]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/firewire/ohci.c
firewire: ohci: release channel in error path
[net-next-2.6.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bug.h>
22 #include <linux/compiler.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/gfp.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/spinlock.h>
41 #include <linux/string.h>
42
43 #include <asm/byteorder.h>
44 #include <asm/page.h>
45 #include <asm/system.h>
46
47 #ifdef CONFIG_PPC_PMAC
48 #include <asm/pmac_feature.h>
49 #endif
50
51 #include "core.h"
52 #include "ohci.h"
53
54 #define DESCRIPTOR_OUTPUT_MORE          0
55 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
56 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
57 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
58 #define DESCRIPTOR_STATUS               (1 << 11)
59 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
60 #define DESCRIPTOR_PING                 (1 << 7)
61 #define DESCRIPTOR_YY                   (1 << 6)
62 #define DESCRIPTOR_NO_IRQ               (0 << 4)
63 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
64 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
65 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
66 #define DESCRIPTOR_WAIT                 (3 << 0)
67
68 struct descriptor {
69         __le16 req_count;
70         __le16 control;
71         __le32 data_address;
72         __le32 branch_address;
73         __le16 res_count;
74         __le16 transfer_status;
75 } __attribute__((aligned(16)));
76
77 #define CONTROL_SET(regs)       (regs)
78 #define CONTROL_CLEAR(regs)     ((regs) + 4)
79 #define COMMAND_PTR(regs)       ((regs) + 12)
80 #define CONTEXT_MATCH(regs)     ((regs) + 16)
81
82 struct ar_buffer {
83         struct descriptor descriptor;
84         struct ar_buffer *next;
85         __le32 data[0];
86 };
87
88 struct ar_context {
89         struct fw_ohci *ohci;
90         struct ar_buffer *current_buffer;
91         struct ar_buffer *last_buffer;
92         void *pointer;
93         u32 regs;
94         struct tasklet_struct tasklet;
95 };
96
97 struct context;
98
99 typedef int (*descriptor_callback_t)(struct context *ctx,
100                                      struct descriptor *d,
101                                      struct descriptor *last);
102
103 /*
104  * A buffer that contains a block of DMA-able coherent memory used for
105  * storing a portion of a DMA descriptor program.
106  */
107 struct descriptor_buffer {
108         struct list_head list;
109         dma_addr_t buffer_bus;
110         size_t buffer_size;
111         size_t used;
112         struct descriptor buffer[0];
113 };
114
115 struct context {
116         struct fw_ohci *ohci;
117         u32 regs;
118         int total_allocation;
119
120         /*
121          * List of page-sized buffers for storing DMA descriptors.
122          * Head of list contains buffers in use and tail of list contains
123          * free buffers.
124          */
125         struct list_head buffer_list;
126
127         /*
128          * Pointer to a buffer inside buffer_list that contains the tail
129          * end of the current DMA program.
130          */
131         struct descriptor_buffer *buffer_tail;
132
133         /*
134          * The descriptor containing the branch address of the first
135          * descriptor that has not yet been filled by the device.
136          */
137         struct descriptor *last;
138
139         /*
140          * The last descriptor in the DMA program.  It contains the branch
141          * address that must be updated upon appending a new descriptor.
142          */
143         struct descriptor *prev;
144
145         descriptor_callback_t callback;
146
147         struct tasklet_struct tasklet;
148 };
149
150 #define IT_HEADER_SY(v)          ((v) <<  0)
151 #define IT_HEADER_TCODE(v)       ((v) <<  4)
152 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
153 #define IT_HEADER_TAG(v)         ((v) << 14)
154 #define IT_HEADER_SPEED(v)       ((v) << 16)
155 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
156
157 struct iso_context {
158         struct fw_iso_context base;
159         struct context context;
160         int excess_bytes;
161         void *header;
162         size_t header_length;
163 };
164
165 #define CONFIG_ROM_SIZE 1024
166
167 struct fw_ohci {
168         struct fw_card card;
169
170         __iomem char *registers;
171         int node_id;
172         int generation;
173         int request_generation; /* for timestamping incoming requests */
174         unsigned quirks;
175         unsigned int pri_req_max;
176         u32 bus_time;
177         bool is_root;
178         bool csr_state_setclear_abdicate;
179
180         /*
181          * Spinlock for accessing fw_ohci data.  Never call out of
182          * this driver with this lock held.
183          */
184         spinlock_t lock;
185
186         struct mutex phy_reg_mutex;
187
188         struct ar_context ar_request_ctx;
189         struct ar_context ar_response_ctx;
190         struct context at_request_ctx;
191         struct context at_response_ctx;
192
193         u32 it_context_mask;
194         struct iso_context *it_context_list;
195         u64 ir_context_channels;
196         u32 ir_context_mask;
197         struct iso_context *ir_context_list;
198
199         __be32    *config_rom;
200         dma_addr_t config_rom_bus;
201         __be32    *next_config_rom;
202         dma_addr_t next_config_rom_bus;
203         __be32     next_header;
204
205         __le32    *self_id_cpu;
206         dma_addr_t self_id_bus;
207         struct tasklet_struct bus_reset_tasklet;
208
209         u32 self_id_buffer[512];
210 };
211
212 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 {
214         return container_of(card, struct fw_ohci, card);
215 }
216
217 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
218 #define IR_CONTEXT_BUFFER_FILL          0x80000000
219 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
220 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
221 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
222 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
223
224 #define CONTEXT_RUN     0x8000
225 #define CONTEXT_WAKE    0x1000
226 #define CONTEXT_DEAD    0x0800
227 #define CONTEXT_ACTIVE  0x0400
228
229 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
230 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
231 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
232
233 #define OHCI1394_REGISTER_SIZE          0x800
234 #define OHCI_LOOP_COUNT                 500
235 #define OHCI1394_PCI_HCI_Control        0x40
236 #define SELF_ID_BUF_SIZE                0x800
237 #define OHCI_TCODE_PHY_PACKET           0x0e
238 #define OHCI_VERSION_1_1                0x010010
239
240 static char ohci_driver_name[] = KBUILD_MODNAME;
241
242 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
243 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
244
245 #define QUIRK_CYCLE_TIMER               1
246 #define QUIRK_RESET_PACKET              2
247 #define QUIRK_BE_HEADERS                4
248 #define QUIRK_NO_1394A                  8
249 #define QUIRK_NO_MSI                    16
250
251 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
252 static const struct {
253         unsigned short vendor, device, flags;
254 } ohci_quirks[] = {
255         {PCI_VENDOR_ID_TI,      PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
256                                                             QUIRK_RESET_PACKET |
257                                                             QUIRK_NO_1394A},
258         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
259         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
260         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, QUIRK_NO_MSI},
261         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
262         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
263         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
264 };
265
266 /* This overrides anything that was found in ohci_quirks[]. */
267 static int param_quirks;
268 module_param_named(quirks, param_quirks, int, 0644);
269 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
270         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
271         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
272         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
273         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
274         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
275         ")");
276
277 #define OHCI_PARAM_DEBUG_AT_AR          1
278 #define OHCI_PARAM_DEBUG_SELFIDS        2
279 #define OHCI_PARAM_DEBUG_IRQS           4
280 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
281
282 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
283
284 static int param_debug;
285 module_param_named(debug, param_debug, int, 0644);
286 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
287         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
288         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
289         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
290         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
291         ", or a combination, or all = -1)");
292
293 static void log_irqs(u32 evt)
294 {
295         if (likely(!(param_debug &
296                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
297                 return;
298
299         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
300             !(evt & OHCI1394_busReset))
301                 return;
302
303         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
304             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
305             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
306             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
307             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
308             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
309             evt & OHCI1394_isochRx              ? " IR"                 : "",
310             evt & OHCI1394_isochTx              ? " IT"                 : "",
311             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
312             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
313             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
314             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
315             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
316             evt & OHCI1394_busReset             ? " busReset"           : "",
317             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
318                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
319                     OHCI1394_respTxComplete | OHCI1394_isochRx |
320                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
321                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
322                     OHCI1394_cycleInconsistent |
323                     OHCI1394_regAccessFail | OHCI1394_busReset)
324                                                 ? " ?"                  : "");
325 }
326
327 static const char *speed[] = {
328         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
329 };
330 static const char *power[] = {
331         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
332         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
333 };
334 static const char port[] = { '.', '-', 'p', 'c', };
335
336 static char _p(u32 *s, int shift)
337 {
338         return port[*s >> shift & 3];
339 }
340
341 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
342 {
343         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
344                 return;
345
346         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
347                   self_id_count, generation, node_id);
348
349         for (; self_id_count--; ++s)
350                 if ((*s & 1 << 23) == 0)
351                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
352                             "%s gc=%d %s %s%s%s\n",
353                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
354                             speed[*s >> 14 & 3], *s >> 16 & 63,
355                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
356                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
357                 else
358                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
359                             *s, *s >> 24 & 63,
360                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
361                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
362 }
363
364 static const char *evts[] = {
365         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
366         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
367         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
368         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
369         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
370         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
371         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
372         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
373         [0x10] = "-reserved-",          [0x11] = "ack_complete",
374         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
375         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
376         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
377         [0x18] = "-reserved-",          [0x19] = "-reserved-",
378         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
379         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
380         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
381         [0x20] = "pending/cancelled",
382 };
383 static const char *tcodes[] = {
384         [0x0] = "QW req",               [0x1] = "BW req",
385         [0x2] = "W resp",               [0x3] = "-reserved-",
386         [0x4] = "QR req",               [0x5] = "BR req",
387         [0x6] = "QR resp",              [0x7] = "BR resp",
388         [0x8] = "cycle start",          [0x9] = "Lk req",
389         [0xa] = "async stream packet",  [0xb] = "Lk resp",
390         [0xc] = "-reserved-",           [0xd] = "-reserved-",
391         [0xe] = "link internal",        [0xf] = "-reserved-",
392 };
393 static const char *phys[] = {
394         [0x0] = "phy config packet",    [0x1] = "link-on packet",
395         [0x2] = "self-id packet",       [0x3] = "-reserved-",
396 };
397
398 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
399 {
400         int tcode = header[0] >> 4 & 0xf;
401         char specific[12];
402
403         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
404                 return;
405
406         if (unlikely(evt >= ARRAY_SIZE(evts)))
407                         evt = 0x1f;
408
409         if (evt == OHCI1394_evt_bus_reset) {
410                 fw_notify("A%c evt_bus_reset, generation %d\n",
411                     dir, (header[2] >> 16) & 0xff);
412                 return;
413         }
414
415         if (header[0] == ~header[1]) {
416                 fw_notify("A%c %s, %s, %08x\n",
417                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
418                 return;
419         }
420
421         switch (tcode) {
422         case 0x0: case 0x6: case 0x8:
423                 snprintf(specific, sizeof(specific), " = %08x",
424                          be32_to_cpu((__force __be32)header[3]));
425                 break;
426         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
427                 snprintf(specific, sizeof(specific), " %x,%x",
428                          header[3] >> 16, header[3] & 0xffff);
429                 break;
430         default:
431                 specific[0] = '\0';
432         }
433
434         switch (tcode) {
435         case 0xe: case 0xa:
436                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
437                 break;
438         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
439                 fw_notify("A%c spd %x tl %02x, "
440                     "%04x -> %04x, %s, "
441                     "%s, %04x%08x%s\n",
442                     dir, speed, header[0] >> 10 & 0x3f,
443                     header[1] >> 16, header[0] >> 16, evts[evt],
444                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
445                 break;
446         default:
447                 fw_notify("A%c spd %x tl %02x, "
448                     "%04x -> %04x, %s, "
449                     "%s%s\n",
450                     dir, speed, header[0] >> 10 & 0x3f,
451                     header[1] >> 16, header[0] >> 16, evts[evt],
452                     tcodes[tcode], specific);
453         }
454 }
455
456 #else
457
458 #define param_debug 0
459 static inline void log_irqs(u32 evt) {}
460 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
461 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
462
463 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
464
465 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
466 {
467         writel(data, ohci->registers + offset);
468 }
469
470 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
471 {
472         return readl(ohci->registers + offset);
473 }
474
475 static inline void flush_writes(const struct fw_ohci *ohci)
476 {
477         /* Do a dummy read to flush writes. */
478         reg_read(ohci, OHCI1394_Version);
479 }
480
481 static int read_phy_reg(struct fw_ohci *ohci, int addr)
482 {
483         u32 val;
484         int i;
485
486         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
487         for (i = 0; i < 3 + 100; i++) {
488                 val = reg_read(ohci, OHCI1394_PhyControl);
489                 if (val & OHCI1394_PhyControl_ReadDone)
490                         return OHCI1394_PhyControl_ReadData(val);
491
492                 /*
493                  * Try a few times without waiting.  Sleeping is necessary
494                  * only when the link/PHY interface is busy.
