]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/edac/i5000_edac.c
edac i5000: fix error messages
[net-next-2.6.git] / drivers / edac / i5000_edac.c
1 /*
2  * Intel 5000(P/V/X) class Memory Controllers kernel module
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Douglas Thompson Linux Networx (http://lnxi.com)
8  *      norsk5@xmission.com
9  *
10  * This module is based on the following document:
11  *
12  * Intel 5000X Chipset Memory Controller Hub (MCH) - Datasheet
13  *      http://developer.intel.com/design/chipsets/datashts/313070.htm
14  *
15  */
16
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/pci_ids.h>
21 #include <linux/slab.h>
22 #include <linux/edac.h>
23 #include <asm/mmzone.h>
24
25 #include "edac_core.h"
26
27 /*
28  * Alter this version for the I5000 module when modifications are made
29  */
30 #define I5000_REVISION    " Ver: 2.0.12 " __DATE__
31 #define EDAC_MOD_STR      "i5000_edac"
32
33 #define i5000_printk(level, fmt, arg...) \
34         edac_printk(level, "i5000", fmt, ##arg)
35
36 #define i5000_mc_printk(mci, level, fmt, arg...) \
37         edac_mc_chipset_printk(mci, level, "i5000", fmt, ##arg)
38
39 #ifndef PCI_DEVICE_ID_INTEL_FBD_0
40 #define PCI_DEVICE_ID_INTEL_FBD_0       0x25F5
41 #endif
42 #ifndef PCI_DEVICE_ID_INTEL_FBD_1
43 #define PCI_DEVICE_ID_INTEL_FBD_1       0x25F6
44 #endif
45
46 /* Device 16,
47  * Function 0: System Address
48  * Function 1: Memory Branch Map, Control, Errors Register
49  * Function 2: FSB Error Registers
50  *
51  * All 3 functions of Device 16 (0,1,2) share the SAME DID
52  */
53 #define PCI_DEVICE_ID_INTEL_I5000_DEV16 0x25F0
54
55 /* OFFSETS for Function 0 */
56
57 /* OFFSETS for Function 1 */
58 #define         AMBASE                  0x48
59 #define         MAXCH                   0x56
60 #define         MAXDIMMPERCH            0x57
61 #define         TOLM                    0x6C
62 #define         REDMEMB                 0x7C
63 #define                 RED_ECC_LOCATOR(x)      ((x) & 0x3FFFF)
64 #define                 REC_ECC_LOCATOR_EVEN(x) ((x) & 0x001FF)
65 #define                 REC_ECC_LOCATOR_ODD(x)  ((x) & 0x3FE00)
66 #define         MIR0                    0x80
67 #define         MIR1                    0x84
68 #define         MIR2                    0x88
69 #define         AMIR0                   0x8C
70 #define         AMIR1                   0x90
71 #define         AMIR2                   0x94
72
73 #define         FERR_FAT_FBD            0x98
74 #define         NERR_FAT_FBD            0x9C
75 #define                 EXTRACT_FBDCHAN_INDX(x) (((x)>>28) & 0x3)
76 #define                 FERR_FAT_FBDCHAN 0x30000000
77 #define                 FERR_FAT_M3ERR  0x00000004
78 #define                 FERR_FAT_M2ERR  0x00000002
79 #define                 FERR_FAT_M1ERR  0x00000001
80 #define                 FERR_FAT_MASK   (FERR_FAT_M1ERR | \
81                                                 FERR_FAT_M2ERR | \
82                                                 FERR_FAT_M3ERR)
83
84 #define         FERR_NF_FBD             0xA0
85
86 /* Thermal and SPD or BFD errors */
87 #define                 FERR_NF_M28ERR  0x01000000
88 #define                 FERR_NF_M27ERR  0x00800000
89 #define                 FERR_NF_M26ERR  0x00400000
90 #define                 FERR_NF_M25ERR  0x00200000
91 #define                 FERR_NF_M24ERR  0x00100000
92 #define                 FERR_NF_M23ERR  0x00080000
93 #define                 FERR_NF_M22ERR  0x00040000
94 #define                 FERR_NF_M21ERR  0x00020000
95
96 /* Correctable errors */
97 #define                 FERR_NF_M20ERR  0x00010000
98 #define                 FERR_NF_M19ERR  0x00008000
99 #define                 FERR_NF_M18ERR  0x00004000
100 #define                 FERR_NF_M17ERR  0x00002000
101
102 /* Non-Retry or redundant Retry errors */
103 #define                 FERR_NF_M16ERR  0x00001000
104 #define                 FERR_NF_M15ERR  0x00000800
105 #define                 FERR_NF_M14ERR  0x00000400
106 #define                 FERR_NF_M13ERR  0x00000200
107
108 /* Uncorrectable errors */
109 #define                 FERR_NF_M12ERR  0x00000100
110 #define                 FERR_NF_M11ERR  0x00000080
111 #define                 FERR_NF_M10ERR  0x00000040
112 #define                 FERR_NF_M9ERR   0x00000020
113 #define                 FERR_NF_M8ERR   0x00000010
114 #define                 FERR_NF_M7ERR   0x00000008
115 #define                 FERR_NF_M6ERR   0x00000004
116 #define                 FERR_NF_M5ERR   0x00000002
117 #define                 FERR_NF_M4ERR   0x00000001
118
119 #define                 FERR_NF_UNCORRECTABLE   (FERR_NF_M12ERR | \
120                                                         FERR_NF_M11ERR | \
121                                                         FERR_NF_M10ERR | \
122                                                         FERR_NF_M9ERR | \
123                                                         FERR_NF_M8ERR | \
124                                                         FERR_NF_M7ERR | \
125                                                         FERR_NF_M6ERR | \
126                                                         FERR_NF_M5ERR | \
127                                                         FERR_NF_M4ERR)
128 #define                 FERR_NF_CORRECTABLE     (FERR_NF_M20ERR | \
129                                                         FERR_NF_M19ERR | \
130                                                         FERR_NF_M18ERR | \
131                                                         FERR_NF_M17ERR)
132 #define                 FERR_NF_DIMM_SPARE      (FERR_NF_M27ERR | \
133                                                         FERR_NF_M28ERR)
134 #define                 FERR_NF_THERMAL         (FERR_NF_M26ERR | \
135                                                         FERR_NF_M25ERR | \
136                                                         FERR_NF_M24ERR | \
137                                                         FERR_NF_M23ERR)
138 #define                 FERR_NF_SPD_PROTOCOL    (FERR_NF_M22ERR)
139 #define                 FERR_NF_NORTH_CRC       (FERR_NF_M21ERR)
140 #define                 FERR_NF_NON_RETRY       (FERR_NF_M13ERR | \
141                                                         FERR_NF_M14ERR | \
142                                                         FERR_NF_M15ERR)
143
144 #define         NERR_NF_FBD             0xA4
145 #define                 FERR_NF_MASK            (FERR_NF_UNCORRECTABLE | \
146                                                         FERR_NF_CORRECTABLE | \
147                                                         FERR_NF_DIMM_SPARE | \
148                                                         FERR_NF_THERMAL | \
149                                                         FERR_NF_SPD_PROTOCOL | \
150                                                         FERR_NF_NORTH_CRC | \
151                                                         FERR_NF_NON_RETRY)
152
153 #define         EMASK_FBD               0xA8
154 #define                 EMASK_FBD_M28ERR        0x08000000
155 #define                 EMASK_FBD_M27ERR        0x04000000
156 #define                 EMASK_FBD_M26ERR        0x02000000
157 #define                 EMASK_FBD_M25ERR        0x01000000
158 #define                 EMASK_FBD_M24ERR        0x00800000
159 #define                 EMASK_FBD_M23ERR        0x00400000
160 #define                 EMASK_FBD_M22ERR        0x00200000
161 #define                 EMASK_FBD_M21ERR        0x00100000
162 #define                 EMASK_FBD_M20ERR        0x00080000
163 #define                 EMASK_FBD_M19ERR        0x00040000
164 #define                 EMASK_FBD_M18ERR        0x00020000
165 #define                 EMASK_FBD_M17ERR        0x00010000
166
167 #define                 EMASK_FBD_M15ERR        0x00004000
168 #define                 EMASK_FBD_M14ERR        0x00002000
169 #define                 EMASK_FBD_M13ERR        0x00001000
170 #define                 EMASK_FBD_M12ERR        0x00000800
171 #define                 EMASK_FBD_M11ERR        0x00000400
172 #define                 EMASK_FBD_M10ERR        0x00000200
173 #define                 EMASK_FBD_M9ERR         0x00000100
174 #define                 EMASK_FBD_M8ERR         0x00000080
175 #define                 EMASK_FBD_M7ERR         0x00000040
176 #define                 EMASK_FBD_M6ERR         0x00000020
