]> bbs.cooldavid.org Git - net-next-2.6.git/blob - arch/ia64/kvm/kvm-ia64.c
KVM: ia64: Map in SN2 RTC registers to the VMM module
[net-next-2.6.git] / arch / ia64 / kvm / kvm-ia64.c
1 /*
2  * kvm_ia64.c: Basic KVM suppport On Itanium series processors
3  *
4  *
5  *      Copyright (C) 2007, Intel Corporation.
6  *      Xiantao Zhang  (xiantao.zhang@intel.com)
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
19  * Place - Suite 330, Boston, MA 02111-1307 USA.
20  *
21  */
22
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/gfp.h>
27 #include <linux/fs.h>
28 #include <linux/smp.h>
29 #include <linux/kvm_host.h>
30 #include <linux/kvm.h>
31 #include <linux/bitops.h>
32 #include <linux/hrtimer.h>
33 #include <linux/uaccess.h>
34 #include <linux/iommu.h>
35 #include <linux/intel-iommu.h>
36
37 #include <asm/pgtable.h>
38 #include <asm/gcc_intrin.h>
39 #include <asm/pal.h>
40 #include <asm/cacheflush.h>
41 #include <asm/div64.h>
42 #include <asm/tlb.h>
43 #include <asm/elf.h>
44 #include <asm/sn/addrs.h>
45 #include <asm/sn/clksupport.h>
46 #include <asm/sn/shub_mmr.h>
47
48 #include "misc.h"
49 #include "vti.h"
50 #include "iodev.h"
51 #include "ioapic.h"
52 #include "lapic.h"
53 #include "irq.h"
54
55 static unsigned long kvm_vmm_base;
56 static unsigned long kvm_vsa_base;
57 static unsigned long kvm_vm_buffer;
58 static unsigned long kvm_vm_buffer_size;
59 unsigned long kvm_vmm_gp;
60
61 static long vp_env_info;
62
63 static struct kvm_vmm_info *kvm_vmm_info;
64
65 static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu);
66
67 struct kvm_stats_debugfs_item debugfs_entries[] = {
68         { NULL }
69 };
70
71 static void kvm_flush_icache(unsigned long start, unsigned long len)
72 {
73         int l;
74
75         for (l = 0; l < (len + 32); l += 32)
76                 ia64_fc((void *)(start + l));
77
78         ia64_sync_i();
79         ia64_srlz_i();
80 }
81
82 static void kvm_flush_tlb_all(void)
83 {
84         unsigned long i, j, count0, count1, stride0, stride1, addr;
85         long flags;
86
87         addr    = local_cpu_data->ptce_base;
88         count0  = local_cpu_data->ptce_count[0];
89         count1  = local_cpu_data->ptce_count[1];
90         stride0 = local_cpu_data->ptce_stride[0];
91         stride1 = local_cpu_data->ptce_stride[1];
92
93         local_irq_save(flags);
94         for (i = 0; i < count0; ++i) {
95                 for (j = 0; j < count1; ++j) {
96                         ia64_ptce(addr);
97                         addr += stride1;
98                 }
99                 addr += stride0;
100         }
101         local_irq_restore(flags);
102         ia64_srlz_i();                  /* srlz.i implies srlz.d */
103 }
104
105 long ia64_pal_vp_create(u64 *vpd, u64 *host_iva, u64 *opt_handler)
106 {
107         struct ia64_pal_retval iprv;
108
109         PAL_CALL_STK(iprv, PAL_VP_CREATE, (u64)vpd, (u64)host_iva,
110                         (u64)opt_handler);
111
112         return iprv.status;
113 }
114
115 static  DEFINE_SPINLOCK(vp_lock);
116
117 void kvm_arch_hardware_enable(void *garbage)
118 {
119         long  status;
120         long  tmp_base;
121         unsigned long pte;
122         unsigned long saved_psr;
123         int slot;
124
125         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
126         local_irq_save(saved_psr);
127         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
128         local_irq_restore(saved_psr);
129         if (slot < 0)
130                 return;
131
132         spin_lock(&vp_lock);
133         status = ia64_pal_vp_init_env(kvm_vsa_base ?
134                                 VP_INIT_ENV : VP_INIT_ENV_INITALIZE,
135                         __pa(kvm_vm_buffer), KVM_VM_BUFFER_BASE, &tmp_base);
136         if (status != 0) {
137                 printk(KERN_WARNING"kvm: Failed to Enable VT Support!!!!\n");
138                 return ;
139         }
140
141         if (!kvm_vsa_base) {
142                 kvm_vsa_base = tmp_base;
143                 printk(KERN_INFO"kvm: kvm_vsa_base:0x%lx\n", kvm_vsa_base);
144         }
145         spin_unlock(&vp_lock);
146         ia64_ptr_entry(0x3, slot);
147 }
148
149 void kvm_arch_hardware_disable(void *garbage)
150 {
151
152         long status;
153         int slot;
154         unsigned long pte;
155         unsigned long saved_psr;
156         unsigned long host_iva = ia64_getreg(_IA64_REG_CR_IVA);
157
158         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base),
159                                 PAGE_KERNEL));
160
161         local_irq_save(saved_psr);
162         slot = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
163         local_irq_restore(saved_psr);
164         if (slot < 0)
165                 return;
166
167         status = ia64_pal_vp_exit_env(host_iva);
168         if (status)
169                 printk(KERN_DEBUG"kvm: Failed to disable VT support! :%ld\n",
170                                 status);
171         ia64_ptr_entry(0x3, slot);
172 }
173
174 void kvm_arch_check_processor_compat(void *rtn)
175 {
176         *(int *)rtn = 0;
177 }
178
179 int kvm_dev_ioctl_check_extension(long ext)
180 {
181
182         int r;
183
184         switch (ext) {
185         case KVM_CAP_IRQCHIP:
186         case KVM_CAP_MP_STATE:
187         case KVM_CAP_IRQ_INJECT_STATUS:
188                 r = 1;
189                 break;
190         case KVM_CAP_COALESCED_MMIO:
191                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
192                 break;
193         case KVM_CAP_IOMMU:
194                 r = iommu_found();
195                 break;
196         default:
197                 r = 0;
198         }
199         return r;
200
201 }
202
203 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
204                                         gpa_t addr, int len, int is_write)
205 {
206         struct kvm_io_device *dev;
207
208         dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write);
209
210         return dev;
211 }
212
213 static int handle_vm_error(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
214 {
215         kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
216         kvm_run->hw.hardware_exit_reason = 1;
217         return 0;
218 }
219
220 static int handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
221 {
222         struct kvm_mmio_req *p;
223         struct kvm_io_device *mmio_dev;
224
225         p = kvm_get_vcpu_ioreq(vcpu);
226
227         if ((p->addr & PAGE_MASK) == IOAPIC_DEFAULT_BASE_ADDRESS)
228                 goto mmio;
229         vcpu->mmio_needed = 1;
230         vcpu->mmio_phys_addr = kvm_run->mmio.phys_addr = p->addr;
231         vcpu->mmio_size = kvm_run->mmio.len = p->size;
232         vcpu->mmio_is_write = kvm_run->mmio.is_write = !p->dir;
233
234         if (vcpu->mmio_is_write)
235                 memcpy(vcpu->mmio_data, &p->data, p->size);
236         memcpy(kvm_run->mmio.data, &p->data, p->size);
237         kvm_run->exit_reason = KVM_EXIT_MMIO;
238         return 0;
239 mmio:
240         mmio_dev = vcpu_find_mmio_dev(vcpu, p->addr, p->size, !p->dir);
241         if (mmio_dev) {
242                 if (!p->dir)
243                         kvm_iodevice_write(mmio_dev, p->addr, p->size,
244                                                 &p->data);
245                 else
246                         kvm_iodevice_read(mmio_dev, p->addr, p->size,
247                                                 &p->data);
248
249         } else
250                 printk(KERN_ERR"kvm: No iodevice found! addr:%lx\n", p->addr);
251         p->state = STATE_IORESP_READY;
252
253         return 1;
254 }
255
256 static int handle_pal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
257 {
258         struct exit_ctl_data *p;
259
260         p = kvm_get_exit_data(vcpu);
261
262         if (p->exit_reason == EXIT_REASON_PAL_CALL)
263                 return kvm_pal_emul(vcpu, kvm_run);
264         else {
265                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
266                 kvm_run->hw.hardware_exit_reason = 2;
267                 return 0;
268         }
269 }
270
271 static int handle_sal_call(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
272 {
273         struct exit_ctl_data *p;
274
275         p = kvm_get_exit_data(vcpu);
276
277         if (p->exit_reason == EXIT_REASON_SAL_CALL) {
278                 kvm_sal_emul(vcpu);
279                 return 1;
280         } else {
281                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
282                 kvm_run->hw.hardware_exit_reason = 3;
283                 return 0;
284         }
285
286 }
287
288 static int __apic_accept_irq(struct kvm_vcpu *vcpu, uint64_t vector)
289 {
290         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
291
292         if (!test_and_set_bit(vector, &vpd->irr[0])) {
293                 vcpu->arch.irq_new_pending = 1;
294                 kvm_vcpu_kick(vcpu);
295                 return 1;
296         }
297         return 0;
298 }
299
300 /*
301  *  offset: address offset to IPI space.
