]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/firewire/ohci.c
firewire: add CSR BUSY_TIMEOUT support
[net-next-2.6.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173         u32 bus_time;
174
175         /*
176          * Spinlock for accessing fw_ohci data.  Never call out of
177          * this driver with this lock held.
178          */
179         spinlock_t lock;
180
181         struct ar_context ar_request_ctx;
182         struct ar_context ar_response_ctx;
183         struct context at_request_ctx;
184         struct context at_response_ctx;
185
186         u32 it_context_mask;
187         struct iso_context *it_context_list;
188         u64 ir_context_channels;
189         u32 ir_context_mask;
190         struct iso_context *ir_context_list;
191
192         __be32    *config_rom;
193         dma_addr_t config_rom_bus;
194         __be32    *next_config_rom;
195         dma_addr_t next_config_rom_bus;
196         __be32     next_header;
197
198         __le32    *self_id_cpu;
199         dma_addr_t self_id_bus;
200         struct tasklet_struct bus_reset_tasklet;
201
202         u32 self_id_buffer[512];
203 };
204
205 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
206 {
207         return container_of(card, struct fw_ohci, card);
208 }
209
210 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
211 #define IR_CONTEXT_BUFFER_FILL          0x80000000
212 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
213 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
214 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
215 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
216
217 #define CONTEXT_RUN     0x8000
218 #define CONTEXT_WAKE    0x1000
219 #define CONTEXT_DEAD    0x0800
220 #define CONTEXT_ACTIVE  0x0400
221
222 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
223 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
224 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
225
226 #define OHCI1394_REGISTER_SIZE          0x800
227 #define OHCI_LOOP_COUNT                 500
228 #define OHCI1394_PCI_HCI_Control        0x40
229 #define SELF_ID_BUF_SIZE                0x800
230 #define OHCI_TCODE_PHY_PACKET           0x0e
231 #define OHCI_VERSION_1_1                0x010010
232
233 static char ohci_driver_name[] = KBUILD_MODNAME;
234
235 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
236 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
237
238 #define QUIRK_CYCLE_TIMER               1
239 #define QUIRK_RESET_PACKET              2
240 #define QUIRK_BE_HEADERS                4
241 #define QUIRK_NO_1394A                  8
242 #define QUIRK_NO_MSI                    16
243
244 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
245 static const struct {
246         unsigned short vendor, device, flags;
247 } ohci_quirks[] = {
248         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
249                                                             QUIRK_RESET_PACKET |
250                                                             QUIRK_NO_1394A},
251         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
252         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
253         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
254         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
255         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
256         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
257 };
258
259 /* This overrides anything that was found in ohci_quirks[]. */
260 static int param_quirks;
261 module_param_named(quirks, param_quirks, int, 0644);
262 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
263         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
264         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
265         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
266         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
267         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
268         ")");
269
270 #define OHCI_PARAM_DEBUG_AT_AR          1
271 #define OHCI_PARAM_DEBUG_SELFIDS        2
272 #define OHCI_PARAM_DEBUG_IRQS           4
273 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
274
275 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
276
277 static int param_debug;
278 module_param_named(debug, param_debug, int, 0644);
279 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
280         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
281         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
282         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
283         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
284         ", or a combination, or all = -1)");
285
286 static void log_irqs(u32 evt)
287 {
288         if (likely(!(param_debug &
289                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
290                 return;
291
292         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
293             !(evt & OHCI1394_busReset))
294                 return;
295
296         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
297             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
298             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
299             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
300             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
301             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
302             evt & OHCI1394_isochRx              ? " IR"                 : "",
303             evt & OHCI1394_isochTx              ? " IT"                 : "",
304             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
305             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
306             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
307             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
308             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
309             evt & OHCI1394_busReset             ? " busReset"           : "",
310             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
311                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
312                     OHCI1394_respTxComplete | OHCI1394_isochRx |
313                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
314                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
315                     OHCI1394_cycleInconsistent |
316                     OHCI1394_regAccessFail | OHCI1394_busReset)
317                                                 ? " ?"                  : "");
318 }
319
320 static const char *speed[] = {
321         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
322 };
323 static const char *power[] = {
324         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
325         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
326 };
327 static const char port[] = { '.', '-', 'p', 'c', };
328
329 static char _p(u32 *s, int shift)
330 {
331         return port[*s >> shift & 3];
332 }
333
334 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
335 {
336         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
337                 return;
338
339         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
340                   self_id_count, generation, node_id);
341
342         for (; self_id_count--; ++s)
343                 if ((*s & 1 << 23) == 0)
344                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
345                             "%s gc=%d %s %s%s%s\n",
346                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
347                             speed[*s >> 14 & 3], *s >> 16 & 63,
348                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
349                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
350                 else
351                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
352                             *s, *s >> 24 & 63,
353                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
354                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
355 }
356
357 static const char *evts[] = {
358         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
359         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
360         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
361         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
362         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
363         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
364         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
365         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
366         [0x10] = "-reserved-",          [0x11] = "ack_complete",
367         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
368         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
369         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
370         [0x18] = "-reserved-",          [0x19] = "-reserved-",
371         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
372         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
373         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
374         [0x20] = "pending/cancelled",
375 };
376 static const char *tcodes[] = {
377         [0x0] = "QW req",               [0x1] = "BW req",
378         [0x2] = "W resp",               [0x3] = "-reserved-",
379         [0x4] = "QR req",               [0x5] = "BR req",
380         [0x6] = "QR resp",              [0x7] = "BR resp",
381         [0x8] = "cycle start",          [0x9] = "Lk req",
382         [0xa] = "async stream packet",  [0xb] = "Lk resp",
383         [0xc] = "-reserved-",           [0xd] = "-reserved-",
384         [0xe] = "link internal",        [0xf] = "-reserved-",
385 };
386 static const char *phys[] = {
387         [0x0] = "phy config packet",    [0x1] = "link-on packet",
388         [0x2] = "self-id packet",       [0x3] = "-reserved-",
389 };
390
391 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
392 {
393         int tcode = header[0] >> 4 & 0xf;
394         char specific[12];
395
396         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
397                 return;
398
399         if (unlikely(evt >= ARRAY_SIZE(evts)))
400                         evt = 0x1f;
401
402         if (evt == OHCI1394_evt_bus_reset) {
403                 fw_notify("A%c evt_bus_reset, generation %d\n",
404                     dir, (header[2] >> 16) & 0xff);
405                 return;
406         }
407
408         if (header[0] == ~header[1]) {
409                 fw_notify("A%c %s, %s, %08x\n",
410                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
411                 return;
412         }
413
414         switch (tcode) {
415         case 0x0: case 0x6: case 0x8:
416                 snprintf(specific, sizeof(specific), " = %08x",
417                          be32_to_cpu((__force __be32)header[3]));
418                 break;
419         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
420                 snprintf(specific, sizeof(specific), " %x,%x",
421                          header[3] >> 16, header[3] & 0xffff);
422                 break;
423         default:
424                 specific[0] = '\0';
425         }
426
427         switch (tcode) {
428         case 0xe: case 0xa:
429                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
430                 break;
431         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
432                 fw_notify("A%c spd %x tl %02x, "
433                     "%04x -> %04x, %s, "
434                     "%s, %04x%08x%s\n",
435                     dir, speed, header[0] >> 10 & 0x3f,
436                     header[1] >> 16, header[0] >> 16, evts[evt],
437                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
438                 break;
439         default:
440                 fw_notify("A%c spd %x tl %02x, "
441                     "%04x -> %04x, %s, "
442                     "%s%s\n",
443                     dir, speed, header[0] >> 10 & 0x3f,
444                     header[1] >> 16, header[0] >> 16, evts[evt],
445                     tcodes[tcode], specific);
446         }
447 }
448
449 #else
450
451 #define param_debug 0
452 static inline void log_irqs(u32 evt) {}
453 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
454 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
455
456 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
457
458 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
459 {
460         writel(data, ohci->registers + offset);
461 }
462
463 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
464 {
465         return readl(ohci->registers + offset);
466 }
467
468 static inline void flush_writes(const struct fw_ohci *ohci)
469 {
470         /* Do a dummy read to flush writes. */
471         reg_read(ohci, OHCI1394_Version);
472 }
473
474 static int read_phy_reg(struct fw_ohci *ohci, int addr)
475 {
476         u32 val;
477         int i;
478
479         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
480         for (i = 0; i < 3 + 100; i++) {
481                 val = reg_read(ohci, OHCI1394_PhyControl);
482                 if (val & OHCI1394_PhyControl_ReadDone)
483                         return OHCI1394_PhyControl_ReadData(val);
484
485                 /*
486                  * Try a few times without waiting.  Sleeping is necessary
487                  * only when the link/PHY interface is busy.
488                  */
489                 if (i >= 3)
490                         msleep(1);
491         }
492         fw_error("failed to read phy reg\n");
493
494         return -EBUSY;
495 }
496
497 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
498 {
499         int i;
500
501         reg_write(ohci, OHCI1394_PhyControl,
502                   OHCI1394_PhyControl_Write(addr, val));
503         for (i = 0; i < 3 + 100; i++) {
504                 val = reg_read(ohci, OHCI1394_PhyControl);
505                 if (!(val & OHCI1394_PhyControl_WritePending))
506                         return 0;
507
508                 if (i >= 3)
509                         msleep(1);
510         }
511         fw_error("failed to write phy reg\n");
512
513         return -EBUSY;
514 }
515
516 static int ohci_update_phy_reg(struct fw_card *card, int addr,
517                                int clear_bits, int set_bits)
518 {
519         struct fw_ohci *ohci = fw_ohci(card);
520         int ret;
521
522         ret = read_phy_reg(ohci, addr);
523         if (ret < 0)
524                 return ret;
525
526         /*
527          * The interrupt status bits are cleared by writing a one bit.
528          * Avoid clearing them unless explicitly requested in set_bits.
