]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kvm/svm.c
KVM: SVM: Optimize nested svm msrpm merging
[net-next-2.6.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30
31 #include <asm/desc.h>
32
33 #include <asm/virtext.h>
34 #include "trace.h"
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_NRIP (1 << 3)
51 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
52
53 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
54 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
55 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
56
57 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
58
59 static const u32 host_save_user_msrs[] = {
60 #ifdef CONFIG_X86_64
61         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
62         MSR_FS_BASE,
63 #endif
64         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
65 };
66
67 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
68
69 struct kvm_vcpu;
70
71 struct nested_state {
72         struct vmcb *hsave;
73         u64 hsave_msr;
74         u64 vm_cr_msr;
75         u64 vmcb;
76
77         /* These are the merged vectors */
78         u32 *msrpm;
79
80         /* gpa pointers to the real vectors */
81         u64 vmcb_msrpm;
82
83         /* A VMEXIT is required but not yet emulated */
84         bool exit_required;
85
86         /* cache for intercepts of the guest */
87         u16 intercept_cr_read;
88         u16 intercept_cr_write;
89         u16 intercept_dr_read;
90         u16 intercept_dr_write;
91         u32 intercept_exceptions;
92         u64 intercept;
93
94 };
95
96 #define MSRPM_OFFSETS   16
97 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
98
99 struct vcpu_svm {
100         struct kvm_vcpu vcpu;
101         struct vmcb *vmcb;
102         unsigned long vmcb_pa;
103         struct svm_cpu_data *svm_data;
104         uint64_t asid_generation;
105         uint64_t sysenter_esp;
106         uint64_t sysenter_eip;
107
108         u64 next_rip;
109
110         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
111         u64 host_gs_base;
112
113         u32 *msrpm;
114
115         struct nested_state nested;
116
117         bool nmi_singlestep;
118
119         unsigned int3_injected;
120         unsigned long int3_rip;
121 };
122
123 #define MSR_INVALID                     0xffffffffU
124
125 static struct svm_direct_access_msrs {
126         u32 index;   /* Index of the MSR */
127         bool always; /* True if intercept is always on */
128 } direct_access_msrs[] = {
129         { .index = MSR_K6_STAR,                         .always = true  },
130         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
131 #ifdef CONFIG_X86_64
132         { .index = MSR_GS_BASE,                         .always = true  },
133         { .index = MSR_FS_BASE,                         .always = true  },
134         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
135         { .index = MSR_LSTAR,                           .always = true  },
136         { .index = MSR_CSTAR,                           .always = true  },
137         { .index = MSR_SYSCALL_MASK,                    .always = true  },
138 #endif
139         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
140         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
141         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
142         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
143         { .index = MSR_INVALID,                         .always = false },
144 };
145
146 /* enable NPT for AMD64 and X86 with PAE */
147 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
148 static bool npt_enabled = true;
149 #else
150 static bool npt_enabled;
151 #endif
152 static int npt = 1;
153
154 module_param(npt, int, S_IRUGO);
155
156 static int nested = 1;
157 module_param(nested, int, S_IRUGO);
158
159 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
160 static void svm_complete_interrupts(struct vcpu_svm *svm);
161
162 static int nested_svm_exit_handled(struct vcpu_svm *svm);
163 static int nested_svm_intercept(struct vcpu_svm *svm);
164 static int nested_svm_vmexit(struct vcpu_svm *svm);
165 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
166                                       bool has_error_code, u32 error_code);
167
168 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
169 {
170         return container_of(vcpu, struct vcpu_svm, vcpu);
171 }
172
173 static inline bool is_nested(struct vcpu_svm *svm)
174 {
175         return svm->nested.vmcb;
176 }
177
178 static inline void enable_gif(struct vcpu_svm *svm)
179 {
180         svm->vcpu.arch.hflags |= HF_GIF_MASK;
181 }
182
183 static inline void disable_gif(struct vcpu_svm *svm)
184 {
185         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
186 }
187
188 static inline bool gif_set(struct vcpu_svm *svm)
189 {
190         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
191 }
192
193 static unsigned long iopm_base;
194
195 struct kvm_ldttss_desc {
196         u16 limit0;
197         u16 base0;
198         unsigned base1:8, type:5, dpl:2, p:1;
199         unsigned limit1:4, zero0:3, g:1, base2:8;
200         u32 base3;
201         u32 zero1;
202 } __attribute__((packed));
203
204 struct svm_cpu_data {
205         int cpu;
206
207         u64 asid_generation;
208         u32 max_asid;
209         u32 next_asid;
210         struct kvm_ldttss_desc *tss_desc;
211
212         struct page *save_area;
213 };
214
215 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
216 static uint32_t svm_features;
217
218 struct svm_init_data {
219         int cpu;
220         int r;
221 };
222
223 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
224
225 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
226 #define MSRS_RANGE_SIZE 2048
227 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
228
229 static u32 svm_msrpm_offset(u32 msr)
230 {
231         u32 offset;
232         int i;
233
234         for (i = 0; i < NUM_MSR_MAPS; i++) {
235                 if (msr < msrpm_ranges[i] ||
236                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
237                         continue;
238
239                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
240                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
241
242                 /* Now we have the u8 offset - but need the u32 offset */
243                 return offset / 4;
244         }
245
246         /* MSR not in any range */
247         return MSR_INVALID;
248 }
249
250 #define MAX_INST_SIZE 15
251
252 static inline u32 svm_has(u32 feat)
253 {
254         return svm_features & feat;
255 }
256
257 static inline void clgi(void)
258 {
259         asm volatile (__ex(SVM_CLGI));
260 }
261
262 static inline void stgi(void)
263 {
264         asm volatile (__ex(SVM_STGI));
265 }
266
267 static inline void invlpga(unsigned long addr, u32 asid)
268 {
269         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
270 }
271
272 static inline void force_new_asid(struct kvm_vcpu *vcpu)
273 {
274         to_svm(vcpu)->asid_generation--;
275 }
276
277 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
278 {
279         force_new_asid(vcpu);
280 }
281
282 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
283 {
284         if (!npt_enabled && !(efer & EFER_LMA))
285                 efer &= ~EFER_LME;
286
287         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
288         vcpu->arch.efer = efer;
289 }
290
291 static int is_external_interrupt(u32 info)
292 {
293         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
294         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
295 }
296
297 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
298 {
299         struct vcpu_svm *svm = to_svm(vcpu);
300         u32 ret = 0;
301
302         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
303                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
304         return ret & mask;
305 }
306
307 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
308 {
309         struct vcpu_svm *svm = to_svm(vcpu);
310
311         if (mask == 0)
312                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
313         else
314                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
315
316 }
317
318 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
319 {
320         struct vcpu_svm *svm = to_svm(vcpu);
321
322         if (!svm->next_rip) {
323                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
324                                 EMULATE_DONE)
325                         printk(KERN_DEBUG "%s: NOP\n", __func__);
326                 return;
327         }
328         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
329                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
330                        __func__, kvm_rip_read(vcpu), svm->next_rip);
331
332         kvm_rip_write(vcpu, svm->next_rip);
333         svm_set_interrupt_shadow(vcpu, 0);
334 }
335
336 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
337                                 bool has_error_code, u32 error_code)
338 {
339         struct vcpu_svm *svm = to_svm(vcpu);
340
341         /*
342          * If we are within a nested VM we'd better #VMEXIT and let the guest
343          * handle the exception
344          */
345         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
346                 return;
347
348         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
349                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
350
351                 /*
352                  * For guest debugging where we have to reinject #BP if some
353                  * INT3 is guest-owned:
354                  * Emulate nRIP by moving RIP forward. Will fail if injection
355                  * raises a fault that is not intercepted. Still better than
356                  * failing in all cases.
357                  */
358                 skip_emulated_instruction(&svm->vcpu);
359                 rip = kvm_rip_read(&svm->vcpu);
360                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
361                 svm->int3_injected = rip - old_rip;
362         }
363
364         svm->vmcb->control.event_inj = nr
365                 | SVM_EVTINJ_VALID
366                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
367                 | SVM_EVTINJ_TYPE_EXEPT;
368         svm->vmcb->control.event_inj_err = error_code;
369 }
370
371 static int has_svm(void)
372 {
373         const char *msg;
374
375         if (!cpu_has_svm(&msg)) {
376                 printk(KERN_INFO "has_svm: %s\n", msg);
377                 return 0;
378         }
379
380         return 1;
381 }
382
383 static void svm_hardware_disable(void *garbage)
384 {
385         cpu_svm_disable();
386 }
387
388 static int svm_hardware_enable(void *garbage)
389 {
390
391         struct svm_cpu_data *sd;
392         uint64_t efer;
393         struct desc_ptr gdt_descr;
394         struct desc_struct *gdt;
395         int me = raw_smp_processor_id();
396
397         rdmsrl(MSR_EFER, efer);
398         if (efer & EFER_SVME)
399                 return -EBUSY;
400
401         if (!has_svm()) {
402                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
403                        me);
404                 return -EINVAL;
405         }
406         sd = per_cpu(svm_data, me);
407
408         if (!sd) {
409                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
410                        me);
411                 return -EINVAL;
412         }
413
414         sd->asid_generation = 1;
415         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
416         sd->next_asid = sd->max_asid + 1;
417
418         native_store_gdt(&gdt_descr);
419         gdt = (struct desc_struct *)gdt_descr.address;
420         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
421
422         wrmsrl(MSR_EFER, efer | EFER_SVME);
423
424         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
425
426         return 0;
427 }
428
429 static void svm_cpu_uninit(int cpu)
430 {
431         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
432
433         if (!sd)
434                 return;
435
436         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
437         __free_page(sd->save_area);
438         kfree(sd);
439 }
440
441 static int svm_cpu_init(int cpu)
442 {
443         struct svm_cpu_data *sd;
444         int r;
445
446         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
447         if (!sd)
448                 return -ENOMEM;
449         sd->cpu = cpu;
450         sd->save_area = alloc_page(GFP_KERNEL);
451         r = -ENOMEM;
452         if (!sd->save_area)
453                 goto err_1;
454
455         per_cpu(svm_data, cpu) = sd;
456
457         return 0;
458
459 err_1:
460         kfree(sd);
461         return r;
462
463 }
464
465 static bool valid_msr_intercept(u32 index)
466 {
467         int i;
468
469         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
470                 if (direct_access_msrs[i].index == index)
471                         return true;
472
473         return false;
474 }
475
476 static void set_msr_interception(u32 *msrpm, unsigned msr,
477                                  int read, int write)
478 {
479         u8 bit_read, bit_write;
480         unsigned long tmp;
481         u32 offset;
482
483         /*
484          * If this warning triggers extend the direct_access_msrs list at the
485          * beginning of the file
486          */
487         WARN_ON(!valid_msr_intercept(msr));
488
489         offset    = svm_msrpm_offset(msr);
490         bit_read  = 2 * (msr & 0x0f);
491         bit_write = 2 * (msr & 0x0f) + 1;
492         tmp       = msrpm[offset];
493
494         BUG_ON(offset == MSR_INVALID);
495
496         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
497         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
498
499         msrpm[offset] = tmp;
500 }
501
502 static void svm_vcpu_init_msrpm(u32 *msrpm)
503 {
504         int i;
505
506         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
507
508         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
509                 if (!direct_access_msrs[i].always)
510                         continue;
511
512                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
513         }
514 }
515
516 static void add_msr_offset(u32 offset)
517 {
518         int i;
519
520         for (i = 0; i < MSRPM_OFFSETS; ++i) {
521
522                 /* Offset already in list? */
523                 if (msrpm_offsets[i] == offset)
524                         return;
525
526                 /* Slot used by another offset? */
527                 if (msrpm_offsets[i] != MSR_INVALID)
528                         continue;
529
530                 /* Add offset to list */
531                 msrpm_offsets[i] = offset;
532
533                 return;
534         }
535
536         /*
537          * If this BUG triggers the msrpm_offsets table has an overflow. Just
538          * increase MSRPM_OFFSETS in this case.