302  *  value:  deliver value.
303  */
304 static void vcpu_deliver_ipi(struct kvm_vcpu *vcpu, uint64_t dm,
305                                 uint64_t vector)
306 {
307         switch (dm) {
308         case SAPIC_FIXED:
309                 break;
310         case SAPIC_NMI:
311                 vector = 2;
312                 break;
313         case SAPIC_EXTINT:
314                 vector = 0;
315                 break;
316         case SAPIC_INIT:
317         case SAPIC_PMI:
318         default:
319                 printk(KERN_ERR"kvm: Unimplemented Deliver reserved IPI!\n");
320                 return;
321         }
322         __apic_accept_irq(vcpu, vector);
323 }
324
325 static struct kvm_vcpu *lid_to_vcpu(struct kvm *kvm, unsigned long id,
326                         unsigned long eid)
327 {
328         union ia64_lid lid;
329         int i;
330
331         for (i = 0; i < kvm->arch.online_vcpus; i++) {
332                 if (kvm->vcpus[i]) {
333                         lid.val = VCPU_LID(kvm->vcpus[i]);
334                         if (lid.id == id && lid.eid == eid)
335                                 return kvm->vcpus[i];
336                 }
337         }
338
339         return NULL;
340 }
341
342 static int handle_ipi(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
343 {
344         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
345         struct kvm_vcpu *target_vcpu;
346         struct kvm_pt_regs *regs;
347         union ia64_ipi_a addr = p->u.ipi_data.addr;
348         union ia64_ipi_d data = p->u.ipi_data.data;
349
350         target_vcpu = lid_to_vcpu(vcpu->kvm, addr.id, addr.eid);
351         if (!target_vcpu)
352                 return handle_vm_error(vcpu, kvm_run);
353
354         if (!target_vcpu->arch.launched) {
355                 regs = vcpu_regs(target_vcpu);
356
357                 regs->cr_iip = vcpu->kvm->arch.rdv_sal_data.boot_ip;
358                 regs->r1 = vcpu->kvm->arch.rdv_sal_data.boot_gp;
359
360                 target_vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
361                 if (waitqueue_active(&target_vcpu->wq))
362                         wake_up_interruptible(&target_vcpu->wq);
363         } else {
364                 vcpu_deliver_ipi(target_vcpu, data.dm, data.vector);
365                 if (target_vcpu != vcpu)
366                         kvm_vcpu_kick(target_vcpu);
367         }
368
369         return 1;
370 }
371
372 struct call_data {
373         struct kvm_ptc_g ptc_g_data;
374         struct kvm_vcpu *vcpu;
375 };
376
377 static void vcpu_global_purge(void *info)
378 {
379         struct call_data *p = (struct call_data *)info;
380         struct kvm_vcpu *vcpu = p->vcpu;
381
382         if (test_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
383                 return;
384
385         set_bit(KVM_REQ_PTC_G, &vcpu->requests);
386         if (vcpu->arch.ptc_g_count < MAX_PTC_G_NUM) {
387                 vcpu->arch.ptc_g_data[vcpu->arch.ptc_g_count++] =
388                                                         p->ptc_g_data;
389         } else {
390                 clear_bit(KVM_REQ_PTC_G, &vcpu->requests);
391                 vcpu->arch.ptc_g_count = 0;
392                 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
393         }
394 }
395
396 static int handle_global_purge(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
397 {
398         struct exit_ctl_data *p = kvm_get_exit_data(vcpu);
399         struct kvm *kvm = vcpu->kvm;
400         struct call_data call_data;
401         int i;
402
403         call_data.ptc_g_data = p->u.ptc_g_data;
404
405         for (i = 0; i < kvm->arch.online_vcpus; i++) {
406                 if (!kvm->vcpus[i] || kvm->vcpus[i]->arch.mp_state ==
407                                                 KVM_MP_STATE_UNINITIALIZED ||
408                                         vcpu == kvm->vcpus[i])
409                         continue;
410
411                 if (waitqueue_active(&kvm->vcpus[i]->wq))
412                         wake_up_interruptible(&kvm->vcpus[i]->wq);
413
414                 if (kvm->vcpus[i]->cpu != -1) {
415                         call_data.vcpu = kvm->vcpus[i];
416                         smp_call_function_single(kvm->vcpus[i]->cpu,
417                                         vcpu_global_purge, &call_data, 1);
418                 } else
419                         printk(KERN_WARNING"kvm: Uninit vcpu received ipi!\n");
420
421         }
422         return 1;
423 }
424
425 static int handle_switch_rr6(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
426 {
427         return 1;
428 }
429
430 static int kvm_sn2_setup_mappings(struct kvm_vcpu *vcpu)
431 {
432         unsigned long pte, rtc_phys_addr, map_addr;
433         int slot;
434
435         map_addr = KVM_VMM_BASE + (1UL << KVM_VMM_SHIFT);
436         rtc_phys_addr = LOCAL_MMR_OFFSET | SH_RTC;
437         pte = pte_val(mk_pte_phys(rtc_phys_addr, PAGE_KERNEL_UC));
438         slot = ia64_itr_entry(0x3, map_addr, pte, PAGE_SHIFT);
439         vcpu->arch.sn_rtc_tr_slot = slot;
440         if (slot < 0) {
441                 printk(KERN_ERR "Mayday mayday! RTC mapping failed!\n");
442                 slot = 0;
443         }
444         return slot;
445 }
446
447 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
448 {
449
450         ktime_t kt;
451         long itc_diff;
452         unsigned long vcpu_now_itc;
453         unsigned long expires;
454         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
455         unsigned long cyc_per_usec = local_cpu_data->cyc_per_usec;
456         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
457
458         if (irqchip_in_kernel(vcpu->kvm)) {
459
460                 vcpu_now_itc = ia64_getreg(_IA64_REG_AR_ITC) + vcpu->arch.itc_offset;
461
462                 if (time_after(vcpu_now_itc, vpd->itm)) {
463                         vcpu->arch.timer_check = 1;
464                         return 1;
465                 }
466                 itc_diff = vpd->itm - vcpu_now_itc;
467                 if (itc_diff < 0)
468                         itc_diff = -itc_diff;
469
470                 expires = div64_u64(itc_diff, cyc_per_usec);
471                 kt = ktime_set(0, 1000 * expires);
472
473                 vcpu->arch.ht_active = 1;
474                 hrtimer_start(p_ht, kt, HRTIMER_MODE_ABS);
475
476                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
477                 kvm_vcpu_block(vcpu);
478                 hrtimer_cancel(p_ht);
479                 vcpu->arch.ht_active = 0;
480
481                 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
482                         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
483                                 vcpu->arch.mp_state =
484                                         KVM_MP_STATE_RUNNABLE;
485
486                 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
487                         return -EINTR;
488                 return 1;
489         } else {
490                 printk(KERN_ERR"kvm: Unsupported userspace halt!");
491                 return 0;
492         }
493 }
494
495 static int handle_vm_shutdown(struct kvm_vcpu *vcpu,
496                 struct kvm_run *kvm_run)
497 {
498         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
499         return 0;
500 }
501
502 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
503                 struct kvm_run *kvm_run)
504 {
505         return 1;
506 }
507
508 static int handle_vcpu_debug(struct kvm_vcpu *vcpu,
509                                 struct kvm_run *kvm_run)
510 {
511         printk("VMM: %s", vcpu->arch.log_buf);
512         return 1;
513 }
514
515 static int (*kvm_vti_exit_handlers[])(struct kvm_vcpu *vcpu,
516                 struct kvm_run *kvm_run) = {
517         [EXIT_REASON_VM_PANIC]              = handle_vm_error,
518         [EXIT_REASON_MMIO_INSTRUCTION]      = handle_mmio,
519         [EXIT_REASON_PAL_CALL]              = handle_pal_call,
520         [EXIT_REASON_SAL_CALL]              = handle_sal_call,
521         [EXIT_REASON_SWITCH_RR6]            = handle_switch_rr6,
522         [EXIT_REASON_VM_DESTROY]            = handle_vm_shutdown,
523         [EXIT_REASON_EXTERNAL_INTERRUPT]    = handle_external_interrupt,
524         [EXIT_REASON_IPI]                   = handle_ipi,
525         [EXIT_REASON_PTC_G]                 = handle_global_purge,
526         [EXIT_REASON_DEBUG]                 = handle_vcpu_debug,
527
528 };
529
530 static const int kvm_vti_max_exit_handlers =
531                 sizeof(kvm_vti_exit_handlers)/sizeof(*kvm_vti_exit_handlers);
532
533 static uint32_t kvm_get_exit_reason(struct kvm_vcpu *vcpu)
534 {
535         struct exit_ctl_data *p_exit_data;
536
537         p_exit_data = kvm_get_exit_data(vcpu);
538         return p_exit_data->exit_reason;
539 }
540
541 /*
542  * The guest has exited.  See if we can fix it or if we need userspace
543  * assistance.
