]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/md/raid5.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[net-next-2.6.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->bm_write is the number of the last batch successfully written.
31  * conf->bm_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is bm_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
58
59 /*
60  * Stripe cache
61  */
62
63 #define NR_STRIPES              256
64 #define STRIPE_SIZE             PAGE_SIZE
65 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD            1
68 #define BYPASS_THRESHOLD        1
69 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK               (NR_HASH - 1)
71
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
73
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75  * order without overlap.  There may be several bio's per stripe+device, and
76  * a bio could span several devices.
77  * When walking this list for a particular stripe+device, we must never proceed
78  * beyond a bio that extends past this device, as the next bio might no longer
79  * be valid.
80  * This macro is used to determine the 'next' bio in the list, given the sector
81  * of the current stripe+device
82  */
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84 /*
85  * The following can be used to debug the driver
86  */
87 #define RAID5_PARANOIA  1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
93
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
98
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
101 /*
102  * We maintain a biased count of active stripes in the bottom 16 bits of
103  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
104  */
105 static inline int raid5_bi_phys_segments(struct bio *bio)
106 {
107         return bio->bi_phys_segments & 0xffff;
108 }
109
110 static inline int raid5_bi_hw_segments(struct bio *bio)
111 {
112         return (bio->bi_phys_segments >> 16) & 0xffff;
113 }
114
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116 {
117         --bio->bi_phys_segments;
118         return raid5_bi_phys_segments(bio);
119 }
120
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122 {
123         unsigned short val = raid5_bi_hw_segments(bio);
124
125         --val;
126         bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127         return val;
128 }
129
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131 {
132         bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 }
134
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
137 {
138         if (sh->ddf_layout)
139                 /* ddf always start from first device */
140                 return 0;
141         /* md starts just after Q block */
142         if (sh->qd_idx == sh->disks - 1)
143                 return 0;
144         else
145                 return sh->qd_idx + 1;
146 }
147 static inline int raid6_next_disk(int disk, int raid_disks)
148 {
149         disk++;
150         return (disk < raid_disks) ? disk : 0;
151 }
152
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154  * We need to map each disk to a 'slot', where the data disks are slot
155  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156  * is raid_disks-1.  This help does that mapping.
157  */
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159                              int *count, int syndrome_disks)
160 {
161         int slot = *count;
162
163         if (sh->ddf_layout)
164                 (*count)++;
165         if (idx == sh->pd_idx)
166                 return syndrome_disks;
167         if (idx == sh->qd_idx)
168                 return syndrome_disks + 1;
169         if (!sh->ddf_layout)
170                 (*count)++;
171         return slot;
172 }
173
174 static void return_io(struct bio *return_bi)
175 {
176         struct bio *bi = return_bi;
177         while (bi) {
178
179                 return_bi = bi->bi_next;
180                 bi->bi_next = NULL;
181                 bi->bi_size = 0;
182                 bio_endio(bi, 0);
183                 bi = return_bi;
184         }
185 }
186
187 static void print_raid5_conf (raid5_conf_t *conf);
188
189 static int stripe_operations_active(struct stripe_head *sh)
190 {
191         return sh->check_state || sh->reconstruct_state ||
192                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 }
195
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
197 {
198         if (atomic_dec_and_test(&sh->count)) {
199                 BUG_ON(!list_empty(&sh->lru));
200                 BUG_ON(atomic_read(&conf->active_stripes)==0);
201                 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202                         if (test_bit(STRIPE_DELAYED, &sh->state)) {
203                                 list_add_tail(&sh->lru, &conf->delayed_list);
204                                 plugger_set_plug(&conf->plug);
205                         } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
206                                    sh->bm_seq - conf->seq_write > 0) {
207                                 list_add_tail(&sh->lru, &conf->bitmap_list);
208                                 plugger_set_plug(&conf->plug);
209                         } else {
210                                 clear_bit(STRIPE_BIT_DELAY, &sh->state);
211                                 list_add_tail(&sh->lru, &conf->handle_list);
212                         }
213                         md_wakeup_thread(conf->mddev->thread);
214                 } else {
215                         BUG_ON(stripe_operations_active(sh));
216                         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217                                 atomic_dec(&conf->preread_active_stripes);
218                                 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219                                         md_wakeup_thread(conf->mddev->thread);
220                         }
221                         atomic_dec(&conf->active_stripes);
222                         if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223                                 list_add_tail(&sh->lru, &conf->inactive_list);
224                                 wake_up(&conf->wait_for_stripe);
225                                 if (conf->retry_read_aligned)
226                                         md_wakeup_thread(conf->mddev->thread);
227                         }
228                 }
229         }
230 }
231
232 static void release_stripe(struct stripe_head *sh)
233 {
234         raid5_conf_t *conf = sh->raid_conf;
235         unsigned long flags;
236
237         spin_lock_irqsave(&conf->device_lock, flags);
238         __release_stripe(conf, sh);
239         spin_unlock_irqrestore(&conf->device_lock, flags);
240 }
241
242 static inline void remove_hash(struct stripe_head *sh)
243 {
244         pr_debug("remove_hash(), stripe %llu\n",
245                 (unsigned long long)sh->sector);
246
247         hlist_del_init(&sh->hash);
248 }
249
250 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
251 {
252         struct hlist_head *hp = stripe_hash(conf, sh->sector);
253
254         pr_debug("insert_hash(), stripe %llu\n",
255                 (unsigned long long)sh->sector);
256
257         CHECK_DEVLOCK();
258         hlist_add_head(&sh->hash, hp);
259 }
260
261
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264 {
265         struct stripe_head *sh = NULL;
266         struct list_head *first;
267
268         CHECK_DEVLOCK();
269         if (list_empty(&conf->inactive_list))
270                 goto out;
271         first = conf->inactive_list.next;
272         sh = list_entry(first, struct stripe_head, lru);
273         list_del_init(first);
274         remove_hash(sh);
275         atomic_inc(&conf->active_stripes);
276 out:
277         return sh;
278 }
279
280 static void shrink_buffers(struct stripe_head *sh)
281 {
282         struct page *p;
283         int i;
284         int num = sh->raid_conf->pool_size;
285
286         for (i = 0; i < num ; i++) {
287                 p = sh->dev[i].page;
288                 if (!p)
289                         continue;
290                 sh->dev[i].page = NULL;
291                 put_page(p);
292         }
293 }
294
295 static int grow_buffers(struct stripe_head *sh)
296 {
297         int i;
298         int num = sh->raid_conf->pool_size;
299
300         for (i = 0; i < num; i++) {
301                 struct page *page;
302
303                 if (!(page = alloc_page(GFP_KERNEL))) {
304                         return 1;
305                 }
306                 sh->dev[i].page = page;
307         }
308         return 0;
309 }
310
311 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
312 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313                             struct stripe_head *sh);
314
315 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
316 {
317         raid5_conf_t *conf = sh->raid_conf;
318         int i;
319
320         BUG_ON(atomic_read(&sh->count) != 0);
321         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
322         BUG_ON(stripe_operations_active(sh));
323
324         CHECK_DEVLOCK();
325         pr_debug("init_stripe called, stripe %llu\n",
326                 (unsigned long long)sh->sector);
327
328         remove_hash(sh);
329
330         sh->generation = conf->generation - previous;
331         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
332         sh->sector = sector;
333         stripe_set_idx(sector, conf, previous, sh);
334         sh->state = 0;
335
336
337         for (i = sh->disks; i--; ) {
338                 struct r5dev *dev = &sh->dev[i];
339
340                 if (dev->toread || dev->read || dev->towrite || dev->written ||
341                     test_bit(R5_LOCKED, &dev->flags)) {
342                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
343                                (unsigned long long)sh->sector, i, dev->toread,
344                                dev->read, dev->towrite, dev->written,
345                                test_bit(R5_LOCKED, &dev->flags));
346                         BUG();
347                 }
348                 dev->flags = 0;
349                 raid5_build_block(sh, i, previous);
350         }
351         insert_hash(conf, sh);
352 }
353
354 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355                                          short generation)
356 {
357         struct stripe_head *sh;
358         struct hlist_node *hn;
359
360         CHECK_DEVLOCK();
361         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
362         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
363                 if (sh->sector == sector && sh->generation == generation)
364                         return sh;
365         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
366         return NULL;
367 }
368
369 /*
370  * Need to check if array has failed when deciding whether to:
371  *  - start an array
372  *  - remove non-faulty devices
373  *  - add a spare
374  *  - allow a reshape
375  * This determination is simple when no reshape is happening.
376  * However if there is a reshape, we need to carefully check
377  * both the before and after sections.
378  * This is because some failed devices may only affect one
379  * of the two sections, and some non-in_sync devices may
380  * be insync in the section most affected by failed devices.
381  */
382 static int has_failed(raid5_conf_t *conf)
383 {
384         int degraded;
385         int i;
386         if (conf->mddev->reshape_position == MaxSector)
387                 return conf->mddev->degraded > conf->max_degraded;
388
389         rcu_read_lock();
390         degraded = 0;
391         for (i = 0; i < conf->previous_raid_disks; i++) {
392                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393                 if (!rdev || test_bit(Faulty, &rdev->flags))
394                         degraded++;
395                 else if (test_bit(In_sync, &rdev->flags))
396                         ;
397                 else
398                         /* not in-sync or faulty.
399                          * If the reshape increases the number of devices,
400                          * this is being recovered by the reshape, so
401                          * this 'previous' section is not in_sync.
402                          * If the number of devices is being reduced however,
403                          * the device can only be part of the array if
404                          * we are reverting a reshape, so this section will
405                          * be in-sync.
406                          */
407                         if (conf->raid_disks >= conf->previous_raid_disks)
408                                 degraded++;
409         }
410         rcu_read_unlock();
411         if (degraded > conf->max_degraded)
412                 return 1;
413         rcu_read_lock();
414         degraded = 0;
415         for (i = 0; i < conf->raid_disks; i++) {
416                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417                 if (!rdev || test_bit(Faulty, &rdev->flags))
418                         degraded++;
419                 else if (test_bit(In_sync, &rdev->flags))
420                         ;
421                 else
422                         /* not in-sync or faulty.
423                          * If reshape increases the number of devices, this
424                          * section has already been recovered, else it
425                          * almost certainly hasn't.
426                          */
427                         if (conf->raid_disks <= conf->previous_raid_disks)
428                                 degraded++;
429         }
430         rcu_read_unlock();
431         if (degraded > conf->max_degraded)
432                 return 1;
433         return 0;
434 }
435
436 static void unplug_slaves(mddev_t *mddev);
437
438 static struct stripe_head *
439 get_active_stripe(raid5_conf_t *conf, sector_t sector,
440                   int previous, int noblock, int noquiesce)
441 {
442         struct stripe_head *sh;
443
444         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
445
446         spin_lock_irq(&conf->device_lock);
447
448         do {
449                 wait_event_lock_irq(conf->wait_for_stripe,
450                                     conf->quiesce == 0 || noquiesce,
451                                     conf->device_lock, /* nothing */);
452                 sh = __find_stripe(conf, sector, conf->generation - previous);
453                 if (!sh) {
454                         if (!conf->inactive_blocked)
455                                 sh = get_free_stripe(conf);
456                         if (noblock && sh == NULL)
457                                 break;
458                         if (!sh) {
459                                 conf->inactive_blocked = 1;
460                                 wait_event_lock_irq(conf->wait_for_stripe,
461                                                     !list_empty(&conf->inactive_list) &&
462                                                     (atomic_read(&conf->active_stripes)
463                                                      < (conf->max_nr_stripes *3/4)
464                                                      || !conf->inactive_blocked),
465                                                     conf->device_lock,
466                                                     md_raid5_unplug_device(conf)
467                                         );
468                                 conf->inactive_blocked = 0;
469                         } else
470                                 init_stripe(sh, sector, previous);
471                 } else {
472                         if (atomic_read(&sh->count)) {
473                                 BUG_ON(!list_empty(&sh->lru)
474                                     && !test_bit(STRIPE_EXPANDING, &sh->state));
475                         } else {
476                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
477                                         atomic_inc(&conf->active_stripes);
478                                 if (list_empty(&sh->lru) &&
479                                     !test_bit(STRIPE_EXPANDING, &sh->state))
480                                         BUG();
481                                 list_del_init(&sh->lru);
482                         }
483                 }
484         } while (sh == NULL);
485
486         if (sh)
487                 atomic_inc(&sh->count);
488
489         spin_unlock_irq(&conf->device_lock);
490         return sh;
491 }
492
493 static void
494 raid5_end_read_request(struct bio *bi, int error);
495 static void
496 raid5_end_write_request(struct bio *bi, int error);
497
498 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
499 {
500         raid5_conf_t *conf = sh->raid_conf;
501         int i, disks = sh->disks;
502
503         might_sleep();
504
505         for (i = disks; i--; ) {
506                 int rw;
507                 struct bio *bi;
508                 mdk_rdev_t *rdev;
509                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
510                         rw = WRITE;
511                 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
512                         rw = READ;
513                 else
514                         continue;
515
516                 bi = &sh->dev[i].req;
517
518                 bi->bi_rw = rw;
519                 if (rw == WRITE)
520                         bi->bi_end_io = raid5_end_write_request;
521                 else
522                         bi->bi_end_io = raid5_end_read_request;
523
524                 rcu_read_lock();
525                 rdev = rcu_dereference(conf->disks[i].rdev);
526                 if (rdev && test_bit(Faulty, &rdev->flags))
527                         rdev = NULL;
528                 if (rdev)
529                         atomic_inc(&rdev->nr_pending);
530                 rcu_read_unlock();
531
532                 if (rdev) {
533                         if (s->syncing || s->expanding || s->expanded)
534                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
535
536                         set_bit(STRIPE_IO_STARTED, &sh->state);
537
538                         bi->bi_bdev = rdev->bdev;
539                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
540                                 __func__, (unsigned long long)sh->sector,
541                                 bi->bi_rw, i);
542                         atomic_inc(&sh->count);
543                         bi->bi_sector = sh->sector + rdev->data_offset;
544                         bi->bi_flags = 1 << BIO_UPTODATE;
545                         bi->bi_vcnt = 1;
546                         bi->bi_max_vecs = 1;
547                         bi->bi_idx = 0;
548                         bi->bi_io_vec = &sh->dev[i].vec;
549                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
550                         bi->bi_io_vec[0].bv_offset = 0;
551                         bi->bi_size = STRIPE_SIZE;
552                         bi->bi_next = NULL;
553                         if (rw == WRITE &&
554                             test_bit(R5_ReWrite, &sh->dev[i].flags))
555                                 atomic_add(STRIPE_SECTORS,
556                                         &rdev->corrected_errors);
557                         generic_make_request(bi);
558                 } else {
559                         if (rw == WRITE)
560                                 set_bit(STRIPE_DEGRADED, &sh->state);
561                         pr_debug("skip op %ld on disc %d for sector %llu\n",
562                                 bi->bi_rw, i, (unsigned long long)sh->sector);
563                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
564                         set_bit(STRIPE_HANDLE, &sh->state);
565                 }
566         }
567 }
568
569 static struct dma_async_tx_descriptor *
570 async_copy_data(int frombio, struct bio *bio, struct page *page,
571         sector_t sector, struct dma_async_tx_descriptor *tx)
572 {
573         struct bio_vec *bvl;
574         struct page *bio_page;
575         int i;
576         int page_offset;
577         struct async_submit_ctl submit;
578         enum async_tx_flags flags = 0;
579
580         if (bio->bi_sector >= sector)
581                 page_offset = (signed)(bio->bi_sector - sector) * 512;
582         else
583                 page_offset = (signed)(sector - bio->bi_sector) * -512;
584
585         if (frombio)
586                 flags |= ASYNC_TX_FENCE;
587         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
588
589         bio_for_each_segment(bvl, bio, i) {
590                 int len = bio_iovec_idx(bio, i)->bv_len;
591                 int clen;
592                 int b_offset = 0;
593
594                 if (page_offset < 0) {
595                         b_offset = -page_offset;
596                         page_offset += b_offset;
597                         len -= b_offset;
598                 }
599
600                 if (len > 0 && page_offset + len > STRIPE_SIZE)
601                         clen = STRIPE_SIZE - page_offset;
602                 else
603                         clen = len;
604
605                 if (clen > 0) {
606                         b_offset += bio_iovec_idx(bio, i)->bv_offset;
607                         bio_page = bio_iovec_idx(bio, i)->bv_page;
608                         if (frombio)
609                                 tx = async_memcpy(page, bio_page, page_offset,
610                                                   b_offset, clen, &submit);
611                         else
612                                 tx = async_memcpy(bio_page, page, b_offset,
613                                                   page_offset, clen, &submit);
614                 }
615                 /* chain the operations */
616                 submit.depend_tx = tx;
617
618                 if (clen < len) /* hit end of page */
619                         break;
620                 page_offset +=  len;
621         }
622
623         return tx;
624 }
625
626 static void ops_complete_biofill(void *stripe_head_ref)
627 {
628         struct stripe_head *sh = stripe_head_ref;
629         struct bio *return_bi = NULL;
630         raid5_conf_t *conf = sh->raid_conf;
631         int i;
632
633         pr_debug("%s: stripe %llu\n", __func__,
634                 (unsigned long long)sh->sector);
635
636         /* clear completed biofills */
637         spin_lock_irq(&conf->device_lock);
638         for (i = sh->disks; i--; ) {
639                 struct r5dev *dev = &sh->dev[i];
640
641                 /* acknowledge completion of a biofill operation */
642                 /* and check if we need to reply to a read request,
643                  * new R5_Wantfill requests are held off until
644                  * !STRIPE_BIOFILL_RUN
645                  */
646                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
647                         struct bio *rbi, *rbi2;
648
649                         BUG_ON(!dev->read);
650                         rbi = dev->read;
651                         dev->read = NULL;
652                         while (rbi && rbi->bi_sector <
653                                 dev->sector + STRIPE_SECTORS) {
654                                 rbi2 = r5_next_bio(rbi, dev->sector);
655                                 if (!raid5_dec_bi_phys_segments(rbi)) {
656                                         rbi->bi_next = return_bi;
657                                         return_bi = rbi;
658                                 }
659                                 rbi = rbi2;
660                         }
661                 }
662         }
663         spin_unlock_irq(&conf->device_lock);
664         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
665
666         return_io(return_bi);
667
668         set_bit(STRIPE_HANDLE, &sh->state);
669         release_stripe(sh);
670 }
671
672 static void ops_run_biofill(struct stripe_head *sh)
673 {
674         struct dma_async_tx_descriptor *tx = NULL;
675         raid5_conf_t *conf = sh->raid_conf;
676         struct async_submit_ctl submit;
677         int i;
678
679         pr_debug("%s: stripe %llu\n", __func__,
680                 (unsigned long long)sh->sector);
681
682         for (i = sh->disks; i--; ) {
683                 struct r5dev *dev = &sh->dev[i];
684                 if (test_bit(R5_Wantfill, &dev->flags)) {
685                         struct bio *rbi;
686                         spin_lock_irq(&conf->device_lock);
687                         dev->read = rbi = dev->toread;
688                         dev->toread = NULL;
689                         spin_unlock_irq(&conf->device_lock);
690                         while (rbi && rbi->bi_sector <
691                                 dev->sector + STRIPE_SECTORS) {
692                                 tx = async_copy_data(0, rbi, dev->page,
693                                         dev->sector, tx);
694                                 rbi = r5_next_bio(rbi, dev->sector);
695                         }
696                 }
697         }
698
699         atomic_inc(&sh->count);
700         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
701         async_trigger_callback(&submit);
702 }
703
704 static void mark_target_uptodate(struct stripe_head *sh, int target)
705 {
706         struct r5dev *tgt;
707
708         if (target < 0)
709                 return;
710
711         tgt = &sh->dev[target];
712         set_bit(R5_UPTODATE, &tgt->flags);
713         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
714         clear_bit(R5_Wantcompute, &tgt->flags);
715 }
716
717 static void ops_complete_compute(void *stripe_head_ref)
718 {
719         struct stripe_head *sh = stripe_head_ref;
720
721         pr_debug("%s: stripe %llu\n", __func__,
722                 (unsigned long long)sh->sector);
723
724         /* mark the computed target(s) as uptodate */
725         mark_target_uptodate(sh, sh->ops.target);
726         mark_target_uptodate(sh, sh->ops.target2);
727
728         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
729         if (sh->check_state == check_state_compute_run)
730                 sh->check_state = check_state_compute_result;
731         set_bit(STRIPE_HANDLE, &sh->state);
732         release_stripe(sh);
733 }
734
735 /* return a pointer to the address conversion region of the scribble buffer */
736 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
737                                  struct raid5_percpu *percpu)
738 {
739         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
740 }
741
742 static struct dma_async_tx_descriptor *
743 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
744 {
745         int disks = sh->disks;
746         struct page **xor_srcs = percpu->scribble;
747         int target = sh->ops.target;
748         struct r5dev *tgt = &sh->dev[target];
749         struct page *xor_dest = tgt->page;
750         int count = 0;
751         struct dma_async_tx_descriptor *tx;
752         struct async_submit_ctl submit;
753         int i;
754
755         pr_debug("%s: stripe %llu block: %d\n",
756                 __func__, (unsigned long long)sh->sector, target);
757         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
758
759         for (i = disks; i--; )
760                 if (i != target)
761                         xor_srcs[count++] = sh->dev[i].page;
762
763         atomic_inc(&sh->count);
764
765         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
766                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
767         if (unlikely(count == 1))
768                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
769         else
770                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
771
772         return tx;
773 }
774
775 /* set_syndrome_sources - populate source buffers for gen_syndrome
776  * @srcs - (struct page *) array of size sh->disks
777  * @sh - stripe_head to parse
778  *
779  * Populates srcs in proper layout order for the stripe and returns the
780  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
781  * destination buffer is recorded in srcs[count] and the Q destination
782  * is recorded in srcs[count+1]].
