]> bbs.cooldavid.org Git - net-next-2.6.git/blob - drivers/dma/ste_dma40.c
DMAENGINE: ste_dma40: config checks
[net-next-2.6.git] / drivers / dma / ste_dma40.c
1 /*
2  * driver/dma/ste_dma40.c
3  *
4  * Copyright (C) ST-Ericsson 2007-2010
5  * License terms: GNU General Public License (GPL) version 2
6  * Author: Per Friden <per.friden@stericsson.com>
7  * Author: Jonas Aaberg <jonas.aberg@stericsson.com>
8  *
9  */
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17
18 #include <plat/ste_dma40.h>
19
20 #include "ste_dma40_ll.h"
21
22 #define D40_NAME "dma40"
23
24 #define D40_PHY_CHAN -1
25
26 /* For masking out/in 2 bit channel positions */
27 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
28 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
29
30 /* Maximum iterations taken before giving up suspending a channel */
31 #define D40_SUSPEND_MAX_IT 500
32
33 /* Hardware requirement on LCLA alignment */
34 #define LCLA_ALIGNMENT 0x40000
35 /* Attempts before giving up to trying to get pages that are aligned */
36 #define MAX_LCLA_ALLOC_ATTEMPTS 256
37
38 /* Bit markings for allocation map */
39 #define D40_ALLOC_FREE          (1 << 31)
40 #define D40_ALLOC_PHY           (1 << 30)
41 #define D40_ALLOC_LOG_FREE      0
42
43 /* Hardware designer of the block */
44 #define D40_PERIPHID2_DESIGNER 0x8
45
46 /**
47  * enum 40_command - The different commands and/or statuses.
48  *
49  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
50  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
51  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
52  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
53  */
54 enum d40_command {
55         D40_DMA_STOP            = 0,
56         D40_DMA_RUN             = 1,
57         D40_DMA_SUSPEND_REQ     = 2,
58         D40_DMA_SUSPENDED       = 3
59 };
60
61 /**
62  * struct d40_lli_pool - Structure for keeping LLIs in memory
63  *
64  * @base: Pointer to memory area when the pre_alloc_lli's are not large
65  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
66  * pre_alloc_lli is used.
67  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
68  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
69  * one buffer to one buffer.
70  */
71 struct d40_lli_pool {
72         void    *base;
73         int      size;
74         /* Space for dst and src, plus an extra for padding */
75         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
76 };
77
78 /**
79  * struct d40_desc - A descriptor is one DMA job.
80  *
81  * @lli_phy: LLI settings for physical channel. Both src and dst=
82  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
83  * lli_len equals one.
84  * @lli_log: Same as above but for logical channels.
85  * @lli_pool: The pool with two entries pre-allocated.
86  * @lli_len: Number of llis of current descriptor.
87  * @lli_count: Number of transfered llis.
88  * @lli_tx_len: Max number of LLIs per transfer, there can be
89  * many transfer for one descriptor.
90  * @txd: DMA engine struct. Used for among other things for communication
91  * during a transfer.
92  * @node: List entry.
93  * @dir: The transfer direction of this job.
94  * @is_in_client_list: true if the client owns this descriptor.
95  *
96  * This descriptor is used for both logical and physical transfers.
97  */
98
99 struct d40_desc {
100         /* LLI physical */
101         struct d40_phy_lli_bidir         lli_phy;
102         /* LLI logical */
103         struct d40_log_lli_bidir         lli_log;
104
105         struct d40_lli_pool              lli_pool;
106         int                              lli_len;
107         int                              lli_count;
108         u32                              lli_tx_len;
109
110         struct dma_async_tx_descriptor   txd;
111         struct list_head                 node;
112
113         enum dma_data_direction          dir;
114         bool                             is_in_client_list;
115 };
116
117 /**
118  * struct d40_lcla_pool - LCLA pool settings and data.
119  *
120  * @base: The virtual address of LCLA. 18 bit aligned.
121  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
122  * This pointer is only there for clean-up on error.
123  * @pages: The number of pages needed for all physical channels.
124  * Only used later for clean-up on error
125  * @lock: Lock to protect the content in this struct.
126  * @alloc_map: Bitmap mapping between physical channel and LCLA entries.
127  * @num_blocks: The number of entries of alloc_map. Equals to the
128  * number of physical channels.
129  */
130 struct d40_lcla_pool {
131         void            *base;
132         void            *base_unaligned;
133         int              pages;
134         spinlock_t       lock;
135         u32             *alloc_map;
136         int              num_blocks;
137 };
138
139 /**
140  * struct d40_phy_res - struct for handling eventlines mapped to physical
141  * channels.
142  *
143  * @lock: A lock protection this entity.
144  * @num: The physical channel number of this entity.
145  * @allocated_src: Bit mapped to show which src event line's are mapped to
146  * this physical channel. Can also be free or physically allocated.
147  * @allocated_dst: Same as for src but is dst.
148  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
149  * event line number. Both allocated_src and allocated_dst can not be
150  * allocated to a physical channel, since the interrupt handler has then
151  * no way of figure out which one the interrupt belongs to.
152  */
153 struct d40_phy_res {
154         spinlock_t lock;
155         int        num;
156         u32        allocated_src;
157         u32        allocated_dst;
158 };
159
160 struct d40_base;
161
162 /**
163  * struct d40_chan - Struct that describes a channel.
164  *
165  * @lock: A spinlock to protect this struct.
166  * @log_num: The logical number, if any of this channel.
167  * @completed: Starts with 1, after first interrupt it is set to dma engine's
168  * current cookie.
169  * @pending_tx: The number of pending transfers. Used between interrupt handler
170  * and tasklet.
171  * @busy: Set to true when transfer is ongoing on this channel.
172  * @phy_chan: Pointer to physical channel which this instance runs on. If this
173  * point is NULL, then the channel is not allocated.
174  * @chan: DMA engine handle.
175  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
176  * transfer and call client callback.
177  * @client: Cliented owned descriptor list.
178  * @active: Active descriptor.
179  * @queue: Queued jobs.
180  * @dma_cfg: The client configuration of this dma channel.
181  * @base: Pointer to the device instance struct.
182  * @src_def_cfg: Default cfg register setting for src.
183  * @dst_def_cfg: Default cfg register setting for dst.
184  * @log_def: Default logical channel settings.
185  * @lcla: Space for one dst src pair for logical channel transfers.
186  * @lcpa: Pointer to dst and src lcpa settings.
187  *
188  * This struct can either "be" a logical or a physical channel.
189  */
190 struct d40_chan {
191         spinlock_t                       lock;
192         int                              log_num;
193         /* ID of the most recent completed transfer */
194         int                              completed;
195         int                              pending_tx;
196         bool                             busy;
197         struct d40_phy_res              *phy_chan;
198         struct dma_chan                  chan;
199         struct tasklet_struct            tasklet;
200         struct list_head                 client;
201         struct list_head                 active;
202         struct list_head                 queue;
203         struct stedma40_chan_cfg         dma_cfg;
204         struct d40_base                 *base;
205         /* Default register configurations */
206         u32                              src_def_cfg;
207         u32                              dst_def_cfg;
208         struct d40_def_lcsp              log_def;
209         struct d40_lcla_elem             lcla;
210         struct d40_log_lli_full         *lcpa;
211         /* Runtime reconfiguration */
212         dma_addr_t                      runtime_addr;
213         enum dma_data_direction         runtime_direction;
214 };
215
216 /**
217  * struct d40_base - The big global struct, one for each probe'd instance.
218  *
219  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220  * @execmd_lock: Lock for execute command usage since several channels share
221  * the same physical register.
222  * @dev: The device structure.
223  * @virtbase: The virtual base address of the DMA's register.
224  * @rev: silicon revision detected.
225  * @clk: Pointer to the DMA clock structure.
226  * @phy_start: Physical memory start of the DMA registers.
227  * @phy_size: Size of the DMA register map.
228  * @irq: The IRQ number.
229  * @num_phy_chans: The number of physical channels. Read from HW. This
230  * is the number of available channels for this driver, not counting "Secure
231  * mode" allocated physical channels.
232  * @num_log_chans: The number of logical channels. Calculated from
233  * num_phy_chans.
234  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235  * @dma_slave: dma_device channels that can do only do slave transfers.
236  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237  * @phy_chans: Room for all possible physical channels in system.
238  * @log_chans: Room for all possible logical channels in system.
239  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
240  * to log_chans entries.
241  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
242  * to phy_chans entries.
243  * @plat_data: Pointer to provided platform_data which is the driver
244  * configuration.
245  * @phy_res: Vector containing all physical channels.
246  * @lcla_pool: lcla pool settings and data.
247  * @lcpa_base: The virtual mapped address of LCPA.
248  * @phy_lcpa: The physical address of the LCPA.
249  * @lcpa_size: The size of the LCPA area.
250  * @desc_slab: cache for descriptors.
251  */
252 struct d40_base {
253         spinlock_t                       interrupt_lock;
254         spinlock_t                       execmd_lock;
255         struct device                    *dev;
256         void __iomem                     *virtbase;
257         u8                                rev:4;
258         struct clk                       *clk;
259         phys_addr_t                       phy_start;
260         resource_size_t                   phy_size;
261         int                               irq;
262         int                               num_phy_chans;
263         int                               num_log_chans;
264         struct dma_device                 dma_both;
265         struct dma_device                 dma_slave;
266         struct dma_device                 dma_memcpy;
267         struct d40_chan                  *phy_chans;
268         struct d40_chan                  *log_chans;
269         struct d40_chan                 **lookup_log_chans;
270         struct d40_chan                 **lookup_phy_chans;
271         struct stedma40_platform_data    *plat_data;
272         /* Physical half channels */
273         struct d40_phy_res               *phy_res;
274         struct d40_lcla_pool              lcla_pool;
275         void                             *lcpa_base;
276         dma_addr_t                        phy_lcpa;
277         resource_size_t                   lcpa_size;
278         struct kmem_cache                *desc_slab;
279 };
280
281 /**
282  * struct d40_interrupt_lookup - lookup table for interrupt handler
283  *
284  * @src: Interrupt mask register.
285  * @clr: Interrupt clear register.
286  * @is_error: true if this is an error interrupt.
287  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
288  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
289  */
290 struct d40_interrupt_lookup {
291         u32 src;
292         u32 clr;
293         bool is_error;
294         int offset;
295 };
296
297 /**
298  * struct d40_reg_val - simple lookup struct
299  *
300  * @reg: The register.
301  * @val: The value that belongs to the register in reg.
