]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
pkt_sched: Remove unused variable skb in dev_deactivate_queue function.
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/kallsyms.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127
128#include "net-sysfs.h"
129
130/*
131 * The list of packet types we will receive (as opposed to discard)
132 * and the routines to invoke.
133 *
134 * Why 16. Because with 16 the only overlap we get on a hash of the
135 * low nibble of the protocol value is RARP/SNAP/X.25.
136 *
137 * NOTE: That is no longer true with the addition of VLAN tags. Not
138 * sure which should go first, but I bet it won't make much
139 * difference if we are running VLANs. The good news is that
140 * this protocol won't be in the list unless compiled in, so
141 * the average user (w/out VLANs) will not be adversely affected.
142 * --BLG
143 *
144 * 0800 IP
145 * 8100 802.1Q VLAN
146 * 0001 802.3
147 * 0002 AX.25
148 * 0004 802.2
149 * 8035 RARP
150 * 0005 SNAP
151 * 0805 X.25
152 * 0806 ARP
153 * 8137 IPX
154 * 0009 Localtalk
155 * 86DD IPv6
156 */
157
158#define PTYPE_HASH_SIZE (16)
159#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
160
161static DEFINE_SPINLOCK(ptype_lock);
162static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
163static struct list_head ptype_all __read_mostly; /* Taps */
164
165#ifdef CONFIG_NET_DMA
166struct net_dma {
167 struct dma_client client;
168 spinlock_t lock;
169 cpumask_t channel_mask;
170 struct dma_chan **channels;
171};
172
173static enum dma_state_client
174netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
175 enum dma_state state);
176
177static struct net_dma net_dma = {
178 .client = {
179 .event_callback = netdev_dma_event,
180 },
181};
182#endif
183
184/*
185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
186 * semaphore.
187 *
188 * Pure readers hold dev_base_lock for reading.
189 *
190 * Writers must hold the rtnl semaphore while they loop through the
191 * dev_base_head list, and hold dev_base_lock for writing when they do the
192 * actual updates. This allows pure readers to access the list even
193 * while a writer is preparing to update it.
194 *
195 * To put it another way, dev_base_lock is held for writing only to
196 * protect against pure readers; the rtnl semaphore provides the
197 * protection against other writers.
198 *
199 * See, for example usages, register_netdevice() and
200 * unregister_netdevice(), which must be called with the rtnl
201 * semaphore held.
202 */
203DEFINE_RWLOCK(dev_base_lock);
204
205EXPORT_SYMBOL(dev_base_lock);
206
207#define NETDEV_HASHBITS 8
208#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
209
210static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
211{
212 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
213 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
214}
215
216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217{
218 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
219}
220
221/* Device list insertion */
222static int list_netdevice(struct net_device *dev)
223{
224 struct net *net = dev_net(dev);
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
229 list_add_tail(&dev->dev_list, &net->dev_base_head);
230 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
231 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233 return 0;
234}
235
236/* Device list removal */
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del(&dev->dev_list);
244 hlist_del(&dev->name_hlist);
245 hlist_del(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247}
248
249/*
250 * Our notifier list
251 */
252
253static RAW_NOTIFIER_HEAD(netdev_chain);
254
255/*
256 * Device drivers call our routines to queue packets here. We empty the
257 * queue in the local softnet handler.
258 */
259
260DEFINE_PER_CPU(struct softnet_data, softnet_data);
261
262#ifdef CONFIG_DEBUG_LOCK_ALLOC
263/*
264 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
265 * according to dev->type
266 */
267static const unsigned short netdev_lock_type[] =
268 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
269 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
270 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
271 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
272 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
273 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
274 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
275 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
276 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
277 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
278 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
279 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
280 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
281 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
282 ARPHRD_NONE};
283
284static const char *netdev_lock_name[] =
285 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
286 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
287 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
288 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
289 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
290 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
291 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
292 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
293 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
294 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
295 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
296 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
297 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
298 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
299 "_xmit_NONE"};
300
301static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304{
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312}
313
314static inline void netdev_set_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316{
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322}
323#else
324static inline void netdev_set_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326{
327}
328#endif
329
330/*******************************************************************************
331
332 Protocol management and registration routines
333
334*******************************************************************************/
335
336/*
337 * Add a protocol ID to the list. Now that the input handler is
338 * smarter we can dispense with all the messy stuff that used to be
339 * here.
340 *
341 * BEWARE!!! Protocol handlers, mangling input packets,
342 * MUST BE last in hash buckets and checking protocol handlers
343 * MUST start from promiscuous ptype_all chain in net_bh.
344 * It is true now, do not change it.
345 * Explanation follows: if protocol handler, mangling packet, will
346 * be the first on list, it is not able to sense, that packet
347 * is cloned and should be copied-on-write, so that it will
348 * change it and subsequent readers will get broken packet.
349 * --ANK (980803)
350 */
351
352/**
353 * dev_add_pack - add packet handler
354 * @pt: packet type declaration
355 *
356 * Add a protocol handler to the networking stack. The passed &packet_type
357 * is linked into kernel lists and may not be freed until it has been
358 * removed from the kernel lists.
359 *
360 * This call does not sleep therefore it can not
361 * guarantee all CPU's that are in middle of receiving packets
362 * will see the new packet type (until the next received packet).
363 */
364
365void dev_add_pack(struct packet_type *pt)
366{
367 int hash;
368
369 spin_lock_bh(&ptype_lock);
370 if (pt->type == htons(ETH_P_ALL))
371 list_add_rcu(&pt->list, &ptype_all);
372 else {
373 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
374 list_add_rcu(&pt->list, &ptype_base[hash]);
375 }
376 spin_unlock_bh(&ptype_lock);
377}
378
379/**
380 * __dev_remove_pack - remove packet handler
381 * @pt: packet type declaration
382 *
383 * Remove a protocol handler that was previously added to the kernel
384 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
385 * from the kernel lists and can be freed or reused once this function
386 * returns.
387 *
388 * The packet type might still be in use by receivers
389 * and must not be freed until after all the CPU's have gone
390 * through a quiescent state.
391 */
392void __dev_remove_pack(struct packet_type *pt)
393{
394 struct list_head *head;
395 struct packet_type *pt1;
396
397 spin_lock_bh(&ptype_lock);
398
399 if (pt->type == htons(ETH_P_ALL))
400 head = &ptype_all;
401 else
402 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
403
404 list_for_each_entry(pt1, head, list) {
405 if (pt == pt1) {
406 list_del_rcu(&pt->list);
407 goto out;
408 }
409 }
410
411 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
412out:
413 spin_unlock_bh(&ptype_lock);
414}
415/**
416 * dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
422 * returns.
423 *
424 * This call sleeps to guarantee that no CPU is looking at the packet
425 * type after return.
426 */
427void dev_remove_pack(struct packet_type *pt)
428{
429 __dev_remove_pack(pt);
430
431 synchronize_net();
432}
433
434/******************************************************************************
435
436 Device Boot-time Settings Routines
437
438*******************************************************************************/
439
440/* Boot time configuration table */
441static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
442
443/**
444 * netdev_boot_setup_add - add new setup entry
445 * @name: name of the device
446 * @map: configured settings for the device
447 *
448 * Adds new setup entry to the dev_boot_setup list. The function
449 * returns 0 on error and 1 on success. This is a generic routine to
450 * all netdevices.
451 */
452static int netdev_boot_setup_add(char *name, struct ifmap *map)
453{
454 struct netdev_boot_setup *s;
455 int i;
456
457 s = dev_boot_setup;
458 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
459 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
460 memset(s[i].name, 0, sizeof(s[i].name));
461 strlcpy(s[i].name, name, IFNAMSIZ);
462 memcpy(&s[i].map, map, sizeof(s[i].map));
463 break;
464 }
465 }
466
467 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
468}
469
470/**
471 * netdev_boot_setup_check - check boot time settings
472 * @dev: the netdevice
473 *
474 * Check boot time settings for the device.
475 * The found settings are set for the device to be used
476 * later in the device probing.
477 * Returns 0 if no settings found, 1 if they are.
478 */
479int netdev_boot_setup_check(struct net_device *dev)
480{
481 struct netdev_boot_setup *s = dev_boot_setup;
482 int i;
483
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
486 !strcmp(dev->name, s[i].name)) {
487 dev->irq = s[i].map.irq;
488 dev->base_addr = s[i].map.base_addr;
489 dev->mem_start = s[i].map.mem_start;
490 dev->mem_end = s[i].map.mem_end;
491 return 1;
492 }
493 }
494 return 0;
495}
496
497
498/**
499 * netdev_boot_base - get address from boot time settings
500 * @prefix: prefix for network device
501 * @unit: id for network device
502 *
503 * Check boot time settings for the base address of device.
504 * The found settings are set for the device to be used
505 * later in the device probing.
506 * Returns 0 if no settings found.
507 */
508unsigned long netdev_boot_base(const char *prefix, int unit)
509{
510 const struct netdev_boot_setup *s = dev_boot_setup;
511 char name[IFNAMSIZ];
512 int i;
513
514 sprintf(name, "%s%d", prefix, unit);
515
516 /*
517 * If device already registered then return base of 1
518 * to indicate not to probe for this interface
519 */
520 if (__dev_get_by_name(&init_net, name))
521 return 1;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
524 if (!strcmp(name, s[i].name))
525 return s[i].map.base_addr;
526 return 0;
527}
528
529/*
530 * Saves at boot time configured settings for any netdevice.
531 */
532int __init netdev_boot_setup(char *str)
533{
534 int ints[5];
535 struct ifmap map;
536
537 str = get_options(str, ARRAY_SIZE(ints), ints);
538 if (!str || !*str)
539 return 0;
540
541 /* Save settings */
542 memset(&map, 0, sizeof(map));
543 if (ints[0] > 0)
544 map.irq = ints[1];
545 if (ints[0] > 1)
546 map.base_addr = ints[2];
547 if (ints[0] > 2)
548 map.mem_start = ints[3];
549 if (ints[0] > 3)
550 map.mem_end = ints[4];
551
552 /* Add new entry to the list */
553 return netdev_boot_setup_add(str, &map);
554}
555
556__setup("netdev=", netdev_boot_setup);
557
558/*******************************************************************************
559
560 Device Interface Subroutines
561
562*******************************************************************************/
563
564/**
565 * __dev_get_by_name - find a device by its name
566 * @net: the applicable net namespace
567 * @name: name to find
568 *
569 * Find an interface by name. Must be called under RTNL semaphore
570 * or @dev_base_lock. If the name is found a pointer to the device
571 * is returned. If the name is not found then %NULL is returned. The
572 * reference counters are not incremented so the caller must be
573 * careful with locks.