783  */
784 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
785 {
786         int disks = sh->disks;
787         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
788         int d0_idx = raid6_d0(sh);
789         int count;
790         int i;
791
792         for (i = 0; i < disks; i++)
793                 srcs[i] = NULL;
794
795         count = 0;
796         i = d0_idx;
797         do {
798                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
799
800                 srcs[slot] = sh->dev[i].page;
801                 i = raid6_next_disk(i, disks);
802         } while (i != d0_idx);
803
804         return syndrome_disks;
805 }
806
807 static struct dma_async_tx_descriptor *
808 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
809 {
810         int disks = sh->disks;
811         struct page **blocks = percpu->scribble;
812         int target;
813         int qd_idx = sh->qd_idx;
814         struct dma_async_tx_descriptor *tx;
815         struct async_submit_ctl submit;
816         struct r5dev *tgt;
817         struct page *dest;
818         int i;
819         int count;
820
821         if (sh->ops.target < 0)
822                 target = sh->ops.target2;
823         else if (sh->ops.target2 < 0)
824                 target = sh->ops.target;
825         else
826                 /* we should only have one valid target */
827                 BUG();
828         BUG_ON(target < 0);
829         pr_debug("%s: stripe %llu block: %d\n",
830                 __func__, (unsigned long long)sh->sector, target);
831
832         tgt = &sh->dev[target];
833         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
834         dest = tgt->page;
835
836         atomic_inc(&sh->count);
837
838         if (target == qd_idx) {
839                 count = set_syndrome_sources(blocks, sh);
840                 blocks[count] = NULL; /* regenerating p is not necessary */
841                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
842                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
843                                   ops_complete_compute, sh,
844                                   to_addr_conv(sh, percpu));
845                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
846         } else {
847                 /* Compute any data- or p-drive using XOR */
848                 count = 0;
849                 for (i = disks; i-- ; ) {
850                         if (i == target || i == qd_idx)
851                                 continue;
852                         blocks[count++] = sh->dev[i].page;
853                 }
854
855                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
856                                   NULL, ops_complete_compute, sh,
857                                   to_addr_conv(sh, percpu));
858                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
859         }
860
861         return tx;
862 }
863
864 static struct dma_async_tx_descriptor *
865 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
866 {
867         int i, count, disks = sh->disks;
868         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
869         int d0_idx = raid6_d0(sh);
870         int faila = -1, failb = -1;
871         int target = sh->ops.target;
872         int target2 = sh->ops.target2;
873         struct r5dev *tgt = &sh->dev[target];
874         struct r5dev *tgt2 = &sh->dev[target2];
875         struct dma_async_tx_descriptor *tx;
876         struct page **blocks = percpu->scribble;
877         struct async_submit_ctl submit;
878
879         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
880                  __func__, (unsigned long long)sh->sector, target, target2);
881         BUG_ON(target < 0 || target2 < 0);
882         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
883         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
884
885         /* we need to open-code set_syndrome_sources to handle the
886          * slot number conversion for 'faila' and 'failb'
887          */
888         for (i = 0; i < disks ; i++)
889                 blocks[i] = NULL;
890         count = 0;
891         i = d0_idx;
892         do {
893                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
894
895                 blocks[slot] = sh->dev[i].page;
896
897                 if (i == target)
898                         faila = slot;
899                 if (i == target2)
900                         failb = slot;
901                 i = raid6_next_disk(i, disks);
902         } while (i != d0_idx);
903
904         BUG_ON(faila == failb);
905         if (failb < faila)
906                 swap(faila, failb);
907         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
908                  __func__, (unsigned long long)sh->sector, faila, failb);
909
910         atomic_inc(&sh->count);
911
912         if (failb == syndrome_disks+1) {
913                 /* Q disk is one of the missing disks */
914                 if (faila == syndrome_disks) {
915                         /* Missing P+Q, just recompute */
916                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
917                                           ops_complete_compute, sh,
918                                           to_addr_conv(sh, percpu));
919                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
920                                                   STRIPE_SIZE, &submit);
921                 } else {
922                         struct page *dest;
923                         int data_target;
924                         int qd_idx = sh->qd_idx;
925
926                         /* Missing D+Q: recompute D from P, then recompute Q */
927                         if (target == qd_idx)
928                                 data_target = target2;
929                         else
930                                 data_target = target;
931
932                         count = 0;
933                         for (i = disks; i-- ; ) {
934                                 if (i == data_target || i == qd_idx)
935                                         continue;
936                                 blocks[count++] = sh->dev[i].page;
937                         }
938                         dest = sh->dev[data_target].page;
939                         init_async_submit(&submit,
940                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
941                                           NULL, NULL, NULL,
942                                           to_addr_conv(sh, percpu));
943                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
944                                        &submit);
945
946                         count = set_syndrome_sources(blocks, sh);
947                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
948                                           ops_complete_compute, sh,
949                                           to_addr_conv(sh, percpu));
950                         return async_gen_syndrome(blocks, 0, count+2,
951                                                   STRIPE_SIZE, &submit);
952                 }
953         } else {
954                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
955                                   ops_complete_compute, sh,
956                                   to_addr_conv(sh, percpu));
957                 if (failb == syndrome_disks) {
958                         /* We're missing D+P. */
959                         return async_raid6_datap_recov(syndrome_disks+2,
960                                                        STRIPE_SIZE, faila,
961                                                        blocks, &submit);
962                 } else {
963                         /* We're missing D+D. */
964                         return async_raid6_2data_recov(syndrome_disks+2,
965                                                        STRIPE_SIZE, faila, failb,
966                                                        blocks, &submit);
967                 }
968         }
969 }
970
971
972 static void ops_complete_prexor(void *stripe_head_ref)
973 {
974         struct stripe_head *sh = stripe_head_ref;
975
976         pr_debug("%s: stripe %llu\n", __func__,
977                 (unsigned long long)sh->sector);
978 }
979
980 static struct dma_async_tx_descriptor *
981 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
982                struct dma_async_tx_descriptor *tx)
983 {
984         int disks = sh->disks;
985         struct page **xor_srcs = percpu->scribble;
986         int count = 0, pd_idx = sh->pd_idx, i;
987         struct async_submit_ctl submit;
988
989         /* existing parity data subtracted */
990         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
991
992         pr_debug("%s: stripe %llu\n", __func__,
993                 (unsigned long long)sh->sector);
994
995         for (i = disks; i--; ) {
996                 struct r5dev *dev = &sh->dev[i];
997                 /* Only process blocks that are known to be uptodate */
998                 if (test_bit(R5_Wantdrain, &dev->flags))
999                         xor_srcs[count++] = dev->page;
1000         }
1001
1002         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1003                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1004         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1005
1006         return tx;
1007 }
1008
1009 static struct dma_async_tx_descriptor *
1010 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1011 {
1012         int disks = sh->disks;
1013         int i;
1014
1015         pr_debug("%s: stripe %llu\n", __func__,
1016                 (unsigned long long)sh->sector);
1017
1018         for (i = disks; i--; ) {
1019                 struct r5dev *dev = &sh->dev[i];
1020                 struct bio *chosen;
1021
1022                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1023                         struct bio *wbi;
1024
1025                         spin_lock(&sh->lock);
1026                         chosen = dev->towrite;
1027                         dev->towrite = NULL;
1028                         BUG_ON(dev->written);
1029                         wbi = dev->written = chosen;
1030                         spin_unlock(&sh->lock);
1031
1032                         while (wbi && wbi->bi_sector <
1033                                 dev->sector + STRIPE_SECTORS) {
1034                                 tx = async_copy_data(1, wbi, dev->page,
1035                                         dev->sector, tx);
1036                                 wbi = r5_next_bio(wbi, dev->sector);
1037                         }
1038                 }
1039         }
1040
1041         return tx;
1042 }
1043
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1045 {
1046         struct stripe_head *sh = stripe_head_ref;
1047         int disks = sh->disks;
1048         int pd_idx = sh->pd_idx;
1049         int qd_idx = sh->qd_idx;
1050         int i;
1051
1052         pr_debug("%s: stripe %llu\n", __func__,
1053                 (unsigned long long)sh->sector);
1054
1055         for (i = disks; i--; ) {
1056                 struct r5dev *dev = &sh->dev[i];
1057
1058                 if (dev->written || i == pd_idx || i == qd_idx)
1059                         set_bit(R5_UPTODATE, &dev->flags);
1060         }
1061
1062         if (sh->reconstruct_state == reconstruct_state_drain_run)
1063                 sh->reconstruct_state = reconstruct_state_drain_result;
1064         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1065                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1066         else {
1067                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1068                 sh->reconstruct_state = reconstruct_state_result;
1069         }
1070
1071         set_bit(STRIPE_HANDLE, &sh->state);
1072         release_stripe(sh);
1073 }
1074
1075 static void
1076 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1077                      struct dma_async_tx_descriptor *tx)
1078 {
1079         int disks = sh->disks;
1080         struct page **xor_srcs = percpu->scribble;
1081         struct async_submit_ctl submit;
1082         int count = 0, pd_idx = sh->pd_idx, i;
1083         struct page *xor_dest;
1084         int prexor = 0;
1085         unsigned long flags;
1086
1087         pr_debug("%s: stripe %llu\n", __func__,
1088                 (unsigned long long)sh->sector);
1089
1090         /* check if prexor is active which means only process blocks
1091          * that are part of a read-modify-write (written)
1092          */
1093         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1094                 prexor = 1;
1095                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1096                 for (i = disks; i--; ) {
1097                         struct r5dev *dev = &sh->dev[i];
1098                         if (dev->written)
1099                                 xor_srcs[count++] = dev->page;
1100                 }
1101         } else {
1102                 xor_dest = sh->dev[pd_idx].page;
1103                 for (i = disks; i--; ) {
1104                         struct r5dev *dev = &sh->dev[i];
1105                         if (i != pd_idx)
1106                                 xor_srcs[count++] = dev->page;
1107                 }
1108         }
1109
1110         /* 1/ if we prexor'd then the dest is reused as a source
1111          * 2/ if we did not prexor then we are redoing the parity
1112          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1113          * for the synchronous xor case
1114          */
1115         flags = ASYNC_TX_ACK |
1116                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1117
1118         atomic_inc(&sh->count);
1119
1120         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1121                           to_addr_conv(sh, percpu));
1122         if (unlikely(count == 1))
1123                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1124         else
1125                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1126 }
1127
1128 static void
1129 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1130                      struct dma_async_tx_descriptor *tx)
1131 {
1132         struct async_submit_ctl submit;
1133         struct page **blocks = percpu->scribble;
1134         int count;
1135
1136         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1137
1138         count = set_syndrome_sources(blocks, sh);
1139
1140         atomic_inc(&sh->count);
1141
1142         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1143                           sh, to_addr_conv(sh, percpu));
1144         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1145 }
1146
1147 static void ops_complete_check(void *stripe_head_ref)
1148 {
1149         struct stripe_head *sh = stripe_head_ref;
1150
1151         pr_debug("%s: stripe %llu\n", __func__,
1152                 (unsigned long long)sh->sector);
1153
1154         sh->check_state = check_state_check_result;
1155         set_bit(STRIPE_HANDLE, &sh->state);
1156         release_stripe(sh);
1157 }
1158
1159 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1160 {
1161         int disks = sh->disks;
1162         int pd_idx = sh->pd_idx;
1163         int qd_idx = sh->qd_idx;
1164         struct page *xor_dest;
1165         struct page **xor_srcs = percpu->scribble;
1166         struct dma_async_tx_descriptor *tx;
1167         struct async_submit_ctl submit;
1168         int count;
1169         int i;
1170
1171         pr_debug("%s: stripe %llu\n", __func__,
1172                 (unsigned long long)sh->sector);
1173
1174         count = 0;
1175         xor_dest = sh->dev[pd_idx].page;
1176         xor_srcs[count++] = xor_dest;
1177         for (i = disks; i--; ) {
1178                 if (i == pd_idx || i == qd_idx)
1179                         continue;
1180                 xor_srcs[count++] = sh->dev[i].page;
1181         }
1182
1183         init_async_submit(&submit, 0, NULL, NULL, NULL,
1184                           to_addr_conv(sh, percpu));
1185         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1186                            &sh->ops.zero_sum_result, &submit);
1187
1188         atomic_inc(&sh->count);
1189         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1190         tx = async_trigger_callback(&submit);
1191 }
1192
1193 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1194 {
1195         struct page **srcs = percpu->scribble;
1196         struct async_submit_ctl submit;
1197         int count;
1198
1199         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1200                 (unsigned long long)sh->sector, checkp);
1201
1202         count = set_syndrome_sources(srcs, sh);
1203         if (!checkp)
1204                 srcs[count] = NULL;
1205
1206         atomic_inc(&sh->count);
1207         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1208                           sh, to_addr_conv(sh, percpu));
1209         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1210                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1211 }
1212
1213 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1214 {
1215         int overlap_clear = 0, i, disks = sh->disks;
1216         struct dma_async_tx_descriptor *tx = NULL;
1217         raid5_conf_t *conf = sh->raid_conf;
1218         int level = conf->level;
1219         struct raid5_percpu *percpu;
1220         unsigned long cpu;
1221
1222         cpu = get_cpu();
1223         percpu = per_cpu_ptr(conf->percpu, cpu);
1224         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1225                 ops_run_biofill(sh);
1226                 overlap_clear++;
1227         }
1228
1229         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1230                 if (level < 6)
1231                         tx = ops_run_compute5(sh, percpu);
1232                 else {
1233                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1234                                 tx = ops_run_compute6_1(sh, percpu);
1235                         else
1236                                 tx = ops_run_compute6_2(sh, percpu);
1237                 }
1238                 /* terminate the chain if reconstruct is not set to be run */
1239                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1240                         async_tx_ack(tx);
1241         }
1242
1243         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1244                 tx = ops_run_prexor(sh, percpu, tx);
1245
1246         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1247                 tx = ops_run_biodrain(sh, tx);
1248                 overlap_clear++;
1249         }
1250
1251         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1252                 if (level < 6)
1253                         ops_run_reconstruct5(sh, percpu, tx);
1254                 else
1255                         ops_run_reconstruct6(sh, percpu, tx);
1256         }
1257
1258         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1259                 if (sh->check_state == check_state_run)
1260                         ops_run_check_p(sh, percpu);
1261                 else if (sh->check_state == check_state_run_q)
1262                         ops_run_check_pq(sh, percpu, 0);
1263                 else if (sh->check_state == check_state_run_pq)
1264                         ops_run_check_pq(sh, percpu, 1);
1265                 else
1266                         BUG();
1267         }
1268
1269         if (overlap_clear)
1270                 for (i = disks; i--; ) {
1271                         struct r5dev *dev = &sh->dev[i];
1272                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1273                                 wake_up(&sh->raid_conf->wait_for_overlap);
1274                 }
1275         put_cpu();
1276 }
1277
1278 #ifdef CONFIG_MULTICORE_RAID456
1279 static void async_run_ops(void *param, async_cookie_t cookie)
1280 {
1281         struct stripe_head *sh = param;
1282         unsigned long ops_request = sh->ops.request;
1283
1284         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1285         wake_up(&sh->ops.wait_for_ops);
1286
1287         __raid_run_ops(sh, ops_request);
1288         release_stripe(sh);
1289 }
1290
1291 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1292 {
1293         /* since handle_stripe can be called outside of raid5d context
1294          * we need to ensure sh->ops.request is de-staged before another
1295          * request arrives
1296          */
1297         wait_event(sh->ops.wait_for_ops,
1298                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1299         sh->ops.request = ops_request;
1300
1301         atomic_inc(&sh->count);
1302         async_schedule(async_run_ops, sh);
1303 }
1304 #else
1305 #define raid_run_ops __raid_run_ops
1306 #endif
1307
1308 static int grow_one_stripe(raid5_conf_t *conf)
1309 {
1310         struct stripe_head *sh;
1311         sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1312         if (!sh)
1313                 return 0;
1314         memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1315         sh->raid_conf = conf;
1316         spin_lock_init(&sh->lock);
1317         #ifdef CONFIG_MULTICORE_RAID456
1318         init_waitqueue_head(&sh->ops.wait_for_ops);
1319         #endif
1320
1321         if (grow_buffers(sh)) {
1322                 shrink_buffers(sh);
1323                 kmem_cache_free(conf->slab_cache, sh);
1324                 return 0;
1325         }
1326         /* we just created an active stripe so... */
1327         atomic_set(&sh->count, 1);
1328         atomic_inc(&conf->active_stripes);
1329         INIT_LIST_HEAD(&sh->lru);
1330         release_stripe(sh);
1331         return 1;
1332 }
1333
1334 static int grow_stripes(raid5_conf_t *conf, int num)
1335 {
1336         struct kmem_cache *sc;
1337         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1338
1339         if (conf->mddev->gendisk)
1340                 sprintf(conf->cache_name[0],
1341                         "raid%d-%s", conf->level, mdname(conf->mddev));
1342         else
1343                 sprintf(conf->cache_name[0],
1344                         "raid%d-%p", conf->level, conf->mddev);
1345         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1346
1347         conf->active_name = 0;
1348         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1349                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1350                                0, 0, NULL);
1351         if (!sc)
1352                 return 1;
1353         conf->slab_cache = sc;
1354         conf->pool_size = devs;
1355         while (num--)
1356                 if (!grow_one_stripe(conf))
1357                         return 1;
1358         return 0;
1359 }
1360
1361 /**
1362  * scribble_len - return the required size of the scribble region
1363  * @num - total number of disks in the array
1364  *
1365  * The size must be enough to contain:
1366  * 1/ a struct page pointer for each device in the array +2
1367  * 2/ room to convert each entry in (1) to its corresponding dma
1368  *    (dma_map_page()) or page (page_address()) address.
1369  *
1370  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1371  * calculate over all devices (not just the data blocks), using zeros in place
1372  * of the P and Q blocks.
1373  */
1374 static size_t scribble_len(int num)
1375 {
1376         size_t len;
1377
1378         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1379
1380         return len;
1381 }
1382
1383 static int resize_stripes(raid5_conf_t *conf, int newsize)
1384 {
1385         /* Make all the stripes able to hold 'newsize' devices.
1386          * New slots in each stripe get 'page' set to a new page.
1387          *
1388          * This happens in stages:
1389          * 1/ create a new kmem_cache and allocate the required number of
1390          *    stripe_heads.
1391          * 2/ gather all the old stripe_heads and tranfer the pages across
1392          *    to the new stripe_heads.  This will have the side effect of
1393          *    freezing the array as once all stripe_heads have been collected,
1394          *    no IO will be possible.  Old stripe heads are freed once their
1395          *    pages have been transferred over, and the old kmem_cache is
1396          *    freed when all stripes are done.
1397          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1398          *    we simple return a failre status - no need to clean anything up.
1399          * 4/ allocate new pages for the new slots in the new stripe_heads.
1400          *    If this fails, we don't bother trying the shrink the
1401          *    stripe_heads down again, we just leave them as they are.
1402          *    As each stripe_head is processed the new one is released into
1403          *    active service.
1404          *
1405          * Once step2 is started, we cannot afford to wait for a write,
1406          * so we use GFP_NOIO allocations.
1407          */
1408         struct stripe_head *osh, *nsh;
1409         LIST_HEAD(newstripes);
1410         struct disk_info *ndisks;
1411         unsigned long cpu;
1412         int err;
1413         struct kmem_cache *sc;
1414         int i;
1415
1416         if (newsize <= conf->pool_size)
1417                 return 0; /* never bother to shrink */
1418
1419         err = md_allow_write(conf->mddev);
1420         if (err)
1421                 return err;
1422
1423         /* Step 1 */
1424         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1425                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1426                                0, 0, NULL);
1427         if (!sc)
1428                 return -ENOMEM;
1429
1430         for (i = conf->max_nr_stripes; i; i--) {
1431                 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1432                 if (!nsh)
1433                         break;
1434
1435                 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1436
1437                 nsh->raid_conf = conf;
1438                 spin_lock_init(&nsh->lock);
1439                 #ifdef CONFIG_MULTICORE_RAID456
1440                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1441                 #endif
1442
1443                 list_add(&nsh->lru, &newstripes);
1444         }
1445         if (i) {
1446                 /* didn't get enough, give up */
1447                 while (!list_empty(&newstripes)) {
1448                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1449                         list_del(&nsh->lru);
1450                         kmem_cache_free(sc, nsh);
1451                 }
1452                 kmem_cache_destroy(sc);
1453                 return -ENOMEM;
1454         }
1455         /* Step 2 - Must use GFP_NOIO now.
1456          * OK, we have enough stripes, start collecting inactive
1457          * stripes and copying them over
1458          */
1459         list_for_each_entry(nsh, &newstripes, lru) {
1460                 spin_lock_irq(&conf->device_lock);
1461                 wait_event_lock_irq(conf->wait_for_stripe,
1462                                     !list_empty(&conf->inactive_list),
1463                                     conf->device_lock,
1464                                     unplug_slaves(conf->mddev)
1465                         );
1466                 osh = get_free_stripe(conf);
1467                 spin_unlock_irq(&conf->device_lock);
1468                 atomic_set(&nsh->count, 1);
1469                 for(i=0; i<conf->pool_size; i++)
1470                         nsh->dev[i].page = osh->dev[i].page;
1471                 for( ; i<newsize; i++)
1472                         nsh->dev[i].page = NULL;
1473                 kmem_cache_free(conf->slab_cache, osh);
1474         }
1475         kmem_cache_destroy(conf->slab_cache);
1476
1477         /* Step 3.
1478          * At this point, we are holding all the stripes so the array
1479          * is completely stalled, so now is a good time to resize
1480          * conf->disks and the scribble region
1481          */
1482         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1483         if (ndisks) {
1484                 for (i=0; i<conf->raid_disks; i++)
1485                         ndisks[i] = conf->disks[i];
1486                 kfree(conf->disks);
1487                 conf->disks = ndisks;
1488         } else
1489                 err = -ENOMEM;
1490
1491         get_online_cpus();
1492         conf->scribble_len = scribble_len(newsize);
1493         for_each_present_cpu(cpu) {
1494                 struct raid5_percpu *percpu;
1495                 void *scribble;
1496
1497                 percpu = per_cpu_ptr(conf->percpu, cpu);
1498                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1499
1500                 if (scribble) {
1501                         kfree(percpu->scribble);
1502                         percpu->scribble = scribble;
1503                 } else {
1504                         err = -ENOMEM;
1505                         break;
1506                 }
1507         }
1508         put_online_cpus();
1509
1510         /* Step 4, return new stripes to service */
1511         while(!list_empty(&newstripes)) {
1512                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1513                 list_del_init(&nsh->lru);
1514
1515                 for (i=conf->raid_disks; i < newsize; i++)
1516                         if (nsh->dev[i].page == NULL) {
1517                                 struct page *p = alloc_page(GFP_NOIO);
1518                                 nsh->dev[i].page = p;
1519                                 if (!p)
1520                                         err = -ENOMEM;
1521                         }
1522                 release_stripe(nsh);
1523         }
1524         /* critical section pass, GFP_NOIO no longer needed */
1525
1526         conf->slab_cache = sc;
1527         conf->active_name = 1-conf->active_name;
1528         conf->pool_size = newsize;
1529         return err;
1530 }
1531
1532 static int drop_one_stripe(raid5_conf_t *conf)
1533 {
1534         struct stripe_head *sh;
1535
1536         spin_lock_irq(&conf->device_lock);
1537         sh = get_free_stripe(conf);
1538         spin_unlock_irq(&conf->device_lock);
1539         if (!sh)
1540                 return 0;
1541         BUG_ON(atomic_read(&sh->count));
1542         shrink_buffers(sh);
1543         kmem_cache_free(conf->slab_cache, sh);
1544         atomic_dec(&conf->active_stripes);
1545         return 1;
1546 }
1547
1548 static void shrink_stripes(raid5_conf_t *conf)
1549 {
1550         while (drop_one_stripe(conf))
1551                 ;
1552
1553         if (conf->slab_cache)
1554                 kmem_cache_destroy(conf->slab_cache);
1555         conf->slab_cache = NULL;
1556 }
1557
1558 static void raid5_end_read_request(struct bio * bi, int error)
1559 {
1560         struct stripe_head *sh = bi->bi_private;
1561         raid5_conf_t *conf = sh->raid_conf;
1562         int disks = sh->disks, i;
1563         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1564         char b[BDEVNAME_SIZE];
1565         mdk_rdev_t *rdev;
1566
1567
1568         for (i=0 ; i<disks; i++)
1569                 if (bi == &sh->dev[i].req)
1570                         break;
1571
1572         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1573                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1574                 uptodate);
1575         if (i == disks) {
1576                 BUG();
1577                 return;
1578         }
1579
1580         if (uptodate) {
1581                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1582                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1583                         rdev = conf->disks[i].rdev;
1584                         printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1585                                   " (%lu sectors at %llu on %s)\n",
1586                                   mdname(conf->mddev), STRIPE_SECTORS,
1587                                   (unsigned long long)(sh->sector
1588                                                        + rdev->data_offset),
1589                                   bdevname(rdev->bdev, b));
1590                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1591                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1592                 }
1593                 if (atomic_read(&conf->disks[i].rdev->read_errors))
1594                         atomic_set(&conf->disks[i].rdev->read_errors, 0);
1595         } else {
1596                 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1597                 int retry = 0;
1598                 rdev = conf->disks[i].rdev;
1599
1600                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1601                 atomic_inc(&rdev->read_errors);
1602                 if (conf->mddev->degraded >= conf->max_degraded)
1603                         printk_rl(KERN_WARNING
1604                                   "md/raid:%s: read error not correctable "
1605                                   "(sector %llu on %s).\n",
1606                                   mdname(conf->mddev),
1607                                   (unsigned long long)(sh->sector
1608                                                        + rdev->data_offset),
1609                                   bdn);
1610                 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1611                         /* Oh, no!!! */
1612                         printk_rl(KERN_WARNING
1613                                   "md/raid:%s: read error NOT corrected!! "
1614                                   "(sector %llu on %s).\n",
1615                                   mdname(conf->mddev),
1616                                   (unsigned long long)(sh->sector
1617                                                        + rdev->data_offset),
1618                                   bdn);
1619                 else if (atomic_read(&rdev->read_errors)
1620                          > conf->max_nr_stripes)
1621                         printk(KERN_WARNING
1622                                "md/raid:%s: Too many read errors, failing device %s.\n",
1623                                mdname(conf->mddev), bdn);
1624                 else
1625                         retry = 1;
1626                 if (retry)
1627                         set_bit(R5_ReadError, &sh->dev[i].flags);
1628                 else {
1629                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1630                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1631                         md_error(conf->mddev, rdev);
1632                 }
1633         }
1634         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1635         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1636         set_bit(STRIPE_HANDLE, &sh->state);
1637         release_stripe(sh);
1638 }
1639
1640 static void raid5_end_write_request(struct bio *bi, int error)
1641 {
1642         struct stripe_head *sh = bi->bi_private;
1643         raid5_conf_t *conf = sh->raid_conf;
1644         int disks = sh->disks, i;
1645         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1646
1647         for (i=0 ; i<disks; i++)
1648                 if (bi == &sh->dev[i].req)
1649                         break;
1650
1651         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1652                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1653                 uptodate);
1654         if (i == disks) {
1655                 BUG();
1656                 return;
1657         }
1658
1659         if (!uptodate)
1660                 md_error(conf->mddev, conf->disks[i].rdev);
1661
1662         rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1663         
1664         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1665         set_bit(STRIPE_HANDLE, &sh->state);
1666         release_stripe(sh);
1667 }
1668
1669
1670 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1671         
1672 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1673 {
1674         struct r5dev *dev = &sh->dev[i];
1675
1676         bio_init(&dev->req);
1677         dev->req.bi_io_vec = &dev->vec;
1678         dev->req.bi_vcnt++;
1679         dev->req.bi_max_vecs++;
1680         dev->vec.bv_page = dev->page;
1681         dev->vec.bv_len = STRIPE_SIZE;
1682         dev->vec.bv_offset = 0;
1683
1684         dev->req.bi_sector = sh->sector;
1685         dev->req.bi_private = sh;
1686
1687         dev->flags = 0;
1688         dev->sector = compute_blocknr(sh, i, previous);
1689 }
1690
1691 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1692 {
1693         char b[BDEVNAME_SIZE];
1694         raid5_conf_t *conf = mddev->private;
1695         pr_debug("raid456: error called\n");
1696
1697         if (!test_bit(Faulty, &rdev->flags)) {
1698                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1699                 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1700                         unsigned long flags;
1701                         spin_lock_irqsave(&conf->device_lock, flags);
1702                         mddev->degraded++;
1703                         spin_unlock_irqrestore(&conf->device_lock, flags);
1704                         /*
1705                          * if recovery was running, make sure it aborts.