529          */
530         if (addr == 5)
531                 clear_bits |= PHY_INT_STATUS_BITS;
532
533         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
534 }
535
536 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
537 {
538         int ret;
539
540         ret = ohci_update_phy_reg(&ohci->card, 7, PHY_PAGE_SELECT, page << 5);
541         if (ret < 0)
542                 return ret;
543
544         return read_phy_reg(ohci, addr);
545 }
546
547 static int ar_context_add_page(struct ar_context *ctx)
548 {
549         struct device *dev = ctx->ohci->card.device;
550         struct ar_buffer *ab;
551         dma_addr_t uninitialized_var(ab_bus);
552         size_t offset;
553
554         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
555         if (ab == NULL)
556                 return -ENOMEM;
557
558         ab->next = NULL;
559         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
560         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
561                                                     DESCRIPTOR_STATUS |
562                                                     DESCRIPTOR_BRANCH_ALWAYS);
563         offset = offsetof(struct ar_buffer, data);
564         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
565         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
566         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
567         ab->descriptor.branch_address = 0;
568
569         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
570         ctx->last_buffer->next = ab;
571         ctx->last_buffer = ab;
572
573         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
574         flush_writes(ctx->ohci);
575
576         return 0;
577 }
578
579 static void ar_context_release(struct ar_context *ctx)
580 {
581         struct ar_buffer *ab, *ab_next;
582         size_t offset;
583         dma_addr_t ab_bus;
584
585         for (ab = ctx->current_buffer; ab; ab = ab_next) {
586                 ab_next = ab->next;
587                 offset = offsetof(struct ar_buffer, data);
588                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
589                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
590                                   ab, ab_bus);
591         }
592 }
593
594 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
595 #define cond_le32_to_cpu(v) \
596         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
597 #else
598 #define cond_le32_to_cpu(v) le32_to_cpu(v)
599 #endif
600
601 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
602 {
603         struct fw_ohci *ohci = ctx->ohci;
604         struct fw_packet p;
605         u32 status, length, tcode;
606         int evt;
607
608         p.header[0] = cond_le32_to_cpu(buffer[0]);
609         p.header[1] = cond_le32_to_cpu(buffer[1]);
610         p.header[2] = cond_le32_to_cpu(buffer[2]);
611
612         tcode = (p.header[0] >> 4) & 0x0f;
613         switch (tcode) {
614         case TCODE_WRITE_QUADLET_REQUEST:
615         case TCODE_READ_QUADLET_RESPONSE:
616                 p.header[3] = (__force __u32) buffer[3];
617                 p.header_length = 16;
618                 p.payload_length = 0;
619                 break;
620
621         case TCODE_READ_BLOCK_REQUEST :
622                 p.header[3] = cond_le32_to_cpu(buffer[3]);
623                 p.header_length = 16;
624                 p.payload_length = 0;
625                 break;
626
627         case TCODE_WRITE_BLOCK_REQUEST:
628         case TCODE_READ_BLOCK_RESPONSE:
629         case TCODE_LOCK_REQUEST:
630         case TCODE_LOCK_RESPONSE:
631                 p.header[3] = cond_le32_to_cpu(buffer[3]);
632                 p.header_length = 16;
633                 p.payload_length = p.header[3] >> 16;
634                 break;
635
636         case TCODE_WRITE_RESPONSE:
637         case TCODE_READ_QUADLET_REQUEST:
638         case OHCI_TCODE_PHY_PACKET:
639                 p.header_length = 12;
640                 p.payload_length = 0;
641                 break;
642
643         default:
644                 /* FIXME: Stop context, discard everything, and restart? */
645                 p.header_length = 0;
646                 p.payload_length = 0;
647         }
648
649         p.payload = (void *) buffer + p.header_length;
650
651         /* FIXME: What to do about evt_* errors? */
652         length = (p.header_length + p.payload_length + 3) / 4;
653         status = cond_le32_to_cpu(buffer[length]);
654         evt    = (status >> 16) & 0x1f;
655
656         p.ack        = evt - 16;
657         p.speed      = (status >> 21) & 0x7;
658         p.timestamp  = status & 0xffff;
659         p.generation = ohci->request_generation;
660
661         log_ar_at_event('R', p.speed, p.header, evt);
662
663         /*
664          * The OHCI bus reset handler synthesizes a phy packet with
665          * the new generation number when a bus reset happens (see
666          * section 8.4.2.3).  This helps us determine when a request
667          * was received and make sure we send the response in the same
668          * generation.  We only need this for requests; for responses
669          * we use the unique tlabel for finding the matching
670          * request.
671          *
672          * Alas some chips sometimes emit bus reset packets with a
673          * wrong generation.  We set the correct generation for these
674          * at a slightly incorrect time (in bus_reset_tasklet).
675          */
676         if (evt == OHCI1394_evt_bus_reset) {
677                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
678                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
679         } else if (ctx == &ohci->ar_request_ctx) {
680                 fw_core_handle_request(&ohci->card, &p);
681         } else {
682                 fw_core_handle_response(&ohci->card, &p);
683         }
684
685         return buffer + length + 1;
686 }
687
688 static void ar_context_tasklet(unsigned long data)
689 {
690         struct ar_context *ctx = (struct ar_context *)data;
691         struct fw_ohci *ohci = ctx->ohci;
692         struct ar_buffer *ab;
693         struct descriptor *d;
694         void *buffer, *end;
695
696         ab = ctx->current_buffer;
697         d = &ab->descriptor;
698
699         if (d->res_count == 0) {
700                 size_t size, rest, offset;
701                 dma_addr_t start_bus;
702                 void *start;
703
704                 /*
705                  * This descriptor is finished and we may have a
706                  * packet split across this and the next buffer. We
707                  * reuse the page for reassembling the split packet.
708                  */
709
710                 offset = offsetof(struct ar_buffer, data);
711                 start = buffer = ab;
712                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
713
714                 ab = ab->next;
715                 d = &ab->descriptor;
716                 size = buffer + PAGE_SIZE - ctx->pointer;
717                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
718                 memmove(buffer, ctx->pointer, size);
719                 memcpy(buffer + size, ab->data, rest);
720                 ctx->current_buffer = ab;
721                 ctx->pointer = (void *) ab->data + rest;
722                 end = buffer + size + rest;
723
724                 while (buffer < end)
725                         buffer = handle_ar_packet(ctx, buffer);
726
727                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
728                                   start, start_bus);
729                 ar_context_add_page(ctx);
730         } else {
731                 buffer = ctx->pointer;
732                 ctx->pointer = end =
733                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
734
735                 while (buffer < end)
736                         buffer = handle_ar_packet(ctx, buffer);
737         }
738 }
739
740 static int ar_context_init(struct ar_context *ctx,
741                            struct fw_ohci *ohci, u32 regs)
742 {
743         struct ar_buffer ab;
744
745         ctx->regs        = regs;
746         ctx->ohci        = ohci;
747         ctx->last_buffer = &ab;
748         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
749
750         ar_context_add_page(ctx);
751         ar_context_add_page(ctx);
752         ctx->current_buffer = ab.next;
753         ctx->pointer = ctx->current_buffer->data;
754
755         return 0;
756 }
757
758 static void ar_context_run(struct ar_context *ctx)
759 {
760         struct ar_buffer *ab = ctx->current_buffer;
761         dma_addr_t ab_bus;
762         size_t offset;
763
764         offset = offsetof(struct ar_buffer, data);
765         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
766
767         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
768         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
769         flush_writes(ctx->ohci);
770 }
771
772 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
773 {
774         int b, key;
775
776         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
777         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
778
779         /* figure out which descriptor the branch address goes in */
780         if (z == 2 && (b == 3 || key == 2))
781                 return d;
782         else
783                 return d + z - 1;
784 }
785
786 static void context_tasklet(unsigned long data)
787 {
788         struct context *ctx = (struct context *) data;
789         struct descriptor *d, *last;
790         u32 address;
791         int z;
792         struct descriptor_buffer *desc;
793
794         desc = list_entry(ctx->buffer_list.next,
795                         struct descriptor_buffer, list);
796         last = ctx->last;
797         while (last->branch_address != 0) {
798                 struct descriptor_buffer *old_desc = desc;
799                 address = le32_to_cpu(last->branch_address);
800                 z = address & 0xf;
801                 address &= ~0xf;
802
803                 /* If the branch address points to a buffer outside of the
804                  * current buffer, advance to the next buffer. */
805                 if (address < desc->buffer_bus ||
806                                 address >= desc->buffer_bus + desc->used)
807                         desc = list_entry(desc->list.next,
808                                         struct descriptor_buffer, list);
809                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
810                 last = find_branch_descriptor(d, z);
811
812                 if (!ctx->callback(ctx, d, last))
813                         break;
814
815                 if (old_desc != desc) {
816                         /* If we've advanced to the next buffer, move the
817                          * previous buffer to the free list. */
818                         unsigned long flags;
819                         old_desc->used = 0;
820                         spin_lock_irqsave(&ctx->ohci->lock, flags);
821                         list_move_tail(&old_desc->list, &ctx->buffer_list);
822                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
823                 }
824                 ctx->last = last;
825         }
826 }
827
828 /*
829  * Allocate a new buffer and add it to the list of free buffers for this
830  * context.  Must be called with ohci->lock held.
831  */
832 static int context_add_buffer(struct context *ctx)
833 {
834         struct descriptor_buffer *desc;
835         dma_addr_t uninitialized_var(bus_addr);
836         int offset;
837
838         /*
839          * 16MB of descriptors should be far more than enough for any DMA
840          * program.  This will catch run-away userspace or DoS attacks.
841          */
842         if (ctx->total_allocation >= 16*1024*1024)
843                 return -ENOMEM;
844
845         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
846                         &bus_addr, GFP_ATOMIC);
847         if (!desc)
848                 return -ENOMEM;
849
850         offset = (void *)&desc->buffer - (void *)desc;
851         desc->buffer_size = PAGE_SIZE - offset;
852         desc->buffer_bus = bus_addr + offset;
853         desc->used = 0;
854
855         list_add_tail(&desc->list, &ctx->buffer_list);
856         ctx->total_allocation += PAGE_SIZE;
857
858         return 0;
859 }
860
861 static int context_init(struct context *ctx, struct fw_ohci *ohci,
862                         u32 regs, descriptor_callback_t callback)
863 {
864         ctx->ohci = ohci;
865         ctx->regs = regs;
866         ctx->total_allocation = 0;
867
868         INIT_LIST_HEAD(&ctx->buffer_list);
869         if (context_add_buffer(ctx) < 0)
870                 return -ENOMEM;
871
872         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
873                         struct descriptor_buffer, list);
874
875         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
876         ctx->callback = callback;
877
878         /*
879          * We put a dummy descriptor in the buffer that has a NULL
880          * branch address and looks like it's been sent.  That way we
881          * have a descriptor to append DMA programs to.
