_oob(struct mtd_info *mtd, uint8_t *buf, int column,
797                                 int thislen)
798 {
799         struct onenand_chip *this = mtd->priv;
800         struct nand_oobfree *free;
801         int readcol = column;
802         int readend = column + thislen;
803         int lastgap = 0;
804         uint8_t *oob_buf = this->page_buf + mtd->writesize;
805
806         for (free = this->ecclayout->oobfree; free->length; ++free) {
807                 if (readcol >= lastgap)
808                         readcol += free->offset - lastgap;
809                 if (readend >= lastgap)
810                         readend += free->offset - lastgap;
811                 lastgap = free->offset + free->length;
812         }
813         this->read_bufferram(mtd, ONENAND_SPARERAM, oob_buf, 0, mtd->oobsize);
814         for (free = this->ecclayout->oobfree; free->length; ++free) {
815                 int free_end = free->offset + free->length;
816                 if (free->offset < readend && free_end > readcol) {
817                         int st = max_t(int,free->offset,readcol);
818                         int ed = min_t(int,free_end,readend);
819                         int n = ed - st;
820                         memcpy(buf, oob_buf + st, n);
821                         buf += n;
822                 }
823         }
824         return 0;
825 }
826
827 /**
828  * onenand_do_read_oob - [MTD Interface] OneNAND read out-of-band
829  * @param mtd           MTD device structure
830  * @param from          offset to read from
831  * @param len           number of bytes to read
832  * @param retlen        pointer to variable to store the number of read bytes
833  * @param buf           the databuffer to put data
834  * @param mode          operation mode
835  *
836  * OneNAND read out-of-band data from the spare area
837  */
838 int onenand_do_read_oob(struct mtd_info *mtd, loff_t from, size_t len,
839                         size_t *retlen, u_char *buf, mtd_oob_mode_t mode)
840 {
841         struct onenand_chip *this = mtd->priv;
842         int read = 0, thislen, column, oobsize;
843         int ret = 0;
844
845         DEBUG(MTD_DEBUG_LEVEL3, "onenand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
846
847         /* Initialize return length value */
848         *retlen = 0;
849
850         if (mode == MTD_OOB_AUTO)
851                 oobsize = this->ecclayout->oobavail;
852         else
853                 oobsize = mtd->oobsize;
854
855         column = from & (mtd->oobsize - 1);
856
857         if (unlikely(column >= oobsize)) {
858                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempted to start read outside oob\n");
859                 return -EINVAL;
860         }
861
862         /* Do not allow reads past end of device */
863         if (unlikely(from >= mtd->size ||
864                      column + len > ((mtd->size >> this->page_shift) -
865                                      (from >> this->page_shift)) * oobsize)) {
866                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: Attempted to read beyond end of device\n");
867                 return -EINVAL;
868         }
869
870         /* Grab the lock and see if the device is available */
871         onenand_get_device(mtd, FL_READING);
872
873         while (read < len) {
874                 cond_resched();
875
876                 thislen = oobsize - column;
877                 thislen = min_t(int, thislen, len);
878
879                 this->command(mtd, ONENAND_CMD_READOOB, from, mtd->oobsize);
880
881                 onenand_update_bufferram(mtd, from, 0);
882
883                 ret = this->wait(mtd, FL_READING);
884                 /* First copy data and check return value for ECC handling */
885
886                 if (mode == MTD_OOB_AUTO)
887                         onenand_transfer_auto_oob(mtd, buf, column, thislen);
888                 else
889                         this->read_bufferram(mtd, ONENAND_SPARERAM, buf, column, thislen);
890
891                 if (ret) {
892                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_read_oob: read failed = 0x%x\n", ret);
893                         goto out;
894                 }
895
896                 read += thislen;
897
898                 if (read == len)
899                         break;
900
901                 buf += thislen;
902
903                 /* Read more? */
904                 if (read < len) {
905                         /* Page size */
906                         from += mtd->writesize;
907                         column = 0;
908                 }
909         }
910
911 out:
912         /* Deselect and wake up anyone waiting on the device */
913         onenand_release_device(mtd);
914
915         *retlen = read;
916         return ret;
917 }
918
919 /**
920  * onenand_read_oob - [MTD Interface] NAND write data and/or out-of-band
921  * @mtd:        MTD device structure
922  * @from:       offset to read from
923  * @ops:        oob operation description structure
924  */
925 static int onenand_read_oob(struct mtd_info *mtd, loff_t from,
926                             struct mtd_oob_ops *ops)
927 {
928         switch (ops->mode) {
929         case MTD_OOB_PLACE:
930         case MTD_OOB_AUTO:
931                 break;
932         case MTD_OOB_RAW:
933                 /* Not implemented yet */
934         default:
935                 return -EINVAL;
936         }
937         return onenand_do_read_oob(mtd, from + ops->ooboffs, ops->ooblen,
938                                    &ops->oobretlen, ops->oobbuf, ops->mode);
939 }
940
941 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
942 /**
943  * onenand_verify_oob - [GENERIC] verify the oob contents after a write
944  * @param mtd           MTD device structure
945  * @param buf           the databuffer to verify
946  * @param to            offset to read from
947  *
948  */
949 static int onenand_verify_oob(struct mtd_info *mtd, const u_char *buf, loff_t to)
950 {
951         struct onenand_chip *this = mtd->priv;
952         char *readp = this->page_buf + mtd->writesize;
953         int status, i;
954
955         this->command(mtd, ONENAND_CMD_READOOB, to, mtd->oobsize);
956         onenand_update_bufferram(mtd, to, 0);
957         status = this->wait(mtd, FL_READING);
958         if (status)
959                 return status;
960
961         this->read_bufferram(mtd, ONENAND_SPARERAM, readp, 0, mtd->oobsize);
962         for(i = 0; i < mtd->oobsize; i++)
963                 if (buf[i] != 0xFF && buf[i] != readp[i])
964                         return -EBADMSG;
965
966         return 0;
967 }
968
969 /**
970  * onenand_verify - [GENERIC] verify the chip contents after a write
971  * @param mtd          MTD device structure
972  * @param buf          the databuffer to verify
973  * @param addr         offset to read from
974  * @param len          number of bytes to read and compare
975  *
976  */
977 static int onenand_verify(struct mtd_info *mtd, const u_char *buf, loff_t addr, size_t len)
978 {
979         struct onenand_chip *this = mtd->priv;
980         void __iomem *dataram;
981         int ret = 0;
982         int thislen, column;
983
984         while (len != 0) {
985                 thislen = min_t(int, mtd->writesize, len);
986                 column = addr & (mtd->writesize - 1);