1706                          */
1707                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1708                 }
1709                 set_bit(Faulty, &rdev->flags);
1710                 printk(KERN_ALERT
1711                        "md/raid:%s: Disk failure on %s, disabling device.\n"
1712                        KERN_ALERT
1713                        "md/raid:%s: Operation continuing on %d devices.\n",
1714                        mdname(mddev),
1715                        bdevname(rdev->bdev, b),
1716                        mdname(mddev),
1717                        conf->raid_disks - mddev->degraded);
1718         }
1719 }
1720
1721 /*
1722  * Input: a 'big' sector number,
1723  * Output: index of the data and parity disk, and the sector # in them.
1724  */
1725 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1726                                      int previous, int *dd_idx,
1727                                      struct stripe_head *sh)
1728 {
1729         sector_t stripe, stripe2;
1730         sector_t chunk_number;
1731         unsigned int chunk_offset;
1732         int pd_idx, qd_idx;
1733         int ddf_layout = 0;
1734         sector_t new_sector;
1735         int algorithm = previous ? conf->prev_algo
1736                                  : conf->algorithm;
1737         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1738                                          : conf->chunk_sectors;
1739         int raid_disks = previous ? conf->previous_raid_disks
1740                                   : conf->raid_disks;
1741         int data_disks = raid_disks - conf->max_degraded;
1742
1743         /* First compute the information on this sector */
1744
1745         /*
1746          * Compute the chunk number and the sector offset inside the chunk
1747          */
1748         chunk_offset = sector_div(r_sector, sectors_per_chunk);
1749         chunk_number = r_sector;
1750
1751         /*
1752          * Compute the stripe number
1753          */
1754         stripe = chunk_number;
1755         *dd_idx = sector_div(stripe, data_disks);
1756         stripe2 = stripe;
1757         /*
1758          * Select the parity disk based on the user selected algorithm.
1759          */
1760         pd_idx = qd_idx = ~0;
1761         switch(conf->level) {
1762         case 4:
1763                 pd_idx = data_disks;
1764                 break;
1765         case 5:
1766                 switch (algorithm) {
1767                 case ALGORITHM_LEFT_ASYMMETRIC:
1768                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1769                         if (*dd_idx >= pd_idx)
1770                                 (*dd_idx)++;
1771                         break;
1772                 case ALGORITHM_RIGHT_ASYMMETRIC:
1773                         pd_idx = sector_div(stripe2, raid_disks);
1774                         if (*dd_idx >= pd_idx)
1775                                 (*dd_idx)++;
1776                         break;
1777                 case ALGORITHM_LEFT_SYMMETRIC:
1778                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
1779                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1780                         break;
1781                 case ALGORITHM_RIGHT_SYMMETRIC:
1782                         pd_idx = sector_div(stripe2, raid_disks);
1783                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1784                         break;
1785                 case ALGORITHM_PARITY_0:
1786                         pd_idx = 0;
1787                         (*dd_idx)++;
1788                         break;
1789                 case ALGORITHM_PARITY_N:
1790                         pd_idx = data_disks;
1791                         break;
1792                 default:
1793                         BUG();
1794                 }
1795                 break;
1796         case 6:
1797
1798                 switch (algorithm) {
1799                 case ALGORITHM_LEFT_ASYMMETRIC:
1800                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1801                         qd_idx = pd_idx + 1;
1802                         if (pd_idx == raid_disks-1) {
1803                                 (*dd_idx)++;    /* Q D D D P */
1804                                 qd_idx = 0;
1805                         } else if (*dd_idx >= pd_idx)
1806                                 (*dd_idx) += 2; /* D D P Q D */
1807                         break;
1808                 case ALGORITHM_RIGHT_ASYMMETRIC:
1809                         pd_idx = sector_div(stripe2, raid_disks);
1810                         qd_idx = pd_idx + 1;
1811                         if (pd_idx == raid_disks-1) {
1812                                 (*dd_idx)++;    /* Q D D D P */
1813                                 qd_idx = 0;
1814                         } else if (*dd_idx >= pd_idx)
1815                                 (*dd_idx) += 2; /* D D P Q D */
1816                         break;
1817                 case ALGORITHM_LEFT_SYMMETRIC:
1818                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1819                         qd_idx = (pd_idx + 1) % raid_disks;
1820                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1821                         break;
1822                 case ALGORITHM_RIGHT_SYMMETRIC:
1823                         pd_idx = sector_div(stripe2, raid_disks);
1824                         qd_idx = (pd_idx + 1) % raid_disks;
1825                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1826                         break;
1827
1828                 case ALGORITHM_PARITY_0:
1829                         pd_idx = 0;
1830                         qd_idx = 1;
1831                         (*dd_idx) += 2;
1832                         break;
1833                 case ALGORITHM_PARITY_N:
1834                         pd_idx = data_disks;
1835                         qd_idx = data_disks + 1;
1836                         break;
1837
1838                 case ALGORITHM_ROTATING_ZERO_RESTART:
1839                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
1840                          * of blocks for computing Q is different.
1841                          */
1842                         pd_idx = sector_div(stripe2, raid_disks);
1843                         qd_idx = pd_idx + 1;
1844                         if (pd_idx == raid_disks-1) {
1845                                 (*dd_idx)++;    /* Q D D D P */
1846                                 qd_idx = 0;
1847                         } else if (*dd_idx >= pd_idx)
1848                                 (*dd_idx) += 2; /* D D P Q D */
1849                         ddf_layout = 1;
1850                         break;
1851
1852                 case ALGORITHM_ROTATING_N_RESTART:
1853                         /* Same a left_asymmetric, by first stripe is
1854                          * D D D P Q  rather than
1855                          * Q D D D P
1856                          */
1857                         stripe2 += 1;
1858                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1859                         qd_idx = pd_idx + 1;
1860                         if (pd_idx == raid_disks-1) {
1861                                 (*dd_idx)++;    /* Q D D D P */
1862                                 qd_idx = 0;
1863                         } else if (*dd_idx >= pd_idx)
1864                                 (*dd_idx) += 2; /* D D P Q D */
1865                         ddf_layout = 1;
1866                         break;
1867
1868                 case ALGORITHM_ROTATING_N_CONTINUE:
1869                         /* Same as left_symmetric but Q is before P */
1870                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1871                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1872                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1873                         ddf_layout = 1;
1874                         break;
1875
1876                 case ALGORITHM_LEFT_ASYMMETRIC_6:
1877                         /* RAID5 left_asymmetric, with Q on last device */
1878                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1879                         if (*dd_idx >= pd_idx)
1880                                 (*dd_idx)++;
1881                         qd_idx = raid_disks - 1;
1882                         break;
1883
1884                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1885                         pd_idx = sector_div(stripe2, raid_disks-1);
1886                         if (*dd_idx >= pd_idx)
1887                                 (*dd_idx)++;
1888                         qd_idx = raid_disks - 1;
1889                         break;
1890
1891                 case ALGORITHM_LEFT_SYMMETRIC_6:
1892                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1893                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1894                         qd_idx = raid_disks - 1;
1895                         break;
1896
1897                 case ALGORITHM_RIGHT_SYMMETRIC_6:
1898                         pd_idx = sector_div(stripe2, raid_disks-1);
1899                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1900                         qd_idx = raid_disks - 1;
1901                         break;
1902
1903                 case ALGORITHM_PARITY_0_6:
1904                         pd_idx = 0;
1905                         (*dd_idx)++;
1906                         qd_idx = raid_disks - 1;
1907                         break;
1908
1909                 default:
1910                         BUG();
1911                 }
1912                 break;
1913         }
1914
1915         if (sh) {
1916                 sh->pd_idx = pd_idx;
1917                 sh->qd_idx = qd_idx;
1918                 sh->ddf_layout = ddf_layout;
1919         }
1920         /*
1921          * Finally, compute the new sector number
1922          */
1923         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1924         return new_sector;
1925 }
1926
1927
1928 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1929 {
1930         raid5_conf_t *conf = sh->raid_conf;
1931         int raid_disks = sh->disks;
1932         int data_disks = raid_disks - conf->max_degraded;
1933         sector_t new_sector = sh->sector, check;
1934         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1935                                          : conf->chunk_sectors;
1936         int algorithm = previous ? conf->prev_algo
1937                                  : conf->algorithm;
1938         sector_t stripe;
1939         int chunk_offset;
1940         sector_t chunk_number;
1941         int dummy1, dd_idx = i;
1942         sector_t r_sector;
1943         struct stripe_head sh2;
1944
1945
1946         chunk_offset = sector_div(new_sector, sectors_per_chunk);
1947         stripe = new_sector;
1948
1949         if (i == sh->pd_idx)
1950                 return 0;
1951         switch(conf->level) {
1952         case 4: break;
1953         case 5:
1954                 switch (algorithm) {
1955                 case ALGORITHM_LEFT_ASYMMETRIC:
1956                 case ALGORITHM_RIGHT_ASYMMETRIC:
1957                         if (i > sh->pd_idx)
1958                                 i--;
1959                         break;
1960                 case ALGORITHM_LEFT_SYMMETRIC:
1961                 case ALGORITHM_RIGHT_SYMMETRIC:
1962                         if (i < sh->pd_idx)
1963                                 i += raid_disks;
1964                         i -= (sh->pd_idx + 1);
1965                         break;
1966                 case ALGORITHM_PARITY_0:
1967                         i -= 1;
1968                         break;
1969                 case ALGORITHM_PARITY_N:
1970                         break;
1971                 default:
1972                         BUG();
1973                 }
1974                 break;
1975         case 6:
1976                 if (i == sh->qd_idx)
1977                         return 0; /* It is the Q disk */
1978                 switch (algorithm) {
1979                 case ALGORITHM_LEFT_ASYMMETRIC:
1980                 case ALGORITHM_RIGHT_ASYMMETRIC:
1981                 case ALGORITHM_ROTATING_ZERO_RESTART:
1982                 case ALGORITHM_ROTATING_N_RESTART:
1983                         if (sh->pd_idx == raid_disks-1)
1984                                 i--;    /* Q D D D P */
1985                         else if (i > sh->pd_idx)
1986                                 i -= 2; /* D D P Q D */
1987                         break;
1988                 case ALGORITHM_LEFT_SYMMETRIC:
1989                 case ALGORITHM_RIGHT_SYMMETRIC:
1990                         if (sh->pd_idx == raid_disks-1)
1991                                 i--; /* Q D D D P */
1992                         else {
1993                                 /* D D P Q D */
1994                                 if (i < sh->pd_idx)
1995                                         i += raid_disks;
1996                                 i -= (sh->pd_idx + 2);
1997                         }
1998                         break;
1999                 case ALGORITHM_PARITY_0:
2000                         i -= 2;
2001                         break;
2002                 case ALGORITHM_PARITY_N:
2003                         break;
2004                 case ALGORITHM_ROTATING_N_CONTINUE:
2005                         /* Like left_symmetric, but P is before Q */
2006                         if (sh->pd_idx == 0)
2007                                 i--;    /* P D D D Q */
2008                         else {
2009                                 /* D D Q P D */
2010                                 if (i < sh->pd_idx)
2011                                         i += raid_disks;
2012                                 i -= (sh->pd_idx + 1);
2013                         }
2014                         break;
2015                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2016                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2017                         if (i > sh->pd_idx)
2018                                 i--;
2019                         break;
2020                 case ALGORITHM_LEFT_SYMMETRIC_6:
2021                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2022                         if (i < sh->pd_idx)
2023                                 i += data_disks + 1;
2024                         i -= (sh->pd_idx + 1);
2025                         break;
2026                 case ALGORITHM_PARITY_0_6:
2027                         i -= 1;
2028                         break;
2029                 default:
2030                         BUG();
2031                 }
2032                 break;
2033         }
2034
2035         chunk_number = stripe * data_disks + i;
2036         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2037
2038         check = raid5_compute_sector(conf, r_sector,
2039                                      previous, &dummy1, &sh2);
2040         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2041                 || sh2.qd_idx != sh->qd_idx) {
2042                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2043                        mdname(conf->mddev));
2044                 return 0;
2045         }
2046         return r_sector;
2047 }
2048
2049
2050 static void
2051 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2052                          int rcw, int expand)
2053 {
2054         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2055         raid5_conf_t *conf = sh->raid_conf;
2056         int level = conf->level;
2057
2058         if (rcw) {
2059                 /* if we are not expanding this is a proper write request, and
2060                  * there will be bios with new data to be drained into the
2061                  * stripe cache
2062                  */
2063                 if (!expand) {
2064                         sh->reconstruct_state = reconstruct_state_drain_run;
2065                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2066                 } else
2067                         sh->reconstruct_state = reconstruct_state_run;
2068
2069                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2070
2071                 for (i = disks; i--; ) {
2072                         struct r5dev *dev = &sh->dev[i];
2073
2074                         if (dev->towrite) {
2075                                 set_bit(R5_LOCKED, &dev->flags);
2076                                 set_bit(R5_Wantdrain, &dev->flags);
2077                                 if (!expand)
2078                                         clear_bit(R5_UPTODATE, &dev->flags);
2079                                 s->locked++;
2080                         }
2081                 }
2082                 if (s->locked + conf->max_degraded == disks)
2083                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2084                                 atomic_inc(&conf->pending_full_writes);
2085         } else {
2086                 BUG_ON(level == 6);
2087                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2088                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2089
2090                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2091                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2092                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2093                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2094
2095                 for (i = disks; i--; ) {
2096                         struct r5dev *dev = &sh->dev[i];
2097                         if (i == pd_idx)
2098                                 continue;
2099
2100                         if (dev->towrite &&
2101                             (test_bit(R5_UPTODATE, &dev->flags) ||
2102                              test_bit(R5_Wantcompute, &dev->flags))) {
2103                                 set_bit(R5_Wantdrain, &dev->flags);
2104                                 set_bit(R5_LOCKED, &dev->flags);
2105                                 clear_bit(R5_UPTODATE, &dev->flags);
2106                                 s->locked++;
2107                         }
2108                 }
2109         }
2110
2111         /* keep the parity disk(s) locked while asynchronous operations
2112          * are in flight
2113          */
2114         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2115         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2116         s->locked++;
2117
2118         if (level == 6) {
2119                 int qd_idx = sh->qd_idx;
2120                 struct r5dev *dev = &sh->dev[qd_idx];
2121
2122                 set_bit(R5_LOCKED, &dev->flags);
2123                 clear_bit(R5_UPTODATE, &dev->flags);
2124                 s->locked++;
2125         }
2126
2127         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2128                 __func__, (unsigned long long)sh->sector,
2129                 s->locked, s->ops_request);
2130 }
2131
2132 /*
2133  * Each stripe/dev can have one or more bion attached.
2134  * toread/towrite point to the first in a chain.
2135  * The bi_next chain must be in order.
2136  */
2137 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2138 {
2139         struct bio **bip;
2140         raid5_conf_t *conf = sh->raid_conf;
2141         int firstwrite=0;
2142
2143         pr_debug("adding bh b#%llu to stripe s#%llu\n",
2144                 (unsigned long long)bi->bi_sector,
2145                 (unsigned long long)sh->sector);
2146
2147
2148         spin_lock(&sh->lock);
2149         spin_lock_irq(&conf->device_lock);
2150         if (forwrite) {
2151                 bip = &sh->dev[dd_idx].towrite;
2152                 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2153                         firstwrite = 1;
2154         } else
2155                 bip = &sh->dev[dd_idx].toread;
2156         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2157                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2158                         goto overlap;
2159                 bip = & (*bip)->bi_next;
2160         }
2161         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2162                 goto overlap;
2163
2164         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2165         if (*bip)
2166                 bi->bi_next = *bip;
2167         *bip = bi;
2168         bi->bi_phys_segments++;
2169         spin_unlock_irq(&conf->device_lock);
2170         spin_unlock(&sh->lock);
2171
2172         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2173                 (unsigned long long)bi->bi_sector,
2174                 (unsigned long long)sh->sector, dd_idx);
2175
2176         if (conf->mddev->bitmap && firstwrite) {
2177                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2178                                   STRIPE_SECTORS, 0);
2179                 sh->bm_seq = conf->seq_flush+1;
2180                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2181         }
2182
2183         if (forwrite) {
2184                 /* check if page is covered */
2185                 sector_t sector = sh->dev[dd_idx].sector;
2186                 for (bi=sh->dev[dd_idx].towrite;
2187                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2188                              bi && bi->bi_sector <= sector;
2189                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2190                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2191                                 sector = bi->bi_sector + (bi->bi_size>>9);
2192                 }
2193                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2194                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2195         }
2196         return 1;
2197
2198  overlap:
2199         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2200         spin_unlock_irq(&conf->device_lock);
2201         spin_unlock(&sh->lock);
2202         return 0;
2203 }
2204
2205 static void end_reshape(raid5_conf_t *conf);
2206
2207 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2208                             struct stripe_head *sh)
2209 {
2210         int sectors_per_chunk =
2211                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2212         int dd_idx;
2213         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2214         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2215
2216         raid5_compute_sector(conf,
2217                              stripe * (disks - conf->max_degraded)
2218                              *sectors_per_chunk + chunk_offset,
2219                              previous,
2220                              &dd_idx, sh);
2221 }
2222
2223 static void
2224 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2225                                 struct stripe_head_state *s, int disks,
2226                                 struct bio **return_bi)
2227 {
2228         int i;
2229         for (i = disks; i--; ) {
2230                 struct bio *bi;
2231                 int bitmap_end = 0;
2232
2233                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2234                         mdk_rdev_t *rdev;
2235                         rcu_read_lock();
2236                         rdev = rcu_dereference(conf->disks[i].rdev);
2237                         if (rdev && test_bit(In_sync, &rdev->flags))
2238                                 /* multiple read failures in one stripe */
2239                                 md_error(conf->mddev, rdev);
2240                         rcu_read_unlock();
2241                 }
2242                 spin_lock_irq(&conf->device_lock);
2243                 /* fail all writes first */
2244                 bi = sh->dev[i].towrite;
2245                 sh->dev[i].towrite = NULL;
2246                 if (bi) {
2247                         s->to_write--;
2248                         bitmap_end = 1;
2249                 }
2250
2251                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2252                         wake_up(&conf->wait_for_overlap);
2253
2254                 while (bi && bi->bi_sector <
2255                         sh->dev[i].sector + STRIPE_SECTORS) {
2256                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2257                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2258                         if (!raid5_dec_bi_phys_segments(bi)) {
2259                                 md_write_end(conf->mddev);
2260                                 bi->bi_next = *return_bi;
2261                                 *return_bi = bi;
2262                         }
2263                         bi = nextbi;
2264                 }
2265                 /* and fail all 'written' */
2266                 bi = sh->dev[i].written;
2267                 sh->dev[i].written = NULL;
2268                 if (bi) bitmap_end = 1;
2269                 while (bi && bi->bi_sector <
2270                        sh->dev[i].sector + STRIPE_SECTORS) {
2271                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2272                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2273                         if (!raid5_dec_bi_phys_segments(bi)) {
2274                                 md_write_end(conf->mddev);
2275                                 bi->bi_next = *return_bi;
2276                                 *return_bi = bi;
2277                         }
2278                         bi = bi2;
2279                 }
2280
2281                 /* fail any reads if this device is non-operational and
2282                  * the data has not reached the cache yet.
2283                  */
2284                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2285                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2286                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2287                         bi = sh->dev[i].toread;
2288                         sh->dev[i].toread = NULL;
2289                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2290                                 wake_up(&conf->wait_for_overlap);
2291                         if (bi) s->to_read--;
2292                         while (bi && bi->bi_sector <
2293                                sh->dev[i].sector + STRIPE_SECTORS) {
2294                                 struct bio *nextbi =
2295                                         r5_next_bio(bi, sh->dev[i].sector);
2296                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2297                                 if (!raid5_dec_bi_phys_segments(bi)) {
2298                                         bi->bi_next = *return_bi;
2299                                         *return_bi = bi;
2300                                 }
2301                                 bi = nextbi;
2302                         }
2303                 }
2304                 spin_unlock_irq(&conf->device_lock);
2305                 if (bitmap_end)
2306                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2307                                         STRIPE_SECTORS, 0, 0);
2308         }
2309
2310         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2311                 if (atomic_dec_and_test(&conf->pending_full_writes))
2312                         md_wakeup_thread(conf->mddev->thread);
2313 }
2314
2315 /* fetch_block5 - checks the given member device to see if its data needs
2316  * to be read or computed to satisfy a request.
2317  *
2318  * Returns 1 when no more member devices need to be checked, otherwise returns
2319  * 0 to tell the loop in handle_stripe_fill5 to continue
2320  */
2321 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2322                         int disk_idx, int disks)
2323 {
2324         struct r5dev *dev = &sh->dev[disk_idx];
2325         struct r5dev *failed_dev = &sh->dev[s->failed_num];
2326
2327         /* is the data in this block needed, and can we get it? */
2328         if (!test_bit(R5_LOCKED, &dev->flags) &&
2329             !test_bit(R5_UPTODATE, &dev->flags) &&
2330             (dev->toread ||
2331              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2332              s->syncing || s->expanding ||
2333              (s->failed &&
2334               (failed_dev->toread ||
2335                (failed_dev->towrite &&
2336                 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2337                 /* We would like to get this block, possibly by computing it,
2338                  * otherwise read it if the backing disk is insync
2339                  */
2340                 if ((s->uptodate == disks - 1) &&
2341                     (s->failed && disk_idx == s->failed_num)) {
2342                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2343                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2344                         set_bit(R5_Wantcompute, &dev->flags);
2345                         sh->ops.target = disk_idx;
2346                         sh->ops.target2 = -1;
2347                         s->req_compute = 1;
2348                         /* Careful: from this point on 'uptodate' is in the eye
2349                          * of raid_run_ops which services 'compute' operations
2350                          * before writes. R5_Wantcompute flags a block that will
2351                          * be R5_UPTODATE by the time it is needed for a
2352                          * subsequent operation.
2353                          */
2354                         s->uptodate++;
2355                         return 1; /* uptodate + compute == disks */
2356                 } else if (test_bit(R5_Insync, &dev->flags)) {
2357                         set_bit(R5_LOCKED, &dev->flags);
2358                         set_bit(R5_Wantread, &dev->flags);
2359                         s->locked++;
2360                         pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2361                                 s->syncing);
2362                 }
2363         }
2364
2365         return 0;
2366 }
2367
2368 /**
2369  * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2370  */
2371 static void handle_stripe_fill5(struct stripe_head *sh,
2372                         struct stripe_head_state *s, int disks)
2373 {
2374         int i;
2375
2376         /* look for blocks to read/compute, skip this if a compute
2377          * is already in flight, or if the stripe contents are in the
2378          * midst of changing due to a write
2379          */
2380         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2381             !sh->reconstruct_state)
2382                 for (i = disks; i--; )
2383                         if (fetch_block5(sh, s, i, disks))
2384                                 break;
2385         set_bit(STRIPE_HANDLE, &sh->state);
2386 }
2387
2388 /* fetch_block6 - checks the given member device to see if its data needs
2389  * to be read or computed to satisfy a request.