574 */
575
576struct net_device *__dev_get_by_name(struct net *net, const char *name)
577{
578 struct hlist_node *p;
579
580 hlist_for_each(p, dev_name_hash(net, name)) {
581 struct net_device *dev
582 = hlist_entry(p, struct net_device, name_hlist);
583 if (!strncmp(dev->name, name, IFNAMSIZ))
584 return dev;
585 }
586 return NULL;
587}
588
589/**
590 * dev_get_by_name - find a device by its name
591 * @net: the applicable net namespace
592 * @name: name to find
593 *
594 * Find an interface by name. This can be called from any
595 * context and does its own locking. The returned handle has
596 * the usage count incremented and the caller must use dev_put() to
597 * release it when it is no longer needed. %NULL is returned if no
598 * matching device is found.
599 */
600
601struct net_device *dev_get_by_name(struct net *net, const char *name)
602{
603 struct net_device *dev;
604
605 read_lock(&dev_base_lock);
606 dev = __dev_get_by_name(net, name);
607 if (dev)
608 dev_hold(dev);
609 read_unlock(&dev_base_lock);
610 return dev;
611}
612
613/**
614 * __dev_get_by_index - find a device by its ifindex
615 * @net: the applicable net namespace
616 * @ifindex: index of device
617 *
618 * Search for an interface by index. Returns %NULL if the device
619 * is not found or a pointer to the device. The device has not
620 * had its reference counter increased so the caller must be careful
621 * about locking. The caller must hold either the RTNL semaphore
622 * or @dev_base_lock.
623 */
624
625struct net_device *__dev_get_by_index(struct net *net, int ifindex)
626{
627 struct hlist_node *p;
628
629 hlist_for_each(p, dev_index_hash(net, ifindex)) {
630 struct net_device *dev
631 = hlist_entry(p, struct net_device, index_hlist);
632 if (dev->ifindex == ifindex)
633 return dev;
634 }
635 return NULL;
636}
637
638
639/**
640 * dev_get_by_index - find a device by its ifindex
641 * @net: the applicable net namespace
642 * @ifindex: index of device
643 *
644 * Search for an interface by index. Returns NULL if the device
645 * is not found or a pointer to the device. The device returned has
646 * had a reference added and the pointer is safe until the user calls
647 * dev_put to indicate they have finished with it.
648 */
649
650struct net_device *dev_get_by_index(struct net *net, int ifindex)
651{
652 struct net_device *dev;
653
654 read_lock(&dev_base_lock);
655 dev = __dev_get_by_index(net, ifindex);
656 if (dev)
657 dev_hold(dev);
658 read_unlock(&dev_base_lock);
659 return dev;
660}
661
662/**
663 * dev_getbyhwaddr - find a device by its hardware address
664 * @net: the applicable net namespace
665 * @type: media type of device
666 * @ha: hardware address
667 *
668 * Search for an interface by MAC address. Returns NULL if the device
669 * is not found or a pointer to the device. The caller must hold the
670 * rtnl semaphore. The returned device has not had its ref count increased
671 * and the caller must therefore be careful about locking
672 *
673 * BUGS:
674 * If the API was consistent this would be __dev_get_by_hwaddr
675 */
676
677struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
678{
679 struct net_device *dev;
680
681 ASSERT_RTNL();
682
683 for_each_netdev(net, dev)
684 if (dev->type == type &&
685 !memcmp(dev->dev_addr, ha, dev->addr_len))
686 return dev;
687
688 return NULL;
689}
690
691EXPORT_SYMBOL(dev_getbyhwaddr);
692
693struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
694{
695 struct net_device *dev;
696
697 ASSERT_RTNL();
698 for_each_netdev(net, dev)
699 if (dev->type == type)
700 return dev;
701
702 return NULL;
703}
704
705EXPORT_SYMBOL(__dev_getfirstbyhwtype);
706
707struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
708{
709 struct net_device *dev;
710
711 rtnl_lock();
712 dev = __dev_getfirstbyhwtype(net, type);
713 if (dev)
714 dev_hold(dev);
715 rtnl_unlock();
716 return dev;
717}
718
719EXPORT_SYMBOL(dev_getfirstbyhwtype);
720
721/**
722 * dev_get_by_flags - find any device with given flags
723 * @net: the applicable net namespace
724 * @if_flags: IFF_* values
725 * @mask: bitmask of bits in if_flags to check
726 *
727 * Search for any interface with the given flags. Returns NULL if a device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
734{
735 struct net_device *dev, *ret;
736
737 ret = NULL;
738 read_lock(&dev_base_lock);
739 for_each_netdev(net, dev) {
740 if (((dev->flags ^ if_flags) & mask) == 0) {
741 dev_hold(dev);
742 ret = dev;
743 break;
744 }
745 }
746 read_unlock(&dev_base_lock);
747 return ret;
748}
749
750/**
751 * dev_valid_name - check if name is okay for network device
752 * @name: name string
753 *
754 * Network device names need to be valid file names to
755 * to allow sysfs to work. We also disallow any kind of
756 * whitespace.
757 */
758int dev_valid_name(const char *name)
759{
760 if (*name == '\0')
761 return 0;
762 if (strlen(name) >= IFNAMSIZ)
763 return 0;
764 if (!strcmp(name, ".") || !strcmp(name, ".."))
765 return 0;
766
767 while (*name) {
768 if (*name == '/' || isspace(*name))
769 return 0;
770 name++;
771 }
772 return 1;
773}
774
775/**
776 * __dev_alloc_name - allocate a name for a device
777 * @net: network namespace to allocate the device name in
778 * @name: name format string
779 * @buf: scratch buffer and result name string
780 *
781 * Passed a format string - eg "lt%d" it will try and find a suitable
782 * id. It scans list of devices to build up a free map, then chooses
783 * the first empty slot. The caller must hold the dev_base or rtnl lock
784 * while allocating the name and adding the device in order to avoid
785 * duplicates.
786 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
787 * Returns the number of the unit assigned or a negative errno code.
788 */
789
790static int __dev_alloc_name(struct net *net, const char *name, char *buf)
791{
792 int i = 0;
793 const char *p;
794 const int max_netdevices = 8*PAGE_SIZE;
795 unsigned long *inuse;
796 struct net_device *d;
797
798 p = strnchr(name, IFNAMSIZ-1, '%');
799 if (p) {
800 /*
801 * Verify the string as this thing may have come from
802 * the user. There must be either one "%d" and no other "%"
803 * characters.
804 */
805 if (p[1] != 'd' || strchr(p + 2, '%'))
806 return -EINVAL;
807
808 /* Use one page as a bit array of possible slots */
809 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
810 if (!inuse)
811 return -ENOMEM;
812
813 for_each_netdev(net, d) {
814 if (!sscanf(d->name, name, &i))
815 continue;
816 if (i < 0 || i >= max_netdevices)
817 continue;
818
819 /* avoid cases where sscanf is not exact inverse of printf */
820 snprintf(buf, IFNAMSIZ, name, i);
821 if (!strncmp(buf, d->name, IFNAMSIZ))
822 set_bit(i, inuse);
823 }
824
825 i = find_first_zero_bit(inuse, max_netdevices);
826 free_page((unsigned long) inuse);
827 }
828
829 snprintf(buf, IFNAMSIZ, name, i);
830 if (!__dev_get_by_name(net, buf))
831 return i;
832
833 /* It is possible to run out of possible slots
834 * when the name is long and there isn't enough space left
835 * for the digits, or if all bits are used.
836 */
837 return -ENFILE;
838}
839
840/**
841 * dev_alloc_name - allocate a name for a device
842 * @dev: device
843 * @name: name format string
844 *
845 * Passed a format string - eg "lt%d" it will try and find a suitable
846 * id. It scans list of devices to build up a free map, then chooses
847 * the first empty slot. The caller must hold the dev_base or rtnl lock
848 * while allocating the name and adding the device in order to avoid
849 * duplicates.
850 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
851 * Returns the number of the unit assigned or a negative errno code.
852 */
853
854int dev_alloc_name(struct net_device *dev, const char *name)
855{
856 char buf[IFNAMSIZ];
857 struct net *net;
858 int ret;
859
860 BUG_ON(!dev_net(dev));
861 net = dev_net(dev);
862 ret = __dev_alloc_name(net, name, buf);
863 if (ret >= 0)
864 strlcpy(dev->name, buf, IFNAMSIZ);
865 return ret;
866}
867
868
869/**
870 * dev_change_name - change name of a device
871 * @dev: device
872 * @newname: name (or format string) must be at least IFNAMSIZ
873 *
874 * Change name of a device, can pass format strings "eth%d".
875 * for wildcarding.
876 */
877int dev_change_name(struct net_device *dev, char *newname)
878{
879 char oldname[IFNAMSIZ];
880 int err = 0;
881 int ret;
882 struct net *net;
883
884 ASSERT_RTNL();
885 BUG_ON(!dev_net(dev));
886
887 net = dev_net(dev);
888 if (dev->flags & IFF_UP)
889 return -EBUSY;
890
891 if (!dev_valid_name(newname))
892 return -EINVAL;
893
894 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
895 return 0;
896
897 memcpy(oldname, dev->name, IFNAMSIZ);
898
899 if (strchr(newname, '%')) {
900 err = dev_alloc_name(dev, newname);
901 if (err < 0)
902 return err;
903 strcpy(newname, dev->name);
904 }
905 else if (__dev_get_by_name(net, newname))
906 return -EEXIST;
907 else
908 strlcpy(dev->name, newname, IFNAMSIZ);
909
910rollback:
911 err = device_rename(&dev->dev, dev->name);
912 if (err) {
913 memcpy(dev->name, oldname, IFNAMSIZ);
914 return err;
915 }
916
917 write_lock_bh(&dev_base_lock);
918 hlist_del(&dev->name_hlist);
919 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
920 write_unlock_bh(&dev_base_lock);
921
922 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
923 ret = notifier_to_errno(ret);
924
925 if (ret) {
926 if (err) {
927 printk(KERN_ERR
928 "%s: name change rollback failed: %d.\n",
929 dev->name, ret);
930 } else {
931 err = ret;
932 memcpy(dev->name, oldname, IFNAMSIZ);
933 goto rollback;
934 }
935 }
936
937 return err;
938}
939
940/**
941 * netdev_features_change - device changes features
942 * @dev: device to cause notification
943 *
944 * Called to indicate a device has changed features.