882          */
883         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
884         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
885         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
886         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
887         ctx->last = ctx->buffer_tail->buffer;
888         ctx->prev = ctx->buffer_tail->buffer;
889
890         return 0;
891 }
892
893 static void context_release(struct context *ctx)
894 {
895         struct fw_card *card = &ctx->ohci->card;
896         struct descriptor_buffer *desc, *tmp;
897
898         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
899                 dma_free_coherent(card->device, PAGE_SIZE, desc,
900                         desc->buffer_bus -
901                         ((void *)&desc->buffer - (void *)desc));
902 }
903
904 /* Must be called with ohci->lock held */
905 static struct descriptor *context_get_descriptors(struct context *ctx,
906                                                   int z, dma_addr_t *d_bus)
907 {
908         struct descriptor *d = NULL;
909         struct descriptor_buffer *desc = ctx->buffer_tail;
910
911         if (z * sizeof(*d) > desc->buffer_size)
912                 return NULL;
913
914         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
915                 /* No room for the descriptor in this buffer, so advance to the
916                  * next one. */
917
918                 if (desc->list.next == &ctx->buffer_list) {
919                         /* If there is no free buffer next in the list,
920                          * allocate one. */
921                         if (context_add_buffer(ctx) < 0)
922                                 return NULL;
923                 }
924                 desc = list_entry(desc->list.next,
925                                 struct descriptor_buffer, list);
926                 ctx->buffer_tail = desc;
927         }
928
929         d = desc->buffer + desc->used / sizeof(*d);
930         memset(d, 0, z * sizeof(*d));
931         *d_bus = desc->buffer_bus + desc->used;
932
933         return d;
934 }
935
936 static void context_run(struct context *ctx, u32 extra)
937 {
938         struct fw_ohci *ohci = ctx->ohci;
939
940         reg_write(ohci, COMMAND_PTR(ctx->regs),
941                   le32_to_cpu(ctx->last->branch_address));
942         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
943         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
944         flush_writes(ohci);
945 }
946
947 static void context_append(struct context *ctx,
948                            struct descriptor *d, int z, int extra)
949 {
950         dma_addr_t d_bus;
951         struct descriptor_buffer *desc = ctx->buffer_tail;
952
953         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
954
955         desc->used += (z + extra) * sizeof(*d);
956         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
957         ctx->prev = find_branch_descriptor(d, z);
958
959         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
960         flush_writes(ctx->ohci);
961 }
962
963 static void context_stop(struct context *ctx)
964 {
965         u32 reg;
966         int i;
967
968         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
969         flush_writes(ctx->ohci);
970
971         for (i = 0; i < 10; i++) {
972                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
973                 if ((reg & CONTEXT_ACTIVE) == 0)
974                         return;
975
976                 mdelay(1);
977         }
978         fw_error("Error: DMA context still active (0x%08x)\n", reg);
979 }
980
981 struct driver_data {
982         struct fw_packet *packet;
983 };
984
985 /*
986  * This function apppends a packet to the DMA queue for transmission.
987  * Must always be called with the ochi->lock held to ensure proper
988  * generation handling and locking around packet queue manipulation.
989  */
990 static int at_context_queue_packet(struct context *ctx,
991                                    struct fw_packet *packet)
992 {
993         struct fw_ohci *ohci = ctx->ohci;
994         dma_addr_t d_bus, uninitialized_var(payload_bus);
995         struct driver_data *driver_data;
996         struct descriptor *d, *last;
997         __le32 *header;
998         int z, tcode;
999         u32 reg;
1000
1001         d = context_get_descriptors(ctx, 4, &d_bus);
1002         if (d == NULL) {
1003                 packet->ack = RCODE_SEND_ERROR;
1004                 return -1;
1005         }
1006
1007         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1008         d[0].res_count = cpu_to_le16(packet->timestamp);
1009
1010         /*
1011          * The DMA format for asyncronous link packets is different
1012          * from the IEEE1394 layout, so shift the fields around
1013          * accordingly.  If header_length is 8, it's a PHY packet, to
1014          * which we need to prepend an extra quadlet.
1015          */
1016
1017         header = (__le32 *) &d[1];
1018         switch (packet->header_length) {
1019         case 16:
1020         case 12:
1021                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1022                                         (packet->speed << 16));
1023                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1024                                         (packet->header[0] & 0xffff0000));
1025                 header[2] = cpu_to_le32(packet->header[2]);
1026
1027                 tcode = (packet->header[0] >> 4) & 0x0f;
1028                 if (TCODE_IS_BLOCK_PACKET(tcode))
1029                         header[3] = cpu_to_le32(packet->header[3]);
1030                 else
1031                         header[3] = (__force __le32) packet->header[3];
1032
1033                 d[0].req_count = cpu_to_le16(packet->header_length);
1034                 break;
1035
1036         case 8:
1037                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1038                                         (packet->speed << 16));
1039                 header[1] = cpu_to_le32(packet->header[0]);
1040                 header[2] = cpu_to_le32(packet->header[1]);
1041                 d[0].req_count = cpu_to_le16(12);
1042                 break;
1043
1044         case 4:
1045                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1046                                         (packet->speed << 16));
1047                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1048                 d[0].req_count = cpu_to_le16(8);
1049                 break;
1050
1051         default:
1052                 /* BUG(); */
1053                 packet->ack = RCODE_SEND_ERROR;
1054                 return -1;
1055         }
1056
1057         driver_data = (struct driver_data *) &d[3];
1058         driver_data->packet = packet;
1059         packet->driver_data = driver_data;
1060
1061         if (packet->payload_length > 0) {
1062                 payload_bus =
1063                         dma_map_single(ohci->card.device, packet->payload,
1064                                        packet->payload_length, DMA_TO_DEVICE);
1065                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1066                         packet->ack = RCODE_SEND_ERROR;
1067                         return -1;
1068                 }
1069                 packet->payload_bus     = payload_bus;
1070                 packet->payload_mapped  = true;
1071
1072                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1073                 d[2].data_address = cpu_to_le32(payload_bus);
1074                 last = &d[2];
1075                 z = 3;
1076         } else {
1077                 last = &d[0];
1078                 z = 2;
1079         }
1080
1081         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1082                                      DESCRIPTOR_IRQ_ALWAYS |
1083                                      DESCRIPTOR_BRANCH_ALWAYS);
1084
1085         /*
1086          * If the controller and packet generations don't match, we need to
1087          * bail out and try again.  If IntEvent.busReset is set, the AT context
1088          * is halted, so appending to the context and trying to run it is
1089          * futile.  Most controllers do the right thing and just flush the AT
1090          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1091          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1092          * up stalling out.  So we just bail out in software and try again
1093          * later, and everyone is happy.
1094          * FIXME: Document how the locking works.
1095          */
1096         if (ohci->generation != packet->generation ||
1097             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1098                 if (packet->payload_mapped)
1099                         dma_unmap_single(ohci->card.device, payload_bus,
1100                                          packet->payload_length, DMA_TO_DEVICE);
1101                 packet->ack = RCODE_GENERATION;
1102                 return -1;
1103         }
1104
1105         context_append(ctx, d, z, 4 - z);
1106
1107         /* If the context isn't already running, start it up. */
1108         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1109         if ((reg & CONTEXT_RUN) == 0)
1110                 context_run(ctx, 0);
1111
1112         return 0;
1113 }
1114
1115 static int handle_at_packet(struct context *context,
1116                             struct descriptor *d,
1117                             struct descriptor *last)
1118 {
1119         struct driver_data *driver_data;
1120         struct fw_packet *packet;
1121         struct fw_ohci *ohci = context->ohci;
1122         int evt;
1123
1124         if (last->transfer_status == 0)
1125                 /* This descriptor isn't done yet, stop iteration. */
1126                 return 0;
1127
1128         driver_data = (struct driver_data *) &d[3];
1129         packet = driver_data->packet;
1130         if (packet == NULL)
1131                 /* This packet was cancelled, just continue. */
1132                 return 1;
1133
1134         if (packet->payload_mapped)
1135                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1136                                  packet->payload_length, DMA_TO_DEVICE);
1137
1138         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1139         packet->timestamp = le16_to_cpu(last->res_count);
1140
1141         log_ar_at_event('T', packet->speed, packet->header, evt);
1142
1143         switch (evt) {
1144         case OHCI1394_evt_timeout:
1145                 /* Async response transmit timed out. */
1146                 packet->ack = RCODE_CANCELLED;
1147                 break;
1148
1149         case OHCI1394_evt_flushed:
1150                 /*
1151                  * The packet was flushed should give same error as
1152                  * when we try to use a stale generation count.
1153                  */
1154                 packet->ack = RCODE_GENERATION;
1155                 break;
1156
1157         case OHCI1394_evt_missing_ack:
1158                 /*
1159                  * Using a valid (current) generation count, but the
1160                  * node is not on the bus or not sending acks.