539          */
540         BUG();
541 }
542
543 static void init_msrpm_offsets(void)
544 {
545         int i;
546
547         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
548
549         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
550                 u32 offset;
551
552                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
553                 BUG_ON(offset == MSR_INVALID);
554
555                 add_msr_offset(offset);
556         }
557 }
558
559 static void svm_enable_lbrv(struct vcpu_svm *svm)
560 {
561         u32 *msrpm = svm->msrpm;
562
563         svm->vmcb->control.lbr_ctl = 1;
564         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
565         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
566         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
567         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
568 }
569
570 static void svm_disable_lbrv(struct vcpu_svm *svm)
571 {
572         u32 *msrpm = svm->msrpm;
573
574         svm->vmcb->control.lbr_ctl = 0;
575         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
576         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
577         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
578         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
579 }
580
581 static __init int svm_hardware_setup(void)
582 {
583         int cpu;
584         struct page *iopm_pages;
585         void *iopm_va;
586         int r;
587
588         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
589
590         if (!iopm_pages)
591                 return -ENOMEM;
592
593         iopm_va = page_address(iopm_pages);
594         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
595         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
596
597         init_msrpm_offsets();
598
599         if (boot_cpu_has(X86_FEATURE_NX))
600                 kvm_enable_efer_bits(EFER_NX);
601
602         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
603                 kvm_enable_efer_bits(EFER_FFXSR);
604
605         if (nested) {
606                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
607                 kvm_enable_efer_bits(EFER_SVME);
608         }
609
610         for_each_possible_cpu(cpu) {
611                 r = svm_cpu_init(cpu);
612                 if (r)
613                         goto err;
614         }
615
616         svm_features = cpuid_edx(SVM_CPUID_FUNC);
617
618         if (!svm_has(SVM_FEATURE_NPT))
619                 npt_enabled = false;
620
621         if (npt_enabled && !npt) {
622                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
623                 npt_enabled = false;
624         }
625
626         if (npt_enabled) {
627                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
628                 kvm_enable_tdp();
629         } else
630                 kvm_disable_tdp();
631
632         return 0;
633
634 err:
635         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
636         iopm_base = 0;
637         return r;
638 }
639
640 static __exit void svm_hardware_unsetup(void)
641 {
642         int cpu;
643
644         for_each_possible_cpu(cpu)
645                 svm_cpu_uninit(cpu);
646
647         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
648         iopm_base = 0;
649 }
650
651 static void init_seg(struct vmcb_seg *seg)
652 {
653         seg->selector = 0;
654         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
655                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
656         seg->limit = 0xffff;
657         seg->base = 0;
658 }
659
660 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
661 {
662         seg->selector = 0;
663         seg->attrib = SVM_SELECTOR_P_MASK | type;
664         seg->limit = 0xffff;
665         seg->base = 0;
666 }
667
668 static void init_vmcb(struct vcpu_svm *svm)
669 {
670         struct vmcb_control_area *control = &svm->vmcb->control;
671         struct vmcb_save_area *save = &svm->vmcb->save;
672
673         svm->vcpu.fpu_active = 1;
674
675         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
676                                         INTERCEPT_CR3_MASK |
677                                         INTERCEPT_CR4_MASK;
678
679         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
680                                         INTERCEPT_CR3_MASK |
681                                         INTERCEPT_CR4_MASK |
682                                         INTERCEPT_CR8_MASK;
683
684         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
685                                         INTERCEPT_DR1_MASK |
686                                         INTERCEPT_DR2_MASK |
687                                         INTERCEPT_DR3_MASK |
688                                         INTERCEPT_DR4_MASK |
689                                         INTERCEPT_DR5_MASK |
690                                         INTERCEPT_DR6_MASK |
691                                         INTERCEPT_DR7_MASK;
692
693         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
694                                         INTERCEPT_DR1_MASK |
695                                         INTERCEPT_DR2_MASK |
696                                         INTERCEPT_DR3_MASK |
697                                         INTERCEPT_DR4_MASK |
698                                         INTERCEPT_DR5_MASK |
699                                         INTERCEPT_DR6_MASK |
700                                         INTERCEPT_DR7_MASK;
701
702         control->intercept_exceptions = (1 << PF_VECTOR) |
703                                         (1 << UD_VECTOR) |
704                                         (1 << MC_VECTOR);
705
706
707         control->intercept =    (1ULL << INTERCEPT_INTR) |
708                                 (1ULL << INTERCEPT_NMI) |
709                                 (1ULL << INTERCEPT_SMI) |
710                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
711                                 (1ULL << INTERCEPT_CPUID) |
712                                 (1ULL << INTERCEPT_INVD) |
713                                 (1ULL << INTERCEPT_HLT) |
714                                 (1ULL << INTERCEPT_INVLPG) |
715                                 (1ULL << INTERCEPT_INVLPGA) |
716                                 (1ULL << INTERCEPT_IOIO_PROT) |
717                                 (1ULL << INTERCEPT_MSR_PROT) |
718                                 (1ULL << INTERCEPT_TASK_SWITCH) |
719                                 (1ULL << INTERCEPT_SHUTDOWN) |
720                                 (1ULL << INTERCEPT_VMRUN) |
721                                 (1ULL << INTERCEPT_VMMCALL) |
722                                 (1ULL << INTERCEPT_VMLOAD) |
723                                 (1ULL << INTERCEPT_VMSAVE) |
724                                 (1ULL << INTERCEPT_STGI) |
725                                 (1ULL << INTERCEPT_CLGI) |
726                                 (1ULL << INTERCEPT_SKINIT) |
727                                 (1ULL << INTERCEPT_WBINVD) |
728                                 (1ULL << INTERCEPT_MONITOR) |
729                                 (1ULL << INTERCEPT_MWAIT);
730
731         control->iopm_base_pa = iopm_base;
732         control->msrpm_base_pa = __pa(svm->msrpm);
733         control->tsc_offset = 0;
734         control->int_ctl = V_INTR_MASKING_MASK;
735
736         init_seg(&save->es);
737         init_seg(&save->ss);
738         init_seg(&save->ds);
739         init_seg(&save->fs);
740         init_seg(&save->gs);
741
742         save->cs.selector = 0xf000;
743         /* Executable/Readable Code Segment */
744         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
745                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
746         save->cs.limit = 0xffff;
747         /*
748          * cs.base should really be 0xffff0000, but vmx can't handle that, so
749          * be consistent with it.
750          *
751          * Replace when we have real mode working for vmx.
752          */
753         save->cs.base = 0xf0000;
754
755         save->gdtr.limit = 0xffff;
756         save->idtr.limit = 0xffff;
757
758         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
759         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
760
761         save->efer = EFER_SVME;
762         save->dr6 = 0xffff0ff0;
763         save->dr7 = 0x400;
764         save->rflags = 2;
765         save->rip = 0x0000fff0;
766         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
767
768         /*
769          * This is the guest-visible cr0 value.
770          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
771          */
772         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
773         kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
774
775         save->cr4 = X86_CR4_PAE;
776         /* rdx = ?? */
777
778         if (npt_enabled) {
779                 /* Setup VMCB for Nested Paging */
780                 control->nested_ctl = 1;
781                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
782                                         (1ULL << INTERCEPT_INVLPG));
783                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
784                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
785                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
786                 save->g_pat = 0x0007040600070406ULL;
787                 save->cr3 = 0;
788                 save->cr4 = 0;
789         }
790         force_new_asid(&svm->vcpu);
791
792         svm->nested.vmcb = 0;
793         svm->vcpu.arch.hflags = 0;
794
795         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
796                 control->pause_filter_count = 3000;
797                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
798         }
799
800         enable_gif(svm);
801 }
802
803 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
804 {
805         struct vcpu_svm *svm = to_svm(vcpu);
806
807         init_vmcb(svm);
808
809         if (!kvm_vcpu_is_bsp(vcpu)) {
810                 kvm_rip_write(vcpu, 0);
811                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
812                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
813         }
814         vcpu->arch.regs_avail = ~0;
815         vcpu->arch.regs_dirty = ~0;
816
817         return 0;
818 }
819
820 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
821 {
822         struct vcpu_svm *svm;
823         struct page *page;
824         struct page *msrpm_pages;
825         struct page *hsave_page;
826         struct page *nested_msrpm_pages;
827         int err;
828
829         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
830         if (!svm) {
831                 err = -ENOMEM;
832                 goto out;
833         }
834
835         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
836         if (err)
837                 goto free_svm;
838
839         err = -ENOMEM;
840         page = alloc_page(GFP_KERNEL);
841         if (!page)
842                 goto uninit;
843
844         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
845         if (!msrpm_pages)
846                 goto free_page1;
847
848         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
849         if (!nested_msrpm_pages)
850                 goto free_page2;
851
852         hsave_page = alloc_page(GFP_KERNEL);
853         if (!hsave_page)
854                 goto free_page3;
855
856         svm->nested.hsave = page_address(hsave_page);
857
858         svm->msrpm = page_address(msrpm_pages);
859         svm_vcpu_init_msrpm(svm->msrpm);
860
861         svm->nested.msrpm = page_address(nested_msrpm_pages);
862         svm_vcpu_init_msrpm(svm->nested.msrpm);
863
864         svm->vmcb = page_address(page);
865         clear_page(svm->vmcb);
866         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
867         svm->asid_generation = 0;
868         init_vmcb(svm);
869
870         fx_init(&svm->vcpu);
871         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
872         if (kvm_vcpu_is_bsp(&svm->vcpu))
873                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
874
875         return &svm->vcpu;
876
877 free_page3:
878         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
879 free_page2:
880         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
881 free_page1:
882         __free_page(page);
883 uninit:
884         kvm_vcpu_uninit(&svm->vcpu);
885 free_svm:
886         kmem_cache_free(kvm_vcpu_cache, svm);
887 out:
888         return ERR_PTR(err);
889 }
890
891 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
892 {
893         struct vcpu_svm *svm = to_svm(vcpu);
894
895         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
896         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
897         __free_page(virt_to_page(svm->nested.hsave));
898         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
899         kvm_vcpu_uninit(vcpu);
900         kmem_cache_free(kvm_vcpu_cache, svm);
901 }
902
903 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
904 {
905         struct vcpu_svm *svm = to_svm(vcpu);
906         int i;
907
908         if (unlikely(cpu != vcpu->cpu)) {
909                 u64 delta;
910
911                 if (check_tsc_unstable()) {
912                         /*
913                          * Make sure that the guest sees a monotonically
914                          * increasing TSC.
