]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Move INTR vmexit out of atomic code
[net-next-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29
30 #include <asm/desc.h>
31
32 #include <asm/virtext.h>
33 #include "trace.h"
34
35 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36
37 MODULE_AUTHOR("Qumranet");
38 MODULE_LICENSE("GPL");
39
40 #define IOPM_ALLOC_ORDER 2
41 #define MSRPM_ALLOC_ORDER 1
42
43 #define SEG_TYPE_LDT 2
44 #define SEG_TYPE_BUSY_TSS16 3
45
46 #define SVM_FEATURE_NPT  (1 << 0)
47 #define SVM_FEATURE_LBRV (1 << 1)
48 #define SVM_FEATURE_SVML (1 << 2)
49
50 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
51 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
52 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
53
54 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
55
56 /* Turn on to get debugging output*/
57 /* #define NESTED_DEBUG */
58
59 #ifdef NESTED_DEBUG
60 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
61 #else
62 #define nsvm_printk(fmt, args...) do {} while(0)
63 #endif
64
65 static const u32 host_save_user_msrs[] = {
66 #ifdef CONFIG_X86_64
67         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
68         MSR_FS_BASE,
69 #endif
70         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
71 };
72
73 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
74
75 struct kvm_vcpu;
76
77 struct nested_state {
78         struct vmcb *hsave;
79         u64 hsave_msr;
80         u64 vmcb;
81
82         /* These are the merged vectors */
83         u32 *msrpm;
84
85         /* gpa pointers to the real vectors */
86         u64 vmcb_msrpm;
87
88         /* A VMEXIT is required but not yet emulated */
89         bool exit_required;
90
91         /* cache for intercepts of the guest */
92         u16 intercept_cr_read;
93         u16 intercept_cr_write;
94         u16 intercept_dr_read;
95         u16 intercept_dr_write;
96         u32 intercept_exceptions;
97         u64 intercept;
98
99 };
100
101 struct vcpu_svm {
102         struct kvm_vcpu vcpu;
103         struct vmcb *vmcb;
104         unsigned long vmcb_pa;
105         struct svm_cpu_data *svm_data;
106         uint64_t asid_generation;
107         uint64_t sysenter_esp;
108         uint64_t sysenter_eip;
109
110         u64 next_rip;
111
112         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
113         u64 host_gs_base;
114
115         u32 *msrpm;
116
117         struct nested_state nested;
118 };
119
120 /* enable NPT for AMD64 and X86 with PAE */
121 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
122 static bool npt_enabled = true;
123 #else
124 static bool npt_enabled = false;
125 #endif
126 static int npt = 1;
127
128 module_param(npt, int, S_IRUGO);
129
130 static int nested = 1;
131 module_param(nested, int, S_IRUGO);
132
133 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
134 static void svm_complete_interrupts(struct vcpu_svm *svm);
135
136 static int nested_svm_exit_handled(struct vcpu_svm *svm);
137 static int nested_svm_vmexit(struct vcpu_svm *svm);
138 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
139                                       bool has_error_code, u32 error_code);
140
141 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
142 {
143         return container_of(vcpu, struct vcpu_svm, vcpu);
144 }
145
146 static inline bool is_nested(struct vcpu_svm *svm)
147 {
148         return svm->nested.vmcb;
149 }
150
151 static inline void enable_gif(struct vcpu_svm *svm)
152 {
153         svm->vcpu.arch.hflags |= HF_GIF_MASK;
154 }
155
156 static inline void disable_gif(struct vcpu_svm *svm)
157 {
158         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
159 }
160
161 static inline bool gif_set(struct vcpu_svm *svm)
162 {
163         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
164 }
165
166 static unsigned long iopm_base;
167
168 struct kvm_ldttss_desc {
169         u16 limit0;
170         u16 base0;
171         unsigned base1 : 8, type : 5, dpl : 2, p : 1;
172         unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
173         u32 base3;
174         u32 zero1;
175 } __attribute__((packed));
176
177 struct svm_cpu_data {
178         int cpu;
179
180         u64 asid_generation;
181         u32 max_asid;
182         u32 next_asid;
183         struct kvm_ldttss_desc *tss_desc;
184
185         struct page *save_area;
186 };
187
188 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
189 static uint32_t svm_features;
190
191 struct svm_init_data {
192         int cpu;
193         int r;
194 };
195
196 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
197
198 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
199 #define MSRS_RANGE_SIZE 2048
200 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
201
202 #define MAX_INST_SIZE 15
203
204 static inline u32 svm_has(u32 feat)
205 {
206         return svm_features & feat;
207 }
208
209 static inline void clgi(void)
210 {
211         asm volatile (__ex(SVM_CLGI));
212 }
213
214 static inline void stgi(void)
215 {
216         asm volatile (__ex(SVM_STGI));
217 }
218
219 static inline void invlpga(unsigned long addr, u32 asid)
220 {
221         asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
222 }
223
224 static inline void force_new_asid(struct kvm_vcpu *vcpu)
225 {
226         to_svm(vcpu)->asid_generation--;
227 }
228
229 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
230 {
231         force_new_asid(vcpu);
232 }
233
234 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
235 {
236         if (!npt_enabled && !(efer & EFER_LMA))
237                 efer &= ~EFER_LME;
238
239         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
240         vcpu->arch.shadow_efer = efer;
241 }
242
243 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
244                                 bool has_error_code, u32 error_code)
245 {
246         struct vcpu_svm *svm = to_svm(vcpu);
247
248         /* If we are within a nested VM we'd better #VMEXIT and let the
249            guest handle the exception */
250         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
251                 return;
252
253         svm->vmcb->control.event_inj = nr
254                 | SVM_EVTINJ_VALID
255                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
256                 | SVM_EVTINJ_TYPE_EXEPT;
257         svm->vmcb->control.event_inj_err = error_code;
258 }
259
260 static int is_external_interrupt(u32 info)
261 {
262         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
263         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
264 }
265
266 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
267 {
268         struct vcpu_svm *svm = to_svm(vcpu);
269         u32 ret = 0;
270
271         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
272                 ret |= X86_SHADOW_INT_STI | X86_SHADOW_INT_MOV_SS;
273         return ret & mask;
274 }
275
276 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
277 {
278         struct vcpu_svm *svm = to_svm(vcpu);
279
280         if (mask == 0)
281                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
282         else
283                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
284
285 }
286
287 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
288 {
289         struct vcpu_svm *svm = to_svm(vcpu);
290
291         if (!svm->next_rip) {
292                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
293                                 EMULATE_DONE)
294                         printk(KERN_DEBUG "%s: NOP\n", __func__);
295                 return;
296         }
297         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
298                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
299                        __func__, kvm_rip_read(vcpu), svm->next_rip);
300
301         kvm_rip_write(vcpu, svm->next_rip);
302         svm_set_interrupt_shadow(vcpu, 0);
303 }
304
305 static int has_svm(void)
306 {
307         const char *msg;
308
309         if (!cpu_has_svm(&msg)) {
310                 printk(KERN_INFO "has_svm: %s\n", msg);
311                 return 0;
312         }
313
314         return 1;
315 }
316
317 static void svm_hardware_disable(void *garbage)
318 {
319         cpu_svm_disable();
320 }
321
322 static int svm_hardware_enable(void *garbage)
323 {
324
325         struct svm_cpu_data *svm_data;
326         uint64_t efer;
327         struct descriptor_table gdt_descr;
328         struct desc_struct *gdt;
329         int me = raw_smp_processor_id();
330
331         rdmsrl(MSR_EFER, efer);
332         if (efer & EFER_SVME)
333                 return -EBUSY;
334
335         if (!has_svm()) {
336                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
337                        me);
338                 return -EINVAL;
339         }
340         svm_data = per_cpu(svm_data, me);
341
342         if (!svm_data) {
343                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
344                        me);
345                 return -EINVAL;
346         }
347
348         svm_data->asid_generation = 1;
349         svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
350         svm_data->next_asid = svm_data->max_asid + 1;
351
352         kvm_get_gdt(&gdt_descr);
353         gdt = (struct desc_struct *)gdt_descr.base;
354         svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
355
356         wrmsrl(MSR_EFER, efer | EFER_SVME);
357
358         wrmsrl(MSR_VM_HSAVE_PA,
359                page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
360
361         return 0;
362 }
363
364 static void svm_cpu_uninit(int cpu)
365 {
366         struct svm_cpu_data *svm_data
367                 = per_cpu(svm_data, raw_smp_processor_id());
368
369         if (!svm_data)
370                 return;
371
372         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
373         __free_page(svm_data->save_area);
374         kfree(svm_data);
375 }
376
377 static int svm_cpu_init(int cpu)
378 {
379         struct svm_cpu_data *svm_data;
380         int r;
381
382         svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
383         if (!svm_data)
384                 return -ENOMEM;
385         svm_data->cpu = cpu;
386         svm_data->save_area = alloc_page(GFP_KERNEL);
387         r = -ENOMEM;
388         if (!svm_data->save_area)
389                 goto err_1;
390
391         per_cpu(svm_data, cpu) = svm_data;
392
393         return 0;
394
395 err_1:
396         kfree(svm_data);
397         return r;
398
399 }
400
401 static void set_msr_interception(u32 *msrpm, unsigned msr,
402                                  int read, int write)
403 {
404         int i;
405
406         for (i = 0; i < NUM_MSR_MAPS; i++) {
407                 if (msr >= msrpm_ranges[i] &&
408                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
409                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
410                                           msrpm_ranges[i]) * 2;
411
412                         u32 *base = msrpm + (msr_offset / 32);
413                         u32 msr_shift = msr_offset % 32;
414                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
415                         *base = (*base & ~(0x3 << msr_shift)) |
416                                 (mask << msr_shift);
417                         return;
418                 }
419         }
420         BUG();
421 }
422
423 static void svm_vcpu_init_msrpm(u32 *msrpm)
424 {
425         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
426
427 #ifdef CONFIG_X86_64
428         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
429         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
430         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
431         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
432         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
433         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
434 #endif
435         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
436         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
437 }
438
439 static void svm_enable_lbrv(struct vcpu_svm *svm)
440 {
441         u32 *msrpm = svm->msrpm;
442
