]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/ieee1394/eth1394.c
[NET]: Wrap hard_header_parse
[net-next-2.6.git] / drivers / ieee1394 / eth1394.c
1 /*
2  * eth1394.c -- IPv4 driver for Linux IEEE-1394 Subsystem
3  *
4  * Copyright (C) 2001-2003 Ben Collins <bcollins@debian.org>
5  *               2000 Bonin Franck <boninf@free.fr>
6  *               2003 Steve Kinneberg <kinnebergsteve@acmsystems.com>
7  *
8  * Mainly based on work by Emanuel Pirker and Andreas E. Bombe
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software Foundation,
22  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  */
24
25 /*
26  * This driver intends to support RFC 2734, which describes a method for
27  * transporting IPv4 datagrams over IEEE-1394 serial busses.
28  *
29  * TODO:
30  * RFC 2734 related:
31  * - Add MCAP. Limited Multicast exists only to 224.0.0.1 and 224.0.0.2.
32  *
33  * Non-RFC 2734 related:
34  * - Handle fragmented skb's coming from the networking layer.
35  * - Move generic GASP reception to core 1394 code
36  * - Convert kmalloc/kfree for link fragments to use kmem_cache_* instead
37  * - Stability improvements
38  * - Performance enhancements
39  * - Consider garbage collecting old partial datagrams after X amount of time
40  */
41
42 #include <linux/module.h>
43
44 #include <linux/kernel.h>
45 #include <linux/slab.h>
46 #include <linux/errno.h>
47 #include <linux/types.h>
48 #include <linux/delay.h>
49 #include <linux/init.h>
50 #include <linux/workqueue.h>
51
52 #include <linux/netdevice.h>
53 #include <linux/inetdevice.h>
54 #include <linux/if_arp.h>
55 #include <linux/if_ether.h>
56 #include <linux/ip.h>
57 #include <linux/in.h>
58 #include <linux/tcp.h>
59 #include <linux/skbuff.h>
60 #include <linux/bitops.h>
61 #include <linux/ethtool.h>
62 #include <asm/uaccess.h>
63 #include <asm/delay.h>
64 #include <asm/unaligned.h>
65 #include <net/arp.h>
66
67 #include "config_roms.h"
68 #include "csr1212.h"
69 #include "eth1394.h"
70 #include "highlevel.h"
71 #include "ieee1394.h"
72 #include "ieee1394_core.h"
73 #include "ieee1394_hotplug.h"
74 #include "ieee1394_transactions.h"
75 #include "ieee1394_types.h"
76 #include "iso.h"
77 #include "nodemgr.h"
78
79 #define ETH1394_PRINT_G(level, fmt, args...) \
80         printk(level "%s: " fmt, driver_name, ## args)
81
82 #define ETH1394_PRINT(level, dev_name, fmt, args...) \
83         printk(level "%s: %s: " fmt, driver_name, dev_name, ## args)
84
85 struct fragment_info {
86         struct list_head list;
87         int offset;
88         int len;
89 };
90
91 struct partial_datagram {
92         struct list_head list;
93         u16 dgl;
94         u16 dg_size;
95         u16 ether_type;
96         struct sk_buff *skb;
97         char *pbuf;
98         struct list_head frag_info;
99 };
100
101 struct pdg_list {
102         struct list_head list;  /* partial datagram list per node       */
103         unsigned int sz;        /* partial datagram list size per node  */
104         spinlock_t lock;        /* partial datagram lock                */
105 };
106
107 struct eth1394_host_info {
108         struct hpsb_host *host;
109         struct net_device *dev;
110 };
111
112 struct eth1394_node_ref {
113         struct unit_directory *ud;
114         struct list_head list;
115 };
116
117 struct eth1394_node_info {
118         u16 maxpayload;         /* max payload                  */
119         u8 sspd;                /* max speed                    */
120         u64 fifo;               /* FIFO address                 */
121         struct pdg_list pdg;    /* partial RX datagram lists    */
122         int dgl;                /* outgoing datagram label      */
123 };
124
125 static const char driver_name[] = "eth1394";
126
127 static struct kmem_cache *packet_task_cache;
128
129 static struct hpsb_highlevel eth1394_highlevel;
130
131 /* Use common.lf to determine header len */
132 static const int hdr_type_len[] = {
133         sizeof(struct eth1394_uf_hdr),
134         sizeof(struct eth1394_ff_hdr),
135         sizeof(struct eth1394_sf_hdr),
136         sizeof(struct eth1394_sf_hdr)
137 };
138
139 static const u16 eth1394_speedto_maxpayload[] = {
140 /*     S100, S200, S400, S800, S1600, S3200 */
141         512, 1024, 2048, 4096,  4096,  4096
142 };
143
144 MODULE_AUTHOR("Ben Collins (bcollins@debian.org)");
145 MODULE_DESCRIPTION("IEEE 1394 IPv4 Driver (IPv4-over-1394 as per RFC 2734)");
146 MODULE_LICENSE("GPL");
147
148 /*
149  * The max_partial_datagrams parameter is the maximum number of fragmented
150  * datagrams per node that eth1394 will keep in memory.  Providing an upper
151  * bound allows us to limit the amount of memory that partial datagrams
152  * consume in the event that some partial datagrams are never completed.
153  */
154 static int max_partial_datagrams = 25;
155 module_param(max_partial_datagrams, int, S_IRUGO | S_IWUSR);
156 MODULE_PARM_DESC(max_partial_datagrams,
157                  "Maximum number of partially received fragmented datagrams "
158                  "(default = 25).");
159
160
161 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
162                             unsigned short type, void *daddr, void *saddr,
163                             unsigned len);
164 static int ether1394_rebuild_header(struct sk_buff *skb);
165 static int ether1394_header_parse(const struct sk_buff *skb,
166                                   unsigned char *haddr);
167 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh);
168 static void ether1394_header_cache_update(struct hh_cache *hh,
169                                           struct net_device *dev,
170                                           unsigned char *haddr);
171 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev);
172 static void ether1394_iso(struct hpsb_iso *iso);
173
174 static struct ethtool_ops ethtool_ops;
175
176 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
177                            quadlet_t *data, u64 addr, size_t len, u16 flags);
178 static void ether1394_add_host(struct hpsb_host *host);
179 static void ether1394_remove_host(struct hpsb_host *host);
180 static void ether1394_host_reset(struct hpsb_host *host);
181
182 /* Function for incoming 1394 packets */
183 static struct hpsb_address_ops addr_ops = {
184         .write =        ether1394_write,
185 };
186
187 /* Ieee1394 highlevel driver functions */
188 static struct hpsb_highlevel eth1394_highlevel = {
189         .name =         driver_name,
190         .add_host =     ether1394_add_host,
191         .remove_host =  ether1394_remove_host,
192         .host_reset =   ether1394_host_reset,
193 };
194
195 static int ether1394_recv_init(struct eth1394_priv *priv)
196 {
197         unsigned int iso_buf_size;
198
199         /* FIXME: rawiso limits us to PAGE_SIZE */
200         iso_buf_size = min((unsigned int)PAGE_SIZE,
201                            2 * (1U << (priv->host->csr.max_rec + 1)));
202
203         priv->iso = hpsb_iso_recv_init(priv->host,
204                                        ETHER1394_GASP_BUFFERS * iso_buf_size,
205                                        ETHER1394_GASP_BUFFERS,
206                                        priv->broadcast_channel,
207                                        HPSB_ISO_DMA_PACKET_PER_BUFFER,
208                                        1, ether1394_iso);
209         if (priv->iso == NULL) {
210                 ETH1394_PRINT_G(KERN_ERR, "Failed to allocate IR context\n");
211                 priv->bc_state = ETHER1394_BC_ERROR;
212                 return -EAGAIN;
213         }
214
215         if (hpsb_iso_recv_start(priv->iso, -1, (1 << 3), -1) < 0)
216                 priv->bc_state = ETHER1394_BC_STOPPED;
217         else
218                 priv->bc_state = ETHER1394_BC_RUNNING;
219         return 0;
220 }
221
222 /* This is called after an "ifup" */
223 static int ether1394_open(struct net_device *dev)
224 {
225         struct eth1394_priv *priv = netdev_priv(dev);
226         int ret;
227
228         if (priv->bc_state == ETHER1394_BC_ERROR) {
229                 ret = ether1394_recv_init(priv);
230                 if (ret)
231                         return ret;
232         }
233         netif_start_queue(dev);
234         return 0;
235 }
236