2390  *
2391  * Returns 1 when no more member devices need to be checked, otherwise returns
2392  * 0 to tell the loop in handle_stripe_fill6 to continue
2393  */
2394 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2395                          struct r6_state *r6s, int disk_idx, int disks)
2396 {
2397         struct r5dev *dev = &sh->dev[disk_idx];
2398         struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2399                                   &sh->dev[r6s->failed_num[1]] };
2400
2401         if (!test_bit(R5_LOCKED, &dev->flags) &&
2402             !test_bit(R5_UPTODATE, &dev->flags) &&
2403             (dev->toread ||
2404              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2405              s->syncing || s->expanding ||
2406              (s->failed >= 1 &&
2407               (fdev[0]->toread || s->to_write)) ||
2408              (s->failed >= 2 &&
2409               (fdev[1]->toread || s->to_write)))) {
2410                 /* we would like to get this block, possibly by computing it,
2411                  * otherwise read it if the backing disk is insync
2412                  */
2413                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2414                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2415                 if ((s->uptodate == disks - 1) &&
2416                     (s->failed && (disk_idx == r6s->failed_num[0] ||
2417                                    disk_idx == r6s->failed_num[1]))) {
2418                         /* have disk failed, and we're requested to fetch it;
2419                          * do compute it
2420                          */
2421                         pr_debug("Computing stripe %llu block %d\n",
2422                                (unsigned long long)sh->sector, disk_idx);
2423                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2424                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2425                         set_bit(R5_Wantcompute, &dev->flags);
2426                         sh->ops.target = disk_idx;
2427                         sh->ops.target2 = -1; /* no 2nd target */
2428                         s->req_compute = 1;
2429                         s->uptodate++;
2430                         return 1;
2431                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2432                         /* Computing 2-failure is *very* expensive; only
2433                          * do it if failed >= 2
2434                          */
2435                         int other;
2436                         for (other = disks; other--; ) {
2437                                 if (other == disk_idx)
2438                                         continue;
2439                                 if (!test_bit(R5_UPTODATE,
2440                                       &sh->dev[other].flags))
2441                                         break;
2442                         }
2443                         BUG_ON(other < 0);
2444                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2445                                (unsigned long long)sh->sector,
2446                                disk_idx, other);
2447                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2448                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2449                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2450                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2451                         sh->ops.target = disk_idx;
2452                         sh->ops.target2 = other;
2453                         s->uptodate += 2;
2454                         s->req_compute = 1;
2455                         return 1;
2456                 } else if (test_bit(R5_Insync, &dev->flags)) {
2457                         set_bit(R5_LOCKED, &dev->flags);
2458                         set_bit(R5_Wantread, &dev->flags);
2459                         s->locked++;
2460                         pr_debug("Reading block %d (sync=%d)\n",
2461                                 disk_idx, s->syncing);
2462                 }
2463         }
2464
2465         return 0;
2466 }
2467
2468 /**
2469  * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2470  */
2471 static void handle_stripe_fill6(struct stripe_head *sh,
2472                         struct stripe_head_state *s, struct r6_state *r6s,
2473                         int disks)
2474 {
2475         int i;
2476
2477         /* look for blocks to read/compute, skip this if a compute
2478          * is already in flight, or if the stripe contents are in the
2479          * midst of changing due to a write
2480          */
2481         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2482             !sh->reconstruct_state)
2483                 for (i = disks; i--; )
2484                         if (fetch_block6(sh, s, r6s, i, disks))
2485                                 break;
2486         set_bit(STRIPE_HANDLE, &sh->state);
2487 }
2488
2489
2490 /* handle_stripe_clean_event
2491  * any written block on an uptodate or failed drive can be returned.
2492  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2493  * never LOCKED, so we don't need to test 'failed' directly.
2494  */
2495 static void handle_stripe_clean_event(raid5_conf_t *conf,
2496         struct stripe_head *sh, int disks, struct bio **return_bi)
2497 {
2498         int i;
2499         struct r5dev *dev;
2500
2501         for (i = disks; i--; )
2502                 if (sh->dev[i].written) {
2503                         dev = &sh->dev[i];
2504                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2505                                 test_bit(R5_UPTODATE, &dev->flags)) {
2506                                 /* We can return any write requests */
2507                                 struct bio *wbi, *wbi2;
2508                                 int bitmap_end = 0;
2509                                 pr_debug("Return write for disc %d\n", i);
2510                                 spin_lock_irq(&conf->device_lock);
2511                                 wbi = dev->written;
2512                                 dev->written = NULL;
2513                                 while (wbi && wbi->bi_sector <
2514                                         dev->sector + STRIPE_SECTORS) {
2515                                         wbi2 = r5_next_bio(wbi, dev->sector);
2516                                         if (!raid5_dec_bi_phys_segments(wbi)) {
2517                                                 md_write_end(conf->mddev);
2518                                                 wbi->bi_next = *return_bi;
2519                                                 *return_bi = wbi;
2520                                         }
2521                                         wbi = wbi2;
2522                                 }
2523                                 if (dev->towrite == NULL)
2524                                         bitmap_end = 1;
2525                                 spin_unlock_irq(&conf->device_lock);
2526                                 if (bitmap_end)
2527                                         bitmap_endwrite(conf->mddev->bitmap,
2528                                                         sh->sector,
2529                                                         STRIPE_SECTORS,
2530                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2531                                                         0);
2532                         }
2533                 }
2534
2535         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2536                 if (atomic_dec_and_test(&conf->pending_full_writes))
2537                         md_wakeup_thread(conf->mddev->thread);
2538 }
2539
2540 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2541                 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2542 {
2543         int rmw = 0, rcw = 0, i;
2544         for (i = disks; i--; ) {
2545                 /* would I have to read this buffer for read_modify_write */
2546                 struct r5dev *dev = &sh->dev[i];
2547                 if ((dev->towrite || i == sh->pd_idx) &&
2548                     !test_bit(R5_LOCKED, &dev->flags) &&
2549                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2550                       test_bit(R5_Wantcompute, &dev->flags))) {
2551                         if (test_bit(R5_Insync, &dev->flags))
2552                                 rmw++;
2553                         else
2554                                 rmw += 2*disks;  /* cannot read it */
2555                 }
2556                 /* Would I have to read this buffer for reconstruct_write */
2557                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2558                     !test_bit(R5_LOCKED, &dev->flags) &&
2559                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2560                     test_bit(R5_Wantcompute, &dev->flags))) {
2561                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2562                         else
2563                                 rcw += 2*disks;
2564                 }
2565         }
2566         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2567                 (unsigned long long)sh->sector, rmw, rcw);
2568         set_bit(STRIPE_HANDLE, &sh->state);
2569         if (rmw < rcw && rmw > 0)
2570                 /* prefer read-modify-write, but need to get some data */
2571                 for (i = disks; i--; ) {
2572                         struct r5dev *dev = &sh->dev[i];
2573                         if ((dev->towrite || i == sh->pd_idx) &&
2574                             !test_bit(R5_LOCKED, &dev->flags) &&
2575                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2576                             test_bit(R5_Wantcompute, &dev->flags)) &&
2577                             test_bit(R5_Insync, &dev->flags)) {
2578                                 if (
2579                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2580                                         pr_debug("Read_old block "
2581                                                 "%d for r-m-w\n", i);
2582                                         set_bit(R5_LOCKED, &dev->flags);
2583                                         set_bit(R5_Wantread, &dev->flags);
2584                                         s->locked++;
2585                                 } else {
2586                                         set_bit(STRIPE_DELAYED, &sh->state);
2587                                         set_bit(STRIPE_HANDLE, &sh->state);
2588                                 }
2589                         }
2590                 }
2591         if (rcw <= rmw && rcw > 0)
2592                 /* want reconstruct write, but need to get some data */
2593                 for (i = disks; i--; ) {
2594                         struct r5dev *dev = &sh->dev[i];
2595                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2596                             i != sh->pd_idx &&
2597                             !test_bit(R5_LOCKED, &dev->flags) &&
2598                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2599                             test_bit(R5_Wantcompute, &dev->flags)) &&
2600                             test_bit(R5_Insync, &dev->flags)) {
2601                                 if (
2602                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2603                                         pr_debug("Read_old block "
2604                                                 "%d for Reconstruct\n", i);
2605                                         set_bit(R5_LOCKED, &dev->flags);
2606                                         set_bit(R5_Wantread, &dev->flags);
2607                                         s->locked++;
2608                                 } else {
2609                                         set_bit(STRIPE_DELAYED, &sh->state);
2610                                         set_bit(STRIPE_HANDLE, &sh->state);
2611                                 }
2612                         }
2613                 }
2614         /* now if nothing is locked, and if we have enough data,
2615          * we can start a write request
2616          */
2617         /* since handle_stripe can be called at any time we need to handle the
2618          * case where a compute block operation has been submitted and then a
2619          * subsequent call wants to start a write request.  raid_run_ops only
2620          * handles the case where compute block and reconstruct are requested
2621          * simultaneously.  If this is not the case then new writes need to be
2622          * held off until the compute completes.
2623          */
2624         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2625             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2626             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2627                 schedule_reconstruction(sh, s, rcw == 0, 0);
2628 }
2629
2630 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2631                 struct stripe_head *sh, struct stripe_head_state *s,
2632                 struct r6_state *r6s, int disks)
2633 {
2634         int rcw = 0, pd_idx = sh->pd_idx, i;
2635         int qd_idx = sh->qd_idx;
2636
2637         set_bit(STRIPE_HANDLE, &sh->state);
2638         for (i = disks; i--; ) {
2639                 struct r5dev *dev = &sh->dev[i];
2640                 /* check if we haven't enough data */
2641                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2642                     i != pd_idx && i != qd_idx &&
2643                     !test_bit(R5_LOCKED, &dev->flags) &&
2644                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2645                       test_bit(R5_Wantcompute, &dev->flags))) {
2646                         rcw++;
2647                         if (!test_bit(R5_Insync, &dev->flags))
2648                                 continue; /* it's a failed drive */
2649
2650                         if (
2651                           test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2652                                 pr_debug("Read_old stripe %llu "
2653                                         "block %d for Reconstruct\n",
2654                                      (unsigned long long)sh->sector, i);
2655                                 set_bit(R5_LOCKED, &dev->flags);
2656                                 set_bit(R5_Wantread, &dev->flags);
2657                                 s->locked++;
2658                         } else {
2659                                 pr_debug("Request delayed stripe %llu "
2660                                         "block %d for Reconstruct\n",
2661                                      (unsigned long long)sh->sector, i);
2662                                 set_bit(STRIPE_DELAYED, &sh->state);
2663                                 set_bit(STRIPE_HANDLE, &sh->state);
2664                         }
2665                 }
2666         }
2667         /* now if nothing is locked, and if we have enough data, we can start a
2668          * write request
2669          */
2670         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2671             s->locked == 0 && rcw == 0 &&
2672             !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2673                 schedule_reconstruction(sh, s, 1, 0);
2674         }
2675 }
2676
2677 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2678                                 struct stripe_head_state *s, int disks)
2679 {
2680         struct r5dev *dev = NULL;
2681
2682         set_bit(STRIPE_HANDLE, &sh->state);
2683
2684         switch (sh->check_state) {
2685         case check_state_idle:
2686                 /* start a new check operation if there are no failures */
2687                 if (s->failed == 0) {
2688                         BUG_ON(s->uptodate != disks);
2689                         sh->check_state = check_state_run;
2690                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2691                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2692                         s->uptodate--;
2693                         break;
2694                 }
2695                 dev = &sh->dev[s->failed_num];
2696                 /* fall through */
2697         case check_state_compute_result:
2698                 sh->check_state = check_state_idle;
2699                 if (!dev)
2700                         dev = &sh->dev[sh->pd_idx];
2701
2702                 /* check that a write has not made the stripe insync */
2703                 if (test_bit(STRIPE_INSYNC, &sh->state))
2704                         break;
2705
2706                 /* either failed parity check, or recovery is happening */
2707                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2708                 BUG_ON(s->uptodate != disks);
2709
2710                 set_bit(R5_LOCKED, &dev->flags);
2711                 s->locked++;
2712                 set_bit(R5_Wantwrite, &dev->flags);
2713
2714                 clear_bit(STRIPE_DEGRADED, &sh->state);
2715                 set_bit(STRIPE_INSYNC, &sh->state);
2716                 break;
2717         case check_state_run:
2718                 break; /* we will be called again upon completion */
2719         case check_state_check_result:
2720                 sh->check_state = check_state_idle;
2721
2722                 /* if a failure occurred during the check operation, leave
2723                  * STRIPE_INSYNC not set and let the stripe be handled again
2724                  */
2725                 if (s->failed)
2726                         break;
2727
2728                 /* handle a successful check operation, if parity is correct
2729                  * we are done.  Otherwise update the mismatch count and repair
2730                  * parity if !MD_RECOVERY_CHECK
2731                  */
2732                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2733                         /* parity is correct (on disc,
2734                          * not in buffer any more)
2735                          */
2736                         set_bit(STRIPE_INSYNC, &sh->state);
2737                 else {
2738                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2739                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2740                                 /* don't try to repair!! */
2741                                 set_bit(STRIPE_INSYNC, &sh->state);
2742                         else {
2743                                 sh->check_state = check_state_compute_run;
2744                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2745                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2746                                 set_bit(R5_Wantcompute,
2747                                         &sh->dev[sh->pd_idx].flags);
2748                                 sh->ops.target = sh->pd_idx;
2749                                 sh->ops.target2 = -1;
2750                                 s->uptodate++;
2751                         }
2752                 }
2753                 break;
2754         case check_state_compute_run:
2755                 break;
2756         default:
2757                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2758                        __func__, sh->check_state,
2759                        (unsigned long long) sh->sector);
2760                 BUG();
2761         }
2762 }
2763
2764
2765 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2766                                   struct stripe_head_state *s,
2767                                   struct r6_state *r6s, int disks)
2768 {
2769         int pd_idx = sh->pd_idx;
2770         int qd_idx = sh->qd_idx;
2771         struct r5dev *dev;
2772
2773         set_bit(STRIPE_HANDLE, &sh->state);
2774
2775         BUG_ON(s->failed > 2);
2776
2777         /* Want to check and possibly repair P and Q.
2778          * However there could be one 'failed' device, in which
2779          * case we can only check one of them, possibly using the
2780          * other to generate missing data
2781          */
2782
2783         switch (sh->check_state) {
2784         case check_state_idle:
2785                 /* start a new check operation if there are < 2 failures */
2786                 if (s->failed == r6s->q_failed) {
2787                         /* The only possible failed device holds Q, so it
2788                          * makes sense to check P (If anything else were failed,
2789                          * we would have used P to recreate it).
2790                          */
2791                         sh->check_state = check_state_run;
2792                 }
2793                 if (!r6s->q_failed && s->failed < 2) {
2794                         /* Q is not failed, and we didn't use it to generate
2795                          * anything, so it makes sense to check it
2796                          */
2797                         if (sh->check_state == check_state_run)
2798                                 sh->check_state = check_state_run_pq;
2799                         else
2800                                 sh->check_state = check_state_run_q;
2801                 }
2802
2803                 /* discard potentially stale zero_sum_result */
2804                 sh->ops.zero_sum_result = 0;
2805
2806                 if (sh->check_state == check_state_run) {
2807                         /* async_xor_zero_sum destroys the contents of P */
2808                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2809                         s->uptodate--;
2810                 }
2811                 if (sh->check_state >= check_state_run &&
2812                     sh->check_state <= check_state_run_pq) {
2813                         /* async_syndrome_zero_sum preserves P and Q, so
2814                          * no need to mark them !uptodate here
2815                          */
2816                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2817                         break;
2818                 }
2819
2820                 /* we have 2-disk failure */
2821                 BUG_ON(s->failed != 2);
2822                 /* fall through */
2823         case check_state_compute_result:
2824                 sh->check_state = check_state_idle;
2825
2826                 /* check that a write has not made the stripe insync */
2827                 if (test_bit(STRIPE_INSYNC, &sh->state))
2828                         break;
2829
2830                 /* now write out any block on a failed drive,
2831                  * or P or Q if they were recomputed
2832                  */
2833                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2834                 if (s->failed == 2) {
2835                         dev = &sh->dev[r6s->failed_num[1]];
2836                         s->locked++;
2837                         set_bit(R5_LOCKED, &dev->flags);
2838                         set_bit(R5_Wantwrite, &dev->flags);
2839                 }
2840                 if (s->failed >= 1) {
2841                         dev = &sh->dev[r6s->failed_num[0]];
2842                         s->locked++;
2843                         set_bit(R5_LOCKED, &dev->flags);
2844                         set_bit(R5_Wantwrite, &dev->flags);
2845                 }
2846                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2847                         dev = &sh->dev[pd_idx];
2848                         s->locked++;
2849                         set_bit(R5_LOCKED, &dev->flags);
2850                         set_bit(R5_Wantwrite, &dev->flags);
2851                 }
2852                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2853                         dev = &sh->dev[qd_idx];
2854                         s->locked++;
2855                         set_bit(R5_LOCKED, &dev->flags);
2856                         set_bit(R5_Wantwrite, &dev->flags);
2857                 }
2858                 clear_bit(STRIPE_DEGRADED, &sh->state);
2859
2860                 set_bit(STRIPE_INSYNC, &sh->state);
2861                 break;
2862         case check_state_run:
2863         case check_state_run_q:
2864         case check_state_run_pq:
2865                 break; /* we will be called again upon completion */
2866         case check_state_check_result:
2867                 sh->check_state = check_state_idle;
2868
2869                 /* handle a successful check operation, if parity is correct
2870                  * we are done.  Otherwise update the mismatch count and repair
2871                  * parity if !MD_RECOVERY_CHECK
2872                  */
2873                 if (sh->ops.zero_sum_result == 0) {
2874                         /* both parities are correct */
2875                         if (!s->failed)
2876                                 set_bit(STRIPE_INSYNC, &sh->state);
2877                         else {
2878                                 /* in contrast to the raid5 case we can validate
2879                                  * parity, but still have a failure to write
2880                                  * back
2881                                  */
2882                                 sh->check_state = check_state_compute_result;
2883                                 /* Returning at this point means that we may go
2884                                  * off and bring p and/or q uptodate again so
2885                                  * we make sure to check zero_sum_result again
2886                                  * to verify if p or q need writeback
2887                                  */
2888                         }
2889                 } else {
2890                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2891                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2892                                 /* don't try to repair!! */
2893                                 set_bit(STRIPE_INSYNC, &sh->state);
2894                         else {
2895                                 int *target = &sh->ops.target;
2896
2897                                 sh->ops.target = -1;
2898                                 sh->ops.target2 = -1;
2899                                 sh->check_state = check_state_compute_run;
2900                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2901                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2902                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2903                                         set_bit(R5_Wantcompute,
2904                                                 &sh->dev[pd_idx].flags);
2905                                         *target = pd_idx;
2906                                         target = &sh->ops.target2;
2907                                         s->uptodate++;
2908                                 }
2909                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2910                                         set_bit(R5_Wantcompute,
2911                                                 &sh->dev[qd_idx].flags);
2912                                         *target = qd_idx;
2913                                         s->uptodate++;
2914                                 }
2915                         }
2916                 }
2917                 break;
2918         case check_state_compute_run:
2919                 break;
2920         default:
2921                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2922                        __func__, sh->check_state,
2923                        (unsigned long long) sh->sector);
2924                 BUG();
2925         }
2926 }
2927
2928 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2929                                 struct r6_state *r6s)
2930 {
2931         int i;
2932
2933         /* We have read all the blocks in this stripe and now we need to
2934          * copy some of them into a target stripe for expand.
2935          */
2936         struct dma_async_tx_descriptor *tx = NULL;
2937         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2938         for (i = 0; i < sh->disks; i++)
2939                 if (i != sh->pd_idx && i != sh->qd_idx) {
2940                         int dd_idx, j;
2941                         struct stripe_head *sh2;
2942                         struct async_submit_ctl submit;
2943
2944                         sector_t bn = compute_blocknr(sh, i, 1);
2945                         sector_t s = raid5_compute_sector(conf, bn, 0,
2946                                                           &dd_idx, NULL);
2947                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
2948                         if (sh2 == NULL)
2949                                 /* so far only the early blocks of this stripe
2950                                  * have been requested.  When later blocks
2951                                  * get requested, we will try again
2952                                  */
2953                                 continue;
2954                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2955                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2956                                 /* must have already done this block */
2957                                 release_stripe(sh2);
2958                                 continue;
2959                         }
2960
2961                         /* place all the copies on one channel */
2962                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2963                         tx = async_memcpy(sh2->dev[dd_idx].page,
2964                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
2965                                           &submit);
2966
2967                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2968                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2969                         for (j = 0; j < conf->raid_disks; j++)
2970                                 if (j != sh2->pd_idx &&
2971                                     (!r6s || j != sh2->qd_idx) &&
2972                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
2973                                         break;
2974                         if (j == conf->raid_disks) {
2975                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2976                                 set_bit(STRIPE_HANDLE, &sh2->state);
2977                         }
2978                         release_stripe(sh2);
2979
2980                 }
2981         /* done submitting copies, wait for them to complete */
2982         if (tx) {
2983                 async_tx_ack(tx);
2984                 dma_wait_for_async_tx(tx);
2985         }
2986 }
2987
2988
2989 /*
2990  * handle_stripe - do things to a stripe.
2991  *
2992  * We lock the stripe and then examine the state of various bits
2993  * to see what needs to be done.
2994  * Possible results:
2995  *    return some read request which now have data
2996  *    return some write requests which are safely on disc
2997  *    schedule a read on some buffers
2998  *    schedule a write of some buffers
2999  *    return confirmation of parity correctness
3000  *
3001  * buffers are taken off read_list or write_list, and bh_cache buffers
3002  * get BH_Lock set before the stripe lock is released.
3003  *
3004  */
3005
3006 static void handle_stripe5(struct stripe_head *sh)
3007 {
3008         raid5_conf_t *conf = sh->raid_conf;
3009         int disks = sh->disks, i;
3010         struct bio *return_bi = NULL;
3011         struct stripe_head_state s;
3012         struct r5dev *dev;
3013         mdk_rdev_t *blocked_rdev = NULL;
3014         int prexor;
3015         int dec_preread_active = 0;
3016
3017         memset(&s, 0, sizeof(s));
3018         pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3019                  "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3020                  atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3021                  sh->reconstruct_state);
3022
3023         spin_lock(&sh->lock);
3024         clear_bit(STRIPE_HANDLE, &sh->state);
3025         clear_bit(STRIPE_DELAYED, &sh->state);
3026
3027         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3028         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3029         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3030
3031         /* Now to look around and see what can be done */
3032         rcu_read_lock();
3033         for (i=disks; i--; ) {
3034                 mdk_rdev_t *rdev;
3035
3036                 dev = &sh->dev[i];
3037
3038                 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3039                         "written %p\n", i, dev->flags, dev->toread, dev->read,
3040                         dev->towrite, dev->written);
3041
3042                 /* maybe we can request a biofill operation
3043                  *
3044                  * new wantfill requests are only permitted while
3045                  * ops_complete_biofill is guaranteed to be inactive
3046                  */
3047                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3048                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3049                         set_bit(R5_Wantfill, &dev->flags);
3050
3051                 /* now count some things */
3052                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3053                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3054                 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3055
3056                 if (test_bit(R5_Wantfill, &dev->flags))
3057                         s.to_fill++;
3058                 else if (dev->toread)
3059                         s.to_read++;
3060                 if (dev->towrite) {
3061                         s.to_write++;
3062                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3063                                 s.non_overwrite++;
3064                 }
3065                 if (dev->written)
3066                         s.written++;
3067                 rdev = rcu_dereference(conf->disks[i].rdev);
3068                 if (blocked_rdev == NULL &&
3069                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3070                         blocked_rdev = rdev;
3071                         atomic_inc(&rdev->nr_pending);
3072                 }
3073                 clear_bit(R5_Insync, &dev->flags);
3074                 if (!rdev)
3075                         /* Not in-sync */;
3076                 else if (test_bit(In_sync, &rdev->flags))
3077                         set_bit(R5_Insync, &dev->flags);
3078                 else {
3079                         /* could be in-sync depending on recovery/reshape status */
3080                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3081                                 set_bit(R5_Insync, &dev->flags);
3082                 }
3083                 if (!test_bit(R5_Insync, &dev->flags)) {
3084                         /* The ReadError flag will just be confusing now */
3085                         clear_bit(R5_ReadError, &dev->flags);
3086                         clear_bit(R5_ReWrite, &dev->flags);
3087                 }
3088                 if (test_bit(R5_ReadError, &dev->flags))
3089                         clear_bit(R5_Insync, &dev->flags);
3090                 if (!test_bit(R5_Insync, &dev->flags)) {
3091                         s.failed++;
3092                         s.failed_num = i;
3093                 }
3094         }
3095         rcu_read_unlock();
3096
3097         if (unlikely(blocked_rdev)) {
3098                 if (s.syncing || s.expanding || s.expanded ||
3099                     s.to_write || s.written) {
3100                         set_bit(STRIPE_HANDLE, &sh->state);
3101                         goto unlock;
3102                 }
3103                 /* There is nothing for the blocked_rdev to block */
3104                 rdev_dec_pending(blocked_rdev, conf->mddev);
3105                 blocked_rdev = NULL;
3106         }
3107
3108         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3109                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3110                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3111         }
3112
3113         pr_debug("locked=%d uptodate=%d to_read=%d"
3114                 " to_write=%d failed=%d failed_num=%d\n",
3115                 s.locked, s.uptodate, s.to_read, s.to_write,
3116                 s.failed, s.failed_num);
3117         /* check if the array has lost two devices and, if so, some requests might
3118          * need to be failed
3119          */
3120         if (s.failed > 1 && s.to_read+s.to_write+s.written)
3121                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3122         if (s.failed > 1 && s.syncing) {
3123                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3124                 clear_bit(STRIPE_SYNCING, &sh->state);
3125                 s.syncing = 0;
3126         }
3127
3128         /* might be able to return some write requests if the parity block
3129          * is safe, or on a failed drive
3130          */
3131         dev = &sh->dev[sh->pd_idx];
3132         if ( s.written &&
3133              ((test_bit(R5_Insync, &dev->flags) &&
3134                !test_bit(R5_LOCKED, &dev->flags) &&
3135                test_bit(R5_UPTODATE, &dev->flags)) ||
3136                (s.failed == 1 && s.failed_num == sh->pd_idx)))
3137                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3138
3139         /* Now we might consider reading some blocks, either to check/generate
3140          * parity, or to satisfy requests
3141          * or to load a block that is being partially written.