987                 if (column + thislen > mtd->writesize)
988                         thislen = mtd->writesize - column;
989
990                 this->command(mtd, ONENAND_CMD_READ, addr, mtd->writesize);
991
992                 onenand_update_bufferram(mtd, addr, 0);
993
994                 ret = this->wait(mtd, FL_READING);
995                 if (ret)
996                         return ret;
997
998                 onenand_update_bufferram(mtd, addr, 1);
999
1000                 dataram = this->base + ONENAND_DATARAM;
1001                 dataram += onenand_bufferram_offset(mtd, ONENAND_DATARAM);
1002
1003                 if (memcmp(buf, dataram + column, thislen))
1004                         return -EBADMSG;
1005
1006                 len -= thislen;
1007                 buf += thislen;
1008                 addr += thislen;
1009         }
1010
1011         return 0;
1012 }
1013 #else
1014 #define onenand_verify(...)             (0)
1015 #define onenand_verify_oob(...)         (0)
1016 #endif
1017
1018 #define NOTALIGNED(x)   ((x & (this->subpagesize - 1)) != 0)
1019
1020 /**
1021  * onenand_write - [MTD Interface] write buffer to FLASH
1022  * @param mtd           MTD device structure
1023  * @param to            offset to write to
1024  * @param len           number of bytes to write
1025  * @param retlen        pointer to variable to store the number of written bytes
1026  * @param buf           the data to write
1027  *
1028  * Write with ECC
1029  */
1030 static int onenand_write(struct mtd_info *mtd, loff_t to, size_t len,
1031         size_t *retlen, const u_char *buf)
1032 {
1033         struct onenand_chip *this = mtd->priv;
1034         int written = 0;
1035         int ret = 0;
1036         int column, subpage;
1037
1038         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1039
1040         /* Initialize retlen, in case of early exit */
1041         *retlen = 0;
1042
1043         /* Do not allow writes past end of device */
1044         if (unlikely((to + len) > mtd->size)) {
1045                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt write to past end of device\n");
1046                 return -EINVAL;
1047         }
1048
1049         /* Reject writes, which are not page aligned */
1050         if (unlikely(NOTALIGNED(to)) || unlikely(NOTALIGNED(len))) {
1051                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: Attempt to write not page aligned data\n");
1052                 return -EINVAL;
1053         }
1054
1055         column = to & (mtd->writesize - 1);
1056         subpage = column || (len & (mtd->writesize - 1));
1057
1058         /* Grab the lock and see if the device is available */
1059         onenand_get_device(mtd, FL_WRITING);
1060
1061         /* Loop until all data write */
1062         while (written < len) {
1063                 int bytes = mtd->writesize;
1064                 int thislen = min_t(int, bytes, len - written);
1065                 u_char *wbuf = (u_char *) buf;
1066
1067                 cond_resched();
1068
1069                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, bytes);
1070
1071                 /* Partial page write */
1072                 if (subpage) {
1073                         bytes = min_t(int, bytes - column, (int) len);
1074                         memset(this->page_buf, 0xff, mtd->writesize);
1075                         memcpy(this->page_buf + column, buf, bytes);
1076                         wbuf = this->page_buf;
1077                         /* Even though partial write, we need page size */
1078                         thislen = mtd->writesize;
1079                 }
1080
1081                 this->write_bufferram(mtd, ONENAND_DATARAM, wbuf, 0, thislen);
1082                 this->write_bufferram(mtd, ONENAND_SPARERAM, ffchars, 0, mtd->oobsize);
1083
1084                 this->command(mtd, ONENAND_CMD_PROG, to, mtd->writesize);
1085
1086                 /* In partial page write we don't update bufferram */
1087                 onenand_update_bufferram(mtd, to, !subpage);
1088
1089                 ret = this->wait(mtd, FL_WRITING);
1090                 if (ret) {
1091                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: write filaed %d\n", ret);
1092                         break;
1093                 }
1094
1095                 /* Only check verify write turn on */
1096                 ret = onenand_verify(mtd, (u_char *) wbuf, to, thislen);
1097                 if (ret) {
1098                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write: verify failed %d\n", ret);
1099                         break;
1100                 }
1101
1102                 written += thislen;
1103
1104                 if (written == len)
1105                         break;
1106
1107                 column = 0;
1108                 to += thislen;
1109                 buf += thislen;
1110         }
1111
1112         /* Deselect and wake up anyone waiting on the device */
1113         onenand_release_device(mtd);
1114
1115         *retlen = written;
1116
1117         return ret;
1118 }
1119
1120 /**
1121  * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1122  * @param mtd           MTD device structure
1123  * @param oob_buf       oob buffer
1124  * @param buf           source address
1125  * @param column        oob offset to write to
1126  * @param thislen       oob length to write
1127  */
1128 static int onenand_fill_auto_oob(struct mtd_info *mtd, u_char *oob_buf,
1129                                   const u_char *buf, int column, int thislen)
1130 {
1131         struct onenand_chip *this = mtd->priv;
1132         struct nand_oobfree *free;
1133         int writecol = column;
1134         int writeend = column + thislen;
1135         int lastgap = 0;
1136
1137         for (free = this->ecclayout->oobfree; free->length; ++free) {
1138                 if (writecol >= lastgap)
1139                         writecol += free->offset - lastgap;
1140                 if (writeend >= lastgap)
1141                         writeend += free->offset - lastgap;
1142                 lastgap = free->offset + free->length;
1143         }
1144         for (free = this->ecclayout->oobfree; free->length; ++free) {
1145                 int free_end = free->offset + free->length;
1146                 if (free->offset < writeend && free_end > writecol) {
1147                         int st = max_t(int,free->offset,writecol);
1148                         int ed = min_t(int,free_end,writeend);
1149                         int n = ed - st;
1150                         memcpy(oob_buf + st, buf, n);
1151                         buf += n;
1152                 }
1153         }
1154         return 0;
1155 }
1156
1157 /**
1158  * onenand_do_write_oob - [Internal] OneNAND write out-of-band
1159  * @param mtd           MTD device structure
1160  * @param to            offset to write to
1161  * @param len           number of bytes to write
1162  * @param retlen        pointer to variable to store the number of written bytes
1163  * @param buf           the data to write
1164  * @param mode          operation mode
1165  *
1166  * OneNAND write out-of-band
1167  */
1168 static int onenand_do_write_oob(struct mtd_info *mtd, loff_t to, size_t len,
1169                                 size_t *retlen, const u_char *buf, mtd_oob_mode_t mode)