237 /* This is called after an "ifdown" */
238 static int ether1394_stop(struct net_device *dev)
239 {
240         /* flush priv->wake */
241         flush_scheduled_work();
242
243         netif_stop_queue(dev);
244         return 0;
245 }
246
247 /* Return statistics to the caller */
248 static struct net_device_stats *ether1394_stats(struct net_device *dev)
249 {
250         return &(((struct eth1394_priv *)netdev_priv(dev))->stats);
251 }
252
253 /* FIXME: What to do if we timeout? I think a host reset is probably in order,
254  * so that's what we do. Should we increment the stat counters too?  */
255 static void ether1394_tx_timeout(struct net_device *dev)
256 {
257         struct hpsb_host *host =
258                         ((struct eth1394_priv *)netdev_priv(dev))->host;
259
260         ETH1394_PRINT(KERN_ERR, dev->name, "Timeout, resetting host\n");
261         ether1394_host_reset(host);
262 }
263
264 static inline int ether1394_max_mtu(struct hpsb_host* host)
265 {
266         return (1 << (host->csr.max_rec + 1))
267                         - sizeof(union eth1394_hdr) - ETHER1394_GASP_OVERHEAD;
268 }
269
270 static int ether1394_change_mtu(struct net_device *dev, int new_mtu)
271 {
272         int max_mtu;
273
274         if (new_mtu < 68)
275                 return -EINVAL;
276
277         max_mtu = ether1394_max_mtu(
278                         ((struct eth1394_priv *)netdev_priv(dev))->host);
279         if (new_mtu > max_mtu) {
280                 ETH1394_PRINT(KERN_INFO, dev->name,
281                               "Local node constrains MTU to %d\n", max_mtu);
282                 return -ERANGE;
283         }
284
285         dev->mtu = new_mtu;
286         return 0;
287 }
288
289 static void purge_partial_datagram(struct list_head *old)
290 {
291         struct partial_datagram *pd;
292         struct list_head *lh, *n;
293         struct fragment_info *fi;
294
295         pd = list_entry(old, struct partial_datagram, list);
296
297         list_for_each_safe(lh, n, &pd->frag_info) {
298                 fi = list_entry(lh, struct fragment_info, list);
299                 list_del(lh);
300                 kfree(fi);
301         }
302         list_del(old);
303         kfree_skb(pd->skb);
304         kfree(pd);
305 }
306
307 /******************************************
308  * 1394 bus activity functions
309  ******************************************/
310
311 static struct eth1394_node_ref *eth1394_find_node(struct list_head *inl,
312                                                   struct unit_directory *ud)
313 {
314         struct eth1394_node_ref *node;
315
316         list_for_each_entry(node, inl, list)
317                 if (node->ud == ud)
318                         return node;
319
320         return NULL;
321 }
322
323 static struct eth1394_node_ref *eth1394_find_node_guid(struct list_head *inl,
324                                                        u64 guid)
325 {
326         struct eth1394_node_ref *node;
327
328         list_for_each_entry(node, inl, list)
329                 if (node->ud->ne->guid == guid)
330                         return node;
331
332         return NULL;
333 }
334
335 static struct eth1394_node_ref *eth1394_find_node_nodeid(struct list_head *inl,
336                                                          nodeid_t nodeid)
337 {
338         struct eth1394_node_ref *node;
339
340         list_for_each_entry(node, inl, list)
341                 if (node->ud->ne->nodeid == nodeid)
342                         return node;
343
344         return NULL;
345 }
346
347 static int eth1394_new_node(struct eth1394_host_info *hi,
348                             struct unit_directory *ud)
349 {
350         struct eth1394_priv *priv;
351         struct eth1394_node_ref *new_node;
352         struct eth1394_node_info *node_info;
353
354         new_node = kmalloc(sizeof(*new_node), GFP_KERNEL);
355         if (!new_node)
356                 return -ENOMEM;
357
358         node_info = kmalloc(sizeof(*node_info), GFP_KERNEL);
359         if (!node_info) {
360                 kfree(new_node);
361                 return -ENOMEM;
362         }
363
364         spin_lock_init(&node_info->pdg.lock);
365         INIT_LIST_HEAD(&node_info->pdg.list);
366         node_info->pdg.sz = 0;
367         node_info->fifo = CSR1212_INVALID_ADDR_SPACE;
368
369         ud->device.driver_data = node_info;
370         new_node->ud = ud;
371
372         priv = netdev_priv(hi->dev);
373         list_add_tail(&new_node->list, &priv->ip_node_list);
374         return 0;
375 }
376
377 static int eth1394_probe(struct device *dev)
378 {
379         struct unit_directory *ud;
380         struct eth1394_host_info *hi;
381
382         ud = container_of(dev, struct unit_directory, device);
383         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
384         if (!hi)
385                 return -ENOENT;
386
387         return eth1394_new_node(hi, ud);
388 }
389
390 static int eth1394_remove(struct device *dev)
391 {
392         struct unit_directory *ud;
393         struct eth1394_host_info *hi;
394         struct eth1394_priv *priv;
395         struct eth1394_node_ref *old_node;
396         struct eth1394_node_info *node_info;
397         struct list_head *lh, *n;
398         unsigned long flags;
399
400         ud = container_of(dev, struct unit_directory, device);
401         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
402         if (!hi)
403                 return -ENOENT;
404
405         priv = netdev_priv(hi->dev);
406
407         old_node = eth1394_find_node(&priv->ip_node_list, ud);
408         if (!old_node)
409                 return 0;
410
411         list_del(&old_node->list);
412         kfree(old_node);
413
414         node_info = (struct eth1394_node_info*)ud->device.driver_data;
415
416         spin_lock_irqsave(&node_info->pdg.lock, flags);
417         /* The partial datagram list should be empty, but we'll just
418          * make sure anyway... */
419         list_for_each_safe(lh, n, &node_info->pdg.list)
420                 purge_partial_datagram(lh);
421         spin_unlock_irqrestore(&node_info->pdg.lock, flags);
422
423         kfree(node_info);
424         ud->device.driver_data = NULL;
425         return 0;
426 }
427
428 static int eth1394_update(struct unit_directory *ud)
429 {
430         struct eth1394_host_info *hi;
431         struct eth1394_priv *priv;
432         struct eth1394_node_ref *node;
433
434         hi = hpsb_get_hostinfo(&eth1394_highlevel, ud->ne->host);
435         if (!hi)
436                 return -ENOENT;
437
438         priv = netdev_priv(hi->dev);
439         node = eth1394_find_node(&priv->ip_node_list, ud);
440         if (node)
441                 return 0;
442
443         return eth1394_new_node(hi, ud);
444 }
445
446 static struct ieee1394_device_id eth1394_id_table[] = {
447         {
448                 .match_flags = (IEEE1394_MATCH_SPECIFIER_ID |
449                                 IEEE1394_MATCH_VERSION),
450                 .specifier_id = ETHER1394_GASP_SPECIFIER_ID,
451                 .version = ETHER1394_GASP_VERSION,
452         },
453         {}
454 };
455
456 MODULE_DEVICE_TABLE(ieee1394, eth1394_id_table);
457
458 static struct hpsb_protocol_driver eth1394_proto_driver = {
459         .name           = driver_name,
460         .id_table       = eth1394_id_table,
461         .update         = eth1394_update,
462         .driver         = {
463                 .probe          = eth1394_probe,
464                 .remove         = eth1394_remove,
465         },
466 };
467
468 static void ether1394_reset_priv(struct net_device *dev, int set_mtu)
469 {
470         unsigned long flags;
471         int i;
472         struct eth1394_priv *priv = netdev_priv(dev);
473         struct hpsb_host *host = priv->host;
474         u64 guid = get_unaligned((u64 *)&(host->csr.rom->bus_info_data[3]));
475         int max_speed = IEEE1394_SPEED_MAX;
476
477         spin_lock_irqsave(&priv->lock, flags);
478
479         memset(priv->ud_list, 0, sizeof(priv->ud_list));
480         priv->bc_maxpayload = 512;
481
482         /* Determine speed limit */
483         /* FIXME: This is broken for nodes with link speed < PHY speed,
484          * and it is suboptimal for S200B...S800B hardware.