302  */
303 struct d40_reg_val {
304         unsigned int reg;
305         unsigned int val;
306 };
307
308 static int d40_pool_lli_alloc(struct d40_desc *d40d,
309                               int lli_len, bool is_log)
310 {
311         u32 align;
312         void *base;
313
314         if (is_log)
315                 align = sizeof(struct d40_log_lli);
316         else
317                 align = sizeof(struct d40_phy_lli);
318
319         if (lli_len == 1) {
320                 base = d40d->lli_pool.pre_alloc_lli;
321                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
322                 d40d->lli_pool.base = NULL;
323         } else {
324                 d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
325
326                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
327                 d40d->lli_pool.base = base;
328
329                 if (d40d->lli_pool.base == NULL)
330                         return -ENOMEM;
331         }
332
333         if (is_log) {
334                 d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
335                                               align);
336                 d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
337                                               align);
338         } else {
339                 d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
340                                               align);
341                 d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
342                                               align);
343
344                 d40d->lli_phy.src_addr = virt_to_phys(d40d->lli_phy.src);
345                 d40d->lli_phy.dst_addr = virt_to_phys(d40d->lli_phy.dst);
346         }
347
348         return 0;
349 }
350
351 static void d40_pool_lli_free(struct d40_desc *d40d)
352 {
353         kfree(d40d->lli_pool.base);
354         d40d->lli_pool.base = NULL;
355         d40d->lli_pool.size = 0;
356         d40d->lli_log.src = NULL;
357         d40d->lli_log.dst = NULL;
358         d40d->lli_phy.src = NULL;
359         d40d->lli_phy.dst = NULL;
360         d40d->lli_phy.src_addr = 0;
361         d40d->lli_phy.dst_addr = 0;
362 }
363
364 static dma_cookie_t d40_assign_cookie(struct d40_chan *d40c,
365                                       struct d40_desc *desc)
366 {
367         dma_cookie_t cookie = d40c->chan.cookie;
368
369         if (++cookie < 0)
370                 cookie = 1;
371
372         d40c->chan.cookie = cookie;
373         desc->txd.cookie = cookie;
374
375         return cookie;
376 }
377
378 static void d40_desc_remove(struct d40_desc *d40d)
379 {
380         list_del(&d40d->node);
381 }
382
383 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
384 {
385         struct d40_desc *d;
386         struct d40_desc *_d;
387
388         if (!list_empty(&d40c->client)) {
389                 list_for_each_entry_safe(d, _d, &d40c->client, node)
390                         if (async_tx_test_ack(&d->txd)) {
391                                 d40_pool_lli_free(d);
392                                 d40_desc_remove(d);
393                                 break;
394                         }
395         } else {
396                 d = kmem_cache_alloc(d40c->base->desc_slab, GFP_NOWAIT);
397                 if (d != NULL) {
398                         memset(d, 0, sizeof(struct d40_desc));
399                         INIT_LIST_HEAD(&d->node);
400                 }
401         }
402         return d;
403 }
404
405 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
406 {
407         kmem_cache_free(d40c->base->desc_slab, d40d);
408 }
409
410 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
411 {
412         list_add_tail(&desc->node, &d40c->active);
413 }
414
415 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
416 {
417         struct d40_desc *d;
418
419         if (list_empty(&d40c->active))
420                 return NULL;
421
422         d = list_first_entry(&d40c->active,
423                              struct d40_desc,
424                              node);
425         return d;
426 }
427
428 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
429 {
430         list_add_tail(&desc->node, &d40c->queue);
431 }
432
433 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
434 {
435         struct d40_desc *d;
436
437         if (list_empty(&d40c->queue))
438                 return NULL;
439
440         d = list_first_entry(&d40c->queue,
441                              struct d40_desc,
442                              node);
443         return d;
444 }
445
446 /* Support functions for logical channels */
447
448 static int d40_lcla_id_get(struct d40_chan *d40c)
449 {
450         int src_id = 0;
451         int dst_id = 0;
452         struct d40_log_lli *lcla_lidx_base =
453                 d40c->base->lcla_pool.base + d40c->phy_chan->num * 1024;
454         int i;
455         int lli_per_log = d40c->base->plat_data->llis_per_log;
456         unsigned long flags;
457
458         if (d40c->lcla.src_id >= 0 && d40c->lcla.dst_id >= 0)
459                 return 0;
460
461         if (d40c->base->lcla_pool.num_blocks > 32)
462                 return -EINVAL;
463
464         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
465
466         for (i = 0; i < d40c->base->lcla_pool.num_blocks; i++) {
467                 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
468                       (0x1 << i))) {
469                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
470                                 (0x1 << i);
471                         break;
472                 }
473         }
474         src_id = i;
475         if (src_id >= d40c->base->lcla_pool.num_blocks)
476                 goto err;
477
478         for (; i < d40c->base->lcla_pool.num_blocks; i++) {
479                 if (!(d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &
480                       (0x1 << i))) {
481                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] |=
482                                 (0x1 << i);
483                         break;
484                 }
485         }
486
487         dst_id = i;
488         if (dst_id == src_id)
489                 goto err;
490
491         d40c->lcla.src_id = src_id;
492         d40c->lcla.dst_id = dst_id;
493         d40c->lcla.dst = lcla_lidx_base + dst_id * lli_per_log + 1;
494         d40c->lcla.src = lcla_lidx_base + src_id * lli_per_log + 1;
495
496         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
497         return 0;
498 err:
499         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
500         return -EINVAL;
501 }
502
503
504 static int d40_channel_execute_command(struct d40_chan *d40c,
505                                        enum d40_command command)
506 {
507         int status, i;
508         void __iomem *active_reg;
509         int ret = 0;
510         unsigned long flags;
511         u32 wmask;
512
513         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
514
515         if (d40c->phy_chan->num % 2 == 0)
516                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
517         else
518                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
519
520         if (command == D40_DMA_SUSPEND_REQ) {
521                 status = (readl(active_reg) &
522                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
523                         D40_CHAN_POS(d40c->phy_chan->num);
524
525                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
526                         goto done;
527         }
528
529         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
530         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
531                active_reg);
532
533         if (command == D40_DMA_SUSPEND_REQ) {
534
535                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
536                         status = (readl(active_reg) &
537                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
538                                 D40_CHAN_POS(d40c->phy_chan->num);
539
540                         cpu_relax();
541                         /*
542                          * Reduce the number of bus accesses while
543                          * waiting for the DMA to suspend.
544                          */
545                         udelay(3);
546
547                         if (status == D40_DMA_STOP ||
548                             status == D40_DMA_SUSPENDED)
549                                 break;
550                 }
551
552                 if (i == D40_SUSPEND_MAX_IT) {
553                         dev_err(&d40c->chan.dev->device,
554                                 "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
555                                 __func__, d40c->phy_chan->num, d40c->log_num,
556                                 status);
557                         dump_stack();
558                         ret = -EBUSY;
559                 }
560
561         }
562 done:
563         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
564         return ret;
565 }
566
567 static void d40_term_all(struct d40_chan *d40c)
568 {
569         struct d40_desc *d40d;
570         unsigned long flags;
571
572         /* Release active descriptors */
573         while ((d40d = d40_first_active_get(d40c))) {
574                 d40_desc_remove(d40d);
575
576                 /* Return desc to free-list */
577                 d40_desc_free(d40c, d40d);
578         }
579
580         /* Release queued descriptors waiting for transfer */
581         while ((d40d = d40_first_queued(d40c))) {
582                 d40_desc_remove(d40d);
583
584                 /* Return desc to free-list */
585                 d40_desc_free(d40c, d40d);
586         }
587
588         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
589
590         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
591                 (~(0x1 << d40c->lcla.dst_id));
592         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num] &=
593                 (~(0x1 << d40c->lcla.src_id));
594
595         d40c->lcla.src_id = -1;
596         d40c->lcla.dst_id = -1;
597
598         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
599
600         d40c->pending_tx = 0;
601         d40c->busy = false;
602 }
603
604 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
605 {
606         u32 val;
607         unsigned long flags;
608
609         /* Notice, that disable requires the physical channel to be stopped */
610         if (do_enable)
611                 val = D40_ACTIVATE_EVENTLINE;
612         else
613                 val = D40_DEACTIVATE_EVENTLINE;
614
615         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
616
617         /* Enable event line connected to device (or memcpy) */
618         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
619             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
620                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
621
622                 writel((val << D40_EVENTLINE_POS(event)) |
623                        ~D40_EVENTLINE_MASK(event),
624                        d40c->base->virtbase + D40_DREG_PCBASE +
625                        d40c->phy_chan->num * D40_DREG_PCDELTA +
626                        D40_CHAN_REG_SSLNK);
627         }
628         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
629                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
630
631                 writel((val << D40_EVENTLINE_POS(event)) |
632                        ~D40_EVENTLINE_MASK(event),
633                        d40c->base->virtbase + D40_DREG_PCBASE +
634                        d40c->phy_chan->num * D40_DREG_PCDELTA +
635                        D40_CHAN_REG_SDLNK);
636         }
637
638         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
639 }
640
641 static u32 d40_chan_has_events(struct d40_chan *d40c)
642 {
643         u32 val = 0;
644
645         /* If SSLNK or SDLNK is zero all events are disabled */
646         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
647             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
648                 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
649                             d40c->phy_chan->num * D40_DREG_PCDELTA +
650                             D40_CHAN_REG_SSLNK);
651
652         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM)
653                 val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
654                             d40c->phy_chan->num * D40_DREG_PCDELTA +
655                             D40_CHAN_REG_SDLNK);
656         return val;
657 }
658
659 static void d40_config_enable_lidx(struct d40_chan *d40c)
660 {
661         /* Set LIDX for lcla */
662         writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
663                D40_SREG_ELEM_LOG_LIDX_MASK,
664                d40c->base->virtbase + D40_DREG_PCBASE +
665                d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SDELT);
666
667         writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
668                D40_SREG_ELEM_LOG_LIDX_MASK,
669                d40c->base->virtbase + D40_DREG_PCBASE +
670                d40c->phy_chan->num * D40_DREG_PCDELTA + D40_CHAN_REG_SSELT);
671 }
672
673 static int d40_config_write(struct d40_chan *d40c)
674 {
675         u32 addr_base;
676         u32 var;
677         int res;
678
679         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
680         if (res)