443         svm->vmcb->control.lbr_ctl = 1;
444         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
445         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
446         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
447         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
448 }
449
450 static void svm_disable_lbrv(struct vcpu_svm *svm)
451 {
452         u32 *msrpm = svm->msrpm;
453
454         svm->vmcb->control.lbr_ctl = 0;
455         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
456         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
457         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
458         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
459 }
460
461 static __init int svm_hardware_setup(void)
462 {
463         int cpu;
464         struct page *iopm_pages;
465         void *iopm_va;
466         int r;
467
468         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
469
470         if (!iopm_pages)
471                 return -ENOMEM;
472
473         iopm_va = page_address(iopm_pages);
474         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
475         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
476
477         if (boot_cpu_has(X86_FEATURE_NX))
478                 kvm_enable_efer_bits(EFER_NX);
479
480         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
481                 kvm_enable_efer_bits(EFER_FFXSR);
482
483         if (nested) {
484                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
485                 kvm_enable_efer_bits(EFER_SVME);
486         }
487
488         for_each_possible_cpu(cpu) {
489                 r = svm_cpu_init(cpu);
490                 if (r)
491                         goto err;
492         }
493
494         svm_features = cpuid_edx(SVM_CPUID_FUNC);
495
496         if (!svm_has(SVM_FEATURE_NPT))
497                 npt_enabled = false;
498
499         if (npt_enabled && !npt) {
500                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
501                 npt_enabled = false;
502         }
503
504         if (npt_enabled) {
505                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
506                 kvm_enable_tdp();
507         } else
508                 kvm_disable_tdp();
509
510         return 0;
511
512 err:
513         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
514         iopm_base = 0;
515         return r;
516 }
517
518 static __exit void svm_hardware_unsetup(void)
519 {
520         int cpu;
521
522         for_each_possible_cpu(cpu)
523                 svm_cpu_uninit(cpu);
524
525         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
526         iopm_base = 0;
527 }
528
529 static void init_seg(struct vmcb_seg *seg)
530 {
531         seg->selector = 0;
532         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
533                 SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
534         seg->limit = 0xffff;
535         seg->base = 0;
536 }
537
538 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
539 {
540         seg->selector = 0;
541         seg->attrib = SVM_SELECTOR_P_MASK | type;
542         seg->limit = 0xffff;
543         seg->base = 0;
544 }
545
546 static void init_vmcb(struct vcpu_svm *svm)
547 {
548         struct vmcb_control_area *control = &svm->vmcb->control;
549         struct vmcb_save_area *save = &svm->vmcb->save;
550
551         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
552                                         INTERCEPT_CR3_MASK |
553                                         INTERCEPT_CR4_MASK;
554
555         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
556                                         INTERCEPT_CR3_MASK |
557                                         INTERCEPT_CR4_MASK |
558                                         INTERCEPT_CR8_MASK;
559
560         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
561                                         INTERCEPT_DR1_MASK |
562                                         INTERCEPT_DR2_MASK |
563                                         INTERCEPT_DR3_MASK;
564
565         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
566                                         INTERCEPT_DR1_MASK |
567                                         INTERCEPT_DR2_MASK |
568                                         INTERCEPT_DR3_MASK |
569                                         INTERCEPT_DR5_MASK |
570                                         INTERCEPT_DR7_MASK;
571
572         control->intercept_exceptions = (1 << PF_VECTOR) |
573                                         (1 << UD_VECTOR) |
574                                         (1 << MC_VECTOR);
575
576
577         control->intercept =    (1ULL << INTERCEPT_INTR) |
578                                 (1ULL << INTERCEPT_NMI) |
579                                 (1ULL << INTERCEPT_SMI) |
580                                 (1ULL << INTERCEPT_CPUID) |
581                                 (1ULL << INTERCEPT_INVD) |
582                                 (1ULL << INTERCEPT_HLT) |
583                                 (1ULL << INTERCEPT_INVLPG) |
584                                 (1ULL << INTERCEPT_INVLPGA) |
585                                 (1ULL << INTERCEPT_IOIO_PROT) |
586                                 (1ULL << INTERCEPT_MSR_PROT) |
587                                 (1ULL << INTERCEPT_TASK_SWITCH) |
588                                 (1ULL << INTERCEPT_SHUTDOWN) |
589                                 (1ULL << INTERCEPT_VMRUN) |
590                                 (1ULL << INTERCEPT_VMMCALL) |
591                                 (1ULL << INTERCEPT_VMLOAD) |
592                                 (1ULL << INTERCEPT_VMSAVE) |
593                                 (1ULL << INTERCEPT_STGI) |
594                                 (1ULL << INTERCEPT_CLGI) |
595                                 (1ULL << INTERCEPT_SKINIT) |
596                                 (1ULL << INTERCEPT_WBINVD) |
597                                 (1ULL << INTERCEPT_MONITOR) |
598                                 (1ULL << INTERCEPT_MWAIT);
599
600         control->iopm_base_pa = iopm_base;
601         control->msrpm_base_pa = __pa(svm->msrpm);
602         control->tsc_offset = 0;
603         control->int_ctl = V_INTR_MASKING_MASK;
604
605         init_seg(&save->es);
606         init_seg(&save->ss);
607         init_seg(&save->ds);
608         init_seg(&save->fs);
609         init_seg(&save->gs);
610
611         save->cs.selector = 0xf000;
612         /* Executable/Readable Code Segment */
613         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
614                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
615         save->cs.limit = 0xffff;
616         /*
617          * cs.base should really be 0xffff0000, but vmx can't handle that, so
618          * be consistent with it.
619          *
620          * Replace when we have real mode working for vmx.
621          */
622         save->cs.base = 0xf0000;
623
624         save->gdtr.limit = 0xffff;
625         save->idtr.limit = 0xffff;
626
627         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
628         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
629
630         save->efer = EFER_SVME;
631         save->dr6 = 0xffff0ff0;
632         save->dr7 = 0x400;
633         save->rflags = 2;
634         save->rip = 0x0000fff0;
635         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
636
637         /*
638          * cr0 val on cpu init should be 0x60000010, we enable cpu
639          * cache by default. the orderly way is to enable cache in bios.
640          */
641         save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
642         save->cr4 = X86_CR4_PAE;
643         /* rdx = ?? */
644
645         if (npt_enabled) {
646                 /* Setup VMCB for Nested Paging */
647                 control->nested_ctl = 1;
648                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
649                                         (1ULL << INTERCEPT_INVLPG));
650                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
651                 control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
652                                                 INTERCEPT_CR3_MASK);
653                 control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
654                                                  INTERCEPT_CR3_MASK);
655                 save->g_pat = 0x0007040600070406ULL;
656                 /* enable caching because the QEMU Bios doesn't enable it */
657                 save->cr0 = X86_CR0_ET;
658                 save->cr3 = 0;
659                 save->cr4 = 0;
660         }
661         force_new_asid(&svm->vcpu);
662
663         svm->nested.vmcb = 0;
664         svm->vcpu.arch.hflags = 0;
665
666         enable_gif(svm);
667 }
668
669 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
670 {
671         struct vcpu_svm *svm = to_svm(vcpu);
672
673         init_vmcb(svm);
674
675         if (!kvm_vcpu_is_bsp(vcpu)) {
676                 kvm_rip_write(vcpu, 0);
677                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
678                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
679         }
680         vcpu->arch.regs_avail = ~0;
681         vcpu->arch.regs_dirty = ~0;
682
683         return 0;
684 }
685
686 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
687 {
688         struct vcpu_svm *svm;
689         struct page *page;
690         struct page *msrpm_pages;
691         struct page *hsave_page;
692         struct page *nested_msrpm_pages;
693         int err;
694
695         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
696         if (!svm) {
697                 err = -ENOMEM;
698                 goto out;
699         }
700
701         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
702         if (err)
703                 goto free_svm;
704
705         page = alloc_page(GFP_KERNEL);
706         if (!page) {
707                 err = -ENOMEM;
708                 goto uninit;
709         }
710
711         err = -ENOMEM;
712         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
713         if (!msrpm_pages)
714                 goto uninit;
715
716         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
717         if (!nested_msrpm_pages)
718                 goto uninit;
719
720         svm->msrpm = page_address(msrpm_pages);
721         svm_vcpu_init_msrpm(svm->msrpm);
722
723         hsave_page = alloc_page(GFP_KERNEL);
724         if (!hsave_page)
725                 goto uninit;
726         svm->nested.hsave = page_address(hsave_page);
727
728         svm->nested.msrpm = page_address(nested_msrpm_pages);
729
730         svm->vmcb = page_address(page);
731         clear_page(svm->vmcb);
732         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
733         svm->asid_generation = 0;
734         init_vmcb(svm);
735
736         fx_init(&svm->vcpu);
737         svm->vcpu.fpu_active = 1;
738         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
739         if (kvm_vcpu_is_bsp(&svm->vcpu))
740                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
741
742         return &svm->vcpu;
743
744 uninit:
745         kvm_vcpu_uninit(&svm->vcpu);
746 free_svm:
747         kmem_cache_free(kvm_vcpu_cache, svm);
748 out:
749         return ERR_PTR(err);
750 }
751
752 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
753 {
754         struct vcpu_svm *svm = to_svm(vcpu);
755
756         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
757         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
758         __free_page(virt_to_page(svm->nested.hsave));
759         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
760         kvm_vcpu_uninit(vcpu);
761         kmem_cache_free(kvm_vcpu_cache, svm);
762 }
763
764 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
765 {
766         struct vcpu_svm *svm = to_svm(vcpu);
767         int i;
768
769         if (unlikely(cpu != vcpu->cpu)) {
770                 u64 delta;
771
772                 /*
773                  * Make sure that the guest sees a monotonically
774                  * increasing TSC.