485          * The result of nodemgr's speed probe should be used somehow. */
486         for (i = 0; i < host->node_count; i++) {
487                 /* take care of S100B...S400B PHY ports */
488                 if (host->speed[i] == SELFID_SPEED_UNKNOWN) {
489                         max_speed = IEEE1394_SPEED_100;
490                         break;
491                 }
492                 if (max_speed > host->speed[i])
493                         max_speed = host->speed[i];
494         }
495         priv->bc_sspd = max_speed;
496
497         if (set_mtu) {
498                 /* Use the RFC 2734 default 1500 octets or the maximum payload
499                  * as initial MTU */
500                 dev->mtu = min(1500, ether1394_max_mtu(host));
501
502                 /* Set our hardware address while we're at it */
503                 memcpy(dev->dev_addr, &guid, sizeof(u64));
504                 memset(dev->broadcast, 0xff, sizeof(u64));
505         }
506
507         spin_unlock_irqrestore(&priv->lock, flags);
508 }
509
510 static void ether1394_init_dev(struct net_device *dev)
511 {
512         dev->open               = ether1394_open;
513         dev->stop               = ether1394_stop;
514         dev->hard_start_xmit    = ether1394_tx;
515         dev->get_stats          = ether1394_stats;
516         dev->tx_timeout         = ether1394_tx_timeout;
517         dev->change_mtu         = ether1394_change_mtu;
518
519         dev->hard_header        = ether1394_header;
520         dev->rebuild_header     = ether1394_rebuild_header;
521         dev->hard_header_cache  = ether1394_header_cache;
522         dev->header_cache_update= ether1394_header_cache_update;
523         dev->hard_header_parse  = ether1394_header_parse;
524
525         SET_ETHTOOL_OPS(dev, &ethtool_ops);
526
527         dev->watchdog_timeo     = ETHER1394_TIMEOUT;
528         dev->flags              = IFF_BROADCAST | IFF_MULTICAST;
529         dev->features           = NETIF_F_HIGHDMA;
530         dev->addr_len           = ETH1394_ALEN;
531         dev->hard_header_len    = ETH1394_HLEN;
532         dev->type               = ARPHRD_IEEE1394;
533
534         /* FIXME: This value was copied from ether_setup(). Is it too much? */
535         dev->tx_queue_len       = 1000;
536 }
537
538 /*
539  * Wake the queue up after commonly encountered transmit failure conditions are
540  * hopefully over.  Currently only tlabel exhaustion is accounted for.
541  */
542 static void ether1394_wake_queue(struct work_struct *work)
543 {
544         struct eth1394_priv *priv;
545         struct hpsb_packet *packet;
546
547         priv = container_of(work, struct eth1394_priv, wake);
548         packet = hpsb_alloc_packet(0);
549
550         /* This is really bad, but unjam the queue anyway. */
551         if (!packet)
552                 goto out;
553
554         packet->host = priv->host;
555         packet->node_id = priv->wake_node;
556         /*
557          * A transaction label is all we really want.  If we get one, it almost
558          * always means we can get a lot more because the ieee1394 core recycled
559          * a whole batch of tlabels, at last.
560          */
561         if (hpsb_get_tlabel(packet) == 0)
562                 hpsb_free_tlabel(packet);
563
564         hpsb_free_packet(packet);
565 out:
566         netif_wake_queue(priv->wake_dev);
567 }
568
569 /*
570  * This function is called every time a card is found. It is generally called
571  * when the module is installed. This is where we add all of our ethernet
572  * devices. One for each host.
573  */
574 static void ether1394_add_host(struct hpsb_host *host)
575 {
576         struct eth1394_host_info *hi = NULL;
577         struct net_device *dev = NULL;
578         struct eth1394_priv *priv;
579         u64 fifo_addr;
580
581         if (hpsb_config_rom_ip1394_add(host) != 0) {
582                 ETH1394_PRINT_G(KERN_ERR, "Can't add IP-over-1394 ROM entry\n");
583                 return;
584         }
585
586         fifo_addr = hpsb_allocate_and_register_addrspace(
587                         &eth1394_highlevel, host, &addr_ops,
588                         ETHER1394_REGION_ADDR_LEN, ETHER1394_REGION_ADDR_LEN,
589                         CSR1212_INVALID_ADDR_SPACE, CSR1212_INVALID_ADDR_SPACE);
590         if (fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
591                 ETH1394_PRINT_G(KERN_ERR, "Cannot register CSR space\n");
592                 hpsb_config_rom_ip1394_remove(host);
593                 return;
594         }
595
596         dev = alloc_netdev(sizeof(*priv), "eth%d", ether1394_init_dev);
597         if (dev == NULL) {
598                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
599                 goto out;
600         }
601
602         SET_NETDEV_DEV(dev, &host->device);
603
604         priv = netdev_priv(dev);
605         INIT_LIST_HEAD(&priv->ip_node_list);
606         spin_lock_init(&priv->lock);
607         priv->host = host;
608         priv->local_fifo = fifo_addr;
609         INIT_WORK(&priv->wake, ether1394_wake_queue);
610         priv->wake_dev = dev;
611
612         hi = hpsb_create_hostinfo(&eth1394_highlevel, host, sizeof(*hi));
613         if (hi == NULL) {
614                 ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
615                 goto out;
616         }
617
618         ether1394_reset_priv(dev, 1);
619
620         if (register_netdev(dev)) {
621                 ETH1394_PRINT_G(KERN_ERR, "Cannot register the driver\n");
622                 goto out;
623         }
624
625         ETH1394_PRINT(KERN_INFO, dev->name, "IPv4 over IEEE 1394 (fw-host%d)\n",
626                       host->id);
627
628         hi->host = host;
629         hi->dev = dev;
630
631         /* Ignore validity in hopes that it will be set in the future.  It'll
632          * be checked when the eth device is opened. */
633         priv->broadcast_channel = host->csr.broadcast_channel & 0x3f;
634
635         ether1394_recv_init(priv);
636         return;
637 out:
638         if (dev)
639                 free_netdev(dev);
640         if (hi)
641                 hpsb_destroy_hostinfo(&eth1394_highlevel, host);
642         hpsb_unregister_addrspace(&eth1394_highlevel, host, fifo_addr);
643         hpsb_config_rom_ip1394_remove(host);
644 }
645
646 /* Remove a card from our list */
647 static void ether1394_remove_host(struct hpsb_host *host)
648 {
649         struct eth1394_host_info *hi;
650         struct eth1394_priv *priv;
651
652         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
653         if (!hi)
654                 return;
655         priv = netdev_priv(hi->dev);
656         hpsb_unregister_addrspace(&eth1394_highlevel, host, priv->local_fifo);
657         hpsb_config_rom_ip1394_remove(host);
658         if (priv->iso)
659                 hpsb_iso_shutdown(priv->iso);
660         unregister_netdev(hi->dev);
661         free_netdev(hi->dev);
662 }
663
664 /* A bus reset happened */
665 static void ether1394_host_reset(struct hpsb_host *host)
666 {
667         struct eth1394_host_info *hi;
668         struct eth1394_priv *priv;
669         struct net_device *dev;
670         struct list_head *lh, *n;
671         struct eth1394_node_ref *node;
672         struct eth1394_node_info *node_info;
673         unsigned long flags;
674
675         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
676
677         /* This can happen for hosts that we don't use */
678         if (!hi)
679                 return;
680
681         dev = hi->dev;
682         priv = netdev_priv(dev);
683
684         /* Reset our private host data, but not our MTU */
685         netif_stop_queue(dev);
686         ether1394_reset_priv(dev, 0);
687
688         list_for_each_entry(node, &priv->ip_node_list, list) {
689                 node_info = node->ud->device.driver_data;
690
691                 spin_lock_irqsave(&node_info->pdg.lock, flags);
692
693                 list_for_each_safe(lh, n, &node_info->pdg.list)
694                         purge_partial_datagram(lh);
695
696                 INIT_LIST_HEAD(&(node_info->pdg.list));
697                 node_info->pdg.sz = 0;
698
699                 spin_unlock_irqrestore(&node_info->pdg.lock, flags);
700         }
701
702         netif_wake_queue(dev);
703 }
704
705 /******************************************
706  * HW Header net device functions
707  ******************************************/
708 /* These functions have been adapted from net/ethernet/eth.c */
709
710 /* Create a fake MAC header for an arbitrary protocol layer.