945 */
946void netdev_features_change(struct net_device *dev)
947{
948 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
949}
950EXPORT_SYMBOL(netdev_features_change);
951
952/**
953 * netdev_state_change - device changes state
954 * @dev: device to cause notification
955 *
956 * Called to indicate a device has changed state. This function calls
957 * the notifier chains for netdev_chain and sends a NEWLINK message
958 * to the routing socket.
959 */
960void netdev_state_change(struct net_device *dev)
961{
962 if (dev->flags & IFF_UP) {
963 call_netdevice_notifiers(NETDEV_CHANGE, dev);
964 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
965 }
966}
967
968void netdev_bonding_change(struct net_device *dev)
969{
970 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
971}
972EXPORT_SYMBOL(netdev_bonding_change);
973
974/**
975 * dev_load - load a network module
976 * @net: the applicable net namespace
977 * @name: name of interface
978 *
979 * If a network interface is not present and the process has suitable
980 * privileges this function loads the module. If module loading is not
981 * available in this kernel then it becomes a nop.
982 */
983
984void dev_load(struct net *net, const char *name)
985{
986 struct net_device *dev;
987
988 read_lock(&dev_base_lock);
989 dev = __dev_get_by_name(net, name);
990 read_unlock(&dev_base_lock);
991
992 if (!dev && capable(CAP_SYS_MODULE))
993 request_module("%s", name);
994}
995
996/**
997 * dev_open - prepare an interface for use.
998 * @dev: device to open
999 *
1000 * Takes a device from down to up state. The device's private open
1001 * function is invoked and then the multicast lists are loaded. Finally
1002 * the device is moved into the up state and a %NETDEV_UP message is
1003 * sent to the netdev notifier chain.
1004 *
1005 * Calling this function on an active interface is a nop. On a failure
1006 * a negative errno code is returned.
1007 */
1008int dev_open(struct net_device *dev)
1009{
1010 int ret = 0;
1011
1012 ASSERT_RTNL();
1013
1014 /*
1015 * Is it already up?
1016 */
1017
1018 if (dev->flags & IFF_UP)
1019 return 0;
1020
1021 /*
1022 * Is it even present?
1023 */
1024 if (!netif_device_present(dev))
1025 return -ENODEV;
1026
1027 /*
1028 * Call device private open method
1029 */
1030 set_bit(__LINK_STATE_START, &dev->state);
1031
1032 if (dev->validate_addr)
1033 ret = dev->validate_addr(dev);
1034
1035 if (!ret && dev->open)
1036 ret = dev->open(dev);
1037
1038 /*
1039 * If it went open OK then:
1040 */
1041
1042 if (ret)
1043 clear_bit(__LINK_STATE_START, &dev->state);
1044 else {
1045 /*
1046 * Set the flags.
1047 */
1048 dev->flags |= IFF_UP;
1049
1050 /*
1051 * Initialize multicasting status
1052 */
1053 dev_set_rx_mode(dev);
1054
1055 /*
1056 * Wakeup transmit queue engine
1057 */
1058 dev_activate(dev);
1059
1060 /*
1061 * ... and announce new interface.
1062 */
1063 call_netdevice_notifiers(NETDEV_UP, dev);
1064 }
1065
1066 return ret;
1067}
1068
1069/**
1070 * dev_close - shutdown an interface.
1071 * @dev: device to shutdown
1072 *
1073 * This function moves an active device into down state. A
1074 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1075 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1076 * chain.
1077 */
1078int dev_close(struct net_device *dev)
1079{
1080 ASSERT_RTNL();
1081
1082 might_sleep();
1083
1084 if (!(dev->flags & IFF_UP))
1085 return 0;
1086
1087 /*
1088 * Tell people we are going down, so that they can
1089 * prepare to death, when device is still operating.
1090 */
1091 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1092
1093 clear_bit(__LINK_STATE_START, &dev->state);
1094
1095 /* Synchronize to scheduled poll. We cannot touch poll list,
1096 * it can be even on different cpu. So just clear netif_running().
1097 *
1098 * dev->stop() will invoke napi_disable() on all of it's
1099 * napi_struct instances on this device.
1100 */
1101 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1102
1103 dev_deactivate(dev);
1104
1105 /*
1106 * Call the device specific close. This cannot fail.
1107 * Only if device is UP
1108 *
1109 * We allow it to be called even after a DETACH hot-plug
1110 * event.
1111 */
1112 if (dev->stop)
1113 dev->stop(dev);
1114
1115 /*
1116 * Device is now down.
1117 */
1118
1119 dev->flags &= ~IFF_UP;
1120
1121 /*
1122 * Tell people we are down
1123 */
1124 call_netdevice_notifiers(NETDEV_DOWN, dev);
1125
1126 return 0;
1127}
1128
1129
1130/**
1131 * dev_disable_lro - disable Large Receive Offload on a device
1132 * @dev: device
1133 *
1134 * Disable Large Receive Offload (LRO) on a net device. Must be
1135 * called under RTNL. This is needed if received packets may be
1136 * forwarded to another interface.
1137 */
1138void dev_disable_lro(struct net_device *dev)
1139{
1140 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1141 dev->ethtool_ops->set_flags) {
1142 u32 flags = dev->ethtool_ops->get_flags(dev);
1143 if (flags & ETH_FLAG_LRO) {
1144 flags &= ~ETH_FLAG_LRO;
1145 dev->ethtool_ops->set_flags(dev, flags);
1146 }
1147 }
1148 WARN_ON(dev->features & NETIF_F_LRO);
1149}
1150EXPORT_SYMBOL(dev_disable_lro);
1151
1152
1153static int dev_boot_phase = 1;
1154
1155/*
1156 * Device change register/unregister. These are not inline or static
1157 * as we export them to the world.
1158 */
1159
1160/**
1161 * register_netdevice_notifier - register a network notifier block
1162 * @nb: notifier
1163 *
1164 * Register a notifier to be called when network device events occur.
1165 * The notifier passed is linked into the kernel structures and must
1166 * not be reused until it has been unregistered. A negative errno code
1167 * is returned on a failure.
1168 *
1169 * When registered all registration and up events are replayed
1170 * to the new notifier to allow device to have a race free
1171 * view of the network device list.
1172 */
1173
1174int register_netdevice_notifier(struct notifier_block *nb)
1175{
1176 struct net_device *dev;
1177 struct net_device *last;
1178 struct net *net;
1179 int err;
1180
1181 rtnl_lock();
1182 err = raw_notifier_chain_register(&netdev_chain, nb);
1183 if (err)
1184 goto unlock;
1185 if (dev_boot_phase)
1186 goto unlock;
1187 for_each_net(net) {
1188 for_each_netdev(net, dev) {
1189 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1190 err = notifier_to_errno(err);
1191 if (err)
1192 goto rollback;
1193
1194 if (!(dev->flags & IFF_UP))
1195 continue;
1196
1197 nb->notifier_call(nb, NETDEV_UP, dev);
1198 }
1199 }
1200
1201unlock:
1202 rtnl_unlock();
1203 return err;
1204
1205rollback:
1206 last = dev;
1207 for_each_net(net) {
1208 for_each_netdev(net, dev) {
1209 if (dev == last)
1210 break;
1211
1212 if (dev->flags & IFF_UP) {
1213 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1214 nb->notifier_call(nb, NETDEV_DOWN, dev);
1215 }
1216 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1217 }
1218 }
1219
1220 raw_notifier_chain_unregister(&netdev_chain, nb);
1221 goto unlock;
1222}
1223
1224/**
1225 * unregister_netdevice_notifier - unregister a network notifier block
1226 * @nb: notifier
1227 *
1228 * Unregister a notifier previously registered by
1229 * register_netdevice_notifier(). The notifier is unlinked into the
1230 * kernel structures and may then be reused. A negative errno code
1231 * is returned on a failure.
1232 */
1233
1234int unregister_netdevice_notifier(struct notifier_block *nb)
1235{
1236 int err;
1237
1238 rtnl_lock();
1239 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1240 rtnl_unlock();
1241 return err;
1242}
1243
1244/**
1245 * call_netdevice_notifiers - call all network notifier blocks
1246 * @val: value passed unmodified to notifier function
1247 * @dev: net_device pointer passed unmodified to notifier function
1248 *
1249 * Call all network notifier blocks. Parameters and return value
1250 * are as for raw_notifier_call_chain().
1251 */
1252
1253int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1254{
1255 return raw_notifier_call_chain(&netdev_chain, val, dev);
1256}
1257
1258/* When > 0 there are consumers of rx skb time stamps */
1259static atomic_t netstamp_needed = ATOMIC_INIT(0);
1260
1261void net_enable_timestamp(void)
1262{
1263 atomic_inc(&netstamp_needed);
1264}
1265
1266void net_disable_timestamp(void)
1267{
1268 atomic_dec(&netstamp_needed);
1269}
1270
1271static inline void net_timestamp(struct sk_buff *skb)
1272{
1273 if (atomic_read(&netstamp_needed))
1274 __net_timestamp(skb);
1275 else
1276 skb->tstamp.tv64 = 0;
1277}
1278
1279/*
1280 * Support routine. Sends outgoing frames to any network
1281 * taps currently in use.
1282 */
1283
1284static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1285{
1286 struct packet_type *ptype;
1287
1288 net_timestamp(skb);
1289
1290 rcu_read_lock();
1291 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1292 /* Never send packets back to the socket
1293 * they originated from - MvS (miquels@drinkel.ow.org)
1294 */
1295 if ((ptype->dev == dev || !ptype->dev) &&
1296 (ptype->af_packet_priv == NULL ||
1297 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1298 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1299 if (!skb2)
1300 break;
1301
1302 /* skb->nh should be correctly
1303 set by sender, so that the second statement is
1304 just protection against buggy protocols.