681                 return res;
682
683         /* Odd addresses are even addresses + 4 */
684         addr_base = (d40c->phy_chan->num % 2) * 4;
685         /* Setup channel mode to logical or physical */
686         var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
687                 D40_CHAN_POS(d40c->phy_chan->num);
688         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
689
690         /* Setup operational mode option register */
691         var = ((d40c->dma_cfg.channel_type >> STEDMA40_INFO_CH_MODE_OPT_POS) &
692                0x3) << D40_CHAN_POS(d40c->phy_chan->num);
693
694         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
695
696         if (d40c->log_num != D40_PHY_CHAN) {
697                 /* Set default config for CFG reg */
698                 writel(d40c->src_def_cfg,
699                        d40c->base->virtbase + D40_DREG_PCBASE +
700                        d40c->phy_chan->num * D40_DREG_PCDELTA +
701                        D40_CHAN_REG_SSCFG);
702                 writel(d40c->dst_def_cfg,
703                        d40c->base->virtbase + D40_DREG_PCBASE +
704                        d40c->phy_chan->num * D40_DREG_PCDELTA +
705                        D40_CHAN_REG_SDCFG);
706
707                 d40_config_enable_lidx(d40c);
708         }
709         return res;
710 }
711
712 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
713 {
714         if (d40d->lli_phy.dst && d40d->lli_phy.src) {
715                 d40_phy_lli_write(d40c->base->virtbase,
716                                   d40c->phy_chan->num,
717                                   d40d->lli_phy.dst,
718                                   d40d->lli_phy.src);
719         } else if (d40d->lli_log.dst && d40d->lli_log.src) {
720                 struct d40_log_lli *src = d40d->lli_log.src;
721                 struct d40_log_lli *dst = d40d->lli_log.dst;
722                 int s;
723
724                 src += d40d->lli_count;
725                 dst += d40d->lli_count;
726                 s = d40_log_lli_write(d40c->lcpa,
727                                       d40c->lcla.src, d40c->lcla.dst,
728                                       dst, src,
729                                       d40c->base->plat_data->llis_per_log);
730
731                 /* If s equals to zero, the job is not linked */
732                 if (s > 0) {
733                         (void) dma_map_single(d40c->base->dev, d40c->lcla.src,
734                                               s * sizeof(struct d40_log_lli),
735                                               DMA_TO_DEVICE);
736                         (void) dma_map_single(d40c->base->dev, d40c->lcla.dst,
737                                               s * sizeof(struct d40_log_lli),
738                                               DMA_TO_DEVICE);
739                 }
740         }
741         d40d->lli_count += d40d->lli_tx_len;
742 }
743
744 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
745 {
746         struct d40_chan *d40c = container_of(tx->chan,
747                                              struct d40_chan,
748                                              chan);
749         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
750         unsigned long flags;
751
752         spin_lock_irqsave(&d40c->lock, flags);
753
754         tx->cookie = d40_assign_cookie(d40c, d40d);
755
756         d40_desc_queue(d40c, d40d);
757
758         spin_unlock_irqrestore(&d40c->lock, flags);
759
760         return tx->cookie;
761 }
762
763 static int d40_start(struct d40_chan *d40c)
764 {
765         if (d40c->base->rev == 0) {
766                 int err;
767
768                 if (d40c->log_num != D40_PHY_CHAN) {
769                         err = d40_channel_execute_command(d40c,
770                                                           D40_DMA_SUSPEND_REQ);
771                         if (err)
772                                 return err;
773                 }
774         }
775
776         if (d40c->log_num != D40_PHY_CHAN)
777                 d40_config_set_event(d40c, true);
778
779         return d40_channel_execute_command(d40c, D40_DMA_RUN);
780 }
781
782 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
783 {
784         struct d40_desc *d40d;
785         int err;
786
787         /* Start queued jobs, if any */
788         d40d = d40_first_queued(d40c);
789
790         if (d40d != NULL) {
791                 d40c->busy = true;
792
793                 /* Remove from queue */
794                 d40_desc_remove(d40d);
795
796                 /* Add to active queue */
797                 d40_desc_submit(d40c, d40d);
798
799                 /* Initiate DMA job */
800                 d40_desc_load(d40c, d40d);
801
802                 /* Start dma job */
803                 err = d40_start(d40c);
804
805                 if (err)
806                         return NULL;
807         }
808
809         return d40d;
810 }
811
812 /* called from interrupt context */
813 static void dma_tc_handle(struct d40_chan *d40c)
814 {
815         struct d40_desc *d40d;
816
817         if (!d40c->phy_chan)
818                 return;
819
820         /* Get first active entry from list */
821         d40d = d40_first_active_get(d40c);
822
823         if (d40d == NULL)
824                 return;
825
826         if (d40d->lli_count < d40d->lli_len) {
827
828                 d40_desc_load(d40c, d40d);
829                 /* Start dma job */
830                 (void) d40_start(d40c);
831                 return;
832         }
833
834         if (d40_queue_start(d40c) == NULL)
835                 d40c->busy = false;
836
837         d40c->pending_tx++;
838         tasklet_schedule(&d40c->tasklet);
839
840 }
841
842 static void dma_tasklet(unsigned long data)
843 {
844         struct d40_chan *d40c = (struct d40_chan *) data;
845         struct d40_desc *d40d_fin;
846         unsigned long flags;
847         dma_async_tx_callback callback;
848         void *callback_param;
849
850         spin_lock_irqsave(&d40c->lock, flags);
851
852         /* Get first active entry from list */
853         d40d_fin = d40_first_active_get(d40c);
854
855         if (d40d_fin == NULL)
856                 goto err;
857
858         d40c->completed = d40d_fin->txd.cookie;
859
860         /*
861          * If terminating a channel pending_tx is set to zero.
862          * This prevents any finished active jobs to return to the client.
863          */
864         if (d40c->pending_tx == 0) {
865                 spin_unlock_irqrestore(&d40c->lock, flags);
866                 return;
867         }
868
869         /* Callback to client */
870         callback = d40d_fin->txd.callback;
871         callback_param = d40d_fin->txd.callback_param;
872
873         if (async_tx_test_ack(&d40d_fin->txd)) {
874                 d40_pool_lli_free(d40d_fin);
875                 d40_desc_remove(d40d_fin);
876                 /* Return desc to free-list */
877                 d40_desc_free(d40c, d40d_fin);
878         } else {
879                 if (!d40d_fin->is_in_client_list) {
880                         d40_desc_remove(d40d_fin);
881                         list_add_tail(&d40d_fin->node, &d40c->client);
882                         d40d_fin->is_in_client_list = true;
883                 }
884         }
885
886         d40c->pending_tx--;
887
888         if (d40c->pending_tx)
889                 tasklet_schedule(&d40c->tasklet);
890
891         spin_unlock_irqrestore(&d40c->lock, flags);
892
893         if (callback)
894                 callback(callback_param);
895
896         return;
897
898  err:
899         /* Rescue manouver if receiving double interrupts */
900         if (d40c->pending_tx > 0)
901                 d40c->pending_tx--;
902         spin_unlock_irqrestore(&d40c->lock, flags);
903 }
904
905 static irqreturn_t d40_handle_interrupt(int irq, void *data)
906 {
907         static const struct d40_interrupt_lookup il[] = {
908                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
909                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
910                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
911                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
912                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
913                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
914                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
915                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
916                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
917                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
918         };
919
920         int i;
921         u32 regs[ARRAY_SIZE(il)];
922         u32 tmp;
923         u32 idx;
924         u32 row;
925         long chan = -1;
926         struct d40_chan *d40c;
927         unsigned long flags;
928         struct d40_base *base = data;
929
930         spin_lock_irqsave(&base->interrupt_lock, flags);
931
932         /* Read interrupt status of both logical and physical channels */
933         for (i = 0; i < ARRAY_SIZE(il); i++)
934                 regs[i] = readl(base->virtbase + il[i].src);
935
936         for (;;) {
937
938                 chan = find_next_bit((unsigned long *)regs,
939                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
940
941                 /* No more set bits found? */
942                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
943                         break;
944
945                 row = chan / BITS_PER_LONG;
946                 idx = chan & (BITS_PER_LONG - 1);
947
948                 /* ACK interrupt */
949                 tmp = readl(base->virtbase + il[row].clr);
950                 tmp |= 1 << idx;
951                 writel(tmp, base->virtbase + il[row].clr);
952
953                 if (il[row].offset == D40_PHY_CHAN)
954                         d40c = base->lookup_phy_chans[idx];
955                 else
956                         d40c = base->lookup_log_chans[il[row].offset + idx];
957                 spin_lock(&d40c->lock);
958
959                 if (!il[row].is_error)
960                         dma_tc_handle(d40c);
961                 else
962                         dev_err(base->dev,
963                                 "[%s] IRQ chan: %ld offset %d idx %d\n",
964                                 __func__, chan, il[row].offset, idx);
965
966                 spin_unlock(&d40c->lock);
967         }
968
969         spin_unlock_irqrestore(&base->interrupt_lock, flags);
970
971         return IRQ_HANDLED;
972 }
973
974
975 static int d40_validate_conf(struct d40_chan *d40c,
976                              struct stedma40_chan_cfg *conf)
977 {
978         int res = 0;
979         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
980         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
981         bool is_log = (conf->channel_type & STEDMA40_CHANNEL_IN_OPER_MODE)
982                 == STEDMA40_CHANNEL_IN_LOG_MODE;
983
984         if (!conf->dir) {
985                 dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
986                         __func__);
987                 res = -EINVAL;
988         }
989
990         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
991             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
992             d40c->runtime_addr == 0) {
993
994                 dev_err(&d40c->chan.dev->device,
995                         "[%s] Invalid TX channel address (%d)\n",
996                         __func__, conf->dst_dev_type);
997                 res = -EINVAL;
998         }
999
1000         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1001             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1002             d40c->runtime_addr == 0) {
1003                 dev_err(&d40c->chan.dev->device,
1004                         "[%s] Invalid RX channel address (%d)\n",
1005                         __func__, conf->src_dev_type);
1006                 res = -EINVAL;
1007         }
1008
1009         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1010             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1011                 dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
1012                         __func__);
1013                 res = -EINVAL;
1014         }
1015
1016         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1017             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1018                 dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
1019                         __func__);
1020                 res = -EINVAL;
1021         }
1022
1023         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1024             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1025                 dev_err(&d40c->chan.dev->device,
1026                         "[%s] No event line\n", __func__);
1027                 res = -EINVAL;
1028         }
1029
1030         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1031             (src_event_group != dst_event_group)) {
1032                 dev_err(&d40c->chan.dev->device,
1033                         "[%s] Invalid event group\n", __func__);
1034                 res = -EINVAL;
1035         }
1036
1037         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1038                 /*
1039                  * DMAC HW supports it. Will be added to this driver,
1040                  * in case any dma client requires it.
