]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
netdev: netdev_priv() can now be sane again.
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/kallsyms.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124
125#include "net-sysfs.h"
126
127/*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
138 * the average user (w/out VLANs) will not be adversely affected.
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
155#define PTYPE_HASH_SIZE (16)
156#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
158static DEFINE_SPINLOCK(ptype_lock);
159static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160static struct list_head ptype_all __read_mostly; /* Taps */
161
162#ifdef CONFIG_NET_DMA
163struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
167 struct dma_chan **channels;
168};
169
170static enum dma_state_client
171netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178};
179#endif
180
181/*
182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
188 * dev_base_head list, and hold dev_base_lock for writing when they do the
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
200DEFINE_RWLOCK(dev_base_lock);
201
202EXPORT_SYMBOL(dev_base_lock);
203
204#define NETDEV_HASHBITS 8
205#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
206
207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208{
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
211}
212
213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214{
215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
216}
217
218/* Device list insertion */
219static int list_netdevice(struct net_device *dev)
220{
221 struct net *net = dev_net(dev);
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231}
232
233/* Device list removal */
234static void unlist_netdevice(struct net_device *dev)
235{
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244}
245
246/*
247 * Our notifier list
248 */
249
250static RAW_NOTIFIER_HEAD(netdev_chain);
251
252/*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
256
257DEFINE_PER_CPU(struct softnet_data, softnet_data);
258
259#ifdef CONFIG_DEBUG_LOCK_ALLOC
260/*
261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
262 * according to dev->type
263 */
264static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301{
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309}
310
311static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313{
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319}
320#else
321static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323{
324}
325#endif
326
327/*******************************************************************************
328
329 Protocol management and registration routines
330
331*******************************************************************************/
332
333/*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349/**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
357 * This call does not sleep therefore it can not
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362void dev_add_pack(struct packet_type *pt)
363{
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
367 if (pt->type == htons(ETH_P_ALL))
368 list_add_rcu(&pt->list, &ptype_all);
369 else {
370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374}
375
376/**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
383 * returns.
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389void __dev_remove_pack(struct packet_type *pt)
390{
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
396 if (pt->type == htons(ETH_P_ALL))
397 head = &ptype_all;
398 else
399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409out:
410 spin_unlock_bh(&ptype_lock);
411}
412/**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424void dev_remove_pack(struct packet_type *pt)
425{
426 __dev_remove_pack(pt);
427
428 synchronize_net();
429}
430
431/******************************************************************************
432
433 Device Boot-time Settings Routines
434
435*******************************************************************************/
436
437/* Boot time configuration table */
438static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440/**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449static int netdev_boot_setup_add(char *name, struct ifmap *map)
450{
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
458 strlcpy(s[i].name, name, IFNAMSIZ);
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465}
466
467/**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476int netdev_boot_setup_check(struct net_device *dev)
477{
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
483 !strcmp(dev->name, s[i].name)) {
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492}
493
494
495/**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505unsigned long netdev_boot_base(const char *prefix, int unit)
506{
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
517 if (__dev_get_by_name(&init_net, name))
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524}
525
526/*
527 * Saves at boot time configured settings for any netdevice.
528 */
529int __init netdev_boot_setup(char *str)
530{
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551}
552
553__setup("netdev=", netdev_boot_setup);
554
555/*******************************************************************************
556
557 Device Interface Subroutines
558
559*******************************************************************************/
560
561/**
562 * __dev_get_by_name - find a device by its name
563 * @net: the applicable net namespace
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
573struct net_device *__dev_get_by_name(struct net *net, const char *name)
574{
575 struct hlist_node *p;
576
577 hlist_for_each(p, dev_name_hash(net, name)) {
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584}
585
586/**
587 * dev_get_by_name - find a device by its name
588 * @net: the applicable net namespace
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
598struct net_device *dev_get_by_name(struct net *net, const char *name)
599{
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
603 dev = __dev_get_by_name(net, name);
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608}
609
610/**
611 * __dev_get_by_index - find a device by its ifindex
612 * @net: the applicable net namespace
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
622struct net_device *__dev_get_by_index(struct net *net, int ifindex)
623{
624 struct hlist_node *p;
625
626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633}
634
635
636/**
637 * dev_get_by_index - find a device by its ifindex
638 * @net: the applicable net namespace
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
647struct net_device *dev_get_by_index(struct net *net, int ifindex)
648{
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
652 dev = __dev_get_by_index(net, ifindex);
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657}
658
659/**
660 * dev_getbyhwaddr - find a device by its hardware address
661 * @net: the applicable net namespace
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
674struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
675{
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
680 for_each_netdev(net, dev)
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
683 return dev;
684
685 return NULL;
686}
687
688EXPORT_SYMBOL(dev_getbyhwaddr);
689
690struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
691{
692 struct net_device *dev;
693
694 ASSERT_RTNL();
695 for_each_netdev(net, dev)
696 if (dev->type == type)
697 return dev;
698
699 return NULL;
700}
701
702EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
704struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
705{
706 struct net_device *dev;
707
708 rtnl_lock();
709 dev = __dev_getfirstbyhwtype(net, type);
710 if (dev)
711 dev_hold(dev);
712 rtnl_unlock();
713 return dev;
714}
715
716EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718/**
719 * dev_get_by_flags - find any device with given flags
720 * @net: the applicable net namespace
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
725 * is not found or a pointer to the device. The device returned has
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
730struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
731{
732 struct net_device *dev, *ret;
733
734 ret = NULL;
735 read_lock(&dev_base_lock);
736 for_each_netdev(net, dev) {
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
739 ret = dev;
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
744 return ret;
745}
746
747/**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
754 */
755int dev_valid_name(const char *name)
756{
757 if (*name == '\0')
758 return 0;
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
770}
771
772/**
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
775 * @name: name format string
776 * @buf: scratch buffer and result name string
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
785 */
786
787static int __dev_alloc_name(struct net *net, const char *name, char *buf)
788{
789 int i = 0;
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
792 unsigned long *inuse;
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
807 if (!inuse)
808 return -ENOMEM;
809
810 for_each_netdev(net, d) {
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
817 snprintf(buf, IFNAMSIZ, name, i);
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
828 return i;
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835}
836
837/**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851int dev_alloc_name(struct net_device *dev, const char *name)
852{
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863}
864
865
866/**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874int dev_change_name(struct net_device *dev, char *newname)
875{
876 char oldname[IFNAMSIZ];
877 int err = 0;
878 int ret;
879 struct net *net;
880
881 ASSERT_RTNL();
882 BUG_ON(!dev_net(dev));
883
884 net = dev_net(dev);
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
902 else if (__dev_get_by_name(net, newname))
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
907rollback:
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
913
914 write_lock_bh(&dev_base_lock);
915 hlist_del(&dev->name_hlist);
916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
917 write_unlock_bh(&dev_base_lock);
918
919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
933
934 return err;
935}
936
937/**
938 * netdev_features_change - device changes features
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943void netdev_features_change(struct net_device *dev)
944{
945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
946}
947EXPORT_SYMBOL(netdev_features_change);
948
949/**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957void netdev_state_change(struct net_device *dev)
958{
959 if (dev->flags & IFF_UP) {
960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963}
964
965void netdev_bonding_change(struct net_device *dev)
966{
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968}
969EXPORT_SYMBOL(netdev_bonding_change);
970
971/**
972 * dev_load - load a network module
973 * @net: the applicable net namespace
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
981void dev_load(struct net *net, const char *name)
982{
983 struct net_device *dev;
984
985 read_lock(&dev_base_lock);
986 dev = __dev_get_by_name(net, name);
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991}
992
993/**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005int dev_open(struct net_device *dev)
1006{
1007 int ret = 0;
1008
1009 ASSERT_RTNL();
1010
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1033 ret = dev->open(dev);
1034
1035 /*
1036 * If it went open OK then:
1037 */
1038
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
1050 dev_set_rx_mode(dev);
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
1060 call_netdevice_notifiers(NETDEV_UP, dev);
1061 }
1062
1063 return ret;
1064}
1065
1066/**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075int dev_close(struct net_device *dev)
1076{
1077 ASSERT_RTNL();
1078
1079 might_sleep();
1080
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1089
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1099
1100 dev_deactivate(dev);
1101
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1122
1123 return 0;
1124}
1125
1126
1127/**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135void dev_disable_lro(struct net_device *dev)
1136{
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146}
1147EXPORT_SYMBOL(dev_disable_lro);
1148
1149
1150static int dev_boot_phase = 1;
1151
1152/*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157/**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
1167 * to the new notifier to allow device to have a race free
1168 * view of the network device list.
1169 */
1170
1171int register_netdevice_notifier(struct notifier_block *nb)
1172{
1173 struct net_device *dev;
1174 struct net_device *last;
1175 struct net *net;
1176 int err;
1177
1178 rtnl_lock();
1179 err = raw_notifier_chain_register(&netdev_chain, nb);
1180 if (err)
1181 goto unlock;
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1193
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1196 }
1197
1198unlock:
1199 rtnl_unlock();
1200 return err;
1201
1202rollback:
1203 last = dev;
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
1208
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1214 }
1215 }
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
1218 goto unlock;
1219}
1220
1221/**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231int unregister_netdevice_notifier(struct notifier_block *nb)
1232{
1233 int err;
1234
1235 rtnl_lock();
1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1237 rtnl_unlock();
1238 return err;
1239}
1240
1241/**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
1244 * @dev: net_device pointer passed unmodified to notifier function
1245 *
1246 * Call all network notifier blocks. Parameters and return value
1247 * are as for raw_notifier_call_chain().
1248 */
1249
1250int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1251{
1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1253}
1254
1255/* When > 0 there are consumers of rx skb time stamps */
1256static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258void net_enable_timestamp(void)
1259{
1260 atomic_inc(&netstamp_needed);
1261}
1262
1263void net_disable_timestamp(void)
1264{
1265 atomic_dec(&netstamp_needed);
1266}
1267
1268static inline void net_timestamp(struct sk_buff *skb)
1269{
1270 if (atomic_read(&netstamp_needed))
1271 __net_timestamp(skb);
1272 else
1273 skb->tstamp.tv64 = 0;
1274}
1275
1276/*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
1281static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1282{
1283 struct packet_type *ptype;
1284
1285 net_timestamp(skb);
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
1303 skb_reset_mac_header(skb2);
1304
1305 if (skb_network_header(skb2) < skb2->data ||
1306 skb2->network_header > skb2->tail) {
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
1311 skb_reset_network_header(skb2);
1312 }
1313
1314 skb2->transport_header = skb2->network_header;
1315 skb2->pkt_type = PACKET_OUTGOING;
1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1317 }
1318 }
1319 rcu_read_unlock();
1320}
1321
1322
1323void __netif_schedule(struct netdev_queue *txq)
1324{
1325 struct net_device *dev = txq->dev;
1326
1327 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1328 struct softnet_data *sd;
1329 unsigned long flags;
1330
1331 local_irq_save(flags);
1332 sd = &__get_cpu_var(softnet_data);
1333 txq->next_sched = sd->output_queue;
1334 sd->output_queue = txq;
1335 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1336 local_irq_restore(flags);
1337 }
1338}
1339EXPORT_SYMBOL(__netif_schedule);
1340
1341void dev_kfree_skb_irq(struct sk_buff *skb)
1342{
1343 if (atomic_dec_and_test(&skb->users)) {
1344 struct softnet_data *sd;
1345 unsigned long flags;
1346
1347 local_irq_save(flags);
1348 sd = &__get_cpu_var(softnet_data);
1349 skb->next = sd->completion_queue;
1350 sd->completion_queue = skb;
1351 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1352 local_irq_restore(flags);
1353 }
1354}
1355EXPORT_SYMBOL(dev_kfree_skb_irq);
1356
1357void dev_kfree_skb_any(struct sk_buff *skb)
1358{
1359 if (in_irq() || irqs_disabled())
1360 dev_kfree_skb_irq(skb);
1361 else
1362 dev_kfree_skb(skb);
1363}
1364EXPORT_SYMBOL(dev_kfree_skb_any);
1365
1366
1367/**
1368 * netif_device_detach - mark device as removed
1369 * @dev: network device
1370 *
1371 * Mark device as removed from system and therefore no longer available.
1372 */
1373void netif_device_detach(struct net_device *dev)
1374{
1375 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1376 netif_running(dev)) {
1377 netif_stop_queue(dev);
1378 }
1379}
1380EXPORT_SYMBOL(netif_device_detach);
1381
1382/**
1383 * netif_device_attach - mark device as attached
1384 * @dev: network device
1385 *
1386 * Mark device as attached from system and restart if needed.
1387 */
1388void netif_device_attach(struct net_device *dev)
1389{
1390 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1391 netif_running(dev)) {
1392 netif_wake_queue(dev);
1393 __netdev_watchdog_up(dev);
1394 }
1395}
1396EXPORT_SYMBOL(netif_device_attach);
1397
1398static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1399{
1400 return ((features & NETIF_F_GEN_CSUM) ||
1401 ((features & NETIF_F_IP_CSUM) &&
1402 protocol == htons(ETH_P_IP)) ||
1403 ((features & NETIF_F_IPV6_CSUM) &&
1404 protocol == htons(ETH_P_IPV6)));
1405}
1406
1407static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1408{
1409 if (can_checksum_protocol(dev->features, skb->protocol))
1410 return true;
1411
1412 if (skb->protocol == htons(ETH_P_8021Q)) {
1413 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1414 if (can_checksum_protocol(dev->features & dev->vlan_features,
1415 veh->h_vlan_encapsulated_proto))
1416 return true;
1417 }
1418
1419 return false;
1420}
1421
1422/*
1423 * Invalidate hardware checksum when packet is to be mangled, and
1424 * complete checksum manually on outgoing path.
1425 */
1426int skb_checksum_help(struct sk_buff *skb)
1427{
1428 __wsum csum;
1429 int ret = 0, offset;
1430
1431 if (skb->ip_summed == CHECKSUM_COMPLETE)
1432 goto out_set_summed;
1433
1434 if (unlikely(skb_shinfo(skb)->gso_size)) {
1435 /* Let GSO fix up the checksum. */
1436 goto out_set_summed;
1437 }
1438
1439 offset = skb->csum_start - skb_headroom(skb);
1440 BUG_ON(offset >= skb_headlen(skb));
1441 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1442
1443 offset += skb->csum_offset;
1444 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1445
1446 if (skb_cloned(skb) &&
1447 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1448 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1449 if (ret)
1450 goto out;
1451 }
1452
1453 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1454out_set_summed:
1455 skb->ip_summed = CHECKSUM_NONE;
1456out:
1457 return ret;
1458}
1459
1460/**
1461 * skb_gso_segment - Perform segmentation on skb.