1170 {
1171         struct onenand_chip *this = mtd->priv;
1172         int column, ret = 0, oobsize;
1173         int written = 0;
1174
1175         DEBUG(MTD_DEBUG_LEVEL3, "onenand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
1176
1177         /* Initialize retlen, in case of early exit */
1178         *retlen = 0;
1179
1180         if (mode == MTD_OOB_AUTO)
1181                 oobsize = this->ecclayout->oobavail;
1182         else
1183                 oobsize = mtd->oobsize;
1184
1185         column = to & (mtd->oobsize - 1);
1186
1187         if (unlikely(column >= oobsize)) {
1188                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempted to start write outside oob\n");
1189                 return -EINVAL;
1190         }
1191
1192         /* Do not allow reads past end of device */
1193         if (unlikely(to >= mtd->size ||
1194                      column + len > ((mtd->size >> this->page_shift) -
1195                                      (to >> this->page_shift)) * oobsize)) {
1196                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: Attempted to write past end of device\n");
1197                 return -EINVAL;
1198         }
1199
1200         /* Grab the lock and see if the device is available */
1201         onenand_get_device(mtd, FL_WRITING);
1202
1203         /* Loop until all data write */
1204         while (written < len) {
1205                 int thislen = min_t(int, oobsize, len - written);
1206
1207                 cond_resched();
1208
1209                 this->command(mtd, ONENAND_CMD_BUFFERRAM, to, mtd->oobsize);
1210
1211                 /* We send data to spare ram with oobsize
1212                  * to prevent byte access */
1213                 memset(this->page_buf, 0xff, mtd->oobsize);
1214                 if (mode == MTD_OOB_AUTO)
1215                         onenand_fill_auto_oob(mtd, this->page_buf, buf, column, thislen);
1216                 else
1217                         memcpy(this->page_buf + column, buf, thislen);
1218                 this->write_bufferram(mtd, ONENAND_SPARERAM, this->page_buf, 0, mtd->oobsize);
1219
1220                 this->command(mtd, ONENAND_CMD_PROGOOB, to, mtd->oobsize);
1221
1222                 onenand_update_bufferram(mtd, to, 0);
1223
1224                 ret = this->wait(mtd, FL_WRITING);
1225                 if (ret) {
1226                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: write failed %d\n", ret);
1227                         goto out;
1228                 }
1229
1230                 ret = onenand_verify_oob(mtd, this->page_buf, to);
1231                 if (ret) {
1232                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_write_oob: verify failed %d\n", ret);
1233                         goto out;
1234                 }
1235
1236                 written += thislen;
1237
1238                 if (written == len)
1239                         break;
1240
1241                 to += mtd->writesize;
1242                 buf += thislen;
1243                 column = 0;
1244         }
1245
1246 out:
1247         /* Deselect and wake up anyone waiting on the device */
1248         onenand_release_device(mtd);
1249
1250         *retlen = written;
1251
1252         return ret;
1253 }
1254
1255 /**
1256  * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1257  * @mtd:        MTD device structure
1258  * @from:       offset to read from
1259  * @ops:        oob operation description structure
1260  */
1261 static int onenand_write_oob(struct mtd_info *mtd, loff_t to,
1262                              struct mtd_oob_ops *ops)
1263 {
1264         switch (ops->mode) {
1265         case MTD_OOB_PLACE:
1266         case MTD_OOB_AUTO:
1267                 break;
1268         case MTD_OOB_RAW:
1269                 /* Not implemented yet */
1270         default:
1271                 return -EINVAL;
1272         }
1273         return onenand_do_write_oob(mtd, to + ops->ooboffs, ops->ooblen,
1274                                     &ops->oobretlen, ops->oobbuf, ops->mode);
1275 }
1276
1277 /**
1278  * onenand_block_checkbad - [GENERIC] Check if a block is marked bad
1279  * @param mtd           MTD device structure
1280  * @param ofs           offset from device start
1281  * @param getchip       0, if the chip is already selected
1282  * @param allowbbt      1, if its allowed to access the bbt area
1283  *
1284  * Check, if the block is bad. Either by reading the bad block table or
1285  * calling of the scan function.
1286  */
1287 static int onenand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
1288 {
1289         struct onenand_chip *this = mtd->priv;
1290         struct bbm_info *bbm = this->bbm;
1291
1292         /* Return info from the table */
1293         return bbm->isbad_bbt(mtd, ofs, allowbbt);
1294 }
1295
1296 /**
1297  * onenand_erase - [MTD Interface] erase block(s)
1298  * @param mtd           MTD device structure
1299  * @param instr         erase instruction
1300  *
1301  * Erase one ore more blocks
1302  */
1303 static int onenand_erase(struct mtd_info *mtd, struct erase_info *instr)
1304 {
1305         struct onenand_chip *this = mtd->priv;
1306         unsigned int block_size;
1307         loff_t addr;
1308         int len;
1309         int ret = 0;
1310
1311         DEBUG(MTD_DEBUG_LEVEL3, "onenand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
1312
1313         block_size = (1 << this->erase_shift);
1314
1315         /* Start address must align on block boundary */
1316         if (unlikely(instr->addr & (block_size - 1))) {
1317                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Unaligned address\n");
1318                 return -EINVAL;
1319         }
1320
1321         /* Length must align on block boundary */
1322         if (unlikely(instr->len & (block_size - 1))) {
1323                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Length not block aligned\n");
1324                 return -EINVAL;
1325         }
1326
1327         /* Do not allow erase past end of device */
1328         if (unlikely((instr->len + instr->addr) > mtd->size)) {
1329                 DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Erase past end of device\n");
1330                 return -EINVAL;
1331         }
1332
1333         instr->fail_addr = 0xffffffff;
1334
1335         /* Grab the lock and see if the device is available */
1336         onenand_get_device(mtd, FL_ERASING);
1337
1338         /* Loop throught the pages */
1339         len = instr->len;
1340         addr = instr->addr;
1341
1342         instr->state = MTD_ERASING;
1343
1344         while (len) {
1345                 cond_resched();
1346
1347                 /* Check if we have a bad block, we do not erase bad blocks */
1348                 if (onenand_block_checkbad(mtd, addr, 0, 0)) {
1349                         printk (KERN_WARNING "onenand_erase: attempt to erase a bad block at addr 0x%08x\n", (unsigned int) addr);
1350                         instr->state = MTD_ERASE_FAILED;
1351                         goto erase_exit;
1352                 }
1353
1354                 this->command(mtd, ONENAND_CMD_ERASE, addr, block_size);
1355
1356                 ret = this->wait(mtd, FL_ERASING);
1357                 /* Check, if it is write protected */
1358                 if (ret) {