775                  */
776                 delta = vcpu->arch.host_tsc - native_read_tsc();
777                 svm->vmcb->control.tsc_offset += delta;
778                 if (is_nested(svm))
779                         svm->nested.hsave->control.tsc_offset += delta;
780                 vcpu->cpu = cpu;
781                 kvm_migrate_timers(vcpu);
782                 svm->asid_generation = 0;
783         }
784
785         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
786                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
787 }
788
789 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
790 {
791         struct vcpu_svm *svm = to_svm(vcpu);
792         int i;
793
794         ++vcpu->stat.host_state_reload;
795         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
796                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
797
798         vcpu->arch.host_tsc = native_read_tsc();
799 }
800
801 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
802 {
803         return to_svm(vcpu)->vmcb->save.rflags;
804 }
805
806 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
807 {
808         to_svm(vcpu)->vmcb->save.rflags = rflags;
809 }
810
811 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
812 {
813         switch (reg) {
814         case VCPU_EXREG_PDPTR:
815                 BUG_ON(!npt_enabled);
816                 load_pdptrs(vcpu, vcpu->arch.cr3);
817                 break;
818         default:
819                 BUG();
820         }
821 }
822
823 static void svm_set_vintr(struct vcpu_svm *svm)
824 {
825         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
826 }
827
828 static void svm_clear_vintr(struct vcpu_svm *svm)
829 {
830         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
831 }
832
833 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
834 {
835         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
836
837         switch (seg) {
838         case VCPU_SREG_CS: return &save->cs;
839         case VCPU_SREG_DS: return &save->ds;
840         case VCPU_SREG_ES: return &save->es;
841         case VCPU_SREG_FS: return &save->fs;
842         case VCPU_SREG_GS: return &save->gs;
843         case VCPU_SREG_SS: return &save->ss;
844         case VCPU_SREG_TR: return &save->tr;
845         case VCPU_SREG_LDTR: return &save->ldtr;
846         }
847         BUG();
848         return NULL;
849 }
850
851 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
852 {
853         struct vmcb_seg *s = svm_seg(vcpu, seg);
854
855         return s->base;
856 }
857
858 static void svm_get_segment(struct kvm_vcpu *vcpu,
859                             struct kvm_segment *var, int seg)
860 {
861         struct vmcb_seg *s = svm_seg(vcpu, seg);
862
863         var->base = s->base;
864         var->limit = s->limit;
865         var->selector = s->selector;
866         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
867         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
868         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
869         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
870         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
871         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
872         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
873         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
874
875         /* AMD's VMCB does not have an explicit unusable field, so emulate it
876          * for cross vendor migration purposes by "not present"
877          */
878         var->unusable = !var->present || (var->type == 0);
879
880         switch (seg) {
881         case VCPU_SREG_CS:
882                 /*
883                  * SVM always stores 0 for the 'G' bit in the CS selector in
884                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
885                  * Intel's VMENTRY has a check on the 'G' bit.
886                  */
887                 var->g = s->limit > 0xfffff;
888                 break;
889         case VCPU_SREG_TR:
890                 /*
891                  * Work around a bug where the busy flag in the tr selector
892                  * isn't exposed
893                  */
894                 var->type |= 0x2;
895                 break;
896         case VCPU_SREG_DS:
897         case VCPU_SREG_ES:
898         case VCPU_SREG_FS:
899         case VCPU_SREG_GS:
900                 /*
901                  * The accessed bit must always be set in the segment
902                  * descriptor cache, although it can be cleared in the
903                  * descriptor, the cached bit always remains at 1. Since
904                  * Intel has a check on this, set it here to support
905                  * cross-vendor migration.
906                  */
907                 if (!var->unusable)
908                         var->type |= 0x1;
909                 break;
910         case VCPU_SREG_SS:
911                 /* On AMD CPUs sometimes the DB bit in the segment
912                  * descriptor is left as 1, although the whole segment has
913                  * been made unusable. Clear it here to pass an Intel VMX
914                  * entry check when cross vendor migrating.
915                  */
916                 if (var->unusable)
917                         var->db = 0;
918                 break;
919         }
920 }
921
922 static int svm_get_cpl(struct kvm_vcpu *vcpu)
923 {
924         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
925
926         return save->cpl;
927 }
928
929 static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
930 {
931         struct vcpu_svm *svm = to_svm(vcpu);
932
933         dt->limit = svm->vmcb->save.idtr.limit;
934         dt->base = svm->vmcb->save.idtr.base;
935 }
936
937 static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
938 {
939         struct vcpu_svm *svm = to_svm(vcpu);
940
941         svm->vmcb->save.idtr.limit = dt->limit;
942         svm->vmcb->save.idtr.base = dt->base ;
943 }
944
945 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
946 {
947         struct vcpu_svm *svm = to_svm(vcpu);
948
949         dt->limit = svm->vmcb->save.gdtr.limit;
950         dt->base = svm->vmcb->save.gdtr.base;
951 }
952
953 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
954 {
955         struct vcpu_svm *svm = to_svm(vcpu);
956
957         svm->vmcb->save.gdtr.limit = dt->limit;
958         svm->vmcb->save.gdtr.base = dt->base ;
959 }
960
961 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
962 {
963 }
964
965 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
966 {
967         struct vcpu_svm *svm = to_svm(vcpu);
968
969 #ifdef CONFIG_X86_64
970         if (vcpu->arch.shadow_efer & EFER_LME) {
971                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
972                         vcpu->arch.shadow_efer |= EFER_LMA;
973                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
974                 }
975
976                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
977                         vcpu->arch.shadow_efer &= ~EFER_LMA;
978                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
979                 }
980         }
981 #endif
982         if (npt_enabled)
983                 goto set;
984
985         if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
986                 svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
987                 vcpu->fpu_active = 1;
988         }
989
990         vcpu->arch.cr0 = cr0;
991         cr0 |= X86_CR0_PG | X86_CR0_WP;
992         if (!vcpu->fpu_active) {
993                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
994                 cr0 |= X86_CR0_TS;
995         }
996 set:
997         /*
998          * re-enable caching here because the QEMU bios
999          * does not do it - this results in some delay at
1000          * reboot
1001          */
1002         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1003         svm->vmcb->save.cr0 = cr0;
1004 }
1005
1006 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1007 {
1008         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1009         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1010
1011         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1012                 force_new_asid(vcpu);
1013
1014         vcpu->arch.cr4 = cr4;
1015         if (!npt_enabled)
1016                 cr4 |= X86_CR4_PAE;
1017         cr4 |= host_cr4_mce;
1018         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1019 }
1020
1021 static void svm_set_segment(struct kvm_vcpu *vcpu,
1022                             struct kvm_segment *var, int seg)
1023 {
1024         struct vcpu_svm *svm = to_svm(vcpu);
1025         struct vmcb_seg *s = svm_seg(vcpu, seg);
1026
1027         s->base = var->base;
1028         s->limit = var->limit;
1029         s->selector = var->selector;
1030         if (var->unusable)
1031                 s->attrib = 0;
1032         else {
1033                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1034                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1035                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1036                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1037                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1038                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1039                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1040                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1041         }
1042         if (seg == VCPU_SREG_CS)
1043                 svm->vmcb->save.cpl
1044                         = (svm->vmcb->save.cs.attrib
1045                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1046
1047 }
1048
1049 static void update_db_intercept(struct kvm_vcpu *vcpu)
1050 {
1051         struct vcpu_svm *svm = to_svm(vcpu);
1052
1053         svm->vmcb->control.intercept_exceptions &=
1054                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1055
1056         if (vcpu->arch.singlestep)
1057                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1058
1059         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1060                 if (vcpu->guest_debug &
1061                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1062                         svm->vmcb->control.intercept_exceptions |=
1063                                 1 << DB_VECTOR;
1064                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1065                         svm->vmcb->control.intercept_exceptions |=
1066                                 1 << BP_VECTOR;
1067         } else
1068                 vcpu->guest_debug = 0;
1069 }
1070
1071 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1072 {
1073         struct vcpu_svm *svm = to_svm(vcpu);
1074
1075         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1076                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1077         else
1078                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1079
1080         update_db_intercept(vcpu);
1081 }
1082
1083 static void load_host_msrs(struct kvm_vcpu *vcpu)
1084 {
1085 #ifdef CONFIG_X86_64
1086         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1087 #endif
1088 }
1089
1090 static void save_host_msrs(struct kvm_vcpu *vcpu)
1091 {
1092 #ifdef CONFIG_X86_64
1093         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1094 #endif
1095 }
1096
1097 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
1098 {
1099         if (svm_data->next_asid > svm_data->max_asid) {
1100                 ++svm_data->asid_generation;
1101                 svm_data->next_asid = 1;
1102                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1103         }
1104
1105         svm->asid_generation = svm_data->asid_generation;
1106         svm->vmcb->control.asid = svm_data->next_asid++;
1107 }
1108
1109 static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
1110 {
1111         struct vcpu_svm *svm = to_svm(vcpu);
1112         unsigned long val;
1113
1114         switch (dr) {
1115         case 0 ... 3:
1116                 val = vcpu->arch.db[dr];
1117                 break;
1118         case 6:
1119                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1120                         val = vcpu->arch.dr6;
1121                 else
1122                         val = svm->vmcb->save.dr6;
1123                 break;
1124         case 7:
1125                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1126                         val = vcpu->arch.dr7;
1127                 else
1128                         val = svm->vmcb->save.dr7;
1129                 break;
1130         default:
1131                 val = 0;
1132         }
1133
1134         return val;
1135 }
1136
1137 static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
1138                        int *exception)
1139 {
1140         struct vcpu_svm *svm = to_svm(vcpu);
1141
1142         *exception = 0;
1143
1144         switch (dr) {
1145         case 0 ... 3:
1146                 vcpu->arch.db[dr] = value;
1147                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1148                         vcpu->arch.eff_db[dr] = value;
1149                 return;
1150         case 4 ... 5:
1151                 if (vcpu->arch.cr4 & X86_CR4_DE)
1152                         *exception = UD_VECTOR;
1153                 return;
1154         case 6:
1155                 if (value & 0xffffffff00000000ULL) {
1156                         *exception = GP_VECTOR;
1157                         return;
1158                 }
1159                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1160                 return;
1161         case 7:
1162                 if (value & 0xffffffff00000000ULL) {
1163                         *exception = GP_VECTOR;
1164                         return;
1165                 }
1166                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1167                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1168                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1169                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1170                 }
1171                 return;
1172         default:
1173                 /* FIXME: Possible case? */
1174                 printk(KERN_DEBUG "%s: unexpected dr %u\n",
1175                        __func__, dr);
1176                 *exception = UD_VECTOR;
1177                 return;
1178         }
1179 }
1180
1181 static int pf_interception(struct vcpu_svm *svm)
1182 {
1183         u64 fault_address;
1184         u32 error_code;
1185
1186         fault_address  = svm->vmcb->control.exit_info_2;
1187         error_code = svm->vmcb->control.exit_info_1;
1188
1189         trace_kvm_page_fault(fault_address, error_code);
1190         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1191                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1192         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1193 }
1194
1195 static int db_interception(struct vcpu_svm *svm)
1196 {
1197         struct kvm_run *kvm_run = svm->vcpu.run;
1198
1199         if (!(svm->vcpu.guest_debug &
1200               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1201                 !svm->vcpu.arch.singlestep) {
1202                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1203                 return 1;
1204         }
1205
1206         if (svm->vcpu.arch.singlestep) {
1207                 svm->vcpu.arch.singlestep = false;
1208                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1209                         svm->vmcb->save.rflags &=
1210                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1211                 update_db_intercept(&svm->vcpu);
1212         }
1213
1214         if (svm->vcpu.guest_debug &
1215             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)){
1216                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1217                 kvm_run->debug.arch.pc =
1218                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1219                 kvm_run->debug.arch.exception = DB_VECTOR;
1220                 return 0;
1221         }
1222
1223         return 1;
1224 }
1225
1226 static int bp_interception(struct vcpu_svm *svm)
1227 {
1228         struct kvm_run *kvm_run = svm->vcpu.run;
1229
1230         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1231         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1232         kvm_run->debug.arch.exception = BP_VECTOR;
1233         return 0;
1234 }
1235
1236 static int ud_interception(struct vcpu_svm *svm)
1237 {
1238         int er;
1239
1240         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1241         if (er != EMULATE_DONE)
1242                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1243         return 1;
1244 }
1245
1246 static int nm_interception(struct vcpu_svm *svm)
1247 {
1248         svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
1249         if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
1250                 svm->vmcb->save.cr0 &= ~X86_CR0_TS;
1251         svm->vcpu.fpu_active = 1;
1252
1253         return 1;
1254 }
1255
1256 static int mc_interception(struct vcpu_svm *svm)
1257 {
1258         /*
1259          * On an #MC intercept the MCE handler is not called automatically in
1260          * the host. So do it by hand here.