544  */
545 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
546 {
547         u32 exit_reason = kvm_get_exit_reason(vcpu);
548         vcpu->arch.last_exit = exit_reason;
549
550         if (exit_reason < kvm_vti_max_exit_handlers
551                         && kvm_vti_exit_handlers[exit_reason])
552                 return kvm_vti_exit_handlers[exit_reason](vcpu, kvm_run);
553         else {
554                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
555                 kvm_run->hw.hardware_exit_reason = exit_reason;
556         }
557         return 0;
558 }
559
560 static inline void vti_set_rr6(unsigned long rr6)
561 {
562         ia64_set_rr(RR6, rr6);
563         ia64_srlz_i();
564 }
565
566 static int kvm_insert_vmm_mapping(struct kvm_vcpu *vcpu)
567 {
568         unsigned long pte;
569         struct kvm *kvm = vcpu->kvm;
570         int r;
571
572         /*Insert a pair of tr to map vmm*/
573         pte = pte_val(mk_pte_phys(__pa(kvm_vmm_base), PAGE_KERNEL));
574         r = ia64_itr_entry(0x3, KVM_VMM_BASE, pte, KVM_VMM_SHIFT);
575         if (r < 0)
576                 goto out;
577         vcpu->arch.vmm_tr_slot = r;
578         /*Insert a pairt of tr to map data of vm*/
579         pte = pte_val(mk_pte_phys(__pa(kvm->arch.vm_base), PAGE_KERNEL));
580         r = ia64_itr_entry(0x3, KVM_VM_DATA_BASE,
581                                         pte, KVM_VM_DATA_SHIFT);
582         if (r < 0)
583                 goto out;
584         vcpu->arch.vm_tr_slot = r;
585
586 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
587         if (kvm->arch.is_sn2) {
588                 r = kvm_sn2_setup_mappings(vcpu);
589                 if (r < 0)
590                         goto out;
591         }
592 #endif
593
594         r = 0;
595 out:
596         return r;
597 }
598
599 static void kvm_purge_vmm_mapping(struct kvm_vcpu *vcpu)
600 {
601         struct kvm *kvm = vcpu->kvm;
602         ia64_ptr_entry(0x3, vcpu->arch.vmm_tr_slot);
603         ia64_ptr_entry(0x3, vcpu->arch.vm_tr_slot);
604 #if defined(CONFIG_IA64_SGI_SN2) || defined(CONFIG_IA64_GENERIC)
605         if (kvm->arch.is_sn2)
606                 ia64_ptr_entry(0x3, vcpu->arch.sn_rtc_tr_slot);
607 #endif
608 }
609
610 static int kvm_vcpu_pre_transition(struct kvm_vcpu *vcpu)
611 {
612         int cpu = smp_processor_id();
613
614         if (vcpu->arch.last_run_cpu != cpu ||
615                         per_cpu(last_vcpu, cpu) != vcpu) {
616                 per_cpu(last_vcpu, cpu) = vcpu;
617                 vcpu->arch.last_run_cpu = cpu;
618                 kvm_flush_tlb_all();
619         }
620
621         vcpu->arch.host_rr6 = ia64_get_rr(RR6);
622         vti_set_rr6(vcpu->arch.vmm_rr);
623         return kvm_insert_vmm_mapping(vcpu);
624 }
625 static void kvm_vcpu_post_transition(struct kvm_vcpu *vcpu)
626 {
627         kvm_purge_vmm_mapping(vcpu);
628         vti_set_rr6(vcpu->arch.host_rr6);
629 }
630
631 static int  vti_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
632 {
633         union context *host_ctx, *guest_ctx;
634         int r;
635
636         /*Get host and guest context with guest address space.*/
637         host_ctx = kvm_get_host_context(vcpu);
638         guest_ctx = kvm_get_guest_context(vcpu);
639
640         r = kvm_vcpu_pre_transition(vcpu);
641         if (r < 0)
642                 goto out;
643         kvm_vmm_info->tramp_entry(host_ctx, guest_ctx);
644         kvm_vcpu_post_transition(vcpu);
645         r = 0;
646 out:
647         return r;
648 }
649
650 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
651 {
652         int r;
653
654 again:
655         if (signal_pending(current)) {
656                 r = -EINTR;
657                 kvm_run->exit_reason = KVM_EXIT_INTR;
658                 goto out;
659         }
660
661         /*
662          * down_read() may sleep and return with interrupts enabled
663          */
664         down_read(&vcpu->kvm->slots_lock);
665
666         preempt_disable();
667         local_irq_disable();
668
669         vcpu->guest_mode = 1;
670         kvm_guest_enter();
671         r = vti_vcpu_run(vcpu, kvm_run);
672         if (r < 0) {
673                 local_irq_enable();
674                 preempt_enable();
675                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
676                 goto out;
677         }
678
679         vcpu->arch.launched = 1;
680         vcpu->guest_mode = 0;
681         local_irq_enable();
682
683         /*
684          * We must have an instruction between local_irq_enable() and
685          * kvm_guest_exit(), so the timer interrupt isn't delayed by
686          * the interrupt shadow.  The stat.exits increment will do nicely.
687          * But we need to prevent reordering, hence this barrier():
688          */
689         barrier();
690         kvm_guest_exit();
691         up_read(&vcpu->kvm->slots_lock);
692         preempt_enable();
693
694         r = kvm_handle_exit(kvm_run, vcpu);
695
696         if (r > 0) {
697                 if (!need_resched())
698                         goto again;
699         }
700
701 out:
702         if (r > 0) {
703                 kvm_resched(vcpu);
704                 goto again;
705         }
706
707         return r;
708 }
709
710 static void kvm_set_mmio_data(struct kvm_vcpu *vcpu)
711 {
712         struct kvm_mmio_req *p = kvm_get_vcpu_ioreq(vcpu);
713
714         if (!vcpu->mmio_is_write)
715                 memcpy(&p->data, vcpu->mmio_data, 8);
716         p->state = STATE_IORESP_READY;
717 }
718
719 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
720 {
721         int r;
722         sigset_t sigsaved;
723
724         vcpu_load(vcpu);
725
726         if (vcpu->sigset_active)
727                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
728
729         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
730                 kvm_vcpu_block(vcpu);
731                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
732                 r = -EAGAIN;
733                 goto out;
734         }
735
736         if (vcpu->mmio_needed) {
737                 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
738                 kvm_set_mmio_data(vcpu);
739                 vcpu->mmio_read_completed = 1;
740                 vcpu->mmio_needed = 0;
741         }
742         r = __vcpu_run(vcpu, kvm_run);
743 out:
744         if (vcpu->sigset_active)
745                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
746
747         vcpu_put(vcpu);
748         return r;
749 }
750
751 static struct kvm *kvm_alloc_kvm(void)
752 {
753
754         struct kvm *kvm;
755         uint64_t  vm_base;
756
757         BUG_ON(sizeof(struct kvm) > KVM_VM_STRUCT_SIZE);
758
759         vm_base = __get_free_pages(GFP_KERNEL, get_order(KVM_VM_DATA_SIZE));
760
761         if (!vm_base)
762                 return ERR_PTR(-ENOMEM);
763
764         memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
765         kvm = (struct kvm *)(vm_base +
766                         offsetof(struct kvm_vm_data, kvm_vm_struct));
767         kvm->arch.vm_base = vm_base;
768         printk(KERN_DEBUG"kvm: vm's data area:0x%lx\n", vm_base);
769
770         return kvm;
771 }
772
773 struct kvm_io_range {
774         unsigned long start;
775         unsigned long size;
776         unsigned long type;
777 };
778
779 static const struct kvm_io_range io_ranges[] = {
780         {VGA_IO_START, VGA_IO_SIZE, GPFN_FRAME_BUFFER},
781         {MMIO_START, MMIO_SIZE, GPFN_LOW_MMIO},
782         {LEGACY_IO_START, LEGACY_IO_SIZE, GPFN_LEGACY_IO},
783         {IO_SAPIC_START, IO_SAPIC_SIZE, GPFN_IOSAPIC},
784         {PIB_START, PIB_SIZE, GPFN_PIB},
785 };
786
787 static void kvm_build_io_pmt(struct kvm *kvm)
788 {
789         unsigned long i, j;
790
791         /* Mark I/O ranges */
792         for (i = 0; i < (sizeof(io_ranges) / sizeof(struct kvm_io_range));
793                                                         i++) {
794                 for (j = io_ranges[i].start;