915                          */
916                         delta = vcpu->arch.host_tsc - native_read_tsc();
917                         svm->vmcb->control.tsc_offset += delta;
918                         if (is_nested(svm))
919                                 svm->nested.hsave->control.tsc_offset += delta;
920                 }
921                 vcpu->cpu = cpu;
922                 kvm_migrate_timers(vcpu);
923                 svm->asid_generation = 0;
924         }
925
926         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
927                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
928 }
929
930 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
931 {
932         struct vcpu_svm *svm = to_svm(vcpu);
933         int i;
934
935         ++vcpu->stat.host_state_reload;
936         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
937                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
938
939         vcpu->arch.host_tsc = native_read_tsc();
940 }
941
942 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
943 {
944         return to_svm(vcpu)->vmcb->save.rflags;
945 }
946
947 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
948 {
949         to_svm(vcpu)->vmcb->save.rflags = rflags;
950 }
951
952 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
953 {
954         switch (reg) {
955         case VCPU_EXREG_PDPTR:
956                 BUG_ON(!npt_enabled);
957                 load_pdptrs(vcpu, vcpu->arch.cr3);
958                 break;
959         default:
960                 BUG();
961         }
962 }
963
964 static void svm_set_vintr(struct vcpu_svm *svm)
965 {
966         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
967 }
968
969 static void svm_clear_vintr(struct vcpu_svm *svm)
970 {
971         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
972 }
973
974 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
975 {
976         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
977
978         switch (seg) {
979         case VCPU_SREG_CS: return &save->cs;
980         case VCPU_SREG_DS: return &save->ds;
981         case VCPU_SREG_ES: return &save->es;
982         case VCPU_SREG_FS: return &save->fs;
983         case VCPU_SREG_GS: return &save->gs;
984         case VCPU_SREG_SS: return &save->ss;
985         case VCPU_SREG_TR: return &save->tr;
986         case VCPU_SREG_LDTR: return &save->ldtr;
987         }
988         BUG();
989         return NULL;
990 }
991
992 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
993 {
994         struct vmcb_seg *s = svm_seg(vcpu, seg);
995
996         return s->base;
997 }
998
999 static void svm_get_segment(struct kvm_vcpu *vcpu,
1000                             struct kvm_segment *var, int seg)
1001 {
1002         struct vmcb_seg *s = svm_seg(vcpu, seg);
1003
1004         var->base = s->base;
1005         var->limit = s->limit;
1006         var->selector = s->selector;
1007         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1008         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1009         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1010         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1011         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1012         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1013         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1014         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1015
1016         /*
1017          * AMD's VMCB does not have an explicit unusable field, so emulate it
1018          * for cross vendor migration purposes by "not present"
1019          */
1020         var->unusable = !var->present || (var->type == 0);
1021
1022         switch (seg) {
1023         case VCPU_SREG_CS:
1024                 /*
1025                  * SVM always stores 0 for the 'G' bit in the CS selector in
1026                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1027                  * Intel's VMENTRY has a check on the 'G' bit.
1028                  */
1029                 var->g = s->limit > 0xfffff;
1030                 break;
1031         case VCPU_SREG_TR:
1032                 /*
1033                  * Work around a bug where the busy flag in the tr selector
1034                  * isn't exposed
1035                  */
1036                 var->type |= 0x2;
1037                 break;
1038         case VCPU_SREG_DS:
1039         case VCPU_SREG_ES:
1040         case VCPU_SREG_FS:
1041         case VCPU_SREG_GS:
1042                 /*
1043                  * The accessed bit must always be set in the segment
1044                  * descriptor cache, although it can be cleared in the
1045                  * descriptor, the cached bit always remains at 1. Since
1046                  * Intel has a check on this, set it here to support
1047                  * cross-vendor migration.
1048                  */
1049                 if (!var->unusable)
1050                         var->type |= 0x1;
1051                 break;
1052         case VCPU_SREG_SS:
1053                 /*
1054                  * On AMD CPUs sometimes the DB bit in the segment
1055                  * descriptor is left as 1, although the whole segment has
1056                  * been made unusable. Clear it here to pass an Intel VMX
1057                  * entry check when cross vendor migrating.
1058                  */
1059                 if (var->unusable)
1060                         var->db = 0;
1061                 break;
1062         }
1063 }
1064
1065 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1066 {
1067         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1068
1069         return save->cpl;
1070 }
1071
1072 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1073 {
1074         struct vcpu_svm *svm = to_svm(vcpu);
1075
1076         dt->size = svm->vmcb->save.idtr.limit;
1077         dt->address = svm->vmcb->save.idtr.base;
1078 }
1079
1080 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1081 {
1082         struct vcpu_svm *svm = to_svm(vcpu);
1083
1084         svm->vmcb->save.idtr.limit = dt->size;
1085         svm->vmcb->save.idtr.base = dt->address ;
1086 }
1087
1088 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1089 {
1090         struct vcpu_svm *svm = to_svm(vcpu);
1091
1092         dt->size = svm->vmcb->save.gdtr.limit;
1093         dt->address = svm->vmcb->save.gdtr.base;
1094 }
1095
1096 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1097 {
1098         struct vcpu_svm *svm = to_svm(vcpu);
1099
1100         svm->vmcb->save.gdtr.limit = dt->size;
1101         svm->vmcb->save.gdtr.base = dt->address ;
1102 }
1103
1104 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1105 {
1106 }
1107
1108 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1109 {
1110 }
1111
1112 static void update_cr0_intercept(struct vcpu_svm *svm)
1113 {
1114         struct vmcb *vmcb = svm->vmcb;
1115         ulong gcr0 = svm->vcpu.arch.cr0;
1116         u64 *hcr0 = &svm->vmcb->save.cr0;
1117
1118         if (!svm->vcpu.fpu_active)
1119                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1120         else
1121                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1122                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1123
1124
1125         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1126                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1127                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1128                 if (is_nested(svm)) {
1129                         struct vmcb *hsave = svm->nested.hsave;
1130
1131                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1132                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1133                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1134                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1135                 }
1136         } else {
1137                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1138                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1139                 if (is_nested(svm)) {
1140                         struct vmcb *hsave = svm->nested.hsave;
1141
1142                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1143                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1144                 }
1145         }
1146 }
1147
1148 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1149 {
1150         struct vcpu_svm *svm = to_svm(vcpu);
1151
1152         if (is_nested(svm)) {
1153                 /*
1154                  * We are here because we run in nested mode, the host kvm
1155                  * intercepts cr0 writes but the l1 hypervisor does not.
1156                  * But the L1 hypervisor may intercept selective cr0 writes.
1157                  * This needs to be checked here.
1158                  */
1159                 unsigned long old, new;
1160
1161                 /* Remove bits that would trigger a real cr0 write intercept */
1162                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1163                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1164
1165                 if (old == new) {
1166                         /* cr0 write with ts and mp unchanged */
1167                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1168                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE)
1169                                 return;
1170                 }
1171         }
1172
1173 #ifdef CONFIG_X86_64
1174         if (vcpu->arch.efer & EFER_LME) {
1175                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1176                         vcpu->arch.efer |= EFER_LMA;
1177                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1178                 }
1179
1180                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1181                         vcpu->arch.efer &= ~EFER_LMA;
1182                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1183                 }
1184         }
1185 #endif
1186         vcpu->arch.cr0 = cr0;
1187
1188         if (!npt_enabled)
1189                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1190
1191         if (!vcpu->fpu_active)
1192                 cr0 |= X86_CR0_TS;
1193         /*
1194          * re-enable caching here because the QEMU bios
1195          * does not do it - this results in some delay at
1196          * reboot
1197          */
1198         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1199         svm->vmcb->save.cr0 = cr0;
1200         update_cr0_intercept(svm);
1201 }
1202
1203 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1204 {
1205         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1206         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1207
1208         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1209                 force_new_asid(vcpu);
1210
1211         vcpu->arch.cr4 = cr4;
1212         if (!npt_enabled)
1213                 cr4 |= X86_CR4_PAE;
1214         cr4 |= host_cr4_mce;
1215         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1216 }
1217
1218 static void svm_set_segment(struct kvm_vcpu *vcpu,
1219                             struct kvm_segment *var, int seg)
1220 {
1221         struct vcpu_svm *svm = to_svm(vcpu);
1222         struct vmcb_seg *s = svm_seg(vcpu, seg);
1223
1224         s->base = var->base;
1225         s->limit = var->limit;
1226         s->selector = var->selector;
1227         if (var->unusable)
1228                 s->attrib = 0;
1229         else {
1230                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1231                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1232                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1233                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1234                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1235                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1236                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1237                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1238         }
1239         if (seg == VCPU_SREG_CS)
1240                 svm->vmcb->save.cpl
1241                         = (svm->vmcb->save.cs.attrib
1242                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1243
1244 }
1245
1246 static void update_db_intercept(struct kvm_vcpu *vcpu)
1247 {
1248         struct vcpu_svm *svm = to_svm(vcpu);
1249
1250         svm->vmcb->control.intercept_exceptions &=
1251                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1252
1253         if (svm->nmi_singlestep)
1254                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1255
1256         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1257                 if (vcpu->guest_debug &
1258                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1259                         svm->vmcb->control.intercept_exceptions |=
1260                                 1 << DB_VECTOR;
1261                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1262                         svm->vmcb->control.intercept_exceptions |=
1263                                 1 << BP_VECTOR;
1264         } else
1265                 vcpu->guest_debug = 0;
1266 }
1267
1268 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1269 {
1270         struct vcpu_svm *svm = to_svm(vcpu);
1271
1272         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1273                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1274         else
1275                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1276
1277         update_db_intercept(vcpu);
1278 }
1279
1280 static void load_host_msrs(struct kvm_vcpu *vcpu)
1281 {
1282 #ifdef CONFIG_X86_64
1283         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1284 #endif
1285 }
1286
1287 static void save_host_msrs(struct kvm_vcpu *vcpu)
1288 {
1289 #ifdef CONFIG_X86_64
1290         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1291 #endif
1292 }
1293
1294 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1295 {
1296         if (sd->next_asid > sd->max_asid) {
1297                 ++sd->asid_generation;
1298                 sd->next_asid = 1;
1299                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1300         }
1301
1302         svm->asid_generation = sd->asid_generation;
1303         svm->vmcb->control.asid = sd->next_asid++;
1304 }
1305
1306 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1307 {
1308         struct vcpu_svm *svm = to_svm(vcpu);
1309
1310         switch (dr) {
1311         case 0 ... 3:
1312                 *dest = vcpu->arch.db[dr];
1313                 break;
1314         case 4:
1315                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1316                         return EMULATE_FAIL; /* will re-inject UD */
1317                 /* fall through */
1318         case 6:
1319                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1320                         *dest = vcpu->arch.dr6;
1321                 else
1322                         *dest = svm->vmcb->save.dr6;
1323                 break;
1324         case 5:
1325                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1326                         return EMULATE_FAIL; /* will re-inject UD */
1327                 /* fall through */
1328         case 7:
1329                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1330                         *dest = vcpu->arch.dr7;
1331                 else
1332                         *dest = svm->vmcb->save.dr7;
1333                 break;
1334         }
1335
1336         return EMULATE_DONE;
1337 }
1338
1339 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1340 {
1341         struct vcpu_svm *svm = to_svm(vcpu);
1342
1343         switch (dr) {
1344         case 0 ... 3:
1345                 vcpu->arch.db[dr] = value;
1346                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1347                         vcpu->arch.eff_db[dr] = value;
1348                 break;
1349         case 4:
1350                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1351                         return EMULATE_FAIL; /* will re-inject UD */
1352                 /* fall through */
1353         case 6:
1354                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1355                 break;
1356         case 5:
1357                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1358                         return EMULATE_FAIL; /* will re-inject UD */
1359                 /* fall through */
1360         case 7:
1361                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1362                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1363                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1364                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1365                 }
1366                 break;
1367         }
1368
1369         return EMULATE_DONE;
1370 }
1371
1372 static int pf_interception(struct vcpu_svm *svm)
1373 {
1374         u64 fault_address;
1375         u32 error_code;
1376
1377         fault_address  = svm->vmcb->control.exit_info_2;
1378         error_code = svm->vmcb->control.exit_info_1;
1379
1380         trace_kvm_page_fault(fault_address, error_code);
1381         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1382                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1383         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1384 }
1385
1386 static int db_interception(struct vcpu_svm *svm)
1387 {
1388         struct kvm_run *kvm_run = svm->vcpu.run;
1389
1390         if (!(svm->vcpu.guest_debug &
1391               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1392                 !svm->nmi_singlestep) {
1393                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1394                 return 1;
1395         }
1396
1397         if (svm->nmi_singlestep) {
1398                 svm->nmi_singlestep = false;
1399                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1400                         svm->vmcb->save.rflags &=
1401                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1402                 update_db_intercept(&svm->vcpu);
1403         }
1404
1405         if (svm->vcpu.guest_debug &
1406             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1407                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1408                 kvm_run->debug.arch.pc =
1409                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1410                 kvm_run->debug.arch.exception = DB_VECTOR;
1411                 return 0;
1412         }
1413
1414         return 1;
1415 }
1416
1417 static int bp_interception(struct vcpu_svm *svm)
1418 {
1419         struct kvm_run *kvm_run = svm->vcpu.run;
1420
1421         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1422         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1423         kvm_run->debug.arch.exception = BP_VECTOR;
1424         return 0;
1425 }
1426
1427 static int ud_interception(struct vcpu_svm *svm)
1428 {
1429         int er;
1430
1431         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1432         if (er != EMULATE_DONE)
1433                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1434         return 1;
1435 }
1436
1437 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1438 {
1439         struct vcpu_svm *svm = to_svm(vcpu);
1440         u32 excp;
1441
1442         if (is_nested(svm)) {
1443                 u32 h_excp, n_excp;
1444
1445                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1446                 n_excp  = svm->nested.intercept_exceptions;
1447                 h_excp &= ~(1 << NM_VECTOR);
1448                 excp    = h_excp | n_excp;
1449         } else {
1450                 excp  = svm->vmcb->control.intercept_exceptions;
1451                 excp &= ~(1 << NM_VECTOR);
1452         }
1453
1454         svm->vmcb->control.intercept_exceptions = excp;
1455
1456         svm->vcpu.fpu_active = 1;
1457         update_cr0_intercept(svm);
1458 }
1459
1460 static int nm_interception(struct vcpu_svm *svm)
1461 {
1462         svm_fpu_activate(&svm->vcpu);
1463         return 1;
1464 }
1465
1466 static int mc_interception(struct vcpu_svm *svm)
1467 {
1468         /*
1469          * On an #MC intercept the MCE handler is not called automatically in
1470          * the host. So do it by hand here.