711  * saddr=NULL means use device source address
712  * daddr=NULL means leave destination address (eg unresolved arp). */
713 static int ether1394_header(struct sk_buff *skb, struct net_device *dev,
714                             unsigned short type, void *daddr, void *saddr,
715                             unsigned len)
716 {
717         struct eth1394hdr *eth =
718                         (struct eth1394hdr *)skb_push(skb, ETH1394_HLEN);
719
720         eth->h_proto = htons(type);
721
722         if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
723                 memset(eth->h_dest, 0, dev->addr_len);
724                 return dev->hard_header_len;
725         }
726
727         if (daddr) {
728                 memcpy(eth->h_dest, daddr, dev->addr_len);
729                 return dev->hard_header_len;
730         }
731
732         return -dev->hard_header_len;
733 }
734
735 /* Rebuild the faked MAC header. This is called after an ARP
736  * (or in future other address resolution) has completed on this
737  * sk_buff. We now let ARP fill in the other fields.
738  *
739  * This routine CANNOT use cached dst->neigh!
740  * Really, it is used only when dst->neigh is wrong.
741  */
742 static int ether1394_rebuild_header(struct sk_buff *skb)
743 {
744         struct eth1394hdr *eth = (struct eth1394hdr *)skb->data;
745
746         if (eth->h_proto == htons(ETH_P_IP))
747                 return arp_find((unsigned char *)&eth->h_dest, skb);
748
749         ETH1394_PRINT(KERN_DEBUG, skb->dev->name,
750                       "unable to resolve type %04x addresses\n",
751                       ntohs(eth->h_proto));
752         return 0;
753 }
754
755 static int ether1394_header_parse(const struct sk_buff *skb,
756                                   unsigned char *haddr)
757 {
758         memcpy(haddr, skb->dev->dev_addr, ETH1394_ALEN);
759         return ETH1394_ALEN;
760 }
761
762 static int ether1394_header_cache(struct neighbour *neigh, struct hh_cache *hh)
763 {
764         unsigned short type = hh->hh_type;
765         struct net_device *dev = neigh->dev;
766         struct eth1394hdr *eth =
767                 (struct eth1394hdr *)((u8 *)hh->hh_data + 16 - ETH1394_HLEN);
768
769         if (type == htons(ETH_P_802_3))
770                 return -1;
771
772         eth->h_proto = type;
773         memcpy(eth->h_dest, neigh->ha, dev->addr_len);
774
775         hh->hh_len = ETH1394_HLEN;
776         return 0;
777 }
778
779 /* Called by Address Resolution module to notify changes in address. */
780 static void ether1394_header_cache_update(struct hh_cache *hh,
781                                           struct net_device *dev,
782                                           unsigned char * haddr)
783 {
784         memcpy((u8 *)hh->hh_data + 16 - ETH1394_HLEN, haddr, dev->addr_len);
785 }
786
787 /******************************************
788  * Datagram reception code
789  ******************************************/
790
791 /* Copied from net/ethernet/eth.c */
792 static u16 ether1394_type_trans(struct sk_buff *skb, struct net_device *dev)
793 {
794         struct eth1394hdr *eth;
795         unsigned char *rawp;
796
797         skb_reset_mac_header(skb);
798         skb_pull(skb, ETH1394_HLEN);
799         eth = eth1394_hdr(skb);
800
801         if (*eth->h_dest & 1) {
802                 if (memcmp(eth->h_dest, dev->broadcast, dev->addr_len) == 0)
803                         skb->pkt_type = PACKET_BROADCAST;
804 #if 0
805                 else
806                         skb->pkt_type = PACKET_MULTICAST;
807 #endif
808         } else {
809                 if (memcmp(eth->h_dest, dev->dev_addr, dev->addr_len))
810                         skb->pkt_type = PACKET_OTHERHOST;
811         }
812
813         if (ntohs(eth->h_proto) >= 1536)
814                 return eth->h_proto;
815
816         rawp = skb->data;
817
818         if (*(unsigned short *)rawp == 0xFFFF)
819                 return htons(ETH_P_802_3);
820
821         return htons(ETH_P_802_2);
822 }
823
824 /* Parse an encapsulated IP1394 header into an ethernet frame packet.
825  * We also perform ARP translation here, if need be.  */
826 static u16 ether1394_parse_encap(struct sk_buff *skb, struct net_device *dev,
827                                  nodeid_t srcid, nodeid_t destid,
828                                  u16 ether_type)
829 {
830         struct eth1394_priv *priv = netdev_priv(dev);
831         u64 dest_hw;
832         unsigned short ret = 0;
833
834         /* Setup our hw addresses. We use these to build the ethernet header. */
835         if (destid == (LOCAL_BUS | ALL_NODES))
836                 dest_hw = ~0ULL;  /* broadcast */
837         else
838                 dest_hw = cpu_to_be64((u64)priv->host->csr.guid_hi << 32 |
839                                       priv->host->csr.guid_lo);
840
841         /* If this is an ARP packet, convert it. First, we want to make
842          * use of some of the fields, since they tell us a little bit
843          * about the sending machine.  */
844         if (ether_type == htons(ETH_P_ARP)) {
845                 struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
846                 struct arphdr *arp = (struct arphdr *)skb->data;
847                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
848                 u64 fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
849                                            ntohl(arp1394->fifo_lo);
850                 u8 max_rec = min(priv->host->csr.max_rec,
851                                  (u8)(arp1394->max_rec));
852                 int sspd = arp1394->sspd;
853                 u16 maxpayload;
854                 struct eth1394_node_ref *node;
855                 struct eth1394_node_info *node_info;
856                 __be64 guid;
857
858                 /* Sanity check. MacOSX seems to be sending us 131 in this
859                  * field (atleast on my Panther G5). Not sure why. */
860                 if (sspd > 5 || sspd < 0)
861                         sspd = 0;
862
863                 maxpayload = min(eth1394_speedto_maxpayload[sspd],
864                                  (u16)(1 << (max_rec + 1)));
865
866                 guid = get_unaligned(&arp1394->s_uniq_id);
867                 node = eth1394_find_node_guid(&priv->ip_node_list,
868                                               be64_to_cpu(guid));
869                 if (!node)
870                         return 0;
871
872                 node_info =
873                     (struct eth1394_node_info *)node->ud->device.driver_data;
874
875                 /* Update our speed/payload/fifo_offset table */
876                 node_info->maxpayload = maxpayload;
877                 node_info->sspd =       sspd;
878                 node_info->fifo =       fifo_addr;
879
880                 /* Now that we're done with the 1394 specific stuff, we'll
881                  * need to alter some of the data.  Believe it or not, all
882                  * that needs to be done is sender_IP_address needs to be
883                  * moved, the destination hardware address get stuffed
884                  * in and the hardware address length set to 8.