1305 */
1306 skb_reset_mac_header(skb2);
1307
1308 if (skb_network_header(skb2) < skb2->data ||
1309 skb2->network_header > skb2->tail) {
1310 if (net_ratelimit())
1311 printk(KERN_CRIT "protocol %04x is "
1312 "buggy, dev %s\n",
1313 skb2->protocol, dev->name);
1314 skb_reset_network_header(skb2);
1315 }
1316
1317 skb2->transport_header = skb2->network_header;
1318 skb2->pkt_type = PACKET_OUTGOING;
1319 ptype->func(skb2, skb->dev, ptype, skb->dev);
1320 }
1321 }
1322 rcu_read_unlock();
1323}
1324
1325
1326void __netif_schedule(struct Qdisc *q)
1327{
1328 BUG_ON(q == &noop_qdisc);
1329
1330 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
1331 struct softnet_data *sd;
1332 unsigned long flags;
1333
1334 local_irq_save(flags);
1335 sd = &__get_cpu_var(softnet_data);
1336 q->next_sched = sd->output_queue;
1337 sd->output_queue = q;
1338 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1339 local_irq_restore(flags);
1340 }
1341}
1342EXPORT_SYMBOL(__netif_schedule);
1343
1344void dev_kfree_skb_irq(struct sk_buff *skb)
1345{
1346 if (atomic_dec_and_test(&skb->users)) {
1347 struct softnet_data *sd;
1348 unsigned long flags;
1349
1350 local_irq_save(flags);
1351 sd = &__get_cpu_var(softnet_data);
1352 skb->next = sd->completion_queue;
1353 sd->completion_queue = skb;
1354 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1355 local_irq_restore(flags);
1356 }
1357}
1358EXPORT_SYMBOL(dev_kfree_skb_irq);
1359
1360void dev_kfree_skb_any(struct sk_buff *skb)
1361{
1362 if (in_irq() || irqs_disabled())
1363 dev_kfree_skb_irq(skb);
1364 else
1365 dev_kfree_skb(skb);
1366}
1367EXPORT_SYMBOL(dev_kfree_skb_any);
1368
1369
1370/**
1371 * netif_device_detach - mark device as removed
1372 * @dev: network device
1373 *
1374 * Mark device as removed from system and therefore no longer available.
1375 */
1376void netif_device_detach(struct net_device *dev)
1377{
1378 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1379 netif_running(dev)) {
1380 netif_stop_queue(dev);
1381 }
1382}
1383EXPORT_SYMBOL(netif_device_detach);
1384
1385/**
1386 * netif_device_attach - mark device as attached
1387 * @dev: network device
1388 *
1389 * Mark device as attached from system and restart if needed.
1390 */
1391void netif_device_attach(struct net_device *dev)
1392{
1393 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1394 netif_running(dev)) {
1395 netif_wake_queue(dev);
1396 __netdev_watchdog_up(dev);
1397 }
1398}
1399EXPORT_SYMBOL(netif_device_attach);
1400
1401static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1402{
1403 return ((features & NETIF_F_GEN_CSUM) ||
1404 ((features & NETIF_F_IP_CSUM) &&
1405 protocol == htons(ETH_P_IP)) ||
1406 ((features & NETIF_F_IPV6_CSUM) &&
1407 protocol == htons(ETH_P_IPV6)));
1408}
1409
1410static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1411{
1412 if (can_checksum_protocol(dev->features, skb->protocol))
1413 return true;
1414
1415 if (skb->protocol == htons(ETH_P_8021Q)) {
1416 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1417 if (can_checksum_protocol(dev->features & dev->vlan_features,
1418 veh->h_vlan_encapsulated_proto))
1419 return true;
1420 }
1421
1422 return false;
1423}
1424
1425/*
1426 * Invalidate hardware checksum when packet is to be mangled, and
1427 * complete checksum manually on outgoing path.
1428 */
1429int skb_checksum_help(struct sk_buff *skb)
1430{
1431 __wsum csum;
1432 int ret = 0, offset;
1433
1434 if (skb->ip_summed == CHECKSUM_COMPLETE)
1435 goto out_set_summed;
1436
1437 if (unlikely(skb_shinfo(skb)->gso_size)) {
1438 /* Let GSO fix up the checksum. */
1439 goto out_set_summed;
1440 }
1441
1442 offset = skb->csum_start - skb_headroom(skb);
1443 BUG_ON(offset >= skb_headlen(skb));
1444 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1445
1446 offset += skb->csum_offset;
1447 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1448
1449 if (skb_cloned(skb) &&
1450 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1451 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1452 if (ret)
1453 goto out;
1454 }
1455
1456 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1457out_set_summed:
1458 skb->ip_summed = CHECKSUM_NONE;
1459out:
1460 return ret;
1461}
1462
1463/**
1464 * skb_gso_segment - Perform segmentation on skb.
1465 * @skb: buffer to segment
1466 * @features: features for the output path (see dev->features)
1467 *
1468 * This function segments the given skb and returns a list of segments.
1469 *
1470 * It may return NULL if the skb requires no segmentation. This is
1471 * only possible when GSO is used for verifying header integrity.
1472 */
1473struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1474{
1475 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1476 struct packet_type *ptype;
1477 __be16 type = skb->protocol;
1478 int err;
1479
1480 BUG_ON(skb_shinfo(skb)->frag_list);
1481
1482 skb_reset_mac_header(skb);
1483 skb->mac_len = skb->network_header - skb->mac_header;
1484 __skb_pull(skb, skb->mac_len);
1485
1486 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1487 if (skb_header_cloned(skb) &&
1488 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1489 return ERR_PTR(err);
1490 }
1491
1492 rcu_read_lock();
1493 list_for_each_entry_rcu(ptype,
1494 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1495 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1496 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1497 err = ptype->gso_send_check(skb);
1498 segs = ERR_PTR(err);
1499 if (err || skb_gso_ok(skb, features))
1500 break;
1501 __skb_push(skb, (skb->data -
1502 skb_network_header(skb)));
1503 }
1504 segs = ptype->gso_segment(skb, features);
1505 break;
1506 }
1507 }
1508 rcu_read_unlock();
1509
1510 __skb_push(skb, skb->data - skb_mac_header(skb));
1511
1512 return segs;
1513}
1514
1515EXPORT_SYMBOL(skb_gso_segment);
1516
1517/* Take action when hardware reception checksum errors are detected. */
1518#ifdef CONFIG_BUG
1519void netdev_rx_csum_fault(struct net_device *dev)
1520{
1521 if (net_ratelimit()) {
1522 printk(KERN_ERR "%s: hw csum failure.\n",
1523 dev ? dev->name : "<unknown>");
1524 dump_stack();
1525 }
1526}
1527EXPORT_SYMBOL(netdev_rx_csum_fault);
1528#endif
1529
1530/* Actually, we should eliminate this check as soon as we know, that:
1531 * 1. IOMMU is present and allows to map all the memory.
1532 * 2. No high memory really exists on this machine.
1533 */
1534
1535static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1536{
1537#ifdef CONFIG_HIGHMEM
1538 int i;
1539
1540 if (dev->features & NETIF_F_HIGHDMA)
1541 return 0;
1542
1543 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1544 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1545 return 1;
1546
1547#endif
1548 return 0;
1549}
1550
1551struct dev_gso_cb {
1552 void (*destructor)(struct sk_buff *skb);
1553};
1554
1555#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1556
1557static void dev_gso_skb_destructor(struct sk_buff *skb)
1558{
1559 struct dev_gso_cb *cb;
1560
1561 do {
1562 struct sk_buff *nskb = skb->next;
1563
1564 skb->next = nskb->next;
1565 nskb->next = NULL;
1566 kfree_skb(nskb);
1567 } while (skb->next);
1568
1569 cb = DEV_GSO_CB(skb);
1570 if (cb->destructor)
1571 cb->destructor(skb);
1572}
1573
1574/**
1575 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1576 * @skb: buffer to segment
1577 *
1578 * This function segments the given skb and stores the list of segments
1579 * in skb->next.
1580 */
1581static int dev_gso_segment(struct sk_buff *skb)
1582{
1583 struct net_device *dev = skb->dev;
1584 struct sk_buff *segs;
1585 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1586 NETIF_F_SG : 0);
1587
1588 segs = skb_gso_segment(skb, features);
1589
1590 /* Verifying header integrity only. */
1591 if (!segs)
1592 return 0;
1593
1594 if (IS_ERR(segs))
1595 return PTR_ERR(segs);
1596
1597 skb->next = segs;
1598 DEV_GSO_CB(skb)->destructor = skb->destructor;
1599 skb->destructor = dev_gso_skb_destructor;
1600
1601 return 0;
1602}
1603
1604int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1605 struct netdev_queue *txq)
1606{
1607 if (likely(!skb->next)) {
1608 if (!list_empty(&ptype_all))
1609 dev_queue_xmit_nit(skb, dev);
1610
1611 if (netif_needs_gso(dev, skb)) {
1612 if (unlikely(dev_gso_segment(skb)))
1613 goto out_kfree_skb;
1614 if (skb->next)
1615 goto gso;
1616 }
1617
1618 return dev->hard_start_xmit(skb, dev);
1619 }
1620
1621gso:
1622 do {
1623 struct sk_buff *nskb = skb->next;
1624 int rc;
1625
1626 skb->next = nskb->next;
1627 nskb->next = NULL;
1628 rc = dev->hard_start_xmit(nskb, dev);
1629 if (unlikely(rc)) {
1630 nskb->next = skb->next;
1631 skb->next = nskb;
1632 return rc;
1633 }
1634 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1635 return NETDEV_TX_BUSY;
1636 } while (skb->next);
1637
1638 skb->destructor = DEV_GSO_CB(skb)->destructor;
1639
1640out_kfree_skb:
1641 kfree_skb(skb);
1642 return 0;
1643}
1644
1645/**
1646 * dev_queue_xmit - transmit a buffer
1647 * @skb: buffer to transmit
1648 *
1649 * Queue a buffer for transmission to a network device. The caller must
1650 * have set the device and priority and built the buffer before calling
1651 * this function. The function can be called from an interrupt.
1652 *
1653 * A negative errno code is returned on a failure. A success does not
1654 * guarantee the frame will be transmitted as it may be dropped due
1655 * to congestion or traffic shaping.
1656 *
1657 * -----------------------------------------------------------------------------------
1658 * I notice this method can also return errors from the queue disciplines,
1659 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1660 * be positive.
1661 *
1662 * Regardless of the return value, the skb is consumed, so it is currently
1663 * difficult to retry a send to this method. (You can bump the ref count
1664 * before sending to hold a reference for retry if you are careful.)
1665 *
1666 * When calling this method, interrupts MUST be enabled. This is because
1667 * the BH enable code must have IRQs enabled so that it will not deadlock.