1359                         DEBUG(MTD_DEBUG_LEVEL0, "onenand_erase: Failed erase, block %d\n", (unsigned) (addr >> this->erase_shift));
1360                         instr->state = MTD_ERASE_FAILED;
1361                         instr->fail_addr = addr;
1362                         goto erase_exit;
1363                 }
1364
1365                 len -= block_size;
1366                 addr += block_size;
1367         }
1368
1369         instr->state = MTD_ERASE_DONE;
1370
1371 erase_exit:
1372
1373         ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
1374         /* Do call back function */
1375         if (!ret)
1376                 mtd_erase_callback(instr);
1377
1378         /* Deselect and wake up anyone waiting on the device */
1379         onenand_release_device(mtd);
1380
1381         return ret;
1382 }
1383
1384 /**
1385  * onenand_sync - [MTD Interface] sync
1386  * @param mtd           MTD device structure
1387  *
1388  * Sync is actually a wait for chip ready function
1389  */
1390 static void onenand_sync(struct mtd_info *mtd)
1391 {
1392         DEBUG(MTD_DEBUG_LEVEL3, "onenand_sync: called\n");
1393
1394         /* Grab the lock and see if the device is available */
1395         onenand_get_device(mtd, FL_SYNCING);
1396
1397         /* Release it and go back */
1398         onenand_release_device(mtd);
1399 }
1400
1401 /**
1402  * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
1403  * @param mtd           MTD device structure
1404  * @param ofs           offset relative to mtd start
1405  *
1406  * Check whether the block is bad
1407  */
1408 static int onenand_block_isbad(struct mtd_info *mtd, loff_t ofs)
1409 {
1410         /* Check for invalid offset */
1411         if (ofs > mtd->size)
1412                 return -EINVAL;
1413
1414         return onenand_block_checkbad(mtd, ofs, 1, 0);
1415 }
1416
1417 /**
1418  * onenand_default_block_markbad - [DEFAULT] mark a block bad
1419  * @param mtd           MTD device structure
1420  * @param ofs           offset from device start
1421  *
1422  * This is the default implementation, which can be overridden by
1423  * a hardware specific driver.
1424  */
1425 static int onenand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
1426 {
1427         struct onenand_chip *this = mtd->priv;
1428         struct bbm_info *bbm = this->bbm;
1429         u_char buf[2] = {0, 0};
1430         size_t retlen;
1431         int block;
1432
1433         /* Get block number */
1434         block = ((int) ofs) >> bbm->bbt_erase_shift;
1435         if (bbm->bbt)
1436                 bbm->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1437
1438         /* We write two bytes, so we dont have to mess with 16 bit access */
1439         ofs += mtd->oobsize + (bbm->badblockpos & ~0x01);
1440         return onenand_do_write_oob(mtd, ofs , 2, &retlen, buf, MTD_OOB_PLACE);
1441 }
1442
1443 /**
1444  * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
1445  * @param mtd           MTD device structure
1446  * @param ofs           offset relative to mtd start
1447  *
1448  * Mark the block as bad
1449  */
1450 static int onenand_block_markbad(struct mtd_info *mtd, loff_t ofs)
1451 {
1452         struct onenand_chip *this = mtd->priv;
1453         int ret;
1454
1455         ret = onenand_block_isbad(mtd, ofs);
1456         if (ret) {
1457                 /* If it was bad already, return success and do nothing */
1458                 if (ret > 0)
1459                         return 0;
1460                 return ret;
1461         }
1462
1463         return this->block_markbad(mtd, ofs);
1464 }
1465
1466 /**
1467  * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
1468  * @param mtd           MTD device structure
1469  * @param ofs           offset relative to mtd start
1470  * @param len           number of bytes to lock or unlock
1471  *
1472  * Lock or unlock one or more blocks
1473  */
1474 static int onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs, size_t len, int cmd)
1475 {
1476         struct onenand_chip *this = mtd->priv;
1477         int start, end, block, value, status;
1478         int wp_status_mask;
1479
1480         start = ofs >> this->erase_shift;
1481         end = len >> this->erase_shift;
1482
1483         if (cmd == ONENAND_CMD_LOCK)
1484                 wp_status_mask = ONENAND_WP_LS;
1485         else
1486                 wp_status_mask = ONENAND_WP_US;
1487
1488         /* Continuous lock scheme */
1489         if (this->options & ONENAND_HAS_CONT_LOCK) {
1490                 /* Set start block address */
1491                 this->write_word(start, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1492                 /* Set end block address */
1493                 this->write_word(start + end - 1, this->base + ONENAND_REG_END_BLOCK_ADDRESS);
1494                 /* Write lock command */
1495                 this->command(mtd, cmd, 0, 0);
1496
1497                 /* There's no return value */
1498                 this->wait(mtd, FL_LOCKING);
1499
1500                 /* Sanity check */
1501                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1502                     & ONENAND_CTRL_ONGO)
1503                         continue;
1504
1505                 /* Check lock status */
1506                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1507                 if (!(status & wp_status_mask))
1508                         printk(KERN_ERR "wp status = 0x%x\n", status);
1509
1510                 return 0;
1511         }
1512
1513         /* Block lock scheme */
1514         for (block = start; block < start + end; block++) {
1515                 /* Set block address */
1516                 value = onenand_block_address(this, block);
1517                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1518                 /* Select DataRAM for DDP */
1519                 value = onenand_bufferram_address(this, block);
1520                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1521                 /* Set start block address */
1522                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1523                 /* Write lock command */
1524                 this->command(mtd, cmd, 0, 0);
1525
1526                 /* There's no return value */
1527                 this->wait(mtd, FL_LOCKING);
1528
1529                 /* Sanity check */
1530                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1531                     & ONENAND_CTRL_ONGO)
1532                         continue;
1533
1534                 /* Check lock status */
1535                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1536                 if (!(status & wp_status_mask))
1537                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1538         }
1539
1540         return 0;
1541 }
1542
1543 /**
1544  * onenand_lock - [MTD Interface] Lock block(s)
1545  * @param mtd           MTD device structure
1546  * @param ofs           offset relative to mtd start
1547  * @param len           number of bytes to unlock
1548  *
1549  * Lock one or more blocks
1550  */
1551 static int onenand_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1552 {
1553         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_LOCK);
1554 }
1555
1556 /**
1557  * onenand_unlock - [MTD Interface] Unlock block(s)