885                  *
886                  * IMPORTANT: The code below overwrites 1394 specific data
887                  * needed above so keep the munging of the data for the
888                  * higher level IP stack last. */
889
890                 arp->ar_hln = 8;
891                 arp_ptr += arp->ar_hln;         /* skip over sender unique id */
892                 *(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
893                 arp_ptr += arp->ar_pln;         /* skip over sender IP addr */
894
895                 if (arp->ar_op == htons(ARPOP_REQUEST))
896                         memset(arp_ptr, 0, sizeof(u64));
897                 else
898                         memcpy(arp_ptr, dev->dev_addr, sizeof(u64));
899         }
900
901         /* Now add the ethernet header. */
902         if (dev->hard_header(skb, dev, ntohs(ether_type), &dest_hw, NULL,
903                              skb->len) >= 0)
904                 ret = ether1394_type_trans(skb, dev);
905
906         return ret;
907 }
908
909 static int fragment_overlap(struct list_head *frag_list, int offset, int len)
910 {
911         struct fragment_info *fi;
912         int end = offset + len;
913
914         list_for_each_entry(fi, frag_list, list)
915                 if (offset < fi->offset + fi->len && end > fi->offset)
916                         return 1;
917
918         return 0;
919 }
920
921 static struct list_head *find_partial_datagram(struct list_head *pdgl, int dgl)
922 {
923         struct partial_datagram *pd;
924
925         list_for_each_entry(pd, pdgl, list)
926                 if (pd->dgl == dgl)
927                         return &pd->list;
928
929         return NULL;
930 }
931
932 /* Assumes that new fragment does not overlap any existing fragments */
933 static int new_fragment(struct list_head *frag_info, int offset, int len)
934 {
935         struct list_head *lh;
936         struct fragment_info *fi, *fi2, *new;
937
938         list_for_each(lh, frag_info) {
939                 fi = list_entry(lh, struct fragment_info, list);
940                 if (fi->offset + fi->len == offset) {
941                         /* The new fragment can be tacked on to the end */
942                         fi->len += len;
943                         /* Did the new fragment plug a hole? */
944                         fi2 = list_entry(lh->next, struct fragment_info, list);
945                         if (fi->offset + fi->len == fi2->offset) {
946                                 /* glue fragments together */
947                                 fi->len += fi2->len;
948                                 list_del(lh->next);
949                                 kfree(fi2);
950                         }
951                         return 0;
952                 } else if (offset + len == fi->offset) {
953                         /* The new fragment can be tacked on to the beginning */
954                         fi->offset = offset;
955                         fi->len += len;
956                         /* Did the new fragment plug a hole? */
957                         fi2 = list_entry(lh->prev, struct fragment_info, list);
958                         if (fi2->offset + fi2->len == fi->offset) {
959                                 /* glue fragments together */
960                                 fi2->len += fi->len;
961                                 list_del(lh);
962                                 kfree(fi);
963                         }
964                         return 0;
965                 } else if (offset > fi->offset + fi->len) {
966                         break;
967                 } else if (offset + len < fi->offset) {
968                         lh = lh->prev;
969                         break;
970                 }
971         }
972
973         new = kmalloc(sizeof(*new), GFP_ATOMIC);
974         if (!new)
975                 return -ENOMEM;
976
977         new->offset = offset;
978         new->len = len;
979
980         list_add(&new->list, lh);
981         return 0;
982 }
983
984 static int new_partial_datagram(struct net_device *dev, struct list_head *pdgl,
985                                 int dgl, int dg_size, char *frag_buf,
986                                 int frag_off, int frag_len)
987 {
988         struct partial_datagram *new;
989
990         new = kmalloc(sizeof(*new), GFP_ATOMIC);
991         if (!new)
992                 return -ENOMEM;
993
994         INIT_LIST_HEAD(&new->frag_info);
995
996         if (new_fragment(&new->frag_info, frag_off, frag_len) < 0) {
997                 kfree(new);
998                 return -ENOMEM;
999         }
1000
1001         new->dgl = dgl;
1002         new->dg_size = dg_size;
1003
1004         new->skb = dev_alloc_skb(dg_size + dev->hard_header_len + 15);
1005         if (!new->skb) {
1006                 struct fragment_info *fi = list_entry(new->frag_info.next,
1007                                                       struct fragment_info,
1008                                                       list);
1009                 kfree(fi);
1010                 kfree(new);
1011                 return -ENOMEM;
1012         }
1013
1014         skb_reserve(new->skb, (dev->hard_header_len + 15) & ~15);
1015         new->pbuf = skb_put(new->skb, dg_size);
1016         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
1017
1018         list_add(&new->list, pdgl);
1019         return 0;
1020 }
1021
1022 static int update_partial_datagram(struct list_head *pdgl, struct list_head *lh,
1023                                    char *frag_buf, int frag_off, int frag_len)
1024 {
1025         struct partial_datagram *pd =
1026                         list_entry(lh, struct partial_datagram, list);
1027
1028         if (new_fragment(&pd->frag_info, frag_off, frag_len) < 0)
1029                 return -ENOMEM;
1030
1031         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
1032
1033         /* Move list entry to beginnig of list so that oldest partial
1034          * datagrams percolate to the end of the list */
1035         list_move(lh, pdgl);
1036         return 0;
1037 }
1038
1039 static int is_datagram_complete(struct list_head *lh, int dg_size)
1040 {
1041         struct partial_datagram *pd;
1042         struct fragment_info *fi;
1043
1044         pd = list_entry(lh, struct partial_datagram, list);
1045         fi = list_entry(pd->frag_info.next, struct fragment_info, list);
1046
1047         return (fi->len == dg_size);
1048 }
1049
1050 /* Packet reception. We convert the IP1394 encapsulation header to an
1051  * ethernet header, and fill it with some of our other fields. This is
1052  * an incoming packet from the 1394 bus.  */
1053 static int ether1394_data_handler(struct net_device *dev, int srcid, int destid,
1054                                   char *buf, int len)
1055 {
1056         struct sk_buff *skb;
1057         unsigned long flags;
1058         struct eth1394_priv *priv = netdev_priv(dev);
1059         union eth1394_hdr *hdr = (union eth1394_hdr *)buf;
1060         u16 ether_type = 0;  /* initialized to clear warning */
1061         int hdr_len;
1062         struct unit_directory *ud = priv->ud_list[NODEID_TO_NODE(srcid)];
1063         struct eth1394_node_info *node_info;
1064
1065         if (!ud) {
1066                 struct eth1394_node_ref *node;
1067                 node = eth1394_find_node_nodeid(&priv->ip_node_list, srcid);
1068                 if (unlikely(!node)) {
1069                         HPSB_PRINT(KERN_ERR, "ether1394 rx: sender nodeid "
1070                                    "lookup failure: " NODE_BUS_FMT,
1071                                    NODE_BUS_ARGS(priv->host, srcid));
1072                         priv->stats.rx_dropped++;
1073                         return -1;
1074                 }
1075                 ud = node->ud;
1076
1077                 priv->ud_list[NODEID_TO_NODE(srcid)] = ud;
1078         }
1079
1080         node_info = (struct eth1394_node_info *)ud->device.driver_data;
1081
1082         /* First, did we receive a fragmented or unfragmented datagram? */
1083         hdr->words.word1 = ntohs(hdr->words.word1);
1084
1085         hdr_len = hdr_type_len[hdr->common.lf];
1086
1087         if (hdr->common.lf == ETH1394_HDR_LF_UF) {
1088                 /* An unfragmented datagram has been received by the ieee1394
1089                  * bus. Build an skbuff around it so we can pass it to the
1090                  * high level network layer. */
1091
1092                 skb = dev_alloc_skb(len + dev->hard_header_len + 15);
1093                 if (unlikely(!skb)) {
1094                         ETH1394_PRINT_G(KERN_ERR, "Out of memory\n");
1095                         priv->stats.rx_dropped++;
1096                         return -1;
1097                 }
1098                 skb_reserve(skb, (dev->hard_header_len + 15) & ~15);
1099                 memcpy(skb_put(skb, len - hdr_len), buf + hdr_len,
1100                        len - hdr_len);
1101                 ether_type = hdr->uf.ether_type;
1102         } else {
1103                 /* A datagram fragment has been received, now the fun begins. */
1104
1105                 struct list_head *pdgl, *lh;
1106                 struct partial_datagram *pd;
1107                 int fg_off;
1108                 int fg_len = len - hdr_len;
1109                 int dg_size;
1110                 int dgl;
1111                 int retval;
1112                 struct pdg_list *pdg = &(node_info->pdg);
1113
1114                 hdr->words.word3 = ntohs(hdr->words.word3);