1471          */
1472         asm volatile (
1473                 "int $0x12\n");
1474         /* not sure if we ever come back to this point */
1475
1476         return 1;
1477 }
1478
1479 static int shutdown_interception(struct vcpu_svm *svm)
1480 {
1481         struct kvm_run *kvm_run = svm->vcpu.run;
1482
1483         /*
1484          * VMCB is undefined after a SHUTDOWN intercept
1485          * so reinitialize it.
1486          */
1487         clear_page(svm->vmcb);
1488         init_vmcb(svm);
1489
1490         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1491         return 0;
1492 }
1493
1494 static int io_interception(struct vcpu_svm *svm)
1495 {
1496         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1497         int size, in, string;
1498         unsigned port;
1499
1500         ++svm->vcpu.stat.io_exits;
1501
1502         svm->next_rip = svm->vmcb->control.exit_info_2;
1503
1504         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1505
1506         if (string) {
1507                 if (emulate_instruction(&svm->vcpu,
1508                                         0, 0, 0) == EMULATE_DO_MMIO)
1509                         return 0;
1510                 return 1;
1511         }
1512
1513         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1514         port = io_info >> 16;
1515         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1516
1517         skip_emulated_instruction(&svm->vcpu);
1518         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1519 }
1520
1521 static int nmi_interception(struct vcpu_svm *svm)
1522 {
1523         return 1;
1524 }
1525
1526 static int intr_interception(struct vcpu_svm *svm)
1527 {
1528         ++svm->vcpu.stat.irq_exits;
1529         return 1;
1530 }
1531
1532 static int nop_on_interception(struct vcpu_svm *svm)
1533 {
1534         return 1;
1535 }
1536
1537 static int halt_interception(struct vcpu_svm *svm)
1538 {
1539         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1540         skip_emulated_instruction(&svm->vcpu);
1541         return kvm_emulate_halt(&svm->vcpu);
1542 }
1543
1544 static int vmmcall_interception(struct vcpu_svm *svm)
1545 {
1546         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1547         skip_emulated_instruction(&svm->vcpu);
1548         kvm_emulate_hypercall(&svm->vcpu);
1549         return 1;
1550 }
1551
1552 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1553 {
1554         if (!(svm->vcpu.arch.efer & EFER_SVME)
1555             || !is_paging(&svm->vcpu)) {
1556                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1557                 return 1;
1558         }
1559
1560         if (svm->vmcb->save.cpl) {
1561                 kvm_inject_gp(&svm->vcpu, 0);
1562                 return 1;
1563         }
1564
1565        return 0;
1566 }
1567
1568 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1569                                       bool has_error_code, u32 error_code)
1570 {
1571         int vmexit;
1572
1573         if (!is_nested(svm))
1574                 return 0;
1575
1576         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1577         svm->vmcb->control.exit_code_hi = 0;
1578         svm->vmcb->control.exit_info_1 = error_code;
1579         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1580
1581         vmexit = nested_svm_intercept(svm);
1582         if (vmexit == NESTED_EXIT_DONE)
1583                 svm->nested.exit_required = true;
1584
1585         return vmexit;
1586 }
1587
1588 /* This function returns true if it is save to enable the irq window */
1589 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1590 {
1591         if (!is_nested(svm))
1592                 return true;
1593
1594         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1595                 return true;
1596
1597         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1598                 return false;
1599
1600         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1601         svm->vmcb->control.exit_info_1 = 0;
1602         svm->vmcb->control.exit_info_2 = 0;
1603
1604         if (svm->nested.intercept & 1ULL) {
1605                 /*
1606                  * The #vmexit can't be emulated here directly because this
1607                  * code path runs with irqs and preemtion disabled. A
1608                  * #vmexit emulation might sleep. Only signal request for
1609                  * the #vmexit here.
1610                  */
1611                 svm->nested.exit_required = true;
1612                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1613                 return false;
1614         }
1615
1616         return true;
1617 }
1618
1619 /* This function returns true if it is save to enable the nmi window */
1620 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1621 {
1622         if (!is_nested(svm))
1623                 return true;
1624
1625         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1626                 return true;
1627
1628         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1629         svm->nested.exit_required = true;
1630
1631         return false;
1632 }
1633
1634 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1635 {
1636         struct page *page;
1637
1638         might_sleep();
1639
1640         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1641         if (is_error_page(page))
1642                 goto error;
1643
1644         *_page = page;
1645
1646         return kmap(page);
1647
1648 error:
1649         kvm_release_page_clean(page);
1650         kvm_inject_gp(&svm->vcpu, 0);
1651
1652         return NULL;
1653 }
1654
1655 static void nested_svm_unmap(struct page *page)
1656 {
1657         kunmap(page);
1658         kvm_release_page_dirty(page);
1659 }
1660
1661 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1662 {
1663         u32 param = svm->vmcb->control.exit_info_1 & 1;
1664         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1665         u32 t0, t1;
1666         int ret;
1667         u8 val;
1668
1669         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1670                 return NESTED_EXIT_HOST;
1671
1672         switch (msr) {
1673         case 0 ... 0x1fff:
1674                 t0 = (msr * 2) % 8;
1675                 t1 = msr / 8;
1676                 break;
1677         case 0xc0000000 ... 0xc0001fff:
1678                 t0 = (8192 + msr - 0xc0000000) * 2;
1679                 t1 = (t0 / 8);
1680                 t0 %= 8;
1681                 break;
1682         case 0xc0010000 ... 0xc0011fff:
1683                 t0 = (16384 + msr - 0xc0010000) * 2;
1684                 t1 = (t0 / 8);
1685                 t0 %= 8;
1686                 break;
1687         default:
1688                 ret = NESTED_EXIT_DONE;
1689                 goto out;
1690         }
1691
1692         if (!kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + t1, &val, 1))
1693                 ret = val & ((1 << param) << t0) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1694
1695 out:
1696         return ret;
1697 }
1698
1699 static int nested_svm_exit_special(struct vcpu_svm *svm)
1700 {
1701         u32 exit_code = svm->vmcb->control.exit_code;
1702
1703         switch (exit_code) {
1704         case SVM_EXIT_INTR:
1705         case SVM_EXIT_NMI:
1706                 return NESTED_EXIT_HOST;
1707         case SVM_EXIT_NPF:
1708                 /* For now we are always handling NPFs when using them */
1709                 if (npt_enabled)
1710                         return NESTED_EXIT_HOST;
1711                 break;
1712         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1713                 /* When we're shadowing, trap PFs */
1714                 if (!npt_enabled)
1715                         return NESTED_EXIT_HOST;
1716                 break;
1717         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1718                 nm_interception(svm);
1719                 break;
1720         default:
1721                 break;
1722         }
1723
1724         return NESTED_EXIT_CONTINUE;
1725 }
1726
1727 /*
1728  * If this function returns true, this #vmexit was already handled
1729  */
1730 static int nested_svm_intercept(struct vcpu_svm *svm)
1731 {
1732         u32 exit_code = svm->vmcb->control.exit_code;
1733         int vmexit = NESTED_EXIT_HOST;
1734
1735         switch (exit_code) {
1736         case SVM_EXIT_MSR:
1737                 vmexit = nested_svm_exit_handled_msr(svm);
1738                 break;
1739         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1740                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1741                 if (svm->nested.intercept_cr_read & cr_bits)
1742                         vmexit = NESTED_EXIT_DONE;
1743                 break;
1744         }
1745         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1746                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1747                 if (svm->nested.intercept_cr_write & cr_bits)
1748                         vmexit = NESTED_EXIT_DONE;
1749                 break;
1750         }
1751         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1752                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1753                 if (svm->nested.intercept_dr_read & dr_bits)
1754                         vmexit = NESTED_EXIT_DONE;
1755                 break;
1756         }
1757         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1758                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1759                 if (svm->nested.intercept_dr_write & dr_bits)
1760                         vmexit = NESTED_EXIT_DONE;
1761                 break;
1762         }
1763         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1764                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1765                 if (svm->nested.intercept_exceptions & excp_bits)
1766                         vmexit = NESTED_EXIT_DONE;
1767                 break;
1768         }
1769         default: {
1770                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1771                 if (svm->nested.intercept & exit_bits)
1772                         vmexit = NESTED_EXIT_DONE;
1773         }
1774         }
1775
1776         return vmexit;
1777 }
1778
1779 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1780 {
1781         int vmexit;
1782
1783         vmexit = nested_svm_intercept(svm);
1784
1785         if (vmexit == NESTED_EXIT_DONE)
1786                 nested_svm_vmexit(svm);
1787
1788         return vmexit;
1789 }
1790
1791 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1792 {
1793         struct vmcb_control_area *dst  = &dst_vmcb->control;
1794         struct vmcb_control_area *from = &from_vmcb->control;
1795
1796         dst->intercept_cr_read    = from->intercept_cr_read;
1797         dst->intercept_cr_write   = from->intercept_cr_write;
1798         dst->intercept_dr_read    = from->intercept_dr_read;
1799         dst->intercept_dr_write   = from->intercept_dr_write;
1800         dst->intercept_exceptions = from->intercept_exceptions;
1801         dst->intercept            = from->intercept;
1802         dst->iopm_base_pa         = from->iopm_base_pa;
1803         dst->msrpm_base_pa        = from->msrpm_base_pa;
1804         dst->tsc_offset           = from->tsc_offset;
1805         dst->asid                 = from->asid;
1806         dst->tlb_ctl              = from->tlb_ctl;
1807         dst->int_ctl              = from->int_ctl;
1808         dst->int_vector           = from->int_vector;
1809         dst->int_state            = from->int_state;
1810         dst->exit_code            = from->exit_code;
1811         dst->exit_code_hi         = from->exit_code_hi;
1812         dst->exit_info_1          = from->exit_info_1;
1813         dst->exit_info_2          = from->exit_info_2;
1814         dst->exit_int_info        = from->exit_int_info;
1815         dst->exit_int_info_err    = from->exit_int_info_err;
1816         dst->nested_ctl           = from->nested_ctl;
1817         dst->event_inj            = from->event_inj;
1818         dst->event_inj_err        = from->event_inj_err;
1819         dst->nested_cr3           = from->nested_cr3;
1820         dst->lbr_ctl              = from->lbr_ctl;
1821 }
1822
1823 static int nested_svm_vmexit(struct vcpu_svm *svm)
1824 {
1825         struct vmcb *nested_vmcb;
1826         struct vmcb *hsave = svm->nested.hsave;
1827         struct vmcb *vmcb = svm->vmcb;
1828         struct page *page;
1829
1830         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1831                                        vmcb->control.exit_info_1,
1832                                        vmcb->control.exit_info_2,
1833                                        vmcb->control.exit_int_info,
1834                                        vmcb->control.exit_int_info_err);
1835
1836         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1837         if (!nested_vmcb)
1838                 return 1;
1839
1840         /* Exit nested SVM mode */
1841         svm->nested.vmcb = 0;
1842
1843         /* Give the current vmcb to the guest */
1844         disable_gif(svm);
1845
1846         nested_vmcb->save.es     = vmcb->save.es;
1847         nested_vmcb->save.cs     = vmcb->save.cs;
1848         nested_vmcb->save.ss     = vmcb->save.ss;
1849         nested_vmcb->save.ds     = vmcb->save.ds;
1850         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1851         nested_vmcb->save.idtr   = vmcb->save.idtr;
1852         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1853         if (npt_enabled)
1854                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1855         else
1856                 nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1857         nested_vmcb->save.cr2    = vmcb->save.cr2;
1858         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1859         nested_vmcb->save.rflags = vmcb->save.rflags;
1860         nested_vmcb->save.rip    = vmcb->save.rip;
1861         nested_vmcb->save.rsp    = vmcb->save.rsp;
1862         nested_vmcb->save.rax    = vmcb->save.rax;
1863         nested_vmcb->save.dr7    = vmcb->save.dr7;
1864         nested_vmcb->save.dr6    = vmcb->save.dr6;
1865         nested_vmcb->save.cpl    = vmcb->save.cpl;
1866