1462 * @skb: buffer to segment
1463 * @features: features for the output path (see dev->features)
1464 *
1465 * This function segments the given skb and returns a list of segments.
1466 *
1467 * It may return NULL if the skb requires no segmentation. This is
1468 * only possible when GSO is used for verifying header integrity.
1469 */
1470struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1471{
1472 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1473 struct packet_type *ptype;
1474 __be16 type = skb->protocol;
1475 int err;
1476
1477 BUG_ON(skb_shinfo(skb)->frag_list);
1478
1479 skb_reset_mac_header(skb);
1480 skb->mac_len = skb->network_header - skb->mac_header;
1481 __skb_pull(skb, skb->mac_len);
1482
1483 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1484 if (skb_header_cloned(skb) &&
1485 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1486 return ERR_PTR(err);
1487 }
1488
1489 rcu_read_lock();
1490 list_for_each_entry_rcu(ptype,
1491 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1492 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1493 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1494 err = ptype->gso_send_check(skb);
1495 segs = ERR_PTR(err);
1496 if (err || skb_gso_ok(skb, features))
1497 break;
1498 __skb_push(skb, (skb->data -
1499 skb_network_header(skb)));
1500 }
1501 segs = ptype->gso_segment(skb, features);
1502 break;
1503 }
1504 }
1505 rcu_read_unlock();
1506
1507 __skb_push(skb, skb->data - skb_mac_header(skb));
1508
1509 return segs;
1510}
1511
1512EXPORT_SYMBOL(skb_gso_segment);
1513
1514/* Take action when hardware reception checksum errors are detected. */
1515#ifdef CONFIG_BUG
1516void netdev_rx_csum_fault(struct net_device *dev)
1517{
1518 if (net_ratelimit()) {
1519 printk(KERN_ERR "%s: hw csum failure.\n",
1520 dev ? dev->name : "<unknown>");
1521 dump_stack();
1522 }
1523}
1524EXPORT_SYMBOL(netdev_rx_csum_fault);
1525#endif
1526
1527/* Actually, we should eliminate this check as soon as we know, that:
1528 * 1. IOMMU is present and allows to map all the memory.
1529 * 2. No high memory really exists on this machine.
1530 */
1531
1532static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1533{
1534#ifdef CONFIG_HIGHMEM
1535 int i;
1536
1537 if (dev->features & NETIF_F_HIGHDMA)
1538 return 0;
1539
1540 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1541 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1542 return 1;
1543
1544#endif
1545 return 0;
1546}
1547
1548struct dev_gso_cb {
1549 void (*destructor)(struct sk_buff *skb);
1550};
1551
1552#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1553
1554static void dev_gso_skb_destructor(struct sk_buff *skb)
1555{
1556 struct dev_gso_cb *cb;
1557
1558 do {
1559 struct sk_buff *nskb = skb->next;
1560
1561 skb->next = nskb->next;
1562 nskb->next = NULL;
1563 kfree_skb(nskb);
1564 } while (skb->next);
1565
1566 cb = DEV_GSO_CB(skb);
1567 if (cb->destructor)
1568 cb->destructor(skb);
1569}
1570
1571/**
1572 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1573 * @skb: buffer to segment
1574 *
1575 * This function segments the given skb and stores the list of segments
1576 * in skb->next.
1577 */
1578static int dev_gso_segment(struct sk_buff *skb)
1579{
1580 struct net_device *dev = skb->dev;
1581 struct sk_buff *segs;
1582 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1583 NETIF_F_SG : 0);
1584
1585 segs = skb_gso_segment(skb, features);
1586
1587 /* Verifying header integrity only. */
1588 if (!segs)
1589 return 0;
1590
1591 if (IS_ERR(segs))
1592 return PTR_ERR(segs);
1593
1594 skb->next = segs;
1595 DEV_GSO_CB(skb)->destructor = skb->destructor;
1596 skb->destructor = dev_gso_skb_destructor;
1597
1598 return 0;
1599}
1600
1601int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1602 struct netdev_queue *txq)
1603{
1604 if (likely(!skb->next)) {
1605 if (!list_empty(&ptype_all))
1606 dev_queue_xmit_nit(skb, dev);
1607
1608 if (netif_needs_gso(dev, skb)) {
1609 if (unlikely(dev_gso_segment(skb)))
1610 goto out_kfree_skb;
1611 if (skb->next)
1612 goto gso;
1613 }
1614
1615 return dev->hard_start_xmit(skb, dev);
1616 }
1617
1618gso:
1619 do {
1620 struct sk_buff *nskb = skb->next;
1621 int rc;
1622
1623 skb->next = nskb->next;
1624 nskb->next = NULL;
1625 rc = dev->hard_start_xmit(nskb, dev);
1626 if (unlikely(rc)) {
1627 nskb->next = skb->next;
1628 skb->next = nskb;
1629 return rc;
1630 }
1631 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1632 return NETDEV_TX_BUSY;
1633 } while (skb->next);
1634
1635 skb->destructor = DEV_GSO_CB(skb)->destructor;
1636
1637out_kfree_skb:
1638 kfree_skb(skb);
1639 return 0;
1640}
1641
1642/**
1643 * dev_queue_xmit - transmit a buffer
1644 * @skb: buffer to transmit
1645 *
1646 * Queue a buffer for transmission to a network device. The caller must
1647 * have set the device and priority and built the buffer before calling
1648 * this function. The function can be called from an interrupt.
1649 *
1650 * A negative errno code is returned on a failure. A success does not
1651 * guarantee the frame will be transmitted as it may be dropped due
1652 * to congestion or traffic shaping.
1653 *
1654 * -----------------------------------------------------------------------------------
1655 * I notice this method can also return errors from the queue disciplines,
1656 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1657 * be positive.
1658 *
1659 * Regardless of the return value, the skb is consumed, so it is currently
1660 * difficult to retry a send to this method. (You can bump the ref count
1661 * before sending to hold a reference for retry if you are careful.)
1662 *
1663 * When calling this method, interrupts MUST be enabled. This is because
1664 * the BH enable code must have IRQs enabled so that it will not deadlock.
1665 * --BLG
1666 */
1667
1668static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1669 struct sk_buff *skb)
1670{
1671 u16 queue_index = 0;
1672
1673 skb_set_queue_mapping(skb, queue_index);
1674 return netdev_get_tx_queue(dev, queue_index);
1675}
1676
1677int dev_queue_xmit(struct sk_buff *skb)
1678{
1679 struct net_device *dev = skb->dev;
1680 struct netdev_queue *txq;
1681 struct Qdisc *q;
1682 int rc = -ENOMEM;
1683
1684 /* GSO will handle the following emulations directly. */
1685 if (netif_needs_gso(dev, skb))
1686 goto gso;
1687
1688 if (skb_shinfo(skb)->frag_list &&
1689 !(dev->features & NETIF_F_FRAGLIST) &&
1690 __skb_linearize(skb))
1691 goto out_kfree_skb;
1692
1693 /* Fragmented skb is linearized if device does not support SG,
1694 * or if at least one of fragments is in highmem and device
1695 * does not support DMA from it.
1696 */
1697 if (skb_shinfo(skb)->nr_frags &&
1698 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1699 __skb_linearize(skb))
1700 goto out_kfree_skb;
1701
1702 /* If packet is not checksummed and device does not support
1703 * checksumming for this protocol, complete checksumming here.
1704 */
1705 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1706 skb_set_transport_header(skb, skb->csum_start -
1707 skb_headroom(skb));
1708 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1709 goto out_kfree_skb;
1710 }
1711
1712gso:
1713 txq = dev_pick_tx(dev, skb);
1714 spin_lock_prefetch(&txq->lock);
1715
1716 /* Disable soft irqs for various locks below. Also
1717 * stops preemption for RCU.
1718 */
1719 rcu_read_lock_bh();
1720
1721 /* Updates of qdisc are serialized by queue->lock.
1722 * The struct Qdisc which is pointed to by qdisc is now a
1723 * rcu structure - it may be accessed without acquiring
1724 * a lock (but the structure may be stale.) The freeing of the
1725 * qdisc will be deferred until it's known that there are no
1726 * more references to it.
1727 *
1728 * If the qdisc has an enqueue function, we still need to
1729 * hold the queue->lock before calling it, since queue->lock
1730 * also serializes access to the device queue.
1731 */
1732
1733 q = rcu_dereference(txq->qdisc);
1734#ifdef CONFIG_NET_CLS_ACT
1735 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1736#endif
1737 if (q->enqueue) {
1738 /* Grab device queue */
1739 spin_lock(&txq->lock);
1740 q = txq->qdisc;
1741 if (q->enqueue) {
1742 rc = q->enqueue(skb, q);
1743 qdisc_run(txq);
1744 spin_unlock(&txq->lock);
1745
1746 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1747 goto out;
1748 }
1749 spin_unlock(&txq->lock);
1750 }
1751
1752 /* The device has no queue. Common case for software devices:
1753 loopback, all the sorts of tunnels...
1754
1755 Really, it is unlikely that netif_tx_lock protection is necessary
1756 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1757 counters.)
1758 However, it is possible, that they rely on protection
1759 made by us here.
1760
1761 Check this and shot the lock. It is not prone from deadlocks.
1762 Either shot noqueue qdisc, it is even simpler 8)
1763 */
1764 if (dev->flags & IFF_UP) {
1765 int cpu = smp_processor_id(); /* ok because BHs are off */
1766
1767 if (txq->xmit_lock_owner != cpu) {
1768
1769 HARD_TX_LOCK(dev, txq, cpu);
1770
1771 if (!netif_tx_queue_stopped(txq)) {
1772 rc = 0;
1773 if (!dev_hard_start_xmit(skb, dev, txq)) {
1774 HARD_TX_UNLOCK(dev, txq);
1775 goto out;
1776 }
1777 }
1778 HARD_TX_UNLOCK(dev, txq);
1779 if (net_ratelimit())
1780 printk(KERN_CRIT "Virtual device %s asks to "
1781 "queue packet!\n", dev->name);
1782 } else {
1783 /* Recursion is detected! It is possible,
1784 * unfortunately */
1785 if (net_ratelimit())
1786 printk(KERN_CRIT "Dead loop on virtual device "
1787 "%s, fix it urgently!\n", dev->name);
1788 }
1789 }
1790
1791 rc = -ENETDOWN;
1792 rcu_read_unlock_bh();
1793
1794out_kfree_skb:
1795 kfree_skb(skb);
1796 return rc;
1797out:
1798 rcu_read_unlock_bh();
1799 return rc;
1800}
1801
1802
1803/*=======================================================================
1804 Receiver routines
1805 =======================================================================*/
1806
1807int netdev_max_backlog __read_mostly = 1000;
1808int netdev_budget __read_mostly = 300;
1809int weight_p __read_mostly = 64; /* old backlog weight */
1810
1811DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1812
1813
1814/**
1815 * netif_rx - post buffer to the network code
1816 * @skb: buffer to post
1817 *
1818 * This function receives a packet from a device driver and queues it for
1819 * the upper (protocol) levels to process. It always succeeds. The buffer
1820 * may be dropped during processing for congestion control or by the
1821 * protocol layers.
1822 *
1823 * return values:
1824 * NET_RX_SUCCESS (no congestion)
1825 * NET_RX_DROP (packet was dropped)
1826 *
1827 */
1828
1829int netif_rx(struct sk_buff *skb)
1830{
1831 struct softnet_data *queue;
1832 unsigned long flags;
1833
1834 /* if netpoll wants it, pretend we never saw it */
1835 if (netpoll_rx(skb))
1836 return NET_RX_DROP;
1837
1838 if (!skb->tstamp.tv64)
1839 net_timestamp(skb);
1840
1841 /*
1842 * The code is rearranged so that the path is the most
1843 * short when CPU is congested, but is still operating.
1844 */
1845 local_irq_save(flags);
1846 queue = &__get_cpu_var(softnet_data);
1847
1848 __get_cpu_var(netdev_rx_stat).total++;
1849 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1850 if (queue->input_pkt_queue.qlen) {
1851enqueue:
1852 dev_hold(skb->dev);
1853 __skb_queue_tail(&queue->input_pkt_queue, skb);
1854 local_irq_restore(flags);
1855 return NET_RX_SUCCESS;
1856 }
1857
1858 napi_schedule(&queue->backlog);
1859 goto enqueue;
1860 }
1861
1862 __get_cpu_var(netdev_rx_stat).dropped++;
1863 local_irq_restore(flags);
1864
1865 kfree_skb(skb);
1866 return NET_RX_DROP;
1867}
1868
1869int netif_rx_ni(struct sk_buff *skb)
1870{
1871 int err;
1872
1873 preempt_disable();
1874 err = netif_rx(skb);
1875 if (local_softirq_pending())
1876 do_softirq();
1877 preempt_enable();
1878
1879 return err;
1880}
1881
1882EXPORT_SYMBOL(netif_rx_ni);
1883
1884static inline struct net_device *skb_bond(struct sk_buff *skb)
1885{
1886 struct net_device *dev = skb->dev;
1887
1888 if (dev->master) {
1889 if (skb_bond_should_drop(skb)) {
1890 kfree_skb(skb);
1891 return NULL;
1892 }
1893 skb->dev = dev->master;
1894 }
1895
1896 return dev;
1897}
1898
1899
1900static void net_tx_action(struct softirq_action *h)
1901{
1902 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1903
1904 if (sd->completion_queue) {
1905 struct sk_buff *clist;
1906
1907 local_irq_disable();
1908 clist = sd->completion_queue;
1909 sd->completion_queue = NULL;
1910 local_irq_enable();
1911
1912 while (clist) {
1913 struct sk_buff *skb = clist;
1914 clist = clist->next;
1915
1916 BUG_TRAP(!atomic_read(&skb->users));
1917 __kfree_skb(skb);
1918 }
1919 }
1920
1921 if (sd->output_queue) {
1922 struct netdev_queue *head;
1923
1924 local_irq_disable();
1925 head = sd->output_queue;
1926 sd->output_queue = NULL;
1927 local_irq_enable();
1928
1929 while (head) {
1930 struct netdev_queue *txq = head;
1931 struct net_device *dev = txq->dev;
1932 head = head->next_sched;
1933
1934 smp_mb__before_clear_bit();
1935 clear_bit(__LINK_STATE_SCHED, &dev->state);
1936
1937 if (spin_trylock(&txq->lock)) {
1938 qdisc_run(txq);
1939 spin_unlock(&txq->lock);
1940 } else {
1941 netif_schedule_queue(txq);
1942 }
1943 }
1944 }
1945}
1946
1947static inline int deliver_skb(struct sk_buff *skb,
1948 struct packet_type *pt_prev,
1949 struct net_device *orig_dev)
1950{
1951 atomic_inc(&skb->users);
1952 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1953}
1954
1955#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1956/* These hooks defined here for ATM */
1957struct net_bridge;
1958struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1959 unsigned char *addr);
1960void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1961
1962/*
1963 * If bridge module is loaded call bridging hook.
