]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/gpu/drm/i915/intel_dp.c
drm/i915: Add Display Port support
[net-next-2.6.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include "drmP.h"
30 #include "drm.h"
31 #include "drm_crtc.h"
32 #include "drm_crtc_helper.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "intel_dp.h"
37
38 #define DP_LINK_STATUS_SIZE     6
39 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
40
41 #define DP_LINK_CONFIGURATION_SIZE      9
42
43 struct intel_dp_priv {
44         uint32_t output_reg;
45         uint32_t DP;
46         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
47         uint32_t save_DP;
48         uint8_t  save_link_configuration[DP_LINK_CONFIGURATION_SIZE];
49         bool has_audio;
50         uint8_t link_bw;
51         uint8_t lane_count;
52         uint8_t dpcd[4];
53         struct intel_output *intel_output;
54         struct i2c_adapter adapter;
55         struct i2c_algo_dp_aux_data algo;
56 };
57
58 static void
59 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
60                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
61
62 static void
63 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP);
64
65 static int
66 intel_dp_max_lane_count(struct intel_output *intel_output)
67 {
68         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
69         int max_lane_count = 4;
70
71         if (dp_priv->dpcd[0] >= 0x11) {
72                 max_lane_count = dp_priv->dpcd[2] & 0x1f;
73                 switch (max_lane_count) {
74                 case 1: case 2: case 4:
75                         break;
76                 default:
77                         max_lane_count = 4;
78                 }
79         }
80         return max_lane_count;
81 }
82
83 static int
84 intel_dp_max_link_bw(struct intel_output *intel_output)
85 {
86         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
87         int max_link_bw = dp_priv->dpcd[1];
88
89         switch (max_link_bw) {
90         case DP_LINK_BW_1_62:
91         case DP_LINK_BW_2_7:
92                 break;
93         default:
94                 max_link_bw = DP_LINK_BW_1_62;
95                 break;
96         }
97         return max_link_bw;
98 }
99
100 static int
101 intel_dp_link_clock(uint8_t link_bw)
102 {
103         if (link_bw == DP_LINK_BW_2_7)
104                 return 270000;
105         else
106                 return 162000;
107 }
108
109 /* I think this is a fiction */
110 static int
111 intel_dp_link_required(int pixel_clock)
112 {
113         return pixel_clock * 3;
114 }
115
116 static int
117 intel_dp_mode_valid(struct drm_connector *connector,
118                     struct drm_display_mode *mode)
119 {
120         struct intel_output *intel_output = to_intel_output(connector);
121         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_output));
122         int max_lanes = intel_dp_max_lane_count(intel_output);
123
124         if (intel_dp_link_required(mode->clock) > max_link_clock * max_lanes)
125                 return MODE_CLOCK_HIGH;
126
127         if (mode->clock < 10000)
128                 return MODE_CLOCK_LOW;
129
130         return MODE_OK;
131 }
132
133 static uint32_t
134 pack_aux(uint8_t *src, int src_bytes)
135 {
136         int     i;
137         uint32_t v = 0;
138
139         if (src_bytes > 4)
140                 src_bytes = 4;
141         for (i = 0; i < src_bytes; i++)
142                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
143         return v;
144 }
145
146 static void
147 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
148 {
149         int i;
150         if (dst_bytes > 4)
151                 dst_bytes = 4;
152         for (i = 0; i < dst_bytes; i++)
153                 dst[i] = src >> ((3-i) * 8);
154 }
155
156 static int
157 intel_dp_aux_ch(struct intel_output *intel_output,
158                 uint8_t *send, int send_bytes,
159                 uint8_t *recv, int recv_size)
160 {
161         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
162         uint32_t output_reg = dp_priv->output_reg;
163         struct drm_device *dev = intel_output->base.dev;
164         struct drm_i915_private *dev_priv = dev->dev_private;
165         uint32_t ch_ctl = output_reg + 0x10;
166         uint32_t ch_data = ch_ctl + 4;
167         int i;
168         int recv_bytes;
169         uint32_t ctl;
170         uint32_t status;
171
172         /* Load the send data into the aux channel data registers */
173         for (i = 0; i < send_bytes; i += 4) {
174                 uint32_t    d = pack_aux(send + i, send_bytes - i);;
175
176                 I915_WRITE(ch_data + i, d);
177         }
178
179         /* The clock divider is based off the hrawclk,
180          * and would like to run at 2MHz. The 133 below assumes
181          * a 266MHz hrawclk; need to figure out how we're supposed
182          * to know what hrawclk is...