1115                 /* The 4th header word is reserved so no need to do ntohs() */
1116
1117                 if (hdr->common.lf == ETH1394_HDR_LF_FF) {
1118                         ether_type = hdr->ff.ether_type;
1119                         dgl = hdr->ff.dgl;
1120                         dg_size = hdr->ff.dg_size + 1;
1121                         fg_off = 0;
1122                 } else {
1123                         hdr->words.word2 = ntohs(hdr->words.word2);
1124                         dgl = hdr->sf.dgl;
1125                         dg_size = hdr->sf.dg_size + 1;
1126                         fg_off = hdr->sf.fg_off;
1127                 }
1128                 spin_lock_irqsave(&pdg->lock, flags);
1129
1130                 pdgl = &(pdg->list);
1131                 lh = find_partial_datagram(pdgl, dgl);
1132
1133                 if (lh == NULL) {
1134                         while (pdg->sz >= max_partial_datagrams) {
1135                                 /* remove the oldest */
1136                                 purge_partial_datagram(pdgl->prev);
1137                                 pdg->sz--;
1138                         }
1139
1140                         retval = new_partial_datagram(dev, pdgl, dgl, dg_size,
1141                                                       buf + hdr_len, fg_off,
1142                                                       fg_len);
1143                         if (retval < 0) {
1144                                 spin_unlock_irqrestore(&pdg->lock, flags);
1145                                 goto bad_proto;
1146                         }
1147                         pdg->sz++;
1148                         lh = find_partial_datagram(pdgl, dgl);
1149                 } else {
1150                         struct partial_datagram *pd;
1151
1152                         pd = list_entry(lh, struct partial_datagram, list);
1153
1154                         if (fragment_overlap(&pd->frag_info, fg_off, fg_len)) {
1155                                 /* Overlapping fragments, obliterate old
1156                                  * datagram and start new one. */
1157                                 purge_partial_datagram(lh);
1158                                 retval = new_partial_datagram(dev, pdgl, dgl,
1159                                                               dg_size,
1160                                                               buf + hdr_len,
1161                                                               fg_off, fg_len);
1162                                 if (retval < 0) {
1163                                         pdg->sz--;
1164                                         spin_unlock_irqrestore(&pdg->lock, flags);
1165                                         goto bad_proto;
1166                                 }
1167                         } else {
1168                                 retval = update_partial_datagram(pdgl, lh,
1169                                                                  buf + hdr_len,
1170                                                                  fg_off, fg_len);
1171                                 if (retval < 0) {
1172                                         /* Couldn't save off fragment anyway
1173                                          * so might as well obliterate the
1174                                          * datagram now. */
1175                                         purge_partial_datagram(lh);
1176                                         pdg->sz--;
1177                                         spin_unlock_irqrestore(&pdg->lock, flags);
1178                                         goto bad_proto;
1179                                 }
1180                         } /* fragment overlap */
1181                 } /* new datagram or add to existing one */
1182
1183                 pd = list_entry(lh, struct partial_datagram, list);
1184
1185                 if (hdr->common.lf == ETH1394_HDR_LF_FF)
1186                         pd->ether_type = ether_type;
1187
1188                 if (is_datagram_complete(lh, dg_size)) {
1189                         ether_type = pd->ether_type;
1190                         pdg->sz--;
1191                         skb = skb_get(pd->skb);
1192                         purge_partial_datagram(lh);
1193                         spin_unlock_irqrestore(&pdg->lock, flags);
1194                 } else {
1195                         /* Datagram is not complete, we're done for the
1196                          * moment. */
1197                         spin_unlock_irqrestore(&pdg->lock, flags);
1198                         return 0;
1199                 }
1200         } /* unframgented datagram or fragmented one */
1201
1202         /* Write metadata, and then pass to the receive level */
1203         skb->dev = dev;
1204         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
1205
1206         /* Parse the encapsulation header. This actually does the job of
1207          * converting to an ethernet frame header, aswell as arp
1208          * conversion if needed. ARP conversion is easier in this
1209          * direction, since we are using ethernet as our backend.  */
1210         skb->protocol = ether1394_parse_encap(skb, dev, srcid, destid,
1211                                               ether_type);
1212
1213         spin_lock_irqsave(&priv->lock, flags);
1214
1215         if (!skb->protocol) {
1216                 priv->stats.rx_errors++;
1217                 priv->stats.rx_dropped++;
1218                 dev_kfree_skb_any(skb);
1219                 goto bad_proto;
1220         }
1221
1222         if (netif_rx(skb) == NET_RX_DROP) {
1223                 priv->stats.rx_errors++;
1224                 priv->stats.rx_dropped++;
1225                 goto bad_proto;
1226         }
1227
1228         /* Statistics */
1229         priv->stats.rx_packets++;
1230         priv->stats.rx_bytes += skb->len;
1231
1232 bad_proto:
1233         if (netif_queue_stopped(dev))
1234                 netif_wake_queue(dev);
1235         spin_unlock_irqrestore(&priv->lock, flags);
1236
1237         dev->last_rx = jiffies;
1238
1239         return 0;
1240 }
1241
1242 static int ether1394_write(struct hpsb_host *host, int srcid, int destid,
1243                            quadlet_t *data, u64 addr, size_t len, u16 flags)
1244 {
1245         struct eth1394_host_info *hi;
1246
1247         hi = hpsb_get_hostinfo(&eth1394_highlevel, host);
1248         if (unlikely(!hi)) {
1249                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1250                                 host->id);
1251                 return RCODE_ADDRESS_ERROR;
1252         }
1253
1254         if (ether1394_data_handler(hi->dev, srcid, destid, (char*)data, len))
1255                 return RCODE_ADDRESS_ERROR;
1256         else
1257                 return RCODE_COMPLETE;
1258 }
1259
1260 static void ether1394_iso(struct hpsb_iso *iso)
1261 {
1262         quadlet_t *data;
1263         char *buf;
1264         struct eth1394_host_info *hi;
1265         struct net_device *dev;
1266         struct eth1394_priv *priv;
1267         unsigned int len;
1268         u32 specifier_id;
1269         u16 source_id;
1270         int i;
1271         int nready;
1272
1273         hi = hpsb_get_hostinfo(&eth1394_highlevel, iso->host);
1274         if (unlikely(!hi)) {
1275                 ETH1394_PRINT_G(KERN_ERR, "No net device at fw-host%d\n",
1276                                 iso->host->id);
1277                 return;
1278         }
1279
1280         dev = hi->dev;
1281
1282         nready = hpsb_iso_n_ready(iso);
1283         for (i = 0; i < nready; i++) {
1284                 struct hpsb_iso_packet_info *info =
1285                         &iso->infos[(iso->first_packet + i) % iso->buf_packets];
1286                 data = (quadlet_t *)(iso->data_buf.kvirt + info->offset);
1287
1288                 /* skip over GASP header */
1289                 buf = (char *)data + 8;
1290                 len = info->len - 8;
1291
1292                 specifier_id = (be32_to_cpu(data[0]) & 0xffff) << 8 |
1293                                (be32_to_cpu(data[1]) & 0xff000000) >> 24;
1294                 source_id = be32_to_cpu(data[0]) >> 16;
1295
1296                 priv = netdev_priv(dev);
1297
1298                 if (info->channel != (iso->host->csr.broadcast_channel & 0x3f)
1299                     || specifier_id != ETHER1394_GASP_SPECIFIER_ID) {
1300                         /* This packet is not for us */
1301                         continue;
1302                 }
1303                 ether1394_data_handler(dev, source_id, LOCAL_BUS | ALL_NODES,
1304                                        buf, len);
1305         }
1306
1307         hpsb_iso_recv_release_packets(iso, i);
1308
1309         dev->last_rx = jiffies;
1310 }
1311
1312 /******************************************
1313  * Datagram transmission code
1314  ******************************************/
1315
1316 /* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
1317  * arphdr) is the same format as the ip1394 header, so they overlap.  The rest
1318  * needs to be munged a bit.  The remainder of the arphdr is formatted based
1319  * on hwaddr len and ipaddr len.  We know what they'll be, so it's easy to
1320  * judge.
1321  *
1322  * Now that the EUI is used for the hardware address all we need to do to make
1323  * this work for 1394 is to insert 2 quadlets that contain max_rec size,
1324  * speed, and unicast FIFO address information between the sender_unique_id
1325  * and the IP addresses.