1867         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1868         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1869         nested_vmcb->control.int_state         = vmcb->control.int_state;
1870         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1871         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1872         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1873         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1874         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1875         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1876
1877         /*
1878          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1879          * to make sure that we do not lose injected events. So check event_inj
1880          * here and copy it to exit_int_info if it is valid.
1881          * Exit_int_info and event_inj can't be both valid because the case
1882          * below only happens on a VMRUN instruction intercept which has
1883          * no valid exit_int_info set.
1884          */
1885         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1886                 struct vmcb_control_area *nc = &nested_vmcb->control;
1887
1888                 nc->exit_int_info     = vmcb->control.event_inj;
1889                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1890         }
1891
1892         nested_vmcb->control.tlb_ctl           = 0;
1893         nested_vmcb->control.event_inj         = 0;
1894         nested_vmcb->control.event_inj_err     = 0;
1895
1896         /* We always set V_INTR_MASKING and remember the old value in hflags */
1897         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1898                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1899
1900         /* Restore the original control entries */
1901         copy_vmcb_control_area(vmcb, hsave);
1902
1903         kvm_clear_exception_queue(&svm->vcpu);
1904         kvm_clear_interrupt_queue(&svm->vcpu);
1905
1906         /* Restore selected save entries */
1907         svm->vmcb->save.es = hsave->save.es;
1908         svm->vmcb->save.cs = hsave->save.cs;
1909         svm->vmcb->save.ss = hsave->save.ss;
1910         svm->vmcb->save.ds = hsave->save.ds;
1911         svm->vmcb->save.gdtr = hsave->save.gdtr;
1912         svm->vmcb->save.idtr = hsave->save.idtr;
1913         svm->vmcb->save.rflags = hsave->save.rflags;
1914         svm_set_efer(&svm->vcpu, hsave->save.efer);
1915         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1916         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1917         if (npt_enabled) {
1918                 svm->vmcb->save.cr3 = hsave->save.cr3;
1919                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1920         } else {
1921                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1922         }
1923         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1924         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1925         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1926         svm->vmcb->save.dr7 = 0;
1927         svm->vmcb->save.cpl = 0;
1928         svm->vmcb->control.exit_int_info = 0;
1929
1930         nested_svm_unmap(page);
1931
1932         kvm_mmu_reset_context(&svm->vcpu);
1933         kvm_mmu_load(&svm->vcpu);
1934
1935         return 0;
1936 }
1937
1938 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1939 {
1940         /*
1941          * This function merges the msr permission bitmaps of kvm and the
1942          * nested vmcb. It is omptimized in that it only merges the parts where
1943          * the kvm msr permission bitmap may contain zero bits
1944          */
1945         int i;
1946
1947         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1948                 return true;
1949
1950         for (i = 0; i < MSRPM_OFFSETS; i++) {
1951                 u32 value, p;
1952                 u64 offset;
1953
1954                 if (msrpm_offsets[i] == 0xffffffff)
1955                         break;
1956
1957                 offset = svm->nested.vmcb_msrpm + msrpm_offsets[i];
1958                 p      = msrpm_offsets[i] / 4;
1959
1960                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
1961                         return false;
1962
1963                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
1964         }
1965
1966         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1967
1968         return true;
1969 }
1970
1971 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1972 {
1973         struct vmcb *nested_vmcb;
1974         struct vmcb *hsave = svm->nested.hsave;
1975         struct vmcb *vmcb = svm->vmcb;
1976         struct page *page;
1977         u64 vmcb_gpa;
1978
1979         vmcb_gpa = svm->vmcb->save.rax;
1980
1981         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1982         if (!nested_vmcb)
1983                 return false;
1984
1985         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, vmcb_gpa,
1986                                nested_vmcb->save.rip,
1987                                nested_vmcb->control.int_ctl,
1988                                nested_vmcb->control.event_inj,
1989                                nested_vmcb->control.nested_ctl);
1990
1991         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
1992                                     nested_vmcb->control.intercept_cr_write,
1993                                     nested_vmcb->control.intercept_exceptions,
1994                                     nested_vmcb->control.intercept);
1995
1996         /* Clear internal status */
1997         kvm_clear_exception_queue(&svm->vcpu);
1998         kvm_clear_interrupt_queue(&svm->vcpu);
1999
2000         /*
2001          * Save the old vmcb, so we don't need to pick what we save, but can
2002          * restore everything when a VMEXIT occurs
2003          */
2004         hsave->save.es     = vmcb->save.es;
2005         hsave->save.cs     = vmcb->save.cs;
2006         hsave->save.ss     = vmcb->save.ss;
2007         hsave->save.ds     = vmcb->save.ds;
2008         hsave->save.gdtr   = vmcb->save.gdtr;
2009         hsave->save.idtr   = vmcb->save.idtr;
2010         hsave->save.efer   = svm->vcpu.arch.efer;
2011         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2012         hsave->save.cr4    = svm->vcpu.arch.cr4;
2013         hsave->save.rflags = vmcb->save.rflags;
2014         hsave->save.rip    = svm->next_rip;
2015         hsave->save.rsp    = vmcb->save.rsp;
2016         hsave->save.rax    = vmcb->save.rax;
2017         if (npt_enabled)
2018                 hsave->save.cr3    = vmcb->save.cr3;
2019         else
2020                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2021
2022         copy_vmcb_control_area(hsave, vmcb);
2023
2024         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2025                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2026         else
2027                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2028
2029         /* Load the nested guest state */
2030         svm->vmcb->save.es = nested_vmcb->save.es;
2031         svm->vmcb->save.cs = nested_vmcb->save.cs;
2032         svm->vmcb->save.ss = nested_vmcb->save.ss;
2033         svm->vmcb->save.ds = nested_vmcb->save.ds;
2034         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2035         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2036         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2037         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2038         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2039         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2040         if (npt_enabled) {
2041                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2042                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2043         } else
2044                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2045
2046         /* Guest paging mode is active - reset mmu */
2047         kvm_mmu_reset_context(&svm->vcpu);
2048
2049         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2050         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2051         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2052         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2053
2054         /* In case we don't even reach vcpu_run, the fields are not updated */
2055         svm->vmcb->save.rax = nested_vmcb->save.rax;
2056         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2057         svm->vmcb->save.rip = nested_vmcb->save.rip;
2058         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2059         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2060         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2061
2062         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
2063
2064         /* cache intercepts */
2065         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2066         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2067         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2068         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2069         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2070         svm->nested.intercept            = nested_vmcb->control.intercept;
2071
2072         force_new_asid(&svm->vcpu);
2073         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2074         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2075                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2076         else
2077                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2078
2079         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2080                 /* We only want the cr8 intercept bits of the guest */
2081                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2082                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2083         }
2084
2085         /*
2086          * We don't want a nested guest to be more powerful than the guest, so
2087          * all intercepts are ORed
2088          */
2089         svm->vmcb->control.intercept_cr_read |=
2090                 nested_vmcb->control.intercept_cr_read;
2091         svm->vmcb->control.intercept_cr_write |=
2092                 nested_vmcb->control.intercept_cr_write;
2093         svm->vmcb->control.intercept_dr_read |=
2094                 nested_vmcb->control.intercept_dr_read;
2095         svm->vmcb->control.intercept_dr_write |=
2096                 nested_vmcb->control.intercept_dr_write;
2097         svm->vmcb->control.intercept_exceptions |=
2098                 nested_vmcb->control.intercept_exceptions;
2099
2100         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2101
2102         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2103         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2104         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2105         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2106         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2107         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2108
2109         nested_svm_unmap(page);
2110
2111         /* nested_vmcb is our indicator if nested SVM is activated */
2112         svm->nested.vmcb = vmcb_gpa;
2113
2114         enable_gif(svm);
2115
2116         return true;
2117 }
2118
2119 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2120 {
2121         to_vmcb->save.fs = from_vmcb->save.fs;
2122         to_vmcb->save.gs = from_vmcb->save.gs;
2123         to_vmcb->save.tr = from_vmcb->save.tr;
2124         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2125         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2126         to_vmcb->save.star = from_vmcb->save.star;
2127         to_vmcb->save.lstar = from_vmcb->save.lstar;
2128         to_vmcb->save.cstar = from_vmcb->save.cstar;
2129         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2130         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2131         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2132         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2133 }
2134
2135 static int vmload_interception(struct vcpu_svm *svm)
2136 {
2137         struct vmcb *nested_vmcb;
2138         struct page *page;
2139
2140         if (nested_svm_check_permissions(svm))
2141                 return 1;
2142
2143         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2144         skip_emulated_instruction(&svm->vcpu);
2145
2146         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2147         if (!nested_vmcb)
2148                 return 1;
2149
2150         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2151         nested_svm_unmap(page);
2152
2153         return 1;
2154 }
2155
2156 static int vmsave_interception(struct vcpu_svm *svm)
2157 {
2158         struct vmcb *nested_vmcb;
2159         struct page *page;
2160
2161         if (nested_svm_check_permissions(svm))
2162                 return 1;
2163
2164         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2165         skip_emulated_instruction(&svm->vcpu);
2166
2167         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2168         if (!nested_vmcb)
2169                 return 1;
2170
2171         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2172         nested_svm_unmap(page);
2173
2174         return 1;
2175 }
2176
2177 static int vmrun_interception(struct vcpu_svm *svm)
2178 {
2179         if (nested_svm_check_permissions(svm))
2180                 return 1;
2181
2182         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2183         skip_emulated_instruction(&svm->vcpu);
2184
2185         if (!nested_svm_vmrun(svm))
2186                 return 1;
2187
2188         if (!nested_svm_vmrun_msrpm(svm))
2189                 goto failed;
2190
2191         return 1;
2192
2193 failed:
2194
2195         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2196         svm->vmcb->control.exit_code_hi = 0;
2197         svm->vmcb->control.exit_info_1  = 0;
2198         svm->vmcb->control.exit_info_2  = 0;
2199
2200         nested_svm_vmexit(svm);
2201
2202         return 1;
2203 }
2204
2205 static int stgi_interception(struct vcpu_svm *svm)
2206 {
2207         if (nested_svm_check_permissions(svm))
2208                 return 1;
2209