3142          */
3143         if (s.to_read || s.non_overwrite ||
3144             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3145                 handle_stripe_fill5(sh, &s, disks);
3146
3147         /* Now we check to see if any write operations have recently
3148          * completed
3149          */
3150         prexor = 0;
3151         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3152                 prexor = 1;
3153         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3154             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3155                 sh->reconstruct_state = reconstruct_state_idle;
3156
3157                 /* All the 'written' buffers and the parity block are ready to
3158                  * be written back to disk
3159                  */
3160                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3161                 for (i = disks; i--; ) {
3162                         dev = &sh->dev[i];
3163                         if (test_bit(R5_LOCKED, &dev->flags) &&
3164                                 (i == sh->pd_idx || dev->written)) {
3165                                 pr_debug("Writing block %d\n", i);
3166                                 set_bit(R5_Wantwrite, &dev->flags);
3167                                 if (prexor)
3168                                         continue;
3169                                 if (!test_bit(R5_Insync, &dev->flags) ||
3170                                     (i == sh->pd_idx && s.failed == 0))
3171                                         set_bit(STRIPE_INSYNC, &sh->state);
3172                         }
3173                 }
3174                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3175                         dec_preread_active = 1;
3176         }
3177
3178         /* Now to consider new write requests and what else, if anything
3179          * should be read.  We do not handle new writes when:
3180          * 1/ A 'write' operation (copy+xor) is already in flight.
3181          * 2/ A 'check' operation is in flight, as it may clobber the parity
3182          *    block.
3183          */
3184         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3185                 handle_stripe_dirtying5(conf, sh, &s, disks);
3186
3187         /* maybe we need to check and possibly fix the parity for this stripe
3188          * Any reads will already have been scheduled, so we just see if enough
3189          * data is available.  The parity check is held off while parity
3190          * dependent operations are in flight.
3191          */
3192         if (sh->check_state ||
3193             (s.syncing && s.locked == 0 &&
3194              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3195              !test_bit(STRIPE_INSYNC, &sh->state)))
3196                 handle_parity_checks5(conf, sh, &s, disks);
3197
3198         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3199                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3200                 clear_bit(STRIPE_SYNCING, &sh->state);
3201         }
3202
3203         /* If the failed drive is just a ReadError, then we might need to progress
3204          * the repair/check process
3205          */
3206         if (s.failed == 1 && !conf->mddev->ro &&
3207             test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3208             && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3209             && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3210                 ) {
3211                 dev = &sh->dev[s.failed_num];
3212                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3213                         set_bit(R5_Wantwrite, &dev->flags);
3214                         set_bit(R5_ReWrite, &dev->flags);
3215                         set_bit(R5_LOCKED, &dev->flags);
3216                         s.locked++;
3217                 } else {
3218                         /* let's read it back */
3219                         set_bit(R5_Wantread, &dev->flags);
3220                         set_bit(R5_LOCKED, &dev->flags);
3221                         s.locked++;
3222                 }
3223         }
3224
3225         /* Finish reconstruct operations initiated by the expansion process */
3226         if (sh->reconstruct_state == reconstruct_state_result) {
3227                 struct stripe_head *sh2
3228                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3229                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3230                         /* sh cannot be written until sh2 has been read.
3231                          * so arrange for sh to be delayed a little
3232                          */
3233                         set_bit(STRIPE_DELAYED, &sh->state);
3234                         set_bit(STRIPE_HANDLE, &sh->state);
3235                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3236                                               &sh2->state))
3237                                 atomic_inc(&conf->preread_active_stripes);
3238                         release_stripe(sh2);
3239                         goto unlock;
3240                 }
3241                 if (sh2)
3242                         release_stripe(sh2);
3243
3244                 sh->reconstruct_state = reconstruct_state_idle;
3245                 clear_bit(STRIPE_EXPANDING, &sh->state);
3246                 for (i = conf->raid_disks; i--; ) {
3247                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3248                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3249                         s.locked++;
3250                 }
3251         }
3252
3253         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3254             !sh->reconstruct_state) {
3255                 /* Need to write out all blocks after computing parity */
3256                 sh->disks = conf->raid_disks;
3257                 stripe_set_idx(sh->sector, conf, 0, sh);
3258                 schedule_reconstruction(sh, &s, 1, 1);
3259         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3260                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3261                 atomic_dec(&conf->reshape_stripes);
3262                 wake_up(&conf->wait_for_overlap);
3263                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264         }
3265
3266         if (s.expanding && s.locked == 0 &&
3267             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3268                 handle_stripe_expansion(conf, sh, NULL);
3269
3270  unlock:
3271         spin_unlock(&sh->lock);
3272
3273         /* wait for this device to become unblocked */
3274         if (unlikely(blocked_rdev))
3275                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3276
3277         if (s.ops_request)
3278                 raid_run_ops(sh, s.ops_request);
3279
3280         ops_run_io(sh, &s);
3281
3282         if (dec_preread_active) {
3283                 /* We delay this until after ops_run_io so that if make_request
3284                  * is waiting on a barrier, it won't continue until the writes
3285                  * have actually been submitted.
3286                  */
3287                 atomic_dec(&conf->preread_active_stripes);
3288                 if (atomic_read(&conf->preread_active_stripes) <
3289                     IO_THRESHOLD)
3290                         md_wakeup_thread(conf->mddev->thread);
3291         }
3292         return_io(return_bi);
3293 }
3294
3295 static void handle_stripe6(struct stripe_head *sh)
3296 {
3297         raid5_conf_t *conf = sh->raid_conf;
3298         int disks = sh->disks;
3299         struct bio *return_bi = NULL;
3300         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3301         struct stripe_head_state s;
3302         struct r6_state r6s;
3303         struct r5dev *dev, *pdev, *qdev;
3304         mdk_rdev_t *blocked_rdev = NULL;
3305         int dec_preread_active = 0;
3306
3307         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3308                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3309                (unsigned long long)sh->sector, sh->state,
3310                atomic_read(&sh->count), pd_idx, qd_idx,
3311                sh->check_state, sh->reconstruct_state);
3312         memset(&s, 0, sizeof(s));
3313
3314         spin_lock(&sh->lock);
3315         clear_bit(STRIPE_HANDLE, &sh->state);
3316         clear_bit(STRIPE_DELAYED, &sh->state);
3317
3318         s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3319         s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3320         s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3321         /* Now to look around and see what can be done */
3322
3323         rcu_read_lock();
3324         for (i=disks; i--; ) {
3325                 mdk_rdev_t *rdev;
3326                 dev = &sh->dev[i];
3327
3328                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3329                         i, dev->flags, dev->toread, dev->towrite, dev->written);
3330                 /* maybe we can reply to a read
3331                  *
3332                  * new wantfill requests are only permitted while
3333                  * ops_complete_biofill is guaranteed to be inactive
3334                  */
3335                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3336                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3337                         set_bit(R5_Wantfill, &dev->flags);
3338
3339                 /* now count some things */
3340                 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3341                 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3342                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3343                         s.compute++;
3344                         BUG_ON(s.compute > 2);
3345                 }
3346
3347                 if (test_bit(R5_Wantfill, &dev->flags)) {
3348                         s.to_fill++;
3349                 } else if (dev->toread)
3350                         s.to_read++;
3351                 if (dev->towrite) {
3352                         s.to_write++;
3353                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3354                                 s.non_overwrite++;
3355                 }
3356                 if (dev->written)
3357                         s.written++;
3358                 rdev = rcu_dereference(conf->disks[i].rdev);
3359                 if (blocked_rdev == NULL &&
3360                     rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3361                         blocked_rdev = rdev;
3362                         atomic_inc(&rdev->nr_pending);
3363                 }
3364                 clear_bit(R5_Insync, &dev->flags);
3365                 if (!rdev)
3366                         /* Not in-sync */;
3367                 else if (test_bit(In_sync, &rdev->flags))
3368                         set_bit(R5_Insync, &dev->flags);
3369                 else {
3370                         /* in sync if before recovery_offset */
3371                         if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3372                                 set_bit(R5_Insync, &dev->flags);
3373                 }
3374                 if (!test_bit(R5_Insync, &dev->flags)) {
3375                         /* The ReadError flag will just be confusing now */
3376                         clear_bit(R5_ReadError, &dev->flags);
3377                         clear_bit(R5_ReWrite, &dev->flags);
3378                 }
3379                 if (test_bit(R5_ReadError, &dev->flags))
3380                         clear_bit(R5_Insync, &dev->flags);
3381                 if (!test_bit(R5_Insync, &dev->flags)) {
3382                         if (s.failed < 2)
3383                                 r6s.failed_num[s.failed] = i;
3384                         s.failed++;
3385                 }
3386         }
3387         rcu_read_unlock();
3388
3389         if (unlikely(blocked_rdev)) {
3390                 if (s.syncing || s.expanding || s.expanded ||
3391                     s.to_write || s.written) {
3392                         set_bit(STRIPE_HANDLE, &sh->state);
3393                         goto unlock;
3394                 }
3395                 /* There is nothing for the blocked_rdev to block */
3396                 rdev_dec_pending(blocked_rdev, conf->mddev);
3397                 blocked_rdev = NULL;
3398         }
3399
3400         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3401                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3402                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3403         }
3404
3405         pr_debug("locked=%d uptodate=%d to_read=%d"
3406                " to_write=%d failed=%d failed_num=%d,%d\n",
3407                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3408                r6s.failed_num[0], r6s.failed_num[1]);
3409         /* check if the array has lost >2 devices and, if so, some requests
3410          * might need to be failed
3411          */
3412         if (s.failed > 2 && s.to_read+s.to_write+s.written)
3413                 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3414         if (s.failed > 2 && s.syncing) {
3415                 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3416                 clear_bit(STRIPE_SYNCING, &sh->state);
3417                 s.syncing = 0;
3418         }
3419
3420         /*
3421          * might be able to return some write requests if the parity blocks
3422          * are safe, or on a failed drive
3423          */
3424         pdev = &sh->dev[pd_idx];
3425         r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3426                 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3427         qdev = &sh->dev[qd_idx];
3428         r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3429                 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3430
3431         if ( s.written &&
3432              ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3433                              && !test_bit(R5_LOCKED, &pdev->flags)
3434                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3435              ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3436                              && !test_bit(R5_LOCKED, &qdev->flags)
3437                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3438                 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3439
3440         /* Now we might consider reading some blocks, either to check/generate
3441          * parity, or to satisfy requests
3442          * or to load a block that is being partially written.
3443          */
3444         if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3445             (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3446                 handle_stripe_fill6(sh, &s, &r6s, disks);
3447
3448         /* Now we check to see if any write operations have recently
3449          * completed
3450          */
3451         if (sh->reconstruct_state == reconstruct_state_drain_result) {
3452
3453                 sh->reconstruct_state = reconstruct_state_idle;
3454                 /* All the 'written' buffers and the parity blocks are ready to
3455                  * be written back to disk
3456                  */
3457                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3458                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3459                 for (i = disks; i--; ) {
3460                         dev = &sh->dev[i];
3461                         if (test_bit(R5_LOCKED, &dev->flags) &&
3462                             (i == sh->pd_idx || i == qd_idx ||
3463                              dev->written)) {
3464                                 pr_debug("Writing block %d\n", i);
3465                                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3466                                 set_bit(R5_Wantwrite, &dev->flags);
3467                                 if (!test_bit(R5_Insync, &dev->flags) ||
3468                                     ((i == sh->pd_idx || i == qd_idx) &&
3469                                       s.failed == 0))
3470                                         set_bit(STRIPE_INSYNC, &sh->state);
3471                         }
3472                 }
3473                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3474                         dec_preread_active = 1;
3475         }
3476
3477         /* Now to consider new write requests and what else, if anything
3478          * should be read.  We do not handle new writes when:
3479          * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3480          * 2/ A 'check' operation is in flight, as it may clobber the parity
3481          *    block.
3482          */
3483         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3484                 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3485
3486         /* maybe we need to check and possibly fix the parity for this stripe
3487          * Any reads will already have been scheduled, so we just see if enough
3488          * data is available.  The parity check is held off while parity
3489          * dependent operations are in flight.
3490          */
3491         if (sh->check_state ||
3492             (s.syncing && s.locked == 0 &&
3493              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3494              !test_bit(STRIPE_INSYNC, &sh->state)))
3495                 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3496
3497         if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3498                 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3499                 clear_bit(STRIPE_SYNCING, &sh->state);
3500         }
3501
3502         /* If the failed drives are just a ReadError, then we might need
3503          * to progress the repair/check process
3504          */
3505         if (s.failed <= 2 && !conf->mddev->ro)
3506                 for (i = 0; i < s.failed; i++) {
3507                         dev = &sh->dev[r6s.failed_num[i]];
3508                         if (test_bit(R5_ReadError, &dev->flags)
3509                             && !test_bit(R5_LOCKED, &dev->flags)
3510                             && test_bit(R5_UPTODATE, &dev->flags)
3511                                 ) {
3512                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3513                                         set_bit(R5_Wantwrite, &dev->flags);
3514                                         set_bit(R5_ReWrite, &dev->flags);
3515                                         set_bit(R5_LOCKED, &dev->flags);
3516                                         s.locked++;
3517                                 } else {
3518                                         /* let's read it back */
3519                                         set_bit(R5_Wantread, &dev->flags);
3520                                         set_bit(R5_LOCKED, &dev->flags);
3521                                         s.locked++;
3522                                 }
3523                         }
3524                 }
3525
3526         /* Finish reconstruct operations initiated by the expansion process */
3527         if (sh->reconstruct_state == reconstruct_state_result) {
3528                 sh->reconstruct_state = reconstruct_state_idle;
3529                 clear_bit(STRIPE_EXPANDING, &sh->state);
3530                 for (i = conf->raid_disks; i--; ) {
3531                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3532                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3533                         s.locked++;
3534                 }
3535         }
3536
3537         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3538             !sh->reconstruct_state) {
3539                 struct stripe_head *sh2
3540                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3541                 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3542                         /* sh cannot be written until sh2 has been read.
3543                          * so arrange for sh to be delayed a little
3544                          */
3545                         set_bit(STRIPE_DELAYED, &sh->state);
3546                         set_bit(STRIPE_HANDLE, &sh->state);
3547                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3548                                               &sh2->state))
3549                                 atomic_inc(&conf->preread_active_stripes);
3550                         release_stripe(sh2);
3551                         goto unlock;
3552                 }
3553                 if (sh2)
3554                         release_stripe(sh2);
3555
3556                 /* Need to write out all blocks after computing P&Q */
3557                 sh->disks = conf->raid_disks;
3558                 stripe_set_idx(sh->sector, conf, 0, sh);
3559                 schedule_reconstruction(sh, &s, 1, 1);
3560         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3561                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3562                 atomic_dec(&conf->reshape_stripes);
3563                 wake_up(&conf->wait_for_overlap);
3564                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3565         }
3566
3567         if (s.expanding && s.locked == 0 &&
3568             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3569                 handle_stripe_expansion(conf, sh, &r6s);
3570
3571  unlock:
3572         spin_unlock(&sh->lock);
3573
3574         /* wait for this device to become unblocked */
3575         if (unlikely(blocked_rdev))
3576                 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3577
3578         if (s.ops_request)
3579                 raid_run_ops(sh, s.ops_request);
3580
3581         ops_run_io(sh, &s);
3582
3583
3584         if (dec_preread_active) {
3585                 /* We delay this until after ops_run_io so that if make_request
3586                  * is waiting on a barrier, it won't continue until the writes
3587                  * have actually been submitted.
3588                  */
3589                 atomic_dec(&conf->preread_active_stripes);
3590                 if (atomic_read(&conf->preread_active_stripes) <
3591                     IO_THRESHOLD)
3592                         md_wakeup_thread(conf->mddev->thread);
3593         }
3594
3595         return_io(return_bi);
3596 }
3597
3598 static void handle_stripe(struct stripe_head *sh)
3599 {
3600         if (sh->raid_conf->level == 6)
3601                 handle_stripe6(sh);
3602         else
3603                 handle_stripe5(sh);
3604 }
3605
3606 static void raid5_activate_delayed(raid5_conf_t *conf)
3607 {
3608         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3609                 while (!list_empty(&conf->delayed_list)) {
3610                         struct list_head *l = conf->delayed_list.next;
3611                         struct stripe_head *sh;
3612                         sh = list_entry(l, struct stripe_head, lru);
3613                         list_del_init(l);
3614                         clear_bit(STRIPE_DELAYED, &sh->state);
3615                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3616                                 atomic_inc(&conf->preread_active_stripes);
3617                         list_add_tail(&sh->lru, &conf->hold_list);
3618                 }
3619         } else
3620                 plugger_set_plug(&conf->plug);
3621 }
3622
3623 static void activate_bit_delay(raid5_conf_t *conf)
3624 {
3625         /* device_lock is held */
3626         struct list_head head;
3627         list_add(&head, &conf->bitmap_list);
3628         list_del_init(&conf->bitmap_list);
3629         while (!list_empty(&head)) {
3630                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3631                 list_del_init(&sh->lru);
3632                 atomic_inc(&sh->count);
3633                 __release_stripe(conf, sh);
3634         }
3635 }
3636
3637 static void unplug_slaves(mddev_t *mddev)
3638 {
3639         raid5_conf_t *conf = mddev->private;
3640         int i;
3641         int devs = max(conf->raid_disks, conf->previous_raid_disks);
3642
3643         rcu_read_lock();
3644         for (i = 0; i < devs; i++) {
3645                 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3646                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3647                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3648
3649                         atomic_inc(&rdev->nr_pending);
3650                         rcu_read_unlock();
3651
3652                         blk_unplug(r_queue);
3653
3654                         rdev_dec_pending(rdev, mddev);
3655                         rcu_read_lock();
3656                 }
3657         }
3658         rcu_read_unlock();
3659 }
3660
3661 void md_raid5_unplug_device(raid5_conf_t *conf)
3662 {
3663         unsigned long flags;
3664
3665         spin_lock_irqsave(&conf->device_lock, flags);
3666
3667         if (plugger_remove_plug(&conf->plug)) {
3668                 conf->seq_flush++;
3669                 raid5_activate_delayed(conf);
3670         }
3671         md_wakeup_thread(conf->mddev->thread);
3672
3673         spin_unlock_irqrestore(&conf->device_lock, flags);
3674
3675         unplug_slaves(conf->mddev);
3676 }
3677 EXPORT_SYMBOL_GPL(md_raid5_unplug_device);
3678
3679 static void raid5_unplug(struct plug_handle *plug)
3680 {
3681         raid5_conf_t *conf = container_of(plug, raid5_conf_t, plug);
3682         md_raid5_unplug_device(conf);
3683 }
3684
3685 static void raid5_unplug_queue(struct request_queue *q)
3686 {
3687         mddev_t *mddev = q->queuedata;
3688         md_raid5_unplug_device(mddev->private);
3689 }
3690
3691 int md_raid5_congested(mddev_t *mddev, int bits)
3692 {
3693         raid5_conf_t *conf = mddev->private;
3694
3695         /* No difference between reads and writes.  Just check
3696          * how busy the stripe_cache is
3697          */
3698
3699         if (conf->inactive_blocked)
3700                 return 1;
3701         if (conf->quiesce)
3702                 return 1;
3703         if (list_empty_careful(&conf->inactive_list))
3704                 return 1;
3705
3706         return 0;
3707 }
3708 EXPORT_SYMBOL_GPL(md_raid5_congested);
3709
3710 static int raid5_congested(void *data, int bits)
3711 {
3712         mddev_t *mddev = data;
3713
3714         return mddev_congested(mddev, bits) ||
3715                 md_raid5_congested(mddev, bits);
3716 }
3717
3718 /* We want read requests to align with chunks where possible,
3719  * but write requests don't need to.
3720  */
3721 static int raid5_mergeable_bvec(struct request_queue *q,
3722                                 struct bvec_merge_data *bvm,
3723                                 struct bio_vec *biovec)
3724 {
3725         mddev_t *mddev = q->queuedata;
3726         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3727         int max;
3728         unsigned int chunk_sectors = mddev->chunk_sectors;
3729         unsigned int bio_sectors = bvm->bi_size >> 9;
3730
3731         if ((bvm->bi_rw & 1) == WRITE)
3732                 return biovec->bv_len; /* always allow writes to be mergeable */
3733
3734         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3735                 chunk_sectors = mddev->new_chunk_sectors;
3736         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3737         if (max < 0) max = 0;
3738         if (max <= biovec->bv_len && bio_sectors == 0)
3739                 return biovec->bv_len;
3740         else
3741                 return max;
3742 }
3743
3744
3745 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3746 {
3747         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3748         unsigned int chunk_sectors = mddev->chunk_sectors;
3749         unsigned int bio_sectors = bio->bi_size >> 9;
3750
3751         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3752                 chunk_sectors = mddev->new_chunk_sectors;
3753         return  chunk_sectors >=
3754                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3755 }
3756
3757 /*
3758  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3759  *  later sampled by raid5d.
3760  */
3761 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3762 {
3763         unsigned long flags;
3764
3765         spin_lock_irqsave(&conf->device_lock, flags);
3766
3767         bi->bi_next = conf->retry_read_aligned_list;
3768         conf->retry_read_aligned_list = bi;
3769
3770         spin_unlock_irqrestore(&conf->device_lock, flags);
3771         md_wakeup_thread(conf->mddev->thread);
3772 }
3773
3774
3775 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3776 {
3777         struct bio *bi;
3778
3779         bi = conf->retry_read_aligned;
3780         if (bi) {
3781                 conf->retry_read_aligned = NULL;
3782                 return bi;
3783         }
3784         bi = conf->retry_read_aligned_list;
3785         if(bi) {
3786                 conf->retry_read_aligned_list = bi->bi_next;
3787                 bi->bi_next = NULL;
3788                 /*
3789                  * this sets the active strip count to 1 and the processed
3790                  * strip count to zero (upper 8 bits)
3791                  */
3792                 bi->bi_phys_segments = 1; /* biased count of active stripes */
3793         }
3794
3795         return bi;
3796 }
3797
3798
3799 /*
3800  *  The "raid5_align_endio" should check if the read succeeded and if it
3801  *  did, call bio_endio on the original bio (having bio_put the new bio
3802  *  first).
3803  *  If the read failed..
3804  */
3805 static void raid5_align_endio(struct bio *bi, int error)
3806 {
3807         struct bio* raid_bi  = bi->bi_private;
3808         mddev_t *mddev;
3809         raid5_conf_t *conf;
3810         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3811         mdk_rdev_t *rdev;
3812
3813         bio_put(bi);
3814
3815         rdev = (void*)raid_bi->bi_next;
3816         raid_bi->bi_next = NULL;
3817         mddev = rdev->mddev;
3818         conf = mddev->private;
3819
3820         rdev_dec_pending(rdev, conf->mddev);
3821
3822         if (!error && uptodate) {
3823                 bio_endio(raid_bi, 0);
3824                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3825                         wake_up(&conf->wait_for_stripe);
3826                 return;
3827         }
3828
3829
3830         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3831
3832         add_bio_to_retry(raid_bi, conf);
3833 }
3834
3835 static int bio_fits_rdev(struct bio *bi)
3836 {
3837         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3838
3839         if ((bi->bi_size>>9) > queue_max_sectors(q))
3840                 return 0;
3841         blk_recount_segments(q, bi);
3842         if (bi->bi_phys_segments > queue_max_segments(q))
3843                 return 0;
3844
3845         if (q->merge_bvec_fn)
3846                 /* it's too hard to apply the merge_bvec_fn at this stage,
3847                  * just just give up
3848                  */
3849                 return 0;
3850
3851         return 1;
3852 }
3853
3854
3855 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3856 {
3857         raid5_conf_t *conf = mddev->private;
3858         int dd_idx;
3859         struct bio* align_bi;
3860         mdk_rdev_t *rdev;
3861
3862         if (!in_chunk_boundary(mddev, raid_bio)) {
3863                 pr_debug("chunk_aligned_read : non aligned\n");
3864                 return 0;
3865         }
3866         /*
3867          * use bio_clone to make a copy of the bio
3868          */
3869         align_bi = bio_clone(raid_bio, GFP_NOIO);
3870         if (!align_bi)
3871                 return 0;
3872         /*
3873          *   set bi_end_io to a new function, and set bi_private to the
3874          *     original bio.