795                                 j < io_ranges[i].start + io_ranges[i].size;
796                                 j += PAGE_SIZE)
797                         kvm_set_pmt_entry(kvm, j >> PAGE_SHIFT,
798                                         io_ranges[i].type, 0);
799         }
800
801 }
802
803 /*Use unused rids to virtualize guest rid.*/
804 #define GUEST_PHYSICAL_RR0      0x1739
805 #define GUEST_PHYSICAL_RR4      0x2739
806 #define VMM_INIT_RR             0x1660
807
808 static void kvm_init_vm(struct kvm *kvm)
809 {
810         BUG_ON(!kvm);
811
812         kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
813         kvm->arch.metaphysical_rr4 = GUEST_PHYSICAL_RR4;
814         kvm->arch.vmm_init_rr = VMM_INIT_RR;
815
816         /*
817          *Fill P2M entries for MMIO/IO ranges
818          */
819         kvm_build_io_pmt(kvm);
820
821         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
822
823         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
824         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
825 }
826
827 struct  kvm *kvm_arch_create_vm(void)
828 {
829         struct kvm *kvm = kvm_alloc_kvm();
830
831         if (IS_ERR(kvm))
832                 return ERR_PTR(-ENOMEM);
833
834         kvm->arch.is_sn2 = ia64_platform_is("sn2");
835
836         kvm_init_vm(kvm);
837
838         kvm->arch.online_vcpus = 0;
839
840         return kvm;
841
842 }
843
844 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm,
845                                         struct kvm_irqchip *chip)
846 {
847         int r;
848
849         r = 0;
850         switch (chip->chip_id) {
851         case KVM_IRQCHIP_IOAPIC:
852                 memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm),
853                                 sizeof(struct kvm_ioapic_state));
854                 break;
855         default:
856                 r = -EINVAL;
857                 break;
858         }
859         return r;
860 }
861
862 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
863 {
864         int r;
865
866         r = 0;
867         switch (chip->chip_id) {
868         case KVM_IRQCHIP_IOAPIC:
869                 memcpy(ioapic_irqchip(kvm),
870                                 &chip->chip.ioapic,
871                                 sizeof(struct kvm_ioapic_state));
872                 break;
873         default:
874                 r = -EINVAL;
875                 break;
876         }
877         return r;
878 }
879
880 #define RESTORE_REGS(_x) vcpu->arch._x = regs->_x
881
882 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
883 {
884         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
885         int i;
886
887         vcpu_load(vcpu);
888
889         for (i = 0; i < 16; i++) {
890                 vpd->vgr[i] = regs->vpd.vgr[i];
891                 vpd->vbgr[i] = regs->vpd.vbgr[i];
892         }
893         for (i = 0; i < 128; i++)
894                 vpd->vcr[i] = regs->vpd.vcr[i];
895         vpd->vhpi = regs->vpd.vhpi;
896         vpd->vnat = regs->vpd.vnat;
897         vpd->vbnat = regs->vpd.vbnat;
898         vpd->vpsr = regs->vpd.vpsr;
899
900         vpd->vpr = regs->vpd.vpr;
901
902         memcpy(&vcpu->arch.guest, &regs->saved_guest, sizeof(union context));
903
904         RESTORE_REGS(mp_state);
905         RESTORE_REGS(vmm_rr);
906         memcpy(vcpu->arch.itrs, regs->itrs, sizeof(struct thash_data) * NITRS);
907         memcpy(vcpu->arch.dtrs, regs->dtrs, sizeof(struct thash_data) * NDTRS);
908         RESTORE_REGS(itr_regions);
909         RESTORE_REGS(dtr_regions);
910         RESTORE_REGS(tc_regions);
911         RESTORE_REGS(irq_check);
912         RESTORE_REGS(itc_check);
913         RESTORE_REGS(timer_check);
914         RESTORE_REGS(timer_pending);
915         RESTORE_REGS(last_itc);
916         for (i = 0; i < 8; i++) {
917                 vcpu->arch.vrr[i] = regs->vrr[i];
918                 vcpu->arch.ibr[i] = regs->ibr[i];
919                 vcpu->arch.dbr[i] = regs->dbr[i];
920         }
921         for (i = 0; i < 4; i++)
922                 vcpu->arch.insvc[i] = regs->insvc[i];
923         RESTORE_REGS(xtp);
924         RESTORE_REGS(metaphysical_rr0);
925         RESTORE_REGS(metaphysical_rr4);
926         RESTORE_REGS(metaphysical_saved_rr0);
927         RESTORE_REGS(metaphysical_saved_rr4);
928         RESTORE_REGS(fp_psr);
929         RESTORE_REGS(saved_gp);
930
931         vcpu->arch.irq_new_pending = 1;
932         vcpu->arch.itc_offset = regs->saved_itc - ia64_getreg(_IA64_REG_AR_ITC);
933         set_bit(KVM_REQ_RESUME, &vcpu->requests);
934
935         vcpu_put(vcpu);
936
937         return 0;
938 }
939
940 long kvm_arch_vm_ioctl(struct file *filp,
941                 unsigned int ioctl, unsigned long arg)
942 {
943         struct kvm *kvm = filp->private_data;
944         void __user *argp = (void __user *)arg;
945         int r = -EINVAL;
946
947         switch (ioctl) {
948         case KVM_SET_MEMORY_REGION: {
949                 struct kvm_memory_region kvm_mem;
950                 struct kvm_userspace_memory_region kvm_userspace_mem;
951
952                 r = -EFAULT;
953                 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
954                         goto out;
955                 kvm_userspace_mem.slot = kvm_mem.slot;
956                 kvm_userspace_mem.flags = kvm_mem.flags;
957                 kvm_userspace_mem.guest_phys_addr =
958                                         kvm_mem.guest_phys_addr;
959                 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
960                 r = kvm_vm_ioctl_set_memory_region(kvm,
961                                         &kvm_userspace_mem, 0);
962                 if (r)
963                         goto out;
964                 break;
965                 }
966         case KVM_CREATE_IRQCHIP:
967                 r = -EFAULT;
968                 r = kvm_ioapic_init(kvm);
969                 if (r)
970                         goto out;
971                 r = kvm_setup_default_irq_routing(kvm);
972                 if (r) {
973                         kfree(kvm->arch.vioapic);
974                         goto out;
975                 }
976                 break;
977         case KVM_IRQ_LINE_STATUS:
978         case KVM_IRQ_LINE: {
979                 struct kvm_irq_level irq_event;
980
981                 r = -EFAULT;
982                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
983                         goto out;
984                 if (irqchip_in_kernel(kvm)) {
985                         __s32 status;
986                         mutex_lock(&kvm->lock);
987                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
988                                     irq_event.irq, irq_event.level);
989                         mutex_unlock(&kvm->lock);
990                         if (ioctl == KVM_IRQ_LINE_STATUS) {
991                                 irq_event.status = status;
992                                 if (copy_to_user(argp, &irq_event,
993                                                         sizeof irq_event))
994                                         goto out;
995                         }
996                         r = 0;
997                 }
998                 break;
999                 }
1000         case KVM_GET_IRQCHIP: {
1001                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1002                 struct kvm_irqchip chip;
1003
1004                 r = -EFAULT;
1005                 if (copy_from_user(&chip, argp, sizeof chip))
1006                                 goto out;
1007                 r = -ENXIO;
1008                 if (!irqchip_in_kernel(kvm))
1009                         goto out;
1010                 r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
1011                 if (r)
1012                         goto out;
1013                 r = -EFAULT;
1014                 if (copy_to_user(argp, &chip, sizeof chip))
1015                                 goto out;
1016                 r = 0;
1017                 break;
1018                 }