495                  */
496                 if (i >= 3)
497                         msleep(1);
498         }
499         fw_error("failed to read phy reg\n");
500
501         return -EBUSY;
502 }
503
504 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
505 {
506         int i;
507
508         reg_write(ohci, OHCI1394_PhyControl,
509                   OHCI1394_PhyControl_Write(addr, val));
510         for (i = 0; i < 3 + 100; i++) {
511                 val = reg_read(ohci, OHCI1394_PhyControl);
512                 if (!(val & OHCI1394_PhyControl_WritePending))
513                         return 0;
514
515                 if (i >= 3)
516                         msleep(1);
517         }
518         fw_error("failed to write phy reg\n");
519
520         return -EBUSY;
521 }
522
523 static int update_phy_reg(struct fw_ohci *ohci, int addr,
524                           int clear_bits, int set_bits)
525 {
526         int ret = read_phy_reg(ohci, addr);
527         if (ret < 0)
528                 return ret;
529
530         /*
531          * The interrupt status bits are cleared by writing a one bit.
532          * Avoid clearing them unless explicitly requested in set_bits.
533          */
534         if (addr == 5)
535                 clear_bits |= PHY_INT_STATUS_BITS;
536
537         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
538 }
539
540 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
541 {
542         int ret;
543
544         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
545         if (ret < 0)
546                 return ret;
547
548         return read_phy_reg(ohci, addr);
549 }
550
551 static int ohci_read_phy_reg(struct fw_card *card, int addr)
552 {
553         struct fw_ohci *ohci = fw_ohci(card);
554         int ret;
555
556         mutex_lock(&ohci->phy_reg_mutex);
557         ret = read_phy_reg(ohci, addr);
558         mutex_unlock(&ohci->phy_reg_mutex);
559
560         return ret;
561 }
562
563 static int ohci_update_phy_reg(struct fw_card *card, int addr,
564                                int clear_bits, int set_bits)
565 {
566         struct fw_ohci *ohci = fw_ohci(card);
567         int ret;
568
569         mutex_lock(&ohci->phy_reg_mutex);
570         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
571         mutex_unlock(&ohci->phy_reg_mutex);
572
573         return ret;
574 }
575
576 static int ar_context_add_page(struct ar_context *ctx)
577 {
578         struct device *dev = ctx->ohci->card.device;
579         struct ar_buffer *ab;
580         dma_addr_t uninitialized_var(ab_bus);
581         size_t offset;
582
583         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
584         if (ab == NULL)
585                 return -ENOMEM;
586
587         ab->next = NULL;
588         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
589         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
590                                                     DESCRIPTOR_STATUS |
591                                                     DESCRIPTOR_BRANCH_ALWAYS);
592         offset = offsetof(struct ar_buffer, data);
593         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
594         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
595         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
596         ab->descriptor.branch_address = 0;
597
598         wmb(); /* finish init of new descriptors before branch_address update */
599         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
600         ctx->last_buffer->next = ab;
601         ctx->last_buffer = ab;
602
603         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
604         flush_writes(ctx->ohci);
605
606         return 0;
607 }
608
609 static void ar_context_release(struct ar_context *ctx)
610 {
611         struct ar_buffer *ab, *ab_next;
612         size_t offset;
613         dma_addr_t ab_bus;
614
615         for (ab = ctx->current_buffer; ab; ab = ab_next) {
616                 ab_next = ab->next;
617                 offset = offsetof(struct ar_buffer, data);
618                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
619                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
620                                   ab, ab_bus);
621         }
622 }
623
624 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
625 #define cond_le32_to_cpu(v) \
626         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
627 #else
628 #define cond_le32_to_cpu(v) le32_to_cpu(v)
629 #endif
630
631 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
632 {
633         struct fw_ohci *ohci = ctx->ohci;
634         struct fw_packet p;
635         u32 status, length, tcode;
636         int evt;
637
638         p.header[0] = cond_le32_to_cpu(buffer[0]);
639         p.header[1] = cond_le32_to_cpu(buffer[1]);
640         p.header[2] = cond_le32_to_cpu(buffer[2]);
641
642         tcode = (p.header[0] >> 4) & 0x0f;
643         switch (tcode) {
644         case TCODE_WRITE_QUADLET_REQUEST:
645         case TCODE_READ_QUADLET_RESPONSE:
646                 p.header[3] = (__force __u32) buffer[3];
647                 p.header_length = 16;
648                 p.payload_length = 0;
649                 break;
650
651         case TCODE_READ_BLOCK_REQUEST :
652                 p.header[3] = cond_le32_to_cpu(buffer[3]);
653                 p.header_length = 16;
654                 p.payload_length = 0;
655                 break;
656
657         case TCODE_WRITE_BLOCK_REQUEST:
658         case TCODE_READ_BLOCK_RESPONSE:
659         case TCODE_LOCK_REQUEST:
660         case TCODE_LOCK_RESPONSE:
661                 p.header[3] = cond_le32_to_cpu(buffer[3]);
662                 p.header_length = 16;
663                 p.payload_length = p.header[3] >> 16;
664                 break;
665
666         case TCODE_WRITE_RESPONSE:
667         case TCODE_READ_QUADLET_REQUEST:
668         case OHCI_TCODE_PHY_PACKET:
669                 p.header_length = 12;
670                 p.payload_length = 0;
671                 break;
672
673         default:
674                 /* FIXME: Stop context, discard everything, and restart? */
675                 p.header_length = 0;
676                 p.payload_length = 0;
677         }
678
679         p.payload = (void *) buffer + p.header_length;
680
681         /* FIXME: What to do about evt_* errors? */
682         length = (p.header_length + p.payload_length + 3) / 4;
683         status = cond_le32_to_cpu(buffer[length]);
684         evt    = (status >> 16) & 0x1f;
685
686         p.ack        = evt - 16;
687         p.speed      = (status >> 21) & 0x7;
688         p.timestamp  = status & 0xffff;
689         p.generation = ohci->request_generation;
690
691         log_ar_at_event('R', p.speed, p.header, evt);
692
693         /*
694          * The OHCI bus reset handler synthesizes a phy packet with
695          * the new generation number when a bus reset happens (see
696          * section 8.4.2.3).  This helps us determine when a request
697          * was received and make sure we send the response in the same
698          * generation.  We only need this for requests; for responses
699          * we use the unique tlabel for finding the matching
700          * request.
701          *
702          * Alas some chips sometimes emit bus reset packets with a
703          * wrong generation.  We set the correct generation for these
704          * at a slightly incorrect time (in bus_reset_tasklet).
705          */
706         if (evt == OHCI1394_evt_bus_reset) {
707                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
708                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
709         } else if (ctx == &ohci->ar_request_ctx) {
710                 fw_core_handle_request(&ohci->card, &p);
711         } else {
712                 fw_core_handle_response(&ohci->card, &p);
713         }
714
715         return buffer + length + 1;
716 }
717
718 static void ar_context_tasklet(unsigned long data)
719 {
720         struct ar_context *ctx = (struct ar_context *)data;
721         struct fw_ohci *ohci = ctx->ohci;
722         struct ar_buffer *ab;
723         struct descriptor *d;
724         void *buffer, *end;
725
726         ab = ctx->current_buffer;
727         d = &ab->descriptor;
728
729         if (d->res_count == 0) {
730                 size_t size, rest, offset;
731                 dma_addr_t start_bus;
732                 void *start;
733
734                 /*
735                  * This descriptor is finished and we may have a
736                  * packet split across this and the next buffer. We
737                  * reuse the page for reassembling the split packet.
738                  */
739
740                 offset = offsetof(struct ar_buffer, data);
741                 start = buffer = ab;
742                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
743
744                 ab = ab->next;
745                 d = &ab->descriptor;
746                 size = buffer + PAGE_SIZE - ctx->pointer;
747                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
748                 memmove(buffer, ctx->pointer, size);
749                 memcpy(buffer + size, ab->data, rest);
750                 ctx->current_buffer = ab;
751                 ctx->pointer = (void *) ab->data + rest;
752                 end = buffer + size + rest;
753
754                 while (buffer < end)
755                         buffer = handle_ar_packet(ctx, buffer);
756
757                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
758                                   start, start_bus);
759                 ar_context_add_page(ctx);
760         } else {
761                 buffer = ctx->pointer;
762                 ctx->pointer = end =
763                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
764
765                 while (buffer < end)
766                         buffer = handle_ar_packet(ctx, buffer);
767         }
768 }
769
770 static int ar_context_init(struct ar_context *ctx,
771                            struct fw_ohci *ohci, u32 regs)
772 {
773         struct ar_buffer ab;
774
775         ctx->regs        = regs;
776         ctx->ohci        = ohci;
777         ctx->last_buffer = &ab;
778         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
779
780         ar_context_add_page(ctx);
781         ar_context_add_page(ctx);
782         ctx->current_buffer = ab.next;
783         ctx->pointer = ctx->current_buffer->data;
784
785         return 0;
786 }
787
788 static void ar_context_run(struct ar_context *ctx)
789 {
790         struct ar_buffer *ab = ctx->current_buffer;
791         dma_addr_t ab_bus;
792         size_t offset;
793
794         offset = offsetof(struct ar_buffer, data);
795         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
796
797         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
798         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
799         flush_writes(ctx->ohci);
800 }
801
802 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
803 {
804         int b, key;
805
806         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
807         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
808
809         /* figure out which descriptor the branch address goes in */
810         if (z == 2 && (b == 3 || key == 2))
811                 return d;
812         else
813                 return d + z - 1;
814 }
815
816 static void context_tasklet(unsigned long data)
817 {
818         struct context *ctx = (struct context *) data;
819         struct descriptor *d, *last;
820         u32 address;
821         int z;
822         struct descriptor_buffer *desc;
823
824         desc = list_entry(ctx->buffer_list.next,
825                         struct descriptor_buffer, list);
826         last = ctx->last;
827         while (last->branch_address != 0) {
828                 struct descriptor_buffer *old_desc = desc;
829                 address = le32_to_cpu(last->branch_address);
830                 z = address & 0xf;
831                 address &= ~0xf;
832
833                 /* If the branch address points to a buffer outside of the
834                  * current buffer, advance to the next buffer. */
835                 if (address < desc->buffer_bus ||
836                                 address >= desc->buffer_bus + desc->used)
837                         desc = list_entry(desc->list.next,
838                                         struct descriptor_buffer, list);
839                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
840                 last = find_branch_descriptor(d, z);
841
842                 if (!ctx->callback(ctx, d, last))
843                         break;
844
845                 if (old_desc != desc) {
846                         /* If we've advanced to the next buffer, move the
847                          * previous buffer to the free list. */
848                         unsigned long flags;
849                         old_desc->used = 0;
850                         spin_lock_irqsave(&ctx->ohci->lock, flags);
851                         list_move_tail(&old_desc->list, &ctx->buffer_list);
852                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
853                 }
854                 ctx->last = last;
855         }
856 }
857
858 /*
859  * Allocate a new buffer and add it to the list of free buffers for this
860  * context.  Must be called with ohci->lock held.
