]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/x86/kernel/cpu/addon_cpuid_features.c
7369b4c2c55a2f877e4fb621186ca9e3e9c1f4a0
[net-next-2.6.git] / arch / x86 / kernel / cpu / addon_cpuid_features.c
1 /*
2  *      Routines to indentify additional cpu features that are scattered in
3  *      cpuid space.
4  */
5 #include <linux/cpu.h>
6
7 #include <asm/pat.h>
8 #include <asm/processor.h>
9
10 #include <asm/apic.h>
11
12 struct cpuid_bit {
13         u16 feature;
14         u8 reg;
15         u8 bit;
16         u32 level;
17 };
18
19 enum cpuid_regs {
20         CR_EAX = 0,
21         CR_ECX,
22         CR_EDX,
23         CR_EBX
24 };
25
26 void __cpuinit init_scattered_cpuid_features(struct cpuinfo_x86 *c)
27 {
28         u32 max_level;
29         u32 regs[4];
30         const struct cpuid_bit *cb;
31
32         static const struct cpuid_bit __cpuinitconst cpuid_bits[] = {
33                 { X86_FEATURE_IDA,              CR_EAX, 1, 0x00000006 },
34                 { X86_FEATURE_ARAT,             CR_EAX, 2, 0x00000006 },
35                 { X86_FEATURE_APERFMPERF,       CR_ECX, 0, 0x00000006 },
36                 { X86_FEATURE_EPB,              CR_ECX, 3, 0x00000006 },
37                 { X86_FEATURE_CPB,              CR_EDX, 9, 0x80000007 },
38                 { X86_FEATURE_NPT,              CR_EDX, 0, 0x8000000a },
39                 { X86_FEATURE_LBRV,             CR_EDX, 1, 0x8000000a },
40                 { X86_FEATURE_SVML,             CR_EDX, 2, 0x8000000a },
41                 { X86_FEATURE_NRIPS,            CR_EDX, 3, 0x8000000a },
42                 { 0, 0, 0, 0 }
43         };
44
45         for (cb = cpuid_bits; cb->feature; cb++) {
46
47                 /* Verify that the level is valid */
48                 max_level = cpuid_eax(cb->level & 0xffff0000);
49                 if (max_level < cb->level ||
50                     max_level > (cb->level | 0xffff))
51                         continue;
52
53                 cpuid(cb->level, &regs[CR_EAX], &regs[CR_EBX],
54                         &regs[CR_ECX], &regs[CR_EDX]);
55
56                 if (regs[cb->reg] & (1 << cb->bit))
57                         set_cpu_cap(c, cb->feature);
58         }
59 }
60
61 /* leaf 0xb SMT level */
62 #define SMT_LEVEL       0
63
64 /* leaf 0xb sub-leaf types */
65 #define INVALID_TYPE    0
66 #define SMT_TYPE        1
67 #define CORE_TYPE       2
68
69 #define LEAFB_SUBTYPE(ecx)              (((ecx) >> 8) & 0xff)
70 #define BITS_SHIFT_NEXT_LEVEL(eax)      ((eax) & 0x1f)
71 #define LEVEL_MAX_SIBLINGS(ebx)         ((ebx) & 0xffff)
72
73 /*
74  * Check for extended topology enumeration cpuid leaf 0xb and if it
75  * exists, use it for populating initial_apicid and cpu topology
76  * detection.
77  */
78 void __cpuinit detect_extended_topology(struct cpuinfo_x86 *c)
79 {
80 #ifdef CONFIG_SMP
81         unsigned int eax, ebx, ecx, edx, sub_index;
82         unsigned int ht_mask_width, core_plus_mask_width;
83         unsigned int core_select_mask, core_level_siblings;
84         static bool printed;
85
86         if (c->cpuid_level < 0xb)
87                 return;
88
89         cpuid_count(0xb, SMT_LEVEL, &eax, &ebx, &ecx, &edx);
90
91         /*
92          * check if the cpuid leaf 0xb is actually implemented.
93          */
94         if (ebx == 0 || (LEAFB_SUBTYPE(ecx) != SMT_TYPE))
95                 return;
96
97         set_cpu_cap(c, X86_FEATURE_XTOPOLOGY);
98
99         /*
100          * initial apic id, which also represents 32-bit extended x2apic id.
101          */
102         c->initial_apicid = edx;
103
104         /*
105          * Populate HT related information from sub-leaf level 0.
106          */
107         core_level_siblings = smp_num_siblings = LEVEL_MAX_SIBLINGS(ebx);
108         core_plus_mask_width = ht_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
109
110         sub_index = 1;
111         do {
112                 cpuid_count(0xb, sub_index, &eax, &ebx, &ecx, &edx);
113
114                 /*
115                  * Check for the Core type in the implemented sub leaves.
116                  */
117                 if (LEAFB_SUBTYPE(ecx) == CORE_TYPE) {
118                         core_level_siblings = LEVEL_MAX_SIBLINGS(ebx);
119                         core_plus_mask_width = BITS_SHIFT_NEXT_LEVEL(eax);
120                         break;
121                 }
122
123                 sub_index++;
124         } while (LEAFB_SUBTYPE(ecx) != INVALID_TYPE);
125
126         core_select_mask = (~(-1 << core_plus_mask_width)) >> ht_mask_width;
127
128         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, ht_mask_width)
129                                                  & core_select_mask;
130         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, core_plus_mask_width);
131         /*
132          * Reinit the apicid, now that we have extended initial_apicid.
133          */
134         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
135
136         c->x86_max_cores = (core_level_siblings / smp_num_siblings);
137
138         if (!printed) {
139                 printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
140                        c->phys_proc_id);
141                 if (c->x86_max_cores > 1)
142                         printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
143                                c->cpu_core_id);
144                 printed = 1;
145         }
146         return;
147 #endif
148 }