1261          */
1262         asm volatile (
1263                 "int $0x12\n");
1264         /* not sure if we ever come back to this point */
1265
1266         return 1;
1267 }
1268
1269 static int shutdown_interception(struct vcpu_svm *svm)
1270 {
1271         struct kvm_run *kvm_run = svm->vcpu.run;
1272
1273         /*
1274          * VMCB is undefined after a SHUTDOWN intercept
1275          * so reinitialize it.
1276          */
1277         clear_page(svm->vmcb);
1278         init_vmcb(svm);
1279
1280         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1281         return 0;
1282 }
1283
1284 static int io_interception(struct vcpu_svm *svm)
1285 {
1286         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1287         int size, in, string;
1288         unsigned port;
1289
1290         ++svm->vcpu.stat.io_exits;
1291
1292         svm->next_rip = svm->vmcb->control.exit_info_2;
1293
1294         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1295
1296         if (string) {
1297                 if (emulate_instruction(&svm->vcpu,
1298                                         0, 0, 0) == EMULATE_DO_MMIO)
1299                         return 0;
1300                 return 1;
1301         }
1302
1303         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1304         port = io_info >> 16;
1305         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1306
1307         skip_emulated_instruction(&svm->vcpu);
1308         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1309 }
1310
1311 static int nmi_interception(struct vcpu_svm *svm)
1312 {
1313         return 1;
1314 }
1315
1316 static int intr_interception(struct vcpu_svm *svm)
1317 {
1318         ++svm->vcpu.stat.irq_exits;
1319         return 1;
1320 }
1321
1322 static int nop_on_interception(struct vcpu_svm *svm)
1323 {
1324         return 1;
1325 }
1326
1327 static int halt_interception(struct vcpu_svm *svm)
1328 {
1329         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1330         skip_emulated_instruction(&svm->vcpu);
1331         return kvm_emulate_halt(&svm->vcpu);
1332 }
1333
1334 static int vmmcall_interception(struct vcpu_svm *svm)
1335 {
1336         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1337         skip_emulated_instruction(&svm->vcpu);
1338         kvm_emulate_hypercall(&svm->vcpu);
1339         return 1;
1340 }
1341
1342 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1343 {
1344         if (!(svm->vcpu.arch.shadow_efer & EFER_SVME)
1345             || !is_paging(&svm->vcpu)) {
1346                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1347                 return 1;
1348         }
1349
1350         if (svm->vmcb->save.cpl) {
1351                 kvm_inject_gp(&svm->vcpu, 0);
1352                 return 1;
1353         }
1354
1355        return 0;
1356 }
1357
1358 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1359                                       bool has_error_code, u32 error_code)
1360 {
1361         if (!is_nested(svm))
1362                 return 0;
1363
1364         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1365         svm->vmcb->control.exit_code_hi = 0;
1366         svm->vmcb->control.exit_info_1 = error_code;
1367         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1368
1369         return nested_svm_exit_handled(svm);
1370 }
1371
1372 static inline int nested_svm_intr(struct vcpu_svm *svm)
1373 {
1374         if (!is_nested(svm))
1375                 return 0;
1376
1377         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1378                 return 0;
1379
1380         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1381                 return 0;
1382
1383         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1384
1385         if (svm->nested.intercept & 1ULL) {
1386                 /*
1387                  * The #vmexit can't be emulated here directly because this
1388                  * code path runs with irqs and preemtion disabled. A
1389                  * #vmexit emulation might sleep. Only signal request for
1390                  * the #vmexit here.
1391                  */
1392                 svm->nested.exit_required = true;
1393                 nsvm_printk("VMexit -> INTR\n");
1394                 return 1;
1395         }
1396
1397         return 0;
1398 }
1399
1400 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, enum km_type idx)
1401 {
1402         struct page *page;
1403
1404         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1405         if (is_error_page(page))
1406                 goto error;
1407
1408         return kmap_atomic(page, idx);
1409
1410 error:
1411         kvm_release_page_clean(page);
1412         kvm_inject_gp(&svm->vcpu, 0);
1413
1414         return NULL;
1415 }
1416
1417 static void nested_svm_unmap(void *addr, enum km_type idx)
1418 {
1419         struct page *page;
1420
1421         if (!addr)
1422                 return;
1423
1424         page = kmap_atomic_to_page(addr);
1425
1426         kunmap_atomic(addr, idx);
1427         kvm_release_page_dirty(page);
1428 }
1429
1430 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1431 {
1432         u32 param = svm->vmcb->control.exit_info_1 & 1;
1433         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1434         bool ret = false;
1435         u32 t0, t1;
1436         u8 *msrpm;
1437
1438         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1439                 return false;
1440
1441         msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1442
1443         if (!msrpm)
1444                 goto out;
1445
1446         switch (msr) {
1447         case 0 ... 0x1fff:
1448                 t0 = (msr * 2) % 8;
1449                 t1 = msr / 8;
1450                 break;
1451         case 0xc0000000 ... 0xc0001fff:
1452                 t0 = (8192 + msr - 0xc0000000) * 2;
1453                 t1 = (t0 / 8);
1454                 t0 %= 8;
1455                 break;
1456         case 0xc0010000 ... 0xc0011fff:
1457                 t0 = (16384 + msr - 0xc0010000) * 2;
1458                 t1 = (t0 / 8);
1459                 t0 %= 8;
1460                 break;
1461         default:
1462                 ret = true;
1463                 goto out;
1464         }
1465
1466         ret = msrpm[t1] & ((1 << param) << t0);
1467
1468 out:
1469         nested_svm_unmap(msrpm, KM_USER0);
1470
1471         return ret;
1472 }
1473
1474 static int nested_svm_exit_special(struct vcpu_svm *svm)
1475 {
1476         u32 exit_code = svm->vmcb->control.exit_code;
1477
1478         switch (exit_code) {
1479         case SVM_EXIT_INTR:
1480         case SVM_EXIT_NMI:
1481                 return NESTED_EXIT_HOST;
1482                 /* For now we are always handling NPFs when using them */
1483         case SVM_EXIT_NPF:
1484                 if (npt_enabled)
1485                         return NESTED_EXIT_HOST;
1486                 break;
1487         /* When we're shadowing, trap PFs */
1488         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1489                 if (!npt_enabled)
1490                         return NESTED_EXIT_HOST;
1491                 break;
1492         default:
1493                 break;
1494         }
1495
1496         return NESTED_EXIT_CONTINUE;
1497 }
1498
1499 /*
1500  * If this function returns true, this #vmexit was already handled
1501  */
1502 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1503 {
1504         u32 exit_code = svm->vmcb->control.exit_code;
1505         int vmexit = NESTED_EXIT_HOST;
1506
1507         switch (exit_code) {
1508         case SVM_EXIT_MSR:
1509                 vmexit = nested_svm_exit_handled_msr(svm);
1510                 break;
1511         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1512                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1513                 if (svm->nested.intercept_cr_read & cr_bits)
1514                         vmexit = NESTED_EXIT_DONE;
1515                 break;
1516         }
1517         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1518                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1519                 if (svm->nested.intercept_cr_write & cr_bits)
1520                         vmexit = NESTED_EXIT_DONE;
1521                 break;
1522         }
1523         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1524                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1525                 if (svm->nested.intercept_dr_read & dr_bits)
1526                         vmexit = NESTED_EXIT_DONE;
1527                 break;
1528         }
1529         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1530                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1531                 if (svm->nested.intercept_dr_write & dr_bits)
1532                         vmexit = NESTED_EXIT_DONE;
1533                 break;
1534         }
1535         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1536                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1537                 if (svm->nested.intercept_exceptions & excp_bits)
1538                         vmexit = NESTED_EXIT_DONE;
1539                 break;
1540         }
1541         default: {
1542                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1543                 nsvm_printk("exit code: 0x%x\n", exit_code);
1544                 if (svm->nested.intercept & exit_bits)
1545                         vmexit = NESTED_EXIT_DONE;
1546         }
1547         }
1548
1549         if (vmexit == NESTED_EXIT_DONE) {
1550                 nsvm_printk("#VMEXIT reason=%04x\n", exit_code);
1551                 nested_svm_vmexit(svm);
1552         }
1553
1554         return vmexit;
1555 }
1556
1557 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1558 {
1559         struct vmcb_control_area *dst  = &dst_vmcb->control;
1560         struct vmcb_control_area *from = &from_vmcb->control;
1561
1562         dst->intercept_cr_read    = from->intercept_cr_read;
1563         dst->intercept_cr_write   = from->intercept_cr_write;
1564         dst->intercept_dr_read    = from->intercept_dr_read;
1565         dst->intercept_dr_write   = from->intercept_dr_write;
1566         dst->intercept_exceptions = from->intercept_exceptions;
1567         dst->intercept            = from->intercept;
1568         dst->iopm_base_pa         = from->iopm_base_pa;
1569         dst->msrpm_base_pa        = from->msrpm_base_pa;
1570         dst->tsc_offset           = from->tsc_offset;
1571         dst->asid                 = from->asid;
1572         dst->tlb_ctl              = from->tlb_ctl;
1573         dst->int_ctl              = from->int_ctl;
1574         dst->int_vector           = from->int_vector;
1575         dst->int_state            = from->int_state;
1576         dst->exit_code            = from->exit_code;
1577         dst->exit_code_hi         = from->exit_code_hi;
1578         dst->exit_info_1          = from->exit_info_1;
1579         dst->exit_info_2          = from->exit_info_2;
1580         dst->exit_int_info        = from->exit_int_info;
1581         dst->exit_int_info_err    = from->exit_int_info_err;
1582         dst->nested_ctl           = from->nested_ctl;
1583         dst->event_inj            = from->event_inj;
1584         dst->event_inj_err        = from->event_inj_err;
1585         dst->nested_cr3           = from->nested_cr3;
1586         dst->lbr_ctl              = from->lbr_ctl;
1587 }
1588
1589 static int nested_svm_vmexit(struct vcpu_svm *svm)
1590 {
1591         struct vmcb *nested_vmcb;
1592         struct vmcb *hsave = svm->nested.hsave;
1593         struct vmcb *vmcb = svm->vmcb;
1594
1595         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, KM_USER0);
1596         if (!nested_vmcb)
1597                 return 1;
1598
1599         /* Give the current vmcb to the guest */
1600         disable_gif(svm);
1601
1602         nested_vmcb->save.es     = vmcb->save.es;
1603         nested_vmcb->save.cs     = vmcb->save.cs;
1604         nested_vmcb->save.ss     = vmcb->save.ss;
1605         nested_vmcb->save.ds     = vmcb->save.ds;
1606         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1607         nested_vmcb->save.idtr   = vmcb->save.idtr;
1608         if (npt_enabled)
1609                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1610         nested_vmcb->save.cr2    = vmcb->save.cr2;
1611         nested_vmcb->save.rflags = vmcb->save.rflags;
1612         nested_vmcb->save.rip    = vmcb->save.rip;
1613         nested_vmcb->save.rsp    = vmcb->save.rsp;
1614         nested_vmcb->save.rax    = vmcb->save.rax;
1615         nested_vmcb->save.dr7    = vmcb->save.dr7;
1616         nested_vmcb->save.dr6    = vmcb->save.dr6;
1617         nested_vmcb->save.cpl    = vmcb->save.cpl;
1618
1619         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1620         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1621         nested_vmcb->control.int_state         = vmcb->control.int_state;
1622         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1623         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1624         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1625         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1626         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1627         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1628
1629         /*
1630          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1631          * to make sure that we do not lose injected events. So check event_inj
1632          * here and copy it to exit_int_info if it is valid.