861  */
862 static int context_add_buffer(struct context *ctx)
863 {
864         struct descriptor_buffer *desc;
865         dma_addr_t uninitialized_var(bus_addr);
866         int offset;
867
868         /*
869          * 16MB of descriptors should be far more than enough for any DMA
870          * program.  This will catch run-away userspace or DoS attacks.
871          */
872         if (ctx->total_allocation >= 16*1024*1024)
873                 return -ENOMEM;
874
875         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
876                         &bus_addr, GFP_ATOMIC);
877         if (!desc)
878                 return -ENOMEM;
879
880         offset = (void *)&desc->buffer - (void *)desc;
881         desc->buffer_size = PAGE_SIZE - offset;
882         desc->buffer_bus = bus_addr + offset;
883         desc->used = 0;
884
885         list_add_tail(&desc->list, &ctx->buffer_list);
886         ctx->total_allocation += PAGE_SIZE;
887
888         return 0;
889 }
890
891 static int context_init(struct context *ctx, struct fw_ohci *ohci,
892                         u32 regs, descriptor_callback_t callback)
893 {
894         ctx->ohci = ohci;
895         ctx->regs = regs;
896         ctx->total_allocation = 0;
897
898         INIT_LIST_HEAD(&ctx->buffer_list);
899         if (context_add_buffer(ctx) < 0)
900                 return -ENOMEM;
901
902         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
903                         struct descriptor_buffer, list);
904
905         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
906         ctx->callback = callback;
907
908         /*
909          * We put a dummy descriptor in the buffer that has a NULL
910          * branch address and looks like it's been sent.  That way we
911          * have a descriptor to append DMA programs to.
912          */
913         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
914         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
915         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
916         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
917         ctx->last = ctx->buffer_tail->buffer;
918         ctx->prev = ctx->buffer_tail->buffer;
919
920         return 0;
921 }
922
923 static void context_release(struct context *ctx)
924 {
925         struct fw_card *card = &ctx->ohci->card;
926         struct descriptor_buffer *desc, *tmp;
927
928         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
929                 dma_free_coherent(card->device, PAGE_SIZE, desc,
930                         desc->buffer_bus -
931                         ((void *)&desc->buffer - (void *)desc));
932 }
933
934 /* Must be called with ohci->lock held */
935 static struct descriptor *context_get_descriptors(struct context *ctx,
936                                                   int z, dma_addr_t *d_bus)
937 {
938         struct descriptor *d = NULL;
939         struct descriptor_buffer *desc = ctx->buffer_tail;
940
941         if (z * sizeof(*d) > desc->buffer_size)
942                 return NULL;
943
944         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
945                 /* No room for the descriptor in this buffer, so advance to the
946                  * next one. */
947
948                 if (desc->list.next == &ctx->buffer_list) {
949                         /* If there is no free buffer next in the list,
950                          * allocate one. */
951                         if (context_add_buffer(ctx) < 0)
952                                 return NULL;
953                 }
954                 desc = list_entry(desc->list.next,
955                                 struct descriptor_buffer, list);
956                 ctx->buffer_tail = desc;
957         }
958
959         d = desc->buffer + desc->used / sizeof(*d);
960         memset(d, 0, z * sizeof(*d));
961         *d_bus = desc->buffer_bus + desc->used;
962
963         return d;
964 }
965
966 static void context_run(struct context *ctx, u32 extra)
967 {
968         struct fw_ohci *ohci = ctx->ohci;
969
970         reg_write(ohci, COMMAND_PTR(ctx->regs),
971                   le32_to_cpu(ctx->last->branch_address));
972         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
973         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
974         flush_writes(ohci);
975 }
976
977 static void context_append(struct context *ctx,
978                            struct descriptor *d, int z, int extra)
979 {
980         dma_addr_t d_bus;
981         struct descriptor_buffer *desc = ctx->buffer_tail;
982
983         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
984
985         desc->used += (z + extra) * sizeof(*d);
986
987         wmb(); /* finish init of new descriptors before branch_address update */
988         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
989         ctx->prev = find_branch_descriptor(d, z);
990
991         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
992         flush_writes(ctx->ohci);
993 }
994
995 static void context_stop(struct context *ctx)
996 {
997         u32 reg;
998         int i;
999
1000         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1001         flush_writes(ctx->ohci);
1002
1003         for (i = 0; i < 10; i++) {
1004                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1005                 if ((reg & CONTEXT_ACTIVE) == 0)
1006                         return;
1007
1008                 mdelay(1);
1009         }
1010         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1011 }
1012
1013 struct driver_data {
1014         struct fw_packet *packet;
1015 };
1016
1017 /*
1018  * This function apppends a packet to the DMA queue for transmission.
1019  * Must always be called with the ochi->lock held to ensure proper
1020  * generation handling and locking around packet queue manipulation.
1021  */
1022 static int at_context_queue_packet(struct context *ctx,
1023                                    struct fw_packet *packet)
1024 {
1025         struct fw_ohci *ohci = ctx->ohci;
1026         dma_addr_t d_bus, uninitialized_var(payload_bus);
1027         struct driver_data *driver_data;
1028         struct descriptor *d, *last;
1029         __le32 *header;
1030         int z, tcode;
1031         u32 reg;
1032
1033         d = context_get_descriptors(ctx, 4, &d_bus);
1034         if (d == NULL) {
1035                 packet->ack = RCODE_SEND_ERROR;
1036                 return -1;
1037         }
1038
1039         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1040         d[0].res_count = cpu_to_le16(packet->timestamp);
1041
1042         /*
1043          * The DMA format for asyncronous link packets is different
1044          * from the IEEE1394 layout, so shift the fields around
1045          * accordingly.  If header_length is 8, it's a PHY packet, to
1046          * which we need to prepend an extra quadlet.
1047          */
1048
1049         header = (__le32 *) &d[1];
1050         switch (packet->header_length) {
1051         case 16:
1052         case 12:
1053                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1054                                         (packet->speed << 16));
1055                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1056                                         (packet->header[0] & 0xffff0000));
1057                 header[2] = cpu_to_le32(packet->header[2]);
1058
1059                 tcode = (packet->header[0] >> 4) & 0x0f;
1060                 if (TCODE_IS_BLOCK_PACKET(tcode))
1061                         header[3] = cpu_to_le32(packet->header[3]);
1062                 else
1063                         header[3] = (__force __le32) packet->header[3];
1064
1065                 d[0].req_count = cpu_to_le16(packet->header_length);
1066                 break;
1067
1068         case 8:
1069                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1070                                         (packet->speed << 16));
1071                 header[1] = cpu_to_le32(packet->header[0]);
1072                 header[2] = cpu_to_le32(packet->header[1]);
1073                 d[0].req_count = cpu_to_le16(12);
1074
1075                 if (is_ping_packet(packet->header))
1076                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1077                 break;
1078
1079         case 4:
1080                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1081                                         (packet->speed << 16));
1082                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1083                 d[0].req_count = cpu_to_le16(8);
1084                 break;
1085
1086         default:
1087                 /* BUG(); */
1088                 packet->ack = RCODE_SEND_ERROR;
1089                 return -1;
1090         }
1091
1092         driver_data = (struct driver_data *) &d[3];
1093         driver_data->packet = packet;
1094         packet->driver_data = driver_data;
1095
1096         if (packet->payload_length > 0) {
1097                 payload_bus =
1098                         dma_map_single(ohci->card.device, packet->payload,
1099                                        packet->payload_length, DMA_TO_DEVICE);
1100                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1101                         packet->ack = RCODE_SEND_ERROR;
1102                         return -1;
1103                 }
1104                 packet->payload_bus     = payload_bus;
1105                 packet->payload_mapped  = true;
1106
1107                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1108                 d[2].data_address = cpu_to_le32(payload_bus);
1109                 last = &d[2];
1110                 z = 3;
1111         } else {
1112                 last = &d[0];
1113                 z = 2;
1114         }
1115
1116         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1117                                      DESCRIPTOR_IRQ_ALWAYS |
1118                                      DESCRIPTOR_BRANCH_ALWAYS);
1119
1120         /*
1121          * If the controller and packet generations don't match, we need to
1122          * bail out and try again.  If IntEvent.busReset is set, the AT context
1123          * is halted, so appending to the context and trying to run it is
1124          * futile.  Most controllers do the right thing and just flush the AT
1125          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1126          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1127          * up stalling out.  So we just bail out in software and try again
1128          * later, and everyone is happy.
1129          * FIXME: Document how the locking works.
1130          */
1131         if (ohci->generation != packet->generation ||
1132             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1133                 if (packet->payload_mapped)
1134                         dma_unmap_single(ohci->card.device, payload_bus,
1135                                          packet->payload_length, DMA_TO_DEVICE);
1136                 packet->ack = RCODE_GENERATION;
1137                 return -1;
1138         }
1139
1140         context_append(ctx, d, z, 4 - z);
1141
1142         /* If the context isn't already running, start it up. */
1143         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1144         if ((reg & CONTEXT_RUN) == 0)
1145                 context_run(ctx, 0);
1146
1147         return 0;
1148 }
1149
1150 static int handle_at_packet(struct context *context,
1151                             struct descriptor *d,
1152                             struct descriptor *last)
1153 {
1154         struct driver_data *driver_data;
1155         struct fw_packet *packet;
1156         struct fw_ohci *ohci = context->ohci;
1157         int evt;
1158
1159         if (last->transfer_status == 0)
1160                 /* This descriptor isn't done yet, stop iteration. */
1161                 return 0;
1162
1163         driver_data = (struct driver_data *) &d[3];
1164         packet = driver_data->packet;
1165         if (packet == NULL)
1166                 /* This packet was cancelled, just continue. */
1167                 return 1;
1168
1169         if (packet->payload_mapped)
1170                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1171                                  packet->payload_length, DMA_TO_DEVICE);
1172
1173         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1174         packet->timestamp = le16_to_cpu(last->res_count);
1175
1176         log_ar_at_event('T', packet->speed, packet->header, evt);
1177
1178         switch (evt) {
1179         case OHCI1394_evt_timeout:
1180                 /* Async response transmit timed out. */
1181                 packet->ack = RCODE_CANCELLED;
1182                 break;
1183
1184         case OHCI1394_evt_flushed:
1185                 /*
1186                  * The packet was flushed should give same error as
1187                  * when we try to use a stale generation count.