1041                  */
1042                 dev_err(&d40c->chan.dev->device,
1043                         "[%s] periph to periph not supported\n",
1044                         __func__);
1045                 res = -EINVAL;
1046         }
1047
1048         return res;
1049 }
1050
1051 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1052                                int log_event_line, bool is_log)
1053 {
1054         unsigned long flags;
1055         spin_lock_irqsave(&phy->lock, flags);
1056         if (!is_log) {
1057                 /* Physical interrupts are masked per physical full channel */
1058                 if (phy->allocated_src == D40_ALLOC_FREE &&
1059                     phy->allocated_dst == D40_ALLOC_FREE) {
1060                         phy->allocated_dst = D40_ALLOC_PHY;
1061                         phy->allocated_src = D40_ALLOC_PHY;
1062                         goto found;
1063                 } else
1064                         goto not_found;
1065         }
1066
1067         /* Logical channel */
1068         if (is_src) {
1069                 if (phy->allocated_src == D40_ALLOC_PHY)
1070                         goto not_found;
1071
1072                 if (phy->allocated_src == D40_ALLOC_FREE)
1073                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1074
1075                 if (!(phy->allocated_src & (1 << log_event_line))) {
1076                         phy->allocated_src |= 1 << log_event_line;
1077                         goto found;
1078                 } else
1079                         goto not_found;
1080         } else {
1081                 if (phy->allocated_dst == D40_ALLOC_PHY)
1082                         goto not_found;
1083
1084                 if (phy->allocated_dst == D40_ALLOC_FREE)
1085                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1086
1087                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1088                         phy->allocated_dst |= 1 << log_event_line;
1089                         goto found;
1090                 } else
1091                         goto not_found;
1092         }
1093
1094 not_found:
1095         spin_unlock_irqrestore(&phy->lock, flags);
1096         return false;
1097 found:
1098         spin_unlock_irqrestore(&phy->lock, flags);
1099         return true;
1100 }
1101
1102 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1103                                int log_event_line)
1104 {
1105         unsigned long flags;
1106         bool is_free = false;
1107
1108         spin_lock_irqsave(&phy->lock, flags);
1109         if (!log_event_line) {
1110                 /* Physical interrupts are masked per physical full channel */
1111                 phy->allocated_dst = D40_ALLOC_FREE;
1112                 phy->allocated_src = D40_ALLOC_FREE;
1113                 is_free = true;
1114                 goto out;
1115         }
1116
1117         /* Logical channel */
1118         if (is_src) {
1119                 phy->allocated_src &= ~(1 << log_event_line);
1120                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1121                         phy->allocated_src = D40_ALLOC_FREE;
1122         } else {
1123                 phy->allocated_dst &= ~(1 << log_event_line);
1124                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1125                         phy->allocated_dst = D40_ALLOC_FREE;
1126         }
1127
1128         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1129                    D40_ALLOC_FREE);
1130
1131 out:
1132         spin_unlock_irqrestore(&phy->lock, flags);
1133
1134         return is_free;
1135 }
1136
1137 static int d40_allocate_channel(struct d40_chan *d40c)
1138 {
1139         int dev_type;
1140         int event_group;
1141         int event_line;
1142         struct d40_phy_res *phys;
1143         int i;
1144         int j;
1145         int log_num;
1146         bool is_src;
1147         bool is_log = (d40c->dma_cfg.channel_type &
1148                        STEDMA40_CHANNEL_IN_OPER_MODE)
1149                 == STEDMA40_CHANNEL_IN_LOG_MODE;
1150
1151
1152         phys = d40c->base->phy_res;
1153
1154         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1155                 dev_type = d40c->dma_cfg.src_dev_type;
1156                 log_num = 2 * dev_type;
1157                 is_src = true;
1158         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1159                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1160                 /* dst event lines are used for logical memcpy */
1161                 dev_type = d40c->dma_cfg.dst_dev_type;
1162                 log_num = 2 * dev_type + 1;
1163                 is_src = false;
1164         } else
1165                 return -EINVAL;
1166
1167         event_group = D40_TYPE_TO_GROUP(dev_type);
1168         event_line = D40_TYPE_TO_EVENT(dev_type);
1169
1170         if (!is_log) {
1171                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1172                         /* Find physical half channel */
1173                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1174
1175                                 if (d40_alloc_mask_set(&phys[i], is_src,
1176                                                        0, is_log))
1177                                         goto found_phy;
1178                         }
1179                 } else
1180                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1181                                 int phy_num = j  + event_group * 2;
1182                                 for (i = phy_num; i < phy_num + 2; i++) {
1183                                         if (d40_alloc_mask_set(&phys[i],
1184                                                                is_src,
1185                                                                0,
1186                                                                is_log))
1187                                                 goto found_phy;
1188                                 }
1189                         }
1190                 return -EINVAL;
1191 found_phy:
1192                 d40c->phy_chan = &phys[i];
1193                 d40c->log_num = D40_PHY_CHAN;
1194                 goto out;
1195         }
1196         if (dev_type == -1)
1197                 return -EINVAL;
1198
1199         /* Find logical channel */
1200         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1201                 int phy_num = j + event_group * 2;
1202                 /*
1203                  * Spread logical channels across all available physical rather
1204                  * than pack every logical channel at the first available phy
1205                  * channels.
1206                  */
1207                 if (is_src) {
1208                         for (i = phy_num; i < phy_num + 2; i++) {
1209                                 if (d40_alloc_mask_set(&phys[i], is_src,
1210                                                        event_line, is_log))
1211                                         goto found_log;
1212                         }
1213                 } else {
1214                         for (i = phy_num + 1; i >= phy_num; i--) {
1215                                 if (d40_alloc_mask_set(&phys[i], is_src,
1216                                                        event_line, is_log))
1217                                         goto found_log;
1218                         }
1219                 }
1220         }
1221         return -EINVAL;
1222
1223 found_log:
1224         d40c->phy_chan = &phys[i];
1225         d40c->log_num = log_num;
1226 out:
1227
1228         if (is_log)
1229                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1230         else
1231                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1232
1233         return 0;
1234
1235 }
1236
1237 static int d40_config_memcpy(struct d40_chan *d40c)
1238 {
1239         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1240
1241         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1242                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1243                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1244                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1245                         memcpy[d40c->chan.chan_id];
1246
1247         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1248                    dma_has_cap(DMA_SLAVE, cap)) {
1249                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1250         } else {
1251                 dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
1252                         __func__);
1253                 return -EINVAL;
1254         }
1255
1256         return 0;
1257 }
1258
1259
1260 static int d40_free_dma(struct d40_chan *d40c)
1261 {
1262
1263         int res = 0;
1264         u32 event;
1265         struct d40_phy_res *phy = d40c->phy_chan;
1266         bool is_src;
1267         struct d40_desc *d;
1268         struct d40_desc *_d;
1269
1270
1271         /* Terminate all queued and active transfers */
1272         d40_term_all(d40c);
1273
1274         /* Release client owned descriptors */
1275         if (!list_empty(&d40c->client))
1276                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1277                         d40_pool_lli_free(d);
1278                         d40_desc_remove(d);
1279                         /* Return desc to free-list */
1280                         d40_desc_free(d40c, d);
1281                 }
1282
1283         if (phy == NULL) {
1284                 dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
1285                         __func__);
1286                 return -EINVAL;
1287         }
1288
1289         if (phy->allocated_src == D40_ALLOC_FREE &&
1290             phy->allocated_dst == D40_ALLOC_FREE) {
1291                 dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
1292                         __func__);
1293                 return -EINVAL;
1294         }
1295
1296         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1297             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1298                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1299                 is_src = false;
1300         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1301                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1302                 is_src = true;
1303         } else {
1304                 dev_err(&d40c->chan.dev->device,
1305                         "[%s] Unknown direction\n", __func__);
1306                 return -EINVAL;
1307         }
1308
1309         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1310         if (res) {
1311                 dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
1312                         __func__);
1313                 return res;
1314         }
1315
1316         if (d40c->log_num != D40_PHY_CHAN) {
1317                 /* Release logical channel, deactivate the event line */
1318
1319                 d40_config_set_event(d40c, false);
1320                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1321
1322                 /*
1323                  * Check if there are more logical allocation
1324                  * on this phy channel.
1325                  */
1326                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1327                         /* Resume the other logical channels if any */
1328                         if (d40_chan_has_events(d40c)) {
1329                                 res = d40_channel_execute_command(d40c,
1330                                                                   D40_DMA_RUN);
1331                                 if (res) {
1332                                         dev_err(&d40c->chan.dev->device,
1333                                                 "[%s] Executing RUN command\n",
1334                                                 __func__);
1335                                         return res;
1336                                 }
1337                         }
1338                         return 0;
1339                 }
1340         } else {
1341                 (void) d40_alloc_mask_free(phy, is_src, 0);
1342         }
1343
1344         /* Release physical channel */
1345         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1346         if (res) {
1347                 dev_err(&d40c->chan.dev->device,
1348                         "[%s] Failed to stop channel\n", __func__);
1349                 return res;
1350         }
1351         d40c->phy_chan = NULL;
1352         /* Invalidate channel type */
1353         d40c->dma_cfg.channel_type = 0;
1354         d40c->base->lookup_phy_chans[phy->num] = NULL;
1355
1356         return 0;
1357 }
1358
1359 static int d40_pause(struct dma_chan *chan)
1360 {
1361         struct d40_chan *d40c =
1362                 container_of(chan, struct d40_chan, chan);
1363         int res;
1364         unsigned long flags;
1365
1366         spin_lock_irqsave(&d40c->lock, flags);
1367
1368         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1369         if (res == 0) {
1370                 if (d40c->log_num != D40_PHY_CHAN) {
1371                         d40_config_set_event(d40c, false);
1372                         /* Resume the other logical channels if any */
1373                         if (d40_chan_has_events(d40c))
1374                                 res = d40_channel_execute_command(d40c,
1375                                                                   D40_DMA_RUN);
1376                 }
1377         }
1378
1379         spin_unlock_irqrestore(&d40c->lock, flags);
1380         return res;
1381 }
1382
1383 static bool d40_is_paused(struct d40_chan *d40c)
1384 {
1385         bool is_paused = false;
1386         unsigned long flags;
1387         void __iomem *active_reg;
1388         u32 status;
1389         u32 event;
1390
1391         spin_lock_irqsave(&d40c->lock, flags);
1392
1393         if (d40c->log_num == D40_PHY_CHAN) {
1394                 if (d40c->phy_chan->num % 2 == 0)
1395                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1396                 else
1397                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1398