1633          * Exit_int_info and event_inj can't be both valid because the case
1634          * below only happens on a VMRUN instruction intercept which has
1635          * no valid exit_int_info set.
1636          */
1637         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1638                 struct vmcb_control_area *nc = &nested_vmcb->control;
1639
1640                 nc->exit_int_info     = vmcb->control.event_inj;
1641                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1642         }
1643
1644         nested_vmcb->control.tlb_ctl           = 0;
1645         nested_vmcb->control.event_inj         = 0;
1646         nested_vmcb->control.event_inj_err     = 0;
1647
1648         /* We always set V_INTR_MASKING and remember the old value in hflags */
1649         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1650                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1651
1652         /* Restore the original control entries */
1653         copy_vmcb_control_area(vmcb, hsave);
1654
1655         /* Kill any pending exceptions */
1656         if (svm->vcpu.arch.exception.pending == true)
1657                 nsvm_printk("WARNING: Pending Exception\n");
1658
1659         kvm_clear_exception_queue(&svm->vcpu);
1660         kvm_clear_interrupt_queue(&svm->vcpu);
1661
1662         /* Restore selected save entries */
1663         svm->vmcb->save.es = hsave->save.es;
1664         svm->vmcb->save.cs = hsave->save.cs;
1665         svm->vmcb->save.ss = hsave->save.ss;
1666         svm->vmcb->save.ds = hsave->save.ds;
1667         svm->vmcb->save.gdtr = hsave->save.gdtr;
1668         svm->vmcb->save.idtr = hsave->save.idtr;
1669         svm->vmcb->save.rflags = hsave->save.rflags;
1670         svm_set_efer(&svm->vcpu, hsave->save.efer);
1671         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1672         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1673         if (npt_enabled) {
1674                 svm->vmcb->save.cr3 = hsave->save.cr3;
1675                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1676         } else {
1677                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1678         }
1679         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1680         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1681         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1682         svm->vmcb->save.dr7 = 0;
1683         svm->vmcb->save.cpl = 0;
1684         svm->vmcb->control.exit_int_info = 0;
1685
1686         /* Exit nested SVM mode */
1687         svm->nested.vmcb = 0;
1688
1689         nested_svm_unmap(nested_vmcb, KM_USER0);
1690
1691         kvm_mmu_reset_context(&svm->vcpu);
1692         kvm_mmu_load(&svm->vcpu);
1693
1694         return 0;
1695 }
1696
1697 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1698 {
1699         u32 *nested_msrpm;
1700         int i;
1701
1702         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, KM_USER0);
1703         if (!nested_msrpm)
1704                 return false;
1705
1706         for (i=0; i< PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1707                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1708
1709         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1710
1711         nested_svm_unmap(nested_msrpm, KM_USER0);
1712
1713         return true;
1714 }
1715
1716 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1717 {
1718         struct vmcb *nested_vmcb;
1719         struct vmcb *hsave = svm->nested.hsave;
1720         struct vmcb *vmcb = svm->vmcb;
1721
1722         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1723         if (!nested_vmcb)
1724                 return false;
1725
1726         /* nested_vmcb is our indicator if nested SVM is activated */
1727         svm->nested.vmcb = svm->vmcb->save.rax;
1728
1729         /* Clear internal status */
1730         kvm_clear_exception_queue(&svm->vcpu);
1731         kvm_clear_interrupt_queue(&svm->vcpu);
1732
1733         /* Save the old vmcb, so we don't need to pick what we save, but
1734            can restore everything when a VMEXIT occurs */
1735         hsave->save.es     = vmcb->save.es;
1736         hsave->save.cs     = vmcb->save.cs;
1737         hsave->save.ss     = vmcb->save.ss;
1738         hsave->save.ds     = vmcb->save.ds;
1739         hsave->save.gdtr   = vmcb->save.gdtr;
1740         hsave->save.idtr   = vmcb->save.idtr;
1741         hsave->save.efer   = svm->vcpu.arch.shadow_efer;
1742         hsave->save.cr0    = svm->vcpu.arch.cr0;
1743         hsave->save.cr4    = svm->vcpu.arch.cr4;
1744         hsave->save.rflags = vmcb->save.rflags;
1745         hsave->save.rip    = svm->next_rip;
1746         hsave->save.rsp    = vmcb->save.rsp;
1747         hsave->save.rax    = vmcb->save.rax;
1748         if (npt_enabled)
1749                 hsave->save.cr3    = vmcb->save.cr3;
1750         else
1751                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1752
1753         copy_vmcb_control_area(hsave, vmcb);
1754
1755         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1756                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1757         else
1758                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1759
1760         /* Load the nested guest state */
1761         svm->vmcb->save.es = nested_vmcb->save.es;
1762         svm->vmcb->save.cs = nested_vmcb->save.cs;
1763         svm->vmcb->save.ss = nested_vmcb->save.ss;
1764         svm->vmcb->save.ds = nested_vmcb->save.ds;
1765         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1766         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1767         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1768         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1769         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1770         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1771         if (npt_enabled) {
1772                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1773                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1774         } else {
1775                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1776                 kvm_mmu_reset_context(&svm->vcpu);
1777         }
1778         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1779         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1780         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1781         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1782         /* In case we don't even reach vcpu_run, the fields are not updated */
1783         svm->vmcb->save.rax = nested_vmcb->save.rax;
1784         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1785         svm->vmcb->save.rip = nested_vmcb->save.rip;
1786         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1787         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1788         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1789
1790         /* We don't want a nested guest to be more powerful than the guest,
1791            so all intercepts are ORed */
1792         svm->vmcb->control.intercept_cr_read |=
1793                 nested_vmcb->control.intercept_cr_read;
1794         svm->vmcb->control.intercept_cr_write |=
1795                 nested_vmcb->control.intercept_cr_write;
1796         svm->vmcb->control.intercept_dr_read |=
1797                 nested_vmcb->control.intercept_dr_read;
1798         svm->vmcb->control.intercept_dr_write |=
1799                 nested_vmcb->control.intercept_dr_write;
1800         svm->vmcb->control.intercept_exceptions |=
1801                 nested_vmcb->control.intercept_exceptions;
1802
1803         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1804
1805         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1806
1807         /* cache intercepts */
1808         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1809         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1810         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1811         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1812         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1813         svm->nested.intercept            = nested_vmcb->control.intercept;
1814
1815         force_new_asid(&svm->vcpu);
1816         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1817         if (nested_vmcb->control.int_ctl & V_IRQ_MASK) {
1818                 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1819                                 nested_vmcb->control.int_ctl);
1820         }
1821         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1822                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1823         else
1824                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1825
1826         nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1827                         nested_vmcb->control.exit_int_info,
1828                         nested_vmcb->control.int_state);
1829
1830         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1831         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1832         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1833         if (nested_vmcb->control.event_inj & SVM_EVTINJ_VALID)
1834                 nsvm_printk("Injecting Event: 0x%x\n",
1835                                 nested_vmcb->control.event_inj);
1836         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1837         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1838
1839         nested_svm_unmap(nested_vmcb, KM_USER0);
1840
1841         enable_gif(svm);
1842
1843         return true;
1844 }
1845
1846 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1847 {
1848         to_vmcb->save.fs = from_vmcb->save.fs;
1849         to_vmcb->save.gs = from_vmcb->save.gs;
1850         to_vmcb->save.tr = from_vmcb->save.tr;
1851         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1852         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1853         to_vmcb->save.star = from_vmcb->save.star;
1854         to_vmcb->save.lstar = from_vmcb->save.lstar;
1855         to_vmcb->save.cstar = from_vmcb->save.cstar;
1856         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1857         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1858         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1859         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1860 }
1861
1862 static int vmload_interception(struct vcpu_svm *svm)
1863 {
1864         struct vmcb *nested_vmcb;
1865
1866         if (nested_svm_check_permissions(svm))
1867                 return 1;
1868
1869         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1870         skip_emulated_instruction(&svm->vcpu);
1871
1872         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1873         if (!nested_vmcb)
1874                 return 1;
1875
1876         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1877         nested_svm_unmap(nested_vmcb, KM_USER0);
1878
1879         return 1;
1880 }
1881
1882 static int vmsave_interception(struct vcpu_svm *svm)
1883 {
1884         struct vmcb *nested_vmcb;
1885
1886         if (nested_svm_check_permissions(svm))
1887                 return 1;
1888
1889         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1890         skip_emulated_instruction(&svm->vcpu);
1891
1892         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, KM_USER0);
1893         if (!nested_vmcb)
1894                 return 1;
1895
1896         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
1897         nested_svm_unmap(nested_vmcb, KM_USER0);
1898
1899         return 1;
1900 }
1901
1902 static int vmrun_interception(struct vcpu_svm *svm)
1903 {
1904         nsvm_printk("VMrun\n");
1905
1906         if (nested_svm_check_permissions(svm))
1907                 return 1;
1908
1909         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1910         skip_emulated_instruction(&svm->vcpu);
1911
1912         if (!nested_svm_vmrun(svm))
1913                 return 1;
1914
1915         if (!nested_svm_vmrun_msrpm(svm))
1916                 goto failed;
1917
1918         return 1;
1919
1920 failed:
1921
1922         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
1923         svm->vmcb->control.exit_code_hi = 0;
1924         svm->vmcb->control.exit_info_1  = 0;
1925         svm->vmcb->control.exit_info_2  = 0;
1926
1927         nested_svm_vmexit(svm);
1928
1929         return 1;
1930 }
1931
1932 static int stgi_interception(struct vcpu_svm *svm)
1933 {
1934         if (nested_svm_check_permissions(svm))
1935                 return 1;
1936
1937         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1938         skip_emulated_instruction(&svm->vcpu);
1939
1940         enable_gif(svm);
1941
1942         return 1;
1943 }
1944
1945 static int clgi_interception(struct vcpu_svm *svm)
1946 {
1947         if (nested_svm_check_permissions(svm))
1948                 return 1;
1949
1950         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1951         skip_emulated_instruction(&svm->vcpu);
1952
1953         disable_gif(svm);