1188                  */
1189                 packet->ack = RCODE_GENERATION;
1190                 break;
1191
1192         case OHCI1394_evt_missing_ack:
1193                 /*
1194                  * Using a valid (current) generation count, but the
1195                  * node is not on the bus or not sending acks.
1196                  */
1197                 packet->ack = RCODE_NO_ACK;
1198                 break;
1199
1200         case ACK_COMPLETE + 0x10:
1201         case ACK_PENDING + 0x10:
1202         case ACK_BUSY_X + 0x10:
1203         case ACK_BUSY_A + 0x10:
1204         case ACK_BUSY_B + 0x10:
1205         case ACK_DATA_ERROR + 0x10:
1206         case ACK_TYPE_ERROR + 0x10:
1207                 packet->ack = evt - 0x10;
1208                 break;
1209
1210         default:
1211                 packet->ack = RCODE_SEND_ERROR;
1212                 break;
1213         }
1214
1215         packet->callback(packet, &ohci->card, packet->ack);
1216
1217         return 1;
1218 }
1219
1220 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1221 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1222 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1223 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1224 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1225
1226 static void handle_local_rom(struct fw_ohci *ohci,
1227                              struct fw_packet *packet, u32 csr)
1228 {
1229         struct fw_packet response;
1230         int tcode, length, i;
1231
1232         tcode = HEADER_GET_TCODE(packet->header[0]);
1233         if (TCODE_IS_BLOCK_PACKET(tcode))
1234                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1235         else
1236                 length = 4;
1237
1238         i = csr - CSR_CONFIG_ROM;
1239         if (i + length > CONFIG_ROM_SIZE) {
1240                 fw_fill_response(&response, packet->header,
1241                                  RCODE_ADDRESS_ERROR, NULL, 0);
1242         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1243                 fw_fill_response(&response, packet->header,
1244                                  RCODE_TYPE_ERROR, NULL, 0);
1245         } else {
1246                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1247                                  (void *) ohci->config_rom + i, length);
1248         }
1249
1250         fw_core_handle_response(&ohci->card, &response);
1251 }
1252
1253 static void handle_local_lock(struct fw_ohci *ohci,
1254                               struct fw_packet *packet, u32 csr)
1255 {
1256         struct fw_packet response;
1257         int tcode, length, ext_tcode, sel;
1258         __be32 *payload, lock_old;
1259         u32 lock_arg, lock_data;
1260
1261         tcode = HEADER_GET_TCODE(packet->header[0]);
1262         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1263         payload = packet->payload;
1264         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1265
1266         if (tcode == TCODE_LOCK_REQUEST &&
1267             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1268                 lock_arg = be32_to_cpu(payload[0]);
1269                 lock_data = be32_to_cpu(payload[1]);
1270         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1271                 lock_arg = 0;
1272                 lock_data = 0;
1273         } else {
1274                 fw_fill_response(&response, packet->header,
1275                                  RCODE_TYPE_ERROR, NULL, 0);
1276                 goto out;
1277         }
1278
1279         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1280         reg_write(ohci, OHCI1394_CSRData, lock_data);
1281         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1282         reg_write(ohci, OHCI1394_CSRControl, sel);
1283
1284         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1285                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1286         else
1287                 fw_notify("swap not done yet\n");
1288
1289         fw_fill_response(&response, packet->header,
1290                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1291  out:
1292         fw_core_handle_response(&ohci->card, &response);
1293 }
1294
1295 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1296 {
1297         u64 offset;
1298         u32 csr;
1299
1300         if (ctx == &ctx->ohci->at_request_ctx) {
1301                 packet->ack = ACK_PENDING;
1302                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1303         }
1304
1305         offset =
1306                 ((unsigned long long)
1307                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1308                 packet->header[2];
1309         csr = offset - CSR_REGISTER_BASE;
1310
1311         /* Handle config rom reads. */
1312         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1313                 handle_local_rom(ctx->ohci, packet, csr);
1314         else switch (csr) {
1315         case CSR_BUS_MANAGER_ID:
1316         case CSR_BANDWIDTH_AVAILABLE:
1317         case CSR_CHANNELS_AVAILABLE_HI:
1318         case CSR_CHANNELS_AVAILABLE_LO:
1319                 handle_local_lock(ctx->ohci, packet, csr);
1320                 break;
1321         default:
1322                 if (ctx == &ctx->ohci->at_request_ctx)
1323                         fw_core_handle_request(&ctx->ohci->card, packet);
1324                 else
1325                         fw_core_handle_response(&ctx->ohci->card, packet);
1326                 break;
1327         }
1328
1329         if (ctx == &ctx->ohci->at_response_ctx) {
1330                 packet->ack = ACK_COMPLETE;
1331                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1332         }
1333 }
1334
1335 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1336 {
1337         unsigned long flags;
1338         int ret;
1339
1340         spin_lock_irqsave(&ctx->ohci->lock, flags);
1341
1342         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1343             ctx->ohci->generation == packet->generation) {
1344                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1345                 handle_local_request(ctx, packet);
1346                 return;
1347         }
1348
1349         ret = at_context_queue_packet(ctx, packet);
1350         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1351
1352         if (ret < 0)
1353                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1354
1355 }
1356
1357 static u32 cycle_timer_ticks(u32 cycle_timer)
1358 {
1359         u32 ticks;
1360
1361         ticks = cycle_timer & 0xfff;
1362         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1363         ticks += (3072 * 8000) * (cycle_timer >> 25);
1364
1365         return ticks;
1366 }
1367
1368 /*
1369  * Some controllers exhibit one or more of the following bugs when updating the
1370  * iso cycle timer register:
1371  *  - When the lowest six bits are wrapping around to zero, a read that happens
1372  *    at the same time will return garbage in the lowest ten bits.
1373  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1374  *    not incremented for about 60 ns.
1375  *  - Occasionally, the entire register reads zero.
1376  *
1377  * To catch these, we read the register three times and ensure that the
1378  * difference between each two consecutive reads is approximately the same, i.e.
1379  * less than twice the other.  Furthermore, any negative difference indicates an
1380  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1381  * execute, so we have enough precision to compute the ratio of the differences.)
1382  */
1383 static u32 get_cycle_time(struct fw_ohci *ohci)
1384 {
1385         u32 c0, c1, c2;
1386         u32 t0, t1, t2;
1387         s32 diff01, diff12;
1388         int i;
1389
1390         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1391
1392         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1393                 i = 0;
1394                 c1 = c2;
1395                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1396                 do {
1397                         c0 = c1;
1398                         c1 = c2;
1399                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1400                         t0 = cycle_timer_ticks(c0);
1401                         t1 = cycle_timer_ticks(c1);
1402                         t2 = cycle_timer_ticks(c2);
1403                         diff01 = t1 - t0;
1404                         diff12 = t2 - t1;
1405                 } while ((diff01 <= 0 || diff12 <= 0 ||
1406                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1407                          && i++ < 20);
1408         }
1409
1410         return c2;
1411 }
1412
1413 /*
1414  * This function has to be called at least every 64 seconds.  The bus_time
1415  * field stores not only the upper 25 bits of the BUS_TIME register but also
1416  * the most significant bit of the cycle timer in bit 6 so that we can detect
1417  * changes in this bit.
1418  */
1419 static u32 update_bus_time(struct fw_ohci *ohci)
1420 {
1421         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1422
1423         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1424                 ohci->bus_time += 0x40;
1425
1426         return ohci->bus_time | cycle_time_seconds;
1427 }
1428
1429 static void bus_reset_tasklet(unsigned long data)
1430 {
1431         struct fw_ohci *ohci = (struct fw_ohci *)data;
1432         int self_id_count, i, j, reg;
1433         int generation, new_generation;
1434         unsigned long flags;
1435         void *free_rom = NULL;
1436         dma_addr_t free_rom_bus = 0;
1437         bool is_new_root;
1438
1439         reg = reg_read(ohci, OHCI1394_NodeID);
1440         if (!(reg & OHCI1394_NodeID_idValid)) {
1441                 fw_notify("node ID not valid, new bus reset in progress\n");
1442                 return;
1443         }
1444         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1445                 fw_notify("malconfigured bus\n");
1446                 return;
1447         }
1448         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1449                                OHCI1394_NodeID_nodeNumber);
1450
1451         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1452         if (!(ohci->is_root && is_new_root))
1453                 reg_write(ohci, OHCI1394_LinkControlSet,
1454                           OHCI1394_LinkControl_cycleMaster);
1455         ohci->is_root = is_new_root;
1456
1457         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1458         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1459                 fw_notify("inconsistent self IDs\n");
1460                 return;
1461         }
1462         /*
1463          * The count in the SelfIDCount register is the number of
1464          * bytes in the self ID receive buffer.  Since we also receive
1465          * the inverted quadlets and a header quadlet, we shift one
1466          * bit extra to get the actual number of self IDs.
1467          */
1468         self_id_count = (reg >> 3) & 0xff;
1469         if (self_id_count == 0 || self_id_count > 252) {
1470                 fw_notify("inconsistent self IDs\n");
1471                 return;
1472         }
1473         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1474         rmb();
1475
1476         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1477                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1478                         fw_notify("inconsistent self IDs\n");
1479                         return;
1480                 }
1481                 ohci->self_id_buffer[j] =
1482                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1483         }
1484         rmb();
1485
1486         /*
1487          * Check the consistency of the self IDs we just read.  The
1488          * problem we face is that a new bus reset can start while we
1489          * read out the self IDs from the DMA buffer. If this happens,
1490          * the DMA buffer will be overwritten with new self IDs and we
1491          * will read out inconsistent data.  The OHCI specification
1492          * (section 11.2) recommends a technique similar to
1493          * linux/seqlock.h, where we remember the generation of the
1494          * self IDs in the buffer before reading them out and compare
1495          * it to the current generation after reading them out.  If
1496          * the two generations match we know we have a consistent set
1497          * of self IDs.
1498          */
1499
1500         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1501         if (new_generation != generation) {
1502                 fw_notify("recursive bus reset detected, "
1503                           "discarding self ids\n");
1504                 return;
1505         }
1506
1507         /* FIXME: Document how the locking works. */
1508         spin_lock_irqsave(&ohci->lock, flags);
1509
1510         ohci->generation = generation;
1511         context_stop(&ohci->at_request_ctx);
1512         context_stop(&ohci->at_response_ctx);
1513         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1514
1515         if (ohci->quirks & QUIRK_RESET_PACKET)
1516                 ohci->request_generation = generation;
1517
1518         /*
1519          * This next bit is unrelated to the AT context stuff but we
1520          * have to do it under the spinlock also.  If a new config rom
1521          * was set up before this reset, the old one is now no longer
1522          * in use and we can free it. Update the config rom pointers
1523          * to point to the current config rom and clear the
1524          * next_config_rom pointer so a new udpate can take place.