2210         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2211         skip_emulated_instruction(&svm->vcpu);
2212
2213         enable_gif(svm);
2214
2215         return 1;
2216 }
2217
2218 static int clgi_interception(struct vcpu_svm *svm)
2219 {
2220         if (nested_svm_check_permissions(svm))
2221                 return 1;
2222
2223         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2224         skip_emulated_instruction(&svm->vcpu);
2225
2226         disable_gif(svm);
2227
2228         /* After a CLGI no interrupts should come */
2229         svm_clear_vintr(svm);
2230         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2231
2232         return 1;
2233 }
2234
2235 static int invlpga_interception(struct vcpu_svm *svm)
2236 {
2237         struct kvm_vcpu *vcpu = &svm->vcpu;
2238
2239         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2240                           vcpu->arch.regs[VCPU_REGS_RAX]);
2241
2242         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2243         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2244
2245         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2246         skip_emulated_instruction(&svm->vcpu);
2247         return 1;
2248 }
2249
2250 static int skinit_interception(struct vcpu_svm *svm)
2251 {
2252         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2253
2254         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2255         return 1;
2256 }
2257
2258 static int invalid_op_interception(struct vcpu_svm *svm)
2259 {
2260         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2261         return 1;
2262 }
2263
2264 static int task_switch_interception(struct vcpu_svm *svm)
2265 {
2266         u16 tss_selector;
2267         int reason;
2268         int int_type = svm->vmcb->control.exit_int_info &
2269                 SVM_EXITINTINFO_TYPE_MASK;
2270         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2271         uint32_t type =
2272                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2273         uint32_t idt_v =
2274                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2275
2276         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2277
2278         if (svm->vmcb->control.exit_info_2 &
2279             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2280                 reason = TASK_SWITCH_IRET;
2281         else if (svm->vmcb->control.exit_info_2 &
2282                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2283                 reason = TASK_SWITCH_JMP;
2284         else if (idt_v)
2285                 reason = TASK_SWITCH_GATE;
2286         else
2287                 reason = TASK_SWITCH_CALL;
2288
2289         if (reason == TASK_SWITCH_GATE) {
2290                 switch (type) {
2291                 case SVM_EXITINTINFO_TYPE_NMI:
2292                         svm->vcpu.arch.nmi_injected = false;
2293                         break;
2294                 case SVM_EXITINTINFO_TYPE_EXEPT:
2295                         kvm_clear_exception_queue(&svm->vcpu);
2296                         break;
2297                 case SVM_EXITINTINFO_TYPE_INTR:
2298                         kvm_clear_interrupt_queue(&svm->vcpu);
2299                         break;
2300                 default:
2301                         break;
2302                 }
2303         }
2304
2305         if (reason != TASK_SWITCH_GATE ||
2306             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2307             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2308              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2309                 skip_emulated_instruction(&svm->vcpu);
2310
2311         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2312 }
2313
2314 static int cpuid_interception(struct vcpu_svm *svm)
2315 {
2316         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2317         kvm_emulate_cpuid(&svm->vcpu);
2318         return 1;
2319 }
2320
2321 static int iret_interception(struct vcpu_svm *svm)
2322 {
2323         ++svm->vcpu.stat.nmi_window_exits;
2324         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2325         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2326         return 1;
2327 }
2328
2329 static int invlpg_interception(struct vcpu_svm *svm)
2330 {
2331         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2332                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2333         return 1;
2334 }
2335
2336 static int emulate_on_interception(struct vcpu_svm *svm)
2337 {
2338         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2339                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2340         return 1;
2341 }
2342
2343 static int cr8_write_interception(struct vcpu_svm *svm)
2344 {
2345         struct kvm_run *kvm_run = svm->vcpu.run;
2346
2347         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2348         /* instruction emulation calls kvm_set_cr8() */
2349         emulate_instruction(&svm->vcpu, 0, 0, 0);
2350         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2351                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2352                 return 1;
2353         }
2354         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2355                 return 1;
2356         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2357         return 0;
2358 }
2359
2360 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2361 {
2362         struct vcpu_svm *svm = to_svm(vcpu);
2363
2364         switch (ecx) {
2365         case MSR_IA32_TSC: {
2366                 u64 tsc_offset;
2367
2368                 if (is_nested(svm))
2369                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2370                 else
2371                         tsc_offset = svm->vmcb->control.tsc_offset;
2372
2373                 *data = tsc_offset + native_read_tsc();
2374                 break;
2375         }
2376         case MSR_K6_STAR:
2377                 *data = svm->vmcb->save.star;
2378                 break;
2379 #ifdef CONFIG_X86_64
2380         case MSR_LSTAR:
2381                 *data = svm->vmcb->save.lstar;
2382                 break;
2383         case MSR_CSTAR:
2384                 *data = svm->vmcb->save.cstar;
2385                 break;
2386         case MSR_KERNEL_GS_BASE:
2387                 *data = svm->vmcb->save.kernel_gs_base;
2388                 break;
2389         case MSR_SYSCALL_MASK:
2390                 *data = svm->vmcb->save.sfmask;
2391                 break;
2392 #endif
2393         case MSR_IA32_SYSENTER_CS:
2394                 *data = svm->vmcb->save.sysenter_cs;
2395                 break;
2396         case MSR_IA32_SYSENTER_EIP:
2397                 *data = svm->sysenter_eip;
2398                 break;
2399         case MSR_IA32_SYSENTER_ESP:
2400                 *data = svm->sysenter_esp;
2401                 break;
2402         /*
2403          * Nobody will change the following 5 values in the VMCB so we can
2404          * safely return them on rdmsr. They will always be 0 until LBRV is
2405          * implemented.
2406          */
2407         case MSR_IA32_DEBUGCTLMSR:
2408                 *data = svm->vmcb->save.dbgctl;
2409                 break;
2410         case MSR_IA32_LASTBRANCHFROMIP:
2411                 *data = svm->vmcb->save.br_from;
2412                 break;
2413         case MSR_IA32_LASTBRANCHTOIP:
2414                 *data = svm->vmcb->save.br_to;
2415                 break;
2416         case MSR_IA32_LASTINTFROMIP:
2417                 *data = svm->vmcb->save.last_excp_from;
2418                 break;
2419         case MSR_IA32_LASTINTTOIP:
2420                 *data = svm->vmcb->save.last_excp_to;
2421                 break;
2422         case MSR_VM_HSAVE_PA:
2423                 *data = svm->nested.hsave_msr;
2424                 break;
2425         case MSR_VM_CR:
2426                 *data = svm->nested.vm_cr_msr;
2427                 break;
2428         case MSR_IA32_UCODE_REV:
2429                 *data = 0x01000065;
2430                 break;
2431         default:
2432                 return kvm_get_msr_common(vcpu, ecx, data);
2433         }
2434         return 0;
2435 }
2436
2437 static int rdmsr_interception(struct vcpu_svm *svm)
2438 {
2439         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2440         u64 data;
2441
2442         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2443                 trace_kvm_msr_read_ex(ecx);
2444                 kvm_inject_gp(&svm->vcpu, 0);
2445         } else {
2446                 trace_kvm_msr_read(ecx, data);
2447
2448                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2449                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2450                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2451                 skip_emulated_instruction(&svm->vcpu);
2452         }
2453         return 1;
2454 }
2455
2456 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2457 {
2458         struct vcpu_svm *svm = to_svm(vcpu);
2459         int svm_dis, chg_mask;
2460
2461         if (data & ~SVM_VM_CR_VALID_MASK)
2462                 return 1;
2463
2464         chg_mask = SVM_VM_CR_VALID_MASK;
2465
2466         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2467                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2468
2469         svm->nested.vm_cr_msr &= ~chg_mask;
2470         svm->nested.vm_cr_msr |= (data & chg_mask);
2471
2472         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2473
2474         /* check for svm_disable while efer.svme is set */
2475         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2476                 return 1;
2477
2478         return 0;
2479 }
2480
2481 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2482 {
2483         struct vcpu_svm *svm = to_svm(vcpu);
2484
2485         switch (ecx) {
2486         case MSR_IA32_TSC: {
2487                 u64 tsc_offset = data - native_read_tsc();
2488                 u64 g_tsc_offset = 0;
2489
2490                 if (is_nested(svm)) {
2491                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2492                                        svm->nested.hsave->control.tsc_offset;
2493                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2494                 }
2495
2496                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2497
2498                 break;
2499         }
2500         case MSR_K6_STAR:
2501                 svm->vmcb->save.star = data;
2502                 break;
2503 #ifdef CONFIG_X86_64
2504         case MSR_LSTAR:
2505                 svm->vmcb->save.lstar = data;
2506                 break;
2507         case MSR_CSTAR:
2508                 svm->vmcb->save.cstar = data;
2509                 break;
2510         case MSR_KERNEL_GS_BASE:
2511                 svm->vmcb->save.kernel_gs_base = data;
2512                 break;
2513         case MSR_SYSCALL_MASK:
2514                 svm->vmcb->save.sfmask = data;
2515                 break;
2516 #endif
2517         case MSR_IA32_SYSENTER_CS:
2518                 svm->vmcb->save.sysenter_cs = data;
2519                 break;
2520         case MSR_IA32_SYSENTER_EIP:
2521                 svm->sysenter_eip = data;
2522                 svm->vmcb->save.sysenter_eip = data;
2523                 break;
2524         case MSR_IA32_SYSENTER_ESP:
2525                 svm->sysenter_esp = data;
2526                 svm->vmcb->save.sysenter_esp = data;
2527                 break;
2528         case MSR_IA32_DEBUGCTLMSR:
2529                 if (!svm_has(SVM_FEATURE_LBRV)) {
2530                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2531                                         __func__, data);
2532                         break;
2533                 }
2534                 if (data & DEBUGCTL_RESERVED_BITS)
2535                         return 1;
2536
2537                 svm->vmcb->save.dbgctl = data;
2538                 if (data & (1ULL<<0))
2539                         svm_enable_lbrv(svm);
2540                 else
2541                         svm_disable_lbrv(svm);
2542                 break;
2543         case MSR_VM_HSAVE_PA:
2544                 svm->nested.hsave_msr = data;
2545                 break;
2546         case MSR_VM_CR:
2547                 return svm_set_vm_cr(vcpu, data);
2548         case MSR_VM_IGNNE:
2549                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2550                 break;
2551         default:
2552                 return kvm_set_msr_common(vcpu, ecx, data);
2553         }
2554         return 0;
2555 }
2556
2557 static int wrmsr_interception(struct vcpu_svm *svm)
2558 {
2559         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2560         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2561                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2562
2563
2564         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2565         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2566                 trace_kvm_msr_write_ex(ecx, data);
2567                 kvm_inject_gp(&svm->vcpu, 0);
2568         } else {
2569                 trace_kvm_msr_write(ecx, data);
2570                 skip_emulated_instruction(&svm->vcpu);
2571         }
2572         return 1;
2573 }
2574
2575 static int msr_interception(struct vcpu_svm *svm)
2576 {
2577         if (svm->vmcb->control.exit_info_1)
2578                 return wrmsr_interception(svm);
2579         else
2580                 return rdmsr_interception(svm);
2581 }
2582
2583 static int interrupt_window_interception(struct vcpu_svm *svm)
2584 {
2585         struct kvm_run *kvm_run = svm->vcpu.run;
2586
2587         svm_clear_vintr(svm);
2588         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2589         /*
2590          * If the user space waits to inject interrupts, exit as soon as
2591          * possible
2592          */
2593         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2594             kvm_run->request_interrupt_window &&
2595             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2596                 ++svm->vcpu.stat.irq_window_exits;
2597                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2598                 return 0;
2599         }
2600
2601         return 1;
2602 }
2603