3875          */
3876         align_bi->bi_end_io  = raid5_align_endio;
3877         align_bi->bi_private = raid_bio;
3878         /*
3879          *      compute position
3880          */
3881         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3882                                                     0,
3883                                                     &dd_idx, NULL);
3884
3885         rcu_read_lock();
3886         rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3887         if (rdev && test_bit(In_sync, &rdev->flags)) {
3888                 atomic_inc(&rdev->nr_pending);
3889                 rcu_read_unlock();
3890                 raid_bio->bi_next = (void*)rdev;
3891                 align_bi->bi_bdev =  rdev->bdev;
3892                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3893                 align_bi->bi_sector += rdev->data_offset;
3894
3895                 if (!bio_fits_rdev(align_bi)) {
3896                         /* too big in some way */
3897                         bio_put(align_bi);
3898                         rdev_dec_pending(rdev, mddev);
3899                         return 0;
3900                 }
3901
3902                 spin_lock_irq(&conf->device_lock);
3903                 wait_event_lock_irq(conf->wait_for_stripe,
3904                                     conf->quiesce == 0,
3905                                     conf->device_lock, /* nothing */);
3906                 atomic_inc(&conf->active_aligned_reads);
3907                 spin_unlock_irq(&conf->device_lock);
3908
3909                 generic_make_request(align_bi);
3910                 return 1;
3911         } else {
3912                 rcu_read_unlock();
3913                 bio_put(align_bi);
3914                 return 0;
3915         }
3916 }
3917
3918 /* __get_priority_stripe - get the next stripe to process
3919  *
3920  * Full stripe writes are allowed to pass preread active stripes up until
3921  * the bypass_threshold is exceeded.  In general the bypass_count
3922  * increments when the handle_list is handled before the hold_list; however, it
3923  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3924  * stripe with in flight i/o.  The bypass_count will be reset when the
3925  * head of the hold_list has changed, i.e. the head was promoted to the
3926  * handle_list.
3927  */
3928 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3929 {
3930         struct stripe_head *sh;
3931
3932         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3933                   __func__,
3934                   list_empty(&conf->handle_list) ? "empty" : "busy",
3935                   list_empty(&conf->hold_list) ? "empty" : "busy",
3936                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
3937
3938         if (!list_empty(&conf->handle_list)) {
3939                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3940
3941                 if (list_empty(&conf->hold_list))
3942                         conf->bypass_count = 0;
3943                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3944                         if (conf->hold_list.next == conf->last_hold)
3945                                 conf->bypass_count++;
3946                         else {
3947                                 conf->last_hold = conf->hold_list.next;
3948                                 conf->bypass_count -= conf->bypass_threshold;
3949                                 if (conf->bypass_count < 0)
3950                                         conf->bypass_count = 0;
3951                         }
3952                 }
3953         } else if (!list_empty(&conf->hold_list) &&
3954                    ((conf->bypass_threshold &&
3955                      conf->bypass_count > conf->bypass_threshold) ||
3956                     atomic_read(&conf->pending_full_writes) == 0)) {
3957                 sh = list_entry(conf->hold_list.next,
3958                                 typeof(*sh), lru);
3959                 conf->bypass_count -= conf->bypass_threshold;
3960                 if (conf->bypass_count < 0)
3961                         conf->bypass_count = 0;
3962         } else
3963                 return NULL;
3964
3965         list_del_init(&sh->lru);
3966         atomic_inc(&sh->count);
3967         BUG_ON(atomic_read(&sh->count) != 1);
3968         return sh;
3969 }
3970
3971 static int make_request(mddev_t *mddev, struct bio * bi)
3972 {
3973         raid5_conf_t *conf = mddev->private;
3974         int dd_idx;
3975         sector_t new_sector;
3976         sector_t logical_sector, last_sector;
3977         struct stripe_head *sh;
3978         const int rw = bio_data_dir(bi);
3979         int remaining;
3980
3981         if (unlikely(bi->bi_rw & REQ_HARDBARRIER)) {
3982                 /* Drain all pending writes.  We only really need
3983                  * to ensure they have been submitted, but this is
3984                  * easier.
3985                  */
3986                 mddev->pers->quiesce(mddev, 1);
3987                 mddev->pers->quiesce(mddev, 0);
3988                 md_barrier_request(mddev, bi);
3989                 return 0;
3990         }
3991
3992         md_write_start(mddev, bi);
3993
3994         if (rw == READ &&
3995              mddev->reshape_position == MaxSector &&
3996              chunk_aligned_read(mddev,bi))
3997                 return 0;
3998
3999         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4000         last_sector = bi->bi_sector + (bi->bi_size>>9);
4001         bi->bi_next = NULL;
4002         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4003
4004         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4005                 DEFINE_WAIT(w);
4006                 int disks, data_disks;
4007                 int previous;
4008
4009         retry:
4010                 previous = 0;
4011                 disks = conf->raid_disks;
4012                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4013                 if (unlikely(conf->reshape_progress != MaxSector)) {
4014                         /* spinlock is needed as reshape_progress may be
4015                          * 64bit on a 32bit platform, and so it might be
4016                          * possible to see a half-updated value
4017                          * Ofcourse reshape_progress could change after
4018                          * the lock is dropped, so once we get a reference
4019                          * to the stripe that we think it is, we will have
4020                          * to check again.
4021                          */
4022                         spin_lock_irq(&conf->device_lock);
4023                         if (mddev->delta_disks < 0
4024                             ? logical_sector < conf->reshape_progress
4025                             : logical_sector >= conf->reshape_progress) {
4026                                 disks = conf->previous_raid_disks;
4027                                 previous = 1;
4028                         } else {
4029                                 if (mddev->delta_disks < 0
4030                                     ? logical_sector < conf->reshape_safe
4031                                     : logical_sector >= conf->reshape_safe) {
4032                                         spin_unlock_irq(&conf->device_lock);
4033                                         schedule();
4034                                         goto retry;
4035                                 }
4036                         }
4037                         spin_unlock_irq(&conf->device_lock);
4038                 }
4039                 data_disks = disks - conf->max_degraded;
4040
4041                 new_sector = raid5_compute_sector(conf, logical_sector,
4042                                                   previous,
4043                                                   &dd_idx, NULL);
4044                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4045                         (unsigned long long)new_sector, 
4046                         (unsigned long long)logical_sector);
4047
4048                 sh = get_active_stripe(conf, new_sector, previous,
4049                                        (bi->bi_rw&RWA_MASK), 0);
4050                 if (sh) {
4051                         if (unlikely(previous)) {
4052                                 /* expansion might have moved on while waiting for a
4053                                  * stripe, so we must do the range check again.
4054                                  * Expansion could still move past after this
4055                                  * test, but as we are holding a reference to
4056                                  * 'sh', we know that if that happens,
4057                                  *  STRIPE_EXPANDING will get set and the expansion
4058                                  * won't proceed until we finish with the stripe.
4059                                  */
4060                                 int must_retry = 0;
4061                                 spin_lock_irq(&conf->device_lock);
4062                                 if (mddev->delta_disks < 0
4063                                     ? logical_sector >= conf->reshape_progress
4064                                     : logical_sector < conf->reshape_progress)
4065                                         /* mismatch, need to try again */
4066                                         must_retry = 1;
4067                                 spin_unlock_irq(&conf->device_lock);
4068                                 if (must_retry) {
4069                                         release_stripe(sh);
4070                                         schedule();
4071                                         goto retry;
4072                                 }
4073                         }
4074
4075                         if (bio_data_dir(bi) == WRITE &&
4076                             logical_sector >= mddev->suspend_lo &&
4077                             logical_sector < mddev->suspend_hi) {
4078                                 release_stripe(sh);
4079                                 /* As the suspend_* range is controlled by
4080                                  * userspace, we want an interruptible
4081                                  * wait.
4082                                  */
4083                                 flush_signals(current);
4084                                 prepare_to_wait(&conf->wait_for_overlap,
4085                                                 &w, TASK_INTERRUPTIBLE);
4086                                 if (logical_sector >= mddev->suspend_lo &&
4087                                     logical_sector < mddev->suspend_hi)
4088                                         schedule();
4089                                 goto retry;
4090                         }
4091
4092                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4093                             !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4094                                 /* Stripe is busy expanding or
4095                                  * add failed due to overlap.  Flush everything
4096                                  * and wait a while
4097                                  */
4098                                 md_raid5_unplug_device(conf);
4099                                 release_stripe(sh);
4100                                 schedule();
4101                                 goto retry;
4102                         }
4103                         finish_wait(&conf->wait_for_overlap, &w);
4104                         set_bit(STRIPE_HANDLE, &sh->state);
4105                         clear_bit(STRIPE_DELAYED, &sh->state);
4106                         if (mddev->barrier && 
4107                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4108                                 atomic_inc(&conf->preread_active_stripes);
4109                         release_stripe(sh);
4110                 } else {
4111                         /* cannot get stripe for read-ahead, just give-up */
4112                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4113                         finish_wait(&conf->wait_for_overlap, &w);
4114                         break;
4115                 }
4116                         
4117         }
4118         spin_lock_irq(&conf->device_lock);
4119         remaining = raid5_dec_bi_phys_segments(bi);
4120         spin_unlock_irq(&conf->device_lock);
4121         if (remaining == 0) {
4122
4123                 if ( rw == WRITE )
4124                         md_write_end(mddev);
4125
4126                 bio_endio(bi, 0);
4127         }
4128
4129         if (mddev->barrier) {
4130                 /* We need to wait for the stripes to all be handled.
4131                  * So: wait for preread_active_stripes to drop to 0.
4132                  */
4133                 wait_event(mddev->thread->wqueue,
4134                            atomic_read(&conf->preread_active_stripes) == 0);
4135         }
4136         return 0;
4137 }
4138
4139 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4140
4141 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4142 {
4143         /* reshaping is quite different to recovery/resync so it is
4144          * handled quite separately ... here.
4145          *
4146          * On each call to sync_request, we gather one chunk worth of
4147          * destination stripes and flag them as expanding.
4148          * Then we find all the source stripes and request reads.
4149          * As the reads complete, handle_stripe will copy the data
4150          * into the destination stripe and release that stripe.
4151          */
4152         raid5_conf_t *conf = mddev->private;
4153         struct stripe_head *sh;
4154         sector_t first_sector, last_sector;
4155         int raid_disks = conf->previous_raid_disks;
4156         int data_disks = raid_disks - conf->max_degraded;
4157         int new_data_disks = conf->raid_disks - conf->max_degraded;
4158         int i;
4159         int dd_idx;
4160         sector_t writepos, readpos, safepos;
4161         sector_t stripe_addr;
4162         int reshape_sectors;
4163         struct list_head stripes;
4164
4165         if (sector_nr == 0) {
4166                 /* If restarting in the middle, skip the initial sectors */
4167                 if (mddev->delta_disks < 0 &&
4168                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4169                         sector_nr = raid5_size(mddev, 0, 0)
4170                                 - conf->reshape_progress;
4171                 } else if (mddev->delta_disks >= 0 &&
4172                            conf->reshape_progress > 0)
4173                         sector_nr = conf->reshape_progress;
4174                 sector_div(sector_nr, new_data_disks);
4175                 if (sector_nr) {
4176                         mddev->curr_resync_completed = sector_nr;
4177                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4178                         *skipped = 1;
4179                         return sector_nr;
4180                 }
4181         }
4182
4183         /* We need to process a full chunk at a time.
4184          * If old and new chunk sizes differ, we need to process the
4185          * largest of these
4186          */
4187         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4188                 reshape_sectors = mddev->new_chunk_sectors;
4189         else
4190                 reshape_sectors = mddev->chunk_sectors;
4191
4192         /* we update the metadata when there is more than 3Meg
4193          * in the block range (that is rather arbitrary, should
4194          * probably be time based) or when the data about to be
4195          * copied would over-write the source of the data at
4196          * the front of the range.
4197          * i.e. one new_stripe along from reshape_progress new_maps
4198          * to after where reshape_safe old_maps to
4199          */
4200         writepos = conf->reshape_progress;
4201         sector_div(writepos, new_data_disks);
4202         readpos = conf->reshape_progress;
4203         sector_div(readpos, data_disks);
4204         safepos = conf->reshape_safe;
4205         sector_div(safepos, data_disks);
4206         if (mddev->delta_disks < 0) {
4207                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4208                 readpos += reshape_sectors;
4209                 safepos += reshape_sectors;
4210         } else {
4211                 writepos += reshape_sectors;
4212                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4213                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4214         }
4215
4216         /* 'writepos' is the most advanced device address we might write.
4217          * 'readpos' is the least advanced device address we might read.
4218          * 'safepos' is the least address recorded in the metadata as having
4219          *     been reshaped.
4220          * If 'readpos' is behind 'writepos', then there is no way that we can
4221          * ensure safety in the face of a crash - that must be done by userspace
4222          * making a backup of the data.  So in that case there is no particular
4223          * rush to update metadata.
4224          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4225          * update the metadata to advance 'safepos' to match 'readpos' so that
4226          * we can be safe in the event of a crash.
4227          * So we insist on updating metadata if safepos is behind writepos and
4228          * readpos is beyond writepos.
4229          * In any case, update the metadata every 10 seconds.
4230          * Maybe that number should be configurable, but I'm not sure it is
4231          * worth it.... maybe it could be a multiple of safemode_delay???
4232          */
4233         if ((mddev->delta_disks < 0
4234              ? (safepos > writepos && readpos < writepos)
4235              : (safepos < writepos && readpos > writepos)) ||
4236             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4237                 /* Cannot proceed until we've updated the superblock... */
4238                 wait_event(conf->wait_for_overlap,
4239                            atomic_read(&conf->reshape_stripes)==0);
4240                 mddev->reshape_position = conf->reshape_progress;
4241                 mddev->curr_resync_completed = mddev->curr_resync;
4242                 conf->reshape_checkpoint = jiffies;
4243                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4244                 md_wakeup_thread(mddev->thread);
4245                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4246                            kthread_should_stop());
4247                 spin_lock_irq(&conf->device_lock);
4248                 conf->reshape_safe = mddev->reshape_position;
4249                 spin_unlock_irq(&conf->device_lock);
4250                 wake_up(&conf->wait_for_overlap);
4251                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4252         }
4253
4254         if (mddev->delta_disks < 0) {
4255                 BUG_ON(conf->reshape_progress == 0);
4256                 stripe_addr = writepos;
4257                 BUG_ON((mddev->dev_sectors &
4258                         ~((sector_t)reshape_sectors - 1))
4259                        - reshape_sectors - stripe_addr
4260                        != sector_nr);
4261         } else {
4262                 BUG_ON(writepos != sector_nr + reshape_sectors);
4263                 stripe_addr = sector_nr;
4264         }
4265         INIT_LIST_HEAD(&stripes);
4266         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4267                 int j;
4268                 int skipped_disk = 0;
4269                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4270                 set_bit(STRIPE_EXPANDING, &sh->state);
4271                 atomic_inc(&conf->reshape_stripes);
4272                 /* If any of this stripe is beyond the end of the old
4273                  * array, then we need to zero those blocks
4274                  */
4275                 for (j=sh->disks; j--;) {
4276                         sector_t s;
4277                         if (j == sh->pd_idx)
4278                                 continue;
4279                         if (conf->level == 6 &&
4280                             j == sh->qd_idx)
4281                                 continue;
4282                         s = compute_blocknr(sh, j, 0);
4283                         if (s < raid5_size(mddev, 0, 0)) {
4284                                 skipped_disk = 1;
4285                                 continue;
4286                         }
4287                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4288                         set_bit(R5_Expanded, &sh->dev[j].flags);
4289                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4290                 }
4291                 if (!skipped_disk) {
4292                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4293                         set_bit(STRIPE_HANDLE, &sh->state);
4294                 }
4295                 list_add(&sh->lru, &stripes);
4296         }
4297         spin_lock_irq(&conf->device_lock);
4298         if (mddev->delta_disks < 0)
4299                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4300         else
4301                 conf->reshape_progress += reshape_sectors * new_data_disks;
4302         spin_unlock_irq(&conf->device_lock);
4303         /* Ok, those stripe are ready. We can start scheduling
4304          * reads on the source stripes.
4305          * The source stripes are determined by mapping the first and last
4306          * block on the destination stripes.
4307          */
4308         first_sector =
4309                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4310                                      1, &dd_idx, NULL);
4311         last_sector =
4312                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4313                                             * new_data_disks - 1),
4314                                      1, &dd_idx, NULL);
4315         if (last_sector >= mddev->dev_sectors)
4316                 last_sector = mddev->dev_sectors - 1;
4317         while (first_sector <= last_sector) {
4318                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4319                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4320                 set_bit(STRIPE_HANDLE, &sh->state);
4321                 release_stripe(sh);
4322                 first_sector += STRIPE_SECTORS;
4323         }
4324         /* Now that the sources are clearly marked, we can release
4325          * the destination stripes
4326          */
4327         while (!list_empty(&stripes)) {
4328                 sh = list_entry(stripes.next, struct stripe_head, lru);
4329                 list_del_init(&sh->lru);
4330                 release_stripe(sh);
4331         }
4332         /* If this takes us to the resync_max point where we have to pause,
4333          * then we need to write out the superblock.
4334          */
4335         sector_nr += reshape_sectors;
4336         if ((sector_nr - mddev->curr_resync_completed) * 2
4337             >= mddev->resync_max - mddev->curr_resync_completed) {
4338                 /* Cannot proceed until we've updated the superblock... */
4339                 wait_event(conf->wait_for_overlap,
4340                            atomic_read(&conf->reshape_stripes) == 0);
4341                 mddev->reshape_position = conf->reshape_progress;
4342                 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4343                 conf->reshape_checkpoint = jiffies;
4344                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4345                 md_wakeup_thread(mddev->thread);
4346                 wait_event(mddev->sb_wait,
4347                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4348                            || kthread_should_stop());
4349                 spin_lock_irq(&conf->device_lock);
4350                 conf->reshape_safe = mddev->reshape_position;
4351                 spin_unlock_irq(&conf->device_lock);
4352                 wake_up(&conf->wait_for_overlap);
4353                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4354         }
4355         return reshape_sectors;
4356 }
4357
4358 /* FIXME go_faster isn't used */
4359 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4360 {
4361         raid5_conf_t *conf = mddev->private;
4362         struct stripe_head *sh;
4363         sector_t max_sector = mddev->dev_sectors;
4364         int sync_blocks;
4365         int still_degraded = 0;
4366         int i;
4367
4368         if (sector_nr >= max_sector) {
4369                 /* just being told to finish up .. nothing much to do */
4370                 unplug_slaves(mddev);
4371
4372                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4373                         end_reshape(conf);
4374                         return 0;
4375                 }
4376
4377                 if (mddev->curr_resync < max_sector) /* aborted */
4378                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4379                                         &sync_blocks, 1);
4380                 else /* completed sync */
4381                         conf->fullsync = 0;
4382                 bitmap_close_sync(mddev->bitmap);
4383
4384                 return 0;
4385         }
4386
4387         /* Allow raid5_quiesce to complete */
4388         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4389
4390         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4391                 return reshape_request(mddev, sector_nr, skipped);
4392
4393         /* No need to check resync_max as we never do more than one
4394          * stripe, and as resync_max will always be on a chunk boundary,
4395          * if the check in md_do_sync didn't fire, there is no chance
4396          * of overstepping resync_max here
4397          */
4398
4399         /* if there is too many failed drives and we are trying
4400          * to resync, then assert that we are finished, because there is
4401          * nothing we can do.
4402          */
4403         if (mddev->degraded >= conf->max_degraded &&
4404             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4405                 sector_t rv = mddev->dev_sectors - sector_nr;
4406                 *skipped = 1;
4407                 return rv;
4408         }
4409         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4410             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4411             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4412                 /* we can skip this block, and probably more */
4413                 sync_blocks /= STRIPE_SECTORS;
4414                 *skipped = 1;
4415                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4416         }
4417
4418
4419         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4420
4421         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4422         if (sh == NULL) {
4423                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4424                 /* make sure we don't swamp the stripe cache if someone else
4425                  * is trying to get access
4426                  */
4427                 schedule_timeout_uninterruptible(1);
4428         }
4429         /* Need to check if array will still be degraded after recovery/resync
4430          * We don't need to check the 'failed' flag as when that gets set,
4431          * recovery aborts.
4432          */
4433         for (i = 0; i < conf->raid_disks; i++)
4434                 if (conf->disks[i].rdev == NULL)
4435                         still_degraded = 1;
4436
4437         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4438
4439         spin_lock(&sh->lock);
4440         set_bit(STRIPE_SYNCING, &sh->state);
4441         clear_bit(STRIPE_INSYNC, &sh->state);
4442         spin_unlock(&sh->lock);
4443
4444         handle_stripe(sh);
4445         release_stripe(sh);
4446
4447         return STRIPE_SECTORS;
4448 }
4449
4450 static int  retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4451 {
4452         /* We may not be able to submit a whole bio at once as there
4453          * may not be enough stripe_heads available.
4454          * We cannot pre-allocate enough stripe_heads as we may need
4455          * more than exist in the cache (if we allow ever large chunks).
4456          * So we do one stripe head at a time and record in
4457          * ->bi_hw_segments how many have been done.
4458          *
4459          * We *know* that this entire raid_bio is in one chunk, so
4460          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4461          */
4462         struct stripe_head *sh;
4463         int dd_idx;
4464         sector_t sector, logical_sector, last_sector;
4465         int scnt = 0;
4466         int remaining;
4467         int handled = 0;
4468
4469         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4470         sector = raid5_compute_sector(conf, logical_sector,
4471                                       0, &dd_idx, NULL);
4472         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4473
4474         for (; logical_sector < last_sector;
4475              logical_sector += STRIPE_SECTORS,
4476                      sector += STRIPE_SECTORS,
4477                      scnt++) {
4478
4479                 if (scnt < raid5_bi_hw_segments(raid_bio))
4480                         /* already done this stripe */
4481                         continue;
4482
4483                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4484
4485                 if (!sh) {
4486                         /* failed to get a stripe - must wait */
4487                         raid5_set_bi_hw_segments(raid_bio, scnt);
4488                         conf->retry_read_aligned = raid_bio;
4489                         return handled;
4490                 }
4491
4492                 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4493                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4494                         release_stripe(sh);
4495                         raid5_set_bi_hw_segments(raid_bio, scnt);
4496                         conf->retry_read_aligned = raid_bio;
4497                         return handled;
4498                 }
4499
4500                 handle_stripe(sh);
4501                 release_stripe(sh);
4502                 handled++;
4503         }
4504         spin_lock_irq(&conf->device_lock);
4505         remaining = raid5_dec_bi_phys_segments(raid_bio);
4506         spin_unlock_irq(&conf->device_lock);
4507         if (remaining == 0)
4508                 bio_endio(raid_bio, 0);
4509         if (atomic_dec_and_test(&conf->active_aligned_reads))
4510                 wake_up(&conf->wait_for_stripe);
4511         return handled;
4512 }
4513
4514
4515 /*
4516  * This is our raid5 kernel thread.
4517  *
4518  * We scan the hash table for stripes which can be handled now.
4519  * During the scan, completed stripes are saved for us by the interrupt
4520  * handler, so that they will not have to wait for our next wakeup.