1964 * returns NULL if packet was consumed.
1965 */
1966struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1967 struct sk_buff *skb) __read_mostly;
1968static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1969 struct packet_type **pt_prev, int *ret,
1970 struct net_device *orig_dev)
1971{
1972 struct net_bridge_port *port;
1973
1974 if (skb->pkt_type == PACKET_LOOPBACK ||
1975 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1976 return skb;
1977
1978 if (*pt_prev) {
1979 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1980 *pt_prev = NULL;
1981 }
1982
1983 return br_handle_frame_hook(port, skb);
1984}
1985#else
1986#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1987#endif
1988
1989#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1990struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1991EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1992
1993static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1994 struct packet_type **pt_prev,
1995 int *ret,
1996 struct net_device *orig_dev)
1997{
1998 if (skb->dev->macvlan_port == NULL)
1999 return skb;
2000
2001 if (*pt_prev) {
2002 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2003 *pt_prev = NULL;
2004 }
2005 return macvlan_handle_frame_hook(skb);
2006}
2007#else
2008#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2009#endif
2010
2011#ifdef CONFIG_NET_CLS_ACT
2012/* TODO: Maybe we should just force sch_ingress to be compiled in
2013 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2014 * a compare and 2 stores extra right now if we dont have it on
2015 * but have CONFIG_NET_CLS_ACT
2016 * NOTE: This doesnt stop any functionality; if you dont have
2017 * the ingress scheduler, you just cant add policies on ingress.
2018 *
2019 */
2020static int ing_filter(struct sk_buff *skb)
2021{
2022 struct net_device *dev = skb->dev;
2023 u32 ttl = G_TC_RTTL(skb->tc_verd);
2024 struct netdev_queue *rxq;
2025 int result = TC_ACT_OK;
2026 struct Qdisc *q;
2027
2028 if (MAX_RED_LOOP < ttl++) {
2029 printk(KERN_WARNING
2030 "Redir loop detected Dropping packet (%d->%d)\n",
2031 skb->iif, dev->ifindex);
2032 return TC_ACT_SHOT;
2033 }
2034
2035 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2036 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2037
2038 rxq = &dev->rx_queue;
2039
2040 spin_lock(&rxq->lock);
2041 if ((q = rxq->qdisc) != NULL)
2042 result = q->enqueue(skb, q);
2043 spin_unlock(&rxq->lock);
2044
2045 return result;
2046}
2047
2048static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2049 struct packet_type **pt_prev,
2050 int *ret, struct net_device *orig_dev)
2051{
2052 if (!skb->dev->rx_queue.qdisc)
2053 goto out;
2054
2055 if (*pt_prev) {
2056 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2057 *pt_prev = NULL;
2058 } else {
2059 /* Huh? Why does turning on AF_PACKET affect this? */
2060 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2061 }
2062
2063 switch (ing_filter(skb)) {
2064 case TC_ACT_SHOT:
2065 case TC_ACT_STOLEN:
2066 kfree_skb(skb);
2067 return NULL;
2068 }
2069
2070out:
2071 skb->tc_verd = 0;
2072 return skb;
2073}
2074#endif
2075
2076/*
2077 * netif_nit_deliver - deliver received packets to network taps
2078 * @skb: buffer
2079 *
2080 * This function is used to deliver incoming packets to network
2081 * taps. It should be used when the normal netif_receive_skb path
2082 * is bypassed, for example because of VLAN acceleration.
2083 */
2084void netif_nit_deliver(struct sk_buff *skb)
2085{
2086 struct packet_type *ptype;
2087
2088 if (list_empty(&ptype_all))
2089 return;
2090
2091 skb_reset_network_header(skb);
2092 skb_reset_transport_header(skb);
2093 skb->mac_len = skb->network_header - skb->mac_header;
2094
2095 rcu_read_lock();
2096 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2097 if (!ptype->dev || ptype->dev == skb->dev)
2098 deliver_skb(skb, ptype, skb->dev);
2099 }
2100 rcu_read_unlock();
2101}
2102
2103/**
2104 * netif_receive_skb - process receive buffer from network
2105 * @skb: buffer to process
2106 *
2107 * netif_receive_skb() is the main receive data processing function.
2108 * It always succeeds. The buffer may be dropped during processing
2109 * for congestion control or by the protocol layers.
2110 *
2111 * This function may only be called from softirq context and interrupts
2112 * should be enabled.
2113 *
2114 * Return values (usually ignored):
2115 * NET_RX_SUCCESS: no congestion
2116 * NET_RX_DROP: packet was dropped
2117 */
2118int netif_receive_skb(struct sk_buff *skb)
2119{
2120 struct packet_type *ptype, *pt_prev;
2121 struct net_device *orig_dev;
2122 int ret = NET_RX_DROP;
2123 __be16 type;
2124
2125 /* if we've gotten here through NAPI, check netpoll */
2126 if (netpoll_receive_skb(skb))
2127 return NET_RX_DROP;
2128
2129 if (!skb->tstamp.tv64)
2130 net_timestamp(skb);
2131
2132 if (!skb->iif)
2133 skb->iif = skb->dev->ifindex;
2134
2135 orig_dev = skb_bond(skb);
2136
2137 if (!orig_dev)
2138 return NET_RX_DROP;
2139
2140 __get_cpu_var(netdev_rx_stat).total++;
2141
2142 skb_reset_network_header(skb);
2143 skb_reset_transport_header(skb);
2144 skb->mac_len = skb->network_header - skb->mac_header;
2145
2146 pt_prev = NULL;
2147
2148 rcu_read_lock();
2149
2150 /* Don't receive packets in an exiting network namespace */
2151 if (!net_alive(dev_net(skb->dev)))
2152 goto out;
2153
2154#ifdef CONFIG_NET_CLS_ACT
2155 if (skb->tc_verd & TC_NCLS) {
2156 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2157 goto ncls;
2158 }
2159#endif
2160
2161 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2162 if (!ptype->dev || ptype->dev == skb->dev) {
2163 if (pt_prev)
2164 ret = deliver_skb(skb, pt_prev, orig_dev);
2165 pt_prev = ptype;
2166 }
2167 }
2168
2169#ifdef CONFIG_NET_CLS_ACT
2170 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2171 if (!skb)
2172 goto out;
2173ncls:
2174#endif
2175
2176 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2177 if (!skb)
2178 goto out;
2179 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2180 if (!skb)
2181 goto out;
2182
2183 type = skb->protocol;
2184 list_for_each_entry_rcu(ptype,
2185 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2186 if (ptype->type == type &&
2187 (!ptype->dev || ptype->dev == skb->dev)) {
2188 if (pt_prev)
2189 ret = deliver_skb(skb, pt_prev, orig_dev);
2190 pt_prev = ptype;
2191 }
2192 }
2193
2194 if (pt_prev) {
2195 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2196 } else {
2197 kfree_skb(skb);
2198 /* Jamal, now you will not able to escape explaining
2199 * me how you were going to use this. :-)
2200 */
2201 ret = NET_RX_DROP;
2202 }
2203
2204out:
2205 rcu_read_unlock();
2206 return ret;
2207}
2208
2209static int process_backlog(struct napi_struct *napi, int quota)
2210{
2211 int work = 0;
2212 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2213 unsigned long start_time = jiffies;
2214
2215 napi->weight = weight_p;
2216 do {
2217 struct sk_buff *skb;
2218 struct net_device *dev;
2219
2220 local_irq_disable();
2221 skb = __skb_dequeue(&queue->input_pkt_queue);
2222 if (!skb) {
2223 __napi_complete(napi);
2224 local_irq_enable();
2225 break;
2226 }
2227
2228 local_irq_enable();
2229
2230 dev = skb->dev;
2231
2232 netif_receive_skb(skb);
2233
2234 dev_put(dev);
2235 } while (++work < quota && jiffies == start_time);
2236
2237 return work;
2238}
2239
2240/**
2241 * __napi_schedule - schedule for receive
2242 * @n: entry to schedule
2243 *
2244 * The entry's receive function will be scheduled to run
2245 */
2246void __napi_schedule(struct napi_struct *n)
2247{
2248 unsigned long flags;
2249
2250 local_irq_save(flags);
2251 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2252 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2253 local_irq_restore(flags);
2254}
2255EXPORT_SYMBOL(__napi_schedule);
2256
2257
2258static void net_rx_action(struct softirq_action *h)
2259{
2260 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2261 unsigned long start_time = jiffies;
2262 int budget = netdev_budget;
2263 void *have;
2264
2265 local_irq_disable();
2266
2267 while (!list_empty(list)) {
2268 struct napi_struct *n;
2269 int work, weight;
2270
2271 /* If softirq window is exhuasted then punt.
2272 *
2273 * Note that this is a slight policy change from the
2274 * previous NAPI code, which would allow up to 2
2275 * jiffies to pass before breaking out. The test
2276 * used to be "jiffies - start_time > 1".
2277 */
2278 if (unlikely(budget <= 0 || jiffies != start_time))
2279 goto softnet_break;
2280
2281 local_irq_enable();
2282
2283 /* Even though interrupts have been re-enabled, this
2284 * access is safe because interrupts can only add new
2285 * entries to the tail of this list, and only ->poll()
2286 * calls can remove this head entry from the list.
2287 */
2288 n = list_entry(list->next, struct napi_struct, poll_list);
2289
2290 have = netpoll_poll_lock(n);
2291
2292 weight = n->weight;
2293
2294 /* This NAPI_STATE_SCHED test is for avoiding a race
2295 * with netpoll's poll_napi(). Only the entity which
2296 * obtains the lock and sees NAPI_STATE_SCHED set will
2297 * actually make the ->poll() call. Therefore we avoid
2298 * accidently calling ->poll() when NAPI is not scheduled.
2299 */
2300 work = 0;
2301 if (test_bit(NAPI_STATE_SCHED, &n->state))
2302 work = n->poll(n, weight);
2303
2304 WARN_ON_ONCE(work > weight);
2305
2306 budget -= work;
2307
2308 local_irq_disable();
2309
2310 /* Drivers must not modify the NAPI state if they
2311 * consume the entire weight. In such cases this code
2312 * still "owns" the NAPI instance and therefore can
2313 * move the instance around on the list at-will.
2314 */
2315 if (unlikely(work == weight)) {
2316 if (unlikely(napi_disable_pending(n)))
2317 __napi_complete(n);
2318 else
2319 list_move_tail(&n->poll_list, list);
2320 }
2321
2322 netpoll_poll_unlock(have);
2323 }
2324out:
2325 local_irq_enable();
2326
2327#ifdef CONFIG_NET_DMA
2328 /*
2329 * There may not be any more sk_buffs coming right now, so push
2330 * any pending DMA copies to hardware
2331 */
2332 if (!cpus_empty(net_dma.channel_mask)) {
2333 int chan_idx;
2334 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2335 struct dma_chan *chan = net_dma.channels[chan_idx];
2336 if (chan)
2337 dma_async_memcpy_issue_pending(chan);
2338 }
2339 }
2340#endif
2341
2342 return;
2343
2344softnet_break:
2345 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2346 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2347 goto out;
2348}
2349
2350static gifconf_func_t * gifconf_list [NPROTO];
2351
2352/**
2353 * register_gifconf - register a SIOCGIF handler
2354 * @family: Address family
2355 * @gifconf: Function handler
2356 *
2357 * Register protocol dependent address dumping routines. The handler
2358 * that is passed must not be freed or reused until it has been replaced
2359 * by another handler.
2360 */
2361int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2362{
2363 if (family >= NPROTO)
2364 return -EINVAL;
2365 gifconf_list[family] = gifconf;
2366 return 0;
2367}
2368
2369
2370/*
2371 * Map an interface index to its name (SIOCGIFNAME)
2372 */
2373
2374/*
2375 * We need this ioctl for efficient implementation of the
2376 * if_indextoname() function required by the IPv6 API. Without
2377 * it, we would have to search all the interfaces to find a
2378 * match. --pb
2379 */
2380
2381static int dev_ifname(struct net *net, struct ifreq __user *arg)
2382{
2383 struct net_device *dev;
2384 struct ifreq ifr;
2385
2386 /*
2387 * Fetch the caller's info block.
2388 */
2389
2390 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2391 return -EFAULT;
2392
2393 read_lock(&dev_base_lock);
2394 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2395 if (!dev) {
2396 read_unlock(&dev_base_lock);
2397 return -ENODEV;
2398 }
2399
2400 strcpy(ifr.ifr_name, dev->name);
2401 read_unlock(&dev_base_lock);
2402
2403 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2404 return -EFAULT;
2405 return 0;
2406}
2407
2408/*
2409 * Perform a SIOCGIFCONF call. This structure will change
2410 * size eventually, and there is nothing I can do about it.
2411 * Thus we will need a 'compatibility mode'.
2412 */
2413
2414static int dev_ifconf(struct net *net, char __user *arg)
2415{
2416 struct ifconf ifc;
2417 struct net_device *dev;
2418 char __user *pos;
2419 int len;
2420 int total;
2421 int i;
2422
2423 /*
2424 * Fetch the caller's info block.