2604 static int pause_interception(struct vcpu_svm *svm)
2605 {
2606         kvm_vcpu_on_spin(&(svm->vcpu));
2607         return 1;
2608 }
2609
2610 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2611         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2612         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2613         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2614         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2615         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2616         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2617         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2618         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2619         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2620         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2621         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2622         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2623         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2624         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2625         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2626         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2627         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2628         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2629         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2630         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2631         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2632         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2633         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2634         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2635         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2636         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2637         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2638         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2639         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2640         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2641         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2642         [SVM_EXIT_INTR]                         = intr_interception,
2643         [SVM_EXIT_NMI]                          = nmi_interception,
2644         [SVM_EXIT_SMI]                          = nop_on_interception,
2645         [SVM_EXIT_INIT]                         = nop_on_interception,
2646         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2647         [SVM_EXIT_CPUID]                        = cpuid_interception,
2648         [SVM_EXIT_IRET]                         = iret_interception,
2649         [SVM_EXIT_INVD]                         = emulate_on_interception,
2650         [SVM_EXIT_PAUSE]                        = pause_interception,
2651         [SVM_EXIT_HLT]                          = halt_interception,
2652         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2653         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2654         [SVM_EXIT_IOIO]                         = io_interception,
2655         [SVM_EXIT_MSR]                          = msr_interception,
2656         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2657         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2658         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2659         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2660         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2661         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2662         [SVM_EXIT_STGI]                         = stgi_interception,
2663         [SVM_EXIT_CLGI]                         = clgi_interception,
2664         [SVM_EXIT_SKINIT]                       = skinit_interception,
2665         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2666         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2667         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2668         [SVM_EXIT_NPF]                          = pf_interception,
2669 };
2670
2671 static int handle_exit(struct kvm_vcpu *vcpu)
2672 {
2673         struct vcpu_svm *svm = to_svm(vcpu);
2674         struct kvm_run *kvm_run = vcpu->run;
2675         u32 exit_code = svm->vmcb->control.exit_code;
2676
2677         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2678
2679         if (unlikely(svm->nested.exit_required)) {
2680                 nested_svm_vmexit(svm);
2681                 svm->nested.exit_required = false;
2682
2683                 return 1;
2684         }
2685
2686         if (is_nested(svm)) {
2687                 int vmexit;
2688
2689                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2690                                         svm->vmcb->control.exit_info_1,
2691                                         svm->vmcb->control.exit_info_2,
2692                                         svm->vmcb->control.exit_int_info,
2693                                         svm->vmcb->control.exit_int_info_err);
2694
2695                 vmexit = nested_svm_exit_special(svm);
2696
2697                 if (vmexit == NESTED_EXIT_CONTINUE)
2698                         vmexit = nested_svm_exit_handled(svm);
2699
2700                 if (vmexit == NESTED_EXIT_DONE)
2701                         return 1;
2702         }
2703
2704         svm_complete_interrupts(svm);
2705
2706         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2707                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2708         if (npt_enabled)
2709                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2710
2711         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2712                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2713                 kvm_run->fail_entry.hardware_entry_failure_reason
2714                         = svm->vmcb->control.exit_code;
2715                 return 0;
2716         }
2717
2718         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2719             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2720             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2721                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2722                        "exit_code 0x%x\n",
2723                        __func__, svm->vmcb->control.exit_int_info,
2724                        exit_code);
2725
2726         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2727             || !svm_exit_handlers[exit_code]) {
2728                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2729                 kvm_run->hw.hardware_exit_reason = exit_code;
2730                 return 0;
2731         }
2732
2733         return svm_exit_handlers[exit_code](svm);
2734 }
2735
2736 static void reload_tss(struct kvm_vcpu *vcpu)
2737 {
2738         int cpu = raw_smp_processor_id();
2739
2740         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2741         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2742         load_TR_desc();
2743 }
2744
2745 static void pre_svm_run(struct vcpu_svm *svm)
2746 {
2747         int cpu = raw_smp_processor_id();
2748
2749         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2750
2751         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2752         /* FIXME: handle wraparound of asid_generation */
2753         if (svm->asid_generation != sd->asid_generation)
2754                 new_asid(svm, sd);
2755 }
2756
2757 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2758 {
2759         struct vcpu_svm *svm = to_svm(vcpu);
2760
2761         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2762         vcpu->arch.hflags |= HF_NMI_MASK;
2763         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2764         ++vcpu->stat.nmi_injections;
2765 }
2766
2767 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2768 {
2769         struct vmcb_control_area *control;
2770
2771         trace_kvm_inj_virq(irq);
2772
2773         ++svm->vcpu.stat.irq_injections;
2774         control = &svm->vmcb->control;
2775         control->int_vector = irq;
2776         control->int_ctl &= ~V_INTR_PRIO_MASK;
2777         control->int_ctl |= V_IRQ_MASK |
2778                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2779 }
2780
2781 static void svm_set_irq(struct kvm_vcpu *vcpu)
2782 {
2783         struct vcpu_svm *svm = to_svm(vcpu);
2784
2785         BUG_ON(!(gif_set(svm)));
2786
2787         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2788                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2789 }
2790
2791 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2792 {
2793         struct vcpu_svm *svm = to_svm(vcpu);
2794
2795         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2796                 return;
2797
2798         if (irr == -1)
2799                 return;
2800
2801         if (tpr >= irr)
2802                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2803 }
2804
2805 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2806 {
2807         struct vcpu_svm *svm = to_svm(vcpu);
2808         struct vmcb *vmcb = svm->vmcb;
2809         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2810                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2811 }
2812
2813 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2814 {
2815         struct vcpu_svm *svm = to_svm(vcpu);
2816
2817         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2818 }
2819
2820 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2821 {
2822         struct vcpu_svm *svm = to_svm(vcpu);
2823
2824         if (masked) {
2825                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2826                 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2827         } else {
2828                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2829                 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2830         }
2831 }
2832
2833 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2834 {
2835         struct vcpu_svm *svm = to_svm(vcpu);
2836         struct vmcb *vmcb = svm->vmcb;
2837         int ret;
2838
2839         if (!gif_set(svm) ||
2840              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2841                 return 0;
2842
2843         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2844
2845         if (is_nested(svm))
2846                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2847
2848         return ret;
2849 }
2850
2851 static void enable_irq_window(struct kvm_vcpu *vcpu)
2852 {
2853         struct vcpu_svm *svm = to_svm(vcpu);
2854
2855         /*
2856          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
2857          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
2858          * get that intercept, this function will be called again though and
2859          * we'll get the vintr intercept.
2860          */
2861         if (gif_set(svm) && nested_svm_intr(svm)) {
2862                 svm_set_vintr(svm);
2863                 svm_inject_irq(svm, 0x0);
2864         }
2865 }
2866
2867 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2868 {
2869         struct vcpu_svm *svm = to_svm(vcpu);
2870
2871         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2872             == HF_NMI_MASK)
2873                 return; /* IRET will cause a vm exit */
2874
2875         /*
2876          * Something prevents NMI from been injected. Single step over possible
2877          * problem (IRET or exception injection or interrupt shadow)
2878          */
2879         if (gif_set(svm) && nested_svm_nmi(svm)) {
2880                 svm->nmi_singlestep = true;
2881                 svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2882                 update_db_intercept(vcpu);
2883         }
2884 }
2885
2886 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2887 {
2888         return 0;
2889 }
2890
2891 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2892 {
2893         force_new_asid(vcpu);
2894 }
2895
2896 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2897 {
2898 }
2899
2900 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2901 {
2902         struct vcpu_svm *svm = to_svm(vcpu);
2903
2904         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2905                 return;
2906
2907         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2908                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2909                 kvm_set_cr8(vcpu, cr8);
2910         }
2911 }
2912
2913 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2914 {
2915         struct vcpu_svm *svm = to_svm(vcpu);
2916         u64 cr8;
2917
2918         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2919                 return;
2920
2921         cr8 = kvm_get_cr8(vcpu);
2922         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2923         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2924 }
2925
2926 static void svm_complete_interrupts(struct vcpu_svm *svm)
2927 {
2928         u8 vector;
2929         int type;
2930         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2931         unsigned int3_injected = svm->int3_injected;
2932
2933         svm->int3_injected = 0;
2934
2935         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2936                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2937
2938         svm->vcpu.arch.nmi_injected = false;
2939         kvm_clear_exception_queue(&svm->vcpu);
2940         kvm_clear_interrupt_queue(&svm->vcpu);
2941
2942         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2943                 return;
2944
2945         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2946         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2947
2948         switch (type) {
2949         case SVM_EXITINTINFO_TYPE_NMI:
2950                 svm->vcpu.arch.nmi_injected = true;
2951                 break;
2952         case SVM_EXITINTINFO_TYPE_EXEPT:
2953                 if (is_nested(svm))
2954                         break;
2955                 /*
2956                  * In case of software exceptions, do not reinject the vector,
2957                  * but re-execute the instruction instead. Rewind RIP first
2958                  * if we emulated INT3 before.