1019         case KVM_SET_IRQCHIP: {
1020                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1021                 struct kvm_irqchip chip;
1022
1023                 r = -EFAULT;
1024                 if (copy_from_user(&chip, argp, sizeof chip))
1025                                 goto out;
1026                 r = -ENXIO;
1027                 if (!irqchip_in_kernel(kvm))
1028                         goto out;
1029                 r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
1030                 if (r)
1031                         goto out;
1032                 r = 0;
1033                 break;
1034                 }
1035         default:
1036                 ;
1037         }
1038 out:
1039         return r;
1040 }
1041
1042 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1043                 struct kvm_sregs *sregs)
1044 {
1045         return -EINVAL;
1046 }
1047
1048 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1049                 struct kvm_sregs *sregs)
1050 {
1051         return -EINVAL;
1052
1053 }
1054 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1055                 struct kvm_translation *tr)
1056 {
1057
1058         return -EINVAL;
1059 }
1060
1061 static int kvm_alloc_vmm_area(void)
1062 {
1063         if (!kvm_vmm_base && (kvm_vm_buffer_size < KVM_VM_BUFFER_SIZE)) {
1064                 kvm_vmm_base = __get_free_pages(GFP_KERNEL,
1065                                 get_order(KVM_VMM_SIZE));
1066                 if (!kvm_vmm_base)
1067                         return -ENOMEM;
1068
1069                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1070                 kvm_vm_buffer = kvm_vmm_base + VMM_SIZE;
1071
1072                 printk(KERN_DEBUG"kvm:VMM's Base Addr:0x%lx, vm_buffer:0x%lx\n",
1073                                 kvm_vmm_base, kvm_vm_buffer);
1074         }
1075
1076         return 0;
1077 }
1078
1079 static void kvm_free_vmm_area(void)
1080 {
1081         if (kvm_vmm_base) {
1082                 /*Zero this area before free to avoid bits leak!!*/
1083                 memset((void *)kvm_vmm_base, 0, KVM_VMM_SIZE);
1084                 free_pages(kvm_vmm_base, get_order(KVM_VMM_SIZE));
1085                 kvm_vmm_base  = 0;
1086                 kvm_vm_buffer = 0;
1087                 kvm_vsa_base = 0;
1088         }
1089 }
1090
1091 static void vti_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1092 {
1093 }
1094
1095 static int vti_init_vpd(struct kvm_vcpu *vcpu)
1096 {
1097         int i;
1098         union cpuid3_t cpuid3;
1099         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1100
1101         if (IS_ERR(vpd))
1102                 return PTR_ERR(vpd);
1103
1104         /* CPUID init */
1105         for (i = 0; i < 5; i++)
1106                 vpd->vcpuid[i] = ia64_get_cpuid(i);
1107
1108         /* Limit the CPUID number to 5 */
1109         cpuid3.value = vpd->vcpuid[3];
1110         cpuid3.number = 4;      /* 5 - 1 */
1111         vpd->vcpuid[3] = cpuid3.value;
1112
1113         /*Set vac and vdc fields*/
1114         vpd->vac.a_from_int_cr = 1;
1115         vpd->vac.a_to_int_cr = 1;
1116         vpd->vac.a_from_psr = 1;
1117         vpd->vac.a_from_cpuid = 1;
1118         vpd->vac.a_cover = 1;
1119         vpd->vac.a_bsw = 1;
1120         vpd->vac.a_int = 1;
1121         vpd->vdc.d_vmsw = 1;
1122
1123         /*Set virtual buffer*/
1124         vpd->virt_env_vaddr = KVM_VM_BUFFER_BASE;
1125
1126         return 0;
1127 }
1128
1129 static int vti_create_vp(struct kvm_vcpu *vcpu)
1130 {
1131         long ret;
1132         struct vpd *vpd = vcpu->arch.vpd;
1133         unsigned long  vmm_ivt;
1134
1135         vmm_ivt = kvm_vmm_info->vmm_ivt;
1136
1137         printk(KERN_DEBUG "kvm: vcpu:%p,ivt: 0x%lx\n", vcpu, vmm_ivt);
1138
1139         ret = ia64_pal_vp_create((u64 *)vpd, (u64 *)vmm_ivt, 0);
1140
1141         if (ret) {
1142                 printk(KERN_ERR"kvm: ia64_pal_vp_create failed!\n");
1143                 return -EINVAL;
1144         }
1145         return 0;
1146 }
1147
1148 static void init_ptce_info(struct kvm_vcpu *vcpu)
1149 {
1150         ia64_ptce_info_t ptce = {0};
1151
1152         ia64_get_ptce(&ptce);
1153         vcpu->arch.ptce_base = ptce.base;
1154         vcpu->arch.ptce_count[0] = ptce.count[0];
1155         vcpu->arch.ptce_count[1] = ptce.count[1];
1156         vcpu->arch.ptce_stride[0] = ptce.stride[0];
1157         vcpu->arch.ptce_stride[1] = ptce.stride[1];
1158 }
1159
1160 static void kvm_migrate_hlt_timer(struct kvm_vcpu *vcpu)
1161 {
1162         struct hrtimer *p_ht = &vcpu->arch.hlt_timer;
1163
1164         if (hrtimer_cancel(p_ht))
1165                 hrtimer_start_expires(p_ht, HRTIMER_MODE_ABS);
1166 }
1167
1168 static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
1169 {
1170         struct kvm_vcpu *vcpu;
1171         wait_queue_head_t *q;
1172
1173         vcpu  = container_of(data, struct kvm_vcpu, arch.hlt_timer);
1174         q = &vcpu->wq;
1175
1176         if (vcpu->arch.mp_state != KVM_MP_STATE_HALTED)
1177                 goto out;
1178
1179         if (waitqueue_active(q))
1180                 wake_up_interruptible(q);
1181
1182 out:
1183         vcpu->arch.timer_fired = 1;
1184         vcpu->arch.timer_check = 1;
1185         return HRTIMER_NORESTART;
1186 }
1187
1188 #define PALE_RESET_ENTRY    0x80000000ffffffb0UL
1189
1190 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1191 {
1192         struct kvm_vcpu *v;
1193         int r;
1194         int i;
1195         long itc_offset;
1196         struct kvm *kvm = vcpu->kvm;
1197         struct kvm_pt_regs *regs = vcpu_regs(vcpu);
1198
1199         union context *p_ctx = &vcpu->arch.guest;
1200         struct kvm_vcpu *vmm_vcpu = to_guest(vcpu->kvm, vcpu);
1201
1202         /*Init vcpu context for first run.*/
1203         if (IS_ERR(vmm_vcpu))
1204                 return PTR_ERR(vmm_vcpu);
1205
1206         if (vcpu->vcpu_id == 0) {
1207                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1208
1209                 /*Set entry address for first run.*/
1210                 regs->cr_iip = PALE_RESET_ENTRY;
1211
1212                 /*Initialize itc offset for vcpus*/
1213                 itc_offset = 0UL - ia64_getreg(_IA64_REG_AR_ITC);
1214                 for (i = 0; i < kvm->arch.online_vcpus; i++) {
1215                         v = (struct kvm_vcpu *)((char *)vcpu +
1216                                         sizeof(struct kvm_vcpu_data) * i);
1217                         v->arch.itc_offset = itc_offset;
1218                         v->arch.last_itc = 0;
1219                 }
1220         } else
1221                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
1222
1223         r = -ENOMEM;
1224         vcpu->arch.apic = kzalloc(sizeof(struct kvm_lapic), GFP_KERNEL);
1225         if (!vcpu->arch.apic)
1226                 goto out;
1227         vcpu->arch.apic->vcpu = vcpu;
1228
1229         p_ctx->gr[1] = 0;
1230         p_ctx->gr[12] = (unsigned long)((char *)vmm_vcpu + KVM_STK_OFFSET);
1231         p_ctx->gr[13] = (unsigned long)vmm_vcpu;
1232         p_ctx->psr = 0x1008522000UL;
1233         p_ctx->ar[40] = FPSR_DEFAULT; /*fpsr*/
1234         p_ctx->caller_unat = 0;
1235         p_ctx->pr = 0x0;
1236         p_ctx->ar[36] = 0x0; /*unat*/
1237         p_ctx->ar[19] = 0x0; /*rnat*/
1238         p_ctx->ar[18] = (unsigned long)vmm_vcpu +
1239                                 ((sizeof(struct kvm_vcpu)+15) & ~15);
1240         p_ctx->ar[64] = 0x0; /*pfs*/
1241         p_ctx->cr[0] = 0x7e04UL;
1242         p_ctx->cr[2] = (unsigned long)kvm_vmm_info->vmm_ivt;
1243         p_ctx->cr[8] = 0x3c;
1244
1245         /*Initilize region register*/
1246         p_ctx->rr[0] = 0x30;
1247         p_ctx->rr[1] = 0x30;
1248         p_ctx->rr[2] = 0x30;
1249         p_ctx->rr[3] = 0x30;
1250         p_ctx->rr[4] = 0x30;
1251         p_ctx->rr[5] = 0x30;
1252         p_ctx->rr[7] = 0x30;
1253
1254         /*Initilize branch register 0*/
1255         p_ctx->br[0] = *(unsigned long *)kvm_vmm_info->vmm_entry;