1326  */
1327 static void ether1394_arp_to_1394arp(struct sk_buff *skb,
1328                                      struct net_device *dev)
1329 {
1330         struct eth1394_priv *priv = netdev_priv(dev);
1331         struct arphdr *arp = (struct arphdr *)skb->data;
1332         unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1333         struct eth1394_arp *arp1394 = (struct eth1394_arp *)skb->data;
1334
1335         arp1394->hw_addr_len    = 16;
1336         arp1394->sip            = *(u32*)(arp_ptr + ETH1394_ALEN);
1337         arp1394->max_rec        = priv->host->csr.max_rec;
1338         arp1394->sspd           = priv->host->csr.lnk_spd;
1339         arp1394->fifo_hi        = htons(priv->local_fifo >> 32);
1340         arp1394->fifo_lo        = htonl(priv->local_fifo & ~0x0);
1341 }
1342
1343 /* We need to encapsulate the standard header with our own. We use the
1344  * ethernet header's proto for our own. */
1345 static unsigned int ether1394_encapsulate_prep(unsigned int max_payload,
1346                                                __be16 proto,
1347                                                union eth1394_hdr *hdr,
1348                                                u16 dg_size, u16 dgl)
1349 {
1350         unsigned int adj_max_payload =
1351                                 max_payload - hdr_type_len[ETH1394_HDR_LF_UF];
1352
1353         /* Does it all fit in one packet? */
1354         if (dg_size <= adj_max_payload) {
1355                 hdr->uf.lf = ETH1394_HDR_LF_UF;
1356                 hdr->uf.ether_type = proto;
1357         } else {
1358                 hdr->ff.lf = ETH1394_HDR_LF_FF;
1359                 hdr->ff.ether_type = proto;
1360                 hdr->ff.dg_size = dg_size - 1;
1361                 hdr->ff.dgl = dgl;
1362                 adj_max_payload = max_payload - hdr_type_len[ETH1394_HDR_LF_FF];
1363         }
1364         return (dg_size + adj_max_payload - 1) / adj_max_payload;
1365 }
1366
1367 static unsigned int ether1394_encapsulate(struct sk_buff *skb,
1368                                           unsigned int max_payload,
1369                                           union eth1394_hdr *hdr)
1370 {
1371         union eth1394_hdr *bufhdr;
1372         int ftype = hdr->common.lf;
1373         int hdrsz = hdr_type_len[ftype];
1374         unsigned int adj_max_payload = max_payload - hdrsz;
1375
1376         switch (ftype) {
1377         case ETH1394_HDR_LF_UF:
1378                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1379                 bufhdr->words.word1 = htons(hdr->words.word1);
1380                 bufhdr->words.word2 = hdr->words.word2;
1381                 break;
1382
1383         case ETH1394_HDR_LF_FF:
1384                 bufhdr = (union eth1394_hdr *)skb_push(skb, hdrsz);
1385                 bufhdr->words.word1 = htons(hdr->words.word1);
1386                 bufhdr->words.word2 = hdr->words.word2;
1387                 bufhdr->words.word3 = htons(hdr->words.word3);
1388                 bufhdr->words.word4 = 0;
1389
1390                 /* Set frag type here for future interior fragments */
1391                 hdr->common.lf = ETH1394_HDR_LF_IF;
1392                 hdr->sf.fg_off = 0;
1393                 break;
1394
1395         default:
1396                 hdr->sf.fg_off += adj_max_payload;
1397                 bufhdr = (union eth1394_hdr *)skb_pull(skb, adj_max_payload);
1398                 if (max_payload >= skb->len)
1399                         hdr->common.lf = ETH1394_HDR_LF_LF;
1400                 bufhdr->words.word1 = htons(hdr->words.word1);
1401                 bufhdr->words.word2 = htons(hdr->words.word2);
1402                 bufhdr->words.word3 = htons(hdr->words.word3);
1403                 bufhdr->words.word4 = 0;
1404         }
1405         return min(max_payload, skb->len);
1406 }
1407
1408 static struct hpsb_packet *ether1394_alloc_common_packet(struct hpsb_host *host)
1409 {
1410         struct hpsb_packet *p;
1411
1412         p = hpsb_alloc_packet(0);
1413         if (p) {
1414                 p->host = host;
1415                 p->generation = get_hpsb_generation(host);
1416                 p->type = hpsb_async;
1417         }
1418         return p;
1419 }
1420
1421 static int ether1394_prep_write_packet(struct hpsb_packet *p,
1422                                        struct hpsb_host *host, nodeid_t node,
1423                                        u64 addr, void *data, int tx_len)
1424 {
1425         p->node_id = node;
1426
1427         if (hpsb_get_tlabel(p))
1428                 return -EAGAIN;
1429
1430         p->tcode = TCODE_WRITEB;
1431         p->header_size = 16;
1432         p->expect_response = 1;
1433         p->header[0] =
1434                 p->node_id << 16 | p->tlabel << 10 | 1 << 8 | TCODE_WRITEB << 4;
1435         p->header[1] = host->node_id << 16 | addr >> 32;
1436         p->header[2] = addr & 0xffffffff;
1437         p->header[3] = tx_len << 16;
1438         p->data_size = (tx_len + 3) & ~3;
1439         p->data = data;
1440
1441         return 0;
1442 }
1443
1444 static void ether1394_prep_gasp_packet(struct hpsb_packet *p,
1445                                        struct eth1394_priv *priv,
1446                                        struct sk_buff *skb, int length)
1447 {
1448         p->header_size = 4;
1449         p->tcode = TCODE_STREAM_DATA;
1450
1451         p->header[0] = length << 16 | 3 << 14 | priv->broadcast_channel << 8 |
1452                        TCODE_STREAM_DATA << 4;
1453         p->data_size = length;
1454         p->data = (quadlet_t *)skb->data - 2;
1455         p->data[0] = cpu_to_be32(priv->host->node_id << 16 |
1456                                  ETHER1394_GASP_SPECIFIER_ID_HI);
1457         p->data[1] = cpu_to_be32(ETHER1394_GASP_SPECIFIER_ID_LO << 24 |
1458                                  ETHER1394_GASP_VERSION);
1459
1460         p->speed_code = priv->bc_sspd;
1461
1462         /* prevent hpsb_send_packet() from overriding our speed code */
1463         p->node_id = LOCAL_BUS | ALL_NODES;
1464 }
1465
1466 static void ether1394_free_packet(struct hpsb_packet *packet)
1467 {
1468         if (packet->tcode != TCODE_STREAM_DATA)
1469                 hpsb_free_tlabel(packet);
1470         hpsb_free_packet(packet);
1471 }
1472
1473 static void ether1394_complete_cb(void *__ptask);
1474
1475 static int ether1394_send_packet(struct packet_task *ptask, unsigned int tx_len)
1476 {
1477         struct eth1394_priv *priv = ptask->priv;
1478         struct hpsb_packet *packet = NULL;
1479
1480         packet = ether1394_alloc_common_packet(priv->host);
1481         if (!packet)
1482                 return -ENOMEM;
1483
1484         if (ptask->tx_type == ETH1394_GASP) {
1485                 int length = tx_len + 2 * sizeof(quadlet_t);
1486
1487                 ether1394_prep_gasp_packet(packet, priv, ptask->skb, length);
1488         } else if (ether1394_prep_write_packet(packet, priv->host,
1489                                                ptask->dest_node,
1490                                                ptask->addr, ptask->skb->data,
1491                                                tx_len)) {
1492                 hpsb_free_packet(packet);
1493                 return -EAGAIN;
1494         }
1495
1496         ptask->packet = packet;
1497         hpsb_set_packet_complete_task(ptask->packet, ether1394_complete_cb,
1498                                       ptask);
1499
1500         if (hpsb_send_packet(packet) < 0) {
1501                 ether1394_free_packet(packet);
1502                 return -EIO;
1503         }
1504
1505         return 0;
1506 }
1507
1508 /* Task function to be run when a datagram transmission is completed */
1509 static void ether1394_dg_complete(struct packet_task *ptask, int fail)
1510 {
1511         struct sk_buff *skb = ptask->skb;
1512         struct eth1394_priv *priv = netdev_priv(skb->dev);
1513         unsigned long flags;
1514
1515         /* Statistics */
1516         spin_lock_irqsave(&priv->lock, flags);
1517         if (fail) {
1518                 priv->stats.tx_dropped++;
1519                 priv->stats.tx_errors++;
1520         } else {
1521                 priv->stats.tx_bytes += skb->len;
1522                 priv->stats.tx_packets++;
1523         }
1524         spin_unlock_irqrestore(&priv->lock, flags);
1525
1526         dev_kfree_skb_any(skb);
1527         kmem_cache_free(packet_task_cache, ptask);
1528 }
1529
1530 /* Callback for when a packet has been sent and the status of that packet is
1531  * known */
1532 static void ether1394_complete_cb(void *__ptask)
1533 {
1534         struct packet_task *ptask = (struct packet_task *)__ptask;
1535         struct hpsb_packet *packet = ptask->packet;
1536         int fail = 0;
1537
1538         if (packet->tcode != TCODE_STREAM_DATA)
1539                 fail = hpsb_packet_success(packet);
1540
1541         ether1394_free_packet(packet);
1542
1543         ptask->outstanding_pkts--;
1544         if (ptask->outstanding_pkts > 0 && !fail) {
1545                 int tx_len, err;
1546
1547                 /* Add the encapsulation header to the fragment */
1548                 tx_len = ether1394_encapsulate(ptask->skb, ptask->max_payload,
1549                                                &ptask->hdr);
1550                 err = ether1394_send_packet(ptask, tx_len);
1551                 if (err) {
1552                         if (err == -EAGAIN)
1553                                 ETH1394_PRINT_G(KERN_ERR, "Out of tlabels\n");
1554
1555                         ether1394_dg_complete(ptask, 1);
1556                 }
1557         } else {
1558                 ether1394_dg_complete(ptask, fail);
1559         }
1560 }
1561
1562 /* Transmit a packet (called by kernel) */
1563 static int ether1394_tx(struct sk_buff *skb, struct net_device *dev)
1564 {
1565         struct eth1394hdr hdr_buf;
1566         struct eth1394_priv *priv = netdev_priv(dev);
1567         __be16 proto;
1568         unsigned long flags;
1569         nodeid_t dest_node;
1570         eth1394_tx_type tx_type;
1571         unsigned int tx_len;
1572         unsigned int max_payload;
1573         u16 dg_size;
1574         u16 dgl;
1575         struct packet_task *ptask;
1576         struct eth1394_node_ref *node;
1577         struct eth1394_node_info *node_info = NULL;
1578
1579         ptask = kmem_cache_alloc(packet_task_cache, GFP_ATOMIC);
1580         if (ptask == NULL)
1581                 goto fail;
1582
1583         /* XXX Ignore this for now. Noticed that when MacOSX is the IRM,
1584          * it does not set our validity bit. We need to compensate for
1585          * that somewhere else, but not in eth1394. */
1586 #if 0
1587         if ((priv->host->csr.broadcast_channel & 0xc0000000) != 0xc0000000)
1588                 goto fail;
1589 #endif
1590
1591         skb = skb_share_check(skb, GFP_ATOMIC);
1592         if (!skb)
1593                 goto fail;
1594
1595         /* Get rid of the fake eth1394 header, but first make a copy.