1558  * @param mtd           MTD device structure
1559  * @param ofs           offset relative to mtd start
1560  * @param len           number of bytes to unlock
1561  *
1562  * Unlock one or more blocks
1563  */
1564 static int onenand_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1565 {
1566         return onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
1567 }
1568
1569 /**
1570  * onenand_check_lock_status - [OneNAND Interface] Check lock status
1571  * @param this          onenand chip data structure
1572  *
1573  * Check lock status
1574  */
1575 static void onenand_check_lock_status(struct onenand_chip *this)
1576 {
1577         unsigned int value, block, status;
1578         unsigned int end;
1579
1580         end = this->chipsize >> this->erase_shift;
1581         for (block = 0; block < end; block++) {
1582                 /* Set block address */
1583                 value = onenand_block_address(this, block);
1584                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS1);
1585                 /* Select DataRAM for DDP */
1586                 value = onenand_bufferram_address(this, block);
1587                 this->write_word(value, this->base + ONENAND_REG_START_ADDRESS2);
1588                 /* Set start block address */
1589                 this->write_word(block, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1590
1591                 /* Check lock status */
1592                 status = this->read_word(this->base + ONENAND_REG_WP_STATUS);
1593                 if (!(status & ONENAND_WP_US))
1594                         printk(KERN_ERR "block = %d, wp status = 0x%x\n", block, status);
1595         }
1596 }
1597
1598 /**
1599  * onenand_unlock_all - [OneNAND Interface] unlock all blocks
1600  * @param mtd           MTD device structure
1601  *
1602  * Unlock all blocks
1603  */
1604 static int onenand_unlock_all(struct mtd_info *mtd)
1605 {
1606         struct onenand_chip *this = mtd->priv;
1607
1608         if (this->options & ONENAND_HAS_UNLOCK_ALL) {
1609                 /* Set start block address */
1610                 this->write_word(0, this->base + ONENAND_REG_START_BLOCK_ADDRESS);
1611                 /* Write unlock command */
1612                 this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
1613
1614                 /* There's no return value */
1615                 this->wait(mtd, FL_LOCKING);
1616
1617                 /* Sanity check */
1618                 while (this->read_word(this->base + ONENAND_REG_CTRL_STATUS)
1619                     & ONENAND_CTRL_ONGO)
1620                         continue;
1621
1622                 /* Workaround for all block unlock in DDP */
1623                 if (ONENAND_IS_DDP(this)) {
1624                         /* 1st block on another chip */
1625                         loff_t ofs = this->chipsize >> 1;
1626                         size_t len = mtd->erasesize;
1627
1628                         onenand_unlock(mtd, ofs, len);
1629                 }
1630
1631                 onenand_check_lock_status(this);
1632
1633                 return 0;
1634         }
1635
1636         onenand_unlock(mtd, 0x0, this->chipsize);
1637
1638         return 0;
1639 }
1640
1641 #ifdef CONFIG_MTD_ONENAND_OTP
1642
1643 /* Interal OTP operation */
1644 typedef int (*otp_op_t)(struct mtd_info *mtd, loff_t form, size_t len,
1645                 size_t *retlen, u_char *buf);
1646
1647 /**
1648  * do_otp_read - [DEFAULT] Read OTP block area
1649  * @param mtd           MTD device structure
1650  * @param from          The offset to read
1651  * @param len           number of bytes to read
1652  * @param retlen        pointer to variable to store the number of readbytes
1653  * @param buf           the databuffer to put/get data
1654  *
1655  * Read OTP block area.
1656  */
1657 static int do_otp_read(struct mtd_info *mtd, loff_t from, size_t len,
1658                 size_t *retlen, u_char *buf)
1659 {
1660         struct onenand_chip *this = mtd->priv;
1661         int ret;
1662
1663         /* Enter OTP access mode */
1664         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1665         this->wait(mtd, FL_OTPING);
1666
1667         ret = mtd->read(mtd, from, len, retlen, buf);
1668
1669         /* Exit OTP access mode */
1670         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1671         this->wait(mtd, FL_RESETING);
1672
1673         return ret;
1674 }
1675
1676 /**
1677  * do_otp_write - [DEFAULT] Write OTP block area
1678  * @param mtd           MTD device structure
1679  * @param from          The offset to write
1680  * @param len           number of bytes to write
1681  * @param retlen        pointer to variable to store the number of write bytes
1682  * @param buf           the databuffer to put/get data
1683  *
1684  * Write OTP block area.
1685  */
1686 static int do_otp_write(struct mtd_info *mtd, loff_t from, size_t len,
1687                 size_t *retlen, u_char *buf)
1688 {
1689         struct onenand_chip *this = mtd->priv;
1690         unsigned char *pbuf = buf;
1691         int ret;
1692
1693         /* Force buffer page aligned */
1694         if (len < mtd->writesize) {
1695                 memcpy(this->page_buf, buf, len);
1696                 memset(this->page_buf + len, 0xff, mtd->writesize - len);
1697                 pbuf = this->page_buf;
1698                 len = mtd->writesize;
1699         }
1700
1701         /* Enter OTP access mode */
1702         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1703         this->wait(mtd, FL_OTPING);
1704
1705         ret = mtd->write(mtd, from, len, retlen, pbuf);
1706
1707         /* Exit OTP access mode */
1708         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1709         this->wait(mtd, FL_RESETING);
1710
1711         return ret;
1712 }
1713
1714 /**
1715  * do_otp_lock - [DEFAULT] Lock OTP block area
1716  * @param mtd           MTD device structure
1717  * @param from          The offset to lock
1718  * @param len           number of bytes to lock
1719  * @param retlen        pointer to variable to store the number of lock bytes
1720  * @param buf           the databuffer to put/get data
1721  *
1722  * Lock OTP block area.
1723  */
1724 static int do_otp_lock(struct mtd_info *mtd, loff_t from, size_t len,
1725                 size_t *retlen, u_char *buf)
1726 {
1727         struct onenand_chip *this = mtd->priv;
1728         int ret;
1729
1730         /* Enter OTP access mode */
1731         this->command(mtd, ONENAND_CMD_OTP_ACCESS, 0, 0);
1732         this->wait(mtd, FL_OTPING);
1733
1734         ret = onenand_do_write_oob(mtd, from, len, retlen, buf, MTD_OOB_PLACE);
1735
1736         /* Exit OTP access mode */
1737         this->command(mtd, ONENAND_CMD_RESET, 0, 0);
1738         this->wait(mtd, FL_RESETING);
1739
1740         return ret;
1741 }
1742
1743 /**
1744  * onenand_otp_walk - [DEFAULT] Handle OTP operation
1745  * @param mtd           MTD device structure
1746  * @param from          The offset to read/write
1747  * @param len           number of bytes to read/write
1748  * @param retlen        pointer to variable to store the number of read bytes
1749  * @param buf           the databuffer to put/get data
1750  * @param action        do given action
1751  * @param mode          specify user and factory
1752  *
1753  * Handle OTP operation.