183          */
184         ctl = (DP_AUX_CH_CTL_SEND_BUSY |
185                DP_AUX_CH_CTL_TIME_OUT_1600us |
186                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
187                (5 << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
188                (133 << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
189                DP_AUX_CH_CTL_TIME_OUT_ERROR |
190                DP_AUX_CH_CTL_RECEIVE_ERROR);
191
192         /* Send the command and wait for it to complete */
193         I915_WRITE(ch_ctl, ctl);
194         (void) I915_READ(ch_ctl);
195         for (;;) {
196                 udelay(100);
197                 status = I915_READ(ch_ctl);
198                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
199                         break;
200         }
201
202         /* Clear done status and any errors */
203         I915_WRITE(ch_ctl, (ctl |
204                         DP_AUX_CH_CTL_DONE |
205                         DP_AUX_CH_CTL_TIME_OUT_ERROR |
206                         DP_AUX_CH_CTL_RECEIVE_ERROR));
207         (void) I915_READ(ch_ctl);
208
209         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
210                 printk(KERN_ERR "dp_aux_ch not done status 0x%08x\n", status);
211                 return -1;
212         }
213
214         /* Check for timeout or receive error.
215          * Timeouts occur when the sink is not connected
216          */
217         if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR | DP_AUX_CH_CTL_RECEIVE_ERROR)) {
218                 printk(KERN_ERR "dp_aux_ch error status 0x%08x\n", status);
219                 return -1;
220         }
221
222         /* Unload any bytes sent back from the other side */
223         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
224                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
225
226         if (recv_bytes > recv_size)
227                 recv_bytes = recv_size;
228         
229         for (i = 0; i < recv_bytes; i += 4) {
230                 uint32_t    d = I915_READ(ch_data + i);
231
232                 unpack_aux(d, recv + i, recv_bytes - i);
233         }
234
235         return recv_bytes;
236 }
237
238 /* Write data to the aux channel in native mode */
239 static int
240 intel_dp_aux_native_write(struct intel_output *intel_output,
241                           uint16_t address, uint8_t *send, int send_bytes)
242 {
243         int ret;
244         uint8_t msg[20];
245         int msg_bytes;
246         uint8_t ack;
247
248         if (send_bytes > 16)
249                 return -1;
250         msg[0] = AUX_NATIVE_WRITE << 4;
251         msg[1] = address >> 8;
252         msg[2] = address;
253         msg[3] = send_bytes - 1;
254         memcpy(&msg[4], send, send_bytes);
255         msg_bytes = send_bytes + 4;
256         for (;;) {
257                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes, &ack, 1);
258                 if (ret < 0)
259                         return ret;
260                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
261                         break;
262                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
263                         udelay(100);
264                 else
265                         return -1;
266         }
267         return send_bytes;
268 }
269
270 /* Write a single byte to the aux channel in native mode */
271 static int
272 intel_dp_aux_native_write_1(struct intel_output *intel_output,
273                             uint16_t address, uint8_t byte)
274 {
275         return intel_dp_aux_native_write(intel_output, address, &byte, 1);
276 }
277
278 /* read bytes from a native aux channel */
279 static int
280 intel_dp_aux_native_read(struct intel_output *intel_output,
281                          uint16_t address, uint8_t *recv, int recv_bytes)
282 {
283         uint8_t msg[4];
284         int msg_bytes;
285         uint8_t reply[20];
286         int reply_bytes;
287         uint8_t ack;
288         int ret;
289
290         msg[0] = AUX_NATIVE_READ << 4;
291         msg[1] = address >> 8;
292         msg[2] = address & 0xff;
293         msg[3] = recv_bytes - 1;
294
295         msg_bytes = 4;
296         reply_bytes = recv_bytes + 1;
297
298         for (;;) {
299                 ret = intel_dp_aux_ch(intel_output, msg, msg_bytes,
300                                       reply, reply_bytes);
301                 if (ret <= 0)
302                         return ret;
303                 ack = reply[0];
304                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
305                         memcpy(recv, reply + 1, ret - 1);
306                         return ret - 1;
307                 }
308                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
309                         udelay(100);
310                 else
311                         return -1;
312         }
313 }
314
315 static int
316 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter,
317                     uint8_t *send, int send_bytes,
318                     uint8_t *recv, int recv_bytes)
319 {
320         struct intel_dp_priv *dp_priv = container_of(adapter,