177 #define                 EMASK_FBD_M5ERR         0x00000010
178 #define                 EMASK_FBD_M4ERR         0x00000008
179 #define                 EMASK_FBD_M3ERR         0x00000004
180 #define                 EMASK_FBD_M2ERR         0x00000002
181 #define                 EMASK_FBD_M1ERR         0x00000001
182
183 #define                 ENABLE_EMASK_FBD_FATAL_ERRORS   (EMASK_FBD_M1ERR | \
184                                                         EMASK_FBD_M2ERR | \
185                                                         EMASK_FBD_M3ERR)
186
187 #define                 ENABLE_EMASK_FBD_UNCORRECTABLE  (EMASK_FBD_M4ERR | \
188                                                         EMASK_FBD_M5ERR | \
189                                                         EMASK_FBD_M6ERR | \
190                                                         EMASK_FBD_M7ERR | \
191                                                         EMASK_FBD_M8ERR | \
192                                                         EMASK_FBD_M9ERR | \
193                                                         EMASK_FBD_M10ERR | \
194                                                         EMASK_FBD_M11ERR | \
195                                                         EMASK_FBD_M12ERR)
196 #define                 ENABLE_EMASK_FBD_CORRECTABLE    (EMASK_FBD_M17ERR | \
197                                                         EMASK_FBD_M18ERR | \
198                                                         EMASK_FBD_M19ERR | \
199                                                         EMASK_FBD_M20ERR)
200 #define                 ENABLE_EMASK_FBD_DIMM_SPARE     (EMASK_FBD_M27ERR | \
201                                                         EMASK_FBD_M28ERR)
202 #define                 ENABLE_EMASK_FBD_THERMALS       (EMASK_FBD_M26ERR | \
203                                                         EMASK_FBD_M25ERR | \
204                                                         EMASK_FBD_M24ERR | \
205                                                         EMASK_FBD_M23ERR)
206 #define                 ENABLE_EMASK_FBD_SPD_PROTOCOL   (EMASK_FBD_M22ERR)
207 #define                 ENABLE_EMASK_FBD_NORTH_CRC      (EMASK_FBD_M21ERR)
208 #define                 ENABLE_EMASK_FBD_NON_RETRY      (EMASK_FBD_M15ERR | \
209                                                         EMASK_FBD_M14ERR | \
210                                                         EMASK_FBD_M13ERR)
211
212 #define         ENABLE_EMASK_ALL        (ENABLE_EMASK_FBD_NON_RETRY | \
213                                         ENABLE_EMASK_FBD_NORTH_CRC | \
214                                         ENABLE_EMASK_FBD_SPD_PROTOCOL | \
215                                         ENABLE_EMASK_FBD_THERMALS | \
216                                         ENABLE_EMASK_FBD_DIMM_SPARE | \
217                                         ENABLE_EMASK_FBD_FATAL_ERRORS | \
218                                         ENABLE_EMASK_FBD_CORRECTABLE | \
219                                         ENABLE_EMASK_FBD_UNCORRECTABLE)
220
221 #define         ERR0_FBD                0xAC
222 #define         ERR1_FBD                0xB0
223 #define         ERR2_FBD                0xB4
224 #define         MCERR_FBD               0xB8
225 #define         NRECMEMA                0xBE
226 #define                 NREC_BANK(x)            (((x)>>12) & 0x7)
227 #define                 NREC_RDWR(x)            (((x)>>11) & 1)
228 #define                 NREC_RANK(x)            (((x)>>8) & 0x7)
229 #define         NRECMEMB                0xC0
230 #define                 NREC_CAS(x)             (((x)>>16) & 0xFFFFFF)
231 #define                 NREC_RAS(x)             ((x) & 0x7FFF)
232 #define         NRECFGLOG               0xC4
233 #define         NREEECFBDA              0xC8
234 #define         NREEECFBDB              0xCC
235 #define         NREEECFBDC              0xD0
236 #define         NREEECFBDD              0xD4
237 #define         NREEECFBDE              0xD8
238 #define         REDMEMA                 0xDC
239 #define         RECMEMA                 0xE2
240 #define                 REC_BANK(x)             (((x)>>12) & 0x7)
241 #define                 REC_RDWR(x)             (((x)>>11) & 1)
242 #define                 REC_RANK(x)             (((x)>>8) & 0x7)
243 #define         RECMEMB                 0xE4
244 #define                 REC_CAS(x)              (((x)>>16) & 0xFFFFFF)
245 #define                 REC_RAS(x)              ((x) & 0x7FFF)
246 #define         RECFGLOG                0xE8
247 #define         RECFBDA                 0xEC
248 #define         RECFBDB                 0xF0
249 #define         RECFBDC                 0xF4
250 #define         RECFBDD                 0xF8
251 #define         RECFBDE                 0xFC
252
253 /* OFFSETS for Function 2 */
254
255 /*
256  * Device 21,
257  * Function 0: Memory Map Branch 0
258  *
259  * Device 22,
260  * Function 0: Memory Map Branch 1
261  */
262 #define PCI_DEVICE_ID_I5000_BRANCH_0    0x25F5
263 #define PCI_DEVICE_ID_I5000_BRANCH_1    0x25F6
264
265 #define AMB_PRESENT_0   0x64
266 #define AMB_PRESENT_1   0x66
267 #define MTR0            0x80
268 #define MTR1            0x84
269 #define MTR2            0x88
270 #define MTR3            0x8C
271
272 #define NUM_MTRS                4
273 #define CHANNELS_PER_BRANCH     (2)
274
275 /* Defines to extract the vaious fields from the
276  *      MTRx - Memory Technology Registers
277  */
278 #define MTR_DIMMS_PRESENT(mtr)          ((mtr) & (0x1 << 8))
279 #define MTR_DRAM_WIDTH(mtr)             ((((mtr) >> 6) & 0x1) ? 8 : 4)
280 #define MTR_DRAM_BANKS(mtr)             ((((mtr) >> 5) & 0x1) ? 8 : 4)
281 #define MTR_DRAM_BANKS_ADDR_BITS(mtr)   ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
282 #define MTR_DIMM_RANK(mtr)              (((mtr) >> 4) & 0x1)
283 #define MTR_DIMM_RANK_ADDR_BITS(mtr)    (MTR_DIMM_RANK(mtr) ? 2 : 1)
284 #define MTR_DIMM_ROWS(mtr)              (((mtr) >> 2) & 0x3)
285 #define MTR_DIMM_ROWS_ADDR_BITS(mtr)    (MTR_DIMM_ROWS(mtr) + 13)
286 #define MTR_DIMM_COLS(mtr)              ((mtr) & 0x3)
287 #define MTR_DIMM_COLS_ADDR_BITS(mtr)    (MTR_DIMM_COLS(mtr) + 10)
288
289 #ifdef CONFIG_EDAC_DEBUG
290 static char *numrow_toString[] = {
291         "8,192 - 13 rows",
292         "16,384 - 14 rows",
293         "32,768 - 15 rows",
294         "reserved"
295 };
296
297 static char *numcol_toString[] = {
298         "1,024 - 10 columns",
299         "2,048 - 11 columns",
300         "4,096 - 12 columns",
301         "reserved"
302 };
303 #endif
304
305 /* enables the report of miscellaneous messages as CE errors - default off */
306 static int misc_messages;
307
308 /* Enumeration of supported devices */
309 enum i5000_chips {
310         I5000P = 0,
311         I5000V = 1,             /* future */
312         I5000X = 2              /* future */
313 };
314
315 /* Device name and register DID (Device ID) */
316 struct i5000_dev_info {
317         const char *ctl_name;   /* name for this device */
318         u16 fsb_mapping_errors; /* DID for the branchmap,control */
319 };
320
321 /* Table of devices attributes supported by this driver */
322 static const struct i5000_dev_info i5000_devs[] = {
323         [I5000P] = {
324                 .ctl_name = "I5000",
325                 .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_I5000_DEV16,
326         },
327 };
328
329 struct i5000_dimm_info {
330         int megabytes;          /* size, 0 means not present  */
331         int dual_rank;
332 };
333
334 #define MAX_CHANNELS    6       /* max possible channels */
335 #define MAX_CSROWS      (8*2)   /* max possible csrows per channel */
336
337 /* driver private data structure */
338 struct i5000_pvt {
339         struct pci_dev *system_address; /* 16.0 */
340         struct pci_dev *branchmap_werrors;      /* 16.1 */
341         struct pci_dev *fsb_error_regs; /* 16.2 */
342         struct pci_dev *branch_0;       /* 21.0 */
343         struct pci_dev *branch_1;       /* 22.0 */
344
345         u16 tolm;               /* top of low memory */
346         u64 ambase;             /* AMB BAR */
347
348         u16 mir0, mir1, mir2;
349
350         u16 b0_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
351         u16 b0_ambpresent0;     /* Branch 0, Channel 0 */
352         u16 b0_ambpresent1;     /* Brnach 0, Channel 1 */
353