1754  */
1755 static int onenand_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1756                         size_t *retlen, u_char *buf,
1757                         otp_op_t action, int mode)
1758 {
1759         struct onenand_chip *this = mtd->priv;
1760         int otp_pages;
1761         int density;
1762         int ret = 0;
1763
1764         *retlen = 0;
1765
1766         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1767         if (density < ONENAND_DEVICE_DENSITY_512Mb)
1768                 otp_pages = 20;
1769         else
1770                 otp_pages = 10;
1771
1772         if (mode == MTD_OTP_FACTORY) {
1773                 from += mtd->writesize * otp_pages;
1774                 otp_pages = 64 - otp_pages;
1775         }
1776
1777         /* Check User/Factory boundary */
1778         if (((mtd->writesize * otp_pages) - (from + len)) < 0)
1779                 return 0;
1780
1781         while (len > 0 && otp_pages > 0) {
1782                 if (!action) {  /* OTP Info functions */
1783                         struct otp_info *otpinfo;
1784
1785                         len -= sizeof(struct otp_info);
1786                         if (len <= 0)
1787                                 return -ENOSPC;
1788
1789                         otpinfo = (struct otp_info *) buf;
1790                         otpinfo->start = from;
1791                         otpinfo->length = mtd->writesize;
1792                         otpinfo->locked = 0;
1793
1794                         from += mtd->writesize;
1795                         buf += sizeof(struct otp_info);
1796                         *retlen += sizeof(struct otp_info);
1797                 } else {
1798                         size_t tmp_retlen;
1799                         int size = len;
1800
1801                         ret = action(mtd, from, len, &tmp_retlen, buf);
1802
1803                         buf += size;
1804                         len -= size;
1805                         *retlen += size;
1806
1807                         if (ret < 0)
1808                                 return ret;
1809                 }
1810                 otp_pages--;
1811         }
1812
1813         return 0;
1814 }
1815
1816 /**
1817  * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
1818  * @param mtd           MTD device structure
1819  * @param buf           the databuffer to put/get data
1820  * @param len           number of bytes to read
1821  *
1822  * Read factory OTP info.
1823  */
1824 static int onenand_get_fact_prot_info(struct mtd_info *mtd,
1825                         struct otp_info *buf, size_t len)
1826 {
1827         size_t retlen;
1828         int ret;
1829
1830         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_FACTORY);
1831
1832         return ret ? : retlen;
1833 }
1834
1835 /**
1836  * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
1837  * @param mtd           MTD device structure
1838  * @param from          The offset to read
1839  * @param len           number of bytes to read
1840  * @param retlen        pointer to variable to store the number of read bytes
1841  * @param buf           the databuffer to put/get data
1842  *
1843  * Read factory OTP area.
1844  */
1845 static int onenand_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1846                         size_t len, size_t *retlen, u_char *buf)
1847 {
1848         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_FACTORY);
1849 }
1850
1851 /**
1852  * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
1853  * @param mtd           MTD device structure
1854  * @param buf           the databuffer to put/get data
1855  * @param len           number of bytes to read
1856  *
1857  * Read user OTP info.
1858  */
1859 static int onenand_get_user_prot_info(struct mtd_info *mtd,
1860                         struct otp_info *buf, size_t len)
1861 {
1862         size_t retlen;
1863         int ret;
1864
1865         ret = onenand_otp_walk(mtd, 0, len, &retlen, (u_char *) buf, NULL, MTD_OTP_USER);
1866
1867         return ret ? : retlen;
1868 }
1869
1870 /**
1871  * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
1872  * @param mtd           MTD device structure
1873  * @param from          The offset to read
1874  * @param len           number of bytes to read
1875  * @param retlen        pointer to variable to store the number of read bytes
1876  * @param buf           the databuffer to put/get data
1877  *
1878  * Read user OTP area.
1879  */
1880 static int onenand_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1881                         size_t len, size_t *retlen, u_char *buf)
1882 {
1883         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_read, MTD_OTP_USER);
1884 }
1885
1886 /**
1887  * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
1888  * @param mtd           MTD device structure
1889  * @param from          The offset to write
1890  * @param len           number of bytes to write
1891  * @param retlen        pointer to variable to store the number of write bytes
1892  * @param buf           the databuffer to put/get data
1893  *
1894  * Write user OTP area.
1895  */
1896 static int onenand_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1897                         size_t len, size_t *retlen, u_char *buf)
1898 {
1899         return onenand_otp_walk(mtd, from, len, retlen, buf, do_otp_write, MTD_OTP_USER);
1900 }
1901
1902 /**
1903  * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
1904  * @param mtd           MTD device structure
1905  * @param from          The offset to lock
1906  * @param len           number of bytes to unlock
1907  *
1908  * Write lock mark on spare area in page 0 in OTP block
1909  */
1910 static int onenand_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1911                         size_t len)
1912 {
1913         unsigned char oob_buf[64];
1914         size_t retlen;
1915         int ret;
1916
1917         memset(oob_buf, 0xff, mtd->oobsize);
1918         /*
1919          * Note: OTP lock operation
1920          *       OTP block : 0xXXFC
1921          *       1st block : 0xXXF3 (If chip support)
1922          *       Both      : 0xXXF0 (If chip support)
1923          */
1924         oob_buf[ONENAND_OTP_LOCK_OFFSET] = 0xFC;
1925
1926         /*
1927          * Write lock mark to 8th word of sector0 of page0 of the spare0.
1928          * We write 16 bytes spare area instead of 2 bytes.