2425 */
2426
2427 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2428 return -EFAULT;
2429
2430 pos = ifc.ifc_buf;
2431 len = ifc.ifc_len;
2432
2433 /*
2434 * Loop over the interfaces, and write an info block for each.
2435 */
2436
2437 total = 0;
2438 for_each_netdev(net, dev) {
2439 for (i = 0; i < NPROTO; i++) {
2440 if (gifconf_list[i]) {
2441 int done;
2442 if (!pos)
2443 done = gifconf_list[i](dev, NULL, 0);
2444 else
2445 done = gifconf_list[i](dev, pos + total,
2446 len - total);
2447 if (done < 0)
2448 return -EFAULT;
2449 total += done;
2450 }
2451 }
2452 }
2453
2454 /*
2455 * All done. Write the updated control block back to the caller.
2456 */
2457 ifc.ifc_len = total;
2458
2459 /*
2460 * Both BSD and Solaris return 0 here, so we do too.
2461 */
2462 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2463}
2464
2465#ifdef CONFIG_PROC_FS
2466/*
2467 * This is invoked by the /proc filesystem handler to display a device
2468 * in detail.
2469 */
2470void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2471 __acquires(dev_base_lock)
2472{
2473 struct net *net = seq_file_net(seq);
2474 loff_t off;
2475 struct net_device *dev;
2476
2477 read_lock(&dev_base_lock);
2478 if (!*pos)
2479 return SEQ_START_TOKEN;
2480
2481 off = 1;
2482 for_each_netdev(net, dev)
2483 if (off++ == *pos)
2484 return dev;
2485
2486 return NULL;
2487}
2488
2489void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2490{
2491 struct net *net = seq_file_net(seq);
2492 ++*pos;
2493 return v == SEQ_START_TOKEN ?
2494 first_net_device(net) : next_net_device((struct net_device *)v);
2495}
2496
2497void dev_seq_stop(struct seq_file *seq, void *v)
2498 __releases(dev_base_lock)
2499{
2500 read_unlock(&dev_base_lock);
2501}
2502
2503static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2504{
2505 struct net_device_stats *stats = dev->get_stats(dev);
2506
2507 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2508 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2509 dev->name, stats->rx_bytes, stats->rx_packets,
2510 stats->rx_errors,
2511 stats->rx_dropped + stats->rx_missed_errors,
2512 stats->rx_fifo_errors,
2513 stats->rx_length_errors + stats->rx_over_errors +
2514 stats->rx_crc_errors + stats->rx_frame_errors,
2515 stats->rx_compressed, stats->multicast,
2516 stats->tx_bytes, stats->tx_packets,
2517 stats->tx_errors, stats->tx_dropped,
2518 stats->tx_fifo_errors, stats->collisions,
2519 stats->tx_carrier_errors +
2520 stats->tx_aborted_errors +
2521 stats->tx_window_errors +
2522 stats->tx_heartbeat_errors,
2523 stats->tx_compressed);
2524}
2525
2526/*
2527 * Called from the PROCfs module. This now uses the new arbitrary sized
2528 * /proc/net interface to create /proc/net/dev
2529 */
2530static int dev_seq_show(struct seq_file *seq, void *v)
2531{
2532 if (v == SEQ_START_TOKEN)
2533 seq_puts(seq, "Inter-| Receive "
2534 " | Transmit\n"
2535 " face |bytes packets errs drop fifo frame "
2536 "compressed multicast|bytes packets errs "
2537 "drop fifo colls carrier compressed\n");
2538 else
2539 dev_seq_printf_stats(seq, v);
2540 return 0;
2541}
2542
2543static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2544{
2545 struct netif_rx_stats *rc = NULL;
2546
2547 while (*pos < nr_cpu_ids)
2548 if (cpu_online(*pos)) {
2549 rc = &per_cpu(netdev_rx_stat, *pos);
2550 break;
2551 } else
2552 ++*pos;
2553 return rc;
2554}
2555
2556static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2557{
2558 return softnet_get_online(pos);
2559}
2560
2561static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2562{
2563 ++*pos;
2564 return softnet_get_online(pos);
2565}
2566
2567static void softnet_seq_stop(struct seq_file *seq, void *v)
2568{
2569}
2570
2571static int softnet_seq_show(struct seq_file *seq, void *v)
2572{
2573 struct netif_rx_stats *s = v;
2574
2575 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2576 s->total, s->dropped, s->time_squeeze, 0,
2577 0, 0, 0, 0, /* was fastroute */
2578 s->cpu_collision );
2579 return 0;
2580}
2581
2582static const struct seq_operations dev_seq_ops = {
2583 .start = dev_seq_start,
2584 .next = dev_seq_next,
2585 .stop = dev_seq_stop,
2586 .show = dev_seq_show,
2587};
2588
2589static int dev_seq_open(struct inode *inode, struct file *file)
2590{
2591 return seq_open_net(inode, file, &dev_seq_ops,
2592 sizeof(struct seq_net_private));
2593}
2594
2595static const struct file_operations dev_seq_fops = {
2596 .owner = THIS_MODULE,
2597 .open = dev_seq_open,
2598 .read = seq_read,
2599 .llseek = seq_lseek,
2600 .release = seq_release_net,
2601};
2602
2603static const struct seq_operations softnet_seq_ops = {
2604 .start = softnet_seq_start,
2605 .next = softnet_seq_next,
2606 .stop = softnet_seq_stop,
2607 .show = softnet_seq_show,
2608};
2609
2610static int softnet_seq_open(struct inode *inode, struct file *file)
2611{
2612 return seq_open(file, &softnet_seq_ops);
2613}
2614
2615static const struct file_operations softnet_seq_fops = {
2616 .owner = THIS_MODULE,
2617 .open = softnet_seq_open,
2618 .read = seq_read,
2619 .llseek = seq_lseek,
2620 .release = seq_release,
2621};
2622
2623static void *ptype_get_idx(loff_t pos)
2624{
2625 struct packet_type *pt = NULL;
2626 loff_t i = 0;
2627 int t;
2628
2629 list_for_each_entry_rcu(pt, &ptype_all, list) {
2630 if (i == pos)
2631 return pt;
2632 ++i;
2633 }
2634
2635 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2636 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2637 if (i == pos)
2638 return pt;
2639 ++i;
2640 }
2641 }
2642 return NULL;
2643}
2644
2645static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2646 __acquires(RCU)
2647{
2648 rcu_read_lock();
2649 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2650}
2651
2652static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2653{
2654 struct packet_type *pt;
2655 struct list_head *nxt;
2656 int hash;
2657
2658 ++*pos;
2659 if (v == SEQ_START_TOKEN)
2660 return ptype_get_idx(0);
2661
2662 pt = v;
2663 nxt = pt->list.next;
2664 if (pt->type == htons(ETH_P_ALL)) {
2665 if (nxt != &ptype_all)
2666 goto found;
2667 hash = 0;
2668 nxt = ptype_base[0].next;
2669 } else
2670 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2671
2672 while (nxt == &ptype_base[hash]) {
2673 if (++hash >= PTYPE_HASH_SIZE)
2674 return NULL;
2675 nxt = ptype_base[hash].next;
2676 }
2677found:
2678 return list_entry(nxt, struct packet_type, list);
2679}
2680
2681static void ptype_seq_stop(struct seq_file *seq, void *v)
2682 __releases(RCU)
2683{
2684 rcu_read_unlock();
2685}
2686
2687static void ptype_seq_decode(struct seq_file *seq, void *sym)
2688{
2689#ifdef CONFIG_KALLSYMS
2690 unsigned long offset = 0, symsize;
2691 const char *symname;
2692 char *modname;
2693 char namebuf[128];
2694
2695 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2696 &modname, namebuf);
2697
2698 if (symname) {
2699 char *delim = ":";
2700
2701 if (!modname)
2702 modname = delim = "";
2703 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2704 symname, offset);
2705 return;
2706 }
2707#endif
2708
2709 seq_printf(seq, "[%p]", sym);
2710}
2711
2712static int ptype_seq_show(struct seq_file *seq, void *v)
2713{
2714 struct packet_type *pt = v;
2715
2716 if (v == SEQ_START_TOKEN)
2717 seq_puts(seq, "Type Device Function\n");
2718 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2719 if (pt->type == htons(ETH_P_ALL))
2720 seq_puts(seq, "ALL ");
2721 else
2722 seq_printf(seq, "%04x", ntohs(pt->type));
2723
2724 seq_printf(seq, " %-8s ",
2725 pt->dev ? pt->dev->name : "");
2726 ptype_seq_decode(seq, pt->func);
2727 seq_putc(seq, '\n');
2728 }
2729
2730 return 0;
2731}
2732
2733static const struct seq_operations ptype_seq_ops = {
2734 .start = ptype_seq_start,
2735 .next = ptype_seq_next,
2736 .stop = ptype_seq_stop,
2737 .show = ptype_seq_show,
2738};
2739
2740static int ptype_seq_open(struct inode *inode, struct file *file)
2741{
2742 return seq_open_net(inode, file, &ptype_seq_ops,
2743 sizeof(struct seq_net_private));
2744}
2745
2746static const struct file_operations ptype_seq_fops = {
2747 .owner = THIS_MODULE,
2748 .open = ptype_seq_open,
2749 .read = seq_read,
2750 .llseek = seq_lseek,
2751 .release = seq_release_net,
2752};
2753
2754
2755static int __net_init dev_proc_net_init(struct net *net)
2756{
2757 int rc = -ENOMEM;
2758
2759 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2760 goto out;
2761 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2762 goto out_dev;
2763 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2764 goto out_softnet;
2765
2766 if (wext_proc_init(net))
2767 goto out_ptype;
2768 rc = 0;
2769out:
2770 return rc;
2771out_ptype:
2772 proc_net_remove(net, "ptype");
2773out_softnet:
2774 proc_net_remove(net, "softnet_stat");
2775out_dev:
2776 proc_net_remove(net, "dev");
2777 goto out;
2778}
2779
2780static void __net_exit dev_proc_net_exit(struct net *net)
2781{
2782 wext_proc_exit(net);
2783
2784 proc_net_remove(net, "ptype");
2785 proc_net_remove(net, "softnet_stat");
2786 proc_net_remove(net, "dev");
2787}
2788
2789static struct pernet_operations __net_initdata dev_proc_ops = {
2790 .init = dev_proc_net_init,
2791 .exit = dev_proc_net_exit,
2792};
2793
2794static int __init dev_proc_init(void)
2795{
2796 return register_pernet_subsys(&dev_proc_ops);
2797}
2798#else
2799#define dev_proc_init() 0
2800#endif /* CONFIG_PROC_FS */
2801
2802
2803/**
2804 * netdev_set_master - set up master/slave pair
2805 * @slave: slave device
2806 * @master: new master device
2807 *
2808 * Changes the master device of the slave. Pass %NULL to break the
2809 * bonding. The caller must hold the RTNL semaphore. On a failure
2810 * a negative errno code is returned. On success the reference counts
2811 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2812 * function returns zero.
2813 */
2814int netdev_set_master(struct net_device *slave, struct net_device *master)
2815{
2816 struct net_device *old = slave->master;
2817
2818 ASSERT_RTNL();
2819
2820 if (master) {
2821 if (old)
2822 return -EBUSY;
2823 dev_hold(master);
2824 }
2825
2826 slave->master = master;
2827
2828 synchronize_net();
2829
2830 if (old)
2831 dev_put(old);
2832
2833 if (master)
2834 slave->flags |= IFF_SLAVE;
2835 else
2836 slave->flags &= ~IFF_SLAVE;
2837
2838 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2839 return 0;
2840}
2841
2842static int __dev_set_promiscuity(struct net_device *dev, int inc)
2843{
2844 unsigned short old_flags = dev->flags;
2845
2846 ASSERT_RTNL();
2847
2848 dev->flags |= IFF_PROMISC;
2849 dev->promiscuity += inc;
2850 if (dev->promiscuity == 0) {
2851 /*
2852 * Avoid overflow.
2853 * If inc causes overflow, untouch promisc and return error.
2854 */
2855 if (inc < 0)
2856 dev->flags &= ~IFF_PROMISC;
2857 else {
2858 dev->promiscuity -= inc;
2859 printk(KERN_WARNING "%s: promiscuity touches roof, "
2860 "set promiscuity failed, promiscuity feature "
2861 "of device might be broken.\n", dev->name);
2862 return -EOVERFLOW;
2863 }
2864 }
2865 if (dev->flags != old_flags) {
2866 printk(KERN_INFO "device %s %s promiscuous mode\n",
2867 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2868 "left");
2869 if (audit_enabled)
2870 audit_log(current->audit_context, GFP_ATOMIC,
2871 AUDIT_ANOM_PROMISCUOUS,
2872 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2873 dev->name, (dev->flags & IFF_PROMISC),
2874 (old_flags & IFF_PROMISC),
2875 audit_get_loginuid(current),
2876 current->uid, current->gid,
2877 audit_get_sessionid(current));
2878
2879 if (dev->change_rx_flags)
2880 dev->change_rx_flags(dev, IFF_PROMISC);
2881 }
2882 return 0;
2883}
2884
2885/**
2886 * dev_set_promiscuity - update promiscuity count on a device
2887 * @dev: device
2888 * @inc: modifier
2889 *
2890 * Add or remove promiscuity from a device. While the count in the device
2891 * remains above zero the interface remains promiscuous. Once it hits zero
2892 * the device reverts back to normal filtering operation. A negative inc
2893 * value is used to drop promiscuity on the device.
2894 * Return 0 if successful or a negative errno code on error.
2895 */
2896int dev_set_promiscuity(struct net_device *dev, int inc)
2897{
2898 unsigned short old_flags = dev->flags;
2899 int err;
2900
2901 err = __dev_set_promiscuity(dev, inc);
2902 if (err < 0)
2903 return err;
2904 if (dev->flags != old_flags)
2905 dev_set_rx_mode(dev);
2906 return err;
2907}
2908
2909/**
2910 * dev_set_allmulti - update allmulti count on a device
2911 * @dev: device
2912 * @inc: modifier
2913 *
2914 * Add or remove reception of all multicast frames to a device. While the
2915 * count in the device remains above zero the interface remains listening
2916 * to all interfaces. Once it hits zero the device reverts back to normal
2917 * filtering operation. A negative @inc value is used to drop the counter
2918 * when releasing a resource needing all multicasts.