4521  */
4522 static void raid5d(mddev_t *mddev)
4523 {
4524         struct stripe_head *sh;
4525         raid5_conf_t *conf = mddev->private;
4526         int handled;
4527
4528         pr_debug("+++ raid5d active\n");
4529
4530         md_check_recovery(mddev);
4531
4532         handled = 0;
4533         spin_lock_irq(&conf->device_lock);
4534         while (1) {
4535                 struct bio *bio;
4536
4537                 if (conf->seq_flush != conf->seq_write) {
4538                         int seq = conf->seq_flush;
4539                         spin_unlock_irq(&conf->device_lock);
4540                         bitmap_unplug(mddev->bitmap);
4541                         spin_lock_irq(&conf->device_lock);
4542                         conf->seq_write = seq;
4543                         activate_bit_delay(conf);
4544                 }
4545
4546                 while ((bio = remove_bio_from_retry(conf))) {
4547                         int ok;
4548                         spin_unlock_irq(&conf->device_lock);
4549                         ok = retry_aligned_read(conf, bio);
4550                         spin_lock_irq(&conf->device_lock);
4551                         if (!ok)
4552                                 break;
4553                         handled++;
4554                 }
4555
4556                 sh = __get_priority_stripe(conf);
4557
4558                 if (!sh)
4559                         break;
4560                 spin_unlock_irq(&conf->device_lock);
4561                 
4562                 handled++;
4563                 handle_stripe(sh);
4564                 release_stripe(sh);
4565                 cond_resched();
4566
4567                 spin_lock_irq(&conf->device_lock);
4568         }
4569         pr_debug("%d stripes handled\n", handled);
4570
4571         spin_unlock_irq(&conf->device_lock);
4572
4573         async_tx_issue_pending_all();
4574         unplug_slaves(mddev);
4575
4576         pr_debug("--- raid5d inactive\n");
4577 }
4578
4579 static ssize_t
4580 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4581 {
4582         raid5_conf_t *conf = mddev->private;
4583         if (conf)
4584                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4585         else
4586                 return 0;
4587 }
4588
4589 int
4590 raid5_set_cache_size(mddev_t *mddev, int size)
4591 {
4592         raid5_conf_t *conf = mddev->private;
4593         int err;
4594
4595         if (size <= 16 || size > 32768)
4596                 return -EINVAL;
4597         while (size < conf->max_nr_stripes) {
4598                 if (drop_one_stripe(conf))
4599                         conf->max_nr_stripes--;
4600                 else
4601                         break;
4602         }
4603         err = md_allow_write(mddev);
4604         if (err)
4605                 return err;
4606         while (size > conf->max_nr_stripes) {
4607                 if (grow_one_stripe(conf))
4608                         conf->max_nr_stripes++;
4609                 else break;
4610         }
4611         return 0;
4612 }
4613 EXPORT_SYMBOL(raid5_set_cache_size);
4614
4615 static ssize_t
4616 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4617 {
4618         raid5_conf_t *conf = mddev->private;
4619         unsigned long new;
4620         int err;
4621
4622         if (len >= PAGE_SIZE)
4623                 return -EINVAL;
4624         if (!conf)
4625                 return -ENODEV;
4626
4627         if (strict_strtoul(page, 10, &new))
4628                 return -EINVAL;
4629         err = raid5_set_cache_size(mddev, new);
4630         if (err)
4631                 return err;
4632         return len;
4633 }
4634
4635 static struct md_sysfs_entry
4636 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4637                                 raid5_show_stripe_cache_size,
4638                                 raid5_store_stripe_cache_size);
4639
4640 static ssize_t
4641 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4642 {
4643         raid5_conf_t *conf = mddev->private;
4644         if (conf)
4645                 return sprintf(page, "%d\n", conf->bypass_threshold);
4646         else
4647                 return 0;
4648 }
4649
4650 static ssize_t
4651 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4652 {
4653         raid5_conf_t *conf = mddev->private;
4654         unsigned long new;
4655         if (len >= PAGE_SIZE)
4656                 return -EINVAL;
4657         if (!conf)
4658                 return -ENODEV;
4659
4660         if (strict_strtoul(page, 10, &new))
4661                 return -EINVAL;
4662         if (new > conf->max_nr_stripes)
4663                 return -EINVAL;
4664         conf->bypass_threshold = new;
4665         return len;
4666 }
4667
4668 static struct md_sysfs_entry
4669 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4670                                         S_IRUGO | S_IWUSR,
4671                                         raid5_show_preread_threshold,
4672                                         raid5_store_preread_threshold);
4673
4674 static ssize_t
4675 stripe_cache_active_show(mddev_t *mddev, char *page)
4676 {
4677         raid5_conf_t *conf = mddev->private;
4678         if (conf)
4679                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4680         else
4681                 return 0;
4682 }
4683
4684 static struct md_sysfs_entry
4685 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4686
4687 static struct attribute *raid5_attrs[] =  {
4688         &raid5_stripecache_size.attr,
4689         &raid5_stripecache_active.attr,
4690         &raid5_preread_bypass_threshold.attr,
4691         NULL,
4692 };
4693 static struct attribute_group raid5_attrs_group = {
4694         .name = NULL,
4695         .attrs = raid5_attrs,
4696 };
4697
4698 static sector_t
4699 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4700 {
4701         raid5_conf_t *conf = mddev->private;
4702
4703         if (!sectors)
4704                 sectors = mddev->dev_sectors;
4705         if (!raid_disks)
4706                 /* size is defined by the smallest of previous and new size */
4707                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4708
4709         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4710         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4711         return sectors * (raid_disks - conf->max_degraded);
4712 }
4713
4714 static void raid5_free_percpu(raid5_conf_t *conf)
4715 {
4716         struct raid5_percpu *percpu;
4717         unsigned long cpu;
4718
4719         if (!conf->percpu)
4720                 return;
4721
4722         get_online_cpus();
4723         for_each_possible_cpu(cpu) {
4724                 percpu = per_cpu_ptr(conf->percpu, cpu);
4725                 safe_put_page(percpu->spare_page);
4726                 kfree(percpu->scribble);
4727         }
4728 #ifdef CONFIG_HOTPLUG_CPU
4729         unregister_cpu_notifier(&conf->cpu_notify);
4730 #endif
4731         put_online_cpus();
4732
4733         free_percpu(conf->percpu);
4734 }
4735
4736 static void free_conf(raid5_conf_t *conf)
4737 {
4738         shrink_stripes(conf);
4739         raid5_free_percpu(conf);
4740         kfree(conf->disks);
4741         kfree(conf->stripe_hashtbl);
4742         kfree(conf);
4743 }
4744
4745 #ifdef CONFIG_HOTPLUG_CPU
4746 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4747                               void *hcpu)
4748 {
4749         raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4750         long cpu = (long)hcpu;
4751         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4752
4753         switch (action) {
4754         case CPU_UP_PREPARE:
4755         case CPU_UP_PREPARE_FROZEN:
4756                 if (conf->level == 6 && !percpu->spare_page)
4757                         percpu->spare_page = alloc_page(GFP_KERNEL);
4758                 if (!percpu->scribble)
4759                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4760
4761                 if (!percpu->scribble ||
4762                     (conf->level == 6 && !percpu->spare_page)) {
4763                         safe_put_page(percpu->spare_page);
4764                         kfree(percpu->scribble);
4765                         pr_err("%s: failed memory allocation for cpu%ld\n",
4766                                __func__, cpu);
4767                         return notifier_from_errno(-ENOMEM);
4768                 }
4769                 break;
4770         case CPU_DEAD:
4771         case CPU_DEAD_FROZEN:
4772                 safe_put_page(percpu->spare_page);
4773                 kfree(percpu->scribble);
4774                 percpu->spare_page = NULL;
4775                 percpu->scribble = NULL;
4776                 break;
4777         default:
4778                 break;
4779         }
4780         return NOTIFY_OK;
4781 }
4782 #endif
4783
4784 static int raid5_alloc_percpu(raid5_conf_t *conf)
4785 {
4786         unsigned long cpu;
4787         struct page *spare_page;
4788         struct raid5_percpu __percpu *allcpus;
4789         void *scribble;
4790         int err;
4791
4792         allcpus = alloc_percpu(struct raid5_percpu);
4793         if (!allcpus)
4794                 return -ENOMEM;
4795         conf->percpu = allcpus;
4796
4797         get_online_cpus();
4798         err = 0;
4799         for_each_present_cpu(cpu) {
4800                 if (conf->level == 6) {
4801                         spare_page = alloc_page(GFP_KERNEL);
4802                         if (!spare_page) {
4803                                 err = -ENOMEM;
4804                                 break;
4805                         }
4806                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4807                 }
4808                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4809                 if (!scribble) {
4810                         err = -ENOMEM;
4811                         break;
4812                 }
4813                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4814         }
4815 #ifdef CONFIG_HOTPLUG_CPU
4816         conf->cpu_notify.notifier_call = raid456_cpu_notify;
4817         conf->cpu_notify.priority = 0;
4818         if (err == 0)
4819                 err = register_cpu_notifier(&conf->cpu_notify);
4820 #endif
4821         put_online_cpus();
4822
4823         return err;
4824 }
4825
4826 static raid5_conf_t *setup_conf(mddev_t *mddev)
4827 {
4828         raid5_conf_t *conf;
4829         int raid_disk, memory, max_disks;
4830         mdk_rdev_t *rdev;
4831         struct disk_info *disk;
4832
4833         if (mddev->new_level != 5
4834             && mddev->new_level != 4
4835             && mddev->new_level != 6) {
4836                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4837                        mdname(mddev), mddev->new_level);
4838                 return ERR_PTR(-EIO);
4839         }
4840         if ((mddev->new_level == 5
4841              && !algorithm_valid_raid5(mddev->new_layout)) ||
4842             (mddev->new_level == 6
4843              && !algorithm_valid_raid6(mddev->new_layout))) {
4844                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4845                        mdname(mddev), mddev->new_layout);
4846                 return ERR_PTR(-EIO);
4847         }
4848         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4849                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4850                        mdname(mddev), mddev->raid_disks);
4851                 return ERR_PTR(-EINVAL);
4852         }
4853
4854         if (!mddev->new_chunk_sectors ||
4855             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4856             !is_power_of_2(mddev->new_chunk_sectors)) {
4857                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4858                        mdname(mddev), mddev->new_chunk_sectors << 9);
4859                 return ERR_PTR(-EINVAL);
4860         }
4861
4862         conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4863         if (conf == NULL)
4864                 goto abort;
4865         spin_lock_init(&conf->device_lock);
4866         init_waitqueue_head(&conf->wait_for_stripe);
4867         init_waitqueue_head(&conf->wait_for_overlap);
4868         INIT_LIST_HEAD(&conf->handle_list);
4869         INIT_LIST_HEAD(&conf->hold_list);
4870         INIT_LIST_HEAD(&conf->delayed_list);
4871         INIT_LIST_HEAD(&conf->bitmap_list);
4872         INIT_LIST_HEAD(&conf->inactive_list);
4873         atomic_set(&conf->active_stripes, 0);
4874         atomic_set(&conf->preread_active_stripes, 0);
4875         atomic_set(&conf->active_aligned_reads, 0);
4876         conf->bypass_threshold = BYPASS_THRESHOLD;
4877
4878         conf->raid_disks = mddev->raid_disks;
4879         if (mddev->reshape_position == MaxSector)
4880                 conf->previous_raid_disks = mddev->raid_disks;
4881         else
4882                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4883         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4884         conf->scribble_len = scribble_len(max_disks);
4885
4886         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4887                               GFP_KERNEL);
4888         if (!conf->disks)
4889                 goto abort;
4890
4891         conf->mddev = mddev;
4892
4893         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4894                 goto abort;
4895
4896         conf->level = mddev->new_level;
4897         if (raid5_alloc_percpu(conf) != 0)
4898                 goto abort;
4899
4900         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4901
4902         list_for_each_entry(rdev, &mddev->disks, same_set) {
4903                 raid_disk = rdev->raid_disk;
4904                 if (raid_disk >= max_disks
4905                     || raid_disk < 0)
4906                         continue;
4907                 disk = conf->disks + raid_disk;
4908
4909                 disk->rdev = rdev;
4910
4911                 if (test_bit(In_sync, &rdev->flags)) {
4912                         char b[BDEVNAME_SIZE];
4913                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4914                                " disk %d\n",
4915                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4916                 } else
4917                         /* Cannot rely on bitmap to complete recovery */
4918                         conf->fullsync = 1;
4919         }
4920
4921         conf->chunk_sectors = mddev->new_chunk_sectors;
4922         conf->level = mddev->new_level;
4923         if (conf->level == 6)
4924                 conf->max_degraded = 2;
4925         else
4926                 conf->max_degraded = 1;
4927         conf->algorithm = mddev->new_layout;
4928         conf->max_nr_stripes = NR_STRIPES;
4929         conf->reshape_progress = mddev->reshape_position;
4930         if (conf->reshape_progress != MaxSector) {
4931                 conf->prev_chunk_sectors = mddev->chunk_sectors;
4932                 conf->prev_algo = mddev->layout;
4933         }
4934
4935         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4936                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4937         if (grow_stripes(conf, conf->max_nr_stripes)) {
4938                 printk(KERN_ERR
4939                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
4940                        mdname(mddev), memory);
4941                 goto abort;
4942         } else
4943                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4944                        mdname(mddev), memory);
4945
4946         conf->thread = md_register_thread(raid5d, mddev, NULL);
4947         if (!conf->thread) {
4948                 printk(KERN_ERR
4949                        "md/raid:%s: couldn't allocate thread.\n",
4950                        mdname(mddev));
4951                 goto abort;
4952         }
4953
4954         return conf;
4955
4956  abort:
4957         if (conf) {
4958                 free_conf(conf);
4959                 return ERR_PTR(-EIO);
4960         } else
4961                 return ERR_PTR(-ENOMEM);
4962 }
4963
4964
4965 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4966 {
4967         switch (algo) {
4968         case ALGORITHM_PARITY_0:
4969                 if (raid_disk < max_degraded)
4970                         return 1;
4971                 break;
4972         case ALGORITHM_PARITY_N:
4973                 if (raid_disk >= raid_disks - max_degraded)
4974                         return 1;
4975                 break;
4976         case ALGORITHM_PARITY_0_6:
4977                 if (raid_disk == 0 || 
4978                     raid_disk == raid_disks - 1)
4979                         return 1;
4980                 break;
4981         case ALGORITHM_LEFT_ASYMMETRIC_6:
4982         case ALGORITHM_RIGHT_ASYMMETRIC_6:
4983         case ALGORITHM_LEFT_SYMMETRIC_6:
4984         case ALGORITHM_RIGHT_SYMMETRIC_6:
4985                 if (raid_disk == raid_disks - 1)
4986                         return 1;
4987         }
4988         return 0;
4989 }
4990
4991 static int run(mddev_t *mddev)
4992 {
4993         raid5_conf_t *conf;
4994         int working_disks = 0;
4995         int dirty_parity_disks = 0;
4996         mdk_rdev_t *rdev;
4997         sector_t reshape_offset = 0;
4998
4999         if (mddev->recovery_cp != MaxSector)
5000                 printk(KERN_NOTICE "md/raid:%s: not clean"
5001                        " -- starting background reconstruction\n",
5002                        mdname(mddev));
5003         if (mddev->reshape_position != MaxSector) {
5004                 /* Check that we can continue the reshape.
5005                  * Currently only disks can change, it must
5006                  * increase, and we must be past the point where
5007                  * a stripe over-writes itself
5008                  */
5009                 sector_t here_new, here_old;
5010                 int old_disks;
5011                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5012
5013                 if (mddev->new_level != mddev->level) {
5014                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5015                                "required - aborting.\n",
5016                                mdname(mddev));
5017                         return -EINVAL;
5018                 }
5019                 old_disks = mddev->raid_disks - mddev->delta_disks;
5020                 /* reshape_position must be on a new-stripe boundary, and one
5021                  * further up in new geometry must map after here in old
5022                  * geometry.
5023                  */
5024                 here_new = mddev->reshape_position;
5025                 if (sector_div(here_new, mddev->new_chunk_sectors *
5026                                (mddev->raid_disks - max_degraded))) {
5027                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5028                                "on a stripe boundary\n", mdname(mddev));
5029                         return -EINVAL;
5030                 }
5031                 reshape_offset = here_new * mddev->new_chunk_sectors;
5032                 /* here_new is the stripe we will write to */
5033                 here_old = mddev->reshape_position;
5034                 sector_div(here_old, mddev->chunk_sectors *
5035                            (old_disks-max_degraded));
5036                 /* here_old is the first stripe that we might need to read
5037                  * from */
5038                 if (mddev->delta_disks == 0) {
5039                         /* We cannot be sure it is safe to start an in-place
5040                          * reshape.  It is only safe if user-space if monitoring
5041                          * and taking constant backups.
5042                          * mdadm always starts a situation like this in
5043                          * readonly mode so it can take control before
5044                          * allowing any writes.  So just check for that.
5045                          */
5046                         if ((here_new * mddev->new_chunk_sectors != 
5047                              here_old * mddev->chunk_sectors) ||
5048                             mddev->ro == 0) {
5049                                 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5050                                        " in read-only mode - aborting\n",
5051                                        mdname(mddev));
5052                                 return -EINVAL;
5053                         }
5054                 } else if (mddev->delta_disks < 0
5055                     ? (here_new * mddev->new_chunk_sectors <=
5056                        here_old * mddev->chunk_sectors)
5057                     : (here_new * mddev->new_chunk_sectors >=
5058                        here_old * mddev->chunk_sectors)) {
5059                         /* Reading from the same stripe as writing to - bad */
5060                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5061                                "auto-recovery - aborting.\n",
5062                                mdname(mddev));
5063                         return -EINVAL;
5064                 }
5065                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5066                        mdname(mddev));
5067                 /* OK, we should be able to continue; */
5068         } else {
5069                 BUG_ON(mddev->level != mddev->new_level);
5070                 BUG_ON(mddev->layout != mddev->new_layout);
5071                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5072                 BUG_ON(mddev->delta_disks != 0);
5073         }
5074
5075         if (mddev->private == NULL)
5076                 conf = setup_conf(mddev);
5077         else
5078                 conf = mddev->private;
5079
5080         if (IS_ERR(conf))
5081                 return PTR_ERR(conf);
5082
5083         mddev->thread = conf->thread;
5084         conf->thread = NULL;
5085         mddev->private = conf;
5086
5087         /*
5088          * 0 for a fully functional array, 1 or 2 for a degraded array.
5089          */
5090         list_for_each_entry(rdev, &mddev->disks, same_set) {
5091                 if (rdev->raid_disk < 0)
5092                         continue;
5093                 if (test_bit(In_sync, &rdev->flags)) {
5094                         working_disks++;
5095                         continue;
5096                 }
5097                 /* This disc is not fully in-sync.  However if it
5098                  * just stored parity (beyond the recovery_offset),
5099                  * when we don't need to be concerned about the
5100                  * array being dirty.
5101                  * When reshape goes 'backwards', we never have
5102                  * partially completed devices, so we only need
5103                  * to worry about reshape going forwards.
5104                  */
5105                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5106                 if (mddev->major_version == 0 &&
5107                     mddev->minor_version > 90)
5108                         rdev->recovery_offset = reshape_offset;
5109                         
5110                 if (rdev->recovery_offset < reshape_offset) {
5111                         /* We need to check old and new layout */
5112                         if (!only_parity(rdev->raid_disk,
5113                                          conf->algorithm,
5114                                          conf->raid_disks,
5115                                          conf->max_degraded))
5116                                 continue;
5117                 }
5118                 if (!only_parity(rdev->raid_disk,
5119                                  conf->prev_algo,
5120                                  conf->previous_raid_disks,
5121                                  conf->max_degraded))
5122                         continue;
5123                 dirty_parity_disks++;
5124         }
5125
5126         mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5127                            - working_disks);
5128
5129         if (has_failed(conf)) {
5130                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5131                         " (%d/%d failed)\n",
5132                         mdname(mddev), mddev->degraded, conf->raid_disks);
5133                 goto abort;
5134         }
5135
5136         /* device size must be a multiple of chunk size */
5137         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5138         mddev->resync_max_sectors = mddev->dev_sectors;
5139
5140         if (mddev->degraded > dirty_parity_disks &&
5141             mddev->recovery_cp != MaxSector) {
5142                 if (mddev->ok_start_degraded)
5143                         printk(KERN_WARNING
5144                                "md/raid:%s: starting dirty degraded array"
5145                                " - data corruption possible.\n",
5146                                mdname(mddev));
5147                 else {
5148                         printk(KERN_ERR
5149                                "md/raid:%s: cannot start dirty degraded array.\n",
5150                                mdname(mddev));
5151                         goto abort;
5152                 }
5153         }
5154
5155         if (mddev->degraded == 0)
5156                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5157                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5158                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5159                        mddev->new_layout);
5160         else
5161                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5162                        " out of %d devices, algorithm %d\n",
5163                        mdname(mddev), conf->level,
5164                        mddev->raid_disks - mddev->degraded,
5165                        mddev->raid_disks, mddev->new_layout);
5166
5167         print_raid5_conf(conf);
5168
5169         if (conf->reshape_progress != MaxSector) {
5170                 conf->reshape_safe = conf->reshape_progress;
5171                 atomic_set(&conf->reshape_stripes, 0);
5172                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5173                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5174                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5175                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5176                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5177                                                         "reshape");
5178         }
5179
5180
5181         /* Ok, everything is just fine now */
5182         if (mddev->to_remove == &raid5_attrs_group)
5183                 mddev->to_remove = NULL;
5184         else if (mddev->kobj.sd &&
5185             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5186                 printk(KERN_WARNING
5187                        "raid5: failed to create sysfs attributes for %s\n",
5188                        mdname(mddev));
5189         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5190
5191         plugger_init(&conf->plug, raid5_unplug);
5192         mddev->plug = &conf->plug;
5193         if (mddev->queue) {
5194                 int chunk_size;
5195                 /* read-ahead size must cover two whole stripes, which
5196                  * is 2 * (datadisks) * chunksize where 'n' is the
5197                  * number of raid devices
5198                  */
5199                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5200                 int stripe = data_disks *
5201                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5202                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5203                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5204
5205                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5206
5207                 mddev->queue->backing_dev_info.congested_data = mddev;
5208                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5209                 mddev->queue->queue_lock = &conf->device_lock;
5210                 mddev->queue->unplug_fn = raid5_unplug_queue;
5211
5212                 chunk_size = mddev->chunk_sectors << 9;
5213                 blk_queue_io_min(mddev->queue, chunk_size);
5214                 blk_queue_io_opt(mddev->queue, chunk_size *
5215                                  (conf->raid_disks - conf->max_degraded));
5216
5217                 list_for_each_entry(rdev, &mddev->disks, same_set)
5218                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5219                                           rdev->data_offset << 9);
5220         }
5221
5222         return 0;
5223 abort:
5224         md_unregister_thread(mddev->thread);
5225         mddev->thread = NULL;
5226         if (conf) {
5227                 print_raid5_conf(conf);
5228                 free_conf(conf);
5229         }
5230         mddev->private = NULL;
5231         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5232         return -EIO;
5233 }
5234
5235 static int stop(mddev_t *mddev)
5236 {
5237         raid5_conf_t *conf = mddev->private;
5238
5239         md_unregister_thread(mddev->thread);
5240         mddev->thread = NULL;
5241         if (mddev->queue)
5242                 mddev->queue->backing_dev_info.congested_fn = NULL;
5243         plugger_flush(&conf->plug); /* the unplug fn references 'conf'*/
5244         free_conf(conf);
5245         mddev->private = NULL;
5246         mddev->to_remove = &raid5_attrs_group;
5247         return 0;
5248 }
5249
5250 #ifdef DEBUG
5251 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5252 {
5253         int i;
5254
5255         seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5256                    (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5257         seq_printf(seq, "sh %llu,  count %d.\n",
5258                    (unsigned long long)sh->sector, atomic_read(&sh->count));
5259         seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5260         for (i = 0; i < sh->disks; i++) {
5261                 seq_printf(seq, "(cache%d: %p %ld) ",
5262                            i, sh->dev[i].page, sh->dev[i].flags);
5263         }
5264         seq_printf(seq, "\n");
5265 }
5266
5267 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5268 {
5269         struct stripe_head *sh;
5270         struct hlist_node *hn;
5271         int i;
5272
5273         spin_lock_irq(&conf->device_lock);
5274         for (i = 0; i < NR_HASH; i++) {
5275                 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5276                         if (sh->raid_conf != conf)
5277                                 continue;
5278                         print_sh(seq, sh);
5279                 }
5280         }
5281         spin_unlock_irq(&conf->device_lock);
5282 }
5283 #endif
5284
5285 static void status(struct seq_file *seq, mddev_t *mddev)
5286 {
5287         raid5_conf_t *conf = mddev->private;
5288         int i;
5289
5290         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5291                 mddev->chunk_sectors / 2, mddev->layout);
5292         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5293         for (i = 0; i < conf->raid_disks; i++)
5294                 seq_printf (seq, "%s",
5295                                conf->disks[i].rdev &&
5296                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5297         seq_printf (seq, "]");
5298 #ifdef DEBUG
5299         seq_printf (seq, "\n");
5300         printall(seq, conf);
5301 #endif
5302 }
5303
5304 static void print_raid5_conf (raid5_conf_t *conf)
5305 {
5306         int i;
5307         struct disk_info *tmp;
5308
5309         printk(KERN_DEBUG "RAID conf printout:\n");
5310         if (!conf) {
5311                 printk("(conf==NULL)\n");
5312                 return;
5313         }
5314         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5315                conf->raid_disks,
5316                conf->raid_disks - conf->mddev->degraded);
5317
5318         for (i = 0; i < conf->raid_disks; i++) {
5319                 char b[BDEVNAME_SIZE];
5320                 tmp = conf->disks + i;
5321                 if (tmp->rdev)
5322                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5323                                i, !test_bit(Faulty, &tmp->rdev->flags),
5324                                bdevname(tmp->rdev->bdev, b));
5325         }
5326 }
5327
5328 static int raid5_spare_active(mddev_t *mddev)
5329 {
5330         int i;
5331         raid5_conf_t *conf = mddev->private;
5332         struct disk_info *tmp;
5333         int count = 0;
5334         unsigned long flags;
5335
5336         for (i = 0; i < conf->raid_disks; i++) {
5337                 tmp = conf->disks + i;
5338                 if (tmp->rdev
5339                     && tmp->rdev->recovery_offset == MaxSector
5340                     && !test_bit(Faulty, &tmp->rdev->flags)
5341                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5342                         count++;
5343                         sysfs_notify_dirent(tmp->rdev->sysfs_state);
5344                 }
5345         }
5346         spin_lock_irqsave(&conf->device_lock, flags);
5347         mddev->degraded -= count;
5348         spin_unlock_irqrestore(&conf->device_lock, flags);
5349         print_raid5_conf(conf);
5350         return count;
5351 }
5352
5353 static int raid5_remove_disk(mddev_t *mddev, int number)
5354 {
5355         raid5_conf_t *conf = mddev->private;
5356         int err = 0;
5357         mdk_rdev_t *rdev;
5358         struct disk_info *p = conf->disks + number;
5359
5360         print_raid5_conf(conf);
5361         rdev = p->rdev;
5362         if (rdev) {
5363                 if (number >= conf->raid_disks &&
5364                     conf->reshape_progress == MaxSector)
5365                         clear_bit(In_sync, &rdev->flags);
5366
5367                 if (test_bit(In_sync, &rdev->flags) ||
5368                     atomic_read(&rdev->nr_pending)) {
5369                         err = -EBUSY;
5370                         goto abort;
5371                 }
5372                 /* Only remove non-faulty devices if recovery
5373                  * isn't possible.