1161                  */
1162                 packet->ack = RCODE_NO_ACK;
1163                 break;
1164
1165         case ACK_COMPLETE + 0x10:
1166         case ACK_PENDING + 0x10:
1167         case ACK_BUSY_X + 0x10:
1168         case ACK_BUSY_A + 0x10:
1169         case ACK_BUSY_B + 0x10:
1170         case ACK_DATA_ERROR + 0x10:
1171         case ACK_TYPE_ERROR + 0x10:
1172                 packet->ack = evt - 0x10;
1173                 break;
1174
1175         default:
1176                 packet->ack = RCODE_SEND_ERROR;
1177                 break;
1178         }
1179
1180         packet->callback(packet, &ohci->card, packet->ack);
1181
1182         return 1;
1183 }
1184
1185 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1186 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1187 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1188 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1189 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1190
1191 static void handle_local_rom(struct fw_ohci *ohci,
1192                              struct fw_packet *packet, u32 csr)
1193 {
1194         struct fw_packet response;
1195         int tcode, length, i;
1196
1197         tcode = HEADER_GET_TCODE(packet->header[0]);
1198         if (TCODE_IS_BLOCK_PACKET(tcode))
1199                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1200         else
1201                 length = 4;
1202
1203         i = csr - CSR_CONFIG_ROM;
1204         if (i + length > CONFIG_ROM_SIZE) {
1205                 fw_fill_response(&response, packet->header,
1206                                  RCODE_ADDRESS_ERROR, NULL, 0);
1207         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1208                 fw_fill_response(&response, packet->header,
1209                                  RCODE_TYPE_ERROR, NULL, 0);
1210         } else {
1211                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1212                                  (void *) ohci->config_rom + i, length);
1213         }
1214
1215         fw_core_handle_response(&ohci->card, &response);
1216 }
1217
1218 static void handle_local_lock(struct fw_ohci *ohci,
1219                               struct fw_packet *packet, u32 csr)
1220 {
1221         struct fw_packet response;
1222         int tcode, length, ext_tcode, sel;
1223         __be32 *payload, lock_old;
1224         u32 lock_arg, lock_data;
1225
1226         tcode = HEADER_GET_TCODE(packet->header[0]);
1227         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1228         payload = packet->payload;
1229         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1230
1231         if (tcode == TCODE_LOCK_REQUEST &&
1232             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1233                 lock_arg = be32_to_cpu(payload[0]);
1234                 lock_data = be32_to_cpu(payload[1]);
1235         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1236                 lock_arg = 0;
1237                 lock_data = 0;
1238         } else {
1239                 fw_fill_response(&response, packet->header,
1240                                  RCODE_TYPE_ERROR, NULL, 0);
1241                 goto out;
1242         }
1243
1244         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1245         reg_write(ohci, OHCI1394_CSRData, lock_data);
1246         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1247         reg_write(ohci, OHCI1394_CSRControl, sel);
1248
1249         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1250                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1251         else
1252                 fw_notify("swap not done yet\n");
1253
1254         fw_fill_response(&response, packet->header,
1255                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1256  out:
1257         fw_core_handle_response(&ohci->card, &response);
1258 }
1259
1260 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1261 {
1262         u64 offset;
1263         u32 csr;
1264
1265         if (ctx == &ctx->ohci->at_request_ctx) {
1266                 packet->ack = ACK_PENDING;
1267                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1268         }
1269
1270         offset =
1271                 ((unsigned long long)
1272                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1273                 packet->header[2];
1274         csr = offset - CSR_REGISTER_BASE;
1275
1276         /* Handle config rom reads. */
1277         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1278                 handle_local_rom(ctx->ohci, packet, csr);
1279         else switch (csr) {
1280         case CSR_BUS_MANAGER_ID:
1281         case CSR_BANDWIDTH_AVAILABLE:
1282         case CSR_CHANNELS_AVAILABLE_HI:
1283         case CSR_CHANNELS_AVAILABLE_LO:
1284                 handle_local_lock(ctx->ohci, packet, csr);
1285                 break;
1286         default:
1287                 if (ctx == &ctx->ohci->at_request_ctx)
1288                         fw_core_handle_request(&ctx->ohci->card, packet);
1289                 else
1290                         fw_core_handle_response(&ctx->ohci->card, packet);
1291                 break;
1292         }
1293
1294         if (ctx == &ctx->ohci->at_response_ctx) {
1295                 packet->ack = ACK_COMPLETE;
1296                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1297         }
1298 }
1299
1300 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1301 {
1302         unsigned long flags;
1303         int ret;
1304
1305         spin_lock_irqsave(&ctx->ohci->lock, flags);
1306
1307         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1308             ctx->ohci->generation == packet->generation) {
1309                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1310                 handle_local_request(ctx, packet);
1311                 return;
1312         }
1313
1314         ret = at_context_queue_packet(ctx, packet);
1315         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1316
1317         if (ret < 0)
1318                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1319
1320 }
1321
1322 static u32 cycle_timer_ticks(u32 cycle_timer)
1323 {
1324         u32 ticks;
1325
1326         ticks = cycle_timer & 0xfff;
1327         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1328         ticks += (3072 * 8000) * (cycle_timer >> 25);
1329
1330         return ticks;
1331 }
1332
1333 /*
1334  * Some controllers exhibit one or more of the following bugs when updating the
1335  * iso cycle timer register:
1336  *  - When the lowest six bits are wrapping around to zero, a read that happens
1337  *    at the same time will return garbage in the lowest ten bits.
1338  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1339  *    not incremented for about 60 ns.
1340  *  - Occasionally, the entire register reads zero.
1341  *
1342  * To catch these, we read the register three times and ensure that the
1343  * difference between each two consecutive reads is approximately the same, i.e.
1344  * less than twice the other.  Furthermore, any negative difference indicates an
1345  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1346  * execute, so we have enough precision to compute the ratio of the differences.)
1347  */
1348 static u32 get_cycle_time(struct fw_ohci *ohci)
1349 {
1350         u32 c0, c1, c2;
1351         u32 t0, t1, t2;
1352         s32 diff01, diff12;
1353         int i;
1354
1355         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1356
1357         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1358                 i = 0;
1359                 c1 = c2;
1360                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1361                 do {
1362                         c0 = c1;
1363                         c1 = c2;
1364                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1365                         t0 = cycle_timer_ticks(c0);
1366                         t1 = cycle_timer_ticks(c1);
1367                         t2 = cycle_timer_ticks(c2);
1368                         diff01 = t1 - t0;
1369                         diff12 = t2 - t1;
1370                 } while ((diff01 <= 0 || diff12 <= 0 ||
1371                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1372                          && i++ < 20);
1373         }
1374
1375         return c2;
1376 }
1377
1378 /*
1379  * This function has to be called at least every 64 seconds.  The bus_time
1380  * field stores not only the upper 25 bits of the BUS_TIME register but also
1381  * the most significant bit of the cycle timer in bit 6 so that we can detect
1382  * changes in this bit.
1383  */
1384 static u32 update_bus_time(struct fw_ohci *ohci)
1385 {
1386         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1387
1388         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1389                 ohci->bus_time += 0x40;
1390
1391         return ohci->bus_time | cycle_time_seconds;
1392 }
1393
1394 static void bus_reset_tasklet(unsigned long data)
1395 {
1396         struct fw_ohci *ohci = (struct fw_ohci *)data;
1397         int self_id_count, i, j, reg;
1398         int generation, new_generation;
1399         unsigned long flags;
1400         void *free_rom = NULL;
1401         dma_addr_t free_rom_bus = 0;
1402
1403         reg = reg_read(ohci, OHCI1394_NodeID);
1404         if (!(reg & OHCI1394_NodeID_idValid)) {
1405                 fw_notify("node ID not valid, new bus reset in progress\n");
1406                 return;
1407         }
1408         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1409                 fw_notify("malconfigured bus\n");
1410                 return;
1411         }
1412         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1413                                OHCI1394_NodeID_nodeNumber);
1414
1415         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1416         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1417                 fw_notify("inconsistent self IDs\n");
1418                 return;
1419         }
1420         /*
1421          * The count in the SelfIDCount register is the number of
1422          * bytes in the self ID receive buffer.  Since we also receive
1423          * the inverted quadlets and a header quadlet, we shift one
1424          * bit extra to get the actual number of self IDs.
1425          */
1426         self_id_count = (reg >> 3) & 0xff;
1427         if (self_id_count == 0 || self_id_count > 252) {
1428                 fw_notify("inconsistent self IDs\n");
1429                 return;
1430         }
1431         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1432         rmb();
1433
1434         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1435                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1436                         fw_notify("inconsistent self IDs\n");
1437                         return;
1438                 }
1439                 ohci->self_id_buffer[j] =
1440                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1441         }
1442         rmb();
1443
1444         /*
1445          * Check the consistency of the self IDs we just read.  The
1446          * problem we face is that a new bus reset can start while we
1447          * read out the self IDs from the DMA buffer. If this happens,
1448          * the DMA buffer will be overwritten with new self IDs and we
1449          * will read out inconsistent data.  The OHCI specification
1450          * (section 11.2) recommends a technique similar to
1451          * linux/seqlock.h, where we remember the generation of the
1452          * self IDs in the buffer before reading them out and compare
1453          * it to the current generation after reading them out.  If
1454          * the two generations match we know we have a consistent set
1455          * of self IDs.
1456          */
1457
1458         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1459         if (new_generation != generation) {
1460                 fw_notify("recursive bus reset detected, "
1461                           "discarding self ids\n");
1462                 return;
1463         }
1464
1465         /* FIXME: Document how the locking works. */
1466         spin_lock_irqsave(&ohci->lock, flags);
1467
1468         ohci->generation = generation;
1469         context_stop(&ohci->at_request_ctx);
1470         context_stop(&ohci->at_response_ctx);
1471         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1472
1473         if (ohci->quirks & QUIRK_RESET_PACKET)
1474                 ohci->request_generation = generation;
1475
1476         /*
1477          * This next bit is unrelated to the AT context stuff but we
1478          * have to do it under the spinlock also.  If a new config rom
1479          * was set up before this reset, the old one is now no longer
1480          * in use and we can free it. Update the config rom pointers
1481          * to point to the current config rom and clear the
1482          * next_config_rom pointer so a new udpate can take place.
1483          */
1484
1485         if (ohci->next_config_rom != NULL) {
1486                 if (ohci->next_config_rom != ohci->config_rom) {
1487                         free_rom      = ohci->config_rom;
1488                         free_rom_bus  = ohci->config_rom_bus;
1489                 }
1490                 ohci->config_rom      = ohci->next_config_rom;
1491                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1492                 ohci->next_config_rom = NULL;
1493
1494                 /*
1495                  * Restore config_rom image and manually update
1496                  * config_rom registers.  Writing the header quadlet
1497                  * will indicate that the config rom is ready, so we
1498                  * do that last.