2919 * Return 0 if successful or a negative errno code on error.
2920 */
2921
2922int dev_set_allmulti(struct net_device *dev, int inc)
2923{
2924 unsigned short old_flags = dev->flags;
2925
2926 ASSERT_RTNL();
2927
2928 dev->flags |= IFF_ALLMULTI;
2929 dev->allmulti += inc;
2930 if (dev->allmulti == 0) {
2931 /*
2932 * Avoid overflow.
2933 * If inc causes overflow, untouch allmulti and return error.
2934 */
2935 if (inc < 0)
2936 dev->flags &= ~IFF_ALLMULTI;
2937 else {
2938 dev->allmulti -= inc;
2939 printk(KERN_WARNING "%s: allmulti touches roof, "
2940 "set allmulti failed, allmulti feature of "
2941 "device might be broken.\n", dev->name);
2942 return -EOVERFLOW;
2943 }
2944 }
2945 if (dev->flags ^ old_flags) {
2946 if (dev->change_rx_flags)
2947 dev->change_rx_flags(dev, IFF_ALLMULTI);
2948 dev_set_rx_mode(dev);
2949 }
2950 return 0;
2951}
2952
2953/*
2954 * Upload unicast and multicast address lists to device and
2955 * configure RX filtering. When the device doesn't support unicast
2956 * filtering it is put in promiscuous mode while unicast addresses
2957 * are present.
2958 */
2959void __dev_set_rx_mode(struct net_device *dev)
2960{
2961 /* dev_open will call this function so the list will stay sane. */
2962 if (!(dev->flags&IFF_UP))
2963 return;
2964
2965 if (!netif_device_present(dev))
2966 return;
2967
2968 if (dev->set_rx_mode)
2969 dev->set_rx_mode(dev);
2970 else {
2971 /* Unicast addresses changes may only happen under the rtnl,
2972 * therefore calling __dev_set_promiscuity here is safe.
2973 */
2974 if (dev->uc_count > 0 && !dev->uc_promisc) {
2975 __dev_set_promiscuity(dev, 1);
2976 dev->uc_promisc = 1;
2977 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2978 __dev_set_promiscuity(dev, -1);
2979 dev->uc_promisc = 0;
2980 }
2981
2982 if (dev->set_multicast_list)
2983 dev->set_multicast_list(dev);
2984 }
2985}
2986
2987void dev_set_rx_mode(struct net_device *dev)
2988{
2989 netif_addr_lock_bh(dev);
2990 __dev_set_rx_mode(dev);
2991 netif_addr_unlock_bh(dev);
2992}
2993
2994int __dev_addr_delete(struct dev_addr_list **list, int *count,
2995 void *addr, int alen, int glbl)
2996{
2997 struct dev_addr_list *da;
2998
2999 for (; (da = *list) != NULL; list = &da->next) {
3000 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3001 alen == da->da_addrlen) {
3002 if (glbl) {
3003 int old_glbl = da->da_gusers;
3004 da->da_gusers = 0;
3005 if (old_glbl == 0)
3006 break;
3007 }
3008 if (--da->da_users)
3009 return 0;
3010
3011 *list = da->next;
3012 kfree(da);
3013 (*count)--;
3014 return 0;
3015 }
3016 }
3017 return -ENOENT;
3018}
3019
3020int __dev_addr_add(struct dev_addr_list **list, int *count,
3021 void *addr, int alen, int glbl)
3022{
3023 struct dev_addr_list *da;
3024
3025 for (da = *list; da != NULL; da = da->next) {
3026 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3027 da->da_addrlen == alen) {
3028 if (glbl) {
3029 int old_glbl = da->da_gusers;
3030 da->da_gusers = 1;
3031 if (old_glbl)
3032 return 0;
3033 }
3034 da->da_users++;
3035 return 0;
3036 }
3037 }
3038
3039 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3040 if (da == NULL)
3041 return -ENOMEM;
3042 memcpy(da->da_addr, addr, alen);
3043 da->da_addrlen = alen;
3044 da->da_users = 1;
3045 da->da_gusers = glbl ? 1 : 0;
3046 da->next = *list;
3047 *list = da;
3048 (*count)++;
3049 return 0;
3050}
3051
3052/**
3053 * dev_unicast_delete - Release secondary unicast address.
3054 * @dev: device
3055 * @addr: address to delete
3056 * @alen: length of @addr
3057 *
3058 * Release reference to a secondary unicast address and remove it
3059 * from the device if the reference count drops to zero.
3060 *
3061 * The caller must hold the rtnl_mutex.
3062 */
3063int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3064{
3065 int err;
3066
3067 ASSERT_RTNL();
3068
3069 netif_addr_lock_bh(dev);
3070 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3071 if (!err)
3072 __dev_set_rx_mode(dev);
3073 netif_addr_unlock_bh(dev);
3074 return err;
3075}
3076EXPORT_SYMBOL(dev_unicast_delete);
3077
3078/**
3079 * dev_unicast_add - add a secondary unicast address
3080 * @dev: device
3081 * @addr: address to add
3082 * @alen: length of @addr
3083 *
3084 * Add a secondary unicast address to the device or increase
3085 * the reference count if it already exists.
3086 *
3087 * The caller must hold the rtnl_mutex.
3088 */
3089int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3090{
3091 int err;
3092
3093 ASSERT_RTNL();
3094
3095 netif_addr_lock_bh(dev);
3096 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3097 if (!err)
3098 __dev_set_rx_mode(dev);
3099 netif_addr_unlock_bh(dev);
3100 return err;
3101}
3102EXPORT_SYMBOL(dev_unicast_add);
3103
3104int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3105 struct dev_addr_list **from, int *from_count)
3106{
3107 struct dev_addr_list *da, *next;
3108 int err = 0;
3109
3110 da = *from;
3111 while (da != NULL) {
3112 next = da->next;
3113 if (!da->da_synced) {
3114 err = __dev_addr_add(to, to_count,
3115 da->da_addr, da->da_addrlen, 0);
3116 if (err < 0)
3117 break;
3118 da->da_synced = 1;
3119 da->da_users++;
3120 } else if (da->da_users == 1) {
3121 __dev_addr_delete(to, to_count,
3122 da->da_addr, da->da_addrlen, 0);
3123 __dev_addr_delete(from, from_count,
3124 da->da_addr, da->da_addrlen, 0);
3125 }
3126 da = next;
3127 }
3128 return err;
3129}
3130
3131void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3132 struct dev_addr_list **from, int *from_count)
3133{
3134 struct dev_addr_list *da, *next;
3135
3136 da = *from;
3137 while (da != NULL) {
3138 next = da->next;
3139 if (da->da_synced) {
3140 __dev_addr_delete(to, to_count,
3141 da->da_addr, da->da_addrlen, 0);
3142 da->da_synced = 0;
3143 __dev_addr_delete(from, from_count,
3144 da->da_addr, da->da_addrlen, 0);
3145 }
3146 da = next;
3147 }
3148}
3149
3150/**
3151 * dev_unicast_sync - Synchronize device's unicast list to another device
3152 * @to: destination device
3153 * @from: source device
3154 *
3155 * Add newly added addresses to the destination device and release
3156 * addresses that have no users left. The source device must be
3157 * locked by netif_tx_lock_bh.
3158 *
3159 * This function is intended to be called from the dev->set_rx_mode
3160 * function of layered software devices.
3161 */
3162int dev_unicast_sync(struct net_device *to, struct net_device *from)
3163{
3164 int err = 0;
3165
3166 netif_addr_lock_bh(to);
3167 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3168 &from->uc_list, &from->uc_count);
3169 if (!err)
3170 __dev_set_rx_mode(to);
3171 netif_addr_unlock_bh(to);
3172 return err;
3173}
3174EXPORT_SYMBOL(dev_unicast_sync);
3175
3176/**
3177 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3178 * @to: destination device
3179 * @from: source device
3180 *
3181 * Remove all addresses that were added to the destination device by
3182 * dev_unicast_sync(). This function is intended to be called from the
3183 * dev->stop function of layered software devices.
3184 */
3185void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3186{
3187 netif_addr_lock_bh(from);
3188 netif_addr_lock(to);
3189
3190 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3191 &from->uc_list, &from->uc_count);
3192 __dev_set_rx_mode(to);
3193
3194 netif_addr_unlock(to);
3195 netif_addr_unlock_bh(from);
3196}
3197EXPORT_SYMBOL(dev_unicast_unsync);
3198
3199static void __dev_addr_discard(struct dev_addr_list **list)
3200{
3201 struct dev_addr_list *tmp;
3202
3203 while (*list != NULL) {
3204 tmp = *list;
3205 *list = tmp->next;
3206 if (tmp->da_users > tmp->da_gusers)
3207 printk("__dev_addr_discard: address leakage! "
3208 "da_users=%d\n", tmp->da_users);
3209 kfree(tmp);
3210 }
3211}
3212
3213static void dev_addr_discard(struct net_device *dev)
3214{
3215 netif_addr_lock_bh(dev);
3216
3217 __dev_addr_discard(&dev->uc_list);
3218 dev->uc_count = 0;
3219
3220 __dev_addr_discard(&dev->mc_list);
3221 dev->mc_count = 0;
3222
3223 netif_addr_unlock_bh(dev);
3224}
3225
3226unsigned dev_get_flags(const struct net_device *dev)
3227{
3228 unsigned flags;
3229
3230 flags = (dev->flags & ~(IFF_PROMISC |
3231 IFF_ALLMULTI |
3232 IFF_RUNNING |
3233 IFF_LOWER_UP |
3234 IFF_DORMANT)) |
3235 (dev->gflags & (IFF_PROMISC |
3236 IFF_ALLMULTI));
3237
3238 if (netif_running(dev)) {
3239 if (netif_oper_up(dev))
3240 flags |= IFF_RUNNING;
3241 if (netif_carrier_ok(dev))
3242 flags |= IFF_LOWER_UP;
3243 if (netif_dormant(dev))
3244 flags |= IFF_DORMANT;
3245 }
3246
3247 return flags;
3248}
3249
3250int dev_change_flags(struct net_device *dev, unsigned flags)
3251{
3252 int ret, changes;
3253 int old_flags = dev->flags;
3254
3255 ASSERT_RTNL();
3256
3257 /*
3258 * Set the flags on our device.
3259 */
3260
3261 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3262 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3263 IFF_AUTOMEDIA)) |
3264 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3265 IFF_ALLMULTI));
3266
3267 /*
3268 * Load in the correct multicast list now the flags have changed.
3269 */
3270
3271 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3272 dev->change_rx_flags(dev, IFF_MULTICAST);
3273
3274 dev_set_rx_mode(dev);
3275
3276 /*
3277 * Have we downed the interface. We handle IFF_UP ourselves
3278 * according to user attempts to set it, rather than blindly
3279 * setting it.
3280 */
3281
3282 ret = 0;
3283 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3284 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3285
3286 if (!ret)
3287 dev_set_rx_mode(dev);
3288 }
3289
3290 if (dev->flags & IFF_UP &&
3291 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3292 IFF_VOLATILE)))
3293 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3294
3295 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3296 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3297 dev->gflags ^= IFF_PROMISC;
3298 dev_set_promiscuity(dev, inc);
3299 }
3300
3301 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3302 is important. Some (broken) drivers set IFF_PROMISC, when