1399                 status = (readl(active_reg) &
1400                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1401                         D40_CHAN_POS(d40c->phy_chan->num);
1402                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1403                         is_paused = true;
1404
1405                 goto _exit;
1406         }
1407
1408         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1409             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM)
1410                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1411         else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1412                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1413         else {
1414                 dev_err(&d40c->chan.dev->device,
1415                         "[%s] Unknown direction\n", __func__);
1416                 goto _exit;
1417         }
1418         status = d40_chan_has_events(d40c);
1419         status = (status & D40_EVENTLINE_MASK(event)) >>
1420                 D40_EVENTLINE_POS(event);
1421
1422         if (status != D40_DMA_RUN)
1423                 is_paused = true;
1424 _exit:
1425         spin_unlock_irqrestore(&d40c->lock, flags);
1426         return is_paused;
1427
1428 }
1429
1430
1431 static bool d40_tx_is_linked(struct d40_chan *d40c)
1432 {
1433         bool is_link;
1434
1435         if (d40c->log_num != D40_PHY_CHAN)
1436                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1437         else
1438                 is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
1439                                 d40c->phy_chan->num * D40_DREG_PCDELTA +
1440                                 D40_CHAN_REG_SDLNK) &
1441                         D40_SREG_LNK_PHYS_LNK_MASK;
1442         return is_link;
1443 }
1444
1445 static u32 d40_residue(struct d40_chan *d40c)
1446 {
1447         u32 num_elt;
1448
1449         if (d40c->log_num != D40_PHY_CHAN)
1450                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1451                         >> D40_MEM_LCSP2_ECNT_POS;
1452         else
1453                 num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
1454                                  d40c->phy_chan->num * D40_DREG_PCDELTA +
1455                                  D40_CHAN_REG_SDELT) &
1456                            D40_SREG_ELEM_PHY_ECNT_MASK) >>
1457                         D40_SREG_ELEM_PHY_ECNT_POS;
1458         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
1459 }
1460
1461 static int d40_resume(struct dma_chan *chan)
1462 {
1463         struct d40_chan *d40c =
1464                 container_of(chan, struct d40_chan, chan);
1465         int res = 0;
1466         unsigned long flags;
1467
1468         spin_lock_irqsave(&d40c->lock, flags);
1469
1470         if (d40c->base->rev == 0)
1471                 if (d40c->log_num != D40_PHY_CHAN) {
1472                         res = d40_channel_execute_command(d40c,
1473                                                           D40_DMA_SUSPEND_REQ);
1474                         goto no_suspend;
1475                 }
1476
1477         /* If bytes left to transfer or linked tx resume job */
1478         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1479                 if (d40c->log_num != D40_PHY_CHAN)
1480                         d40_config_set_event(d40c, true);
1481                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1482         }
1483
1484 no_suspend:
1485         spin_unlock_irqrestore(&d40c->lock, flags);
1486         return res;
1487 }
1488
1489 static u32 stedma40_residue(struct dma_chan *chan)
1490 {
1491         struct d40_chan *d40c =
1492                 container_of(chan, struct d40_chan, chan);
1493         u32 bytes_left;
1494         unsigned long flags;
1495
1496         spin_lock_irqsave(&d40c->lock, flags);
1497         bytes_left = d40_residue(d40c);
1498         spin_unlock_irqrestore(&d40c->lock, flags);
1499
1500         return bytes_left;
1501 }
1502
1503 /* Public DMA functions in addition to the DMA engine framework */
1504
1505 int stedma40_set_psize(struct dma_chan *chan,
1506                        int src_psize,
1507                        int dst_psize)
1508 {
1509         struct d40_chan *d40c =
1510                 container_of(chan, struct d40_chan, chan);
1511         unsigned long flags;
1512
1513         spin_lock_irqsave(&d40c->lock, flags);
1514
1515         if (d40c->log_num != D40_PHY_CHAN) {
1516                 d40c->log_def.lcsp1 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1517                 d40c->log_def.lcsp3 &= ~D40_MEM_LCSP1_SCFG_PSIZE_MASK;
1518                 d40c->log_def.lcsp1 |= src_psize <<
1519                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1520                 d40c->log_def.lcsp3 |= dst_psize <<
1521                         D40_MEM_LCSP1_SCFG_PSIZE_POS;
1522                 goto out;
1523         }
1524
1525         if (src_psize == STEDMA40_PSIZE_PHY_1)
1526                 d40c->src_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1527         else {
1528                 d40c->src_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1529                 d40c->src_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1530                                        D40_SREG_CFG_PSIZE_POS);
1531                 d40c->src_def_cfg |= src_psize << D40_SREG_CFG_PSIZE_POS;
1532         }
1533
1534         if (dst_psize == STEDMA40_PSIZE_PHY_1)
1535                 d40c->dst_def_cfg &= ~(1 << D40_SREG_CFG_PHY_PEN_POS);
1536         else {
1537                 d40c->dst_def_cfg |= 1 << D40_SREG_CFG_PHY_PEN_POS;
1538                 d40c->dst_def_cfg &= ~(STEDMA40_PSIZE_PHY_16 <<
1539                                        D40_SREG_CFG_PSIZE_POS);
1540                 d40c->dst_def_cfg |= dst_psize << D40_SREG_CFG_PSIZE_POS;
1541         }
1542 out:
1543         spin_unlock_irqrestore(&d40c->lock, flags);
1544         return 0;
1545 }
1546 EXPORT_SYMBOL(stedma40_set_psize);
1547
1548 struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
1549                                                    struct scatterlist *sgl_dst,
1550                                                    struct scatterlist *sgl_src,
1551                                                    unsigned int sgl_len,
1552                                                    unsigned long dma_flags)
1553 {
1554         int res;
1555         struct d40_desc *d40d;
1556         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1557                                              chan);
1558         unsigned long flags;
1559
1560         if (d40c->phy_chan == NULL) {
1561                 dev_err(&d40c->chan.dev->device,
1562                         "[%s] Unallocated channel.\n", __func__);
1563                 return ERR_PTR(-EINVAL);
1564         }
1565
1566         spin_lock_irqsave(&d40c->lock, flags);
1567         d40d = d40_desc_get(d40c);
1568
1569         if (d40d == NULL)
1570                 goto err;
1571
1572         d40d->lli_len = sgl_len;
1573         d40d->lli_tx_len = d40d->lli_len;
1574         d40d->txd.flags = dma_flags;
1575
1576         if (d40c->log_num != D40_PHY_CHAN) {
1577                 if (d40d->lli_len > d40c->base->plat_data->llis_per_log)
1578                         d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1579
1580                 if (sgl_len > 1)
1581                         /*
1582                          * Check if there is space available in lcla. If not,
1583                          * split list into 1-length and run only in lcpa
1584                          * space.
1585                          */
1586                         if (d40_lcla_id_get(d40c) != 0)
1587                                 d40d->lli_tx_len = 1;
1588
1589                 if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
1590                         dev_err(&d40c->chan.dev->device,
1591                                 "[%s] Out of memory\n", __func__);
1592                         goto err;
1593                 }
1594
1595                 (void) d40_log_sg_to_lli(d40c->lcla.src_id,
1596                                          sgl_src,
1597                                          sgl_len,
1598                                          d40d->lli_log.src,
1599                                          d40c->log_def.lcsp1,
1600                                          d40c->dma_cfg.src_info.data_width,
1601                                          dma_flags & DMA_PREP_INTERRUPT,
1602                                          d40d->lli_tx_len,
1603                                          d40c->base->plat_data->llis_per_log);
1604
1605                 (void) d40_log_sg_to_lli(d40c->lcla.dst_id,
1606                                          sgl_dst,
1607                                          sgl_len,
1608                                          d40d->lli_log.dst,
1609                                          d40c->log_def.lcsp3,
1610                                          d40c->dma_cfg.dst_info.data_width,
1611                                          dma_flags & DMA_PREP_INTERRUPT,
1612                                          d40d->lli_tx_len,
1613                                          d40c->base->plat_data->llis_per_log);
1614
1615
1616         } else {
1617                 if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1618                         dev_err(&d40c->chan.dev->device,
1619                                 "[%s] Out of memory\n", __func__);
1620                         goto err;
1621                 }
1622
1623                 res = d40_phy_sg_to_lli(sgl_src,
1624                                         sgl_len,
1625                                         0,
1626                                         d40d->lli_phy.src,
1627                                         d40d->lli_phy.src_addr,
1628                                         d40c->src_def_cfg,
1629                                         d40c->dma_cfg.src_info.data_width,
1630                                         d40c->dma_cfg.src_info.psize,
1631                                         true);
1632
1633                 if (res < 0)
1634                         goto err;
1635
1636                 res = d40_phy_sg_to_lli(sgl_dst,
1637                                         sgl_len,
1638                                         0,
1639                                         d40d->lli_phy.dst,
1640                                         d40d->lli_phy.dst_addr,
1641                                         d40c->dst_def_cfg,
1642                                         d40c->dma_cfg.dst_info.data_width,
1643                                         d40c->dma_cfg.dst_info.psize,
1644                                         true);
1645
1646                 if (res < 0)
1647                         goto err;
1648
1649                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1650                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1651         }
1652
1653         dma_async_tx_descriptor_init(&d40d->txd, chan);
1654
1655         d40d->txd.tx_submit = d40_tx_submit;
1656
1657         spin_unlock_irqrestore(&d40c->lock, flags);
1658
1659         return &d40d->txd;
1660 err:
1661         spin_unlock_irqrestore(&d40c->lock, flags);
1662         return NULL;
1663 }
1664 EXPORT_SYMBOL(stedma40_memcpy_sg);
1665
1666 bool stedma40_filter(struct dma_chan *chan, void *data)
1667 {
1668         struct stedma40_chan_cfg *info = data;
1669         struct d40_chan *d40c =
1670                 container_of(chan, struct d40_chan, chan);
1671         int err;
1672
1673         if (data) {
1674                 err = d40_validate_conf(d40c, info);
1675                 if (!err)
1676                         d40c->dma_cfg = *info;
1677         } else
1678                 err = d40_config_memcpy(d40c);
1679
1680         return err == 0;
1681 }
1682 EXPORT_SYMBOL(stedma40_filter);
1683
1684 /* DMA ENGINE functions */
1685 static int d40_alloc_chan_resources(struct dma_chan *chan)
1686 {
1687         int err;
1688         unsigned long flags;
1689         struct d40_chan *d40c =
1690                 container_of(chan, struct d40_chan, chan);
1691         bool is_free_phy;
1692         spin_lock_irqsave(&d40c->lock, flags);
1693
1694         d40c->completed = chan->cookie = 1;
1695
1696         /*
1697          * If no dma configuration is set (channel_type == 0)
1698          * use default configuration (memcpy)
1699          */
1700         if (d40c->dma_cfg.channel_type == 0) {
1701                 err = d40_config_memcpy(d40c);
1702                 if (err) {
1703                         dev_err(&d40c->chan.dev->device,
1704                                 "[%s] Failed to configure memcpy channel\n",
1705                                 __func__);
1706                         goto fail;
1707                 }
1708         }
1709         is_free_phy = (d40c->phy_chan == NULL);
1710
1711         err = d40_allocate_channel(d40c);
1712         if (err) {
1713                 dev_err(&d40c->chan.dev->device,
1714                         "[%s] Failed to allocate channel\n", __func__);
1715                 goto fail;
1716         }
1717
1718         /* Fill in basic CFG register values */
1719         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1720                     &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
1721
1722         if (d40c->log_num != D40_PHY_CHAN) {
1723                 d40_log_cfg(&d40c->dma_cfg,
1724                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1725
1726                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1727                         d40c->lcpa = d40c->base->lcpa_base +
1728                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1729                 else
1730                         d40c->lcpa = d40c->base->lcpa_base +
1731                           d40c->dma_cfg.dst_dev_type *
1732                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1733         }
1734
1735         /*
1736          * Only write channel configuration to the DMA if the physical
1737          * resource is free. In case of multiple logical channels
1738          * on the same physical resource, only the first write is necessary.