1499                  */
1500                 reg_write(ohci, OHCI1394_BusOptions,
1501                           be32_to_cpu(ohci->config_rom[2]));
1502                 ohci->config_rom[0] = ohci->next_header;
1503                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1504                           be32_to_cpu(ohci->next_header));
1505         }
1506
1507 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1508         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1509         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1510 #endif
1511
1512         spin_unlock_irqrestore(&ohci->lock, flags);
1513
1514         if (free_rom)
1515                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1516                                   free_rom, free_rom_bus);
1517
1518         log_selfids(ohci->node_id, generation,
1519                     self_id_count, ohci->self_id_buffer);
1520
1521         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1522                                  self_id_count, ohci->self_id_buffer);
1523 }
1524
1525 static irqreturn_t irq_handler(int irq, void *data)
1526 {
1527         struct fw_ohci *ohci = data;
1528         u32 event, iso_event;
1529         int i;
1530
1531         event = reg_read(ohci, OHCI1394_IntEventClear);
1532
1533         if (!event || !~event)
1534                 return IRQ_NONE;
1535
1536         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1537         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1538         log_irqs(event);
1539
1540         if (event & OHCI1394_selfIDComplete)
1541                 tasklet_schedule(&ohci->bus_reset_tasklet);
1542
1543         if (event & OHCI1394_RQPkt)
1544                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1545
1546         if (event & OHCI1394_RSPkt)
1547                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1548
1549         if (event & OHCI1394_reqTxComplete)
1550                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1551
1552         if (event & OHCI1394_respTxComplete)
1553                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1554
1555         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1556         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1557
1558         while (iso_event) {
1559                 i = ffs(iso_event) - 1;
1560                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1561                 iso_event &= ~(1 << i);
1562         }
1563
1564         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1565         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1566
1567         while (iso_event) {
1568                 i = ffs(iso_event) - 1;
1569                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1570                 iso_event &= ~(1 << i);
1571         }
1572
1573         if (unlikely(event & OHCI1394_regAccessFail))
1574                 fw_error("Register access failure - "
1575                          "please notify linux1394-devel@lists.sf.net\n");
1576
1577         if (unlikely(event & OHCI1394_postedWriteErr))
1578                 fw_error("PCI posted write error\n");
1579
1580         if (unlikely(event & OHCI1394_cycleTooLong)) {
1581                 if (printk_ratelimit())
1582                         fw_notify("isochronous cycle too long\n");
1583                 reg_write(ohci, OHCI1394_LinkControlSet,
1584                           OHCI1394_LinkControl_cycleMaster);
1585         }
1586
1587         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1588                 /*
1589                  * We need to clear this event bit in order to make
1590                  * cycleMatch isochronous I/O work.  In theory we should
1591                  * stop active cycleMatch iso contexts now and restart
1592                  * them at least two cycles later.  (FIXME?)
1593                  */
1594                 if (printk_ratelimit())
1595                         fw_notify("isochronous cycle inconsistent\n");
1596         }
1597
1598         if (event & OHCI1394_cycle64Seconds) {
1599                 spin_lock(&ohci->lock);
1600                 update_bus_time(ohci);
1601                 spin_unlock(&ohci->lock);
1602         }
1603
1604         return IRQ_HANDLED;
1605 }
1606
1607 static int software_reset(struct fw_ohci *ohci)
1608 {
1609         int i;
1610
1611         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1612
1613         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1614                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1615                      OHCI1394_HCControl_softReset) == 0)
1616                         return 0;
1617                 msleep(1);
1618         }
1619
1620         return -EBUSY;
1621 }
1622
1623 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1624 {
1625         size_t size = length * 4;
1626
1627         memcpy(dest, src, size);
1628         if (size < CONFIG_ROM_SIZE)
1629                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1630 }
1631
1632 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1633 {
1634         bool enable_1394a;
1635         int ret, clear, set, offset;
1636
1637         /* Check if the driver should configure link and PHY. */
1638         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1639               OHCI1394_HCControl_programPhyEnable))
1640                 return 0;
1641
1642         /* Paranoia: check whether the PHY supports 1394a, too. */
1643         enable_1394a = false;
1644         ret = read_phy_reg(ohci, 2);
1645         if (ret < 0)
1646                 return ret;
1647         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1648                 ret = read_paged_phy_reg(ohci, 1, 8);
1649                 if (ret < 0)
1650                         return ret;
1651                 if (ret >= 1)
1652                         enable_1394a = true;
1653         }
1654
1655         if (ohci->quirks & QUIRK_NO_1394A)
1656                 enable_1394a = false;
1657
1658         /* Configure PHY and link consistently. */
1659         if (enable_1394a) {
1660                 clear = 0;
1661                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1662         } else {
1663                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1664                 set = 0;
1665         }
1666         ret = ohci_update_phy_reg(&ohci->card, 5, clear, set);
1667         if (ret < 0)
1668                 return ret;
1669
1670         if (enable_1394a)
1671                 offset = OHCI1394_HCControlSet;
1672         else
1673                 offset = OHCI1394_HCControlClear;
1674         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1675
1676         /* Clean up: configuration has been taken care of. */
1677         reg_write(ohci, OHCI1394_HCControlClear,
1678                   OHCI1394_HCControl_programPhyEnable);
1679
1680         return 0;
1681 }
1682
1683 static int ohci_enable(struct fw_card *card,
1684                        const __be32 *config_rom, size_t length)
1685 {
1686         struct fw_ohci *ohci = fw_ohci(card);
1687         struct pci_dev *dev = to_pci_dev(card->device);
1688         u32 lps, seconds, irqs;
1689         int i, ret;
1690
1691         if (software_reset(ohci)) {
1692                 fw_error("Failed to reset ohci card.\n");
1693                 return -EBUSY;
1694         }
1695
1696         /*
1697          * Now enable LPS, which we need in order to start accessing
1698          * most of the registers.  In fact, on some cards (ALI M5251),
1699          * accessing registers in the SClk domain without LPS enabled
1700          * will lock up the machine.  Wait 50msec to make sure we have
1701          * full link enabled.  However, with some cards (well, at least
1702          * a JMicron PCIe card), we have to try again sometimes.
1703          */
1704         reg_write(ohci, OHCI1394_HCControlSet,
1705                   OHCI1394_HCControl_LPS |
1706                   OHCI1394_HCControl_postedWriteEnable);
1707         flush_writes(ohci);
1708
1709         for (lps = 0, i = 0; !lps && i < 3; i++) {
1710                 msleep(50);
1711                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1712                       OHCI1394_HCControl_LPS;
1713         }
1714
1715         if (!lps) {
1716                 fw_error("Failed to set Link Power Status\n");
1717                 return -EIO;
1718         }
1719
1720         reg_write(ohci, OHCI1394_HCControlClear,
1721                   OHCI1394_HCControl_noByteSwapData);
1722
1723         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1724         reg_write(ohci, OHCI1394_LinkControlClear,
1725                   OHCI1394_LinkControl_rcvPhyPkt);
1726         reg_write(ohci, OHCI1394_LinkControlSet,
1727                   OHCI1394_LinkControl_rcvSelfID |
1728                   OHCI1394_LinkControl_cycleTimerEnable |
1729                   OHCI1394_LinkControl_cycleMaster);
1730
1731         reg_write(ohci, OHCI1394_ATRetries,
1732                   OHCI1394_MAX_AT_REQ_RETRIES |
1733                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1734                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1735                   (200 << 16));
1736
1737         seconds = lower_32_bits(get_seconds());
1738         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1739         ohci->bus_time = seconds & ~0x3f;
1740
1741         ar_context_run(&ohci->ar_request_ctx);
1742         ar_context_run(&ohci->ar_response_ctx);
1743
1744         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1745         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1746         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1747
1748         ret = configure_1394a_enhancements(ohci);
1749         if (ret < 0)
1750                 return ret;
1751
1752         /* Activate link_on bit and contender bit in our self ID packets.*/
1753         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1754         if (ret < 0)
1755                 return ret;
1756
1757         /*
1758          * When the link is not yet enabled, the atomic config rom
1759          * update mechanism described below in ohci_set_config_rom()
1760          * is not active.  We have to update ConfigRomHeader and
1761          * BusOptions manually, and the write to ConfigROMmap takes
1762          * effect immediately.  We tie this to the enabling of the
1763          * link, so we have a valid config rom before enabling - the
1764          * OHCI requires that ConfigROMhdr and BusOptions have valid
1765          * values before enabling.
1766          *
1767          * However, when the ConfigROMmap is written, some controllers
1768          * always read back quadlets 0 and 2 from the config rom to
1769          * the ConfigRomHeader and BusOptions registers on bus reset.
1770          * They shouldn't do that in this initial case where the link
1771          * isn't enabled.  This means we have to use the same
1772          * workaround here, setting the bus header to 0 and then write
1773          * the right values in the bus reset tasklet.
1774          */
1775
1776         if (config_rom) {
1777                 ohci->next_config_rom =
1778                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1779                                            &ohci->next_config_rom_bus,
1780                                            GFP_KERNEL);
1781                 if (ohci->next_config_rom == NULL)
1782                         return -ENOMEM;
1783
1784                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1785         } else {
1786                 /*
1787                  * In the suspend case, config_rom is NULL, which
1788                  * means that we just reuse the old config rom.
1789                  */
1790                 ohci->next_config_rom = ohci->config_rom;
1791                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1792         }
1793
1794         ohci->next_header = ohci->next_config_rom[0];
1795         ohci->next_config_rom[0] = 0;
1796         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1797         reg_write(ohci, OHCI1394_BusOptions,
1798                   be32_to_cpu(ohci->next_config_rom[2]));
1799         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1800
1801         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1802
1803         if (!(ohci->quirks & QUIRK_NO_MSI))
1804                 pci_enable_msi(dev);
1805         if (request_irq(dev->irq, irq_handler,
1806                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1807                         ohci_driver_name, ohci)) {
1808                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1809                 pci_disable_msi(dev);
1810                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1811                                   ohci->config_rom, ohci->config_rom_bus);
1812                 return -EIO;
1813         }
1814
1815         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1816                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1817                 OHCI1394_isochTx | OHCI1394_isochRx |
1818                 OHCI1394_postedWriteErr |
1819                 OHCI1394_selfIDComplete |
1820                 OHCI1394_regAccessFail |
1821                 OHCI1394_cycle64Seconds |
1822                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1823                 OHCI1394_masterIntEnable;
1824         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1825                 irqs |= OHCI1394_busReset;
1826         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1827
1828         reg_write(ohci, OHCI1394_HCControlSet,
1829                   OHCI1394_HCControl_linkEnable |
1830                   OHCI1394_HCControl_BIBimageValid);
1831         flush_writes(ohci);
1832
1833         /*
1834          * We are ready to go, initiate bus reset to finish the
1835          * initialization.
1836          */
1837
1838         fw_core_initiate_bus_reset(&ohci->card, 1);
1839
1840         return 0;
1841 }
1842
1843 static int ohci_set_config_rom(struct fw_card *card,
1844                                const __be32 *config_rom, size_t length)
1845 {
1846         struct fw_ohci *ohci;
1847         unsigned long flags;
1848         int ret = -EBUSY;
1849         __be32 *next_config_rom;
1850         dma_addr_t uninitialized_var(next_config_rom_bus);
1851
1852         ohci = fw_ohci(card);
1853
1854         /*
1855          * When the OHCI controller is enabled, the config rom update
1856          * mechanism is a bit tricky, but easy enough to use.  See
1857          * section 5.5.6 in the OHCI specification.