3303 IFF_ALLMULTI is requested not asking us and not reporting.
3304 */
3305 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3306 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3307 dev->gflags ^= IFF_ALLMULTI;
3308 dev_set_allmulti(dev, inc);
3309 }
3310
3311 /* Exclude state transition flags, already notified */
3312 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3313 if (changes)
3314 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3315
3316 return ret;
3317}
3318
3319int dev_set_mtu(struct net_device *dev, int new_mtu)
3320{
3321 int err;
3322
3323 if (new_mtu == dev->mtu)
3324 return 0;
3325
3326 /* MTU must be positive. */
3327 if (new_mtu < 0)
3328 return -EINVAL;
3329
3330 if (!netif_device_present(dev))
3331 return -ENODEV;
3332
3333 err = 0;
3334 if (dev->change_mtu)
3335 err = dev->change_mtu(dev, new_mtu);
3336 else
3337 dev->mtu = new_mtu;
3338 if (!err && dev->flags & IFF_UP)
3339 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3340 return err;
3341}
3342
3343int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3344{
3345 int err;
3346
3347 if (!dev->set_mac_address)
3348 return -EOPNOTSUPP;
3349 if (sa->sa_family != dev->type)
3350 return -EINVAL;
3351 if (!netif_device_present(dev))
3352 return -ENODEV;
3353 err = dev->set_mac_address(dev, sa);
3354 if (!err)
3355 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3356 return err;
3357}
3358
3359/*
3360 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3361 */
3362static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3363{
3364 int err;
3365 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3366
3367 if (!dev)
3368 return -ENODEV;
3369
3370 switch (cmd) {
3371 case SIOCGIFFLAGS: /* Get interface flags */
3372 ifr->ifr_flags = dev_get_flags(dev);
3373 return 0;
3374
3375 case SIOCGIFMETRIC: /* Get the metric on the interface
3376 (currently unused) */
3377 ifr->ifr_metric = 0;
3378 return 0;
3379
3380 case SIOCGIFMTU: /* Get the MTU of a device */
3381 ifr->ifr_mtu = dev->mtu;
3382 return 0;
3383
3384 case SIOCGIFHWADDR:
3385 if (!dev->addr_len)
3386 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3387 else
3388 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3389 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3390 ifr->ifr_hwaddr.sa_family = dev->type;
3391 return 0;
3392
3393 case SIOCGIFSLAVE:
3394 err = -EINVAL;
3395 break;
3396
3397 case SIOCGIFMAP:
3398 ifr->ifr_map.mem_start = dev->mem_start;
3399 ifr->ifr_map.mem_end = dev->mem_end;
3400 ifr->ifr_map.base_addr = dev->base_addr;
3401 ifr->ifr_map.irq = dev->irq;
3402 ifr->ifr_map.dma = dev->dma;
3403 ifr->ifr_map.port = dev->if_port;
3404 return 0;
3405
3406 case SIOCGIFINDEX:
3407 ifr->ifr_ifindex = dev->ifindex;
3408 return 0;
3409
3410 case SIOCGIFTXQLEN:
3411 ifr->ifr_qlen = dev->tx_queue_len;
3412 return 0;
3413
3414 default:
3415 /* dev_ioctl() should ensure this case
3416 * is never reached
3417 */
3418 WARN_ON(1);
3419 err = -EINVAL;
3420 break;
3421
3422 }
3423 return err;
3424}
3425
3426/*
3427 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3428 */
3429static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3430{
3431 int err;
3432 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3433
3434 if (!dev)
3435 return -ENODEV;
3436
3437 switch (cmd) {
3438 case SIOCSIFFLAGS: /* Set interface flags */
3439 return dev_change_flags(dev, ifr->ifr_flags);
3440
3441 case SIOCSIFMETRIC: /* Set the metric on the interface
3442 (currently unused) */
3443 return -EOPNOTSUPP;
3444
3445 case SIOCSIFMTU: /* Set the MTU of a device */
3446 return dev_set_mtu(dev, ifr->ifr_mtu);
3447
3448 case SIOCSIFHWADDR:
3449 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3450
3451 case SIOCSIFHWBROADCAST:
3452 if (ifr->ifr_hwaddr.sa_family != dev->type)
3453 return -EINVAL;
3454 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3455 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3456 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3457 return 0;
3458
3459 case SIOCSIFMAP:
3460 if (dev->set_config) {
3461 if (!netif_device_present(dev))
3462 return -ENODEV;
3463 return dev->set_config(dev, &ifr->ifr_map);
3464 }
3465 return -EOPNOTSUPP;
3466
3467 case SIOCADDMULTI:
3468 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3469 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3470 return -EINVAL;
3471 if (!netif_device_present(dev))
3472 return -ENODEV;
3473 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3474 dev->addr_len, 1);
3475
3476 case SIOCDELMULTI:
3477 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3478 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3479 return -EINVAL;
3480 if (!netif_device_present(dev))
3481 return -ENODEV;
3482 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3483 dev->addr_len, 1);
3484
3485 case SIOCSIFTXQLEN:
3486 if (ifr->ifr_qlen < 0)
3487 return -EINVAL;
3488 dev->tx_queue_len = ifr->ifr_qlen;
3489 return 0;
3490
3491 case SIOCSIFNAME:
3492 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3493 return dev_change_name(dev, ifr->ifr_newname);
3494
3495 /*
3496 * Unknown or private ioctl
3497 */
3498
3499 default:
3500 if ((cmd >= SIOCDEVPRIVATE &&
3501 cmd <= SIOCDEVPRIVATE + 15) ||
3502 cmd == SIOCBONDENSLAVE ||
3503 cmd == SIOCBONDRELEASE ||
3504 cmd == SIOCBONDSETHWADDR ||
3505 cmd == SIOCBONDSLAVEINFOQUERY ||
3506 cmd == SIOCBONDINFOQUERY ||
3507 cmd == SIOCBONDCHANGEACTIVE ||
3508 cmd == SIOCGMIIPHY ||
3509 cmd == SIOCGMIIREG ||
3510 cmd == SIOCSMIIREG ||
3511 cmd == SIOCBRADDIF ||
3512 cmd == SIOCBRDELIF ||
3513 cmd == SIOCWANDEV) {
3514 err = -EOPNOTSUPP;
3515 if (dev->do_ioctl) {
3516 if (netif_device_present(dev))
3517 err = dev->do_ioctl(dev, ifr,
3518 cmd);
3519 else
3520 err = -ENODEV;
3521 }
3522 } else
3523 err = -EINVAL;
3524
3525 }
3526 return err;
3527}
3528
3529/*
3530 * This function handles all "interface"-type I/O control requests. The actual
3531 * 'doing' part of this is dev_ifsioc above.
3532 */
3533
3534/**
3535 * dev_ioctl - network device ioctl
3536 * @net: the applicable net namespace
3537 * @cmd: command to issue
3538 * @arg: pointer to a struct ifreq in user space
3539 *
3540 * Issue ioctl functions to devices. This is normally called by the
3541 * user space syscall interfaces but can sometimes be useful for
3542 * other purposes. The return value is the return from the syscall if
3543 * positive or a negative errno code on error.
3544 */
3545
3546int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3547{
3548 struct ifreq ifr;
3549 int ret;
3550 char *colon;
3551
3552 /* One special case: SIOCGIFCONF takes ifconf argument
3553 and requires shared lock, because it sleeps writing
3554 to user space.
3555 */
3556
3557 if (cmd == SIOCGIFCONF) {
3558 rtnl_lock();
3559 ret = dev_ifconf(net, (char __user *) arg);
3560 rtnl_unlock();
3561 return ret;
3562 }
3563 if (cmd == SIOCGIFNAME)
3564 return dev_ifname(net, (struct ifreq __user *)arg);
3565
3566 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3567 return -EFAULT;
3568
3569 ifr.ifr_name[IFNAMSIZ-1] = 0;
3570
3571 colon = strchr(ifr.ifr_name, ':');
3572 if (colon)
3573 *colon = 0;
3574
3575 /*
3576 * See which interface the caller is talking about.
3577 */
3578
3579 switch (cmd) {
3580 /*
3581 * These ioctl calls:
3582 * - can be done by all.
3583 * - atomic and do not require locking.
3584 * - return a value
3585 */
3586 case SIOCGIFFLAGS:
3587 case SIOCGIFMETRIC:
3588 case SIOCGIFMTU:
3589 case SIOCGIFHWADDR:
3590 case SIOCGIFSLAVE:
3591 case SIOCGIFMAP:
3592 case SIOCGIFINDEX:
3593 case SIOCGIFTXQLEN:
3594 dev_load(net, ifr.ifr_name);
3595 read_lock(&dev_base_lock);
3596 ret = dev_ifsioc_locked(net, &ifr, cmd);
3597 read_unlock(&dev_base_lock);
3598 if (!ret) {
3599 if (colon)
3600 *colon = ':';
3601 if (copy_to_user(arg, &ifr,
3602 sizeof(struct ifreq)))
3603 ret = -EFAULT;
3604 }
3605 return ret;
3606
3607 case SIOCETHTOOL:
3608 dev_load(net, ifr.ifr_name);
3609 rtnl_lock();
3610 ret = dev_ethtool(net, &ifr);
3611 rtnl_unlock();
3612 if (!ret) {
3613 if (colon)
3614 *colon = ':';
3615 if (copy_to_user(arg, &ifr,
3616 sizeof(struct ifreq)))
3617 ret = -EFAULT;
3618 }
3619 return ret;
3620
3621 /*
3622 * These ioctl calls:
3623 * - require superuser power.
3624 * - require strict serialization.
3625 * - return a value
3626 */
3627 case SIOCGMIIPHY:
3628 case SIOCGMIIREG:
3629 case SIOCSIFNAME:
3630 if (!capable(CAP_NET_ADMIN))
3631 return -EPERM;
3632 dev_load(net, ifr.ifr_name);
3633 rtnl_lock();
3634 ret = dev_ifsioc(net, &ifr, cmd);
3635 rtnl_unlock();
3636 if (!ret) {
3637 if (colon)
3638 *colon = ':';
3639 if (copy_to_user(arg, &ifr,
3640 sizeof(struct ifreq)))
3641 ret = -EFAULT;
3642 }
3643 return ret;
3644
3645 /*
3646 * These ioctl calls:
3647 * - require superuser power.
3648 * - require strict serialization.
3649 * - do not return a value
3650 */
3651 case SIOCSIFFLAGS:
3652 case SIOCSIFMETRIC:
3653 case SIOCSIFMTU:
3654 case SIOCSIFMAP:
3655 case SIOCSIFHWADDR:
3656 case SIOCSIFSLAVE:
3657 case SIOCADDMULTI:
3658 case SIOCDELMULTI:
3659 case SIOCSIFHWBROADCAST:
3660 case SIOCSIFTXQLEN:
3661 case SIOCSMIIREG:
3662 case SIOCBONDENSLAVE:
3663 case SIOCBONDRELEASE:
3664 case SIOCBONDSETHWADDR:
3665 case SIOCBONDCHANGEACTIVE:
3666 case SIOCBRADDIF:
3667 case SIOCBRDELIF:
3668 if (!capable(CAP_NET_ADMIN))
3669 return -EPERM;
3670 /* fall through */
3671 case SIOCBONDSLAVEINFOQUERY:
3672 case SIOCBONDINFOQUERY:
3673 dev_load(net, ifr.ifr_name);
3674 rtnl_lock();
3675 ret = dev_ifsioc(net, &ifr, cmd);
3676 rtnl_unlock();
3677 return ret;
3678
3679 case SIOCGIFMEM:
3680 /* Get the per device memory space. We can add this but
3681 * currently do not support it */
3682 case SIOCSIFMEM:
3683 /* Set the per device memory buffer space.
3684 * Not applicable in our case */
3685 case SIOCSIFLINK:
3686 return -EINVAL;
3687
3688 /*
3689 * Unknown or private ioctl.
3690 */
3691 default:
3692 if (cmd == SIOCWANDEV ||
3693 (cmd >= SIOCDEVPRIVATE &&
3694 cmd <= SIOCDEVPRIVATE + 15)) {
3695 dev_load(net, ifr.ifr_name);
3696 rtnl_lock();
3697 ret = dev_ifsioc(net, &ifr, cmd);
3698 rtnl_unlock();
3699 if (!ret && copy_to_user(arg, &ifr,
3700 sizeof(struct ifreq)))
3701 ret = -EFAULT;
3702 return ret;
3703 }
3704 /* Take care of Wireless Extensions */
3705 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3706 return wext_handle_ioctl(net, &ifr, cmd, arg);
3707 return -EINVAL;
3708 }
3709}
3710
3711
3712/**
3713 * dev_new_index - allocate an ifindex
3714 * @net: the applicable net namespace
3715 *
3716 * Returns a suitable unique value for a new device interface
3717 * number. The caller must hold the rtnl semaphore or the
3718 * dev_base_lock to be sure it remains unique.
3719 */
3720static int dev_new_index(struct net *net)
3721{
3722 static int ifindex;
3723 for (;;) {
3724 if (++ifindex <= 0)
3725 ifindex = 1;
3726 if (!__dev_get_by_index(net, ifindex))
3727 return ifindex;
3728 }
3729}
3730
3731/* Delayed registration/unregisteration */
3732static DEFINE_SPINLOCK(net_todo_list_lock);
3733static LIST_HEAD(net_todo_list);
3734
3735static void net_set_todo(struct net_device *dev)
3736{
3737 spin_lock(&net_todo_list_lock);
3738 list_add_tail(&dev->todo_list, &net_todo_list);
3739 spin_unlock(&net_todo_list_lock);
3740}
3741
3742static void rollback_registered(struct net_device *dev)
3743{
3744 BUG_ON(dev_boot_phase);
3745 ASSERT_RTNL();
3746
3747 /* Some devices call without registering for initialization unwind. */
3748 if (dev->reg_state == NETREG_UNINITIALIZED) {
3749 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3750 "was registered\n", dev->name, dev);
3751
3752 WARN_ON(1);
3753 return;
3754 }
3755
3756 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3757
3758 /* If device is running, close it first. */
3759 dev_close(dev);
3760
3761 /* And unlink it from device chain. */
3762 unlist_netdevice(dev);
3763
3764 dev->reg_state = NETREG_UNREGISTERING;
3765
3766 synchronize_net();
3767
3768 /* Shutdown queueing discipline. */
3769 dev_shutdown(dev);
3770
3771
3772 /* Notify protocols, that we are about to destroy
3773 this device. They should clean all the things.
3774 */
3775 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3776
3777 /*
3778 * Flush the unicast and multicast chains
3779 */
3780 dev_addr_discard(dev);
3781
3782 if (dev->uninit)
3783 dev->uninit(dev);
3784
3785 /* Notifier chain MUST detach us from master device. */
3786 BUG_TRAP(!dev->master);
3787
3788 /* Remove entries from kobject tree */
3789 netdev_unregister_kobject(dev);
3790
3791 synchronize_net();
3792
3793 dev_put(dev);
3794}
3795
3796static void __netdev_init_queue_locks_one(struct net_device *dev,
3797 struct netdev_queue *dev_queue,
3798 void *_unused)
3799{
3800 spin_lock_init(&dev_queue->_xmit_lock);
3801 netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3802 dev_queue->xmit_lock_owner = -1;
3803}
3804
3805static void netdev_init_queue_locks(struct net_device *dev)
3806{
3807 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3808 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3809}
3810
3811/**
3812 * register_netdevice - register a network device
3813 * @dev: device to register
3814 *
3815 * Take a completed network device structure and add it to the kernel
3816 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3817 * chain. 0 is returned on success. A negative errno code is returned
3818 * on a failure to set up the device, or if the name is a duplicate.
3819 *
3820 * Callers must hold the rtnl semaphore. You may want
3821 * register_netdev() instead of this.
3822 *
3823 * BUGS:
3824 * The locking appears insufficient to guarantee two parallel registers
3825 * will not get the same name.