1596          * We might need to rebuild the header on tx failure. */
1597         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1598         skb_pull(skb, ETH1394_HLEN);
1599
1600         proto = hdr_buf.h_proto;
1601         dg_size = skb->len;
1602
1603         /* Set the transmission type for the packet.  ARP packets and IP
1604          * broadcast packets are sent via GASP. */
1605         if (memcmp(hdr_buf.h_dest, dev->broadcast, ETH1394_ALEN) == 0 ||
1606             proto == htons(ETH_P_ARP) ||
1607             (proto == htons(ETH_P_IP) &&
1608              IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1609                 tx_type = ETH1394_GASP;
1610                 dest_node = LOCAL_BUS | ALL_NODES;
1611                 max_payload = priv->bc_maxpayload - ETHER1394_GASP_OVERHEAD;
1612                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1613                 dgl = priv->bc_dgl;
1614                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1615                         priv->bc_dgl++;
1616         } else {
1617                 __be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
1618
1619                 node = eth1394_find_node_guid(&priv->ip_node_list,
1620                                               be64_to_cpu(guid));
1621                 if (!node)
1622                         goto fail;
1623
1624                 node_info =
1625                     (struct eth1394_node_info *)node->ud->device.driver_data;
1626                 if (node_info->fifo == CSR1212_INVALID_ADDR_SPACE)
1627                         goto fail;
1628
1629                 dest_node = node->ud->ne->nodeid;
1630                 max_payload = node_info->maxpayload;
1631                 BUG_ON(max_payload < 512 - ETHER1394_GASP_OVERHEAD);
1632
1633                 dgl = node_info->dgl;
1634                 if (max_payload < dg_size + hdr_type_len[ETH1394_HDR_LF_UF])
1635                         node_info->dgl++;
1636                 tx_type = ETH1394_WRREQ;
1637         }
1638
1639         /* If this is an ARP packet, convert it */
1640         if (proto == htons(ETH_P_ARP))
1641                 ether1394_arp_to_1394arp(skb, dev);
1642
1643         ptask->hdr.words.word1 = 0;
1644         ptask->hdr.words.word2 = 0;
1645         ptask->hdr.words.word3 = 0;
1646         ptask->hdr.words.word4 = 0;
1647         ptask->skb = skb;
1648         ptask->priv = priv;
1649         ptask->tx_type = tx_type;
1650
1651         if (tx_type != ETH1394_GASP) {
1652                 u64 addr;
1653
1654                 spin_lock_irqsave(&priv->lock, flags);
1655                 addr = node_info->fifo;
1656                 spin_unlock_irqrestore(&priv->lock, flags);
1657
1658                 ptask->addr = addr;
1659                 ptask->dest_node = dest_node;
1660         }
1661
1662         ptask->tx_type = tx_type;
1663         ptask->max_payload = max_payload;
1664         ptask->outstanding_pkts = ether1394_encapsulate_prep(max_payload,
1665                                         proto, &ptask->hdr, dg_size, dgl);
1666
1667         /* Add the encapsulation header to the fragment */
1668         tx_len = ether1394_encapsulate(skb, max_payload, &ptask->hdr);
1669         dev->trans_start = jiffies;
1670         if (ether1394_send_packet(ptask, tx_len)) {
1671                 if (dest_node == (LOCAL_BUS | ALL_NODES))
1672                         goto fail;
1673
1674                 /* At this point we want to restore the packet.  When we return
1675                  * here with NETDEV_TX_BUSY we will get another entrance in this
1676                  * routine with the same skb and we need it to look the same.
1677                  * So we pull 4 more bytes, then build the header again. */
1678                 skb_pull(skb, 4);
1679                 ether1394_header(skb, dev, ntohs(hdr_buf.h_proto),
1680                                  hdr_buf.h_dest, NULL, 0);
1681
1682                 /* Most failures of ether1394_send_packet are recoverable. */
1683                 netif_stop_queue(dev);
1684                 priv->wake_node = dest_node;
1685                 schedule_work(&priv->wake);
1686                 kmem_cache_free(packet_task_cache, ptask);
1687                 return NETDEV_TX_BUSY;
1688         }
1689
1690         return NETDEV_TX_OK;
1691 fail:
1692         if (ptask)
1693                 kmem_cache_free(packet_task_cache, ptask);
1694
1695         if (skb != NULL)
1696                 dev_kfree_skb(skb);
1697
1698         spin_lock_irqsave(&priv->lock, flags);
1699         priv->stats.tx_dropped++;
1700         priv->stats.tx_errors++;
1701         spin_unlock_irqrestore(&priv->lock, flags);
1702
1703         /*
1704          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1705          * causes serious problems" here, allegedly.  Before that patch,
1706          * -ERRNO was returned which is not appropriate under Linux 2.6.
1707          * Perhaps more needs to be done?  Stop the queue in serious
1708          * conditions and restart it elsewhere?
1709          */
1710         /* return NETDEV_TX_BUSY; */
1711         return NETDEV_TX_OK;
1712 }
1713
1714 static void ether1394_get_drvinfo(struct net_device *dev,
1715                                   struct ethtool_drvinfo *info)
1716 {
1717         strcpy(info->driver, driver_name);
1718         strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
1719 }
1720
1721 static struct ethtool_ops ethtool_ops = {
1722         .get_drvinfo = ether1394_get_drvinfo
1723 };
1724
1725 static int __init ether1394_init_module(void)
1726 {
1727         int err;
1728
1729         packet_task_cache = kmem_cache_create("packet_task",
1730                                               sizeof(struct packet_task),
1731                                               0, 0, NULL);
1732         if (!packet_task_cache)
1733                 return -ENOMEM;
1734
1735         hpsb_register_highlevel(&eth1394_highlevel);
1736         err = hpsb_register_protocol(&eth1394_proto_driver);
1737         if (err) {
1738                 hpsb_unregister_highlevel(&eth1394_highlevel);
1739                 kmem_cache_destroy(packet_task_cache);
1740         }
1741         return err;
1742 }
1743
1744 static void __exit ether1394_exit_module(void)
1745 {
1746         hpsb_unregister_protocol(&eth1394_proto_driver);
1747         hpsb_unregister_highlevel(&eth1394_highlevel);
1748         kmem_cache_destroy(packet_task_cache);
1749 }
1750
1751 module_init(ether1394_init_module);
1752 module_exit(ether1394_exit_module);