1668 * --BLG
1669 */
1670
1671static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1672{
1673 u32 *addr, *ports, hash, ihl;
1674 u8 ip_proto;
1675 int alen;
1676
1677 switch (skb->protocol) {
1678 case __constant_htons(ETH_P_IP):
1679 ip_proto = ip_hdr(skb)->protocol;
1680 addr = &ip_hdr(skb)->saddr;
1681 ihl = ip_hdr(skb)->ihl;
1682 alen = 2;
1683 break;
1684 case __constant_htons(ETH_P_IPV6):
1685 ip_proto = ipv6_hdr(skb)->nexthdr;
1686 addr = &ipv6_hdr(skb)->saddr.s6_addr32[0];
1687 ihl = (40 >> 2);
1688 alen = 8;
1689 break;
1690 default:
1691 return 0;
1692 }
1693
1694 ports = (u32 *) (skb_network_header(skb) + (ihl * 4));
1695
1696 hash = 0;
1697 while (alen--)
1698 hash ^= *addr++;
1699
1700 switch (ip_proto) {
1701 case IPPROTO_TCP:
1702 case IPPROTO_UDP:
1703 case IPPROTO_DCCP:
1704 case IPPROTO_ESP:
1705 case IPPROTO_AH:
1706 case IPPROTO_SCTP:
1707 case IPPROTO_UDPLITE:
1708 hash ^= *ports;
1709 break;
1710
1711 default:
1712 break;
1713 }
1714
1715 return hash % dev->real_num_tx_queues;
1716}
1717
1718static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1719 struct sk_buff *skb)
1720{
1721 u16 queue_index = 0;
1722
1723 if (dev->select_queue)
1724 queue_index = dev->select_queue(dev, skb);
1725 else if (dev->real_num_tx_queues > 1)
1726 queue_index = simple_tx_hash(dev, skb);
1727
1728 skb_set_queue_mapping(skb, queue_index);
1729 return netdev_get_tx_queue(dev, queue_index);
1730}
1731
1732int dev_queue_xmit(struct sk_buff *skb)
1733{
1734 struct net_device *dev = skb->dev;
1735 struct netdev_queue *txq;
1736 struct Qdisc *q;
1737 int rc = -ENOMEM;
1738
1739 /* GSO will handle the following emulations directly. */
1740 if (netif_needs_gso(dev, skb))
1741 goto gso;
1742
1743 if (skb_shinfo(skb)->frag_list &&
1744 !(dev->features & NETIF_F_FRAGLIST) &&
1745 __skb_linearize(skb))
1746 goto out_kfree_skb;
1747
1748 /* Fragmented skb is linearized if device does not support SG,
1749 * or if at least one of fragments is in highmem and device
1750 * does not support DMA from it.
1751 */
1752 if (skb_shinfo(skb)->nr_frags &&
1753 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1754 __skb_linearize(skb))
1755 goto out_kfree_skb;
1756
1757 /* If packet is not checksummed and device does not support
1758 * checksumming for this protocol, complete checksumming here.
1759 */
1760 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1761 skb_set_transport_header(skb, skb->csum_start -
1762 skb_headroom(skb));
1763 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1764 goto out_kfree_skb;
1765 }
1766
1767gso:
1768 /* Disable soft irqs for various locks below. Also
1769 * stops preemption for RCU.
1770 */
1771 rcu_read_lock_bh();
1772
1773 txq = dev_pick_tx(dev, skb);
1774 q = rcu_dereference(txq->qdisc);
1775
1776#ifdef CONFIG_NET_CLS_ACT
1777 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1778#endif
1779 if (q->enqueue) {
1780 spinlock_t *root_lock = qdisc_root_lock(q);
1781
1782 spin_lock(root_lock);
1783
1784 rc = qdisc_enqueue_root(skb, q);
1785 qdisc_run(q);
1786
1787 spin_unlock(root_lock);
1788
1789 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1790 goto out;
1791 }
1792
1793 /* The device has no queue. Common case for software devices:
1794 loopback, all the sorts of tunnels...
1795
1796 Really, it is unlikely that netif_tx_lock protection is necessary
1797 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1798 counters.)
1799 However, it is possible, that they rely on protection
1800 made by us here.
1801
1802 Check this and shot the lock. It is not prone from deadlocks.
1803 Either shot noqueue qdisc, it is even simpler 8)
1804 */
1805 if (dev->flags & IFF_UP) {
1806 int cpu = smp_processor_id(); /* ok because BHs are off */
1807
1808 if (txq->xmit_lock_owner != cpu) {
1809
1810 HARD_TX_LOCK(dev, txq, cpu);
1811
1812 if (!netif_tx_queue_stopped(txq)) {
1813 rc = 0;
1814 if (!dev_hard_start_xmit(skb, dev, txq)) {
1815 HARD_TX_UNLOCK(dev, txq);
1816 goto out;
1817 }
1818 }
1819 HARD_TX_UNLOCK(dev, txq);
1820 if (net_ratelimit())
1821 printk(KERN_CRIT "Virtual device %s asks to "
1822 "queue packet!\n", dev->name);
1823 } else {
1824 /* Recursion is detected! It is possible,
1825 * unfortunately */
1826 if (net_ratelimit())
1827 printk(KERN_CRIT "Dead loop on virtual device "
1828 "%s, fix it urgently!\n", dev->name);
1829 }
1830 }
1831
1832 rc = -ENETDOWN;
1833 rcu_read_unlock_bh();
1834
1835out_kfree_skb:
1836 kfree_skb(skb);
1837 return rc;
1838out:
1839 rcu_read_unlock_bh();
1840 return rc;
1841}
1842
1843
1844/*=======================================================================
1845 Receiver routines
1846 =======================================================================*/
1847
1848int netdev_max_backlog __read_mostly = 1000;
1849int netdev_budget __read_mostly = 300;
1850int weight_p __read_mostly = 64; /* old backlog weight */
1851
1852DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1853
1854
1855/**
1856 * netif_rx - post buffer to the network code
1857 * @skb: buffer to post
1858 *
1859 * This function receives a packet from a device driver and queues it for
1860 * the upper (protocol) levels to process. It always succeeds. The buffer
1861 * may be dropped during processing for congestion control or by the
1862 * protocol layers.
1863 *
1864 * return values:
1865 * NET_RX_SUCCESS (no congestion)
1866 * NET_RX_DROP (packet was dropped)
1867 *
1868 */
1869
1870int netif_rx(struct sk_buff *skb)
1871{
1872 struct softnet_data *queue;
1873 unsigned long flags;
1874
1875 /* if netpoll wants it, pretend we never saw it */
1876 if (netpoll_rx(skb))
1877 return NET_RX_DROP;
1878
1879 if (!skb->tstamp.tv64)
1880 net_timestamp(skb);
1881
1882 /*
1883 * The code is rearranged so that the path is the most
1884 * short when CPU is congested, but is still operating.
1885 */
1886 local_irq_save(flags);
1887 queue = &__get_cpu_var(softnet_data);
1888
1889 __get_cpu_var(netdev_rx_stat).total++;
1890 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1891 if (queue->input_pkt_queue.qlen) {
1892enqueue:
1893 dev_hold(skb->dev);
1894 __skb_queue_tail(&queue->input_pkt_queue, skb);
1895 local_irq_restore(flags);
1896 return NET_RX_SUCCESS;
1897 }
1898
1899 napi_schedule(&queue->backlog);
1900 goto enqueue;
1901 }
1902
1903 __get_cpu_var(netdev_rx_stat).dropped++;
1904 local_irq_restore(flags);
1905
1906 kfree_skb(skb);
1907 return NET_RX_DROP;
1908}
1909
1910int netif_rx_ni(struct sk_buff *skb)
1911{
1912 int err;
1913
1914 preempt_disable();
1915 err = netif_rx(skb);
1916 if (local_softirq_pending())
1917 do_softirq();
1918 preempt_enable();
1919
1920 return err;
1921}
1922
1923EXPORT_SYMBOL(netif_rx_ni);
1924
1925static inline struct net_device *skb_bond(struct sk_buff *skb)
1926{
1927 struct net_device *dev = skb->dev;
1928
1929 if (dev->master) {
1930 if (skb_bond_should_drop(skb)) {
1931 kfree_skb(skb);
1932 return NULL;
1933 }
1934 skb->dev = dev->master;
1935 }
1936
1937 return dev;
1938}
1939
1940
1941static void net_tx_action(struct softirq_action *h)
1942{
1943 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1944
1945 if (sd->completion_queue) {
1946 struct sk_buff *clist;
1947
1948 local_irq_disable();
1949 clist = sd->completion_queue;
1950 sd->completion_queue = NULL;
1951 local_irq_enable();
1952
1953 while (clist) {
1954 struct sk_buff *skb = clist;
1955 clist = clist->next;
1956
1957 BUG_TRAP(!atomic_read(&skb->users));
1958 __kfree_skb(skb);
1959 }
1960 }
1961
1962 if (sd->output_queue) {
1963 struct Qdisc *head;
1964
1965 local_irq_disable();
1966 head = sd->output_queue;
1967 sd->output_queue = NULL;
1968 local_irq_enable();
1969
1970 while (head) {
1971 struct Qdisc *q = head;
1972 spinlock_t *root_lock;
1973
1974 head = head->next_sched;
1975
1976 smp_mb__before_clear_bit();
1977 clear_bit(__QDISC_STATE_SCHED, &q->state);
1978
1979 root_lock = qdisc_root_lock(q);
1980 if (spin_trylock(root_lock)) {
1981 qdisc_run(q);
1982 spin_unlock(root_lock);
1983 } else {
1984 __netif_schedule(q);
1985 }
1986 }
1987 }
1988}
1989
1990static inline int deliver_skb(struct sk_buff *skb,
1991 struct packet_type *pt_prev,
1992 struct net_device *orig_dev)
1993{
1994 atomic_inc(&skb->users);
1995 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1996}
1997
1998#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1999/* These hooks defined here for ATM */
2000struct net_bridge;
2001struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2002 unsigned char *addr);
2003void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2004
2005/*
2006 * If bridge module is loaded call bridging hook.
2007 * returns NULL if packet was consumed.