1954
1955         /* After a CLGI no interrupts should come */
1956         svm_clear_vintr(svm);
1957         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
1958
1959         return 1;
1960 }
1961
1962 static int invlpga_interception(struct vcpu_svm *svm)
1963 {
1964         struct kvm_vcpu *vcpu = &svm->vcpu;
1965         nsvm_printk("INVLPGA\n");
1966
1967         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
1968         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
1969
1970         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1971         skip_emulated_instruction(&svm->vcpu);
1972         return 1;
1973 }
1974
1975 static int invalid_op_interception(struct vcpu_svm *svm)
1976 {
1977         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1978         return 1;
1979 }
1980
1981 static int task_switch_interception(struct vcpu_svm *svm)
1982 {
1983         u16 tss_selector;
1984         int reason;
1985         int int_type = svm->vmcb->control.exit_int_info &
1986                 SVM_EXITINTINFO_TYPE_MASK;
1987         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
1988         uint32_t type =
1989                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
1990         uint32_t idt_v =
1991                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
1992
1993         tss_selector = (u16)svm->vmcb->control.exit_info_1;
1994
1995         if (svm->vmcb->control.exit_info_2 &
1996             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
1997                 reason = TASK_SWITCH_IRET;
1998         else if (svm->vmcb->control.exit_info_2 &
1999                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2000                 reason = TASK_SWITCH_JMP;
2001         else if (idt_v)
2002                 reason = TASK_SWITCH_GATE;
2003         else
2004                 reason = TASK_SWITCH_CALL;
2005
2006         if (reason == TASK_SWITCH_GATE) {
2007                 switch (type) {
2008                 case SVM_EXITINTINFO_TYPE_NMI:
2009                         svm->vcpu.arch.nmi_injected = false;
2010                         break;
2011                 case SVM_EXITINTINFO_TYPE_EXEPT:
2012                         kvm_clear_exception_queue(&svm->vcpu);
2013                         break;
2014                 case SVM_EXITINTINFO_TYPE_INTR:
2015                         kvm_clear_interrupt_queue(&svm->vcpu);
2016                         break;
2017                 default:
2018                         break;
2019                 }
2020         }
2021
2022         if (reason != TASK_SWITCH_GATE ||
2023             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2024             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2025              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2026                 skip_emulated_instruction(&svm->vcpu);
2027
2028         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2029 }
2030
2031 static int cpuid_interception(struct vcpu_svm *svm)
2032 {
2033         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2034         kvm_emulate_cpuid(&svm->vcpu);
2035         return 1;
2036 }
2037
2038 static int iret_interception(struct vcpu_svm *svm)
2039 {
2040         ++svm->vcpu.stat.nmi_window_exits;
2041         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2042         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2043         return 1;
2044 }
2045
2046 static int invlpg_interception(struct vcpu_svm *svm)
2047 {
2048         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2049                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2050         return 1;
2051 }
2052
2053 static int emulate_on_interception(struct vcpu_svm *svm)
2054 {
2055         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2056                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2057         return 1;
2058 }
2059
2060 static int cr8_write_interception(struct vcpu_svm *svm)
2061 {
2062         struct kvm_run *kvm_run = svm->vcpu.run;
2063
2064         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2065         /* instruction emulation calls kvm_set_cr8() */
2066         emulate_instruction(&svm->vcpu, 0, 0, 0);
2067         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2068                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2069                 return 1;
2070         }
2071         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2072                 return 1;
2073         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2074         return 0;
2075 }
2076
2077 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2078 {
2079         struct vcpu_svm *svm = to_svm(vcpu);
2080
2081         switch (ecx) {
2082         case MSR_IA32_TSC: {
2083                 u64 tsc_offset;
2084
2085                 if (is_nested(svm))
2086                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2087                 else
2088                         tsc_offset = svm->vmcb->control.tsc_offset;
2089
2090                 *data = tsc_offset + native_read_tsc();
2091                 break;
2092         }
2093         case MSR_K6_STAR:
2094                 *data = svm->vmcb->save.star;
2095                 break;
2096 #ifdef CONFIG_X86_64
2097         case MSR_LSTAR:
2098                 *data = svm->vmcb->save.lstar;
2099                 break;
2100         case MSR_CSTAR:
2101                 *data = svm->vmcb->save.cstar;
2102                 break;
2103         case MSR_KERNEL_GS_BASE:
2104                 *data = svm->vmcb->save.kernel_gs_base;
2105                 break;
2106         case MSR_SYSCALL_MASK:
2107                 *data = svm->vmcb->save.sfmask;
2108                 break;
2109 #endif
2110         case MSR_IA32_SYSENTER_CS:
2111                 *data = svm->vmcb->save.sysenter_cs;
2112                 break;
2113         case MSR_IA32_SYSENTER_EIP:
2114                 *data = svm->sysenter_eip;
2115                 break;
2116         case MSR_IA32_SYSENTER_ESP:
2117                 *data = svm->sysenter_esp;
2118                 break;
2119         /* Nobody will change the following 5 values in the VMCB so
2120            we can safely return them on rdmsr. They will always be 0
2121            until LBRV is implemented. */
2122         case MSR_IA32_DEBUGCTLMSR:
2123                 *data = svm->vmcb->save.dbgctl;
2124                 break;
2125         case MSR_IA32_LASTBRANCHFROMIP:
2126                 *data = svm->vmcb->save.br_from;
2127                 break;
2128         case MSR_IA32_LASTBRANCHTOIP:
2129                 *data = svm->vmcb->save.br_to;
2130                 break;
2131         case MSR_IA32_LASTINTFROMIP:
2132                 *data = svm->vmcb->save.last_excp_from;
2133                 break;
2134         case MSR_IA32_LASTINTTOIP:
2135                 *data = svm->vmcb->save.last_excp_to;
2136                 break;
2137         case MSR_VM_HSAVE_PA:
2138                 *data = svm->nested.hsave_msr;
2139                 break;
2140         case MSR_VM_CR:
2141                 *data = 0;
2142                 break;
2143         case MSR_IA32_UCODE_REV:
2144                 *data = 0x01000065;
2145                 break;
2146         default:
2147                 return kvm_get_msr_common(vcpu, ecx, data);
2148         }
2149         return 0;
2150 }
2151
2152 static int rdmsr_interception(struct vcpu_svm *svm)
2153 {
2154         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2155         u64 data;
2156
2157         if (svm_get_msr(&svm->vcpu, ecx, &data))
2158                 kvm_inject_gp(&svm->vcpu, 0);
2159         else {
2160                 trace_kvm_msr_read(ecx, data);
2161
2162                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2163                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2164                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2165                 skip_emulated_instruction(&svm->vcpu);
2166         }
2167         return 1;
2168 }
2169
2170 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2171 {
2172         struct vcpu_svm *svm = to_svm(vcpu);
2173
2174         switch (ecx) {
2175         case MSR_IA32_TSC: {
2176                 u64 tsc_offset = data - native_read_tsc();
2177                 u64 g_tsc_offset = 0;
2178
2179                 if (is_nested(svm)) {
2180                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2181                                        svm->nested.hsave->control.tsc_offset;
2182                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2183                 }
2184
2185                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2186
2187                 break;
2188         }
2189         case MSR_K6_STAR:
2190                 svm->vmcb->save.star = data;
2191                 break;
2192 #ifdef CONFIG_X86_64
2193         case MSR_LSTAR:
2194                 svm->vmcb->save.lstar = data;
2195                 break;
2196         case MSR_CSTAR:
2197                 svm->vmcb->save.cstar = data;
2198                 break;
2199         case MSR_KERNEL_GS_BASE:
2200                 svm->vmcb->save.kernel_gs_base = data;
2201                 break;
2202         case MSR_SYSCALL_MASK:
2203                 svm->vmcb->save.sfmask = data;
2204                 break;
2205 #endif
2206         case MSR_IA32_SYSENTER_CS:
2207                 svm->vmcb->save.sysenter_cs = data;
2208                 break;
2209         case MSR_IA32_SYSENTER_EIP:
2210                 svm->sysenter_eip = data;
2211                 svm->vmcb->save.sysenter_eip = data;
2212                 break;
2213         case MSR_IA32_SYSENTER_ESP:
2214                 svm->sysenter_esp = data;
2215                 svm->vmcb->save.sysenter_esp = data;
2216                 break;
2217         case MSR_IA32_DEBUGCTLMSR:
2218                 if (!svm_has(SVM_FEATURE_LBRV)) {
2219                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2220                                         __func__, data);
2221                         break;
2222                 }
2223                 if (data & DEBUGCTL_RESERVED_BITS)
2224                         return 1;
2225
2226                 svm->vmcb->save.dbgctl = data;
2227                 if (data & (1ULL<<0))
2228                         svm_enable_lbrv(svm);
2229                 else
2230                         svm_disable_lbrv(svm);
2231                 break;
2232         case MSR_VM_HSAVE_PA:
2233                 svm->nested.hsave_msr = data;
2234                 break;
2235         case MSR_VM_CR:
2236         case MSR_VM_IGNNE:
2237                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2238                 break;
2239         default:
2240                 return kvm_set_msr_common(vcpu, ecx, data);
2241         }
2242         return 0;
2243 }
2244
2245 static int wrmsr_interception(struct vcpu_svm *svm)
2246 {
2247         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2248         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2249                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2250
2251         trace_kvm_msr_write(ecx, data);
2252
2253         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2254         if (svm_set_msr(&svm->vcpu, ecx, data))
2255                 kvm_inject_gp(&svm->vcpu, 0);
2256         else
2257                 skip_emulated_instruction(&svm->vcpu);
2258         return 1;
2259 }
2260
2261 static int msr_interception(struct vcpu_svm *svm)
2262 {
2263         if (svm->vmcb->control.exit_info_1)
2264                 return wrmsr_interception(svm);
2265         else
2266                 return rdmsr_interception(svm);
2267 }
2268
2269 static int interrupt_window_interception(struct vcpu_svm *svm)
2270 {
2271         struct kvm_run *kvm_run = svm->vcpu.run;
2272
2273         svm_clear_vintr(svm);
2274         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2275         /*
2276          * If the user space waits to inject interrupts, exit as soon as
2277          * possible
2278          */
2279         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2280             kvm_run->request_interrupt_window &&
2281             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2282                 ++svm->vcpu.stat.irq_window_exits;
2283                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2284                 return 0;
2285         }
2286
2287         return 1;
2288 }
2289
2290 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2291         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2292         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2293         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2294         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2295         /* for now: */