1739          */
1740         if (is_free_phy) {
1741                 err = d40_config_write(d40c);
1742                 if (err) {
1743                         dev_err(&d40c->chan.dev->device,
1744                                 "[%s] Failed to configure channel\n",
1745                                 __func__);
1746                 }
1747         }
1748 fail:
1749         spin_unlock_irqrestore(&d40c->lock, flags);
1750         return err;
1751 }
1752
1753 static void d40_free_chan_resources(struct dma_chan *chan)
1754 {
1755         struct d40_chan *d40c =
1756                 container_of(chan, struct d40_chan, chan);
1757         int err;
1758         unsigned long flags;
1759
1760         if (d40c->phy_chan == NULL) {
1761                 dev_err(&d40c->chan.dev->device,
1762                         "[%s] Cannot free unallocated channel\n", __func__);
1763                 return;
1764         }
1765
1766
1767         spin_lock_irqsave(&d40c->lock, flags);
1768
1769         err = d40_free_dma(d40c);
1770
1771         if (err)
1772                 dev_err(&d40c->chan.dev->device,
1773                         "[%s] Failed to free channel\n", __func__);
1774         spin_unlock_irqrestore(&d40c->lock, flags);
1775 }
1776
1777 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1778                                                        dma_addr_t dst,
1779                                                        dma_addr_t src,
1780                                                        size_t size,
1781                                                        unsigned long dma_flags)
1782 {
1783         struct d40_desc *d40d;
1784         struct d40_chan *d40c = container_of(chan, struct d40_chan,
1785                                              chan);
1786         unsigned long flags;
1787         int err = 0;
1788
1789         if (d40c->phy_chan == NULL) {
1790                 dev_err(&d40c->chan.dev->device,
1791                         "[%s] Channel is not allocated.\n", __func__);
1792                 return ERR_PTR(-EINVAL);
1793         }
1794
1795         spin_lock_irqsave(&d40c->lock, flags);
1796         d40d = d40_desc_get(d40c);
1797
1798         if (d40d == NULL) {
1799                 dev_err(&d40c->chan.dev->device,
1800                         "[%s] Descriptor is NULL\n", __func__);
1801                 goto err;
1802         }
1803
1804         d40d->txd.flags = dma_flags;
1805
1806         dma_async_tx_descriptor_init(&d40d->txd, chan);
1807
1808         d40d->txd.tx_submit = d40_tx_submit;
1809
1810         if (d40c->log_num != D40_PHY_CHAN) {
1811
1812                 if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
1813                         dev_err(&d40c->chan.dev->device,
1814                                 "[%s] Out of memory\n", __func__);
1815                         goto err;
1816                 }
1817                 d40d->lli_len = 1;
1818                 d40d->lli_tx_len = 1;
1819
1820                 d40_log_fill_lli(d40d->lli_log.src,
1821                                  src,
1822                                  size,
1823                                  0,
1824                                  d40c->log_def.lcsp1,
1825                                  d40c->dma_cfg.src_info.data_width,
1826                                  false, true);
1827
1828                 d40_log_fill_lli(d40d->lli_log.dst,
1829                                  dst,
1830                                  size,
1831                                  0,
1832                                  d40c->log_def.lcsp3,
1833                                  d40c->dma_cfg.dst_info.data_width,
1834                                  true, true);
1835
1836         } else {
1837
1838                 if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
1839                         dev_err(&d40c->chan.dev->device,
1840                                 "[%s] Out of memory\n", __func__);
1841                         goto err;
1842                 }
1843
1844                 err = d40_phy_fill_lli(d40d->lli_phy.src,
1845                                        src,
1846                                        size,
1847                                        d40c->dma_cfg.src_info.psize,
1848                                        0,
1849                                        d40c->src_def_cfg,
1850                                        true,
1851                                        d40c->dma_cfg.src_info.data_width,
1852                                        false);
1853                 if (err)
1854                         goto err_fill_lli;
1855
1856                 err = d40_phy_fill_lli(d40d->lli_phy.dst,
1857                                        dst,
1858                                        size,
1859                                        d40c->dma_cfg.dst_info.psize,
1860                                        0,
1861                                        d40c->dst_def_cfg,
1862                                        true,
1863                                        d40c->dma_cfg.dst_info.data_width,
1864                                        false);
1865
1866                 if (err)
1867                         goto err_fill_lli;
1868
1869                 (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
1870                                       d40d->lli_pool.size, DMA_TO_DEVICE);
1871         }
1872
1873         spin_unlock_irqrestore(&d40c->lock, flags);
1874         return &d40d->txd;
1875
1876 err_fill_lli:
1877         dev_err(&d40c->chan.dev->device,
1878                 "[%s] Failed filling in PHY LLI\n", __func__);
1879         d40_pool_lli_free(d40d);
1880 err:
1881         spin_unlock_irqrestore(&d40c->lock, flags);
1882         return NULL;
1883 }
1884
1885 static int d40_prep_slave_sg_log(struct d40_desc *d40d,
1886                                  struct d40_chan *d40c,
1887                                  struct scatterlist *sgl,
1888                                  unsigned int sg_len,
1889                                  enum dma_data_direction direction,
1890                                  unsigned long dma_flags)
1891 {
1892         dma_addr_t dev_addr = 0;
1893         int total_size;
1894
1895         if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
1896                 dev_err(&d40c->chan.dev->device,
1897                         "[%s] Out of memory\n", __func__);
1898                 return -ENOMEM;
1899         }
1900
1901         d40d->lli_len = sg_len;
1902         if (d40d->lli_len <= d40c->base->plat_data->llis_per_log)
1903                 d40d->lli_tx_len = d40d->lli_len;
1904         else
1905                 d40d->lli_tx_len = d40c->base->plat_data->llis_per_log;
1906
1907         if (sg_len > 1)
1908                 /*
1909                  * Check if there is space available in lcla.
1910                  * If not, split list into 1-length and run only
1911                  * in lcpa space.
1912                  */
1913                 if (d40_lcla_id_get(d40c) != 0)
1914                         d40d->lli_tx_len = 1;
1915
1916         if (direction == DMA_FROM_DEVICE)
1917                 if (d40c->runtime_addr)
1918                         dev_addr = d40c->runtime_addr;
1919                 else
1920                         dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1921         else if (direction == DMA_TO_DEVICE)
1922                 if (d40c->runtime_addr)
1923                         dev_addr = d40c->runtime_addr;
1924                 else
1925                         dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1926
1927         else
1928                 return -EINVAL;
1929
1930         total_size = d40_log_sg_to_dev(&d40c->lcla,
1931                                        sgl, sg_len,
1932                                        &d40d->lli_log,
1933                                        &d40c->log_def,
1934                                        d40c->dma_cfg.src_info.data_width,
1935                                        d40c->dma_cfg.dst_info.data_width,
1936                                        direction,
1937                                        dma_flags & DMA_PREP_INTERRUPT,
1938                                        dev_addr, d40d->lli_tx_len,
1939                                        d40c->base->plat_data->llis_per_log);
1940
1941         if (total_size < 0)
1942                 return -EINVAL;
1943
1944         return 0;
1945 }
1946
1947 static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
1948                                  struct d40_chan *d40c,
1949                                  struct scatterlist *sgl,
1950                                  unsigned int sgl_len,
1951                                  enum dma_data_direction direction,
1952                                  unsigned long dma_flags)
1953 {
1954         dma_addr_t src_dev_addr;
1955         dma_addr_t dst_dev_addr;
1956         int res;
1957
1958         if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
1959                 dev_err(&d40c->chan.dev->device,
1960                         "[%s] Out of memory\n", __func__);
1961                 return -ENOMEM;
1962         }
1963
1964         d40d->lli_len = sgl_len;
1965         d40d->lli_tx_len = sgl_len;
1966
1967         if (direction == DMA_FROM_DEVICE) {
1968                 dst_dev_addr = 0;
1969                 if (d40c->runtime_addr)
1970                         src_dev_addr = d40c->runtime_addr;
1971                 else
1972                         src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
1973         } else if (direction == DMA_TO_DEVICE) {
1974                 if (d40c->runtime_addr)
1975                         dst_dev_addr = d40c->runtime_addr;
1976                 else
1977                         dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
1978                 src_dev_addr = 0;
1979         } else
1980                 return -EINVAL;
1981
1982         res = d40_phy_sg_to_lli(sgl,
1983                                 sgl_len,
1984                                 src_dev_addr,
1985                                 d40d->lli_phy.src,
1986                                 d40d->lli_phy.src_addr,
1987                                 d40c->src_def_cfg,
1988                                 d40c->dma_cfg.src_info.data_width,
1989                                 d40c->dma_cfg.src_info.psize,
1990                                 true);
1991         if (res < 0)
1992                 return res;
1993
1994         res = d40_phy_sg_to_lli(sgl,
1995                                 sgl_len,
1996                                 dst_dev_addr,
1997                                 d40d->lli_phy.dst,
1998                                 d40d->lli_phy.dst_addr,
1999                                 d40c->dst_def_cfg,
2000                                 d40c->dma_cfg.dst_info.data_width,
2001                                 d40c->dma_cfg.dst_info.psize,
2002                                  true);
2003         if (res < 0)
2004                 return res;
2005
2006         (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
2007                               d40d->lli_pool.size, DMA_TO_DEVICE);
2008         return 0;
2009 }
2010
2011 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2012                                                          struct scatterlist *sgl,
2013                                                          unsigned int sg_len,
2014                                                          enum dma_data_direction direction,
2015                                                          unsigned long dma_flags)
2016 {
2017         struct d40_desc *d40d;
2018         struct d40_chan *d40c = container_of(chan, struct d40_chan,
2019                                              chan);
2020         unsigned long flags;
2021         int err;
2022
2023         if (d40c->phy_chan == NULL) {
2024                 dev_err(&d40c->chan.dev->device,
2025                         "[%s] Cannot prepare unallocated channel\n", __func__);
2026                 return ERR_PTR(-EINVAL);
2027         }
2028
2029         if (d40c->dma_cfg.pre_transfer)
2030                 d40c->dma_cfg.pre_transfer(chan,
2031                                            d40c->dma_cfg.pre_transfer_data,
2032                                            sg_dma_len(sgl));
2033
2034         spin_lock_irqsave(&d40c->lock, flags);
2035         d40d = d40_desc_get(d40c);
2036         spin_unlock_irqrestore(&d40c->lock, flags);
2037
2038         if (d40d == NULL)
2039                 return NULL;
2040
2041         if (d40c->log_num != D40_PHY_CHAN)
2042                 err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
2043                                             direction, dma_flags);
2044         else
2045                 err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
2046                                             direction, dma_flags);
2047         if (err) {
2048                 dev_err(&d40c->chan.dev->device,
2049                         "[%s] Failed to prepare %s slave sg job: %d\n",
2050                         __func__,
2051                         d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
2052                 return NULL;
2053         }
2054
2055         d40d->txd.flags = dma_flags;
2056
2057         dma_async_tx_descriptor_init(&d40d->txd, chan);
2058
2059         d40d->txd.tx_submit = d40_tx_submit;
2060
2061         return &d40d->txd;
2062 }
2063
2064 static enum dma_status d40_tx_status(struct dma_chan *chan,
2065                                      dma_cookie_t cookie,
2066                                      struct dma_tx_state *txstate)
2067 {
2068         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2069         dma_cookie_t last_used;
2070         dma_cookie_t last_complete;
2071         int ret;
2072
2073         if (d40c->phy_chan == NULL) {
2074                 dev_err(&d40c->chan.dev->device,
2075                         "[%s] Cannot read status of unallocated channel\n",
2076                         __func__);
2077                 return -EINVAL;
2078         }
2079
2080         last_complete = d40c->completed;
2081         last_used = chan->cookie;
2082
2083         if (d40_is_paused(d40c))
2084                 ret = DMA_PAUSED;
2085         else
2086                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2087
2088         dma_set_tx_state(txstate, last_complete, last_used,
2089                          stedma40_residue(chan));
2090
2091         return ret;
2092 }
2093
2094 static void d40_issue_pending(struct dma_chan *chan)
2095 {
2096         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2097         unsigned long flags;
2098
2099         if (d40c->phy_chan == NULL) {
2100                 dev_err(&d40c->chan.dev->device,
2101                         "[%s] Channel is not allocated!\n", __func__);
2102                 return;
2103         }
2104
2105         spin_lock_irqsave(&d40c->lock, flags);
2106
2107         /* Busy means that pending jobs are already being processed */
2108         if (!d40c->busy)
2109                 (void) d40_queue_start(d40c);
2110
2111         spin_unlock_irqrestore(&d40c->lock, flags);
2112 }
2113
2114 /* Runtime reconfiguration extension */
2115 static void d40_set_runtime_config(struct dma_chan *chan,
2116                                struct dma_slave_config *config)
2117 {
2118         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2119         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2120         enum dma_slave_buswidth config_addr_width;