2008 */
2009struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2010 struct sk_buff *skb) __read_mostly;
2011static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2012 struct packet_type **pt_prev, int *ret,
2013 struct net_device *orig_dev)
2014{
2015 struct net_bridge_port *port;
2016
2017 if (skb->pkt_type == PACKET_LOOPBACK ||
2018 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2019 return skb;
2020
2021 if (*pt_prev) {
2022 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2023 *pt_prev = NULL;
2024 }
2025
2026 return br_handle_frame_hook(port, skb);
2027}
2028#else
2029#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2030#endif
2031
2032#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2033struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2034EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2035
2036static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2037 struct packet_type **pt_prev,
2038 int *ret,
2039 struct net_device *orig_dev)
2040{
2041 if (skb->dev->macvlan_port == NULL)
2042 return skb;
2043
2044 if (*pt_prev) {
2045 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2046 *pt_prev = NULL;
2047 }
2048 return macvlan_handle_frame_hook(skb);
2049}
2050#else
2051#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2052#endif
2053
2054#ifdef CONFIG_NET_CLS_ACT
2055/* TODO: Maybe we should just force sch_ingress to be compiled in
2056 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2057 * a compare and 2 stores extra right now if we dont have it on
2058 * but have CONFIG_NET_CLS_ACT
2059 * NOTE: This doesnt stop any functionality; if you dont have
2060 * the ingress scheduler, you just cant add policies on ingress.
2061 *
2062 */
2063static int ing_filter(struct sk_buff *skb)
2064{
2065 struct net_device *dev = skb->dev;
2066 u32 ttl = G_TC_RTTL(skb->tc_verd);
2067 struct netdev_queue *rxq;
2068 int result = TC_ACT_OK;
2069 struct Qdisc *q;
2070
2071 if (MAX_RED_LOOP < ttl++) {
2072 printk(KERN_WARNING
2073 "Redir loop detected Dropping packet (%d->%d)\n",
2074 skb->iif, dev->ifindex);
2075 return TC_ACT_SHOT;
2076 }
2077
2078 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2079 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2080
2081 rxq = &dev->rx_queue;
2082
2083 q = rxq->qdisc;
2084 if (q) {
2085 spin_lock(qdisc_lock(q));
2086 result = qdisc_enqueue_root(skb, q);
2087 spin_unlock(qdisc_lock(q));
2088 }
2089
2090 return result;
2091}
2092
2093static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2094 struct packet_type **pt_prev,
2095 int *ret, struct net_device *orig_dev)
2096{
2097 if (!skb->dev->rx_queue.qdisc)
2098 goto out;
2099
2100 if (*pt_prev) {
2101 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2102 *pt_prev = NULL;
2103 } else {
2104 /* Huh? Why does turning on AF_PACKET affect this? */
2105 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2106 }
2107
2108 switch (ing_filter(skb)) {
2109 case TC_ACT_SHOT:
2110 case TC_ACT_STOLEN:
2111 kfree_skb(skb);
2112 return NULL;
2113 }
2114
2115out:
2116 skb->tc_verd = 0;
2117 return skb;
2118}
2119#endif
2120
2121/*
2122 * netif_nit_deliver - deliver received packets to network taps
2123 * @skb: buffer
2124 *
2125 * This function is used to deliver incoming packets to network
2126 * taps. It should be used when the normal netif_receive_skb path
2127 * is bypassed, for example because of VLAN acceleration.
2128 */
2129void netif_nit_deliver(struct sk_buff *skb)
2130{
2131 struct packet_type *ptype;
2132
2133 if (list_empty(&ptype_all))
2134 return;
2135
2136 skb_reset_network_header(skb);
2137 skb_reset_transport_header(skb);
2138 skb->mac_len = skb->network_header - skb->mac_header;
2139
2140 rcu_read_lock();
2141 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2142 if (!ptype->dev || ptype->dev == skb->dev)
2143 deliver_skb(skb, ptype, skb->dev);
2144 }
2145 rcu_read_unlock();
2146}
2147
2148/**
2149 * netif_receive_skb - process receive buffer from network
2150 * @skb: buffer to process
2151 *
2152 * netif_receive_skb() is the main receive data processing function.
2153 * It always succeeds. The buffer may be dropped during processing
2154 * for congestion control or by the protocol layers.
2155 *
2156 * This function may only be called from softirq context and interrupts
2157 * should be enabled.
2158 *
2159 * Return values (usually ignored):
2160 * NET_RX_SUCCESS: no congestion
2161 * NET_RX_DROP: packet was dropped
2162 */
2163int netif_receive_skb(struct sk_buff *skb)
2164{
2165 struct packet_type *ptype, *pt_prev;
2166 struct net_device *orig_dev;
2167 int ret = NET_RX_DROP;
2168 __be16 type;
2169
2170 /* if we've gotten here through NAPI, check netpoll */
2171 if (netpoll_receive_skb(skb))
2172 return NET_RX_DROP;
2173
2174 if (!skb->tstamp.tv64)
2175 net_timestamp(skb);
2176
2177 if (!skb->iif)
2178 skb->iif = skb->dev->ifindex;
2179
2180 orig_dev = skb_bond(skb);
2181
2182 if (!orig_dev)
2183 return NET_RX_DROP;
2184
2185 __get_cpu_var(netdev_rx_stat).total++;
2186
2187 skb_reset_network_header(skb);
2188 skb_reset_transport_header(skb);
2189 skb->mac_len = skb->network_header - skb->mac_header;
2190
2191 pt_prev = NULL;
2192
2193 rcu_read_lock();
2194
2195 /* Don't receive packets in an exiting network namespace */
2196 if (!net_alive(dev_net(skb->dev)))
2197 goto out;
2198
2199#ifdef CONFIG_NET_CLS_ACT
2200 if (skb->tc_verd & TC_NCLS) {
2201 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2202 goto ncls;
2203 }
2204#endif
2205
2206 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2207 if (!ptype->dev || ptype->dev == skb->dev) {
2208 if (pt_prev)
2209 ret = deliver_skb(skb, pt_prev, orig_dev);
2210 pt_prev = ptype;
2211 }
2212 }
2213
2214#ifdef CONFIG_NET_CLS_ACT
2215 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2216 if (!skb)
2217 goto out;
2218ncls:
2219#endif
2220
2221 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2222 if (!skb)
2223 goto out;
2224 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2225 if (!skb)
2226 goto out;
2227
2228 type = skb->protocol;
2229 list_for_each_entry_rcu(ptype,
2230 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2231 if (ptype->type == type &&
2232 (!ptype->dev || ptype->dev == skb->dev)) {
2233 if (pt_prev)
2234 ret = deliver_skb(skb, pt_prev, orig_dev);
2235 pt_prev = ptype;
2236 }
2237 }
2238
2239 if (pt_prev) {
2240 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2241 } else {
2242 kfree_skb(skb);
2243 /* Jamal, now you will not able to escape explaining
2244 * me how you were going to use this. :-)
2245 */
2246 ret = NET_RX_DROP;
2247 }
2248
2249out:
2250 rcu_read_unlock();
2251 return ret;
2252}
2253
2254static int process_backlog(struct napi_struct *napi, int quota)
2255{
2256 int work = 0;
2257 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2258 unsigned long start_time = jiffies;
2259
2260 napi->weight = weight_p;
2261 do {
2262 struct sk_buff *skb;
2263 struct net_device *dev;
2264
2265 local_irq_disable();
2266 skb = __skb_dequeue(&queue->input_pkt_queue);
2267 if (!skb) {
2268 __napi_complete(napi);
2269 local_irq_enable();
2270 break;
2271 }
2272
2273 local_irq_enable();
2274
2275 dev = skb->dev;
2276
2277 netif_receive_skb(skb);
2278
2279 dev_put(dev);
2280 } while (++work < quota && jiffies == start_time);
2281
2282 return work;
2283}
2284
2285/**
2286 * __napi_schedule - schedule for receive
2287 * @n: entry to schedule
2288 *
2289 * The entry's receive function will be scheduled to run
2290 */
2291void __napi_schedule(struct napi_struct *n)
2292{
2293 unsigned long flags;
2294
2295 local_irq_save(flags);
2296 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2297 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2298 local_irq_restore(flags);
2299}
2300EXPORT_SYMBOL(__napi_schedule);
2301
2302
2303static void net_rx_action(struct softirq_action *h)
2304{
2305 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2306 unsigned long start_time = jiffies;
2307 int budget = netdev_budget;
2308 void *have;
2309
2310 local_irq_disable();
2311
2312 while (!list_empty(list)) {
2313 struct napi_struct *n;
2314 int work, weight;
2315
2316 /* If softirq window is exhuasted then punt.
2317 *
2318 * Note that this is a slight policy change from the
2319 * previous NAPI code, which would allow up to 2
2320 * jiffies to pass before breaking out. The test
2321 * used to be "jiffies - start_time > 1".
2322 */
2323 if (unlikely(budget <= 0 || jiffies != start_time))
2324 goto softnet_break;
2325
2326 local_irq_enable();
2327
2328 /* Even though interrupts have been re-enabled, this
2329 * access is safe because interrupts can only add new
2330 * entries to the tail of this list, and only ->poll()
2331 * calls can remove this head entry from the list.
2332 */
2333 n = list_entry(list->next, struct napi_struct, poll_list);
2334
2335 have = netpoll_poll_lock(n);
2336
2337 weight = n->weight;
2338
2339 /* This NAPI_STATE_SCHED test is for avoiding a race
2340 * with netpoll's poll_napi(). Only the entity which
2341 * obtains the lock and sees NAPI_STATE_SCHED set will
2342 * actually make the ->poll() call. Therefore we avoid
2343 * accidently calling ->poll() when NAPI is not scheduled.
2344 */
2345 work = 0;
2346 if (test_bit(NAPI_STATE_SCHED, &n->state))
2347 work = n->poll(n, weight);
2348
2349 WARN_ON_ONCE(work > weight);
2350
2351 budget -= work;
2352
2353 local_irq_disable();
2354
2355 /* Drivers must not modify the NAPI state if they
2356 * consume the entire weight. In such cases this code
2357 * still "owns" the NAPI instance and therefore can
2358 * move the instance around on the list at-will.
2359 */
2360 if (unlikely(work == weight)) {
2361 if (unlikely(napi_disable_pending(n)))
2362 __napi_complete(n);
2363 else
2364 list_move_tail(&n->poll_list, list);
2365 }
2366
2367 netpoll_poll_unlock(have);
2368 }
2369out:
2370 local_irq_enable();
2371
2372#ifdef CONFIG_NET_DMA
2373 /*
2374 * There may not be any more sk_buffs coming right now, so push
2375 * any pending DMA copies to hardware
2376 */
2377 if (!cpus_empty(net_dma.channel_mask)) {
2378 int chan_idx;
2379 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2380 struct dma_chan *chan = net_dma.channels[chan_idx];
2381 if (chan)
2382 dma_async_memcpy_issue_pending(chan);
2383 }
2384 }
2385#endif
2386
2387 return;
2388
2389softnet_break:
2390 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2391 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2392 goto out;
2393}
2394
2395static gifconf_func_t * gifconf_list [NPROTO];
2396
2397/**
2398 * register_gifconf - register a SIOCGIF handler
2399 * @family: Address family
2400 * @gifconf: Function handler
2401 *
2402 * Register protocol dependent address dumping routines. The handler
2403 * that is passed must not be freed or reused until it has been replaced
2404 * by another handler.