321                                                      struct intel_dp_priv,
322                                                      adapter);
323         struct intel_output *intel_output = dp_priv->intel_output;
324
325         return intel_dp_aux_ch(intel_output,
326                                send, send_bytes, recv, recv_bytes);
327 }
328
329 static int
330 intel_dp_i2c_init(struct intel_output *intel_output, const char *name)
331 {
332         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
333
334         DRM_ERROR("i2c_init %s\n", name);
335         dp_priv->algo.running = false;
336         dp_priv->algo.address = 0;
337         dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
338
339         memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
340         dp_priv->adapter.owner = THIS_MODULE;
341         dp_priv->adapter.class = I2C_CLASS_DDC;
342         strncpy (dp_priv->adapter.name, name, sizeof dp_priv->adapter.name - 1);
343         dp_priv->adapter.name[sizeof dp_priv->adapter.name - 1] = '\0';
344         dp_priv->adapter.algo_data = &dp_priv->algo;
345         dp_priv->adapter.dev.parent = &intel_output->base.kdev;
346         
347         return i2c_dp_aux_add_bus(&dp_priv->adapter);
348 }
349
350 static bool
351 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
352                     struct drm_display_mode *adjusted_mode)
353 {
354         struct intel_output *intel_output = enc_to_intel_output(encoder);
355         struct intel_dp_priv   *dp_priv = intel_output->dev_priv;
356         int lane_count, clock;
357         int max_lane_count = intel_dp_max_lane_count(intel_output);
358         int max_clock = intel_dp_max_link_bw(intel_output) == DP_LINK_BW_2_7 ? 1 : 0;
359         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
360
361         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
362                 for (clock = 0; clock <= max_clock; clock++) {
363                         int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
364
365                         if (intel_dp_link_required(mode->clock) <= link_avail) {
366                                 dp_priv->link_bw = bws[clock];
367                                 dp_priv->lane_count = lane_count;
368                                 adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
369                                 printk(KERN_ERR "link bw %02x lane count %d clock %d\n",
370                                        dp_priv->link_bw, dp_priv->lane_count,
371                                        adjusted_mode->clock);
372                                 return true;
373                         }
374                 }
375         }
376         return false;
377 }
378
379 struct intel_dp_m_n {
380         uint32_t        tu;
381         uint32_t        gmch_m;
382         uint32_t        gmch_n;
383         uint32_t        link_m;
384         uint32_t        link_n;
385 };
386
387 static void
388 intel_reduce_ratio(uint32_t *num, uint32_t *den)
389 {
390         while (*num > 0xffffff || *den > 0xffffff) {
391                 *num >>= 1;
392                 *den >>= 1;
393         }
394 }
395
396 static void
397 intel_dp_compute_m_n(int bytes_per_pixel,
398                      int nlanes,
399                      int pixel_clock,
400                      int link_clock,
401                      struct intel_dp_m_n *m_n)
402 {
403         m_n->tu = 64;
404         m_n->gmch_m = pixel_clock * bytes_per_pixel;
405         m_n->gmch_n = link_clock * nlanes;
406         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
407         m_n->link_m = pixel_clock;
408         m_n->link_n = link_clock;
409         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
410 }
411
412 void
413 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
414                  struct drm_display_mode *adjusted_mode)
415 {
416         struct drm_device *dev = crtc->dev;
417         struct drm_mode_config *mode_config = &dev->mode_config;
418         struct drm_connector *connector;
419         struct drm_i915_private *dev_priv = dev->dev_private;
420         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
421         int lane_count = 4;
422         struct intel_dp_m_n m_n;
423
424         /*
425          * Find the lane count in the intel_output private
426          */
427         list_for_each_entry(connector, &mode_config->connector_list, head) {
428                 struct intel_output *intel_output = to_intel_output(connector);
429                 struct intel_dp_priv *dp_priv = intel_output->dev_priv;
430
431                 if (!connector->encoder || connector->encoder->crtc != crtc)
432                         continue;
433
434                 if (intel_output->type == INTEL_OUTPUT_DISPLAYPORT) {
435                         lane_count = dp_priv->lane_count;
436                         break;
437                 }
438         }
439
440         /*
441          * Compute the GMCH and Link ratios. The '3' here is
442          * the number of bytes_per_pixel post-LUT, which we always
443          * set up for 8-bits of R/G/B, or 3 bytes total.