354         u16 b1_mtr[NUM_MTRS];   /* Memory Technlogy Reg */
355         u16 b1_ambpresent0;     /* Branch 1, Channel 8 */
356         u16 b1_ambpresent1;     /* Branch 1, Channel 1 */
357
358         /* DIMM information matrix, allocating architecture maximums */
359         struct i5000_dimm_info dimm_info[MAX_CSROWS][MAX_CHANNELS];
360
361         /* Actual values for this controller */
362         int maxch;              /* Max channels */
363         int maxdimmperch;       /* Max DIMMs per channel */
364 };
365
366 /* I5000 MCH error information retrieved from Hardware */
367 struct i5000_error_info {
368
369         /* These registers are always read from the MC */
370         u32 ferr_fat_fbd;       /* First Errors Fatal */
371         u32 nerr_fat_fbd;       /* Next Errors Fatal */
372         u32 ferr_nf_fbd;        /* First Errors Non-Fatal */
373         u32 nerr_nf_fbd;        /* Next Errors Non-Fatal */
374
375         /* These registers are input ONLY if there was a Recoverable  Error */
376         u32 redmemb;            /* Recoverable Mem Data Error log B */
377         u16 recmema;            /* Recoverable Mem Error log A */
378         u32 recmemb;            /* Recoverable Mem Error log B */
379
380         /* These registers are input ONLY if there was a
381          * Non-Recoverable Error */
382         u16 nrecmema;           /* Non-Recoverable Mem log A */
383         u16 nrecmemb;           /* Non-Recoverable Mem log B */
384
385 };
386
387 static struct edac_pci_ctl_info *i5000_pci;
388
389 /*
390  *      i5000_get_error_info    Retrieve the hardware error information from
391  *                              the hardware and cache it in the 'info'
392  *                              structure
393  */
394 static void i5000_get_error_info(struct mem_ctl_info *mci,
395                                  struct i5000_error_info *info)
396 {
397         struct i5000_pvt *pvt;
398         u32 value;
399
400         pvt = mci->pvt_info;
401
402         /* read in the 1st FATAL error register */
403         pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
404
405         /* Mask only the bits that the doc says are valid
406          */
407         value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
408
409         /* If there is an error, then read in the */
410         /* NEXT FATAL error register and the Memory Error Log Register A */
411         if (value & FERR_FAT_MASK) {
412                 info->ferr_fat_fbd = value;
413
414                 /* harvest the various error data we need */
415                 pci_read_config_dword(pvt->branchmap_werrors,
416                                 NERR_FAT_FBD, &info->nerr_fat_fbd);
417                 pci_read_config_word(pvt->branchmap_werrors,
418                                 NRECMEMA, &info->nrecmema);
419                 pci_read_config_word(pvt->branchmap_werrors,
420                                 NRECMEMB, &info->nrecmemb);
421
422                 /* Clear the error bits, by writing them back */
423                 pci_write_config_dword(pvt->branchmap_werrors,
424                                 FERR_FAT_FBD, value);
425         } else {
426                 info->ferr_fat_fbd = 0;
427                 info->nerr_fat_fbd = 0;
428                 info->nrecmema = 0;
429                 info->nrecmemb = 0;
430         }
431
432         /* read in the 1st NON-FATAL error register */
433         pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
434
435         /* If there is an error, then read in the 1st NON-FATAL error
436          * register as well */
437         if (value & FERR_NF_MASK) {
438                 info->ferr_nf_fbd = value;
439
440                 /* harvest the various error data we need */
441                 pci_read_config_dword(pvt->branchmap_werrors,
442                                 NERR_NF_FBD, &info->nerr_nf_fbd);
443                 pci_read_config_word(pvt->branchmap_werrors,
444                                 RECMEMA, &info->recmema);
445                 pci_read_config_dword(pvt->branchmap_werrors,
446                                 RECMEMB, &info->recmemb);
447                 pci_read_config_dword(pvt->branchmap_werrors,
448                                 REDMEMB, &info->redmemb);
449
450                 /* Clear the error bits, by writing them back */
451                 pci_write_config_dword(pvt->branchmap_werrors,
452                                 FERR_NF_FBD, value);
453         } else {
454                 info->ferr_nf_fbd = 0;
455                 info->nerr_nf_fbd = 0;
456                 info->recmema = 0;
457                 info->recmemb = 0;
458                 info->redmemb = 0;
459         }
460 }
461
462 /*
463  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
464  *                                      struct i5000_error_info *info,
465  *                                      int handle_errors);
466  *
467  *      handle the Intel FATAL errors, if any
468  */
469 static void i5000_process_fatal_error_info(struct mem_ctl_info *mci,
470                                         struct i5000_error_info *info,
471                                         int handle_errors)
472 {
473         char msg[EDAC_MC_LABEL_LEN + 1 + 160];
474         char *specific = NULL;
475         u32 allErrors;
476         int branch;
477         int channel;
478         int bank;
479         int rank;
480         int rdwr;
481         int ras, cas;
482
483         /* mask off the Error bits that are possible */
484         allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
485         if (!allErrors)
486                 return;         /* if no error, return now */
487
488         branch = EXTRACT_FBDCHAN_INDX(info->ferr_fat_fbd);
489         channel = branch;
490
491         /* Use the NON-Recoverable macros to extract data */
492         bank = NREC_BANK(info->nrecmema);
493         rank = NREC_RANK(info->nrecmema);
494         rdwr = NREC_RDWR(info->nrecmema);
495         ras = NREC_RAS(info->nrecmemb);
496         cas = NREC_CAS(info->nrecmemb);
497
498         debugf0("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
499                 "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
500                 rank, channel, channel + 1, branch >> 1, bank,
501                 rdwr ? "Write" : "Read", ras, cas);
502
503         /* Only 1 bit will be on */
504         switch (allErrors) {
505         case FERR_FAT_M1ERR:
506                 specific = "Alert on non-redundant retry or fast "
507                                 "reset timeout";
508                 break;
509         case FERR_FAT_M2ERR:
510                 specific = "Northbound CRC error on non-redundant "
511                                 "retry";
512                 break;
513         case FERR_FAT_M3ERR:
514                 specific = ">Tmid Thermal event with intelligent "
515                                 "throttling disabled";
516                 break;
517         }
518
519         /* Form out message */
520         snprintf(msg, sizeof(msg),
521                  "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d CAS=%d "
522                  "FATAL Err=0x%x (%s))",
523                  branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
524                  allErrors, specific);
525
526         /* Call the helper to output message */
527         edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
528 }
529
530 /*
531  * i5000_process_fatal_error_info(struct mem_ctl_info *mci,
532  *                              struct i5000_error_info *info,
533  *                              int handle_errors);
534  *
535  *      handle the Intel NON-FATAL errors, if any
536  */
537 static void i5000_process_nonfatal_error_info(struct mem_ctl_info *mci,
538                                         struct i5000_error_info *info,
539                                         int handle_errors)
540 {
541         char msg[EDAC_MC_LABEL_LEN + 1 + 170];
542         char *specific = NULL;
543         u32 allErrors;
544         u32 ue_errors;
545         u32 ce_errors;
546         u32 misc_errors;
547         int branch;
548         int channel;
549         int bank;
550         int rank;
551         int rdwr;
552         int ras, cas;
553
554         /* mask off the Error bits that are possible */
555         allErrors = (info->ferr_nf_fbd & FERR_NF_MASK);
556         if (!allErrors)