5374                  */
5375                 if (!test_bit(Faulty, &rdev->flags) &&
5376                     !has_failed(conf) &&
5377                     number < conf->raid_disks) {
5378                         err = -EBUSY;
5379                         goto abort;
5380                 }
5381                 p->rdev = NULL;
5382                 synchronize_rcu();
5383                 if (atomic_read(&rdev->nr_pending)) {
5384                         /* lost the race, try later */
5385                         err = -EBUSY;
5386                         p->rdev = rdev;
5387                 }
5388         }
5389 abort:
5390
5391         print_raid5_conf(conf);
5392         return err;
5393 }
5394
5395 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5396 {
5397         raid5_conf_t *conf = mddev->private;
5398         int err = -EEXIST;
5399         int disk;
5400         struct disk_info *p;
5401         int first = 0;
5402         int last = conf->raid_disks - 1;
5403
5404         if (has_failed(conf))
5405                 /* no point adding a device */
5406                 return -EINVAL;
5407
5408         if (rdev->raid_disk >= 0)
5409                 first = last = rdev->raid_disk;
5410
5411         /*
5412          * find the disk ... but prefer rdev->saved_raid_disk
5413          * if possible.
5414          */
5415         if (rdev->saved_raid_disk >= 0 &&
5416             rdev->saved_raid_disk >= first &&
5417             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5418                 disk = rdev->saved_raid_disk;
5419         else
5420                 disk = first;
5421         for ( ; disk <= last ; disk++)
5422                 if ((p=conf->disks + disk)->rdev == NULL) {
5423                         clear_bit(In_sync, &rdev->flags);
5424                         rdev->raid_disk = disk;
5425                         err = 0;
5426                         if (rdev->saved_raid_disk != disk)
5427                                 conf->fullsync = 1;
5428                         rcu_assign_pointer(p->rdev, rdev);
5429                         break;
5430                 }
5431         print_raid5_conf(conf);
5432         return err;
5433 }
5434
5435 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5436 {
5437         /* no resync is happening, and there is enough space
5438          * on all devices, so we can resize.
5439          * We need to make sure resync covers any new space.
5440          * If the array is shrinking we should possibly wait until
5441          * any io in the removed space completes, but it hardly seems
5442          * worth it.
5443          */
5444         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5445         md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5446                                                mddev->raid_disks));
5447         if (mddev->array_sectors >
5448             raid5_size(mddev, sectors, mddev->raid_disks))
5449                 return -EINVAL;
5450         set_capacity(mddev->gendisk, mddev->array_sectors);
5451         revalidate_disk(mddev->gendisk);
5452         if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5453                 mddev->recovery_cp = mddev->dev_sectors;
5454                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5455         }
5456         mddev->dev_sectors = sectors;
5457         mddev->resync_max_sectors = sectors;
5458         return 0;
5459 }
5460
5461 static int check_stripe_cache(mddev_t *mddev)
5462 {
5463         /* Can only proceed if there are plenty of stripe_heads.
5464          * We need a minimum of one full stripe,, and for sensible progress
5465          * it is best to have about 4 times that.
5466          * If we require 4 times, then the default 256 4K stripe_heads will
5467          * allow for chunk sizes up to 256K, which is probably OK.
5468          * If the chunk size is greater, user-space should request more
5469          * stripe_heads first.
5470          */
5471         raid5_conf_t *conf = mddev->private;
5472         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5473             > conf->max_nr_stripes ||
5474             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5475             > conf->max_nr_stripes) {
5476                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5477                        mdname(mddev),
5478                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5479                         / STRIPE_SIZE)*4);
5480                 return 0;
5481         }
5482         return 1;
5483 }
5484
5485 static int check_reshape(mddev_t *mddev)
5486 {
5487         raid5_conf_t *conf = mddev->private;
5488
5489         if (mddev->delta_disks == 0 &&
5490             mddev->new_layout == mddev->layout &&
5491             mddev->new_chunk_sectors == mddev->chunk_sectors)
5492                 return 0; /* nothing to do */
5493         if (mddev->bitmap)
5494                 /* Cannot grow a bitmap yet */
5495                 return -EBUSY;
5496         if (has_failed(conf))
5497                 return -EINVAL;
5498         if (mddev->delta_disks < 0) {
5499                 /* We might be able to shrink, but the devices must
5500                  * be made bigger first.
5501                  * For raid6, 4 is the minimum size.
5502                  * Otherwise 2 is the minimum
5503                  */
5504                 int min = 2;
5505                 if (mddev->level == 6)
5506                         min = 4;
5507                 if (mddev->raid_disks + mddev->delta_disks < min)
5508                         return -EINVAL;
5509         }
5510
5511         if (!check_stripe_cache(mddev))
5512                 return -ENOSPC;
5513
5514         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5515 }
5516
5517 static int raid5_start_reshape(mddev_t *mddev)
5518 {
5519         raid5_conf_t *conf = mddev->private;
5520         mdk_rdev_t *rdev;
5521         int spares = 0;
5522         int added_devices = 0;
5523         unsigned long flags;
5524
5525         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5526                 return -EBUSY;
5527
5528         if (!check_stripe_cache(mddev))
5529                 return -ENOSPC;
5530
5531         list_for_each_entry(rdev, &mddev->disks, same_set)
5532                 if (rdev->raid_disk < 0 &&
5533                     !test_bit(Faulty, &rdev->flags))
5534                         spares++;
5535
5536         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5537                 /* Not enough devices even to make a degraded array
5538                  * of that size
5539                  */
5540                 return -EINVAL;
5541
5542         /* Refuse to reduce size of the array.  Any reductions in
5543          * array size must be through explicit setting of array_size
5544          * attribute.
5545          */
5546         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5547             < mddev->array_sectors) {
5548                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5549                        "before number of disks\n", mdname(mddev));
5550                 return -EINVAL;
5551         }
5552
5553         atomic_set(&conf->reshape_stripes, 0);
5554         spin_lock_irq(&conf->device_lock);
5555         conf->previous_raid_disks = conf->raid_disks;
5556         conf->raid_disks += mddev->delta_disks;
5557         conf->prev_chunk_sectors = conf->chunk_sectors;
5558         conf->chunk_sectors = mddev->new_chunk_sectors;
5559         conf->prev_algo = conf->algorithm;
5560         conf->algorithm = mddev->new_layout;
5561         if (mddev->delta_disks < 0)
5562                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5563         else
5564                 conf->reshape_progress = 0;
5565         conf->reshape_safe = conf->reshape_progress;
5566         conf->generation++;
5567         spin_unlock_irq(&conf->device_lock);
5568
5569         /* Add some new drives, as many as will fit.
5570          * We know there are enough to make the newly sized array work.
5571          * Don't add devices if we are reducing the number of
5572          * devices in the array.  This is because it is not possible
5573          * to correctly record the "partially reconstructed" state of
5574          * such devices during the reshape and confusion could result.
5575          */
5576         if (mddev->delta_disks >= 0)
5577             list_for_each_entry(rdev, &mddev->disks, same_set)
5578                 if (rdev->raid_disk < 0 &&
5579                     !test_bit(Faulty, &rdev->flags)) {
5580                         if (raid5_add_disk(mddev, rdev) == 0) {
5581                                 char nm[20];
5582                                 if (rdev->raid_disk >= conf->previous_raid_disks) {
5583                                         set_bit(In_sync, &rdev->flags);
5584                                         added_devices++;
5585                                 } else
5586                                         rdev->recovery_offset = 0;
5587                                 sprintf(nm, "rd%d", rdev->raid_disk);
5588                                 if (sysfs_create_link(&mddev->kobj,
5589                                                       &rdev->kobj, nm))
5590                                         /* Failure here is OK */;
5591                         } else
5592                                 break;
5593                 }
5594
5595         /* When a reshape changes the number of devices, ->degraded
5596          * is measured against the larger of the pre and post number of
5597          * devices.*/
5598         if (mddev->delta_disks > 0) {
5599                 spin_lock_irqsave(&conf->device_lock, flags);
5600                 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5601                         - added_devices;
5602                 spin_unlock_irqrestore(&conf->device_lock, flags);
5603         }
5604         mddev->raid_disks = conf->raid_disks;
5605         mddev->reshape_position = conf->reshape_progress;
5606         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5607
5608         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5609         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5610         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5611         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5612         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5613                                                 "reshape");
5614         if (!mddev->sync_thread) {
5615                 mddev->recovery = 0;
5616                 spin_lock_irq(&conf->device_lock);
5617                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5618                 conf->reshape_progress = MaxSector;
5619                 spin_unlock_irq(&conf->device_lock);
5620                 return -EAGAIN;
5621         }
5622         conf->reshape_checkpoint = jiffies;
5623         md_wakeup_thread(mddev->sync_thread);
5624         md_new_event(mddev);
5625         return 0;
5626 }
5627
5628 /* This is called from the reshape thread and should make any
5629  * changes needed in 'conf'
5630  */
5631 static void end_reshape(raid5_conf_t *conf)
5632 {
5633
5634         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5635
5636                 spin_lock_irq(&conf->device_lock);
5637                 conf->previous_raid_disks = conf->raid_disks;
5638                 conf->reshape_progress = MaxSector;
5639                 spin_unlock_irq(&conf->device_lock);
5640                 wake_up(&conf->wait_for_overlap);
5641
5642                 /* read-ahead size must cover two whole stripes, which is
5643                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5644                  */
5645                 if (conf->mddev->queue) {
5646                         int data_disks = conf->raid_disks - conf->max_degraded;
5647                         int stripe = data_disks * ((conf->chunk_sectors << 9)
5648                                                    / PAGE_SIZE);
5649                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5650                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5651                 }
5652         }
5653 }
5654
5655 /* This is called from the raid5d thread with mddev_lock held.
5656  * It makes config changes to the device.
5657  */
5658 static void raid5_finish_reshape(mddev_t *mddev)
5659 {
5660         raid5_conf_t *conf = mddev->private;
5661
5662         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5663
5664                 if (mddev->delta_disks > 0) {
5665                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5666                         set_capacity(mddev->gendisk, mddev->array_sectors);
5667                         revalidate_disk(mddev->gendisk);
5668                 } else {
5669                         int d;
5670                         mddev->degraded = conf->raid_disks;
5671                         for (d = 0; d < conf->raid_disks ; d++)
5672                                 if (conf->disks[d].rdev &&
5673                                     test_bit(In_sync,
5674                                              &conf->disks[d].rdev->flags))
5675                                         mddev->degraded--;
5676                         for (d = conf->raid_disks ;
5677                              d < conf->raid_disks - mddev->delta_disks;
5678                              d++) {
5679                                 mdk_rdev_t *rdev = conf->disks[d].rdev;
5680                                 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5681                                         char nm[20];
5682                                         sprintf(nm, "rd%d", rdev->raid_disk);
5683                                         sysfs_remove_link(&mddev->kobj, nm);
5684                                         rdev->raid_disk = -1;
5685                                 }
5686                         }
5687                 }
5688                 mddev->layout = conf->algorithm;
5689                 mddev->chunk_sectors = conf->chunk_sectors;
5690                 mddev->reshape_position = MaxSector;
5691                 mddev->delta_disks = 0;
5692         }
5693 }
5694
5695 static void raid5_quiesce(mddev_t *mddev, int state)
5696 {
5697         raid5_conf_t *conf = mddev->private;
5698
5699         switch(state) {
5700         case 2: /* resume for a suspend */
5701                 wake_up(&conf->wait_for_overlap);
5702                 break;
5703
5704         case 1: /* stop all writes */
5705                 spin_lock_irq(&conf->device_lock);
5706                 /* '2' tells resync/reshape to pause so that all
5707                  * active stripes can drain
5708                  */
5709                 conf->quiesce = 2;
5710                 wait_event_lock_irq(conf->wait_for_stripe,
5711                                     atomic_read(&conf->active_stripes) == 0 &&
5712                                     atomic_read(&conf->active_aligned_reads) == 0,
5713                                     conf->device_lock, /* nothing */);
5714                 conf->quiesce = 1;
5715                 spin_unlock_irq(&conf->device_lock);
5716                 /* allow reshape to continue */
5717                 wake_up(&conf->wait_for_overlap);
5718                 break;
5719
5720         case 0: /* re-enable writes */
5721                 spin_lock_irq(&conf->device_lock);
5722                 conf->quiesce = 0;
5723                 wake_up(&conf->wait_for_stripe);
5724                 wake_up(&conf->wait_for_overlap);
5725                 spin_unlock_irq(&conf->device_lock);
5726                 break;
5727         }
5728 }
5729
5730
5731 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5732 {
5733         struct raid0_private_data *raid0_priv = mddev->private;
5734
5735         /* for raid0 takeover only one zone is supported */
5736         if (raid0_priv->nr_strip_zones > 1) {
5737                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5738                        mdname(mddev));
5739                 return ERR_PTR(-EINVAL);
5740         }
5741
5742         mddev->new_level = level;
5743         mddev->new_layout = ALGORITHM_PARITY_N;
5744         mddev->new_chunk_sectors = mddev->chunk_sectors;
5745         mddev->raid_disks += 1;
5746         mddev->delta_disks = 1;
5747         /* make sure it will be not marked as dirty */
5748         mddev->recovery_cp = MaxSector;
5749
5750         return setup_conf(mddev);
5751 }
5752
5753
5754 static void *raid5_takeover_raid1(mddev_t *mddev)
5755 {
5756         int chunksect;
5757
5758         if (mddev->raid_disks != 2 ||
5759             mddev->degraded > 1)
5760                 return ERR_PTR(-EINVAL);
5761
5762         /* Should check if there are write-behind devices? */
5763
5764         chunksect = 64*2; /* 64K by default */
5765
5766         /* The array must be an exact multiple of chunksize */
5767         while (chunksect && (mddev->array_sectors & (chunksect-1)))
5768                 chunksect >>= 1;
5769
5770         if ((chunksect<<9) < STRIPE_SIZE)
5771                 /* array size does not allow a suitable chunk size */
5772                 return ERR_PTR(-EINVAL);
5773
5774         mddev->new_level = 5;
5775         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5776         mddev->new_chunk_sectors = chunksect;
5777
5778         return setup_conf(mddev);
5779 }
5780
5781 static void *raid5_takeover_raid6(mddev_t *mddev)
5782 {
5783         int new_layout;
5784
5785         switch (mddev->layout) {
5786         case ALGORITHM_LEFT_ASYMMETRIC_6:
5787                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5788                 break;
5789         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5790                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5791                 break;
5792         case ALGORITHM_LEFT_SYMMETRIC_6:
5793                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5794                 break;
5795         case ALGORITHM_RIGHT_SYMMETRIC_6:
5796                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5797                 break;
5798         case ALGORITHM_PARITY_0_6:
5799                 new_layout = ALGORITHM_PARITY_0;
5800                 break;
5801         case ALGORITHM_PARITY_N:
5802                 new_layout = ALGORITHM_PARITY_N;
5803                 break;
5804         default:
5805                 return ERR_PTR(-EINVAL);
5806         }
5807         mddev->new_level = 5;
5808         mddev->new_layout = new_layout;
5809         mddev->delta_disks = -1;
5810         mddev->raid_disks -= 1;
5811         return setup_conf(mddev);
5812 }
5813
5814
5815 static int raid5_check_reshape(mddev_t *mddev)
5816 {
5817         /* For a 2-drive array, the layout and chunk size can be changed
5818          * immediately as not restriping is needed.
5819          * For larger arrays we record the new value - after validation
5820          * to be used by a reshape pass.
5821          */
5822         raid5_conf_t *conf = mddev->private;
5823         int new_chunk = mddev->new_chunk_sectors;
5824
5825         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5826                 return -EINVAL;
5827         if (new_chunk > 0) {
5828                 if (!is_power_of_2(new_chunk))
5829                         return -EINVAL;
5830                 if (new_chunk < (PAGE_SIZE>>9))
5831                         return -EINVAL;
5832                 if (mddev->array_sectors & (new_chunk-1))
5833                         /* not factor of array size */
5834                         return -EINVAL;
5835         }
5836
5837         /* They look valid */
5838
5839         if (mddev->raid_disks == 2) {
5840                 /* can make the change immediately */
5841                 if (mddev->new_layout >= 0) {
5842                         conf->algorithm = mddev->new_layout;
5843                         mddev->layout = mddev->new_layout;
5844                 }
5845                 if (new_chunk > 0) {
5846                         conf->chunk_sectors = new_chunk ;
5847                         mddev->chunk_sectors = new_chunk;
5848                 }
5849                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5850                 md_wakeup_thread(mddev->thread);
5851         }
5852         return check_reshape(mddev);
5853 }
5854
5855 static int raid6_check_reshape(mddev_t *mddev)
5856 {
5857         int new_chunk = mddev->new_chunk_sectors;
5858
5859         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5860                 return -EINVAL;
5861         if (new_chunk > 0) {
5862                 if (!is_power_of_2(new_chunk))
5863                         return -EINVAL;
5864                 if (new_chunk < (PAGE_SIZE >> 9))
5865                         return -EINVAL;
5866                 if (mddev->array_sectors & (new_chunk-1))
5867                         /* not factor of array size */
5868                         return -EINVAL;
5869         }
5870
5871         /* They look valid */
5872         return check_reshape(mddev);
5873 }
5874
5875 static void *raid5_takeover(mddev_t *mddev)
5876 {
5877         /* raid5 can take over:
5878          *  raid0 - if there is only one strip zone - make it a raid4 layout
5879          *  raid1 - if there are two drives.  We need to know the chunk size
5880          *  raid4 - trivial - just use a raid4 layout.
5881          *  raid6 - Providing it is a *_6 layout
5882          */
5883         if (mddev->level == 0)
5884                 return raid45_takeover_raid0(mddev, 5);
5885         if (mddev->level == 1)
5886                 return raid5_takeover_raid1(mddev);
5887         if (mddev->level == 4) {
5888                 mddev->new_layout = ALGORITHM_PARITY_N;
5889                 mddev->new_level = 5;
5890                 return setup_conf(mddev);
5891         }
5892         if (mddev->level == 6)
5893                 return raid5_takeover_raid6(mddev);
5894
5895         return ERR_PTR(-EINVAL);
5896 }
5897
5898 static void *raid4_takeover(mddev_t *mddev)
5899 {
5900         /* raid4 can take over:
5901          *  raid0 - if there is only one strip zone
5902          *  raid5 - if layout is right
5903          */
5904         if (mddev->level == 0)
5905                 return raid45_takeover_raid0(mddev, 4);
5906         if (mddev->level == 5 &&
5907             mddev->layout == ALGORITHM_PARITY_N) {
5908                 mddev->new_layout = 0;
5909                 mddev->new_level = 4;
5910                 return setup_conf(mddev);
5911         }
5912         return ERR_PTR(-EINVAL);
5913 }
5914
5915 static struct mdk_personality raid5_personality;
5916
5917 static void *raid6_takeover(mddev_t *mddev)
5918 {
5919         /* Currently can only take over a raid5.  We map the
5920          * personality to an equivalent raid6 personality
5921          * with the Q block at the end.
5922          */
5923         int new_layout;
5924
5925         if (mddev->pers != &raid5_personality)
5926                 return ERR_PTR(-EINVAL);
5927         if (mddev->degraded > 1)
5928                 return ERR_PTR(-EINVAL);
5929         if (mddev->raid_disks > 253)
5930                 return ERR_PTR(-EINVAL);
5931         if (mddev->raid_disks < 3)
5932                 return ERR_PTR(-EINVAL);
5933
5934         switch (mddev->layout) {
5935         case ALGORITHM_LEFT_ASYMMETRIC:
5936                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5937                 break;
5938         case ALGORITHM_RIGHT_ASYMMETRIC:
5939                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5940                 break;
5941         case ALGORITHM_LEFT_SYMMETRIC:
5942                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5943                 break;
5944         case ALGORITHM_RIGHT_SYMMETRIC:
5945                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5946                 break;
5947         case ALGORITHM_PARITY_0:
5948                 new_layout = ALGORITHM_PARITY_0_6;
5949                 break;
5950         case ALGORITHM_PARITY_N:
5951                 new_layout = ALGORITHM_PARITY_N;
5952                 break;
5953         default:
5954                 return ERR_PTR(-EINVAL);
5955         }
5956         mddev->new_level = 6;
5957         mddev->new_layout = new_layout;
5958         mddev->delta_disks = 1;
5959         mddev->raid_disks += 1;
5960         return setup_conf(mddev);
5961 }
5962
5963
5964 static struct mdk_personality raid6_personality =
5965 {
5966         .name           = "raid6",
5967         .level          = 6,
5968         .owner          = THIS_MODULE,
5969         .make_request   = make_request,
5970         .run            = run,
5971         .stop           = stop,
5972         .status         = status,
5973         .error_handler  = error,
5974         .hot_add_disk   = raid5_add_disk,
5975         .hot_remove_disk= raid5_remove_disk,
5976         .spare_active   = raid5_spare_active,
5977         .sync_request   = sync_request,
5978         .resize         = raid5_resize,
5979         .size           = raid5_size,
5980         .check_reshape  = raid6_check_reshape,
5981         .start_reshape  = raid5_start_reshape,
5982         .finish_reshape = raid5_finish_reshape,
5983         .quiesce        = raid5_quiesce,
5984         .takeover       = raid6_takeover,
5985 };
5986 static struct mdk_personality raid5_personality =
5987 {
5988         .name           = "raid5",
5989         .level          = 5,
5990         .owner          = THIS_MODULE,
5991         .make_request   = make_request,
5992         .run            = run,
5993         .stop           = stop,
5994         .status         = status,
5995         .error_handler  = error,
5996         .hot_add_disk   = raid5_add_disk,
5997         .hot_remove_disk= raid5_remove_disk,
5998         .spare_active   = raid5_spare_active,
5999         .sync_request   = sync_request,
6000         .resize         = raid5_resize,
6001         .size           = raid5_size,
6002         .check_reshape  = raid5_check_reshape,
6003         .start_reshape  = raid5_start_reshape,
6004         .finish_reshape = raid5_finish_reshape,
6005         .quiesce        = raid5_quiesce,
6006         .takeover       = raid5_takeover,
6007 };
6008
6009 static struct mdk_personality raid4_personality =
6010 {
6011         .name           = "raid4",
6012         .level          = 4,
6013         .owner          = THIS_MODULE,
6014         .make_request   = make_request,
6015         .run            = run,
6016         .stop           = stop,
6017         .status         = status,
6018         .error_handler  = error,
6019         .hot_add_disk   = raid5_add_disk,
6020         .hot_remove_disk= raid5_remove_disk,
6021         .spare_active   = raid5_spare_active,
6022         .sync_request   = sync_request,
6023         .resize         = raid5_resize,
6024         .size           = raid5_size,
6025         .check_reshape  = raid5_check_reshape,
6026         .start_reshape  = raid5_start_reshape,
6027         .finish_reshape = raid5_finish_reshape,
6028         .quiesce        = raid5_quiesce,
6029         .takeover       = raid4_takeover,
6030 };
6031
6032 static int __init raid5_init(void)
6033 {
6034         register_md_personality(&raid6_personality);
6035         register_md_personality(&raid5_personality);
6036         register_md_personality(&raid4_personality);
6037         return 0;
6038 }
6039
6040 static void raid5_exit(void)
6041 {
6042         unregister_md_personality(&raid6_personality);
6043         unregister_md_personality(&raid5_personality);
6044         unregister_md_personality(&raid4_personality);
6045 }
6046
6047 module_init(raid5_init);
6048 module_exit(raid5_exit);
6049 MODULE_LICENSE("GPL");
6050 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6051 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6052 MODULE_ALIAS("md-raid5");
6053 MODULE_ALIAS("md-raid4");
6054 MODULE_ALIAS("md-level-5");
6055 MODULE_ALIAS("md-level-4");
6056 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6057 MODULE_ALIAS("md-raid6");
6058 MODULE_ALIAS("md-level-6");
6059
6060 /* This used to be two separate modules, they were: */
6061 MODULE_ALIAS("raid5");
6062 MODULE_ALIAS("raid6");