1929          */
1930         from = 0;
1931         len = 16;
1932
1933         ret = onenand_otp_walk(mtd, from, len, &retlen, oob_buf, do_otp_lock, MTD_OTP_USER);
1934
1935         return ret ? : retlen;
1936 }
1937 #endif  /* CONFIG_MTD_ONENAND_OTP */
1938
1939 /**
1940  * onenand_check_features - Check and set OneNAND features
1941  * @param mtd           MTD data structure
1942  *
1943  * Check and set OneNAND features
1944  * - lock scheme
1945  */
1946 static void onenand_check_features(struct mtd_info *mtd)
1947 {
1948         struct onenand_chip *this = mtd->priv;
1949         unsigned int density, process;
1950
1951         /* Lock scheme depends on density and process */
1952         density = this->device_id >> ONENAND_DEVICE_DENSITY_SHIFT;
1953         process = this->version_id >> ONENAND_VERSION_PROCESS_SHIFT;
1954
1955         /* Lock scheme */
1956         if (density >= ONENAND_DEVICE_DENSITY_1Gb) {
1957                 /* A-Die has all block unlock */
1958                 if (process) {
1959                         printk(KERN_DEBUG "Chip support all block unlock\n");
1960                         this->options |= ONENAND_HAS_UNLOCK_ALL;
1961                 }
1962         } else {
1963                 /* Some OneNAND has continues lock scheme */
1964                 if (!process) {
1965                         printk(KERN_DEBUG "Lock scheme is Continues Lock\n");
1966                         this->options |= ONENAND_HAS_CONT_LOCK;
1967                 }
1968         }
1969 }
1970
1971 /**
1972  * onenand_print_device_info - Print device ID
1973  * @param device        device ID
1974  *
1975  * Print device ID
1976  */
1977 static void onenand_print_device_info(int device, int version)
1978 {
1979         int vcc, demuxed, ddp, density;
1980
1981         vcc = device & ONENAND_DEVICE_VCC_MASK;
1982         demuxed = device & ONENAND_DEVICE_IS_DEMUX;
1983         ddp = device & ONENAND_DEVICE_IS_DDP;
1984         density = device >> ONENAND_DEVICE_DENSITY_SHIFT;
1985         printk(KERN_INFO "%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
1986                 demuxed ? "" : "Muxed ",
1987                 ddp ? "(DDP)" : "",
1988                 (16 << density),
1989                 vcc ? "2.65/3.3" : "1.8",
1990                 device);
1991         printk(KERN_DEBUG "OneNAND version = 0x%04x\n", version);
1992 }
1993
1994 static const struct onenand_manufacturers onenand_manuf_ids[] = {
1995         {ONENAND_MFR_SAMSUNG, "Samsung"},
1996 };
1997
1998 /**
1999  * onenand_check_maf - Check manufacturer ID
2000  * @param manuf         manufacturer ID
2001  *
2002  * Check manufacturer ID
2003  */
2004 static int onenand_check_maf(int manuf)
2005 {
2006         int size = ARRAY_SIZE(onenand_manuf_ids);
2007         char *name;
2008         int i;
2009
2010         for (i = 0; i < size; i++)
2011                 if (manuf == onenand_manuf_ids[i].id)
2012                         break;
2013
2014         if (i < size)
2015                 name = onenand_manuf_ids[i].name;
2016         else
2017                 name = "Unknown";
2018
2019         printk(KERN_DEBUG "OneNAND Manufacturer: %s (0x%0x)\n", name, manuf);
2020
2021         return (i == size);
2022 }
2023
2024 /**
2025  * onenand_probe - [OneNAND Interface] Probe the OneNAND device
2026  * @param mtd           MTD device structure
2027  *
2028  * OneNAND detection method:
2029  *   Compare the the values from command with ones from register
2030  */
2031 static int onenand_probe(struct mtd_info *mtd)
2032 {
2033         struct onenand_chip *this = mtd->priv;
2034         int bram_maf_id, bram_dev_id, maf_id, dev_id, ver_id;
2035         int density;
2036         int syscfg;
2037
2038         /* Save system configuration 1 */
2039         syscfg = this->read_word(this->base + ONENAND_REG_SYS_CFG1);
2040         /* Clear Sync. Burst Read mode to read BootRAM */
2041         this->write_word((syscfg & ~ONENAND_SYS_CFG1_SYNC_READ), this->base + ONENAND_REG_SYS_CFG1);
2042
2043         /* Send the command for reading device ID from BootRAM */
2044         this->write_word(ONENAND_CMD_READID, this->base + ONENAND_BOOTRAM);
2045
2046         /* Read manufacturer and device IDs from BootRAM */
2047         bram_maf_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x0);
2048         bram_dev_id = this->read_word(this->base + ONENAND_BOOTRAM + 0x2);
2049
2050         /* Reset OneNAND to read default register values */
2051         this->write_word(ONENAND_CMD_RESET, this->base + ONENAND_BOOTRAM);
2052         /* Wait reset */
2053         this->wait(mtd, FL_RESETING);
2054
2055         /* Restore system configuration 1 */
2056         this->write_word(syscfg, this->base + ONENAND_REG_SYS_CFG1);
2057
2058         /* Check manufacturer ID */
2059         if (onenand_check_maf(bram_maf_id))
2060                 return -ENXIO;
2061
2062         /* Read manufacturer and device IDs from Register */
2063         maf_id = this->read_word(this->base + ONENAND_REG_MANUFACTURER_ID);
2064         dev_id = this->read_word(this->base + ONENAND_REG_DEVICE_ID);
2065         ver_id = this->read_word(this->base + ONENAND_REG_VERSION_ID);
2066
2067         /* Check OneNAND device */
2068         if (maf_id != bram_maf_id || dev_id != bram_dev_id)
2069                 return -ENXIO;
2070
2071         /* Flash device information */
2072         onenand_print_device_info(dev_id, ver_id);
2073         this->device_id = dev_id;
2074         this->version_id = ver_id;
2075
2076         density = dev_id >> ONENAND_DEVICE_DENSITY_SHIFT;
2077         this->chipsize = (16 << density) << 20;
2078         /* Set density mask. it is used for DDP */
2079         if (ONENAND_IS_DDP(this))
2080                 this->density_mask = (1 << (density + 6));
2081         else
2082                 this->density_mask = 0;
2083
2084         /* OneNAND page size & block size */
2085         /* The data buffer size is equal to page size */
2086         mtd->writesize = this->read_word(this->base + ONENAND_REG_DATA_BUFFER_SIZE);
2087         mtd->oobsize = mtd->writesize >> 5;
2088         /* Pages per a block are always 64 in OneNAND */
2089         mtd->erasesize = mtd->writesize << 6;
2090
2091         this->erase_shift = ffs(mtd->erasesize) - 1;
2092         this->page_shift = ffs(mtd->writesize) - 1;
2093         this->page_mask = (1 << (this->erase_shift - this->page_shift)) - 1;
2094
2095         /* REVIST: Multichip handling */
2096
2097         mtd->size = this->chipsize;
2098
2099         /* Check OneNAND features */
2100         onenand_check_features(mtd);
2101
2102         return 0;
2103 }
2104
2105 /**
2106  * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
2107  * @param mtd           MTD device structure
2108  */
2109 static int onenand_suspend(struct mtd_info *mtd)
2110 {
2111         return onenand_get_device(mtd, FL_PM_SUSPENDED);
2112 }
2113
2114 /**
2115  * onenand_resume - [MTD Interface] Resume the OneNAND flash
2116  * @param mtd           MTD device structure
2117  */
2118 static void onenand_resume(struct mtd_info *mtd)
2119 {
2120         struct onenand_chip *this = mtd->priv;
2121
2122         if (this->state == FL_PM_SUSPENDED)
2123                 onenand_release_device(mtd);
2124         else
2125                 printk(KERN_ERR "resume() called for the chip which is not"
2126                                 "in suspended state\n");
2127 }
2128
2129 /**
2130  * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
2131  * @param mtd           MTD device structure
2132  * @param maxchips      Number of chips to scan for
2133  *
2134  * This fills out all the not initialized function pointers
2135  * with the defaults.