557                 return;         /* if no error, return now */
558
559         /* ONLY ONE of the possible error bits will be set, as per the docs */
560         ue_errors = allErrors & FERR_NF_UNCORRECTABLE;
561         if (ue_errors) {
562                 debugf0("\tUncorrected bits= 0x%x\n", ue_errors);
563
564                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
565                 channel = branch;
566                 bank = NREC_BANK(info->nrecmema);
567                 rank = NREC_RANK(info->nrecmema);
568                 rdwr = NREC_RDWR(info->nrecmema);
569                 ras = NREC_RAS(info->nrecmemb);
570                 cas = NREC_CAS(info->nrecmemb);
571
572                 debugf0
573                         ("\t\tCSROW= %d  Channels= %d,%d  (Branch= %d "
574                         "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
575                         rank, channel, channel + 1, branch >> 1, bank,
576                         rdwr ? "Write" : "Read", ras, cas);
577
578                 switch (ue_errors) {
579                 case FERR_NF_M12ERR:
580                         specific = "Non-Aliased Uncorrectable Patrol Data ECC";
581                         break;
582                 case FERR_NF_M11ERR:
583                         specific = "Non-Aliased Uncorrectable Spare-Copy "
584                                         "Data ECC";
585                         break;
586                 case FERR_NF_M10ERR:
587                         specific = "Non-Aliased Uncorrectable Mirrored Demand "
588                                         "Data ECC";
589                         break;
590                 case FERR_NF_M9ERR:
591                         specific = "Non-Aliased Uncorrectable Non-Mirrored "
592                                         "Demand Data ECC";
593                         break;
594                 case FERR_NF_M8ERR:
595                         specific = "Aliased Uncorrectable Patrol Data ECC";
596                         break;
597                 case FERR_NF_M7ERR:
598                         specific = "Aliased Uncorrectable Spare-Copy Data ECC";
599                         break;
600                 case FERR_NF_M6ERR:
601                         specific = "Aliased Uncorrectable Mirrored Demand "
602                                         "Data ECC";
603                         break;
604                 case FERR_NF_M5ERR:
605                         specific = "Aliased Uncorrectable Non-Mirrored Demand "
606                                         "Data ECC";
607                         break;
608                 case FERR_NF_M4ERR:
609                         specific = "Uncorrectable Data ECC on Replay";
610                         break;
611                 }
612
613                 /* Form out message */
614                 snprintf(msg, sizeof(msg),
615                          "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
616                          "CAS=%d, UE Err=0x%x (%s))",
617                          branch >> 1, bank, rdwr ? "Write" : "Read", ras, cas,
618                          ue_errors, specific);
619
620                 /* Call the helper to output message */
621                 edac_mc_handle_fbd_ue(mci, rank, channel, channel + 1, msg);
622         }
623
624         /* Check correctable errors */
625         ce_errors = allErrors & FERR_NF_CORRECTABLE;
626         if (ce_errors) {
627                 debugf0("\tCorrected bits= 0x%x\n", ce_errors);
628
629                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
630
631                 channel = 0;
632                 if (REC_ECC_LOCATOR_ODD(info->redmemb))
633                         channel = 1;
634
635                 /* Convert channel to be based from zero, instead of
636                  * from branch base of 0 */
637                 channel += branch;
638
639                 bank = REC_BANK(info->recmema);
640                 rank = REC_RANK(info->recmema);
641                 rdwr = REC_RDWR(info->recmema);
642                 ras = REC_RAS(info->recmemb);
643                 cas = REC_CAS(info->recmemb);
644
645                 debugf0("\t\tCSROW= %d Channel= %d  (Branch %d "
646                         "DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
647                         rank, channel, branch >> 1, bank,
648                         rdwr ? "Write" : "Read", ras, cas);
649
650                 switch (ce_errors) {
651                 case FERR_NF_M17ERR:
652                         specific = "Correctable Non-Mirrored Demand Data ECC";
653                         break;
654                 case FERR_NF_M18ERR:
655                         specific = "Correctable Mirrored Demand Data ECC";
656                         break;
657                 case FERR_NF_M19ERR:
658                         specific = "Correctable Spare-Copy Data ECC";
659                         break;
660                 case FERR_NF_M20ERR:
661                         specific = "Correctable Patrol Data ECC";
662                         break;
663                 }
664
665                 /* Form out message */
666                 snprintf(msg, sizeof(msg),
667                          "(Branch=%d DRAM-Bank=%d RDWR=%s RAS=%d "
668                          "CAS=%d, CE Err=0x%x (%s))", branch >> 1, bank,
669                          rdwr ? "Write" : "Read", ras, cas, ce_errors,
670                          specific);
671
672                 /* Call the helper to output message */
673                 edac_mc_handle_fbd_ce(mci, rank, channel, msg);
674         }
675
676         if (!misc_messages)
677                 return;
678
679         misc_errors = allErrors & (FERR_NF_NON_RETRY | FERR_NF_NORTH_CRC |
680                                    FERR_NF_SPD_PROTOCOL | FERR_NF_DIMM_SPARE);
681         if (misc_errors) {
682                 switch (misc_errors) {
683                 case FERR_NF_M13ERR:
684                         specific = "Non-Retry or Redundant Retry FBD Memory "
685                                         "Alert or Redundant Fast Reset Timeout";
686                         break;
687                 case FERR_NF_M14ERR:
688                         specific = "Non-Retry or Redundant Retry FBD "
689                                         "Configuration Alert";
690                         break;
691                 case FERR_NF_M15ERR:
692                         specific = "Non-Retry or Redundant Retry FBD "
693                                         "Northbound CRC error on read data";
694                         break;
695                 case FERR_NF_M21ERR:
696                         specific = "FBD Northbound CRC error on "
697                                         "FBD Sync Status";
698                         break;
699                 case FERR_NF_M22ERR:
700                         specific = "SPD protocol error";
701                         break;
702                 case FERR_NF_M27ERR:
703                         specific = "DIMM-spare copy started";
704                         break;
705                 case FERR_NF_M28ERR:
706                         specific = "DIMM-spare copy completed";
707                         break;
708                 }
709                 branch = EXTRACT_FBDCHAN_INDX(info->ferr_nf_fbd);
710
711                 /* Form out message */
712                 snprintf(msg, sizeof(msg),
713                          "(Branch=%d Err=%#x (%s))", branch >> 1,
714                          misc_errors, specific);
715
716                 /* Call the helper to output message */
717                 edac_mc_handle_fbd_ce(mci, 0, 0, msg);
718         }
719 }
720
721 /*
722  *      i5000_process_error_info        Process the error info that is
723  *      in the 'info' structure, previously retrieved from hardware
724  */
725 static void i5000_process_error_info(struct mem_ctl_info *mci,
726                                 struct i5000_error_info *info,
727                                 int handle_errors)
728 {
729         /* First handle any fatal errors that occurred */
730         i5000_process_fatal_error_info(mci, info, handle_errors);
731
732         /* now handle any non-fatal errors that occurred */
733         i5000_process_nonfatal_error_info(mci, info, handle_errors);
734 }
735
736 /*
737  *      i5000_clear_error       Retrieve any error from the hardware
738  *                              but do NOT process that error.