444          */
445         intel_dp_compute_m_n(3, lane_count,
446                              mode->clock, adjusted_mode->clock, &m_n);
447
448         if (intel_crtc->pipe == 0) {
449                 I915_WRITE(PIPEA_GMCH_DATA_M,
450                        ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
451                        m_n.gmch_m);
452                 I915_WRITE(PIPEA_GMCH_DATA_N,
453                        m_n.gmch_n);
454                 I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
455                 I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
456         } else {
457                 I915_WRITE(PIPEB_GMCH_DATA_M,
458                        ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
459                        m_n.gmch_m);
460                 I915_WRITE(PIPEB_GMCH_DATA_N,
461                        m_n.gmch_n);
462                 I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
463                 I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
464         }
465 }
466
467 static void
468 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
469                   struct drm_display_mode *adjusted_mode)
470 {
471         struct intel_output *intel_output = enc_to_intel_output(encoder);
472         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
473         struct drm_crtc *crtc = intel_output->enc.crtc;
474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
475
476         dp_priv->DP = (DP_LINK_TRAIN_OFF |
477                         DP_VOLTAGE_0_4 |
478                         DP_PRE_EMPHASIS_0 |
479                         DP_SYNC_VS_HIGH |
480                         DP_SYNC_HS_HIGH);
481
482         switch (dp_priv->lane_count) {
483         case 1:
484                 dp_priv->DP |= DP_PORT_WIDTH_1;
485                 break;
486         case 2:
487                 dp_priv->DP |= DP_PORT_WIDTH_2;
488                 break;
489         case 4:
490                 dp_priv->DP |= DP_PORT_WIDTH_4;
491                 break;
492         }
493         if (dp_priv->has_audio)
494                 dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
495
496         memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
497         dp_priv->link_configuration[0] = dp_priv->link_bw;
498         dp_priv->link_configuration[1] = dp_priv->lane_count;
499
500         /*
501          * Check for DPCD version > 1.1,
502          * enable enahanced frame stuff in that case
503          */
504         if (dp_priv->dpcd[0] >= 0x11) {
505                 dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
506                 dp_priv->DP |= DP_ENHANCED_FRAMING;
507         }
508
509         if (intel_crtc->pipe == 1)
510                 dp_priv->DP |= DP_PIPEB_SELECT;
511 }
512
513
514 static void
515 intel_dp_dpms(struct drm_encoder *encoder, int mode)
516 {
517         struct intel_output *intel_output = enc_to_intel_output(encoder);
518         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
519         struct drm_device *dev = intel_output->base.dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521         uint32_t dp_reg = I915_READ(dp_priv->output_reg);
522
523         if (mode != DRM_MODE_DPMS_ON) {
524                 if (dp_reg & DP_PORT_EN)
525                         intel_dp_link_down(intel_output, dp_priv->DP);
526         } else {
527                 if (!(dp_reg & DP_PORT_EN))
528                         intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
529         }
530 }
531
532 /*
533  * Fetch AUX CH registers 0x202 - 0x207 which contain
534  * link status information
535  */
536 static bool
537 intel_dp_get_link_status(struct intel_output *intel_output,
538                          uint8_t link_status[DP_LINK_STATUS_SIZE])
539 {
540         int ret;
541
542         ret = intel_dp_aux_native_read(intel_output,
543                                        DP_LANE0_1_STATUS,
544                                        link_status, DP_LINK_STATUS_SIZE);
545         if (ret != DP_LINK_STATUS_SIZE)
546                 return false;
547         return true;
548 }
549
550 static uint8_t
551 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
552                      int r)
553 {
554         return link_status[r - DP_LANE0_1_STATUS];
555 }
556
557 static void
558 intel_dp_save(struct drm_connector *connector)
559 {
560         struct intel_output *intel_output = to_intel_output(connector);
561         struct drm_device *dev = intel_output->base.dev;
562         struct drm_i915_private *dev_priv = dev->dev_private;
563         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
564
565         dp_priv->save_DP = I915_READ(dp_priv->output_reg);
566         intel_dp_aux_native_read(intel_output, DP_LINK_BW_SET,
567                                  dp_priv->save_link_configuration,
568                                  sizeof (dp_priv->save_link_configuration));
569 }
570
571 static uint8_t
572 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
573                                  int lane)
574 {
575         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
576         int         s = ((lane & 1) ?