2136  * The flash ID is read and the mtd/chip structures are
2137  * filled with the appropriate values.
2138  */
2139 int onenand_scan(struct mtd_info *mtd, int maxchips)
2140 {
2141         int i;
2142         struct onenand_chip *this = mtd->priv;
2143
2144         if (!this->read_word)
2145                 this->read_word = onenand_readw;
2146         if (!this->write_word)
2147                 this->write_word = onenand_writew;
2148
2149         if (!this->command)
2150                 this->command = onenand_command;
2151         if (!this->wait)
2152                 onenand_setup_wait(mtd);
2153
2154         if (!this->read_bufferram)
2155                 this->read_bufferram = onenand_read_bufferram;
2156         if (!this->write_bufferram)
2157                 this->write_bufferram = onenand_write_bufferram;
2158
2159         if (!this->block_markbad)
2160                 this->block_markbad = onenand_default_block_markbad;
2161         if (!this->scan_bbt)
2162                 this->scan_bbt = onenand_default_bbt;
2163
2164         if (onenand_probe(mtd))
2165                 return -ENXIO;
2166
2167         /* Set Sync. Burst Read after probing */
2168         if (this->mmcontrol) {
2169                 printk(KERN_INFO "OneNAND Sync. Burst Read support\n");
2170                 this->read_bufferram = onenand_sync_read_bufferram;
2171         }
2172
2173         /* Allocate buffers, if necessary */
2174         if (!this->page_buf) {
2175                 size_t len;
2176                 len = mtd->writesize + mtd->oobsize;
2177                 this->page_buf = kmalloc(len, GFP_KERNEL);
2178                 if (!this->page_buf) {
2179                         printk(KERN_ERR "onenand_scan(): Can't allocate page_buf\n");
2180                         return -ENOMEM;
2181                 }
2182                 this->options |= ONENAND_PAGEBUF_ALLOC;
2183         }
2184
2185         this->state = FL_READY;
2186         init_waitqueue_head(&this->wq);
2187         spin_lock_init(&this->chip_lock);
2188
2189         /*
2190          * Allow subpage writes up to oobsize.
2191          */
2192         switch (mtd->oobsize) {
2193         case 64:
2194                 this->ecclayout = &onenand_oob_64;
2195                 mtd->subpage_sft = 2;
2196                 break;
2197
2198         case 32:
2199                 this->ecclayout = &onenand_oob_32;
2200                 mtd->subpage_sft = 1;
2201                 break;
2202
2203         default:
2204                 printk(KERN_WARNING "No OOB scheme defined for oobsize %d\n",
2205                         mtd->oobsize);
2206                 mtd->subpage_sft = 0;
2207                 /* To prevent kernel oops */
2208                 this->ecclayout = &onenand_oob_32;
2209                 break;
2210         }
2211
2212         this->subpagesize = mtd->writesize >> mtd->subpage_sft;
2213
2214         /*
2215          * The number of bytes available for a client to place data into
2216          * the out of band area
2217          */
2218         this->ecclayout->oobavail = 0;
2219         for (i = 0; this->ecclayout->oobfree[i].length; i++)
2220                 this->ecclayout->oobavail +=
2221                         this->ecclayout->oobfree[i].length;
2222
2223         mtd->ecclayout = this->ecclayout;
2224
2225         /* Fill in remaining MTD driver data */
2226         mtd->type = MTD_NANDFLASH;
2227         mtd->flags = MTD_CAP_NANDFLASH;
2228         mtd->ecctype = MTD_ECC_SW;
2229         mtd->erase = onenand_erase;
2230         mtd->point = NULL;
2231         mtd->unpoint = NULL;
2232         mtd->read = onenand_read;
2233         mtd->write = onenand_write;
2234         mtd->read_oob = onenand_read_oob;
2235         mtd->write_oob = onenand_write_oob;
2236 #ifdef CONFIG_MTD_ONENAND_OTP
2237         mtd->get_fact_prot_info = onenand_get_fact_prot_info;
2238         mtd->read_fact_prot_reg = onenand_read_fact_prot_reg;
2239         mtd->get_user_prot_info = onenand_get_user_prot_info;
2240         mtd->read_user_prot_reg = onenand_read_user_prot_reg;
2241         mtd->write_user_prot_reg = onenand_write_user_prot_reg;
2242         mtd->lock_user_prot_reg = onenand_lock_user_prot_reg;
2243 #endif
2244         mtd->sync = onenand_sync;
2245         mtd->lock = onenand_lock;
2246         mtd->unlock = onenand_unlock;
2247         mtd->suspend = onenand_suspend;
2248         mtd->resume = onenand_resume;
2249         mtd->block_isbad = onenand_block_isbad;
2250         mtd->block_markbad = onenand_block_markbad;
2251         mtd->owner = THIS_MODULE;
2252
2253         /* Unlock whole block */
2254         onenand_unlock_all(mtd);
2255
2256         return this->scan_bbt(mtd);
2257 }
2258
2259 /**
2260  * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
2261  * @param mtd           MTD device structure
2262  */
2263 void onenand_release(struct mtd_info *mtd)
2264 {
2265         struct onenand_chip *this = mtd->priv;
2266
2267 #ifdef CONFIG_MTD_PARTITIONS
2268         /* Deregister partitions */
2269         del_mtd_partitions (mtd);
2270 #endif
2271         /* Deregister the device */
2272         del_mtd_device (mtd);
2273
2274         /* Free bad block table memory, if allocated */
2275         if (this->bbm) {
2276                 struct bbm_info *bbm = this->bbm;
2277                 kfree(bbm->bbt);
2278                 kfree(this->bbm);
2279         }
2280         /* Buffer allocated by onenand_scan */
2281         if (this->options & ONENAND_PAGEBUF_ALLOC)
2282                 kfree(this->page_buf);
2283 }
2284
2285 EXPORT_SYMBOL_GPL(onenand_scan);
2286 EXPORT_SYMBOL_GPL(onenand_release);
2287
2288 MODULE_LICENSE("GPL");
2289 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
2290 MODULE_DESCRIPTION("Generic OneNAND flash driver code");