739  *                              Used for 'clearing' out of previous errors
740  *                              Called by the Core module.
741  */
742 static void i5000_clear_error(struct mem_ctl_info *mci)
743 {
744         struct i5000_error_info info;
745
746         i5000_get_error_info(mci, &info);
747 }
748
749 /*
750  *      i5000_check_error       Retrieve and process errors reported by the
751  *                              hardware. Called by the Core module.
752  */
753 static void i5000_check_error(struct mem_ctl_info *mci)
754 {
755         struct i5000_error_info info;
756         debugf4("MC%d: " __FILE__ ": %s()\n", mci->mc_idx, __func__);
757         i5000_get_error_info(mci, &info);
758         i5000_process_error_info(mci, &info, 1);
759 }
760
761 /*
762  *      i5000_get_devices       Find and perform 'get' operation on the MCH's
763  *                      device/functions we want to reference for this driver
764  *
765  *                      Need to 'get' device 16 func 1 and func 2
766  */
767 static int i5000_get_devices(struct mem_ctl_info *mci, int dev_idx)
768 {
769         //const struct i5000_dev_info *i5000_dev = &i5000_devs[dev_idx];
770         struct i5000_pvt *pvt;
771         struct pci_dev *pdev;
772
773         pvt = mci->pvt_info;
774
775         /* Attempt to 'get' the MCH register we want */
776         pdev = NULL;
777         while (1) {
778                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
779                                 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
780
781                 /* End of list, leave */
782                 if (pdev == NULL) {
783                         i5000_printk(KERN_ERR,
784                                 "'system address,Process Bus' "
785                                 "device not found:"
786                                 "vendor 0x%x device 0x%x FUNC 1 "
787                                 "(broken BIOS?)\n",
788                                 PCI_VENDOR_ID_INTEL,
789                                 PCI_DEVICE_ID_INTEL_I5000_DEV16);
790
791                         return 1;
792                 }
793
794                 /* Scan for device 16 func 1 */
795                 if (PCI_FUNC(pdev->devfn) == 1)
796                         break;
797         }
798
799         pvt->branchmap_werrors = pdev;
800
801         /* Attempt to 'get' the MCH register we want */
802         pdev = NULL;
803         while (1) {
804                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
805                                 PCI_DEVICE_ID_INTEL_I5000_DEV16, pdev);
806
807                 if (pdev == NULL) {
808                         i5000_printk(KERN_ERR,
809                                 "MC: 'branchmap,control,errors' "
810                                 "device not found:"
811                                 "vendor 0x%x device 0x%x Func 2 "
812                                 "(broken BIOS?)\n",
813                                 PCI_VENDOR_ID_INTEL,
814                                 PCI_DEVICE_ID_INTEL_I5000_DEV16);
815
816                         pci_dev_put(pvt->branchmap_werrors);
817                         return 1;
818                 }
819
820                 /* Scan for device 16 func 1 */
821                 if (PCI_FUNC(pdev->devfn) == 2)
822                         break;
823         }
824
825         pvt->fsb_error_regs = pdev;
826
827         debugf1("System Address, processor bus- PCI Bus ID: %s  %x:%x\n",
828                 pci_name(pvt->system_address),
829                 pvt->system_address->vendor, pvt->system_address->device);
830         debugf1("Branchmap, control and errors - PCI Bus ID: %s  %x:%x\n",
831                 pci_name(pvt->branchmap_werrors),
832                 pvt->branchmap_werrors->vendor, pvt->branchmap_werrors->device);
833         debugf1("FSB Error Regs - PCI Bus ID: %s  %x:%x\n",
834                 pci_name(pvt->fsb_error_regs),
835                 pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
836
837         pdev = NULL;
838         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
839                         PCI_DEVICE_ID_I5000_BRANCH_0, pdev);
840
841         if (pdev == NULL) {
842                 i5000_printk(KERN_ERR,
843                         "MC: 'BRANCH 0' device not found:"
844                         "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
845                         PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_I5000_BRANCH_0);
846
847                 pci_dev_put(pvt->branchmap_werrors);
848                 pci_dev_put(pvt->fsb_error_regs);
849                 return 1;
850         }
851
852         pvt->branch_0 = pdev;
853
854         /* If this device claims to have more than 2 channels then
855          * fetch Branch 1's information
856          */
857         if (pvt->maxch >= CHANNELS_PER_BRANCH) {
858                 pdev = NULL;
859                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
860                                 PCI_DEVICE_ID_I5000_BRANCH_1, pdev);
861
862                 if (pdev == NULL) {
863                         i5000_printk(KERN_ERR,
864                                 "MC: 'BRANCH 1' device not found:"
865                                 "vendor 0x%x device 0x%x Func 0 "
866                                 "(broken BIOS?)\n",
867                                 PCI_VENDOR_ID_INTEL,
868                                 PCI_DEVICE_ID_I5000_BRANCH_1);
869
870                         pci_dev_put(pvt->branchmap_werrors);
871                         pci_dev_put(pvt->fsb_error_regs);
872                         pci_dev_put(pvt->branch_0);
873                         return 1;
874                 }
875
876                 pvt->branch_1 = pdev;
877         }
878
879         return 0;
880 }
881
882 /*
883  *      i5000_put_devices       'put' all the devices that we have
884  *                              reserved via 'get'
885  */
886 static void i5000_put_devices(struct mem_ctl_info *mci)
887 {
888         struct i5000_pvt *pvt;
889
890         pvt = mci->pvt_info;
891
892         pci_dev_put(pvt->branchmap_werrors);    /* FUNC 1 */
893         pci_dev_put(pvt->fsb_error_regs);       /* FUNC 2 */
894         pci_dev_put(pvt->branch_0);     /* DEV 21 */
895
896         /* Only if more than 2 channels do we release the second branch */
897         if (pvt->maxch >= CHANNELS_PER_BRANCH)
898                 pci_dev_put(pvt->branch_1);     /* DEV 22 */
899 }
900
901 /*
902  *      determine_amb_resent
903  *
904  *              the information is contained in NUM_MTRS different registers
905  *              determineing which of the NUM_MTRS requires knowing
906  *              which channel is in question
907  *
908  *      2 branches, each with 2 channels
909  *              b0_ambpresent0 for channel '0'
910  *              b0_ambpresent1 for channel '1'
911  *              b1_ambpresent0 for channel '2'
912  *              b1_ambpresent1 for channel '3'
913  */
914 static int determine_amb_present_reg(struct i5000_pvt *pvt, int channel)
915 {
916         int amb_present;
917
918         if (channel < CHANNELS_PER_BRANCH) {
919                 if (channel & 0x1)
920                         amb_present = pvt->b0_ambpresent1;
921                 else
922                         amb_present = pvt->b0_ambpresent0;
923         } else {
924                 if (channel & 0x1)
925                         amb_present = pvt->b1_ambpresent1;
926                 else
927                         amb_present = pvt->b1_ambpresent0;
928         }
929
930         return amb_present;
931 }
932
933 /*
934  * determine_mtr(pvt, csrow, channel)
935  *
936  *      return the proper MTR register as determine by the csrow and channel desired
937  */
938 static int determine_mtr(struct i5000_pvt *pvt, int csrow, int channel)
939 {
940         int mtr;
941
942         if (channel < CHANNELS_PER_BRANCH)
943                 mtr = pvt->b0_mtr[csrow >> 1];
944         else