577                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
578                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
579         uint8_t l = intel_dp_link_status(link_status, i);
580
581         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
582 }
583
584 static uint8_t
585 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
586                                       int lane)
587 {
588         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
589         int         s = ((lane & 1) ?
590                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
591                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
592         uint8_t l = intel_dp_link_status(link_status, i);
593
594         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
595 }
596
597
598 #if 0
599 static char     *voltage_names[] = {
600         "0.4V", "0.6V", "0.8V", "1.2V"
601 };
602 static char     *pre_emph_names[] = {
603         "0dB", "3.5dB", "6dB", "9.5dB"
604 };
605 static char     *link_train_names[] = {
606         "pattern 1", "pattern 2", "idle", "off"
607 };
608 #endif
609
610 /*
611  * These are source-specific values; current Intel hardware supports
612  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
613  */
614 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
615
616 static uint8_t
617 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
618 {
619         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
620         case DP_TRAIN_VOLTAGE_SWING_400:
621                 return DP_TRAIN_PRE_EMPHASIS_6;
622         case DP_TRAIN_VOLTAGE_SWING_600:
623                 return DP_TRAIN_PRE_EMPHASIS_6;
624         case DP_TRAIN_VOLTAGE_SWING_800:
625                 return DP_TRAIN_PRE_EMPHASIS_3_5;
626         case DP_TRAIN_VOLTAGE_SWING_1200:
627         default:
628                 return DP_TRAIN_PRE_EMPHASIS_0;
629         }
630 }
631
632 static void
633 intel_get_adjust_train(struct intel_output *intel_output,
634                        uint8_t link_status[DP_LINK_STATUS_SIZE],
635                        int lane_count,
636                        uint8_t train_set[4])
637 {
638         uint8_t v = 0;
639         uint8_t p = 0;
640         int lane;
641
642         for (lane = 0; lane < lane_count; lane++) {
643                 uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
644                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
645
646                 if (this_v > v)
647                         v = this_v;
648                 if (this_p > p)
649                         p = this_p;
650         }
651
652         if (v >= I830_DP_VOLTAGE_MAX)
653                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
654
655         if (p >= intel_dp_pre_emphasis_max(v))
656                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
657
658         for (lane = 0; lane < 4; lane++)
659                 train_set[lane] = v | p;
660 }
661
662 static uint32_t
663 intel_dp_signal_levels(uint8_t train_set, int lane_count)
664 {
665         uint32_t        signal_levels = 0;
666
667         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
668         case DP_TRAIN_VOLTAGE_SWING_400:
669         default:
670                 signal_levels |= DP_VOLTAGE_0_4;
671                 break;
672         case DP_TRAIN_VOLTAGE_SWING_600:
673                 signal_levels |= DP_VOLTAGE_0_6;
674                 break;
675         case DP_TRAIN_VOLTAGE_SWING_800:
676                 signal_levels |= DP_VOLTAGE_0_8;
677                 break;
678         case DP_TRAIN_VOLTAGE_SWING_1200:
679                 signal_levels |= DP_VOLTAGE_1_2;
680                 break;
681         }
682         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
683         case DP_TRAIN_PRE_EMPHASIS_0:
684         default:
685                 signal_levels |= DP_PRE_EMPHASIS_0;
686                 break;
687         case DP_TRAIN_PRE_EMPHASIS_3_5:
688                 signal_levels |= DP_PRE_EMPHASIS_3_5;
689                 break;
690         case DP_TRAIN_PRE_EMPHASIS_6:
691                 signal_levels |= DP_PRE_EMPHASIS_6;
692                 break;
693         case DP_TRAIN_PRE_EMPHASIS_9_5:
694                 signal_levels |= DP_PRE_EMPHASIS_9_5;
695                 break;
696         }
697         return signal_levels;
698 }
699
700 static uint8_t
701 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
702                       int lane)
703 {
704         int i = DP_LANE0_1_STATUS + (lane >> 1);
705         int s = (lane & 1) * 4;
706         uint8_t l = intel_dp_link_status(link_status, i);
707
708         return (l >> s) & 0xf;
709 }
710
711 /* Check for clock recovery is done on all channels */
712 static bool
713 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
714 {
715         int lane;
716         uint8_t lane_status;
717