1525          */
1526
1527         if (ohci->next_config_rom != NULL) {
1528                 if (ohci->next_config_rom != ohci->config_rom) {
1529                         free_rom      = ohci->config_rom;
1530                         free_rom_bus  = ohci->config_rom_bus;
1531                 }
1532                 ohci->config_rom      = ohci->next_config_rom;
1533                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1534                 ohci->next_config_rom = NULL;
1535
1536                 /*
1537                  * Restore config_rom image and manually update
1538                  * config_rom registers.  Writing the header quadlet
1539                  * will indicate that the config rom is ready, so we
1540                  * do that last.
1541                  */
1542                 reg_write(ohci, OHCI1394_BusOptions,
1543                           be32_to_cpu(ohci->config_rom[2]));
1544                 ohci->config_rom[0] = ohci->next_header;
1545                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1546                           be32_to_cpu(ohci->next_header));
1547         }
1548
1549 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1550         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1551         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1552 #endif
1553
1554         spin_unlock_irqrestore(&ohci->lock, flags);
1555
1556         if (free_rom)
1557                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1558                                   free_rom, free_rom_bus);
1559
1560         log_selfids(ohci->node_id, generation,
1561                     self_id_count, ohci->self_id_buffer);
1562
1563         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1564                                  self_id_count, ohci->self_id_buffer,
1565                                  ohci->csr_state_setclear_abdicate);
1566         ohci->csr_state_setclear_abdicate = false;
1567 }
1568
1569 static irqreturn_t irq_handler(int irq, void *data)
1570 {
1571         struct fw_ohci *ohci = data;
1572         u32 event, iso_event;
1573         int i;
1574
1575         event = reg_read(ohci, OHCI1394_IntEventClear);
1576
1577         if (!event || !~event)
1578                 return IRQ_NONE;
1579
1580         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1581         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1582         log_irqs(event);
1583
1584         if (event & OHCI1394_selfIDComplete)
1585                 tasklet_schedule(&ohci->bus_reset_tasklet);
1586
1587         if (event & OHCI1394_RQPkt)
1588                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1589
1590         if (event & OHCI1394_RSPkt)
1591                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1592
1593         if (event & OHCI1394_reqTxComplete)
1594                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1595
1596         if (event & OHCI1394_respTxComplete)
1597                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1598
1599         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1600         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1601
1602         while (iso_event) {
1603                 i = ffs(iso_event) - 1;
1604                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1605                 iso_event &= ~(1 << i);
1606         }
1607
1608         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1609         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1610
1611         while (iso_event) {
1612                 i = ffs(iso_event) - 1;
1613                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1614                 iso_event &= ~(1 << i);
1615         }
1616
1617         if (unlikely(event & OHCI1394_regAccessFail))
1618                 fw_error("Register access failure - "
1619                          "please notify linux1394-devel@lists.sf.net\n");
1620
1621         if (unlikely(event & OHCI1394_postedWriteErr))
1622                 fw_error("PCI posted write error\n");
1623
1624         if (unlikely(event & OHCI1394_cycleTooLong)) {
1625                 if (printk_ratelimit())
1626                         fw_notify("isochronous cycle too long\n");
1627                 reg_write(ohci, OHCI1394_LinkControlSet,
1628                           OHCI1394_LinkControl_cycleMaster);
1629         }
1630
1631         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1632                 /*
1633                  * We need to clear this event bit in order to make
1634                  * cycleMatch isochronous I/O work.  In theory we should
1635                  * stop active cycleMatch iso contexts now and restart
1636                  * them at least two cycles later.  (FIXME?)
1637                  */
1638                 if (printk_ratelimit())
1639                         fw_notify("isochronous cycle inconsistent\n");
1640         }
1641
1642         if (event & OHCI1394_cycle64Seconds) {
1643                 spin_lock(&ohci->lock);
1644                 update_bus_time(ohci);
1645                 spin_unlock(&ohci->lock);
1646         }
1647
1648         return IRQ_HANDLED;
1649 }
1650
1651 static int software_reset(struct fw_ohci *ohci)
1652 {
1653         int i;
1654
1655         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1656
1657         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1658                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1659                      OHCI1394_HCControl_softReset) == 0)
1660                         return 0;
1661                 msleep(1);
1662         }
1663
1664         return -EBUSY;
1665 }
1666
1667 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1668 {
1669         size_t size = length * 4;
1670
1671         memcpy(dest, src, size);
1672         if (size < CONFIG_ROM_SIZE)
1673                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1674 }
1675
1676 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1677 {
1678         bool enable_1394a;
1679         int ret, clear, set, offset;
1680
1681         /* Check if the driver should configure link and PHY. */
1682         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1683               OHCI1394_HCControl_programPhyEnable))
1684                 return 0;
1685
1686         /* Paranoia: check whether the PHY supports 1394a, too. */
1687         enable_1394a = false;
1688         ret = read_phy_reg(ohci, 2);
1689         if (ret < 0)
1690                 return ret;
1691         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1692                 ret = read_paged_phy_reg(ohci, 1, 8);
1693                 if (ret < 0)
1694                         return ret;
1695                 if (ret >= 1)
1696                         enable_1394a = true;
1697         }
1698
1699         if (ohci->quirks & QUIRK_NO_1394A)
1700                 enable_1394a = false;
1701
1702         /* Configure PHY and link consistently. */
1703         if (enable_1394a) {
1704                 clear = 0;
1705                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1706         } else {
1707                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
1708                 set = 0;
1709         }
1710         ret = update_phy_reg(ohci, 5, clear, set);
1711         if (ret < 0)
1712                 return ret;
1713
1714         if (enable_1394a)
1715                 offset = OHCI1394_HCControlSet;
1716         else
1717                 offset = OHCI1394_HCControlClear;
1718         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
1719
1720         /* Clean up: configuration has been taken care of. */
1721         reg_write(ohci, OHCI1394_HCControlClear,
1722                   OHCI1394_HCControl_programPhyEnable);
1723
1724         return 0;
1725 }
1726
1727 static int ohci_enable(struct fw_card *card,
1728                        const __be32 *config_rom, size_t length)
1729 {
1730         struct fw_ohci *ohci = fw_ohci(card);
1731         struct pci_dev *dev = to_pci_dev(card->device);
1732         u32 lps, seconds, version, irqs;
1733         int i, ret;
1734
1735         if (software_reset(ohci)) {
1736                 fw_error("Failed to reset ohci card.\n");
1737                 return -EBUSY;
1738         }
1739
1740         /*
1741          * Now enable LPS, which we need in order to start accessing
1742          * most of the registers.  In fact, on some cards (ALI M5251),
1743          * accessing registers in the SClk domain without LPS enabled
1744          * will lock up the machine.  Wait 50msec to make sure we have
1745          * full link enabled.  However, with some cards (well, at least
1746          * a JMicron PCIe card), we have to try again sometimes.
1747          */
1748         reg_write(ohci, OHCI1394_HCControlSet,
1749                   OHCI1394_HCControl_LPS |
1750                   OHCI1394_HCControl_postedWriteEnable);
1751         flush_writes(ohci);
1752
1753         for (lps = 0, i = 0; !lps && i < 3; i++) {
1754                 msleep(50);
1755                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1756                       OHCI1394_HCControl_LPS;
1757         }
1758
1759         if (!lps) {
1760                 fw_error("Failed to set Link Power Status\n");
1761                 return -EIO;
1762         }
1763
1764         reg_write(ohci, OHCI1394_HCControlClear,
1765                   OHCI1394_HCControl_noByteSwapData);
1766
1767         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1768         reg_write(ohci, OHCI1394_LinkControlSet,
1769                   OHCI1394_LinkControl_rcvSelfID |
1770                   OHCI1394_LinkControl_rcvPhyPkt |
1771                   OHCI1394_LinkControl_cycleTimerEnable |
1772                   OHCI1394_LinkControl_cycleMaster);
1773
1774         reg_write(ohci, OHCI1394_ATRetries,
1775                   OHCI1394_MAX_AT_REQ_RETRIES |
1776                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1777                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
1778                   (200 << 16));
1779
1780         seconds = lower_32_bits(get_seconds());
1781         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
1782         ohci->bus_time = seconds & ~0x3f;
1783
1784         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1785         if (version >= OHCI_VERSION_1_1) {
1786                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
1787                           0xfffffffe);
1788                 card->broadcast_channel_auto_allocated = true;
1789         }
1790
1791         /* Get implemented bits of the priority arbitration request counter. */
1792         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
1793         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
1794         reg_write(ohci, OHCI1394_FairnessControl, 0);
1795         card->priority_budget_implemented = ohci->pri_req_max != 0;
1796
1797         ar_context_run(&ohci->ar_request_ctx);
1798         ar_context_run(&ohci->ar_response_ctx);
1799
1800         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1801         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1802         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1803
1804         ret = configure_1394a_enhancements(ohci);
1805         if (ret < 0)
1806                 return ret;
1807
1808         /* Activate link_on bit and contender bit in our self ID packets.*/
1809         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
1810         if (ret < 0)
1811                 return ret;
1812
1813         /*
1814          * When the link is not yet enabled, the atomic config rom
1815          * update mechanism described below in ohci_set_config_rom()
1816          * is not active.  We have to update ConfigRomHeader and
1817          * BusOptions manually, and the write to ConfigROMmap takes
1818          * effect immediately.  We tie this to the enabling of the
1819          * link, so we have a valid config rom before enabling - the
1820          * OHCI requires that ConfigROMhdr and BusOptions have valid
1821          * values before enabling.
1822          *
1823          * However, when the ConfigROMmap is written, some controllers
1824          * always read back quadlets 0 and 2 from the config rom to
1825          * the ConfigRomHeader and BusOptions registers on bus reset.
1826          * They shouldn't do that in this initial case where the link
1827          * isn't enabled.  This means we have to use the same
1828          * workaround here, setting the bus header to 0 and then write
1829          * the right values in the bus reset tasklet.
1830          */
1831
1832         if (config_rom) {
1833                 ohci->next_config_rom =
1834                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1835                                            &ohci->next_config_rom_bus,
1836                                            GFP_KERNEL);
1837                 if (ohci->next_config_rom == NULL)
1838                         return -ENOMEM;
1839
1840                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1841         } else {
1842                 /*
1843                  * In the suspend case, config_rom is NULL, which
1844                  * means that we just reuse the old config rom.
1845                  */
1846                 ohci->next_config_rom = ohci->config_rom;
1847                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1848         }
1849
1850         ohci->next_header = ohci->next_config_rom[0];
1851         ohci->next_config_rom[0] = 0;
1852         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1853         reg_write(ohci, OHCI1394_BusOptions,
1854                   be32_to_cpu(ohci->next_config_rom[2]));
1855         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1856
1857         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1858
1859         if (!(ohci->quirks & QUIRK_NO_MSI))
1860                 pci_enable_msi(dev);
1861         if (request_irq(dev->irq, irq_handler,
1862                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
1863                         ohci_driver_name, ohci)) {
1864                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
1865                 pci_disable_msi(dev);
1866                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1867                                   ohci->config_rom, ohci->config_rom_bus);
1868                 return -EIO;
1869         }
1870
1871         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1872                 OHCI1394_RQPkt | OHCI1394_RSPkt |
1873                 OHCI1394_isochTx | OHCI1394_isochRx |
1874                 OHCI1394_postedWriteErr |
1875                 OHCI1394_selfIDComplete |
1876                 OHCI1394_regAccessFail |
1877                 OHCI1394_cycle64Seconds |
1878                 OHCI1394_cycleInconsistent | OHCI1394_cycleTooLong |
1879                 OHCI1394_masterIntEnable;
1880         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1881                 irqs |= OHCI1394_busReset;
1882         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
1883
1884         reg_write(ohci, OHCI1394_HCControlSet,
1885                   OHCI1394_HCControl_linkEnable |
1886                   OHCI1394_HCControl_BIBimageValid);
1887         flush_writes(ohci);
1888
1889         /* We are ready to go, reset bus to finish initialization. */
1890         fw_schedule_bus_reset(&ohci->card, false, true);
1891
1892         return 0;
1893 }
1894
1895 static int ohci_set_config_rom(struct fw_card *card,
1896                                const __be32 *config_rom, size_t length)
1897 {
1898         struct fw_ohci *ohci;
1899         unsigned long flags;
1900         int ret = -EBUSY;
1901         __be32 *next_config_rom;
1902         dma_addr_t uninitialized_var(next_config_rom_bus);
1903
1904         ohci = fw_ohci(card);
1905
1906         /*
1907          * When the OHCI controller is enabled, the config rom update
1908          * mechanism is a bit tricky, but easy enough to use.  See
1909          * section 5.5.6 in the OHCI specification.