945                 mtr = pvt->b1_mtr[csrow >> 1];
946
947         return mtr;
948 }
949
950 /*
951  */
952 static void decode_mtr(int slot_row, u16 mtr)
953 {
954         int ans;
955
956         ans = MTR_DIMMS_PRESENT(mtr);
957
958         debugf2("\tMTR%d=0x%x:  DIMMs are %s\n", slot_row, mtr,
959                 ans ? "Present" : "NOT Present");
960         if (!ans)
961                 return;
962
963         debugf2("\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
964         debugf2("\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
965         debugf2("\t\tNUMRANK: %s\n", MTR_DIMM_RANK(mtr) ? "double" : "single");
966         debugf2("\t\tNUMROW: %s\n", numrow_toString[MTR_DIMM_ROWS(mtr)]);
967         debugf2("\t\tNUMCOL: %s\n", numcol_toString[MTR_DIMM_COLS(mtr)]);
968 }
969
970 static void handle_channel(struct i5000_pvt *pvt, int csrow, int channel,
971                         struct i5000_dimm_info *dinfo)
972 {
973         int mtr;
974         int amb_present_reg;
975         int addrBits;
976
977         mtr = determine_mtr(pvt, csrow, channel);
978         if (MTR_DIMMS_PRESENT(mtr)) {
979                 amb_present_reg = determine_amb_present_reg(pvt, channel);
980
981                 /* Determine if there is  a  DIMM present in this DIMM slot */
982                 if (amb_present_reg & (1 << (csrow >> 1))) {
983                         dinfo->dual_rank = MTR_DIMM_RANK(mtr);
984
985                         if (!((dinfo->dual_rank == 0) &&
986                                 ((csrow & 0x1) == 0x1))) {
987                                 /* Start with the number of bits for a Bank
988                                  * on the DRAM */
989                                 addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
990                                 /* Add thenumber of ROW bits */
991                                 addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
992                                 /* add the number of COLUMN bits */
993                                 addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
994
995                                 addrBits += 6;  /* add 64 bits per DIMM */
996                                 addrBits -= 20; /* divide by 2^^20 */
997                                 addrBits -= 3;  /* 8 bits per bytes */
998
999                                 dinfo->megabytes = 1 << addrBits;
1000                         }
1001                 }
1002         }
1003 }
1004
1005 /*
1006  *      calculate_dimm_size
1007  *
1008  *      also will output a DIMM matrix map, if debug is enabled, for viewing
1009  *      how the DIMMs are populated
1010  */
1011 static void calculate_dimm_size(struct i5000_pvt *pvt)
1012 {
1013         struct i5000_dimm_info *dinfo;
1014         int csrow, max_csrows;
1015         char *p, *mem_buffer;
1016         int space, n;
1017         int channel;
1018
1019         /* ================= Generate some debug output ================= */
1020         space = PAGE_SIZE;
1021         mem_buffer = p = kmalloc(space, GFP_KERNEL);
1022         if (p == NULL) {
1023                 i5000_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
1024                         __FILE__, __func__);
1025                 return;
1026         }
1027
1028         n = snprintf(p, space, "\n");
1029         p += n;
1030         space -= n;
1031
1032         /* Scan all the actual CSROWS (which is # of DIMMS * 2)
1033          * and calculate the information for each DIMM
1034          * Start with the highest csrow first, to display it first
1035          * and work toward the 0th csrow
1036          */
1037         max_csrows = pvt->maxdimmperch * 2;
1038         for (csrow = max_csrows - 1; csrow >= 0; csrow--) {
1039
1040                 /* on an odd csrow, first output a 'boundary' marker,
1041                  * then reset the message buffer  */
1042                 if (csrow & 0x1) {
1043                         n = snprintf(p, space, "---------------------------"
1044                                 "--------------------------------");
1045                         p += n;
1046                         space -= n;
1047                         debugf2("%s\n", mem_buffer);
1048                         p = mem_buffer;
1049                         space = PAGE_SIZE;
1050                 }
1051                 n = snprintf(p, space, "csrow %2d    ", csrow);
1052                 p += n;
1053                 space -= n;
1054
1055                 for (channel = 0; channel < pvt->maxch; channel++) {
1056                         dinfo = &pvt->dimm_info[csrow][channel];
1057                         handle_channel(pvt, csrow, channel, dinfo);
1058                         n = snprintf(p, space, "%4d MB   | ", dinfo->megabytes);
1059                         p += n;
1060                         space -= n;
1061                 }
1062                 n = snprintf(p, space, "\n");
1063                 p += n;
1064                 space -= n;
1065         }
1066
1067         /* Output the last bottom 'boundary' marker */
1068         n = snprintf(p, space, "---------------------------"
1069                 "--------------------------------\n");
1070         p += n;
1071         space -= n;
1072
1073         /* now output the 'channel' labels */
1074         n = snprintf(p, space, "            ");
1075         p += n;
1076         space -= n;
1077         for (channel = 0; channel < pvt->maxch; channel++) {
1078                 n = snprintf(p, space, "channel %d | ", channel);
1079                 p += n;
1080                 space -= n;
1081         }
1082         n = snprintf(p, space, "\n");
1083         p += n;
1084         space -= n;
1085
1086         /* output the last message and free buffer */
1087         debugf2("%s\n", mem_buffer);
1088         kfree(mem_buffer);
1089 }
1090
1091 /*
1092  *      i5000_get_mc_regs       read in the necessary registers and
1093  *                              cache locally
1094  *
1095  *                      Fills in the private data members
1096  */
1097 static void i5000_get_mc_regs(struct mem_ctl_info *mci)
1098 {
1099         struct i5000_pvt *pvt;
1100         u32 actual_tolm;
1101         u16 limit;
1102         int slot_row;
1103         int maxch;
1104         int maxdimmperch;
1105         int way0, way1;
1106
1107         pvt = mci->pvt_info;
1108
1109         pci_read_config_dword(pvt->system_address, AMBASE,
1110                         (u32 *) & pvt->ambase);
1111         pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1112                         ((u32 *) & pvt->ambase) + sizeof(u32));
1113
1114         maxdimmperch = pvt->maxdimmperch;
1115         maxch = pvt->maxch;
1116
1117         debugf2("AMBASE= 0x%lx  MAXCH= %d  MAX-DIMM-Per-CH= %d\n",
1118                 (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1119
1120         /* Get the Branch Map regs */
1121         pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1122         pvt->tolm >>= 12;
1123         debugf2("\nTOLM (number of 256M regions) =%u (0x%x)\n", pvt->tolm,
1124                 pvt->tolm);
1125
1126         actual_tolm = pvt->tolm << 28;
1127         debugf2("Actual TOLM byte addr=%u (0x%x)\n", actual_tolm, actual_tolm);
1128
1129         pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1130         pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1131         pci_read_config_word(pvt->branchmap_werrors, MIR2, &pvt->mir2);
1132
1133         /* Get the MIR[0-2] regs */
1134         limit = (pvt->mir0 >> 4) & 0x0FFF;
1135         way0 = pvt->mir0 & 0x1;
1136         way1 = pvt->mir0 & 0x2;
1137         debugf2("MIR0: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1138         limit = (pvt->mir1 >> 4) & 0x0FFF;
1139         way0 = pvt->mir1 & 0x1;
1140         way1 = pvt->mir1 & 0x2;
1141         debugf2("MIR1: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1142         limit = (pvt->mir2 >> 4) & 0x0FFF;
1143         way0 = pvt->mir2 & 0x1;