3826 */
3827
3828int register_netdevice(struct net_device *dev)
3829{
3830 struct hlist_head *head;
3831 struct hlist_node *p;
3832 int ret;
3833 struct net *net;
3834
3835 BUG_ON(dev_boot_phase);
3836 ASSERT_RTNL();
3837
3838 might_sleep();
3839
3840 /* When net_device's are persistent, this will be fatal. */
3841 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3842 BUG_ON(!dev_net(dev));
3843 net = dev_net(dev);
3844
3845 spin_lock_init(&dev->addr_list_lock);
3846 netdev_init_queue_locks(dev);
3847
3848 dev->iflink = -1;
3849
3850 /* Init, if this function is available */
3851 if (dev->init) {
3852 ret = dev->init(dev);
3853 if (ret) {
3854 if (ret > 0)
3855 ret = -EIO;
3856 goto out;
3857 }
3858 }
3859
3860 if (!dev_valid_name(dev->name)) {
3861 ret = -EINVAL;
3862 goto err_uninit;
3863 }
3864
3865 dev->ifindex = dev_new_index(net);
3866 if (dev->iflink == -1)
3867 dev->iflink = dev->ifindex;
3868
3869 /* Check for existence of name */
3870 head = dev_name_hash(net, dev->name);
3871 hlist_for_each(p, head) {
3872 struct net_device *d
3873 = hlist_entry(p, struct net_device, name_hlist);
3874 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3875 ret = -EEXIST;
3876 goto err_uninit;
3877 }
3878 }
3879
3880 /* Fix illegal checksum combinations */
3881 if ((dev->features & NETIF_F_HW_CSUM) &&
3882 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3883 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3884 dev->name);
3885 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3886 }
3887
3888 if ((dev->features & NETIF_F_NO_CSUM) &&
3889 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3890 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3891 dev->name);
3892 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3893 }
3894
3895
3896 /* Fix illegal SG+CSUM combinations. */
3897 if ((dev->features & NETIF_F_SG) &&
3898 !(dev->features & NETIF_F_ALL_CSUM)) {
3899 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3900 dev->name);
3901 dev->features &= ~NETIF_F_SG;
3902 }
3903
3904 /* TSO requires that SG is present as well. */
3905 if ((dev->features & NETIF_F_TSO) &&
3906 !(dev->features & NETIF_F_SG)) {
3907 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3908 dev->name);
3909 dev->features &= ~NETIF_F_TSO;
3910 }
3911 if (dev->features & NETIF_F_UFO) {
3912 if (!(dev->features & NETIF_F_HW_CSUM)) {
3913 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3914 "NETIF_F_HW_CSUM feature.\n",
3915 dev->name);
3916 dev->features &= ~NETIF_F_UFO;
3917 }
3918 if (!(dev->features & NETIF_F_SG)) {
3919 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3920 "NETIF_F_SG feature.\n",
3921 dev->name);
3922 dev->features &= ~NETIF_F_UFO;
3923 }
3924 }
3925
3926 netdev_initialize_kobject(dev);
3927 ret = netdev_register_kobject(dev);
3928 if (ret)
3929 goto err_uninit;
3930 dev->reg_state = NETREG_REGISTERED;
3931
3932 /*
3933 * Default initial state at registry is that the
3934 * device is present.
3935 */
3936
3937 set_bit(__LINK_STATE_PRESENT, &dev->state);
3938
3939 dev_init_scheduler(dev);
3940 dev_hold(dev);
3941 list_netdevice(dev);
3942
3943 /* Notify protocols, that a new device appeared. */
3944 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3945 ret = notifier_to_errno(ret);
3946 if (ret) {
3947 rollback_registered(dev);
3948 dev->reg_state = NETREG_UNREGISTERED;
3949 }
3950
3951out:
3952 return ret;
3953
3954err_uninit:
3955 if (dev->uninit)
3956 dev->uninit(dev);
3957 goto out;
3958}
3959
3960/**
3961 * register_netdev - register a network device
3962 * @dev: device to register
3963 *
3964 * Take a completed network device structure and add it to the kernel
3965 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3966 * chain. 0 is returned on success. A negative errno code is returned
3967 * on a failure to set up the device, or if the name is a duplicate.
3968 *
3969 * This is a wrapper around register_netdevice that takes the rtnl semaphore
3970 * and expands the device name if you passed a format string to
3971 * alloc_netdev.
3972 */
3973int register_netdev(struct net_device *dev)
3974{
3975 int err;
3976
3977 rtnl_lock();
3978
3979 /*
3980 * If the name is a format string the caller wants us to do a
3981 * name allocation.
3982 */
3983 if (strchr(dev->name, '%')) {
3984 err = dev_alloc_name(dev, dev->name);
3985 if (err < 0)
3986 goto out;
3987 }
3988
3989 err = register_netdevice(dev);
3990out:
3991 rtnl_unlock();
3992 return err;
3993}
3994EXPORT_SYMBOL(register_netdev);
3995
3996/*
3997 * netdev_wait_allrefs - wait until all references are gone.
3998 *
3999 * This is called when unregistering network devices.
4000 *
4001 * Any protocol or device that holds a reference should register
4002 * for netdevice notification, and cleanup and put back the
4003 * reference if they receive an UNREGISTER event.
4004 * We can get stuck here if buggy protocols don't correctly
4005 * call dev_put.
4006 */
4007static void netdev_wait_allrefs(struct net_device *dev)
4008{
4009 unsigned long rebroadcast_time, warning_time;
4010
4011 rebroadcast_time = warning_time = jiffies;
4012 while (atomic_read(&dev->refcnt) != 0) {
4013 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4014 rtnl_lock();
4015
4016 /* Rebroadcast unregister notification */
4017 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4018
4019 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4020 &dev->state)) {
4021 /* We must not have linkwatch events
4022 * pending on unregister. If this
4023 * happens, we simply run the queue
4024 * unscheduled, resulting in a noop
4025 * for this device.
4026 */
4027 linkwatch_run_queue();
4028 }
4029
4030 __rtnl_unlock();
4031
4032 rebroadcast_time = jiffies;
4033 }
4034
4035 msleep(250);
4036
4037 if (time_after(jiffies, warning_time + 10 * HZ)) {
4038 printk(KERN_EMERG "unregister_netdevice: "
4039 "waiting for %s to become free. Usage "
4040 "count = %d\n",
4041 dev->name, atomic_read(&dev->refcnt));
4042 warning_time = jiffies;
4043 }
4044 }
4045}
4046
4047/* The sequence is:
4048 *
4049 * rtnl_lock();
4050 * ...
4051 * register_netdevice(x1);
4052 * register_netdevice(x2);
4053 * ...
4054 * unregister_netdevice(y1);
4055 * unregister_netdevice(y2);
4056 * ...
4057 * rtnl_unlock();
4058 * free_netdev(y1);
4059 * free_netdev(y2);
4060 *
4061 * We are invoked by rtnl_unlock() after it drops the semaphore.
4062 * This allows us to deal with problems:
4063 * 1) We can delete sysfs objects which invoke hotplug
4064 * without deadlocking with linkwatch via keventd.
4065 * 2) Since we run with the RTNL semaphore not held, we can sleep
4066 * safely in order to wait for the netdev refcnt to drop to zero.
4067 */
4068static DEFINE_MUTEX(net_todo_run_mutex);
4069void netdev_run_todo(void)
4070{
4071 struct list_head list;
4072
4073 /* Need to guard against multiple cpu's getting out of order. */
4074 mutex_lock(&net_todo_run_mutex);
4075
4076 /* Not safe to do outside the semaphore. We must not return
4077 * until all unregister events invoked by the local processor
4078 * have been completed (either by this todo run, or one on
4079 * another cpu).
4080 */
4081 if (list_empty(&net_todo_list))
4082 goto out;
4083
4084 /* Snapshot list, allow later requests */
4085 spin_lock(&net_todo_list_lock);
4086 list_replace_init(&net_todo_list, &list);
4087 spin_unlock(&net_todo_list_lock);
4088
4089 while (!list_empty(&list)) {
4090 struct net_device *dev
4091 = list_entry(list.next, struct net_device, todo_list);
4092 list_del(&dev->todo_list);
4093
4094 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4095 printk(KERN_ERR "network todo '%s' but state %d\n",
4096 dev->name, dev->reg_state);
4097 dump_stack();
4098 continue;
4099 }
4100
4101 dev->reg_state = NETREG_UNREGISTERED;
4102
4103 netdev_wait_allrefs(dev);
4104
4105 /* paranoia */
4106 BUG_ON(atomic_read(&dev->refcnt));
4107 BUG_TRAP(!dev->ip_ptr);
4108 BUG_TRAP(!dev->ip6_ptr);
4109 BUG_TRAP(!dev->dn_ptr);
4110
4111 if (dev->destructor)
4112 dev->destructor(dev);
4113
4114 /* Free network device */
4115 kobject_put(&dev->dev.kobj);
4116 }
4117
4118out:
4119 mutex_unlock(&net_todo_run_mutex);
4120}
4121
4122static struct net_device_stats *internal_stats(struct net_device *dev)
4123{
4124 return &dev->stats;
4125}
4126
4127static void netdev_init_one_queue(struct net_device *dev,
4128 struct netdev_queue *queue,
4129 void *_unused)
4130{
4131 spin_lock_init(&queue->lock);
4132 queue->dev = dev;
4133}
4134
4135static void netdev_init_queues(struct net_device *dev)
4136{
4137 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4138 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4139}
4140
4141/**
4142 * alloc_netdev_mq - allocate network device
4143 * @sizeof_priv: size of private data to allocate space for
4144 * @name: device name format string
4145 * @setup: callback to initialize device
4146 * @queue_count: the number of subqueues to allocate
4147 *
4148 * Allocates a struct net_device with private data area for driver use
4149 * and performs basic initialization. Also allocates subquue structs
4150 * for each queue on the device at the end of the netdevice.
4151 */
4152struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4153 void (*setup)(struct net_device *), unsigned int queue_count)
4154{
4155 struct netdev_queue *tx;
4156 struct net_device *dev;
4157 int alloc_size;
4158 void *p;
4159
4160 BUG_ON(strlen(name) >= sizeof(dev->name));
4161
4162 alloc_size = sizeof(struct net_device);
4163 if (sizeof_priv) {
4164 /* ensure 32-byte alignment of private area */
4165 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4166 alloc_size += sizeof_priv;
4167 }
4168 /* ensure 32-byte alignment of whole construct */
4169 alloc_size += NETDEV_ALIGN_CONST;
4170
4171 p = kzalloc(alloc_size, GFP_KERNEL);
4172 if (!p) {
4173 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4174 return NULL;
4175 }
4176
4177 tx = kzalloc(sizeof(struct netdev_queue) * queue_count, GFP_KERNEL);
4178 if (!tx) {
4179 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4180 "tx qdiscs.\n");
4181 kfree(p);
4182 return NULL;
4183 }
4184
4185 dev = (struct net_device *)
4186 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4187 dev->padded = (char *)dev - (char *)p;
4188 dev_net_set(dev, &init_net);
4189
4190 dev->_tx = tx;
4191 dev->num_tx_queues = queue_count;
4192 dev->real_num_tx_queues = queue_count;
4193
4194 if (sizeof_priv) {
4195 dev->priv = ((char *)dev +
4196 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4197 & ~NETDEV_ALIGN_CONST));
4198 }
4199
4200 dev->gso_max_size = GSO_MAX_SIZE;
4201
4202 netdev_init_queues(dev);
4203
4204 dev->get_stats = internal_stats;
4205 netpoll_netdev_init(dev);
4206 setup(dev);
4207 strcpy(dev->name, name);
4208 return dev;
4209}
4210EXPORT_SYMBOL(alloc_netdev_mq);
4211
4212/**
4213 * free_netdev - free network device
4214 * @dev: device
4215 *
4216 * This function does the last stage of destroying an allocated device
4217 * interface. The reference to the device object is released.
4218 * If this is the last reference then it will be freed.
4219 */
4220void free_netdev(struct net_device *dev)
4221{
4222 release_net(dev_net(dev));
4223
4224 kfree(dev->_tx);
4225
4226 /* Compatibility with error handling in drivers */
4227 if (dev->reg_state == NETREG_UNINITIALIZED) {
4228 kfree((char *)dev - dev->padded);
4229 return;
4230 }
4231
4232 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4233 dev->reg_state = NETREG_RELEASED;
4234
4235 /* will free via device release */
4236 put_device(&dev->dev);
4237}
4238
4239/* Synchronize with packet receive processing. */
4240void synchronize_net(void)
4241{
4242 might_sleep();
4243 synchronize_rcu();
4244}
4245
4246/**
4247 * unregister_netdevice - remove device from the kernel
4248 * @dev: device
4249 *
4250 * This function shuts down a device interface and removes it
4251 * from the kernel tables.
4252 *
4253 * Callers must hold the rtnl semaphore. You may want
4254 * unregister_netdev() instead of this.
4255 */
4256
4257void unregister_netdevice(struct net_device *dev)
4258{
4259 ASSERT_RTNL();
4260
4261 rollback_registered(dev);
4262 /* Finish processing unregister after unlock */
4263 net_set_todo(dev);
4264}
4265
4266/**
4267 * unregister_netdev - remove device from the kernel
4268 * @dev: device
4269 *
4270 * This function shuts down a device interface and removes it
4271 * from the kernel tables.
4272 *
4273 * This is just a wrapper for unregister_netdevice that takes
4274 * the rtnl semaphore. In general you want to use this and not
4275 * unregister_netdevice.
4276 */
4277void unregister_netdev(struct net_device *dev)
4278{
4279 rtnl_lock();
4280 unregister_netdevice(dev);
4281 rtnl_unlock();
4282}
4283
4284EXPORT_SYMBOL(unregister_netdev);
4285
4286/**
4287 * dev_change_net_namespace - move device to different nethost namespace
4288 * @dev: device
4289 * @net: network namespace
4290 * @pat: If not NULL name pattern to try if the current device name
4291 * is already taken in the destination network namespace.
4292 *
4293 * This function shuts down a device interface and moves it
4294 * to a new network namespace. On success 0 is returned, on
4295 * a failure a netagive errno code is returned.
4296 *
4297 * Callers must hold the rtnl semaphore.
4298 */
4299
4300int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4301{
4302 char buf[IFNAMSIZ];
4303 const char *destname;
4304 int err;
4305
4306 ASSERT_RTNL();
4307
4308 /* Don't allow namespace local devices to be moved. */
4309 err = -EINVAL;
4310 if (dev->features & NETIF_F_NETNS_LOCAL)
4311 goto out;
4312
4313 /* Ensure the device has been registrered */
4314 err = -EINVAL;
4315 if (dev->reg_state != NETREG_REGISTERED)
4316 goto out;
4317
4318 /* Get out if there is nothing todo */
4319 err = 0;
4320 if (net_eq(dev_net(dev), net))
4321 goto out;
4322
4323 /* Pick the destination device name, and ensure
4324 * we can use it in the destination network namespace.
4325 */
4326 err = -EEXIST;
4327 destname = dev->name;
4328 if (__dev_get_by_name(net, destname)) {
4329 /* We get here if we can't use the current device name */
4330 if (!pat)
4331 goto out;
4332 if (!dev_valid_name(pat))
4333 goto out;
4334 if (strchr(pat, '%')) {
4335 if (__dev_alloc_name(net, pat, buf) < 0)
4336 goto out;
4337 destname = buf;
4338 } else
4339 destname = pat;
4340 if (__dev_get_by_name(net, destname))
4341 goto out;
4342 }
4343
4344 /*
4345 * And now a mini version of register_netdevice unregister_netdevice.