1910          *
1911          * The OHCI controller caches the new config rom address in a
1912          * shadow register (ConfigROMmapNext) and needs a bus reset
1913          * for the changes to take place.  When the bus reset is
1914          * detected, the controller loads the new values for the
1915          * ConfigRomHeader and BusOptions registers from the specified
1916          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1917          * shadow register. All automatically and atomically.
1918          *
1919          * Now, there's a twist to this story.  The automatic load of
1920          * ConfigRomHeader and BusOptions doesn't honor the
1921          * noByteSwapData bit, so with a be32 config rom, the
1922          * controller will load be32 values in to these registers
1923          * during the atomic update, even on litte endian
1924          * architectures.  The workaround we use is to put a 0 in the
1925          * header quadlet; 0 is endian agnostic and means that the
1926          * config rom isn't ready yet.  In the bus reset tasklet we
1927          * then set up the real values for the two registers.
1928          *
1929          * We use ohci->lock to avoid racing with the code that sets
1930          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1931          */
1932
1933         next_config_rom =
1934                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1935                                    &next_config_rom_bus, GFP_KERNEL);
1936         if (next_config_rom == NULL)
1937                 return -ENOMEM;
1938
1939         spin_lock_irqsave(&ohci->lock, flags);
1940
1941         if (ohci->next_config_rom == NULL) {
1942                 ohci->next_config_rom = next_config_rom;
1943                 ohci->next_config_rom_bus = next_config_rom_bus;
1944
1945                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1946
1947                 ohci->next_header = config_rom[0];
1948                 ohci->next_config_rom[0] = 0;
1949
1950                 reg_write(ohci, OHCI1394_ConfigROMmap,
1951                           ohci->next_config_rom_bus);
1952                 ret = 0;
1953         }
1954
1955         spin_unlock_irqrestore(&ohci->lock, flags);
1956
1957         /*
1958          * Now initiate a bus reset to have the changes take
1959          * effect. We clean up the old config rom memory and DMA
1960          * mappings in the bus reset tasklet, since the OHCI
1961          * controller could need to access it before the bus reset
1962          * takes effect.
1963          */
1964         if (ret == 0)
1965                 fw_schedule_bus_reset(&ohci->card, true, true);
1966         else
1967                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1968                                   next_config_rom, next_config_rom_bus);
1969
1970         return ret;
1971 }
1972
1973 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1974 {
1975         struct fw_ohci *ohci = fw_ohci(card);
1976
1977         at_context_transmit(&ohci->at_request_ctx, packet);
1978 }
1979
1980 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1981 {
1982         struct fw_ohci *ohci = fw_ohci(card);
1983
1984         at_context_transmit(&ohci->at_response_ctx, packet);
1985 }
1986
1987 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1988 {
1989         struct fw_ohci *ohci = fw_ohci(card);
1990         struct context *ctx = &ohci->at_request_ctx;
1991         struct driver_data *driver_data = packet->driver_data;
1992         int ret = -ENOENT;
1993
1994         tasklet_disable(&ctx->tasklet);
1995
1996         if (packet->ack != 0)
1997                 goto out;
1998
1999         if (packet->payload_mapped)
2000                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2001                                  packet->payload_length, DMA_TO_DEVICE);
2002
2003         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2004         driver_data->packet = NULL;
2005         packet->ack = RCODE_CANCELLED;
2006         packet->callback(packet, &ohci->card, packet->ack);
2007         ret = 0;
2008  out:
2009         tasklet_enable(&ctx->tasklet);
2010
2011         return ret;
2012 }
2013
2014 static int ohci_enable_phys_dma(struct fw_card *card,
2015                                 int node_id, int generation)
2016 {
2017 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2018         return 0;
2019 #else
2020         struct fw_ohci *ohci = fw_ohci(card);
2021         unsigned long flags;
2022         int n, ret = 0;
2023
2024         /*
2025          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2026          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2027          */
2028
2029         spin_lock_irqsave(&ohci->lock, flags);
2030
2031         if (ohci->generation != generation) {
2032                 ret = -ESTALE;
2033                 goto out;
2034         }
2035
2036         /*
2037          * Note, if the node ID contains a non-local bus ID, physical DMA is
2038          * enabled for _all_ nodes on remote buses.
2039          */
2040
2041         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2042         if (n < 32)
2043                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2044         else
2045                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2046
2047         flush_writes(ohci);
2048  out:
2049         spin_unlock_irqrestore(&ohci->lock, flags);
2050
2051         return ret;
2052 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2053 }
2054
2055 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2056 {
2057         struct fw_ohci *ohci = fw_ohci(card);
2058         unsigned long flags;
2059         u32 value;
2060
2061         switch (csr_offset) {
2062         case CSR_STATE_CLEAR:
2063         case CSR_STATE_SET:
2064                 if (ohci->is_root &&
2065                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2066                      OHCI1394_LinkControl_cycleMaster))
2067                         value = CSR_STATE_BIT_CMSTR;
2068                 else
2069                         value = 0;
2070                 if (ohci->csr_state_setclear_abdicate)
2071                         value |= CSR_STATE_BIT_ABDICATE;
2072
2073                 return value;
2074
2075         case CSR_NODE_IDS:
2076                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2077
2078         case CSR_CYCLE_TIME:
2079                 return get_cycle_time(ohci);
2080
2081         case CSR_BUS_TIME:
2082                 /*
2083                  * We might be called just after the cycle timer has wrapped
2084                  * around but just before the cycle64Seconds handler, so we
2085                  * better check here, too, if the bus time needs to be updated.
2086                  */
2087                 spin_lock_irqsave(&ohci->lock, flags);
2088                 value = update_bus_time(ohci);
2089                 spin_unlock_irqrestore(&ohci->lock, flags);
2090                 return value;
2091
2092         case CSR_BUSY_TIMEOUT:
2093                 value = reg_read(ohci, OHCI1394_ATRetries);
2094                 return (value >> 4) & 0x0ffff00f;
2095
2096         case CSR_PRIORITY_BUDGET:
2097                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2098                         (ohci->pri_req_max << 8);
2099
2100         default:
2101                 WARN_ON(1);
2102                 return 0;
2103         }
2104 }
2105
2106 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2107 {
2108         struct fw_ohci *ohci = fw_ohci(card);
2109         unsigned long flags;
2110
2111         switch (csr_offset) {
2112         case CSR_STATE_CLEAR:
2113                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2114                         reg_write(ohci, OHCI1394_LinkControlClear,
2115                                   OHCI1394_LinkControl_cycleMaster);
2116                         flush_writes(ohci);
2117                 }
2118                 if (value & CSR_STATE_BIT_ABDICATE)
2119                         ohci->csr_state_setclear_abdicate = false;
2120                 break;
2121
2122         case CSR_STATE_SET:
2123                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2124                         reg_write(ohci, OHCI1394_LinkControlSet,
2125                                   OHCI1394_LinkControl_cycleMaster);
2126                         flush_writes(ohci);
2127                 }
2128                 if (value & CSR_STATE_BIT_ABDICATE)
2129                         ohci->csr_state_setclear_abdicate = true;
2130                 break;
2131
2132         case CSR_NODE_IDS:
2133                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2134                 flush_writes(ohci);
2135                 break;
2136
2137         case CSR_CYCLE_TIME:
2138                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2139                 reg_write(ohci, OHCI1394_IntEventSet,
2140                           OHCI1394_cycleInconsistent);
2141                 flush_writes(ohci);
2142                 break;
2143
2144         case CSR_BUS_TIME:
2145                 spin_lock_irqsave(&ohci->lock, flags);
2146                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2147                 spin_unlock_irqrestore(&ohci->lock, flags);
2148                 break;
2149
2150         case CSR_BUSY_TIMEOUT:
2151                 value = (value & 0xf) | ((value & 0xf) << 4) |
2152                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2153                 reg_write(ohci, OHCI1394_ATRetries, value);
2154                 flush_writes(ohci);
2155                 break;
2156
2157         case CSR_PRIORITY_BUDGET:
2158                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2159                 flush_writes(ohci);
2160                 break;
2161
2162         default:
2163                 WARN_ON(1);
2164                 break;
2165         }
2166 }
2167
2168 static void copy_iso_headers(struct iso_context *ctx, void *p)
2169 {
2170         int i = ctx->header_length;
2171
2172         if (i + ctx->base.header_size > PAGE_SIZE)
2173                 return;
2174
2175         /*
2176          * The iso header is byteswapped to little endian by
2177          * the controller, but the remaining header quadlets
2178          * are big endian.  We want to present all the headers
2179          * as big endian, so we have to swap the first quadlet.