2121         dma_addr_t config_addr;
2122         u32 config_maxburst;
2123         enum stedma40_periph_data_width addr_width;
2124         int psize;
2125
2126         if (config->direction == DMA_FROM_DEVICE) {
2127                 dma_addr_t dev_addr_rx =
2128                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2129
2130                 config_addr = config->src_addr;
2131                 if (dev_addr_rx)
2132                         dev_dbg(d40c->base->dev,
2133                                 "channel has a pre-wired RX address %08x "
2134                                 "overriding with %08x\n",
2135                                 dev_addr_rx, config_addr);
2136                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2137                         dev_dbg(d40c->base->dev,
2138                                 "channel was not configured for peripheral "
2139                                 "to memory transfer (%d) overriding\n",
2140                                 cfg->dir);
2141                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2142
2143                 config_addr_width = config->src_addr_width;
2144                 config_maxburst = config->src_maxburst;
2145
2146         } else if (config->direction == DMA_TO_DEVICE) {
2147                 dma_addr_t dev_addr_tx =
2148                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2149
2150                 config_addr = config->dst_addr;
2151                 if (dev_addr_tx)
2152                         dev_dbg(d40c->base->dev,
2153                                 "channel has a pre-wired TX address %08x "
2154                                 "overriding with %08x\n",
2155                                 dev_addr_tx, config_addr);
2156                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2157                         dev_dbg(d40c->base->dev,
2158                                 "channel was not configured for memory "
2159                                 "to peripheral transfer (%d) overriding\n",
2160                                 cfg->dir);
2161                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2162
2163                 config_addr_width = config->dst_addr_width;
2164                 config_maxburst = config->dst_maxburst;
2165
2166         } else {
2167                 dev_err(d40c->base->dev,
2168                         "unrecognized channel direction %d\n",
2169                         config->direction);
2170                 return;
2171         }
2172
2173         switch (config_addr_width) {
2174         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2175                 addr_width = STEDMA40_BYTE_WIDTH;
2176                 break;
2177         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2178                 addr_width = STEDMA40_HALFWORD_WIDTH;
2179                 break;
2180         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2181                 addr_width = STEDMA40_WORD_WIDTH;
2182                 break;
2183         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2184                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2185                 break;
2186         default:
2187                 dev_err(d40c->base->dev,
2188                         "illegal peripheral address width "
2189                         "requested (%d)\n",
2190                         config->src_addr_width);
2191                 return;
2192         }
2193
2194         if (config_maxburst >= 16)
2195                 psize = STEDMA40_PSIZE_LOG_16;
2196         else if (config_maxburst >= 8)
2197                 psize = STEDMA40_PSIZE_LOG_8;
2198         else if (config_maxburst >= 4)
2199                 psize = STEDMA40_PSIZE_LOG_4;
2200         else
2201                 psize = STEDMA40_PSIZE_LOG_1;
2202
2203         /* Set up all the endpoint configs */
2204         cfg->src_info.data_width = addr_width;
2205         cfg->src_info.psize = psize;
2206         cfg->src_info.endianess = STEDMA40_LITTLE_ENDIAN;
2207         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2208         cfg->dst_info.data_width = addr_width;
2209         cfg->dst_info.psize = psize;
2210         cfg->dst_info.endianess = STEDMA40_LITTLE_ENDIAN;
2211         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2212
2213         /* These settings will take precedence later */
2214         d40c->runtime_addr = config_addr;
2215         d40c->runtime_direction = config->direction;
2216         dev_dbg(d40c->base->dev,
2217                 "configured channel %s for %s, data width %d, "
2218                 "maxburst %d bytes, LE, no flow control\n",
2219                 dma_chan_name(chan),
2220                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2221                 config_addr_width,
2222                 config_maxburst);
2223 }
2224
2225 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2226                        unsigned long arg)
2227 {
2228         unsigned long flags;
2229         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2230
2231         if (d40c->phy_chan == NULL) {
2232                 dev_err(&d40c->chan.dev->device,
2233                         "[%s] Channel is not allocated!\n", __func__);
2234                 return -EINVAL;
2235         }
2236
2237         switch (cmd) {
2238         case DMA_TERMINATE_ALL:
2239                 spin_lock_irqsave(&d40c->lock, flags);
2240                 d40_term_all(d40c);
2241                 spin_unlock_irqrestore(&d40c->lock, flags);
2242                 return 0;
2243         case DMA_PAUSE:
2244                 return d40_pause(chan);
2245         case DMA_RESUME:
2246                 return d40_resume(chan);
2247         case DMA_SLAVE_CONFIG:
2248                 d40_set_runtime_config(chan,
2249                         (struct dma_slave_config *) arg);
2250                 return 0;
2251         default:
2252                 break;
2253         }
2254
2255         /* Other commands are unimplemented */
2256         return -ENXIO;
2257 }
2258
2259 /* Initialization functions */
2260
2261 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2262                                  struct d40_chan *chans, int offset,
2263                                  int num_chans)
2264 {
2265         int i = 0;
2266         struct d40_chan *d40c;
2267
2268         INIT_LIST_HEAD(&dma->channels);
2269
2270         for (i = offset; i < offset + num_chans; i++) {
2271                 d40c = &chans[i];
2272                 d40c->base = base;
2273                 d40c->chan.device = dma;
2274
2275                 /* Invalidate lcla element */
2276                 d40c->lcla.src_id = -1;
2277                 d40c->lcla.dst_id = -1;
2278
2279                 spin_lock_init(&d40c->lock);
2280
2281                 d40c->log_num = D40_PHY_CHAN;
2282
2283                 INIT_LIST_HEAD(&d40c->active);
2284                 INIT_LIST_HEAD(&d40c->queue);
2285                 INIT_LIST_HEAD(&d40c->client);
2286
2287                 tasklet_init(&d40c->tasklet, dma_tasklet,
2288                              (unsigned long) d40c);
2289
2290                 list_add_tail(&d40c->chan.device_node,
2291                               &dma->channels);
2292         }
2293 }
2294
2295 static int __init d40_dmaengine_init(struct d40_base *base,
2296                                      int num_reserved_chans)
2297 {
2298         int err ;
2299
2300         d40_chan_init(base, &base->dma_slave, base->log_chans,
2301                       0, base->num_log_chans);
2302
2303         dma_cap_zero(base->dma_slave.cap_mask);
2304         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2305
2306         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2307         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2308         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2309         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2310         base->dma_slave.device_tx_status = d40_tx_status;
2311         base->dma_slave.device_issue_pending = d40_issue_pending;
2312         base->dma_slave.device_control = d40_control;
2313         base->dma_slave.dev = base->dev;
2314
2315         err = dma_async_device_register(&base->dma_slave);
2316
2317         if (err) {
2318                 dev_err(base->dev,
2319                         "[%s] Failed to register slave channels\n",
2320                         __func__);
2321                 goto failure1;
2322         }
2323
2324         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2325                       base->num_log_chans, base->plat_data->memcpy_len);
2326
2327         dma_cap_zero(base->dma_memcpy.cap_mask);
2328         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2329
2330         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2331         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2332         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2333         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2334         base->dma_memcpy.device_tx_status = d40_tx_status;
2335         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2336         base->dma_memcpy.device_control = d40_control;
2337         base->dma_memcpy.dev = base->dev;
2338         /*
2339          * This controller can only access address at even
2340          * 32bit boundaries, i.e. 2^2
2341          */
2342         base->dma_memcpy.copy_align = 2;
2343
2344         err = dma_async_device_register(&base->dma_memcpy);
2345
2346         if (err) {
2347                 dev_err(base->dev,
2348                         "[%s] Failed to regsiter memcpy only channels\n",
2349                         __func__);
2350                 goto failure2;
2351         }
2352
2353         d40_chan_init(base, &base->dma_both, base->phy_chans,
2354                       0, num_reserved_chans);
2355
2356         dma_cap_zero(base->dma_both.cap_mask);
2357         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2358         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2359
2360         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2361         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2362         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2363         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2364         base->dma_both.device_tx_status = d40_tx_status;
2365         base->dma_both.device_issue_pending = d40_issue_pending;
2366         base->dma_both.device_control = d40_control;
2367         base->dma_both.dev = base->dev;
2368         base->dma_both.copy_align = 2;
2369         err = dma_async_device_register(&base->dma_both);
2370
2371         if (err) {
2372                 dev_err(base->dev,
2373                         "[%s] Failed to register logical and physical capable channels\n",
2374                         __func__);
2375                 goto failure3;
2376         }
2377         return 0;
2378 failure3:
2379         dma_async_device_unregister(&base->dma_memcpy);
2380 failure2:
2381         dma_async_device_unregister(&base->dma_slave);
2382 failure1:
2383         return err;
2384 }
2385
2386 /* Initialization functions. */
2387
2388 static int __init d40_phy_res_init(struct d40_base *base)
2389 {
2390         int i;
2391         int num_phy_chans_avail = 0;
2392         u32 val[2];
2393         int odd_even_bit = -2;
2394
2395         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2396         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2397
2398         for (i = 0; i < base->num_phy_chans; i++) {
2399                 base->phy_res[i].num = i;
2400                 odd_even_bit += 2 * ((i % 2) == 0);
2401                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2402                         /* Mark security only channels as occupied */
2403                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2404                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2405                 } else {
2406                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2407                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2408                         num_phy_chans_avail++;
2409                 }
2410                 spin_lock_init(&base->phy_res[i].lock);
2411         }
2412
2413         /* Mark disabled channels as occupied */
2414         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2415                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2416                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2417                         num_phy_chans_avail--;
2418         }
2419
2420         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2421                  num_phy_chans_avail, base->num_phy_chans);
2422
2423         /* Verify settings extended vs standard */
2424         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2425
2426         for (i = 0; i < base->num_phy_chans; i++) {
2427
2428                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2429                     (val[0] & 0x3) != 1)
2430                         dev_info(base->dev,
2431                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2432                                  __func__, i, val[0] & 0x3);
2433
2434                 val[0] = val[0] >> 2;
2435         }
2436
2437         return num_phy_chans_avail;
2438 }
2439
2440 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2441 {
2442         static const struct d40_reg_val dma_id_regs[] = {
2443                 /* Peripheral Id */
2444                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2445                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2446                 /*
2447                  * D40_DREG_PERIPHID2 Depends on HW revision:
2448                  *  MOP500/HREF ED has 0x0008,
2449                  *  ? has 0x0018,
2450                  *  HREF V1 has 0x0028
2451                  */
2452                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2453
2454                 /* PCell Id */
2455                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2456                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2457                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2458                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2459         };
2460         struct stedma40_platform_data *plat_data;
2461         struct clk *clk = NULL;
2462         void __iomem *virtbase = NULL;
2463         struct resource *res = NULL;
2464         struct d40_base *base = NULL;
2465         int num_log_chans = 0;
2466         int num_phy_chans;
2467         int i;
2468         u32 val;
2469
2470         clk = clk_get(&pdev->dev, NULL);
2471
2472         if (IS_ERR(clk)) {
2473                 dev_err(&pdev->dev, "[%s] No matching clock found\n",
2474                         __func__);
2475                 goto failure;
2476         }
2477
2478         clk_enable(clk);
2479
2480         /* Get IO for DMAC base address */
2481         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2482         if (!res)
2483                 goto failure;
2484
2485         if (request_mem_region(res->start, resource_size(res),
2486                                D40_NAME " I/O base") == NULL)
2487                 goto failure;
2488
2489         virtbase = ioremap(res->start, resource_size(res));
2490         if (!virtbase)
2491                 goto failure;
2492
2493         /* HW version check */
2494         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2495                 if (dma_id_regs[i].val !=