4346 */
4347
4348 /* If device is running close it first. */
4349 dev_close(dev);
4350
4351 /* And unlink it from device chain */
4352 err = -ENODEV;
4353 unlist_netdevice(dev);
4354
4355 synchronize_net();
4356
4357 /* Shutdown queueing discipline. */
4358 dev_shutdown(dev);
4359
4360 /* Notify protocols, that we are about to destroy
4361 this device. They should clean all the things.
4362 */
4363 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4364
4365 /*
4366 * Flush the unicast and multicast chains
4367 */
4368 dev_addr_discard(dev);
4369
4370 /* Actually switch the network namespace */
4371 dev_net_set(dev, net);
4372
4373 /* Assign the new device name */
4374 if (destname != dev->name)
4375 strcpy(dev->name, destname);
4376
4377 /* If there is an ifindex conflict assign a new one */
4378 if (__dev_get_by_index(net, dev->ifindex)) {
4379 int iflink = (dev->iflink == dev->ifindex);
4380 dev->ifindex = dev_new_index(net);
4381 if (iflink)
4382 dev->iflink = dev->ifindex;
4383 }
4384
4385 /* Fixup kobjects */
4386 netdev_unregister_kobject(dev);
4387 err = netdev_register_kobject(dev);
4388 WARN_ON(err);
4389
4390 /* Add the device back in the hashes */
4391 list_netdevice(dev);
4392
4393 /* Notify protocols, that a new device appeared. */
4394 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4395
4396 synchronize_net();
4397 err = 0;
4398out:
4399 return err;
4400}
4401
4402static int dev_cpu_callback(struct notifier_block *nfb,
4403 unsigned long action,
4404 void *ocpu)
4405{
4406 struct sk_buff **list_skb;
4407 struct netdev_queue **list_net;
4408 struct sk_buff *skb;
4409 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4410 struct softnet_data *sd, *oldsd;
4411
4412 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4413 return NOTIFY_OK;
4414
4415 local_irq_disable();
4416 cpu = smp_processor_id();
4417 sd = &per_cpu(softnet_data, cpu);
4418 oldsd = &per_cpu(softnet_data, oldcpu);
4419
4420 /* Find end of our completion_queue. */
4421 list_skb = &sd->completion_queue;
4422 while (*list_skb)
4423 list_skb = &(*list_skb)->next;
4424 /* Append completion queue from offline CPU. */
4425 *list_skb = oldsd->completion_queue;
4426 oldsd->completion_queue = NULL;
4427
4428 /* Find end of our output_queue. */
4429 list_net = &sd->output_queue;
4430 while (*list_net)
4431 list_net = &(*list_net)->next_sched;
4432 /* Append output queue from offline CPU. */
4433 *list_net = oldsd->output_queue;
4434 oldsd->output_queue = NULL;
4435
4436 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4437 local_irq_enable();
4438
4439 /* Process offline CPU's input_pkt_queue */
4440 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4441 netif_rx(skb);
4442
4443 return NOTIFY_OK;
4444}
4445
4446#ifdef CONFIG_NET_DMA
4447/**
4448 * net_dma_rebalance - try to maintain one DMA channel per CPU
4449 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4450 *
4451 * This is called when the number of channels allocated to the net_dma client
4452 * changes. The net_dma client tries to have one DMA channel per CPU.
4453 */
4454
4455static void net_dma_rebalance(struct net_dma *net_dma)
4456{
4457 unsigned int cpu, i, n, chan_idx;
4458 struct dma_chan *chan;
4459
4460 if (cpus_empty(net_dma->channel_mask)) {
4461 for_each_online_cpu(cpu)
4462 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4463 return;
4464 }
4465
4466 i = 0;
4467 cpu = first_cpu(cpu_online_map);
4468
4469 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4470 chan = net_dma->channels[chan_idx];
4471
4472 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4473 + (i < (num_online_cpus() %
4474 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4475
4476 while(n) {
4477 per_cpu(softnet_data, cpu).net_dma = chan;
4478 cpu = next_cpu(cpu, cpu_online_map);
4479 n--;
4480 }
4481 i++;
4482 }
4483}
4484
4485/**
4486 * netdev_dma_event - event callback for the net_dma_client
4487 * @client: should always be net_dma_client
4488 * @chan: DMA channel for the event
4489 * @state: DMA state to be handled
4490 */
4491static enum dma_state_client
4492netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4493 enum dma_state state)
4494{
4495 int i, found = 0, pos = -1;
4496 struct net_dma *net_dma =
4497 container_of(client, struct net_dma, client);
4498 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4499
4500 spin_lock(&net_dma->lock);
4501 switch (state) {
4502 case DMA_RESOURCE_AVAILABLE:
4503 for (i = 0; i < nr_cpu_ids; i++)
4504 if (net_dma->channels[i] == chan) {
4505 found = 1;
4506 break;
4507 } else if (net_dma->channels[i] == NULL && pos < 0)
4508 pos = i;
4509
4510 if (!found && pos >= 0) {
4511 ack = DMA_ACK;
4512 net_dma->channels[pos] = chan;
4513 cpu_set(pos, net_dma->channel_mask);
4514 net_dma_rebalance(net_dma);
4515 }
4516 break;
4517 case DMA_RESOURCE_REMOVED:
4518 for (i = 0; i < nr_cpu_ids; i++)
4519 if (net_dma->channels[i] == chan) {
4520 found = 1;
4521 pos = i;
4522 break;
4523 }
4524
4525 if (found) {
4526 ack = DMA_ACK;
4527 cpu_clear(pos, net_dma->channel_mask);
4528 net_dma->channels[i] = NULL;
4529 net_dma_rebalance(net_dma);
4530 }
4531 break;
4532 default:
4533 break;
4534 }
4535 spin_unlock(&net_dma->lock);
4536
4537 return ack;
4538}
4539
4540/**
4541 * netdev_dma_regiser - register the networking subsystem as a DMA client
4542 */
4543static int __init netdev_dma_register(void)
4544{
4545 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4546 GFP_KERNEL);
4547 if (unlikely(!net_dma.channels)) {
4548 printk(KERN_NOTICE
4549 "netdev_dma: no memory for net_dma.channels\n");
4550 return -ENOMEM;
4551 }
4552 spin_lock_init(&net_dma.lock);
4553 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4554 dma_async_client_register(&net_dma.client);
4555 dma_async_client_chan_request(&net_dma.client);
4556 return 0;
4557}
4558
4559#else
4560static int __init netdev_dma_register(void) { return -ENODEV; }
4561#endif /* CONFIG_NET_DMA */
4562
4563/**
4564 * netdev_compute_feature - compute conjunction of two feature sets
4565 * @all: first feature set
4566 * @one: second feature set
4567 *
4568 * Computes a new feature set after adding a device with feature set
4569 * @one to the master device with current feature set @all. Returns
4570 * the new feature set.
4571 */
4572int netdev_compute_features(unsigned long all, unsigned long one)
4573{
4574 /* if device needs checksumming, downgrade to hw checksumming */
4575 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4576 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4577
4578 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4579 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4580 all ^= NETIF_F_HW_CSUM
4581 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4582
4583 if (one & NETIF_F_GSO)
4584 one |= NETIF_F_GSO_SOFTWARE;
4585 one |= NETIF_F_GSO;
4586
4587 /* If even one device supports robust GSO, enable it for all. */
4588 if (one & NETIF_F_GSO_ROBUST)
4589 all |= NETIF_F_GSO_ROBUST;
4590
4591 all &= one | NETIF_F_LLTX;
4592
4593 if (!(all & NETIF_F_ALL_CSUM))
4594 all &= ~NETIF_F_SG;
4595 if (!(all & NETIF_F_SG))
4596 all &= ~NETIF_F_GSO_MASK;
4597
4598 return all;
4599}
4600EXPORT_SYMBOL(netdev_compute_features);
4601
4602static struct hlist_head *netdev_create_hash(void)
4603{
4604 int i;
4605 struct hlist_head *hash;
4606
4607 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4608 if (hash != NULL)
4609 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4610 INIT_HLIST_HEAD(&hash[i]);
4611
4612 return hash;
4613}
4614
4615/* Initialize per network namespace state */
4616static int __net_init netdev_init(struct net *net)
4617{
4618 INIT_LIST_HEAD(&net->dev_base_head);
4619
4620 net->dev_name_head = netdev_create_hash();
4621 if (net->dev_name_head == NULL)
4622 goto err_name;
4623
4624 net->dev_index_head = netdev_create_hash();
4625 if (net->dev_index_head == NULL)
4626 goto err_idx;
4627
4628 return 0;
4629
4630err_idx:
4631 kfree(net->dev_name_head);
4632err_name:
4633 return -ENOMEM;
4634}
4635
4636static void __net_exit netdev_exit(struct net *net)
4637{
4638 kfree(net->dev_name_head);
4639 kfree(net->dev_index_head);
4640}
4641
4642static struct pernet_operations __net_initdata netdev_net_ops = {
4643 .init = netdev_init,
4644 .exit = netdev_exit,
4645};
4646
4647static void __net_exit default_device_exit(struct net *net)
4648{
4649 struct net_device *dev, *next;
4650 /*
4651 * Push all migratable of the network devices back to the
4652 * initial network namespace
4653 */
4654 rtnl_lock();
4655 for_each_netdev_safe(net, dev, next) {
4656 int err;
4657 char fb_name[IFNAMSIZ];
4658
4659 /* Ignore unmoveable devices (i.e. loopback) */
4660 if (dev->features & NETIF_F_NETNS_LOCAL)
4661 continue;
4662
4663 /* Push remaing network devices to init_net */
4664 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4665 err = dev_change_net_namespace(dev, &init_net, fb_name);
4666 if (err) {
4667 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4668 __func__, dev->name, err);
4669 BUG();
4670 }
4671 }
4672 rtnl_unlock();
4673}
4674
4675static struct pernet_operations __net_initdata default_device_ops = {
4676 .exit = default_device_exit,
4677};
4678
4679/*
4680 * Initialize the DEV module. At boot time this walks the device list and
4681 * unhooks any devices that fail to initialise (normally hardware not
4682 * present) and leaves us with a valid list of present and active devices.
4683 *
4684 */
4685
4686/*
4687 * This is called single threaded during boot, so no need
4688 * to take the rtnl semaphore.
4689 */
4690static int __init net_dev_init(void)
4691{
4692 int i, rc = -ENOMEM;
4693
4694 BUG_ON(!dev_boot_phase);
4695
4696 if (dev_proc_init())
4697 goto out;
4698
4699 if (netdev_kobject_init())
4700 goto out;
4701
4702 INIT_LIST_HEAD(&ptype_all);
4703 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4704 INIT_LIST_HEAD(&ptype_base[i]);
4705
4706 if (register_pernet_subsys(&netdev_net_ops))
4707 goto out;
4708
4709 if (register_pernet_device(&default_device_ops))
4710 goto out;
4711
4712 /*
4713 * Initialise the packet receive queues.
4714 */
4715
4716 for_each_possible_cpu(i) {
4717 struct softnet_data *queue;
4718
4719 queue = &per_cpu(softnet_data, i);
4720 skb_queue_head_init(&queue->input_pkt_queue);
4721 queue->completion_queue = NULL;
4722 INIT_LIST_HEAD(&queue->poll_list);
4723
4724 queue->backlog.poll = process_backlog;
4725 queue->backlog.weight = weight_p;
4726 }
4727
4728 netdev_dma_register();
4729
4730 dev_boot_phase = 0;
4731
4732 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4733 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4734
4735 hotcpu_notifier(dev_cpu_callback, 0);
4736 dst_init();
4737 dev_mcast_init();
4738 rc = 0;
4739out:
4740 return rc;
4741}
4742
4743subsys_initcall(net_dev_init);
4744
4745EXPORT_SYMBOL(__dev_get_by_index);
4746EXPORT_SYMBOL(__dev_get_by_name);
4747EXPORT_SYMBOL(__dev_remove_pack);
4748EXPORT_SYMBOL(dev_valid_name);
4749EXPORT_SYMBOL(dev_add_pack);
4750EXPORT_SYMBOL(dev_alloc_name);
4751EXPORT_SYMBOL(dev_close);
4752EXPORT_SYMBOL(dev_get_by_flags);
4753EXPORT_SYMBOL(dev_get_by_index);
4754EXPORT_SYMBOL(dev_get_by_name);
4755EXPORT_SYMBOL(dev_open);
4756EXPORT_SYMBOL(dev_queue_xmit);
4757EXPORT_SYMBOL(dev_remove_pack);
4758EXPORT_SYMBOL(dev_set_allmulti);
4759EXPORT_SYMBOL(dev_set_promiscuity);
4760EXPORT_SYMBOL(dev_change_flags);
4761EXPORT_SYMBOL(dev_set_mtu);
4762EXPORT_SYMBOL(dev_set_mac_address);
4763EXPORT_SYMBOL(free_netdev);
4764EXPORT_SYMBOL(netdev_boot_setup_check);
4765EXPORT_SYMBOL(netdev_set_master);
4766EXPORT_SYMBOL(netdev_state_change);
4767EXPORT_SYMBOL(netif_receive_skb);
4768EXPORT_SYMBOL(netif_rx);
4769EXPORT_SYMBOL(register_gifconf);
4770EXPORT_SYMBOL(register_netdevice);
4771EXPORT_SYMBOL(register_netdevice_notifier);
4772EXPORT_SYMBOL(skb_checksum_help);
4773EXPORT_SYMBOL(synchronize_net);
4774EXPORT_SYMBOL(unregister_netdevice);
4775EXPORT_SYMBOL(unregister_netdevice_notifier);
4776EXPORT_SYMBOL(net_enable_timestamp);
4777EXPORT_SYMBOL(net_disable_timestamp);
4778EXPORT_SYMBOL(dev_get_flags);
4779
4780#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4781EXPORT_SYMBOL(br_handle_frame_hook);
4782EXPORT_SYMBOL(br_fdb_get_hook);
4783EXPORT_SYMBOL(br_fdb_put_hook);
4784#endif
4785
4786#ifdef CONFIG_KMOD
4787EXPORT_SYMBOL(dev_load);
4788#endif
4789
4790EXPORT_PER_CPU_SYMBOL(softnet_data);