1858          *
1859          * The OHCI controller caches the new config rom address in a
1860          * shadow register (ConfigROMmapNext) and needs a bus reset
1861          * for the changes to take place.  When the bus reset is
1862          * detected, the controller loads the new values for the
1863          * ConfigRomHeader and BusOptions registers from the specified
1864          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1865          * shadow register. All automatically and atomically.
1866          *
1867          * Now, there's a twist to this story.  The automatic load of
1868          * ConfigRomHeader and BusOptions doesn't honor the
1869          * noByteSwapData bit, so with a be32 config rom, the
1870          * controller will load be32 values in to these registers
1871          * during the atomic update, even on litte endian
1872          * architectures.  The workaround we use is to put a 0 in the
1873          * header quadlet; 0 is endian agnostic and means that the
1874          * config rom isn't ready yet.  In the bus reset tasklet we
1875          * then set up the real values for the two registers.
1876          *
1877          * We use ohci->lock to avoid racing with the code that sets
1878          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1879          */
1880
1881         next_config_rom =
1882                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1883                                    &next_config_rom_bus, GFP_KERNEL);
1884         if (next_config_rom == NULL)
1885                 return -ENOMEM;
1886
1887         spin_lock_irqsave(&ohci->lock, flags);
1888
1889         if (ohci->next_config_rom == NULL) {
1890                 ohci->next_config_rom = next_config_rom;
1891                 ohci->next_config_rom_bus = next_config_rom_bus;
1892
1893                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1894
1895                 ohci->next_header = config_rom[0];
1896                 ohci->next_config_rom[0] = 0;
1897
1898                 reg_write(ohci, OHCI1394_ConfigROMmap,
1899                           ohci->next_config_rom_bus);
1900                 ret = 0;
1901         }
1902
1903         spin_unlock_irqrestore(&ohci->lock, flags);
1904
1905         /*
1906          * Now initiate a bus reset to have the changes take
1907          * effect. We clean up the old config rom memory and DMA
1908          * mappings in the bus reset tasklet, since the OHCI
1909          * controller could need to access it before the bus reset
1910          * takes effect.
1911          */
1912         if (ret == 0)
1913                 fw_core_initiate_bus_reset(&ohci->card, 1);
1914         else
1915                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1916                                   next_config_rom, next_config_rom_bus);
1917
1918         return ret;
1919 }
1920
1921 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1922 {
1923         struct fw_ohci *ohci = fw_ohci(card);
1924
1925         at_context_transmit(&ohci->at_request_ctx, packet);
1926 }
1927
1928 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1929 {
1930         struct fw_ohci *ohci = fw_ohci(card);
1931
1932         at_context_transmit(&ohci->at_response_ctx, packet);
1933 }
1934
1935 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1936 {
1937         struct fw_ohci *ohci = fw_ohci(card);
1938         struct context *ctx = &ohci->at_request_ctx;
1939         struct driver_data *driver_data = packet->driver_data;
1940         int ret = -ENOENT;
1941
1942         tasklet_disable(&ctx->tasklet);
1943
1944         if (packet->ack != 0)
1945                 goto out;
1946
1947         if (packet->payload_mapped)
1948                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1949                                  packet->payload_length, DMA_TO_DEVICE);
1950
1951         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1952         driver_data->packet = NULL;
1953         packet->ack = RCODE_CANCELLED;
1954         packet->callback(packet, &ohci->card, packet->ack);
1955         ret = 0;
1956  out:
1957         tasklet_enable(&ctx->tasklet);
1958
1959         return ret;
1960 }
1961
1962 static int ohci_enable_phys_dma(struct fw_card *card,
1963                                 int node_id, int generation)
1964 {
1965 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1966         return 0;
1967 #else
1968         struct fw_ohci *ohci = fw_ohci(card);
1969         unsigned long flags;
1970         int n, ret = 0;
1971
1972         /*
1973          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1974          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1975          */
1976
1977         spin_lock_irqsave(&ohci->lock, flags);
1978
1979         if (ohci->generation != generation) {
1980                 ret = -ESTALE;
1981                 goto out;
1982         }
1983
1984         /*
1985          * Note, if the node ID contains a non-local bus ID, physical DMA is
1986          * enabled for _all_ nodes on remote buses.
1987          */
1988
1989         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1990         if (n < 32)
1991                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1992         else
1993                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1994
1995         flush_writes(ohci);
1996  out:
1997         spin_unlock_irqrestore(&ohci->lock, flags);
1998
1999         return ret;
2000 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2001 }
2002
2003 static u32 ohci_read_csr_reg(struct fw_card *card, int csr_offset)
2004 {
2005         struct fw_ohci *ohci = fw_ohci(card);
2006         unsigned long flags;
2007         u32 value;
2008
2009         switch (csr_offset) {
2010         case CSR_NODE_IDS:
2011                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2012
2013         case CSR_CYCLE_TIME:
2014                 return get_cycle_time(ohci);
2015
2016         case CSR_BUS_TIME:
2017                 /*
2018                  * We might be called just after the cycle timer has wrapped
2019                  * around but just before the cycle64Seconds handler, so we
2020                  * better check here, too, if the bus time needs to be updated.
2021                  */
2022                 spin_lock_irqsave(&ohci->lock, flags);
2023                 value = update_bus_time(ohci);
2024                 spin_unlock_irqrestore(&ohci->lock, flags);
2025                 return value;
2026
2027         case CSR_BUSY_TIMEOUT:
2028                 value = reg_read(ohci, OHCI1394_ATRetries);
2029                 return (value >> 4) & 0x0ffff00f;
2030
2031         default:
2032                 WARN_ON(1);
2033                 return 0;
2034         }
2035 }
2036
2037 static void ohci_write_csr_reg(struct fw_card *card, int csr_offset, u32 value)
2038 {
2039         struct fw_ohci *ohci = fw_ohci(card);
2040         unsigned long flags;
2041
2042         switch (csr_offset) {
2043         case CSR_NODE_IDS:
2044                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2045                 flush_writes(ohci);
2046                 break;
2047
2048         case CSR_CYCLE_TIME:
2049                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2050                 reg_write(ohci, OHCI1394_IntEventSet,
2051                           OHCI1394_cycleInconsistent);
2052                 flush_writes(ohci);
2053                 break;
2054
2055         case CSR_BUS_TIME:
2056                 spin_lock_irqsave(&ohci->lock, flags);
2057                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2058                 spin_unlock_irqrestore(&ohci->lock, flags);
2059                 break;
2060
2061         case CSR_BUSY_TIMEOUT:
2062                 value = (value & 0xf) | ((value & 0xf) << 4) |
2063                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2064                 reg_write(ohci, OHCI1394_ATRetries, value);
2065                 flush_writes(ohci);
2066                 break;
2067
2068         default:
2069                 WARN_ON(1);
2070                 break;
2071         }
2072 }
2073
2074 static void copy_iso_headers(struct iso_context *ctx, void *p)
2075 {
2076         int i = ctx->header_length;
2077
2078         if (i + ctx->base.header_size > PAGE_SIZE)
2079                 return;
2080
2081         /*
2082          * The iso header is byteswapped to little endian by
2083          * the controller, but the remaining header quadlets
2084          * are big endian.  We want to present all the headers
2085          * as big endian, so we have to swap the first quadlet.