2296         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2297         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2298         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2299         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2300         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2301         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2302         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2303         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2304         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2305         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2306         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2307         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2308         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2309         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2310         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2311         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2312         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2313         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2314         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2315         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2316         [SVM_EXIT_INTR]                         = intr_interception,
2317         [SVM_EXIT_NMI]                          = nmi_interception,
2318         [SVM_EXIT_SMI]                          = nop_on_interception,
2319         [SVM_EXIT_INIT]                         = nop_on_interception,
2320         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2321         /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
2322         [SVM_EXIT_CPUID]                        = cpuid_interception,
2323         [SVM_EXIT_IRET]                         = iret_interception,
2324         [SVM_EXIT_INVD]                         = emulate_on_interception,
2325         [SVM_EXIT_HLT]                          = halt_interception,
2326         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2327         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2328         [SVM_EXIT_IOIO]                         = io_interception,
2329         [SVM_EXIT_MSR]                          = msr_interception,
2330         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2331         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2332         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2333         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2334         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2335         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2336         [SVM_EXIT_STGI]                         = stgi_interception,
2337         [SVM_EXIT_CLGI]                         = clgi_interception,
2338         [SVM_EXIT_SKINIT]                       = invalid_op_interception,
2339         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2340         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2341         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2342         [SVM_EXIT_NPF]                          = pf_interception,
2343 };
2344
2345 static int handle_exit(struct kvm_vcpu *vcpu)
2346 {
2347         struct vcpu_svm *svm = to_svm(vcpu);
2348         struct kvm_run *kvm_run = vcpu->run;
2349         u32 exit_code = svm->vmcb->control.exit_code;
2350
2351         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2352
2353         if (unlikely(svm->nested.exit_required)) {
2354                 nested_svm_vmexit(svm);
2355                 svm->nested.exit_required = false;
2356
2357                 return 1;
2358         }
2359
2360         if (is_nested(svm)) {
2361                 int vmexit;
2362
2363                 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2364                             exit_code, svm->vmcb->control.exit_info_1,
2365                             svm->vmcb->control.exit_info_2, svm->vmcb->save.rip);
2366
2367                 vmexit = nested_svm_exit_special(svm);
2368
2369                 if (vmexit == NESTED_EXIT_CONTINUE)
2370                         vmexit = nested_svm_exit_handled(svm);
2371
2372                 if (vmexit == NESTED_EXIT_DONE)
2373                         return 1;
2374         }
2375
2376         svm_complete_interrupts(svm);
2377
2378         if (npt_enabled) {
2379                 int mmu_reload = 0;
2380                 if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
2381                         svm_set_cr0(vcpu, svm->vmcb->save.cr0);
2382                         mmu_reload = 1;
2383                 }
2384                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2385                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2386                 if (mmu_reload) {
2387                         kvm_mmu_reset_context(vcpu);
2388                         kvm_mmu_load(vcpu);
2389                 }
2390         }
2391
2392
2393         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2394                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2395                 kvm_run->fail_entry.hardware_entry_failure_reason
2396                         = svm->vmcb->control.exit_code;
2397                 return 0;
2398         }
2399
2400         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2401             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2402             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2403                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2404                        "exit_code 0x%x\n",
2405                        __func__, svm->vmcb->control.exit_int_info,
2406                        exit_code);
2407
2408         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2409             || !svm_exit_handlers[exit_code]) {
2410                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2411                 kvm_run->hw.hardware_exit_reason = exit_code;
2412                 return 0;
2413         }
2414
2415         return svm_exit_handlers[exit_code](svm);
2416 }
2417
2418 static void reload_tss(struct kvm_vcpu *vcpu)
2419 {
2420         int cpu = raw_smp_processor_id();
2421
2422         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2423         svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
2424         load_TR_desc();
2425 }
2426
2427 static void pre_svm_run(struct vcpu_svm *svm)
2428 {
2429         int cpu = raw_smp_processor_id();
2430
2431         struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
2432
2433         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2434         /* FIXME: handle wraparound of asid_generation */
2435         if (svm->asid_generation != svm_data->asid_generation)
2436                 new_asid(svm, svm_data);
2437 }
2438
2439 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2440 {
2441         struct vcpu_svm *svm = to_svm(vcpu);
2442
2443         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2444         vcpu->arch.hflags |= HF_NMI_MASK;
2445         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2446         ++vcpu->stat.nmi_injections;
2447 }
2448
2449 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2450 {
2451         struct vmcb_control_area *control;
2452
2453         trace_kvm_inj_virq(irq);
2454
2455         ++svm->vcpu.stat.irq_injections;
2456         control = &svm->vmcb->control;
2457         control->int_vector = irq;
2458         control->int_ctl &= ~V_INTR_PRIO_MASK;
2459         control->int_ctl |= V_IRQ_MASK |
2460                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2461 }
2462
2463 static void svm_set_irq(struct kvm_vcpu *vcpu)
2464 {
2465         struct vcpu_svm *svm = to_svm(vcpu);
2466
2467         BUG_ON(!(gif_set(svm)));
2468
2469         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2470                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2471 }
2472
2473 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2474 {
2475         struct vcpu_svm *svm = to_svm(vcpu);
2476
2477         if (irr == -1)
2478                 return;
2479
2480         if (tpr >= irr)
2481                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2482 }
2483
2484 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2485 {
2486         struct vcpu_svm *svm = to_svm(vcpu);
2487         struct vmcb *vmcb = svm->vmcb;
2488         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2489                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2490 }
2491
2492 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2493 {
2494         struct vcpu_svm *svm = to_svm(vcpu);
2495         struct vmcb *vmcb = svm->vmcb;
2496         int ret;
2497
2498         if (!gif_set(svm) ||
2499              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2500                 return 0;
2501
2502         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2503
2504         if (is_nested(svm))
2505                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2506
2507         return ret;
2508 }
2509
2510 static void enable_irq_window(struct kvm_vcpu *vcpu)
2511 {
2512         struct vcpu_svm *svm = to_svm(vcpu);
2513         nsvm_printk("Trying to open IRQ window\n");
2514
2515         nested_svm_intr(svm);
2516
2517         /* In case GIF=0 we can't rely on the CPU to tell us when
2518          * GIF becomes 1, because that's a separate STGI/VMRUN intercept.
2519          * The next time we get that intercept, this function will be
2520          * called again though and we'll get the vintr intercept. */
2521         if (gif_set(svm)) {
2522                 svm_set_vintr(svm);
2523                 svm_inject_irq(svm, 0x0);
2524         }
2525 }
2526
2527 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2528 {
2529         struct vcpu_svm *svm = to_svm(vcpu);
2530
2531         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2532             == HF_NMI_MASK)
2533                 return; /* IRET will cause a vm exit */
2534
2535         /* Something prevents NMI from been injected. Single step over
2536            possible problem (IRET or exception injection or interrupt
2537            shadow) */
2538         vcpu->arch.singlestep = true;
2539         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2540         update_db_intercept(vcpu);
2541 }
2542
2543 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2544 {
2545         return 0;
2546 }
2547
2548 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2549 {
2550         force_new_asid(vcpu);
2551 }
2552
2553 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2554 {
2555 }
2556
2557 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2558 {
2559         struct vcpu_svm *svm = to_svm(vcpu);
2560
2561         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2562                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2563                 kvm_set_cr8(vcpu, cr8);
2564         }
2565 }
2566
2567 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2568 {
2569         struct vcpu_svm *svm = to_svm(vcpu);
2570         u64 cr8;
2571
2572         cr8 = kvm_get_cr8(vcpu);
2573         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2574         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2575 }
2576
2577 static void svm_complete_interrupts(struct vcpu_svm *svm)
2578 {
2579         u8 vector;
2580         int type;
2581         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2582
2583         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2584                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2585
2586         svm->vcpu.arch.nmi_injected = false;
2587         kvm_clear_exception_queue(&svm->vcpu);
2588         kvm_clear_interrupt_queue(&svm->vcpu);
2589
2590         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2591                 return;
2592
2593         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2594         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2595
2596         switch (type) {
2597         case SVM_EXITINTINFO_TYPE_NMI:
2598                 svm->vcpu.arch.nmi_injected = true;
2599                 break;
2600         case SVM_EXITINTINFO_TYPE_EXEPT:
2601                 /* In case of software exception do not reinject an exception
2602                    vector, but re-execute and instruction instead */
2603                 if (is_nested(svm))
2604                         break;
2605                 if (kvm_exception_is_soft(vector))
2606                         break;
2607                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2608                         u32 err = svm->vmcb->control.exit_int_info_err;
2609                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2610
2611                 } else
2612                         kvm_queue_exception(&svm->vcpu, vector);
2613                 break;
2614         case SVM_EXITINTINFO_TYPE_INTR:
2615                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2616                 break;
2617         default:
2618                 break;
2619         }
2620 }
2621
2622 #ifdef CONFIG_X86_64
2623 #define R "r"
2624 #else
2625 #define R "e"
2626 #endif
2627
2628 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2629 {
2630         struct vcpu_svm *svm = to_svm(vcpu);
2631         u16 fs_selector;
2632         u16 gs_selector;
2633         u16 ldt_selector;
2634
2635         /*
2636          * A vmexit emulation is required before the vcpu can be executed
2637          * again.