718         for (lane = 0; lane < lane_count; lane++) {
719                 lane_status = intel_get_lane_status(link_status, lane);
720                 if ((lane_status & DP_LANE_CR_DONE) == 0)
721                         return false;
722         }
723         return true;
724 }
725
726 /* Check to see if channel eq is done on all channels */
727 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
728                          DP_LANE_CHANNEL_EQ_DONE|\
729                          DP_LANE_SYMBOL_LOCKED)
730 static bool
731 intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
732 {
733         uint8_t lane_align;
734         uint8_t lane_status;
735         int lane;
736
737         lane_align = intel_dp_link_status(link_status,
738                                           DP_LANE_ALIGN_STATUS_UPDATED);
739         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
740                 return false;
741         for (lane = 0; lane < lane_count; lane++) {
742                 lane_status = intel_get_lane_status(link_status, lane);
743                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
744                         return false;
745         }
746         return true;
747 }
748
749 static bool
750 intel_dp_set_link_train(struct intel_output *intel_output,
751                         uint32_t dp_reg_value,
752                         uint8_t dp_train_pat,
753                         uint8_t train_set[4],
754                         bool first)
755 {
756         struct drm_device *dev = intel_output->base.dev;
757         struct drm_i915_private *dev_priv = dev->dev_private;
758         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
759         int ret;
760
761         I915_WRITE(dp_priv->output_reg, dp_reg_value);
762         POSTING_READ(dp_priv->output_reg);
763         if (first)
764                 intel_wait_for_vblank(dev);
765
766         intel_dp_aux_native_write_1(intel_output,
767                                     DP_TRAINING_PATTERN_SET,
768                                     dp_train_pat);
769
770         ret = intel_dp_aux_native_write(intel_output,
771                                         DP_TRAINING_LANE0_SET, train_set, 4);
772         if (ret != 4)
773                 return false;
774
775         return true;
776 }
777
778 static void
779 intel_dp_link_train(struct intel_output *intel_output, uint32_t DP,
780                     uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
781 {
782         struct drm_device *dev = intel_output->base.dev;
783         struct drm_i915_private *dev_priv = dev->dev_private;
784         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
785         uint8_t train_set[4];
786         uint8_t link_status[DP_LINK_STATUS_SIZE];
787         int i;
788         uint8_t voltage;
789         bool clock_recovery = false;
790         bool channel_eq = false;
791         bool first = true;
792         int tries;
793
794         /* Write the link configuration data */
795         intel_dp_aux_native_write(intel_output, 0x100,
796                                   link_configuration, DP_LINK_CONFIGURATION_SIZE);
797
798         DP |= DP_PORT_EN;
799         DP &= ~DP_LINK_TRAIN_MASK;
800         memset(train_set, 0, 4);
801         voltage = 0xff;
802         tries = 0;
803         clock_recovery = false;
804         for (;;) {
805                 /* Use train_set[0] to set the voltage and pre emphasis values */
806                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
807                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
808
809                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_1,
810                                              DP_TRAINING_PATTERN_1, train_set, first))
811                         break;
812                 first = false;
813                 /* Set training pattern 1 */
814
815                 udelay(100);
816                 if (!intel_dp_get_link_status(intel_output, link_status))
817                         break;
818
819                 if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
820                         clock_recovery = true;
821                         break;
822                 }
823
824                 /* Check to see if we've tried the max voltage */
825                 for (i = 0; i < dp_priv->lane_count; i++)
826                         if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
827                                 break;
828                 if (i == dp_priv->lane_count)
829                         break;
830
831                 /* Check to see if we've tried the same voltage 5 times */
832                 if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
833                         ++tries;
834                         if (tries == 5)
835                                 break;
836                 } else
837                         tries = 0;