2496                     readl(virtbase + dma_id_regs[i].reg)) {
2497                         dev_err(&pdev->dev,
2498                                 "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2499                                 __func__,
2500                                 dma_id_regs[i].val,
2501                                 dma_id_regs[i].reg,
2502                                 readl(virtbase + dma_id_regs[i].reg));
2503                         goto failure;
2504                 }
2505         }
2506
2507         /* Get silicon revision */
2508         val = readl(virtbase + D40_DREG_PERIPHID2);
2509
2510         if ((val & 0xf) != D40_PERIPHID2_DESIGNER) {
2511                 dev_err(&pdev->dev,
2512                         "[%s] Unknown designer! Got %x wanted %x\n",
2513                         __func__, val & 0xf, D40_PERIPHID2_DESIGNER);
2514                 goto failure;
2515         }
2516
2517         /* The number of physical channels on this HW */
2518         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2519
2520         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2521                  (val >> 4) & 0xf, res->start);
2522
2523         plat_data = pdev->dev.platform_data;
2524
2525         /* Count the number of logical channels in use */
2526         for (i = 0; i < plat_data->dev_len; i++)
2527                 if (plat_data->dev_rx[i] != 0)
2528                         num_log_chans++;
2529
2530         for (i = 0; i < plat_data->dev_len; i++)
2531                 if (plat_data->dev_tx[i] != 0)
2532                         num_log_chans++;
2533
2534         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2535                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2536                        sizeof(struct d40_chan), GFP_KERNEL);
2537
2538         if (base == NULL) {
2539                 dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
2540                 goto failure;
2541         }
2542
2543         base->rev = (val >> 4) & 0xf;
2544         base->clk = clk;
2545         base->num_phy_chans = num_phy_chans;
2546         base->num_log_chans = num_log_chans;
2547         base->phy_start = res->start;
2548         base->phy_size = resource_size(res);
2549         base->virtbase = virtbase;
2550         base->plat_data = plat_data;
2551         base->dev = &pdev->dev;
2552         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2553         base->log_chans = &base->phy_chans[num_phy_chans];
2554
2555         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2556                                 GFP_KERNEL);
2557         if (!base->phy_res)
2558                 goto failure;
2559
2560         base->lookup_phy_chans = kzalloc(num_phy_chans *
2561                                          sizeof(struct d40_chan *),
2562                                          GFP_KERNEL);
2563         if (!base->lookup_phy_chans)
2564                 goto failure;
2565
2566         if (num_log_chans + plat_data->memcpy_len) {
2567                 /*
2568                  * The max number of logical channels are event lines for all
2569                  * src devices and dst devices
2570                  */
2571                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2572                                                  sizeof(struct d40_chan *),
2573                                                  GFP_KERNEL);
2574                 if (!base->lookup_log_chans)
2575                         goto failure;
2576         }
2577         base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(u32),
2578                                             GFP_KERNEL);
2579         if (!base->lcla_pool.alloc_map)
2580                 goto failure;
2581
2582         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2583                                             0, SLAB_HWCACHE_ALIGN,
2584                                             NULL);
2585         if (base->desc_slab == NULL)
2586                 goto failure;
2587
2588         return base;
2589
2590 failure:
2591         if (clk) {
2592                 clk_disable(clk);
2593                 clk_put(clk);
2594         }
2595         if (virtbase)
2596                 iounmap(virtbase);
2597         if (res)
2598                 release_mem_region(res->start,
2599                                    resource_size(res));
2600         if (virtbase)
2601                 iounmap(virtbase);
2602
2603         if (base) {
2604                 kfree(base->lcla_pool.alloc_map);
2605                 kfree(base->lookup_log_chans);
2606                 kfree(base->lookup_phy_chans);
2607                 kfree(base->phy_res);
2608                 kfree(base);
2609         }
2610
2611         return NULL;
2612 }
2613
2614 static void __init d40_hw_init(struct d40_base *base)
2615 {
2616
2617         static const struct d40_reg_val dma_init_reg[] = {
2618                 /* Clock every part of the DMA block from start */
2619                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2620
2621                 /* Interrupts on all logical channels */
2622                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2623                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2624                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2625                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2626                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2627                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2628                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2629                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2630                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2631                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2632                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2633                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2634         };
2635         int i;
2636         u32 prmseo[2] = {0, 0};
2637         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2638         u32 pcmis = 0;
2639         u32 pcicr = 0;
2640
2641         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2642                 writel(dma_init_reg[i].val,
2643                        base->virtbase + dma_init_reg[i].reg);
2644
2645         /* Configure all our dma channels to default settings */
2646         for (i = 0; i < base->num_phy_chans; i++) {
2647
2648                 activeo[i % 2] = activeo[i % 2] << 2;
2649
2650                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2651                     == D40_ALLOC_PHY) {
2652                         activeo[i % 2] |= 3;
2653                         continue;
2654                 }
2655
2656                 /* Enable interrupt # */
2657                 pcmis = (pcmis << 1) | 1;
2658
2659                 /* Clear interrupt # */
2660                 pcicr = (pcicr << 1) | 1;
2661
2662                 /* Set channel to physical mode */
2663                 prmseo[i % 2] = prmseo[i % 2] << 2;
2664                 prmseo[i % 2] |= 1;
2665
2666         }
2667
2668         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2669         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2670         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2671         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2672
2673         /* Write which interrupt to enable */
2674         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2675
2676         /* Write which interrupt to clear */
2677         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2678
2679 }
2680
2681 static int __init d40_lcla_allocate(struct d40_base *base)
2682 {
2683         unsigned long *page_list;
2684         int i, j;
2685         int ret = 0;
2686
2687         /*
2688          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2689          * To full fill this hardware requirement without wasting 256 kb
2690          * we allocate pages until we get an aligned one.
2691          */
2692         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2693                             GFP_KERNEL);
2694
2695         if (!page_list) {
2696                 ret = -ENOMEM;
2697                 goto failure;
2698         }
2699
2700         /* Calculating how many pages that are required */
2701         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2702
2703         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2704                 page_list[i] = __get_free_pages(GFP_KERNEL,
2705                                                 base->lcla_pool.pages);
2706                 if (!page_list[i]) {
2707
2708                         dev_err(base->dev,
2709                                 "[%s] Failed to allocate %d pages.\n",
2710                                 __func__, base->lcla_pool.pages);
2711
2712                         for (j = 0; j < i; j++)
2713                                 free_pages(page_list[j], base->lcla_pool.pages);
2714                         goto failure;
2715                 }
2716
2717                 if ((virt_to_phys((void *)page_list[i]) &
2718                      (LCLA_ALIGNMENT - 1)) == 0)
2719                         break;
2720         }
2721
2722         for (j = 0; j < i; j++)
2723                 free_pages(page_list[j], base->lcla_pool.pages);
2724
2725         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2726                 base->lcla_pool.base = (void *)page_list[i];
2727         } else {
2728                 /* After many attempts, no succees with finding the correct
2729                  * alignment try with allocating a big buffer */
2730                 dev_warn(base->dev,
2731                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2732                          __func__, base->lcla_pool.pages);
2733                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2734                                                          base->num_phy_chans +
2735                                                          LCLA_ALIGNMENT,
2736                                                          GFP_KERNEL);
2737                 if (!base->lcla_pool.base_unaligned) {
2738                         ret = -ENOMEM;
2739                         goto failure;
2740                 }
2741
2742                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2743                                                  LCLA_ALIGNMENT);
2744         }
2745
2746         writel(virt_to_phys(base->lcla_pool.base),
2747                base->virtbase + D40_DREG_LCLA);
2748 failure:
2749         kfree(page_list);
2750         return ret;
2751 }
2752
2753 static int __init d40_probe(struct platform_device *pdev)
2754 {
2755         int err;
2756         int ret = -ENOENT;
2757         struct d40_base *base;
2758         struct resource *res = NULL;
2759         int num_reserved_chans;
2760         u32 val;
2761
2762         base = d40_hw_detect_init(pdev);
2763
2764         if (!base)
2765                 goto failure;
2766
2767         num_reserved_chans = d40_phy_res_init(base);
2768
2769         platform_set_drvdata(pdev, base);
2770
2771         spin_lock_init(&base->interrupt_lock);
2772         spin_lock_init(&base->execmd_lock);
2773
2774         /* Get IO for logical channel parameter address */
2775         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2776         if (!res) {
2777                 ret = -ENOENT;
2778                 dev_err(&pdev->dev,
2779                         "[%s] No \"lcpa\" memory resource\n",
2780                         __func__);
2781                 goto failure;
2782         }
2783         base->lcpa_size = resource_size(res);
2784         base->phy_lcpa = res->start;
2785
2786         if (request_mem_region(res->start, resource_size(res),
2787                                D40_NAME " I/O lcpa") == NULL) {
2788                 ret = -EBUSY;
2789                 dev_err(&pdev->dev,
2790                         "[%s] Failed to request LCPA region 0x%x-0x%x\n",
2791                         __func__, res->start, res->end);
2792                 goto failure;
2793         }
2794
2795         /* We make use of ESRAM memory for this. */
2796         val = readl(base->virtbase + D40_DREG_LCPA);
2797         if (res->start != val && val != 0) {
2798                 dev_warn(&pdev->dev,
2799                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2800                          __func__, val, res->start);
2801         } else
2802                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2803
2804         base->lcpa_base = ioremap(res->start, resource_size(res));
2805         if (!base->lcpa_base) {
2806                 ret = -ENOMEM;
2807                 dev_err(&pdev->dev,
2808                         "[%s] Failed to ioremap LCPA region\n",
2809                         __func__);
2810                 goto failure;
2811         }
2812
2813         ret = d40_lcla_allocate(base);
2814         if (ret) {
2815                 dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
2816                         __func__);
2817                 goto failure;
2818         }
2819
2820         spin_lock_init(&base->lcla_pool.lock);
2821
2822         base->lcla_pool.num_blocks = base->num_phy_chans;
2823
2824         base->irq = platform_get_irq(pdev, 0);
2825
2826         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2827
2828         if (ret) {
2829                 dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
2830                 goto failure;
2831         }
2832
2833         err = d40_dmaengine_init(base, num_reserved_chans);
2834         if (err)
2835                 goto failure;
2836
2837         d40_hw_init(base);
2838
2839         dev_info(base->dev, "initialized\n");
2840         return 0;
2841
2842 failure:
2843         if (base) {
2844                 if (base->desc_slab)
2845                         kmem_cache_destroy(base->desc_slab);
2846                 if (base->virtbase)
2847                         iounmap(base->virtbase);
2848                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2849                         free_pages((unsigned long)base->lcla_pool.base,
2850                                    base->lcla_pool.pages);
2851                 if (base->lcla_pool.base_unaligned)
2852                         kfree(base->lcla_pool.base_unaligned);
2853                 if (base->phy_lcpa)
2854                         release_mem_region(base->phy_lcpa,
2855                                            base->lcpa_size);
2856                 if (base->phy_start)
2857                         release_mem_region(base->phy_start,
2858                                            base->phy_size);
2859                 if (base->clk) {
2860                         clk_disable(base->clk);
2861                         clk_put(base->clk);
2862                 }
2863
2864                 kfree(base->lcla_pool.alloc_map);
2865                 kfree(base->lookup_log_chans);
2866                 kfree(base->lookup_phy_chans);
2867                 kfree(base->phy_res);
2868                 kfree(base);
2869         }
2870
2871         dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
2872         return ret;
2873 }
2874
2875 static struct platform_driver d40_driver = {
2876         .driver = {
2877                 .owner = THIS_MODULE,
2878                 .name  = D40_NAME,
2879         },
2880 };
2881
2882 int __init stedma40_init(void)
2883 {
2884         return platform_driver_probe(&d40_driver, d40_probe);
2885 }
2886 arch_initcall(stedma40_init);