2638          */
2639         if (unlikely(svm->nested.exit_required))
2640                 return;
2641
2642         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2643         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2644         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2645
2646         pre_svm_run(svm);
2647
2648         sync_lapic_to_cr8(vcpu);
2649
2650         save_host_msrs(vcpu);
2651         fs_selector = kvm_read_fs();
2652         gs_selector = kvm_read_gs();
2653         ldt_selector = kvm_read_ldt();
2654         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2655         /* required for live migration with NPT */
2656         if (npt_enabled)
2657                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2658
2659         clgi();
2660
2661         local_irq_enable();
2662
2663         asm volatile (
2664                 "push %%"R"bp; \n\t"
2665                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2666                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2667                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2668                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2669                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2670                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2671 #ifdef CONFIG_X86_64
2672                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2673                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2674                 "mov %c[r10](%[svm]), %%r10 \n\t"
2675                 "mov %c[r11](%[svm]), %%r11 \n\t"
2676                 "mov %c[r12](%[svm]), %%r12 \n\t"
2677                 "mov %c[r13](%[svm]), %%r13 \n\t"
2678                 "mov %c[r14](%[svm]), %%r14 \n\t"
2679                 "mov %c[r15](%[svm]), %%r15 \n\t"
2680 #endif
2681
2682                 /* Enter guest mode */
2683                 "push %%"R"ax \n\t"
2684                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2685                 __ex(SVM_VMLOAD) "\n\t"
2686                 __ex(SVM_VMRUN) "\n\t"
2687                 __ex(SVM_VMSAVE) "\n\t"
2688                 "pop %%"R"ax \n\t"
2689
2690                 /* Save guest registers, load host registers */
2691                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2692                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2693                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2694                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2695                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2696                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2697 #ifdef CONFIG_X86_64
2698                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2699                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2700                 "mov %%r10, %c[r10](%[svm]) \n\t"
2701                 "mov %%r11, %c[r11](%[svm]) \n\t"
2702                 "mov %%r12, %c[r12](%[svm]) \n\t"
2703                 "mov %%r13, %c[r13](%[svm]) \n\t"
2704                 "mov %%r14, %c[r14](%[svm]) \n\t"
2705                 "mov %%r15, %c[r15](%[svm]) \n\t"
2706 #endif
2707                 "pop %%"R"bp"
2708                 :
2709                 : [svm]"a"(svm),
2710                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2711                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2712                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2713                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2714                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2715                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2716                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2717 #ifdef CONFIG_X86_64
2718                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2719                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2720                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2721                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2722                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2723                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2724                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2725                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2726 #endif
2727                 : "cc", "memory"
2728                 , R"bx", R"cx", R"dx", R"si", R"di"
2729 #ifdef CONFIG_X86_64
2730                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2731 #endif
2732                 );
2733
2734         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2735         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2736         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2737         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2738
2739         kvm_load_fs(fs_selector);
2740         kvm_load_gs(gs_selector);
2741         kvm_load_ldt(ldt_selector);
2742         load_host_msrs(vcpu);
2743
2744         reload_tss(vcpu);
2745
2746         local_irq_disable();
2747
2748         stgi();
2749
2750         sync_cr8_to_lapic(vcpu);
2751
2752         svm->next_rip = 0;
2753
2754         if (npt_enabled) {
2755                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2756                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2757         }
2758 }
2759
2760 #undef R
2761
2762 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2763 {
2764         struct vcpu_svm *svm = to_svm(vcpu);
2765
2766         if (npt_enabled) {
2767                 svm->vmcb->control.nested_cr3 = root;
2768                 force_new_asid(vcpu);
2769                 return;
2770         }
2771
2772         svm->vmcb->save.cr3 = root;
2773         force_new_asid(vcpu);
2774
2775         if (vcpu->fpu_active) {
2776                 svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
2777                 svm->vmcb->save.cr0 |= X86_CR0_TS;
2778                 vcpu->fpu_active = 0;
2779         }
2780 }
2781
2782 static int is_disabled(void)
2783 {
2784         u64 vm_cr;
2785
2786         rdmsrl(MSR_VM_CR, vm_cr);
2787         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2788                 return 1;
2789
2790         return 0;
2791 }
2792
2793 static void
2794 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2795 {
2796         /*
2797          * Patch in the VMMCALL instruction:
2798          */
2799         hypercall[0] = 0x0f;
2800         hypercall[1] = 0x01;
2801         hypercall[2] = 0xd9;
2802 }
2803
2804 static void svm_check_processor_compat(void *rtn)
2805 {
2806         *(int *)rtn = 0;
2807 }
2808
2809 static bool svm_cpu_has_accelerated_tpr(void)
2810 {
2811         return false;
2812 }
2813
2814 static int get_npt_level(void)
2815 {
2816 #ifdef CONFIG_X86_64
2817         return PT64_ROOT_LEVEL;
2818 #else
2819         return PT32E_ROOT_LEVEL;
2820 #endif
2821 }
2822
2823 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2824 {
2825         return 0;
2826 }
2827
2828 static const struct trace_print_flags svm_exit_reasons_str[] = {
2829         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2830         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2831         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2832         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2833         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
2834         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
2835         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
2836         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
2837         { SVM_EXIT_READ_DR0,                    "read_dr0" },
2838         { SVM_EXIT_READ_DR1,                    "read_dr1" },
2839         { SVM_EXIT_READ_DR2,                    "read_dr2" },
2840         { SVM_EXIT_READ_DR3,                    "read_dr3" },
2841         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
2842         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
2843         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
2844         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
2845         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
2846         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
2847         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
2848         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
2849         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
2850         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
2851         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
2852         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
2853         { SVM_EXIT_INTR,                        "interrupt" },
2854         { SVM_EXIT_NMI,                         "nmi" },
2855         { SVM_EXIT_SMI,                         "smi" },
2856         { SVM_EXIT_INIT,                        "init" },
2857         { SVM_EXIT_VINTR,                       "vintr" },
2858         { SVM_EXIT_CPUID,                       "cpuid" },
2859         { SVM_EXIT_INVD,                        "invd" },
2860         { SVM_EXIT_HLT,                         "hlt" },
2861         { SVM_EXIT_INVLPG,                      "invlpg" },
2862         { SVM_EXIT_INVLPGA,                     "invlpga" },
2863         { SVM_EXIT_IOIO,                        "io" },
2864         { SVM_EXIT_MSR,                         "msr" },
2865         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
2866         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
2867         { SVM_EXIT_VMRUN,                       "vmrun" },
2868         { SVM_EXIT_VMMCALL,                     "hypercall" },
2869         { SVM_EXIT_VMLOAD,                      "vmload" },
2870         { SVM_EXIT_VMSAVE,                      "vmsave" },
2871         { SVM_EXIT_STGI,                        "stgi" },
2872         { SVM_EXIT_CLGI,                        "clgi" },
2873         { SVM_EXIT_SKINIT,                      "skinit" },
2874         { SVM_EXIT_WBINVD,                      "wbinvd" },
2875         { SVM_EXIT_MONITOR,                     "monitor" },
2876         { SVM_EXIT_MWAIT,                       "mwait" },
2877         { SVM_EXIT_NPF,                         "npf" },
2878         { -1, NULL }
2879 };
2880
2881 static bool svm_gb_page_enable(void)
2882 {
2883         return true;
2884 }
2885
2886 static struct kvm_x86_ops svm_x86_ops = {
2887         .cpu_has_kvm_support = has_svm,
2888         .disabled_by_bios = is_disabled,
2889         .hardware_setup = svm_hardware_setup,
2890         .hardware_unsetup = svm_hardware_unsetup,
2891         .check_processor_compatibility = svm_check_processor_compat,
2892         .hardware_enable = svm_hardware_enable,
2893         .hardware_disable = svm_hardware_disable,
2894         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
2895
2896         .vcpu_create = svm_create_vcpu,
2897         .vcpu_free = svm_free_vcpu,
2898         .vcpu_reset = svm_vcpu_reset,
2899
2900         .prepare_guest_switch = svm_prepare_guest_switch,
2901         .vcpu_load = svm_vcpu_load,
2902         .vcpu_put = svm_vcpu_put,
2903
2904         .set_guest_debug = svm_guest_debug,
2905         .get_msr = svm_get_msr,
2906         .set_msr = svm_set_msr,
2907         .get_segment_base = svm_get_segment_base,
2908         .get_segment = svm_get_segment,
2909         .set_segment = svm_set_segment,
2910         .get_cpl = svm_get_cpl,
2911         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
2912         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
2913         .set_cr0 = svm_set_cr0,
2914         .set_cr3 = svm_set_cr3,
2915         .set_cr4 = svm_set_cr4,
2916         .set_efer = svm_set_efer,
2917         .get_idt = svm_get_idt,
2918         .set_idt = svm_set_idt,
2919         .get_gdt = svm_get_gdt,
2920         .set_gdt = svm_set_gdt,
2921         .get_dr = svm_get_dr,
2922         .set_dr = svm_set_dr,
2923         .cache_reg = svm_cache_reg,
2924         .get_rflags = svm_get_rflags,
2925         .set_rflags = svm_set_rflags,
2926
2927         .tlb_flush = svm_flush_tlb,
2928
2929         .run = svm_vcpu_run,
2930         .handle_exit = handle_exit,
2931         .skip_emulated_instruction = skip_emulated_instruction,
2932         .set_interrupt_shadow = svm_set_interrupt_shadow,
2933         .get_interrupt_shadow = svm_get_interrupt_shadow,
2934         .patch_hypercall = svm_patch_hypercall,
2935         .set_irq = svm_set_irq,
2936         .set_nmi = svm_inject_nmi,
2937         .queue_exception = svm_queue_exception,
2938         .interrupt_allowed = svm_interrupt_allowed,
2939         .nmi_allowed = svm_nmi_allowed,
2940         .enable_nmi_window = enable_nmi_window,
2941         .enable_irq_window = enable_irq_window,
2942         .update_cr8_intercept = update_cr8_intercept,
2943
2944         .set_tss_addr = svm_set_tss_addr,
2945         .get_tdp_level = get_npt_level,
2946         .get_mt_mask = svm_get_mt_mask,
2947
2948         .exit_reasons_str = svm_exit_reasons_str,
2949         .gb_page_enable = svm_gb_page_enable,
2950 };
2951
2952 static int __init svm_init(void)
2953 {
2954         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
2955                               THIS_MODULE);
2956 }
2957
2958 static void __exit svm_exit(void)
2959 {
2960         kvm_exit();
2961 }
2962
2963 module_init(svm_init)
2964 module_exit(svm_exit)