2180          */
2181         if (ctx->base.header_size > 0)
2182                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2183         if (ctx->base.header_size > 4)
2184                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2185         if (ctx->base.header_size > 8)
2186                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2187         ctx->header_length += ctx->base.header_size;
2188 }
2189
2190 static int handle_ir_packet_per_buffer(struct context *context,
2191                                        struct descriptor *d,
2192                                        struct descriptor *last)
2193 {
2194         struct iso_context *ctx =
2195                 container_of(context, struct iso_context, context);
2196         struct descriptor *pd;
2197         __le32 *ir_header;
2198         void *p;
2199
2200         for (pd = d; pd <= last; pd++) {
2201                 if (pd->transfer_status)
2202                         break;
2203         }
2204         if (pd > last)
2205                 /* Descriptor(s) not done yet, stop iteration */
2206                 return 0;
2207
2208         p = last + 1;
2209         copy_iso_headers(ctx, p);
2210
2211         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2212                 ir_header = (__le32 *) p;
2213                 ctx->base.callback(&ctx->base,
2214                                    le32_to_cpu(ir_header[0]) & 0xffff,
2215                                    ctx->header_length, ctx->header,
2216                                    ctx->base.callback_data);
2217                 ctx->header_length = 0;
2218         }
2219
2220         return 1;
2221 }
2222
2223 static int handle_it_packet(struct context *context,
2224                             struct descriptor *d,
2225                             struct descriptor *last)
2226 {
2227         struct iso_context *ctx =
2228                 container_of(context, struct iso_context, context);
2229         int i;
2230         struct descriptor *pd;
2231
2232         for (pd = d; pd <= last; pd++)
2233                 if (pd->transfer_status)
2234                         break;
2235         if (pd > last)
2236                 /* Descriptor(s) not done yet, stop iteration */
2237                 return 0;
2238
2239         i = ctx->header_length;
2240         if (i + 4 < PAGE_SIZE) {
2241                 /* Present this value as big-endian to match the receive code */
2242                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2243                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2244                                 le16_to_cpu(pd->res_count));
2245                 ctx->header_length += 4;
2246         }
2247         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2248                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
2249                                    ctx->header_length, ctx->header,
2250                                    ctx->base.callback_data);
2251                 ctx->header_length = 0;
2252         }
2253         return 1;
2254 }
2255
2256 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2257                                 int type, int channel, size_t header_size)
2258 {
2259         struct fw_ohci *ohci = fw_ohci(card);
2260         struct iso_context *ctx, *list;
2261         descriptor_callback_t callback;
2262         u64 *channels, dont_care = ~0ULL;
2263         u32 *mask, regs;
2264         unsigned long flags;
2265         int index, ret = -ENOMEM;
2266
2267         if (type == FW_ISO_CONTEXT_TRANSMIT) {
2268                 channels = &dont_care;
2269                 mask = &ohci->it_context_mask;
2270                 list = ohci->it_context_list;
2271                 callback = handle_it_packet;
2272         } else {
2273                 channels = &ohci->ir_context_channels;
2274                 mask = &ohci->ir_context_mask;
2275                 list = ohci->ir_context_list;
2276                 callback = handle_ir_packet_per_buffer;
2277         }
2278
2279         spin_lock_irqsave(&ohci->lock, flags);
2280         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2281         if (index >= 0) {
2282                 *channels &= ~(1ULL << channel);
2283                 *mask &= ~(1 << index);
2284         }
2285         spin_unlock_irqrestore(&ohci->lock, flags);
2286
2287         if (index < 0)
2288                 return ERR_PTR(-EBUSY);
2289
2290         if (type == FW_ISO_CONTEXT_TRANSMIT)
2291                 regs = OHCI1394_IsoXmitContextBase(index);
2292         else
2293                 regs = OHCI1394_IsoRcvContextBase(index);
2294
2295         ctx = &list[index];
2296         memset(ctx, 0, sizeof(*ctx));
2297         ctx->header_length = 0;
2298         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2299         if (ctx->header == NULL)
2300                 goto out;
2301
2302         ret = context_init(&ctx->context, ohci, regs, callback);
2303         if (ret < 0)
2304                 goto out_with_header;
2305
2306         return &ctx->base;
2307
2308  out_with_header:
2309         free_page((unsigned long)ctx->header);
2310  out:
2311         spin_lock_irqsave(&ohci->lock, flags);
2312         *channels |= 1ULL << channel;
2313         *mask |= 1 << index;
2314         spin_unlock_irqrestore(&ohci->lock, flags);
2315
2316         return ERR_PTR(ret);
2317 }
2318
2319 static int ohci_start_iso(struct fw_iso_context *base,
2320                           s32 cycle, u32 sync, u32 tags)
2321 {
2322         struct iso_context *ctx = container_of(base, struct iso_context, base);
2323         struct fw_ohci *ohci = ctx->context.ohci;
2324         u32 control, match;
2325         int index;
2326
2327         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2328                 index = ctx - ohci->it_context_list;
2329                 match = 0;
2330                 if (cycle >= 0)
2331                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2332                                 (cycle & 0x7fff) << 16;
2333
2334                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2335                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2336                 context_run(&ctx->context, match);
2337         } else {
2338                 index = ctx - ohci->ir_context_list;
2339                 control = IR_CONTEXT_ISOCH_HEADER;
2340                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2341                 if (cycle >= 0) {
2342                         match |= (cycle & 0x07fff) << 12;
2343                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2344                 }
2345
2346                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2347                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2348                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2349                 context_run(&ctx->context, control);
2350         }
2351
2352         return 0;
2353 }
2354
2355 static int ohci_stop_iso(struct fw_iso_context *base)
2356 {
2357         struct fw_ohci *ohci = fw_ohci(base->card);
2358         struct iso_context *ctx = container_of(base, struct iso_context, base);
2359         int index;
2360
2361         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2362                 index = ctx - ohci->it_context_list;
2363                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2364         } else {
2365                 index = ctx - ohci->ir_context_list;
2366                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2367         }
2368         flush_writes(ohci);
2369         context_stop(&ctx->context);
2370
2371         return 0;
2372 }
2373
2374 static void ohci_free_iso_context(struct fw_iso_context *base)
2375 {
2376         struct fw_ohci *ohci = fw_ohci(base->card);
2377         struct iso_context *ctx = container_of(base, struct iso_context, base);
2378         unsigned long flags;
2379         int index;
2380
2381         ohci_stop_iso(base);
2382         context_release(&ctx->context);
2383         free_page((unsigned long)ctx->header);
2384
2385         spin_lock_irqsave(&ohci->lock, flags);
2386
2387         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2388                 index = ctx - ohci->it_context_list;
2389                 ohci->it_context_mask |= 1 << index;
2390         } else {
2391                 index = ctx - ohci->ir_context_list;
2392                 ohci->ir_context_mask |= 1 << index;
2393                 ohci->ir_context_channels |= 1ULL << base->channel;
2394         }
2395
2396         spin_unlock_irqrestore(&ohci->lock, flags);
2397 }
2398
2399 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2400                                    struct fw_iso_packet *packet,
2401                                    struct fw_iso_buffer *buffer,
2402                                    unsigned long payload)
2403 {
2404         struct iso_context *ctx = container_of(base, struct iso_context, base);
2405         struct descriptor *d, *last, *pd;
2406         struct fw_iso_packet *p;
2407         __le32 *header;
2408         dma_addr_t d_bus, page_bus;
2409         u32 z, header_z, payload_z, irq;
2410         u32 payload_index, payload_end_index, next_page_index;
2411         int page, end_page, i, length, offset;
2412
2413         p = packet;
2414         payload_index = payload;
2415
2416         if (p->skip)
2417                 z = 1;
2418         else
2419                 z = 2;
2420         if (p->header_length > 0)
2421                 z++;
2422
2423         /* Determine the first page the payload isn't contained in. */
2424         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2425         if (p->payload_length > 0)
2426                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2427         else
2428                 payload_z = 0;
2429
2430         z += payload_z;
2431
2432         /* Get header size in number of descriptors. */
2433         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2434
2435         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2436         if (d == NULL)
2437                 return -ENOMEM;
2438
2439         if (!p->skip) {
2440                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2441                 d[0].req_count = cpu_to_le16(8);
2442                 /*
2443                  * Link the skip address to this descriptor itself.  This causes
2444                  * a context to skip a cycle whenever lost cycles or FIFO
2445                  * overruns occur, without dropping the data.  The application
2446                  * should then decide whether this is an error condition or not.
2447                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2448                  */
2449                 d[0].branch_address = cpu_to_le32(d_bus | z);
2450
2451                 header = (__le32 *) &d[1];
2452                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2453                                         IT_HEADER_TAG(p->tag) |
2454                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2455                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2456                                         IT_HEADER_SPEED(ctx->base.speed));
2457                 header[1] =
2458                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2459                                                           p->payload_length));
2460         }
2461
2462         if (p->header_length > 0) {
2463                 d[2].req_count    = cpu_to_le16(p->header_length);
2464                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2465                 memcpy(&d[z], p->header, p->header_length);
2466         }
2467
2468         pd = d + z - payload_z;
2469         payload_end_index = payload_index + p->payload_length;
2470         for (i = 0; i < payload_z; i++) {
2471                 page               = payload_index >> PAGE_SHIFT;
2472                 offset             = payload_index & ~PAGE_MASK;
2473                 next_page_index    = (page + 1) << PAGE_SHIFT;
2474                 length             =
2475                         min(next_page_index, payload_end_index) - payload_index;
2476                 pd[i].req_count    = cpu_to_le16(length);
2477
2478                 page_bus = page_private(buffer->pages[page]);
2479                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2480
2481                 payload_index += length;
2482         }
2483
2484         if (p->interrupt)
2485                 irq = DESCRIPTOR_IRQ_ALWAYS;
2486         else
2487                 irq = DESCRIPTOR_NO_IRQ;
2488
2489         last = z == 2 ? d : d + z - 1;
2490         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2491                                      DESCRIPTOR_STATUS |
2492                                      DESCRIPTOR_BRANCH_ALWAYS |
2493                                      irq);
2494
2495         context_append(&ctx->context, d, z, header_z);
2496
2497         return 0;
2498 }
2499
2500 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2501                                         struct fw_iso_packet *packet,
2502                                         struct fw_iso_buffer *buffer,
2503                                         unsigned long payload)
2504 {
2505         struct iso_context *ctx = container_of(base, struct iso_context, base);
2506         struct descriptor *d, *pd;
2507         struct fw_iso_packet *p = packet;
2508         dma_addr_t d_bus, page_bus;
2509         u32 z, header_z, rest;
2510         int i, j, length;
2511         int page, offset, packet_count, header_size, payload_per_buffer;
2512
2513         /*
2514          * The OHCI controller puts the isochronous header and trailer in the
2515          * buffer, so we need at least 8 bytes.