2405 */
2406int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2407{
2408 if (family >= NPROTO)
2409 return -EINVAL;
2410 gifconf_list[family] = gifconf;
2411 return 0;
2412}
2413
2414
2415/*
2416 * Map an interface index to its name (SIOCGIFNAME)
2417 */
2418
2419/*
2420 * We need this ioctl for efficient implementation of the
2421 * if_indextoname() function required by the IPv6 API. Without
2422 * it, we would have to search all the interfaces to find a
2423 * match. --pb
2424 */
2425
2426static int dev_ifname(struct net *net, struct ifreq __user *arg)
2427{
2428 struct net_device *dev;
2429 struct ifreq ifr;
2430
2431 /*
2432 * Fetch the caller's info block.
2433 */
2434
2435 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2436 return -EFAULT;
2437
2438 read_lock(&dev_base_lock);
2439 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2440 if (!dev) {
2441 read_unlock(&dev_base_lock);
2442 return -ENODEV;
2443 }
2444
2445 strcpy(ifr.ifr_name, dev->name);
2446 read_unlock(&dev_base_lock);
2447
2448 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2449 return -EFAULT;
2450 return 0;
2451}
2452
2453/*
2454 * Perform a SIOCGIFCONF call. This structure will change
2455 * size eventually, and there is nothing I can do about it.
2456 * Thus we will need a 'compatibility mode'.
2457 */
2458
2459static int dev_ifconf(struct net *net, char __user *arg)
2460{
2461 struct ifconf ifc;
2462 struct net_device *dev;
2463 char __user *pos;
2464 int len;
2465 int total;
2466 int i;
2467
2468 /*
2469 * Fetch the caller's info block.
2470 */
2471
2472 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2473 return -EFAULT;
2474
2475 pos = ifc.ifc_buf;
2476 len = ifc.ifc_len;
2477
2478 /*
2479 * Loop over the interfaces, and write an info block for each.
2480 */
2481
2482 total = 0;
2483 for_each_netdev(net, dev) {
2484 for (i = 0; i < NPROTO; i++) {
2485 if (gifconf_list[i]) {
2486 int done;
2487 if (!pos)
2488 done = gifconf_list[i](dev, NULL, 0);
2489 else
2490 done = gifconf_list[i](dev, pos + total,
2491 len - total);
2492 if (done < 0)
2493 return -EFAULT;
2494 total += done;
2495 }
2496 }
2497 }
2498
2499 /*
2500 * All done. Write the updated control block back to the caller.
2501 */
2502 ifc.ifc_len = total;
2503
2504 /*
2505 * Both BSD and Solaris return 0 here, so we do too.
2506 */
2507 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2508}
2509
2510#ifdef CONFIG_PROC_FS
2511/*
2512 * This is invoked by the /proc filesystem handler to display a device
2513 * in detail.
2514 */
2515void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2516 __acquires(dev_base_lock)
2517{
2518 struct net *net = seq_file_net(seq);
2519 loff_t off;
2520 struct net_device *dev;
2521
2522 read_lock(&dev_base_lock);
2523 if (!*pos)
2524 return SEQ_START_TOKEN;
2525
2526 off = 1;
2527 for_each_netdev(net, dev)
2528 if (off++ == *pos)
2529 return dev;
2530
2531 return NULL;
2532}
2533
2534void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2535{
2536 struct net *net = seq_file_net(seq);
2537 ++*pos;
2538 return v == SEQ_START_TOKEN ?
2539 first_net_device(net) : next_net_device((struct net_device *)v);
2540}
2541
2542void dev_seq_stop(struct seq_file *seq, void *v)
2543 __releases(dev_base_lock)
2544{
2545 read_unlock(&dev_base_lock);
2546}
2547
2548static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2549{
2550 struct net_device_stats *stats = dev->get_stats(dev);
2551
2552 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2553 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2554 dev->name, stats->rx_bytes, stats->rx_packets,
2555 stats->rx_errors,
2556 stats->rx_dropped + stats->rx_missed_errors,
2557 stats->rx_fifo_errors,
2558 stats->rx_length_errors + stats->rx_over_errors +
2559 stats->rx_crc_errors + stats->rx_frame_errors,
2560 stats->rx_compressed, stats->multicast,
2561 stats->tx_bytes, stats->tx_packets,
2562 stats->tx_errors, stats->tx_dropped,
2563 stats->tx_fifo_errors, stats->collisions,
2564 stats->tx_carrier_errors +
2565 stats->tx_aborted_errors +
2566 stats->tx_window_errors +
2567 stats->tx_heartbeat_errors,
2568 stats->tx_compressed);
2569}
2570
2571/*
2572 * Called from the PROCfs module. This now uses the new arbitrary sized
2573 * /proc/net interface to create /proc/net/dev
2574 */
2575static int dev_seq_show(struct seq_file *seq, void *v)
2576{
2577 if (v == SEQ_START_TOKEN)
2578 seq_puts(seq, "Inter-| Receive "
2579 " | Transmit\n"
2580 " face |bytes packets errs drop fifo frame "
2581 "compressed multicast|bytes packets errs "
2582 "drop fifo colls carrier compressed\n");
2583 else
2584 dev_seq_printf_stats(seq, v);
2585 return 0;
2586}
2587
2588static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2589{
2590 struct netif_rx_stats *rc = NULL;
2591
2592 while (*pos < nr_cpu_ids)
2593 if (cpu_online(*pos)) {
2594 rc = &per_cpu(netdev_rx_stat, *pos);
2595 break;
2596 } else
2597 ++*pos;
2598 return rc;
2599}
2600
2601static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2602{
2603 return softnet_get_online(pos);
2604}
2605
2606static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2607{
2608 ++*pos;
2609 return softnet_get_online(pos);
2610}
2611
2612static void softnet_seq_stop(struct seq_file *seq, void *v)
2613{
2614}
2615
2616static int softnet_seq_show(struct seq_file *seq, void *v)
2617{
2618 struct netif_rx_stats *s = v;
2619
2620 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2621 s->total, s->dropped, s->time_squeeze, 0,
2622 0, 0, 0, 0, /* was fastroute */
2623 s->cpu_collision );
2624 return 0;
2625}
2626
2627static const struct seq_operations dev_seq_ops = {
2628 .start = dev_seq_start,
2629 .next = dev_seq_next,
2630 .stop = dev_seq_stop,
2631 .show = dev_seq_show,
2632};
2633
2634static int dev_seq_open(struct inode *inode, struct file *file)
2635{
2636 return seq_open_net(inode, file, &dev_seq_ops,
2637 sizeof(struct seq_net_private));
2638}
2639
2640static const struct file_operations dev_seq_fops = {
2641 .owner = THIS_MODULE,
2642 .open = dev_seq_open,
2643 .read = seq_read,
2644 .llseek = seq_lseek,
2645 .release = seq_release_net,
2646};
2647
2648static const struct seq_operations softnet_seq_ops = {
2649 .start = softnet_seq_start,
2650 .next = softnet_seq_next,
2651 .stop = softnet_seq_stop,
2652 .show = softnet_seq_show,
2653};
2654
2655static int softnet_seq_open(struct inode *inode, struct file *file)
2656{
2657 return seq_open(file, &softnet_seq_ops);
2658}
2659
2660static const struct file_operations softnet_seq_fops = {
2661 .owner = THIS_MODULE,
2662 .open = softnet_seq_open,
2663 .read = seq_read,
2664 .llseek = seq_lseek,
2665 .release = seq_release,
2666};
2667
2668static void *ptype_get_idx(loff_t pos)
2669{
2670 struct packet_type *pt = NULL;
2671 loff_t i = 0;
2672 int t;
2673
2674 list_for_each_entry_rcu(pt, &ptype_all, list) {
2675 if (i == pos)
2676 return pt;
2677 ++i;
2678 }
2679
2680 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2681 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2682 if (i == pos)
2683 return pt;
2684 ++i;
2685 }
2686 }
2687 return NULL;
2688}
2689
2690static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2691 __acquires(RCU)
2692{
2693 rcu_read_lock();
2694 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2695}
2696
2697static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2698{
2699 struct packet_type *pt;
2700 struct list_head *nxt;
2701 int hash;
2702
2703 ++*pos;
2704 if (v == SEQ_START_TOKEN)
2705 return ptype_get_idx(0);
2706
2707 pt = v;
2708 nxt = pt->list.next;
2709 if (pt->type == htons(ETH_P_ALL)) {
2710 if (nxt != &ptype_all)
2711 goto found;
2712 hash = 0;
2713 nxt = ptype_base[0].next;
2714 } else
2715 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2716
2717 while (nxt == &ptype_base[hash]) {
2718 if (++hash >= PTYPE_HASH_SIZE)
2719 return NULL;
2720 nxt = ptype_base[hash].next;
2721 }
2722found:
2723 return list_entry(nxt, struct packet_type, list);
2724}
2725
2726static void ptype_seq_stop(struct seq_file *seq, void *v)
2727 __releases(RCU)
2728{
2729 rcu_read_unlock();
2730}
2731
2732static void ptype_seq_decode(struct seq_file *seq, void *sym)
2733{
2734#ifdef CONFIG_KALLSYMS
2735 unsigned long offset = 0, symsize;
2736 const char *symname;
2737 char *modname;
2738 char namebuf[128];
2739
2740 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2741 &modname, namebuf);
2742
2743 if (symname) {
2744 char *delim = ":";
2745
2746 if (!modname)
2747 modname = delim = "";
2748 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2749 symname, offset);
2750 return;
2751 }
2752#endif
2753
2754 seq_printf(seq, "[%p]", sym);
2755}
2756
2757static int ptype_seq_show(struct seq_file *seq, void *v)
2758{
2759 struct packet_type *pt = v;
2760
2761 if (v == SEQ_START_TOKEN)
2762 seq_puts(seq, "Type Device Function\n");
2763 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2764 if (pt->type == htons(ETH_P_ALL))
2765 seq_puts(seq, "ALL ");
2766 else
2767 seq_printf(seq, "%04x", ntohs(pt->type));
2768
2769 seq_printf(seq, " %-8s ",
2770 pt->dev ? pt->dev->name : "");
2771 ptype_seq_decode(seq, pt->func);
2772 seq_putc(seq, '\n');
2773 }
2774
2775 return 0;
2776}
2777
2778static const struct seq_operations ptype_seq_ops = {
2779 .start = ptype_seq_start,
2780 .next = ptype_seq_next,
2781 .stop = ptype_seq_stop,
2782 .show = ptype_seq_show,
2783};
2784
2785static int ptype_seq_open(struct inode *inode, struct file *file)
2786{
2787 return seq_open_net(inode, file, &ptype_seq_ops,
2788 sizeof(struct seq_net_private));
2789}
2790
2791static const struct file_operations ptype_seq_fops = {
2792 .owner = THIS_MODULE,
2793 .open = ptype_seq_open,
2794 .read = seq_read,
2795 .llseek = seq_lseek,
2796 .release = seq_release_net,
2797};
2798
2799
2800static int __net_init dev_proc_net_init(struct net *net)
2801{
2802 int rc = -ENOMEM;
2803
2804 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2805 goto out;
2806 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2807 goto out_dev;
2808 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2809 goto out_softnet;
2810
2811 if (wext_proc_init(net))
2812 goto out_ptype;
2813 rc = 0;
2814out:
2815 return rc;
2816out_ptype:
2817 proc_net_remove(net, "ptype");
2818out_softnet:
2819 proc_net_remove(net, "softnet_stat");
2820out_dev:
2821 proc_net_remove(net, "dev");
2822 goto out;
2823}
2824
2825static void __net_exit dev_proc_net_exit(struct net *net)
2826{
2827 wext_proc_exit(net);
2828
2829 proc_net_remove(net, "ptype");
2830 proc_net_remove(net, "softnet_stat");
2831 proc_net_remove(net, "dev");
2832}
2833
2834static struct pernet_operations __net_initdata dev_proc_ops = {
2835 .init = dev_proc_net_init,
2836 .exit = dev_proc_net_exit,
2837};
2838
2839static int __init dev_proc_init(void)
2840{
2841 return register_pernet_subsys(&dev_proc_ops);
2842}
2843#else
2844#define dev_proc_init() 0
2845#endif /* CONFIG_PROC_FS */
2846
2847
2848/**
2849 * netdev_set_master - set up master/slave pair
2850 * @slave: slave device
2851 * @master: new master device
2852 *
2853 * Changes the master device of the slave. Pass %NULL to break the
2854 * bonding. The caller must hold the RTNL semaphore. On a failure
2855 * a negative errno code is returned. On success the reference counts
2856 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2857 * function returns zero.