1144         way1 = pvt->mir2 & 0x2;
1145         debugf2("MIR2: limit= 0x%x  WAY1= %u  WAY0= %x\n", limit, way1, way0);
1146
1147         /* Get the MTR[0-3] regs */
1148         for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1149                 int where = MTR0 + (slot_row * sizeof(u32));
1150
1151                 pci_read_config_word(pvt->branch_0, where,
1152                                 &pvt->b0_mtr[slot_row]);
1153
1154                 debugf2("MTR%d where=0x%x B0 value=0x%x\n", slot_row, where,
1155                         pvt->b0_mtr[slot_row]);
1156
1157                 if (pvt->maxch >= CHANNELS_PER_BRANCH) {
1158                         pci_read_config_word(pvt->branch_1, where,
1159                                         &pvt->b1_mtr[slot_row]);
1160                         debugf2("MTR%d where=0x%x B1 value=0x%x\n", slot_row,
1161                                 where, pvt->b0_mtr[slot_row]);
1162                 } else {
1163                         pvt->b1_mtr[slot_row] = 0;
1164                 }
1165         }
1166
1167         /* Read and dump branch 0's MTRs */
1168         debugf2("\nMemory Technology Registers:\n");
1169         debugf2("   Branch 0:\n");
1170         for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1171                 decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1172         }
1173         pci_read_config_word(pvt->branch_0, AMB_PRESENT_0,
1174                         &pvt->b0_ambpresent0);
1175         debugf2("\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1176         pci_read_config_word(pvt->branch_0, AMB_PRESENT_1,
1177                         &pvt->b0_ambpresent1);
1178         debugf2("\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1179
1180         /* Only if we have 2 branchs (4 channels) */
1181         if (pvt->maxch < CHANNELS_PER_BRANCH) {
1182                 pvt->b1_ambpresent0 = 0;
1183                 pvt->b1_ambpresent1 = 0;
1184         } else {
1185                 /* Read and dump  branch 1's MTRs */
1186                 debugf2("   Branch 1:\n");
1187                 for (slot_row = 0; slot_row < NUM_MTRS; slot_row++) {
1188                         decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1189                 }
1190                 pci_read_config_word(pvt->branch_1, AMB_PRESENT_0,
1191                                 &pvt->b1_ambpresent0);
1192                 debugf2("\t\tAMB-Branch 1-present0 0x%x:\n",
1193                         pvt->b1_ambpresent0);
1194                 pci_read_config_word(pvt->branch_1, AMB_PRESENT_1,
1195                                 &pvt->b1_ambpresent1);
1196                 debugf2("\t\tAMB-Branch 1-present1 0x%x:\n",
1197                         pvt->b1_ambpresent1);
1198         }
1199
1200         /* Go and determine the size of each DIMM and place in an
1201          * orderly matrix */
1202         calculate_dimm_size(pvt);
1203 }
1204
1205 /*
1206  *      i5000_init_csrows       Initialize the 'csrows' table within
1207  *                              the mci control structure with the
1208  *                              addressing of memory.
1209  *
1210  *      return:
1211  *              0       success
1212  *              1       no actual memory found on this MC
1213  */
1214 static int i5000_init_csrows(struct mem_ctl_info *mci)
1215 {
1216         struct i5000_pvt *pvt;
1217         struct csrow_info *p_csrow;
1218         int empty, channel_count;
1219         int max_csrows;
1220         int mtr;
1221         int csrow_megs;
1222         int channel;
1223         int csrow;
1224
1225         pvt = mci->pvt_info;
1226
1227         channel_count = pvt->maxch;
1228         max_csrows = pvt->maxdimmperch * 2;
1229
1230         empty = 1;              /* Assume NO memory */
1231
1232         for (csrow = 0; csrow < max_csrows; csrow++) {
1233                 p_csrow = &mci->csrows[csrow];
1234
1235                 p_csrow->csrow_idx = csrow;
1236
1237                 /* use branch 0 for the basis */
1238                 mtr = pvt->b0_mtr[csrow >> 1];
1239
1240                 /* if no DIMMS on this row, continue */
1241                 if (!MTR_DIMMS_PRESENT(mtr))
1242                         continue;
1243
1244                 /* FAKE OUT VALUES, FIXME */
1245                 p_csrow->first_page = 0 + csrow * 20;
1246                 p_csrow->last_page = 9 + csrow * 20;
1247                 p_csrow->page_mask = 0xFFF;
1248
1249                 p_csrow->grain = 8;
1250
1251                 csrow_megs = 0;
1252                 for (channel = 0; channel < pvt->maxch; channel++) {
1253                         csrow_megs += pvt->dimm_info[csrow][channel].megabytes;
1254                 }
1255
1256                 p_csrow->nr_pages = csrow_megs << 8;
1257
1258                 /* Assume DDR2 for now */
1259                 p_csrow->mtype = MEM_FB_DDR2;
1260
1261                 /* ask what device type on this row */
1262                 if (MTR_DRAM_WIDTH(mtr))
1263                         p_csrow->dtype = DEV_X8;
1264                 else
1265                         p_csrow->dtype = DEV_X4;
1266
1267                 p_csrow->edac_mode = EDAC_S8ECD8ED;
1268
1269                 empty = 0;
1270         }
1271
1272         return empty;
1273 }
1274
1275 /*
1276  *      i5000_enable_error_reporting
1277  *                      Turn on the memory reporting features of the hardware
1278  */
1279 static void i5000_enable_error_reporting(struct mem_ctl_info *mci)
1280 {
1281         struct i5000_pvt *pvt;
1282         u32 fbd_error_mask;
1283
1284         pvt = mci->pvt_info;
1285
1286         /* Read the FBD Error Mask Register */
1287         pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1288                         &fbd_error_mask);
1289
1290         /* Enable with a '0' */
1291         fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1292
1293         pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1294                         fbd_error_mask);
1295 }
1296
1297 /*
1298  * i5000_get_dimm_and_channel_counts(pdev, &num_csrows, &num_channels)
1299  *
1300  *      ask the device how many channels are present and how many CSROWS
1301  *       as well
1302  */
1303 static void i5000_get_dimm_and_channel_counts(struct pci_dev *pdev,
1304                                         int *num_dimms_per_channel,
1305                                         int *num_channels)
1306 {
1307         u8 value;
1308
1309         /* Need to retrieve just how many channels and dimms per channel are
1310          * supported on this memory controller
1311          */
1312         pci_read_config_byte(pdev, MAXDIMMPERCH, &value);
1313         *num_dimms_per_channel = (int)value *2;
1314
1315         pci_read_config_byte(pdev, MAXCH, &value);
1316         *num_channels = (int)value;
1317 }
1318
1319 /*
1320  *      i5000_probe1    Probe for ONE instance of device to see if it is
1321  *                      present.
1322  *      return:
1323  *              0 for FOUND a device
1324  *              < 0 for error code
1325  */
1326 static int i5000_probe1(struct pci_dev *pdev, int dev_idx)
1327 {
1328         struct mem_ctl_info *mci;
1329         struct i5000_pvt *pvt;
1330         int num_channels;
1331         int num_dimms_per_channel;
1332         int num_csrows;
1333
1334         debugf0("MC: " __FILE__ ": %s(), pdev bus %u dev=0x%x fn=0x%x\n",
1335                 __func__,
1336                 pdev->bus->number,
1337                 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1338
1339         /* We only are looking for func 0 of the set */
1340         if (PCI_FUNC(pdev->devfn) != 0)
1341                 return -ENODEV;
1342
1343         /* Ask the devices for the number of CSROWS and CHANNELS so
1344          * that we can calculate the memory resources, etc
1345          *
1346          * The Chipset will report what it can handle which will be greater
1347          * or equal to what the motherboard manufacturer will implement.