838                 voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
839
840                 /* Compute new train_set as requested by target */
841                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
842         }
843
844         /* channel equalization */
845         tries = 0;
846         channel_eq = false;
847         for (;;) {
848                 /* Use train_set[0] to set the voltage and pre emphasis values */
849                 uint32_t    signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
850                 DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
851
852                 /* channel eq pattern */
853                 if (!intel_dp_set_link_train(intel_output, DP | DP_LINK_TRAIN_PAT_2,
854                                              DP_TRAINING_PATTERN_2, train_set,
855                                              false))
856                         break;
857
858                 udelay(400);
859                 if (!intel_dp_get_link_status(intel_output, link_status))
860                         break;
861
862                 if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
863                         channel_eq = true;
864                         break;
865                 }
866
867                 /* Try 5 times */
868                 if (tries > 5)
869                         break;
870
871                 /* Compute new train_set as requested by target */
872                 intel_get_adjust_train(intel_output, link_status, dp_priv->lane_count, train_set);
873                 ++tries;
874         }
875
876         I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_OFF);
877         POSTING_READ(dp_priv->output_reg);
878         intel_dp_aux_native_write_1(intel_output,
879                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
880 }
881
882 static void
883 intel_dp_link_down(struct intel_output *intel_output, uint32_t DP)
884 {
885         struct drm_device *dev = intel_output->base.dev;
886         struct drm_i915_private *dev_priv = dev->dev_private;
887         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
888
889         I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
890         POSTING_READ(dp_priv->output_reg);
891 }
892
893 static void
894 intel_dp_restore(struct drm_connector *connector)
895 {
896         struct intel_output *intel_output = to_intel_output(connector);
897         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
898
899         if (dp_priv->save_DP & DP_PORT_EN)
900                 intel_dp_link_train(intel_output, dp_priv->save_DP, dp_priv->save_link_configuration);
901         else
902                 intel_dp_link_down(intel_output,  dp_priv->save_DP);
903 }
904
905 #if 0
906 /*
907  * According to DP spec
908  * 5.1.2:
909  *  1. Read DPCD
910  *  2. Configure link according to Receiver Capabilities
911  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
912  *  4. Check link status on receipt of hot-plug interrupt
913  */
914
915 static void
916 intel_dp_check_link_status(struct intel_output *intel_output)
917 {
918         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
919         uint8_t link_status[DP_LINK_STATUS_SIZE];
920
921         if (!intel_output->enc.crtc)
922                 return;
923
924         if (!intel_dp_get_link_status(intel_output, link_status)) {
925                 intel_dp_link_down(intel_output, dp_priv->DP);
926                 return;
927         }
928
929         if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
930                 intel_dp_link_train(intel_output, dp_priv->DP, dp_priv->link_configuration);
931 }
932 #endif
933
934 /**
935  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
936  *
937  * \return true if DP port is connected.
938  * \return false if DP port is disconnected.
939  */
940 static enum drm_connector_status
941 intel_dp_detect(struct drm_connector *connector)
942 {
943         struct intel_output *intel_output = to_intel_output(connector);
944         struct drm_device *dev = intel_output->base.dev;
945         struct drm_i915_private *dev_priv = dev->dev_private;
946         struct intel_dp_priv *dp_priv = intel_output->dev_priv;
947         uint32_t temp, bit;
948         enum drm_connector_status status;
949
950         dp_priv->has_audio = false;
951
952         temp = I915_READ(PORT_HOTPLUG_EN);
953
954         I915_WRITE(PORT_HOTPLUG_EN,
955                temp |
956                DPB_HOTPLUG_INT_EN |
957                DPC_HOTPLUG_INT_EN |
958                DPD_HOTPLUG_INT_EN);
959
960         POSTING_READ(PORT_HOTPLUG_EN);
961
962         switch (dp_priv->output_reg) {
963         case DP_B:
964                 bit = DPB_HOTPLUG_INT_STATUS;
965                 break;
966         case DP_C:
967                 bit = DPC_HOTPLUG_INT_STATUS;
968                 break;
969         case DP_D:
970                 bit = DPD_HOTPLUG_INT_STATUS;