1256
1257         vcpu->arch.vmm_rr = kvm->arch.vmm_init_rr;
1258         vcpu->arch.metaphysical_rr0 = kvm->arch.metaphysical_rr0;
1259         vcpu->arch.metaphysical_rr4 = kvm->arch.metaphysical_rr4;
1260
1261         hrtimer_init(&vcpu->arch.hlt_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1262         vcpu->arch.hlt_timer.function = hlt_timer_fn;
1263
1264         vcpu->arch.last_run_cpu = -1;
1265         vcpu->arch.vpd = (struct vpd *)VPD_BASE(vcpu->vcpu_id);
1266         vcpu->arch.vsa_base = kvm_vsa_base;
1267         vcpu->arch.__gp = kvm_vmm_gp;
1268         vcpu->arch.dirty_log_lock_pa = __pa(&kvm->arch.dirty_log_lock);
1269         vcpu->arch.vhpt.hash = (struct thash_data *)VHPT_BASE(vcpu->vcpu_id);
1270         vcpu->arch.vtlb.hash = (struct thash_data *)VTLB_BASE(vcpu->vcpu_id);
1271         init_ptce_info(vcpu);
1272
1273         r = 0;
1274 out:
1275         return r;
1276 }
1277
1278 static int vti_vcpu_setup(struct kvm_vcpu *vcpu, int id)
1279 {
1280         unsigned long psr;
1281         int r;
1282
1283         local_irq_save(psr);
1284         r = kvm_insert_vmm_mapping(vcpu);
1285         if (r)
1286                 goto fail;
1287         r = kvm_vcpu_init(vcpu, vcpu->kvm, id);
1288         if (r)
1289                 goto fail;
1290
1291         r = vti_init_vpd(vcpu);
1292         if (r) {
1293                 printk(KERN_DEBUG"kvm: vpd init error!!\n");
1294                 goto uninit;
1295         }
1296
1297         r = vti_create_vp(vcpu);
1298         if (r)
1299                 goto uninit;
1300
1301         kvm_purge_vmm_mapping(vcpu);
1302         local_irq_restore(psr);
1303
1304         return 0;
1305 uninit:
1306         kvm_vcpu_uninit(vcpu);
1307 fail:
1308         local_irq_restore(psr);
1309         return r;
1310 }
1311
1312 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1313                 unsigned int id)
1314 {
1315         struct kvm_vcpu *vcpu;
1316         unsigned long vm_base = kvm->arch.vm_base;
1317         int r;
1318         int cpu;
1319
1320         BUG_ON(sizeof(struct kvm_vcpu) > VCPU_STRUCT_SIZE/2);
1321
1322         r = -EINVAL;
1323         if (id >= KVM_MAX_VCPUS) {
1324                 printk(KERN_ERR"kvm: Can't configure vcpus > %ld",
1325                                 KVM_MAX_VCPUS);
1326                 goto fail;
1327         }
1328
1329         r = -ENOMEM;
1330         if (!vm_base) {
1331                 printk(KERN_ERR"kvm: Create vcpu[%d] error!\n", id);
1332                 goto fail;
1333         }
1334         vcpu = (struct kvm_vcpu *)(vm_base + offsetof(struct kvm_vm_data,
1335                                         vcpu_data[id].vcpu_struct));
1336         vcpu->kvm = kvm;
1337
1338         cpu = get_cpu();
1339         vti_vcpu_load(vcpu, cpu);
1340         r = vti_vcpu_setup(vcpu, id);
1341         put_cpu();
1342
1343         if (r) {
1344                 printk(KERN_DEBUG"kvm: vcpu_setup error!!\n");
1345                 goto fail;
1346         }
1347
1348         kvm->arch.online_vcpus++;
1349
1350         return vcpu;
1351 fail:
1352         return ERR_PTR(r);
1353 }
1354
1355 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1356 {
1357         return 0;
1358 }
1359
1360 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1361 {
1362         return -EINVAL;
1363 }
1364
1365 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1366 {
1367         return -EINVAL;
1368 }
1369
1370 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1371                                         struct kvm_guest_debug *dbg)
1372 {
1373         return -EINVAL;
1374 }
1375
1376 static void free_kvm(struct kvm *kvm)
1377 {
1378         unsigned long vm_base = kvm->arch.vm_base;
1379
1380         if (vm_base) {
1381                 memset((void *)vm_base, 0, KVM_VM_DATA_SIZE);
1382                 free_pages(vm_base, get_order(KVM_VM_DATA_SIZE));
1383         }
1384
1385 }
1386
1387 static void kvm_release_vm_pages(struct kvm *kvm)
1388 {
1389         struct kvm_memory_slot *memslot;
1390         int i, j;
1391         unsigned long base_gfn;
1392
1393         for (i = 0; i < kvm->nmemslots; i++) {
1394                 memslot = &kvm->memslots[i];
1395                 base_gfn = memslot->base_gfn;
1396
1397                 for (j = 0; j < memslot->npages; j++) {
1398                         if (memslot->rmap[j])
1399                                 put_page((struct page *)memslot->rmap[j]);
1400                 }
1401         }
1402 }
1403
1404 void kvm_arch_sync_events(struct kvm *kvm)
1405 {
1406 }
1407
1408 void kvm_arch_destroy_vm(struct kvm *kvm)
1409 {
1410         kvm_iommu_unmap_guest(kvm);
1411 #ifdef  KVM_CAP_DEVICE_ASSIGNMENT
1412         kvm_free_all_assigned_devices(kvm);
1413 #endif
1414         kfree(kvm->arch.vioapic);
1415         kvm_release_vm_pages(kvm);
1416         kvm_free_physmem(kvm);
1417         free_kvm(kvm);
1418 }
1419
1420 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1421 {
1422 }
1423
1424 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1425 {
1426         if (cpu != vcpu->cpu) {
1427                 vcpu->cpu = cpu;
1428                 if (vcpu->arch.ht_active)
1429                         kvm_migrate_hlt_timer(vcpu);
1430         }
1431 }
1432
1433 #define SAVE_REGS(_x)   regs->_x = vcpu->arch._x
1434
1435 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1436 {
1437         struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1438         int i;
1439
1440         vcpu_load(vcpu);
1441
1442         for (i = 0; i < 16; i++) {
1443                 regs->vpd.vgr[i] = vpd->vgr[i];
1444                 regs->vpd.vbgr[i] = vpd->vbgr[i];
1445         }
1446         for (i = 0; i < 128; i++)
1447                 regs->vpd.vcr[i] = vpd->vcr[i];
1448         regs->vpd.vhpi = vpd->vhpi;
1449         regs->vpd.vnat = vpd->vnat;
1450         regs->vpd.vbnat = vpd->vbnat;
1451         regs->vpd.vpsr = vpd->vpsr;
1452         regs->vpd.vpr = vpd->vpr;
1453
1454         memcpy(&regs->saved_guest, &vcpu->arch.guest, sizeof(union context));
1455
1456         SAVE_REGS(mp_state);
1457         SAVE_REGS(vmm_rr);
1458         memcpy(regs->itrs, vcpu->arch.itrs, sizeof(struct thash_data) * NITRS);
1459         memcpy(regs->dtrs, vcpu->arch.dtrs, sizeof(struct thash_data) * NDTRS);
1460         SAVE_REGS(itr_regions);
1461         SAVE_REGS(dtr_regions);
1462         SAVE_REGS(tc_regions);
1463         SAVE_REGS(irq_check);
1464         SAVE_REGS(itc_check);
1465         SAVE_REGS(timer_check);
1466         SAVE_REGS(timer_pending);
1467         SAVE_REGS(last_itc);
1468         for (i = 0; i < 8; i++) {
1469                 regs->vrr[i] = vcpu->arch.vrr[i];
1470                 regs->ibr[i] = vcpu->arch.ibr[i];
1471                 regs->dbr[i] = vcpu->arch.dbr[i];
1472         }
1473         for (i = 0; i < 4; i++)
1474                 regs->insvc[i] = vcpu->arch.insvc[i];
1475         regs->saved_itc = vcpu->arch.itc_offset + ia64_getreg(_IA64_REG_AR_ITC);
1476         SAVE_REGS(xtp);
1477         SAVE_REGS(metaphysical_rr0);
1478         SAVE_REGS(metaphysical_rr4);
1479         SAVE_REGS(metaphysical_saved_rr0);
1480         SAVE_REGS(metaphysical_saved_rr4);
1481         SAVE_REGS(fp_psr);
1482         SAVE_REGS(saved_gp);
1483
1484         vcpu_put(vcpu);
1485         return 0;
1486 }
1487
1488 int kvm_arch_vcpu_ioctl_get_stack(struct kvm_vcpu *vcpu,
1489                                   struct kvm_ia64_vcpu_stack *stack)
1490 {
1491         memcpy(stack, vcpu, sizeof(struct kvm_ia64_vcpu_stack));
1492         return 0;
1493 }
1494
1495 int kvm_arch_vcpu_ioctl_set_stack(struct kvm_vcpu *vcpu,
1496                                   struct kvm_ia64_vcpu_stack *stack)
1497 {
1498         memcpy(vcpu + 1, &stack->stack[0] + sizeof(struct kvm_vcpu),
1499                sizeof(struct kvm_ia64_vcpu_stack) - sizeof(struct kvm_vcpu));
1500
1501         vcpu->arch.exit_data = ((struct kvm_vcpu *)stack)->arch.exit_data;
1502         return 0;
1503 }
1504
1505 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