2959                  */
2960                 if (kvm_exception_is_soft(vector)) {
2961                         if (vector == BP_VECTOR && int3_injected &&
2962                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
2963                                 kvm_rip_write(&svm->vcpu,
2964                                               kvm_rip_read(&svm->vcpu) -
2965                                               int3_injected);
2966                         break;
2967                 }
2968                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2969                         u32 err = svm->vmcb->control.exit_int_info_err;
2970                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2971
2972                 } else
2973                         kvm_queue_exception(&svm->vcpu, vector);
2974                 break;
2975         case SVM_EXITINTINFO_TYPE_INTR:
2976                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2977                 break;
2978         default:
2979                 break;
2980         }
2981 }
2982
2983 #ifdef CONFIG_X86_64
2984 #define R "r"
2985 #else
2986 #define R "e"
2987 #endif
2988
2989 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2990 {
2991         struct vcpu_svm *svm = to_svm(vcpu);
2992         u16 fs_selector;
2993         u16 gs_selector;
2994         u16 ldt_selector;
2995
2996         /*
2997          * A vmexit emulation is required before the vcpu can be executed
2998          * again.
2999          */
3000         if (unlikely(svm->nested.exit_required))
3001                 return;
3002
3003         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3004         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3005         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3006
3007         pre_svm_run(svm);
3008
3009         sync_lapic_to_cr8(vcpu);
3010
3011         save_host_msrs(vcpu);
3012         fs_selector = kvm_read_fs();
3013         gs_selector = kvm_read_gs();
3014         ldt_selector = kvm_read_ldt();
3015         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3016         /* required for live migration with NPT */
3017         if (npt_enabled)
3018                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
3019
3020         clgi();
3021
3022         local_irq_enable();
3023
3024         asm volatile (
3025                 "push %%"R"bp; \n\t"
3026                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3027                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3028                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3029                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3030                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3031                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3032 #ifdef CONFIG_X86_64
3033                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3034                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3035                 "mov %c[r10](%[svm]), %%r10 \n\t"
3036                 "mov %c[r11](%[svm]), %%r11 \n\t"
3037                 "mov %c[r12](%[svm]), %%r12 \n\t"
3038                 "mov %c[r13](%[svm]), %%r13 \n\t"
3039                 "mov %c[r14](%[svm]), %%r14 \n\t"
3040                 "mov %c[r15](%[svm]), %%r15 \n\t"
3041 #endif
3042
3043                 /* Enter guest mode */
3044                 "push %%"R"ax \n\t"
3045                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3046                 __ex(SVM_VMLOAD) "\n\t"
3047                 __ex(SVM_VMRUN) "\n\t"
3048                 __ex(SVM_VMSAVE) "\n\t"
3049                 "pop %%"R"ax \n\t"
3050
3051                 /* Save guest registers, load host registers */
3052                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3053                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3054                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3055                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3056                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3057                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3058 #ifdef CONFIG_X86_64
3059                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3060                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3061                 "mov %%r10, %c[r10](%[svm]) \n\t"
3062                 "mov %%r11, %c[r11](%[svm]) \n\t"
3063                 "mov %%r12, %c[r12](%[svm]) \n\t"
3064                 "mov %%r13, %c[r13](%[svm]) \n\t"
3065                 "mov %%r14, %c[r14](%[svm]) \n\t"
3066                 "mov %%r15, %c[r15](%[svm]) \n\t"
3067 #endif
3068                 "pop %%"R"bp"
3069                 :
3070                 : [svm]"a"(svm),
3071                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3072                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3073                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3074                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3075                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3076                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3077                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3078 #ifdef CONFIG_X86_64
3079                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3080                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3081                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3082                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3083                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3084                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3085                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3086                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3087 #endif
3088                 : "cc", "memory"
3089                 , R"bx", R"cx", R"dx", R"si", R"di"
3090 #ifdef CONFIG_X86_64
3091                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3092 #endif
3093                 );
3094
3095         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3096         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3097         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3098         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3099
3100         kvm_load_fs(fs_selector);
3101         kvm_load_gs(gs_selector);
3102         kvm_load_ldt(ldt_selector);
3103         load_host_msrs(vcpu);
3104
3105         reload_tss(vcpu);
3106
3107         local_irq_disable();
3108
3109         stgi();
3110
3111         sync_cr8_to_lapic(vcpu);
3112
3113         svm->next_rip = 0;
3114
3115         if (npt_enabled) {
3116                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3117                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3118         }
3119 }
3120
3121 #undef R
3122
3123 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3124 {
3125         struct vcpu_svm *svm = to_svm(vcpu);
3126
3127         if (npt_enabled) {
3128                 svm->vmcb->control.nested_cr3 = root;
3129                 force_new_asid(vcpu);
3130                 return;
3131         }
3132
3133         svm->vmcb->save.cr3 = root;
3134         force_new_asid(vcpu);
3135 }
3136
3137 static int is_disabled(void)
3138 {
3139         u64 vm_cr;
3140
3141         rdmsrl(MSR_VM_CR, vm_cr);
3142         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3143                 return 1;
3144
3145         return 0;
3146 }
3147
3148 static void
3149 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3150 {
3151         /*
3152          * Patch in the VMMCALL instruction:
3153          */
3154         hypercall[0] = 0x0f;
3155         hypercall[1] = 0x01;
3156         hypercall[2] = 0xd9;
3157 }
3158
3159 static void svm_check_processor_compat(void *rtn)
3160 {
3161         *(int *)rtn = 0;
3162 }
3163
3164 static bool svm_cpu_has_accelerated_tpr(void)
3165 {
3166         return false;
3167 }
3168
3169 static int get_npt_level(void)
3170 {
3171 #ifdef CONFIG_X86_64
3172         return PT64_ROOT_LEVEL;
3173 #else
3174         return PT32E_ROOT_LEVEL;
3175 #endif
3176 }
3177
3178 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3179 {
3180         return 0;
3181 }
3182
3183 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3184 {
3185 }
3186
3187 static const struct trace_print_flags svm_exit_reasons_str[] = {
3188         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3189         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3190         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3191         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3192         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3193         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3194         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3195         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3196         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3197         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3198         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3199         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3200         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3201         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3202         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3203         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3204         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3205         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3206         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3207         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3208         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3209         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3210         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3211         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3212         { SVM_EXIT_INTR,                        "interrupt" },
3213         { SVM_EXIT_NMI,                         "nmi" },
3214         { SVM_EXIT_SMI,                         "smi" },
3215         { SVM_EXIT_INIT,                        "init" },
3216         { SVM_EXIT_VINTR,                       "vintr" },
3217         { SVM_EXIT_CPUID,                       "cpuid" },
3218         { SVM_EXIT_INVD,                        "invd" },
3219         { SVM_EXIT_HLT,                         "hlt" },
3220         { SVM_EXIT_INVLPG,                      "invlpg" },
3221         { SVM_EXIT_INVLPGA,                     "invlpga" },
3222         { SVM_EXIT_IOIO,                        "io" },
3223         { SVM_EXIT_MSR,                         "msr" },
3224         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3225         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3226         { SVM_EXIT_VMRUN,                       "vmrun" },
3227         { SVM_EXIT_VMMCALL,                     "hypercall" },
3228         { SVM_EXIT_VMLOAD,                      "vmload" },
3229         { SVM_EXIT_VMSAVE,                      "vmsave" },
3230         { SVM_EXIT_STGI,                        "stgi" },
3231         { SVM_EXIT_CLGI,                        "clgi" },
3232         { SVM_EXIT_SKINIT,                      "skinit" },
3233         { SVM_EXIT_WBINVD,                      "wbinvd" },
3234         { SVM_EXIT_MONITOR,                     "monitor" },
3235         { SVM_EXIT_MWAIT,                       "mwait" },
3236         { SVM_EXIT_NPF,                         "npf" },
3237         { -1, NULL }
3238 };
3239
3240 static int svm_get_lpage_level(void)
3241 {
3242         return PT_PDPE_LEVEL;
3243 }
3244
3245 static bool svm_rdtscp_supported(void)
3246 {
3247         return false;
3248 }
3249
3250 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3251 {
3252         struct vcpu_svm *svm = to_svm(vcpu);
3253
3254         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3255         if (is_nested(svm))
3256                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3257         update_cr0_intercept(svm);
3258 }
3259
3260 static struct kvm_x86_ops svm_x86_ops = {
3261         .cpu_has_kvm_support = has_svm,
3262         .disabled_by_bios = is_disabled,
3263         .hardware_setup = svm_hardware_setup,
3264         .hardware_unsetup = svm_hardware_unsetup,
3265         .check_processor_compatibility = svm_check_processor_compat,
3266         .hardware_enable = svm_hardware_enable,
3267         .hardware_disable = svm_hardware_disable,
3268         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3269
3270         .vcpu_create = svm_create_vcpu,
3271         .vcpu_free = svm_free_vcpu,
3272         .vcpu_reset = svm_vcpu_reset,
3273
3274         .prepare_guest_switch = svm_prepare_guest_switch,
3275         .vcpu_load = svm_vcpu_load,
3276         .vcpu_put = svm_vcpu_put,
3277
3278         .set_guest_debug = svm_guest_debug,
3279         .get_msr = svm_get_msr,
3280         .set_msr = svm_set_msr,
3281         .get_segment_base = svm_get_segment_base,
3282         .get_segment = svm_get_segment,
3283         .set_segment = svm_set_segment,
3284         .get_cpl = svm_get_cpl,
3285         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3286         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3287         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3288         .set_cr0 = svm_set_cr0,
3289         .set_cr3 = svm_set_cr3,
3290         .set_cr4 = svm_set_cr4,
3291         .set_efer = svm_set_efer,
3292         .get_idt = svm_get_idt,
3293         .set_idt = svm_set_idt,
3294         .get_gdt = svm_get_gdt,
3295         .set_gdt = svm_set_gdt,
3296         .get_dr = svm_get_dr,
3297         .set_dr = svm_set_dr,
3298         .cache_reg = svm_cache_reg,
3299         .get_rflags = svm_get_rflags,
3300         .set_rflags = svm_set_rflags,
3301         .fpu_activate = svm_fpu_activate,
3302         .fpu_deactivate = svm_fpu_deactivate,
3303
3304         .tlb_flush = svm_flush_tlb,
3305
3306         .run = svm_vcpu_run,
3307         .handle_exit = handle_exit,
3308         .skip_emulated_instruction = skip_emulated_instruction,
3309         .set_interrupt_shadow = svm_set_interrupt_shadow,
3310         .get_interrupt_shadow = svm_get_interrupt_shadow,
3311         .patch_hypercall = svm_patch_hypercall,
3312         .set_irq = svm_set_irq,
3313         .set_nmi = svm_inject_nmi,
3314         .queue_exception = svm_queue_exception,
3315         .interrupt_allowed = svm_interrupt_allowed,
3316         .nmi_allowed = svm_nmi_allowed,
3317         .get_nmi_mask = svm_get_nmi_mask,
3318         .set_nmi_mask = svm_set_nmi_mask,
3319         .enable_nmi_window = enable_nmi_window,
3320         .enable_irq_window = enable_irq_window,
3321         .update_cr8_intercept = update_cr8_intercept,
3322
3323         .set_tss_addr = svm_set_tss_addr,
3324         .get_tdp_level = get_npt_level,
3325         .get_mt_mask = svm_get_mt_mask,
3326
3327         .exit_reasons_str = svm_exit_reasons_str,
3328         .get_lpage_level = svm_get_lpage_level,
3329
3330         .cpuid_update = svm_cpuid_update,
3331
3332         .rdtscp_supported = svm_rdtscp_supported,
3333 };
3334
3335 static int __init svm_init(void)
3336 {
3337         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3338                               THIS_MODULE);
3339 }
3340
3341 static void __exit svm_exit(void)
3342 {
3343         kvm_exit();
3344 }
3345
3346 module_init(svm_init)
3347 module_exit(svm_exit)