971                 break;
972         default:
973                 return connector_status_unknown;
974         }
975
976         temp = I915_READ(PORT_HOTPLUG_STAT);
977
978         if ((temp & bit) == 0)
979                 return connector_status_disconnected;
980
981         status = connector_status_disconnected;
982         if (intel_dp_aux_native_read(intel_output,
983                                      0x000, dp_priv->dpcd,
984                                      sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
985         {
986                 if (dp_priv->dpcd[0] != 0)
987                         status = connector_status_connected;
988         }
989         return status;
990 }
991
992 static int intel_dp_get_modes(struct drm_connector *connector)
993 {
994         struct intel_output *intel_output = to_intel_output(connector);
995
996         /* We should parse the EDID data and find out if it has an audio sink
997          */
998
999         return intel_ddc_get_modes(intel_output);
1000 }
1001
1002 static void
1003 intel_dp_destroy (struct drm_connector *connector)
1004 {
1005         struct intel_output *intel_output = to_intel_output(connector);
1006
1007         if (intel_output->i2c_bus)
1008                 intel_i2c_destroy(intel_output->i2c_bus);
1009         drm_sysfs_connector_remove(connector);
1010         drm_connector_cleanup(connector);
1011         kfree(intel_output);
1012 }
1013
1014 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
1015         .dpms = intel_dp_dpms,
1016         .mode_fixup = intel_dp_mode_fixup,
1017         .prepare = intel_encoder_prepare,
1018         .mode_set = intel_dp_mode_set,
1019         .commit = intel_encoder_commit,
1020 };
1021
1022 static const struct drm_connector_funcs intel_dp_connector_funcs = {
1023         .dpms = drm_helper_connector_dpms,
1024         .save = intel_dp_save,
1025         .restore = intel_dp_restore,
1026         .detect = intel_dp_detect,
1027         .fill_modes = drm_helper_probe_single_connector_modes,
1028         .destroy = intel_dp_destroy,
1029 };
1030
1031 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
1032         .get_modes = intel_dp_get_modes,
1033         .mode_valid = intel_dp_mode_valid,
1034         .best_encoder = intel_best_encoder,
1035 };
1036
1037 static void intel_dp_enc_destroy(struct drm_encoder *encoder)
1038 {
1039         drm_encoder_cleanup(encoder);
1040 }
1041
1042 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
1043         .destroy = intel_dp_enc_destroy,
1044 };
1045
1046 void
1047 intel_dp_init(struct drm_device *dev, int output_reg)
1048 {
1049         struct drm_i915_private *dev_priv = dev->dev_private;
1050         struct drm_connector *connector;
1051         struct intel_output *intel_output;
1052         struct intel_dp_priv *dp_priv;
1053
1054         intel_output = kcalloc(sizeof(struct intel_output) + 
1055                                sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
1056         if (!intel_output)
1057                 return;
1058
1059         dp_priv = (struct intel_dp_priv *)(intel_output + 1);
1060
1061         connector = &intel_output->base;
1062         drm_connector_init(dev, connector, &intel_dp_connector_funcs,
1063                            DRM_MODE_CONNECTOR_DisplayPort);
1064         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
1065
1066         intel_output->type = INTEL_OUTPUT_DISPLAYPORT;
1067
1068         connector->interlace_allowed = true;
1069         connector->doublescan_allowed = 0;
1070
1071         dp_priv->intel_output = intel_output;
1072         dp_priv->output_reg = output_reg;
1073         dp_priv->has_audio = false;
1074         intel_output->dev_priv = dp_priv;
1075
1076         drm_encoder_init(dev, &intel_output->enc, &intel_dp_enc_funcs,
1077                          DRM_MODE_ENCODER_TMDS);
1078         drm_encoder_helper_add(&intel_output->enc, &intel_dp_helper_funcs);
1079
1080         drm_mode_connector_attach_encoder(&intel_output->base,
1081                                           &intel_output->enc);
1082         drm_sysfs_connector_add(connector);
1083
1084         /* Set up the DDC bus. */
1085         intel_dp_i2c_init(intel_output,
1086                           (output_reg == DP_B) ? "DPDDC-B" :
1087                           (output_reg == DP_C) ? "DPDDC-C" : "DPDDC-D");
1088         intel_output->ddc_bus = &dp_priv->adapter;
1089
1090         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
1091          * 0xd.  Failure to do so will result in spurious interrupts being
1092          * generated on the port when a cable is not attached.
1093          */
1094         if (IS_G4X(dev) && !IS_GM45(dev)) {
1095                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
1096                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
1097         }
1098 }