1506 {
1507
1508         hrtimer_cancel(&vcpu->arch.hlt_timer);
1509         kfree(vcpu->arch.apic);
1510 }
1511
1512
1513 long kvm_arch_vcpu_ioctl(struct file *filp,
1514                          unsigned int ioctl, unsigned long arg)
1515 {
1516         struct kvm_vcpu *vcpu = filp->private_data;
1517         void __user *argp = (void __user *)arg;
1518         struct kvm_ia64_vcpu_stack *stack = NULL;
1519         long r;
1520
1521         switch (ioctl) {
1522         case KVM_IA64_VCPU_GET_STACK: {
1523                 struct kvm_ia64_vcpu_stack __user *user_stack;
1524                 void __user *first_p = argp;
1525
1526                 r = -EFAULT;
1527                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1528                         goto out;
1529
1530                 if (!access_ok(VERIFY_WRITE, user_stack,
1531                                sizeof(struct kvm_ia64_vcpu_stack))) {
1532                         printk(KERN_INFO "KVM_IA64_VCPU_GET_STACK: "
1533                                "Illegal user destination address for stack\n");
1534                         goto out;
1535                 }
1536                 stack = kzalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1537                 if (!stack) {
1538                         r = -ENOMEM;
1539                         goto out;
1540                 }
1541
1542                 r = kvm_arch_vcpu_ioctl_get_stack(vcpu, stack);
1543                 if (r)
1544                         goto out;
1545
1546                 if (copy_to_user(user_stack, stack,
1547                                  sizeof(struct kvm_ia64_vcpu_stack)))
1548                         goto out;
1549
1550                 break;
1551         }
1552         case KVM_IA64_VCPU_SET_STACK: {
1553                 struct kvm_ia64_vcpu_stack __user *user_stack;
1554                 void __user *first_p = argp;
1555
1556                 r = -EFAULT;
1557                 if (copy_from_user(&user_stack, first_p, sizeof(void *)))
1558                         goto out;
1559
1560                 if (!access_ok(VERIFY_READ, user_stack,
1561                             sizeof(struct kvm_ia64_vcpu_stack))) {
1562                         printk(KERN_INFO "KVM_IA64_VCPU_SET_STACK: "
1563                                "Illegal user address for stack\n");
1564                         goto out;
1565                 }
1566                 stack = kmalloc(sizeof(struct kvm_ia64_vcpu_stack), GFP_KERNEL);
1567                 if (!stack) {
1568                         r = -ENOMEM;
1569                         goto out;
1570                 }
1571                 if (copy_from_user(stack, user_stack,
1572                                    sizeof(struct kvm_ia64_vcpu_stack)))
1573                         goto out;
1574
1575                 r = kvm_arch_vcpu_ioctl_set_stack(vcpu, stack);
1576                 break;
1577         }
1578
1579         default:
1580                 r = -EINVAL;
1581         }
1582
1583 out:
1584         kfree(stack);
1585         return r;
1586 }
1587
1588 int kvm_arch_set_memory_region(struct kvm *kvm,
1589                 struct kvm_userspace_memory_region *mem,
1590                 struct kvm_memory_slot old,
1591                 int user_alloc)
1592 {
1593         unsigned long i;
1594         unsigned long pfn;
1595         int npages = mem->memory_size >> PAGE_SHIFT;
1596         struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
1597         unsigned long base_gfn = memslot->base_gfn;
1598
1599         if (base_gfn + npages > (KVM_MAX_MEM_SIZE >> PAGE_SHIFT))
1600                 return -ENOMEM;
1601
1602         for (i = 0; i < npages; i++) {
1603                 pfn = gfn_to_pfn(kvm, base_gfn + i);
1604                 if (!kvm_is_mmio_pfn(pfn)) {
1605                         kvm_set_pmt_entry(kvm, base_gfn + i,
1606                                         pfn << PAGE_SHIFT,
1607                                 _PAGE_AR_RWX | _PAGE_MA_WB);
1608                         memslot->rmap[i] = (unsigned long)pfn_to_page(pfn);
1609                 } else {
1610                         kvm_set_pmt_entry(kvm, base_gfn + i,
1611                                         GPFN_PHYS_MMIO | (pfn << PAGE_SHIFT),
1612                                         _PAGE_MA_UC);
1613                         memslot->rmap[i] = 0;
1614                         }
1615         }
1616
1617         return 0;
1618 }
1619
1620 void kvm_arch_flush_shadow(struct kvm *kvm)
1621 {
1622 }
1623
1624 long kvm_arch_dev_ioctl(struct file *filp,
1625                         unsigned int ioctl, unsigned long arg)
1626 {
1627         return -EINVAL;
1628 }
1629
1630 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1631 {
1632         kvm_vcpu_uninit(vcpu);
1633 }
1634
1635 static int vti_cpu_has_kvm_support(void)
1636 {
1637         long  avail = 1, status = 1, control = 1;
1638         long ret;
1639
1640         ret = ia64_pal_proc_get_features(&avail, &status, &control, 0);
1641         if (ret)
1642                 goto out;
1643
1644         if (!(avail & PAL_PROC_VM_BIT))
1645                 goto out;
1646
1647         printk(KERN_DEBUG"kvm: Hardware Supports VT\n");
1648
1649         ret = ia64_pal_vp_env_info(&kvm_vm_buffer_size, &vp_env_info);
1650         if (ret)
1651                 goto out;
1652         printk(KERN_DEBUG"kvm: VM Buffer Size:0x%lx\n", kvm_vm_buffer_size);
1653
1654         if (!(vp_env_info & VP_OPCODE)) {
1655                 printk(KERN_WARNING"kvm: No opcode ability on hardware, "
1656                                 "vm_env_info:0x%lx\n", vp_env_info);
1657         }
1658
1659         return 1;
1660 out:
1661         return 0;
1662 }
1663
1664 static int kvm_relocate_vmm(struct kvm_vmm_info *vmm_info,
1665                                                 struct module *module)
1666 {
1667         unsigned long module_base;
1668         unsigned long vmm_size;
1669
1670         unsigned long vmm_offset, func_offset, fdesc_offset;
1671         struct fdesc *p_fdesc;
1672
1673         BUG_ON(!module);
1674
1675         if (!kvm_vmm_base) {
1676                 printk("kvm: kvm area hasn't been initilized yet!!\n");
1677                 return -EFAULT;
1678         }
1679
1680         /*Calculate new position of relocated vmm module.*/
1681         module_base = (unsigned long)module->module_core;
1682         vmm_size = module->core_size;
1683         if (unlikely(vmm_size > KVM_VMM_SIZE))
1684                 return -EFAULT;
1685
1686         memcpy((void *)kvm_vmm_base, (void *)module_base, vmm_size);
1687         kvm_flush_icache(kvm_vmm_base, vmm_size);
1688
1689         /*Recalculate kvm_vmm_info based on new VMM*/
1690         vmm_offset = vmm_info->vmm_ivt - module_base;
1691         kvm_vmm_info->vmm_ivt = KVM_VMM_BASE + vmm_offset;
1692         printk(KERN_DEBUG"kvm: Relocated VMM's IVT Base Addr:%lx\n",
1693                         kvm_vmm_info->vmm_ivt);
1694
1695         fdesc_offset = (unsigned long)vmm_info->vmm_entry - module_base;
1696         kvm_vmm_info->vmm_entry = (kvm_vmm_entry *)(KVM_VMM_BASE +
1697                                                         fdesc_offset);
1698         func_offset = *(unsigned long *)vmm_info->vmm_entry - module_base;
1699         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1700         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1701         p_fdesc->gp = KVM_VMM_BASE+(p_fdesc->gp - module_base);
1702
1703         printk(KERN_DEBUG"kvm: Relocated VMM's Init Entry Addr:%lx\n",
1704                         KVM_VMM_BASE+func_offset);
1705
1706         fdesc_offset = (unsigned long)vmm_info->tramp_entry - module_base;
1707         kvm_vmm_info->tramp_entry = (kvm_tramp_entry *)(KVM_VMM_BASE +
1708                         fdesc_offset);
1709         func_offset = *(unsigned long *)vmm_info->tramp_entry - module_base;
1710         p_fdesc = (struct fdesc *)(kvm_vmm_base + fdesc_offset);
1711         p_fdesc->ip = KVM_VMM_BASE + func_offset;
1712         p_fdesc->gp = KVM_VMM_BASE + (p_fdesc->gp - module_base);