2516          */
2517         packet_count = p->header_length / ctx->base.header_size;
2518         header_size  = max(ctx->base.header_size, (size_t)8);
2519
2520         /* Get header size in number of descriptors. */
2521         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2522         page     = payload >> PAGE_SHIFT;
2523         offset   = payload & ~PAGE_MASK;
2524         payload_per_buffer = p->payload_length / packet_count;
2525
2526         for (i = 0; i < packet_count; i++) {
2527                 /* d points to the header descriptor */
2528                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2529                 d = context_get_descriptors(&ctx->context,
2530                                 z + header_z, &d_bus);
2531                 if (d == NULL)
2532                         return -ENOMEM;
2533
2534                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2535                                               DESCRIPTOR_INPUT_MORE);
2536                 if (p->skip && i == 0)
2537                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2538                 d->req_count    = cpu_to_le16(header_size);
2539                 d->res_count    = d->req_count;
2540                 d->transfer_status = 0;
2541                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2542
2543                 rest = payload_per_buffer;
2544                 pd = d;
2545                 for (j = 1; j < z; j++) {
2546                         pd++;
2547                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2548                                                   DESCRIPTOR_INPUT_MORE);
2549
2550                         if (offset + rest < PAGE_SIZE)
2551                                 length = rest;
2552                         else
2553                                 length = PAGE_SIZE - offset;
2554                         pd->req_count = cpu_to_le16(length);
2555                         pd->res_count = pd->req_count;
2556                         pd->transfer_status = 0;
2557
2558                         page_bus = page_private(buffer->pages[page]);
2559                         pd->data_address = cpu_to_le32(page_bus + offset);
2560
2561                         offset = (offset + length) & ~PAGE_MASK;
2562                         rest -= length;
2563                         if (offset == 0)
2564                                 page++;
2565                 }
2566                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2567                                           DESCRIPTOR_INPUT_LAST |
2568                                           DESCRIPTOR_BRANCH_ALWAYS);
2569                 if (p->interrupt && i == packet_count - 1)
2570                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2571
2572                 context_append(&ctx->context, d, z, header_z);
2573         }
2574
2575         return 0;
2576 }
2577
2578 static int ohci_queue_iso(struct fw_iso_context *base,
2579                           struct fw_iso_packet *packet,
2580                           struct fw_iso_buffer *buffer,
2581                           unsigned long payload)
2582 {
2583         struct iso_context *ctx = container_of(base, struct iso_context, base);
2584         unsigned long flags;
2585         int ret;
2586
2587         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2588         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2589                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2590         else
2591                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2592                                                         buffer, payload);
2593         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2594
2595         return ret;
2596 }
2597
2598 static const struct fw_card_driver ohci_driver = {
2599         .enable                 = ohci_enable,
2600         .read_phy_reg           = ohci_read_phy_reg,
2601         .update_phy_reg         = ohci_update_phy_reg,
2602         .set_config_rom         = ohci_set_config_rom,
2603         .send_request           = ohci_send_request,
2604         .send_response          = ohci_send_response,
2605         .cancel_packet          = ohci_cancel_packet,
2606         .enable_phys_dma        = ohci_enable_phys_dma,
2607         .read_csr               = ohci_read_csr,
2608         .write_csr              = ohci_write_csr,
2609
2610         .allocate_iso_context   = ohci_allocate_iso_context,
2611         .free_iso_context       = ohci_free_iso_context,
2612         .queue_iso              = ohci_queue_iso,
2613         .start_iso              = ohci_start_iso,
2614         .stop_iso               = ohci_stop_iso,
2615 };
2616
2617 #ifdef CONFIG_PPC_PMAC
2618 static void pmac_ohci_on(struct pci_dev *dev)
2619 {
2620         if (machine_is(powermac)) {
2621                 struct device_node *ofn = pci_device_to_OF_node(dev);
2622
2623                 if (ofn) {
2624                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2625                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2626                 }
2627         }
2628 }
2629
2630 static void pmac_ohci_off(struct pci_dev *dev)
2631 {
2632         if (machine_is(powermac)) {
2633                 struct device_node *ofn = pci_device_to_OF_node(dev);
2634
2635                 if (ofn) {
2636                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2637                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2638                 }
2639         }
2640 }
2641 #else
2642 static inline void pmac_ohci_on(struct pci_dev *dev) {}
2643 static inline void pmac_ohci_off(struct pci_dev *dev) {}
2644 #endif /* CONFIG_PPC_PMAC */
2645
2646 static int __devinit pci_probe(struct pci_dev *dev,
2647                                const struct pci_device_id *ent)
2648 {
2649         struct fw_ohci *ohci;
2650         u32 bus_options, max_receive, link_speed, version, link_enh;
2651         u64 guid;
2652         int i, err, n_ir, n_it;
2653         size_t size;
2654
2655         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2656         if (ohci == NULL) {
2657                 err = -ENOMEM;
2658                 goto fail;
2659         }
2660
2661         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2662
2663         pmac_ohci_on(dev);
2664
2665         err = pci_enable_device(dev);
2666         if (err) {
2667                 fw_error("Failed to enable OHCI hardware\n");
2668                 goto fail_free;
2669         }
2670
2671         pci_set_master(dev);
2672         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2673         pci_set_drvdata(dev, ohci);
2674
2675         spin_lock_init(&ohci->lock);
2676         mutex_init(&ohci->phy_reg_mutex);
2677
2678         tasklet_init(&ohci->bus_reset_tasklet,
2679                      bus_reset_tasklet, (unsigned long)ohci);
2680
2681         err = pci_request_region(dev, 0, ohci_driver_name);
2682         if (err) {
2683                 fw_error("MMIO resource unavailable\n");
2684                 goto fail_disable;
2685         }
2686
2687         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2688         if (ohci->registers == NULL) {
2689                 fw_error("Failed to remap registers\n");
2690                 err = -ENXIO;
2691                 goto fail_iomem;
2692         }
2693
2694         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2695                 if (ohci_quirks[i].vendor == dev->vendor &&
2696                     (ohci_quirks[i].device == dev->device ||
2697                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2698                         ohci->quirks = ohci_quirks[i].flags;
2699                         break;
2700                 }
2701         if (param_quirks)
2702                 ohci->quirks = param_quirks;
2703
2704         /* TI OHCI-Lynx and compatible: set recommended configuration bits. */
2705         if (dev->vendor == PCI_VENDOR_ID_TI) {
2706                 pci_read_config_dword(dev, PCI_CFG_TI_LinkEnh, &link_enh);
2707
2708                 /* adjust latency of ATx FIFO: use 1.7 KB threshold */
2709                 link_enh &= ~TI_LinkEnh_atx_thresh_mask;
2710                 link_enh |= TI_LinkEnh_atx_thresh_1_7K;
2711
2712                 /* use priority arbitration for asynchronous responses */
2713                 link_enh |= TI_LinkEnh_enab_unfair;
2714
2715                 /* required for aPhyEnhanceEnable to work */
2716                 link_enh |= TI_LinkEnh_enab_accel;
2717
2718                 pci_write_config_dword(dev, PCI_CFG_TI_LinkEnh, link_enh);
2719         }
2720
2721         ar_context_init(&ohci->ar_request_ctx, ohci,
2722                         OHCI1394_AsReqRcvContextControlSet);
2723
2724         ar_context_init(&ohci->ar_response_ctx, ohci,
2725                         OHCI1394_AsRspRcvContextControlSet);
2726
2727         context_init(&ohci->at_request_ctx, ohci,
2728                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2729
2730         context_init(&ohci->at_response_ctx, ohci,
2731                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2732
2733         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2734         ohci->ir_context_channels = ~0ULL;
2735         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2736         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2737         n_ir = hweight32(ohci->ir_context_mask);
2738         size = sizeof(struct iso_context) * n_ir;
2739         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2740
2741         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2742         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2743         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2744         n_it = hweight32(ohci->it_context_mask);
2745         size = sizeof(struct iso_context) * n_it;
2746         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2747
2748         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2749                 err = -ENOMEM;
2750                 goto fail_contexts;
2751         }
2752
2753         /* self-id dma buffer allocation */
2754         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2755                                                SELF_ID_BUF_SIZE,
2756                                                &ohci->self_id_bus,
2757                                                GFP_KERNEL);
2758         if (ohci->self_id_cpu == NULL) {
2759                 err = -ENOMEM;
2760                 goto fail_contexts;
2761         }
2762
2763         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2764         max_receive = (bus_options >> 12) & 0xf;
2765         link_speed = bus_options & 0x7;
2766         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2767                 reg_read(ohci, OHCI1394_GUIDLo);
2768
2769         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2770         if (err)
2771                 goto fail_self_id;
2772
2773         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2774         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2775                   "%d IR + %d IT contexts, quirks 0x%x\n",
2776                   dev_name(&dev->dev), version >> 16, version & 0xff,
2777                   n_ir, n_it, ohci->quirks);
2778
2779         return 0;
2780
2781  fail_self_id:
2782         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2783                           ohci->self_id_cpu, ohci->self_id_bus);
2784  fail_contexts:
2785         kfree(ohci->ir_context_list);
2786         kfree(ohci->it_context_list);
2787         context_release(&ohci->at_response_ctx);
2788         context_release(&ohci->at_request_ctx);
2789         ar_context_release(&ohci->ar_response_ctx);
2790         ar_context_release(&ohci->ar_request_ctx);
2791         pci_iounmap(dev, ohci->registers);
2792  fail_iomem:
2793         pci_release_region(dev, 0);
2794  fail_disable:
2795         pci_disable_device(dev);
2796  fail_free:
2797         kfree(&ohci->card);
2798         pmac_ohci_off(dev);
2799  fail:
2800         if (err == -ENOMEM)
2801                 fw_error("Out of memory\n");
2802
2803         return err;
2804 }
2805
2806 static void pci_remove(struct pci_dev *dev)
2807 {
2808         struct fw_ohci *ohci;
2809
2810         ohci = pci_get_drvdata(dev);
2811         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2812         flush_writes(ohci);
2813         fw_core_remove_card(&ohci->card);
2814
2815         /*
2816          * FIXME: Fail all pending packets here, now that the upper
2817          * layers can't queue any more.
2818          */
2819
2820         software_reset(ohci);
2821         free_irq(dev->irq, ohci);
2822
2823         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2824                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2825                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2826         if (ohci->config_rom)
2827                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2828                                   ohci->config_rom, ohci->config_rom_bus);
2829         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2830                           ohci->self_id_cpu, ohci->self_id_bus);
2831         ar_context_release(&ohci->ar_request_ctx);
2832         ar_context_release(&ohci->ar_response_ctx);
2833         context_release(&ohci->at_request_ctx);
2834         context_release(&ohci->at_response_ctx);
2835         kfree(ohci->it_context_list);
2836         kfree(ohci->ir_context_list);
2837         pci_disable_msi(dev);
2838         pci_iounmap(dev, ohci->registers);
2839         pci_release_region(dev, 0);
2840         pci_disable_device(dev);
2841         kfree(&ohci->card);
2842         pmac_ohci_off(dev);
2843
2844         fw_notify("Removed fw-ohci device.\n");
2845 }
2846
2847 #ifdef CONFIG_PM
2848 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2849 {
2850         struct fw_ohci *ohci = pci_get_drvdata(dev);
2851         int err;
2852
2853         software_reset(ohci);
2854         free_irq(dev->irq, ohci);
2855         pci_disable_msi(dev);
2856         err = pci_save_state(dev);
2857         if (err) {
2858                 fw_error("pci_save_state failed\n");
2859                 return err;
2860         }
2861         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2862         if (err)
2863                 fw_error("pci_set_power_state failed with %d\n", err);
2864         pmac_ohci_off(dev);
2865
2866         return 0;
2867 }
2868
2869 static int pci_resume(struct pci_dev *dev)
2870 {
2871         struct fw_ohci *ohci = pci_get_drvdata(dev);
2872         int err;
2873
2874         pmac_ohci_on(dev);
2875         pci_set_power_state(dev, PCI_D0);
2876         pci_restore_state(dev);
2877         err = pci_enable_device(dev);
2878         if (err) {
2879                 fw_error("pci_enable_device failed\n");
2880                 return err;
2881         }
2882
2883         return ohci_enable(&ohci->card, NULL, 0);
2884 }
2885 #endif
2886
2887 static const struct pci_device_id pci_table[] = {
2888         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2889         { }
2890 };
2891
2892 MODULE_DEVICE_TABLE(pci, pci_table);
2893
2894 static struct pci_driver fw_ohci_pci_driver = {
2895         .name           = ohci_driver_name,
2896         .id_table       = pci_table,
2897         .probe          = pci_probe,
2898         .remove         = pci_remove,
2899 #ifdef CONFIG_PM
2900         .resume         = pci_resume,
2901         .suspend        = pci_suspend,
2902 #endif
2903 };
2904
2905 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2906 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2907 MODULE_LICENSE("GPL");
2908
2909 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2910 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2911 MODULE_ALIAS("ohci1394");
2912 #endif
2913
2914 static int __init fw_ohci_init(void)
2915 {
2916         return pci_register_driver(&fw_ohci_pci_driver);
2917 }
2918
2919 static void __exit fw_ohci_cleanup(void)
2920 {
2921         pci_unregister_driver(&fw_ohci_pci_driver);
2922 }
2923
2924 module_init(fw_ohci_init);
2925 module_exit(fw_ohci_cleanup);