2086          */
2087         if (ctx->base.header_size > 0)
2088                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2089         if (ctx->base.header_size > 4)
2090                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2091         if (ctx->base.header_size > 8)
2092                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2093         ctx->header_length += ctx->base.header_size;
2094 }
2095
2096 static int handle_ir_packet_per_buffer(struct context *context,
2097                                        struct descriptor *d,
2098                                        struct descriptor *last)
2099 {
2100         struct iso_context *ctx =
2101                 container_of(context, struct iso_context, context);
2102         struct descriptor *pd;
2103         __le32 *ir_header;
2104         void *p;
2105
2106         for (pd = d; pd <= last; pd++) {
2107                 if (pd->transfer_status)
2108                         break;
2109         }
2110         if (pd > last)
2111                 /* Descriptor(s) not done yet, stop iteration */
2112                 return 0;
2113
2114         p = last + 1;
2115         copy_iso_headers(ctx, p);
2116
2117         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2118                 ir_header = (__le32 *) p;
2119                 ctx->base.callback(&ctx->base,
2120                                    le32_to_cpu(ir_header[0]) & 0xffff,
2121                                    ctx->header_length, ctx->header,
2122                                    ctx->base.callback_data);
2123                 ctx->header_length = 0;
2124         }
2125
2126         return 1;
2127 }
2128
2129 static int handle_it_packet(struct context *context,
2130                             struct descriptor *d,
2131                             struct descriptor *last)
2132 {
2133         struct iso_context *ctx =
2134                 container_of(context, struct iso_context, context);
2135         int i;
2136         struct descriptor *pd;
2137
2138         for (pd = d; pd <= last; pd++)
2139                 if (pd->transfer_status)
2140                         break;
2141         if (pd > last)
2142                 /* Descriptor(s) not done yet, stop iteration */
2143                 return 0;
2144
2145         i = ctx->header_length;
2146         if (i + 4 < PAGE_SIZE) {
2147                 /* Present this value as big-endian to match the receive code */
2148                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2149                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2150                                 le16_to_cpu(pd->res_count));
2151                 ctx->header_length += 4;
2152         }
2153         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2154                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2155                                    ctx->header_length, ctx->header,
2156                                    ctx->base.callback_data);
2157                 ctx->header_length = 0;
2158         }
2159         return 1;
2160 }
2161
2162 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2163                                 int type, int channel, size_t header_size)
2164 {
2165         struct fw_ohci *ohci = fw_ohci(card);
2166         struct iso_context *ctx, *list;
2167         descriptor_callback_t callback;
2168         u64 *channels, dont_care = ~0ULL;
2169         u32 *mask, regs;
2170         unsigned long flags;
2171         int index, ret = -ENOMEM;
2172
2173         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2174                 channels = &dont_care;
2175                 mask = &ohci->it_context_mask;
2176                 list = ohci->it_context_list;
2177                 callback = handle_it_packet;
2178         } else {
2179                 channels = &ohci->ir_context_channels;
2180                 mask = &ohci->ir_context_mask;
2181                 list = ohci->ir_context_list;
2182                 callback = handle_ir_packet_per_buffer;
2183         }
2184
2185         spin_lock_irqsave(&ohci->lock, flags);
2186         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2187         if (index >= 0) {
2188                 *channels &= ~(1ULL << channel);
2189                 *mask &= ~(1 << index);
2190         }
2191         spin_unlock_irqrestore(&ohci->lock, flags);
2192
2193         if (index < 0)
2194                 return ERR_PTR(-EBUSY);
2195
2196         if (type == FW_ISO_CONTEXT_TRANSMIT)
2197                 regs = OHCI1394_IsoXmitContextBase(index);
2198         else
2199                 regs = OHCI1394_IsoRcvContextBase(index);
2200
2201         ctx = &list[index];
2202         memset(ctx, 0, sizeof(*ctx));
2203         ctx->header_length = 0;
2204         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2205         if (ctx->header == NULL)
2206                 goto out;
2207
2208         ret = context_init(&ctx->context, ohci, regs, callback);
2209         if (ret < 0)
2210                 goto out_with_header;
2211
2212         return &ctx->base;
2213
2214  out_with_header:
2215         free_page((unsigned long)ctx->header);
2216  out:
2217         spin_lock_irqsave(&ohci->lock, flags);
2218         *mask |= 1 << index;
2219         spin_unlock_irqrestore(&ohci->lock, flags);
2220
2221         return ERR_PTR(ret);
2222 }
2223
2224 static int ohci_start_iso(struct fw_iso_context *base,
2225                           s32 cycle, u32 sync, u32 tags)
2226 {
2227         struct iso_context *ctx = container_of(base, struct iso_context, base);
2228         struct fw_ohci *ohci = ctx->context.ohci;
2229         u32 control, match;
2230         int index;
2231
2232         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2233                 index = ctx - ohci->it_context_list;
2234                 match = 0;
2235                 if (cycle >= 0)
2236                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2237                                 (cycle & 0x7fff) << 16;
2238
2239                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2240                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2241                 context_run(&ctx->context, match);
2242         } else {
2243                 index = ctx - ohci->ir_context_list;
2244                 control = IR_CONTEXT_ISOCH_HEADER;
2245                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2246                 if (cycle >= 0) {
2247                         match |= (cycle & 0x07fff) << 12;
2248                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2249                 }
2250
2251                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2252                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2253                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2254                 context_run(&ctx->context, control);
2255         }
2256
2257         return 0;
2258 }
2259
2260 static int ohci_stop_iso(struct fw_iso_context *base)
2261 {
2262         struct fw_ohci *ohci = fw_ohci(base->card);
2263         struct iso_context *ctx = container_of(base, struct iso_context, base);
2264         int index;
2265
2266         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2267                 index = ctx - ohci->it_context_list;
2268                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2269         } else {
2270                 index = ctx - ohci->ir_context_list;
2271                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2272         }
2273         flush_writes(ohci);
2274         context_stop(&ctx->context);
2275
2276         return 0;
2277 }
2278
2279 static void ohci_free_iso_context(struct fw_iso_context *base)
2280 {
2281         struct fw_ohci *ohci = fw_ohci(base->card);
2282         struct iso_context *ctx = container_of(base, struct iso_context, base);
2283         unsigned long flags;
2284         int index;
2285
2286         ohci_stop_iso(base);
2287         context_release(&ctx->context);
2288         free_page((unsigned long)ctx->header);
2289
2290         spin_lock_irqsave(&ohci->lock, flags);
2291
2292         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2293                 index = ctx - ohci->it_context_list;
2294                 ohci->it_context_mask |= 1 << index;
2295         } else {
2296                 index = ctx - ohci->ir_context_list;
2297                 ohci->ir_context_mask |= 1 << index;
2298                 ohci->ir_context_channels |= 1ULL << base->channel;
2299         }
2300
2301         spin_unlock_irqrestore(&ohci->lock, flags);
2302 }
2303
2304 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2305                                    struct fw_iso_packet *packet,
2306                                    struct fw_iso_buffer *buffer,
2307                                    unsigned long payload)
2308 {
2309         struct iso_context *ctx = container_of(base, struct iso_context, base);
2310         struct descriptor *d, *last, *pd;
2311         struct fw_iso_packet *p;
2312         __le32 *header;
2313         dma_addr_t d_bus, page_bus;
2314         u32 z, header_z, payload_z, irq;
2315         u32 payload_index, payload_end_index, next_page_index;
2316         int page, end_page, i, length, offset;
2317
2318         p = packet;
2319         payload_index = payload;
2320
2321         if (p->skip)
2322                 z = 1;
2323         else
2324                 z = 2;
2325         if (p->header_length > 0)
2326                 z++;
2327
2328         /* Determine the first page the payload isn't contained in. */
2329         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2330         if (p->payload_length > 0)
2331                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2332         else
2333                 payload_z = 0;
2334
2335         z += payload_z;
2336
2337         /* Get header size in number of descriptors. */
2338         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2339
2340         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2341         if (d == NULL)
2342                 return -ENOMEM;
2343
2344         if (!p->skip) {
2345                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2346                 d[0].req_count = cpu_to_le16(8);
2347                 /*
2348                  * Link the skip address to this descriptor itself.  This causes
2349                  * a context to skip a cycle whenever lost cycles or FIFO
2350                  * overruns occur, without dropping the data.  The application
2351                  * should then decide whether this is an error condition or not.
2352                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2353                  */
2354                 d[0].branch_address = cpu_to_le32(d_bus | z);
2355
2356                 header = (__le32 *) &d[1];
2357                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2358                                         IT_HEADER_TAG(p->tag) |
2359                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2360                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2361                                         IT_HEADER_SPEED(ctx->base.speed));
2362                 header[1] =
2363                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2364                                                           p->payload_length));
2365         }
2366
2367         if (p->header_length > 0) {
2368                 d[2].req_count    = cpu_to_le16(p->header_length);
2369                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2370                 memcpy(&d[z], p->header, p->header_length);
2371         }
2372
2373         pd = d + z - payload_z;
2374         payload_end_index = payload_index + p->payload_length;
2375         for (i = 0; i < payload_z; i++) {
2376                 page               = payload_index >> PAGE_SHIFT;
2377                 offset             = payload_index & ~PAGE_MASK;
2378                 next_page_index    = (page + 1) << PAGE_SHIFT;
2379                 length             =
2380                         min(next_page_index, payload_end_index) - payload_index;
2381                 pd[i].req_count    = cpu_to_le16(length);
2382
2383                 page_bus = page_private(buffer->pages[page]);
2384                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2385
2386                 payload_index += length;
2387         }
2388
2389         if (p->interrupt)
2390                 irq = DESCRIPTOR_IRQ_ALWAYS;
2391         else
2392                 irq = DESCRIPTOR_NO_IRQ;
2393
2394         last = z == 2 ? d : d + z - 1;
2395         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2396                                      DESCRIPTOR_STATUS |
2397                                      DESCRIPTOR_BRANCH_ALWAYS |
2398                                      irq);
2399
2400         context_append(&ctx->context, d, z, header_z);
2401
2402         return 0;
2403 }
2404
2405 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2406                                         struct fw_iso_packet *packet,
2407                                         struct fw_iso_buffer *buffer,
2408                                         unsigned long payload)
2409 {
2410         struct iso_context *ctx = container_of(base, struct iso_context, base);
2411         struct descriptor *d, *pd;
2412         struct fw_iso_packet *p = packet;
2413         dma_addr_t d_bus, page_bus;
2414         u32 z, header_z, rest;
2415         int i, j, length;
2416         int page, offset, packet_count, header_size, payload_per_buffer;
2417
2418         /*
2419          * The OHCI controller puts the isochronous header and trailer in the
2420          * buffer, so we need at least 8 bytes.