1713
1714         kvm_vmm_gp = p_fdesc->gp;
1715
1716         printk(KERN_DEBUG"kvm: Relocated VMM's Entry IP:%p\n",
1717                                                 kvm_vmm_info->vmm_entry);
1718         printk(KERN_DEBUG"kvm: Relocated VMM's Trampoline Entry IP:0x%lx\n",
1719                                                 KVM_VMM_BASE + func_offset);
1720
1721         return 0;
1722 }
1723
1724 int kvm_arch_init(void *opaque)
1725 {
1726         int r;
1727         struct kvm_vmm_info *vmm_info = (struct kvm_vmm_info *)opaque;
1728
1729         if (!vti_cpu_has_kvm_support()) {
1730                 printk(KERN_ERR "kvm: No Hardware Virtualization Support!\n");
1731                 r = -EOPNOTSUPP;
1732                 goto out;
1733         }
1734
1735         if (kvm_vmm_info) {
1736                 printk(KERN_ERR "kvm: Already loaded VMM module!\n");
1737                 r = -EEXIST;
1738                 goto out;
1739         }
1740
1741         r = -ENOMEM;
1742         kvm_vmm_info = kzalloc(sizeof(struct kvm_vmm_info), GFP_KERNEL);
1743         if (!kvm_vmm_info)
1744                 goto out;
1745
1746         if (kvm_alloc_vmm_area())
1747                 goto out_free0;
1748
1749         r = kvm_relocate_vmm(vmm_info, vmm_info->module);
1750         if (r)
1751                 goto out_free1;
1752
1753         return 0;
1754
1755 out_free1:
1756         kvm_free_vmm_area();
1757 out_free0:
1758         kfree(kvm_vmm_info);
1759 out:
1760         return r;
1761 }
1762
1763 void kvm_arch_exit(void)
1764 {
1765         kvm_free_vmm_area();
1766         kfree(kvm_vmm_info);
1767         kvm_vmm_info = NULL;
1768 }
1769
1770 static int kvm_ia64_sync_dirty_log(struct kvm *kvm,
1771                 struct kvm_dirty_log *log)
1772 {
1773         struct kvm_memory_slot *memslot;
1774         int r, i;
1775         long n, base;
1776         unsigned long *dirty_bitmap = (unsigned long *)(kvm->arch.vm_base +
1777                         offsetof(struct kvm_vm_data, kvm_mem_dirty_log));
1778
1779         r = -EINVAL;
1780         if (log->slot >= KVM_MEMORY_SLOTS)
1781                 goto out;
1782
1783         memslot = &kvm->memslots[log->slot];
1784         r = -ENOENT;
1785         if (!memslot->dirty_bitmap)
1786                 goto out;
1787
1788         n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1789         base = memslot->base_gfn / BITS_PER_LONG;
1790
1791         for (i = 0; i < n/sizeof(long); ++i) {
1792                 memslot->dirty_bitmap[i] = dirty_bitmap[base + i];
1793                 dirty_bitmap[base + i] = 0;
1794         }
1795         r = 0;
1796 out:
1797         return r;
1798 }
1799
1800 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1801                 struct kvm_dirty_log *log)
1802 {
1803         int r;
1804         int n;
1805         struct kvm_memory_slot *memslot;
1806         int is_dirty = 0;
1807
1808         spin_lock(&kvm->arch.dirty_log_lock);
1809
1810         r = kvm_ia64_sync_dirty_log(kvm, log);
1811         if (r)
1812                 goto out;
1813
1814         r = kvm_get_dirty_log(kvm, log, &is_dirty);
1815         if (r)
1816                 goto out;
1817
1818         /* If nothing is dirty, don't bother messing with page tables. */
1819         if (is_dirty) {
1820                 kvm_flush_remote_tlbs(kvm);
1821                 memslot = &kvm->memslots[log->slot];
1822                 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1823                 memset(memslot->dirty_bitmap, 0, n);
1824         }
1825         r = 0;
1826 out:
1827         spin_unlock(&kvm->arch.dirty_log_lock);
1828         return r;
1829 }
1830
1831 int kvm_arch_hardware_setup(void)
1832 {
1833         return 0;
1834 }
1835
1836 void kvm_arch_hardware_unsetup(void)
1837 {
1838 }
1839
1840 static void vcpu_kick_intr(void *info)
1841 {
1842 #ifdef DEBUG
1843         struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
1844         printk(KERN_DEBUG"vcpu_kick_intr %p \n", vcpu);
1845 #endif
1846 }
1847
1848 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1849 {
1850         int ipi_pcpu = vcpu->cpu;
1851         int cpu = get_cpu();
1852
1853         if (waitqueue_active(&vcpu->wq))
1854                 wake_up_interruptible(&vcpu->wq);
1855
1856         if (vcpu->guest_mode && cpu != ipi_pcpu)
1857                 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
1858         put_cpu();
1859 }
1860
1861 int kvm_apic_set_irq(struct kvm_vcpu *vcpu, struct kvm_lapic_irq *irq)
1862 {
1863         return __apic_accept_irq(vcpu, irq->vector);
1864 }
1865
1866 int kvm_apic_match_physical_addr(struct kvm_lapic *apic, u16 dest)
1867 {
1868         return apic->vcpu->vcpu_id == dest;
1869 }
1870
1871 int kvm_apic_match_logical_addr(struct kvm_lapic *apic, u8 mda)
1872 {
1873         return 0;
1874 }
1875
1876 int kvm_apic_compare_prio(struct kvm_vcpu *vcpu1, struct kvm_vcpu *vcpu2)
1877 {
1878         return vcpu1->arch.xtp - vcpu2->arch.xtp;
1879 }
1880
1881 int kvm_apic_match_dest(struct kvm_vcpu *vcpu, struct kvm_lapic *source,
1882                 int short_hand, int dest, int dest_mode)
1883 {
1884         struct kvm_lapic *target = vcpu->arch.apic;
1885         return (dest_mode == 0) ?
1886                 kvm_apic_match_physical_addr(target, dest) :
1887                 kvm_apic_match_logical_addr(target, dest);
1888 }
1889
1890 static int find_highest_bits(int *dat)
1891 {
1892         u32  bits, bitnum;
1893         int i;
1894
1895         /* loop for all 256 bits */
1896         for (i = 7; i >= 0 ; i--) {
1897                 bits = dat[i];
1898                 if (bits) {
1899                         bitnum = fls(bits);
1900                         return i * 32 + bitnum - 1;
1901                 }
1902         }
1903
1904         return -1;
1905 }
1906
1907 int kvm_highest_pending_irq(struct kvm_vcpu *vcpu)
1908 {
1909     struct vpd *vpd = to_host(vcpu->kvm, vcpu->arch.vpd);
1910
1911     if (vpd->irr[0] & (1UL << NMI_VECTOR))
1912                 return NMI_VECTOR;
1913     if (vpd->irr[0] & (1UL << ExtINT_VECTOR))
1914                 return ExtINT_VECTOR;
1915
1916     return find_highest_bits((int *)&vpd->irr[0]);
1917 }
1918
1919 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu)
1920 {
1921         if (kvm_highest_pending_irq(vcpu) != -1)
1922                 return 1;
1923         return 0;
1924 }
1925
1926 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1927 {
1928         return vcpu->arch.timer_fired;
1929 }
1930
1931 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1932 {
1933         return gfn;
1934 }
1935
1936 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1937 {
1938         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE;
1939 }
1940
1941 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1942                                     struct kvm_mp_state *mp_state)
1943 {
1944         vcpu_load(vcpu);
1945         mp_state->mp_state = vcpu->arch.mp_state;
1946         vcpu_put(vcpu);
1947         return 0;
1948 }
1949
1950 static int vcpu_reset(struct kvm_vcpu *vcpu)
1951 {
1952         int r;
1953         long psr;
1954         local_irq_save(psr);
1955         r = kvm_insert_vmm_mapping(vcpu);
1956         if (r)
1957                 goto fail;
1958
1959         vcpu->arch.launched = 0;
1960         kvm_arch_vcpu_uninit(vcpu);
1961         r = kvm_arch_vcpu_init(vcpu);
1962         if (r)
1963                 goto fail;
1964
1965         kvm_purge_vmm_mapping(vcpu);
1966         r = 0;
1967 fail:
1968         local_irq_restore(psr);
1969         return r;
1970 }
1971
1972 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1973                                     struct kvm_mp_state *mp_state)
1974 {
1975         int r = 0;
1976
1977         vcpu_load(vcpu);
1978         vcpu->arch.mp_state = mp_state->mp_state;
1979         if (vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)
1980                 r = vcpu_reset(vcpu);
1981         vcpu_put(vcpu);
1982         return r;
1983 }