1348          *
1349          * As we don't have a motherboard identification routine to determine
1350          * actual number of slots/dimms per channel, we thus utilize the
1351          * resource as specified by the chipset. Thus, we might have
1352          * have more DIMMs per channel than actually on the mobo, but this
1353          * allows the driver to support upto the chipset max, without
1354          * some fancy mobo determination.
1355          */
1356         i5000_get_dimm_and_channel_counts(pdev, &num_dimms_per_channel,
1357                                         &num_channels);
1358         num_csrows = num_dimms_per_channel * 2;
1359
1360         debugf0("MC: %s(): Number of - Channels= %d  DIMMS= %d  CSROWS= %d\n",
1361                 __func__, num_channels, num_dimms_per_channel, num_csrows);
1362
1363         /* allocate a new MC control structure */
1364         mci = edac_mc_alloc(sizeof(*pvt), num_csrows, num_channels, 0);
1365
1366         if (mci == NULL)
1367                 return -ENOMEM;
1368
1369         debugf0("MC: " __FILE__ ": %s(): mci = %p\n", __func__, mci);
1370
1371         mci->dev = &pdev->dev;  /* record ptr  to the generic device */
1372
1373         pvt = mci->pvt_info;
1374         pvt->system_address = pdev;     /* Record this device in our private */
1375         pvt->maxch = num_channels;
1376         pvt->maxdimmperch = num_dimms_per_channel;
1377
1378         /* 'get' the pci devices we want to reserve for our use */
1379         if (i5000_get_devices(mci, dev_idx))
1380                 goto fail0;
1381
1382         /* Time to get serious */
1383         i5000_get_mc_regs(mci); /* retrieve the hardware registers */
1384
1385         mci->mc_idx = 0;
1386         mci->mtype_cap = MEM_FLAG_FB_DDR2;
1387         mci->edac_ctl_cap = EDAC_FLAG_NONE;
1388         mci->edac_cap = EDAC_FLAG_NONE;
1389         mci->mod_name = "i5000_edac.c";
1390         mci->mod_ver = I5000_REVISION;
1391         mci->ctl_name = i5000_devs[dev_idx].ctl_name;
1392         mci->dev_name = pci_name(pdev);
1393         mci->ctl_page_to_phys = NULL;
1394
1395         /* Set the function pointer to an actual operation function */
1396         mci->edac_check = i5000_check_error;
1397
1398         /* initialize the MC control structure 'csrows' table
1399          * with the mapping and control information */
1400         if (i5000_init_csrows(mci)) {
1401                 debugf0("MC: Setting mci->edac_cap to EDAC_FLAG_NONE\n"
1402                         "    because i5000_init_csrows() returned nonzero "
1403                         "value\n");
1404                 mci->edac_cap = EDAC_FLAG_NONE; /* no csrows found */
1405         } else {
1406                 debugf1("MC: Enable error reporting now\n");
1407                 i5000_enable_error_reporting(mci);
1408         }
1409
1410         /* add this new MC control structure to EDAC's list of MCs */
1411         if (edac_mc_add_mc(mci)) {
1412                 debugf0("MC: " __FILE__
1413                         ": %s(): failed edac_mc_add_mc()\n", __func__);
1414                 /* FIXME: perhaps some code should go here that disables error
1415                  * reporting if we just enabled it
1416                  */
1417                 goto fail1;
1418         }
1419
1420         i5000_clear_error(mci);
1421
1422         /* allocating generic PCI control info */
1423         i5000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1424         if (!i5000_pci) {
1425                 printk(KERN_WARNING
1426                         "%s(): Unable to create PCI control\n",
1427                         __func__);
1428                 printk(KERN_WARNING
1429                         "%s(): PCI error report via EDAC not setup\n",
1430                         __func__);
1431         }
1432
1433         return 0;
1434
1435         /* Error exit unwinding stack */
1436 fail1:
1437
1438         i5000_put_devices(mci);
1439
1440 fail0:
1441         edac_mc_free(mci);
1442         return -ENODEV;
1443 }
1444
1445 /*
1446  *      i5000_init_one  constructor for one instance of device
1447  *
1448  *      returns:
1449  *              negative on error
1450  *              count (>= 0)
1451  */
1452 static int __devinit i5000_init_one(struct pci_dev *pdev,
1453                                 const struct pci_device_id *id)
1454 {
1455         int rc;
1456
1457         debugf0("MC: " __FILE__ ": %s()\n", __func__);
1458
1459         /* wake up device */
1460         rc = pci_enable_device(pdev);
1461         if (rc == -EIO)
1462                 return rc;
1463
1464         /* now probe and enable the device */
1465         return i5000_probe1(pdev, id->driver_data);
1466 }
1467
1468 /*
1469  *      i5000_remove_one        destructor for one instance of device
1470  *
1471  */
1472 static void __devexit i5000_remove_one(struct pci_dev *pdev)
1473 {
1474         struct mem_ctl_info *mci;
1475
1476         debugf0(__FILE__ ": %s()\n", __func__);
1477
1478         if (i5000_pci)
1479                 edac_pci_release_generic_ctl(i5000_pci);
1480
1481         if ((mci = edac_mc_del_mc(&pdev->dev)) == NULL)
1482                 return;
1483
1484         /* retrieve references to resources, and free those resources */
1485         i5000_put_devices(mci);
1486
1487         edac_mc_free(mci);
1488 }
1489
1490 /*
1491  *      pci_device_id   table for which devices we are looking for
1492  *
1493  *      The "E500P" device is the first device supported.
1494  */
1495 static const struct pci_device_id i5000_pci_tbl[] __devinitdata = {
1496         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_I5000_DEV16),
1497          .driver_data = I5000P},
1498
1499         {0,}                    /* 0 terminated list. */
1500 };
1501
1502 MODULE_DEVICE_TABLE(pci, i5000_pci_tbl);
1503
1504 /*
1505  *      i5000_driver    pci_driver structure for this module
1506  *
1507  */
1508 static struct pci_driver i5000_driver = {
1509         .name = KBUILD_BASENAME,
1510         .probe = i5000_init_one,
1511         .remove = __devexit_p(i5000_remove_one),
1512         .id_table = i5000_pci_tbl,
1513 };
1514
1515 /*
1516  *      i5000_init              Module entry function
1517  *                      Try to initialize this module for its devices
1518  */
1519 static int __init i5000_init(void)
1520 {
1521         int pci_rc;
1522
1523         debugf2("MC: " __FILE__ ": %s()\n", __func__);
1524
1525        /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1526        opstate_init();
1527
1528         pci_rc = pci_register_driver(&i5000_driver);
1529
1530         return (pci_rc < 0) ? pci_rc : 0;
1531 }
1532
1533 /*
1534  *      i5000_exit()    Module exit function
1535  *                      Unregister the driver
1536  */
1537 static void __exit i5000_exit(void)
1538 {
1539         debugf2("MC: " __FILE__ ": %s()\n", __func__);
1540         pci_unregister_driver(&i5000_driver);
1541 }
1542
1543 module_init(i5000_init);
1544 module_exit(i5000_exit);
1545
1546 MODULE_LICENSE("GPL");
1547 MODULE_AUTHOR
1548     ("Linux Networx (http://lnxi.com) Doug Thompson <norsk5@xmission.com>");
1549 MODULE_DESCRIPTION("MC Driver for Intel I5000 memory controllers - "
1550                 I5000_REVISION);
1551
1552 module_param(edac_op_state, int, 0444);
1553 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
1554 module_param(misc_messages, int, 0444);
1555 MODULE_PARM_DESC(misc_messages, "Log miscellaneous non fatal messages");
1556