2421          */
2422         packet_count = p->header_length / ctx->base.header_size;
2423         header_size  = max(ctx->base.header_size, (size_t)8);
2424
2425         /* Get header size in number of descriptors. */
2426         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2427         page     = payload >> PAGE_SHIFT;
2428         offset   = payload & ~PAGE_MASK;
2429         payload_per_buffer = p->payload_length / packet_count;
2430
2431         for (i = 0; i < packet_count; i++) {
2432                 /* d points to the header descriptor */
2433                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2434                 d = context_get_descriptors(&ctx->context,
2435                                 z + header_z, &d_bus);
2436                 if (d == NULL)
2437                         return -ENOMEM;
2438
2439                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2440                                               DESCRIPTOR_INPUT_MORE);
2441                 if (p->skip && i == 0)
2442                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2443                 d->req_count    = cpu_to_le16(header_size);
2444                 d->res_count    = d->req_count;
2445                 d->transfer_status = 0;
2446                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2447
2448                 rest = payload_per_buffer;
2449                 pd = d;
2450                 for (j = 1; j < z; j++) {
2451                         pd++;
2452                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2453                                                   DESCRIPTOR_INPUT_MORE);
2454
2455                         if (offset + rest < PAGE_SIZE)
2456                                 length = rest;
2457                         else
2458                                 length = PAGE_SIZE - offset;
2459                         pd->req_count = cpu_to_le16(length);
2460                         pd->res_count = pd->req_count;
2461                         pd->transfer_status = 0;
2462
2463                         page_bus = page_private(buffer->pages[page]);
2464                         pd->data_address = cpu_to_le32(page_bus + offset);
2465
2466                         offset = (offset + length) & ~PAGE_MASK;
2467                         rest -= length;
2468                         if (offset == 0)
2469                                 page++;
2470                 }
2471                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2472                                           DESCRIPTOR_INPUT_LAST |
2473                                           DESCRIPTOR_BRANCH_ALWAYS);
2474                 if (p->interrupt && i == packet_count - 1)
2475                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2476
2477                 context_append(&ctx->context, d, z, header_z);
2478         }
2479
2480         return 0;
2481 }
2482
2483 static int ohci_queue_iso(struct fw_iso_context *base,
2484                           struct fw_iso_packet *packet,
2485                           struct fw_iso_buffer *buffer,
2486                           unsigned long payload)
2487 {
2488         struct iso_context *ctx = container_of(base, struct iso_context, base);
2489         unsigned long flags;
2490         int ret;
2491
2492         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2493         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2494                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2495         else
2496                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2497                                                         buffer, payload);
2498         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2499
2500         return ret;
2501 }
2502
2503 static const struct fw_card_driver ohci_driver = {
2504         .enable                 = ohci_enable,
2505         .update_phy_reg         = ohci_update_phy_reg,
2506         .set_config_rom         = ohci_set_config_rom,
2507         .send_request           = ohci_send_request,
2508         .send_response          = ohci_send_response,
2509         .cancel_packet          = ohci_cancel_packet,
2510         .enable_phys_dma        = ohci_enable_phys_dma,
2511         .read_csr_reg           = ohci_read_csr_reg,
2512         .write_csr_reg          = ohci_write_csr_reg,
2513
2514         .allocate_iso_context   = ohci_allocate_iso_context,
2515         .free_iso_context       = ohci_free_iso_context,
2516         .queue_iso              = ohci_queue_iso,
2517         .start_iso              = ohci_start_iso,
2518         .stop_iso               = ohci_stop_iso,
2519 };
2520
2521 #ifdef CONFIG_PPC_PMAC
2522 static void pmac_ohci_on(struct pci_dev *dev)
2523 {
2524         if (machine_is(powermac)) {
2525                 struct device_node *ofn = pci_device_to_OF_node(dev);
2526
2527                 if (ofn) {
2528                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2529                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2530                 }
2531         }
2532 }
2533
2534 static void pmac_ohci_off(struct pci_dev *dev)
2535 {
2536         if (machine_is(powermac)) {
2537                 struct device_node *ofn = pci_device_to_OF_node(dev);
2538
2539                 if (ofn) {
2540                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2541                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2542                 }
2543         }
2544 }
2545 #else
2546 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2547 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2548 #endif /* CONFIG_PPC_PMAC */
2549
2550 static int __devinit pci_probe(struct pci_dev *dev,
2551                                const struct pci_device_id *ent)
2552 {
2553         struct fw_ohci *ohci;
2554         u32 bus_options, max_receive, link_speed, version, link_enh;
2555         u64 guid;
2556         int i, err, n_ir, n_it;
2557         size_t size;
2558
2559         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2560         if (ohci == NULL) {
2561                 err = -ENOMEM;
2562                 goto fail;
2563         }
2564
2565         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2566
2567         pmac_ohci_on(dev);
2568
2569         err = pci_enable_device(dev);
2570         if (err) {
2571                 fw_error("Failed to enable OHCI hardware\n");
2572                 goto fail_free;
2573         }
2574
2575         pci_set_master(dev);
2576         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2577         pci_set_drvdata(dev, ohci);
2578
2579         spin_lock_init(&ohci->lock);
2580
2581         tasklet_init(&ohci->bus_reset_tasklet,
2582                      bus_reset_tasklet, (unsigned long)ohci);
2583
2584         err = pci_request_region(dev, 0, ohci_driver_name);
2585         if (err) {
2586                 fw_error("MMIO resource unavailable\n");
2587                 goto fail_disable;
2588         }
2589
2590         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2591         if (ohci->registers == NULL) {
2592                 fw_error("Failed to remap registers\n");
2593                 err = -ENXIO;
2594                 goto fail_iomem;
2595         }
2596
2597         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2598                 if (ohci_quirks[i].vendor == dev->vendor &&
2599                     (ohci_quirks[i].device == dev->device ||
2600                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2601                         ohci->quirks = ohci_quirks[i].flags;
2602                         break;
2603                 }
2604         if (param_quirks)
2605                 ohci->quirks = param_quirks;
2606
2607         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2608         if (dev->vendor == PCI_VENDOR_ID_TI) {
2609                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2610
2611                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2612                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2613                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2614
2615                 /* use priority arbitration for asynchronous responses */
2616                 link_enh |= TI_LinkEnh_enab_unfair;
2617
2618                 /* required for aPhyEnhanceEnable to work */
2619                 link_enh |= TI_LinkEnh_enab_accel;
2620
2621                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2622         }
2623
2624         ar_context_init(&ohci->ar_request_ctx, ohci,
2625                         OHCI1394_AsReqRcvContextControlSet);
2626
2627         ar_context_init(&ohci->ar_response_ctx, ohci,
2628                         OHCI1394_AsRspRcvContextControlSet);
2629
2630         context_init(&ohci->at_request_ctx, ohci,
2631                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2632
2633         context_init(&ohci->at_response_ctx, ohci,
2634                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2635
2636         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2637         ohci->ir_context_channels = ~0ULL;
2638         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2639         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2640         n_ir = hweight32(ohci->ir_context_mask);
2641         size = sizeof(struct iso_context) * n_ir;
2642         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2643
2644         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2645         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2646         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2647         n_it = hweight32(ohci->it_context_mask);
2648         size = sizeof(struct iso_context) * n_it;
2649         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2650
2651         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2652                 err = -ENOMEM;
2653                 goto fail_contexts;
2654         }
2655
2656         /* self-id dma buffer allocation */
2657         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2658                                                SELF_ID_BUF_SIZE,
2659                                                &ohci->self_id_bus,
2660                                                GFP_KERNEL);
2661         if (ohci->self_id_cpu == NULL) {
2662                 err = -ENOMEM;
2663                 goto fail_contexts;
2664         }
2665
2666         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2667         max_receive = (bus_options >> 12) & 0xf;
2668         link_speed = bus_options & 0x7;
2669         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2670                 reg_read(ohci, OHCI1394_GUIDLo);
2671
2672         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2673         if (err)
2674                 goto fail_self_id;
2675
2676         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2677         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2678                   "%d IR + %d IT contexts, quirks 0x%x\n",
2679                   dev_name(&dev->dev), version >> 16, version & 0xff,
2680                   n_ir, n_it, ohci->quirks);
2681
2682         return 0;
2683
2684  fail_self_id:
2685         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2686                           ohci->self_id_cpu, ohci->self_id_bus);
2687  fail_contexts:
2688         kfree(ohci->ir_context_list);
2689         kfree(ohci->it_context_list);
2690         context_release(&ohci->at_response_ctx);
2691         context_release(&ohci->at_request_ctx);
2692         ar_context_release(&ohci->ar_response_ctx);
2693         ar_context_release(&ohci->ar_request_ctx);
2694         pci_iounmap(dev, ohci->registers);
2695  fail_iomem:
2696         pci_release_region(dev, 0);
2697  fail_disable:
2698         pci_disable_device(dev);
2699  fail_free:
2700         kfree(&ohci->card);
2701         pmac_ohci_off(dev);
2702  fail:
2703         if (err == -ENOMEM)
2704                 fw_error("Out of memory\n");
2705
2706         return err;
2707 }
2708
2709 static void pci_remove(struct pci_dev *dev)
2710 {
2711         struct fw_ohci *ohci;
2712
2713         ohci = pci_get_drvdata(dev);
2714         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2715         flush_writes(ohci);
2716         fw_core_remove_card(&ohci->card);
2717
2718         /*
2719          * FIXME: Fail all pending packets here, now that the upper
2720          * layers can't queue any more.
2721          */
2722
2723         software_reset(ohci);
2724         free_irq(dev->irq, ohci);
2725
2726         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2727                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2728                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2729         if (ohci->config_rom)
2730                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2731                                   ohci->config_rom, ohci->config_rom_bus);
2732         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2733                           ohci->self_id_cpu, ohci->self_id_bus);
2734         ar_context_release(&ohci->ar_request_ctx);
2735         ar_context_release(&ohci->ar_response_ctx);
2736         context_release(&ohci->at_request_ctx);
2737         context_release(&ohci->at_response_ctx);
2738         kfree(ohci->it_context_list);
2739         kfree(ohci->ir_context_list);
2740         pci_disable_msi(dev);
2741         pci_iounmap(dev, ohci->registers);
2742         pci_release_region(dev, 0);
2743         pci_disable_device(dev);
2744         kfree(&ohci->card);
2745         pmac_ohci_off(dev);
2746
2747         fw_notify("Removed fw-ohci device.\n");
2748 }
2749
2750 #ifdef CONFIG_PM
2751 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2752 {
2753         struct fw_ohci *ohci = pci_get_drvdata(dev);
2754         int err;
2755
2756         software_reset(ohci);
2757         free_irq(dev->irq, ohci);
2758         pci_disable_msi(dev);
2759         err = pci_save_state(dev);
2760         if (err) {
2761                 fw_error("pci_save_state failed\n");
2762                 return err;
2763         }
2764         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2765         if (err)
2766                 fw_error("pci_set_power_state failed with %d\n", err);
2767         pmac_ohci_off(dev);
2768
2769         return 0;
2770 }
2771
2772 static int pci_resume(struct pci_dev *dev)
2773 {
2774         struct fw_ohci *ohci = pci_get_drvdata(dev);
2775         int err;
2776
2777         pmac_ohci_on(dev);
2778         pci_set_power_state(dev, PCI_D0);
2779         pci_restore_state(dev);
2780         err = pci_enable_device(dev);
2781         if (err) {
2782                 fw_error("pci_enable_device failed\n");
2783                 return err;
2784         }
2785
2786         return ohci_enable(&ohci->card, NULL, 0);
2787 }
2788 #endif
2789
2790 static const struct pci_device_id pci_table[] = {
2791         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2792         { }
2793 };
2794
2795 MODULE_DEVICE_TABLE(pci, pci_table);
2796
2797 static struct pci_driver fw_ohci_pci_driver = {
2798         .name           = ohci_driver_name,
2799         .id_table       = pci_table,
2800         .probe          = pci_probe,
2801         .remove         = pci_remove,
2802 #ifdef CONFIG_PM
2803         .resume         = pci_resume,
2804         .suspend        = pci_suspend,
2805 #endif
2806 };
2807
2808 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2809 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2810 MODULE_LICENSE("GPL");
2811
2812 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2813 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2814 MODULE_ALIAS("ohci1394");
2815 #endif
2816
2817 static int __init fw_ohci_init(void)
2818 {
2819         return pci_register_driver(&fw_ohci_pci_driver);
2820 }
2821
2822 static void __exit fw_ohci_cleanup(void)
2823 {
2824         pci_unregister_driver(&fw_ohci_pci_driver);
2825 }
2826
2827 module_init(fw_ohci_init);
2828 module_exit(fw_ohci_cleanup);