2858 */
2859int netdev_set_master(struct net_device *slave, struct net_device *master)
2860{
2861 struct net_device *old = slave->master;
2862
2863 ASSERT_RTNL();
2864
2865 if (master) {
2866 if (old)
2867 return -EBUSY;
2868 dev_hold(master);
2869 }
2870
2871 slave->master = master;
2872
2873 synchronize_net();
2874
2875 if (old)
2876 dev_put(old);
2877
2878 if (master)
2879 slave->flags |= IFF_SLAVE;
2880 else
2881 slave->flags &= ~IFF_SLAVE;
2882
2883 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2884 return 0;
2885}
2886
2887static int __dev_set_promiscuity(struct net_device *dev, int inc)
2888{
2889 unsigned short old_flags = dev->flags;
2890
2891 ASSERT_RTNL();
2892
2893 dev->flags |= IFF_PROMISC;
2894 dev->promiscuity += inc;
2895 if (dev->promiscuity == 0) {
2896 /*
2897 * Avoid overflow.
2898 * If inc causes overflow, untouch promisc and return error.
2899 */
2900 if (inc < 0)
2901 dev->flags &= ~IFF_PROMISC;
2902 else {
2903 dev->promiscuity -= inc;
2904 printk(KERN_WARNING "%s: promiscuity touches roof, "
2905 "set promiscuity failed, promiscuity feature "
2906 "of device might be broken.\n", dev->name);
2907 return -EOVERFLOW;
2908 }
2909 }
2910 if (dev->flags != old_flags) {
2911 printk(KERN_INFO "device %s %s promiscuous mode\n",
2912 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2913 "left");
2914 if (audit_enabled)
2915 audit_log(current->audit_context, GFP_ATOMIC,
2916 AUDIT_ANOM_PROMISCUOUS,
2917 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2918 dev->name, (dev->flags & IFF_PROMISC),
2919 (old_flags & IFF_PROMISC),
2920 audit_get_loginuid(current),
2921 current->uid, current->gid,
2922 audit_get_sessionid(current));
2923
2924 if (dev->change_rx_flags)
2925 dev->change_rx_flags(dev, IFF_PROMISC);
2926 }
2927 return 0;
2928}
2929
2930/**
2931 * dev_set_promiscuity - update promiscuity count on a device
2932 * @dev: device
2933 * @inc: modifier
2934 *
2935 * Add or remove promiscuity from a device. While the count in the device
2936 * remains above zero the interface remains promiscuous. Once it hits zero
2937 * the device reverts back to normal filtering operation. A negative inc
2938 * value is used to drop promiscuity on the device.
2939 * Return 0 if successful or a negative errno code on error.
2940 */
2941int dev_set_promiscuity(struct net_device *dev, int inc)
2942{
2943 unsigned short old_flags = dev->flags;
2944 int err;
2945
2946 err = __dev_set_promiscuity(dev, inc);
2947 if (err < 0)
2948 return err;
2949 if (dev->flags != old_flags)
2950 dev_set_rx_mode(dev);
2951 return err;
2952}
2953
2954/**
2955 * dev_set_allmulti - update allmulti count on a device
2956 * @dev: device
2957 * @inc: modifier
2958 *
2959 * Add or remove reception of all multicast frames to a device. While the
2960 * count in the device remains above zero the interface remains listening
2961 * to all interfaces. Once it hits zero the device reverts back to normal
2962 * filtering operation. A negative @inc value is used to drop the counter
2963 * when releasing a resource needing all multicasts.
2964 * Return 0 if successful or a negative errno code on error.
2965 */
2966
2967int dev_set_allmulti(struct net_device *dev, int inc)
2968{
2969 unsigned short old_flags = dev->flags;
2970
2971 ASSERT_RTNL();
2972
2973 dev->flags |= IFF_ALLMULTI;
2974 dev->allmulti += inc;
2975 if (dev->allmulti == 0) {
2976 /*
2977 * Avoid overflow.
2978 * If inc causes overflow, untouch allmulti and return error.
2979 */
2980 if (inc < 0)
2981 dev->flags &= ~IFF_ALLMULTI;
2982 else {
2983 dev->allmulti -= inc;
2984 printk(KERN_WARNING "%s: allmulti touches roof, "
2985 "set allmulti failed, allmulti feature of "
2986 "device might be broken.\n", dev->name);
2987 return -EOVERFLOW;
2988 }
2989 }
2990 if (dev->flags ^ old_flags) {
2991 if (dev->change_rx_flags)
2992 dev->change_rx_flags(dev, IFF_ALLMULTI);
2993 dev_set_rx_mode(dev);
2994 }
2995 return 0;
2996}
2997
2998/*
2999 * Upload unicast and multicast address lists to device and
3000 * configure RX filtering. When the device doesn't support unicast
3001 * filtering it is put in promiscuous mode while unicast addresses
3002 * are present.
3003 */
3004void __dev_set_rx_mode(struct net_device *dev)
3005{
3006 /* dev_open will call this function so the list will stay sane. */
3007 if (!(dev->flags&IFF_UP))
3008 return;
3009
3010 if (!netif_device_present(dev))
3011 return;
3012
3013 if (dev->set_rx_mode)
3014 dev->set_rx_mode(dev);
3015 else {
3016 /* Unicast addresses changes may only happen under the rtnl,
3017 * therefore calling __dev_set_promiscuity here is safe.
3018 */
3019 if (dev->uc_count > 0 && !dev->uc_promisc) {
3020 __dev_set_promiscuity(dev, 1);
3021 dev->uc_promisc = 1;
3022 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3023 __dev_set_promiscuity(dev, -1);
3024 dev->uc_promisc = 0;
3025 }
3026
3027 if (dev->set_multicast_list)
3028 dev->set_multicast_list(dev);
3029 }
3030}
3031
3032void dev_set_rx_mode(struct net_device *dev)
3033{
3034 netif_addr_lock_bh(dev);
3035 __dev_set_rx_mode(dev);
3036 netif_addr_unlock_bh(dev);
3037}
3038
3039int __dev_addr_delete(struct dev_addr_list **list, int *count,
3040 void *addr, int alen, int glbl)
3041{
3042 struct dev_addr_list *da;
3043
3044 for (; (da = *list) != NULL; list = &da->next) {
3045 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3046 alen == da->da_addrlen) {
3047 if (glbl) {
3048 int old_glbl = da->da_gusers;
3049 da->da_gusers = 0;
3050 if (old_glbl == 0)
3051 break;
3052 }
3053 if (--da->da_users)
3054 return 0;
3055
3056 *list = da->next;
3057 kfree(da);
3058 (*count)--;
3059 return 0;
3060 }
3061 }
3062 return -ENOENT;
3063}
3064
3065int __dev_addr_add(struct dev_addr_list **list, int *count,
3066 void *addr, int alen, int glbl)
3067{
3068 struct dev_addr_list *da;
3069
3070 for (da = *list; da != NULL; da = da->next) {
3071 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3072 da->da_addrlen == alen) {
3073 if (glbl) {
3074 int old_glbl = da->da_gusers;
3075 da->da_gusers = 1;
3076 if (old_glbl)
3077 return 0;
3078 }
3079 da->da_users++;
3080 return 0;
3081 }
3082 }
3083
3084 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3085 if (da == NULL)
3086 return -ENOMEM;
3087 memcpy(da->da_addr, addr, alen);
3088 da->da_addrlen = alen;
3089 da->da_users = 1;
3090 da->da_gusers = glbl ? 1 : 0;
3091 da->next = *list;
3092 *list = da;
3093 (*count)++;
3094 return 0;
3095}
3096
3097/**
3098 * dev_unicast_delete - Release secondary unicast address.
3099 * @dev: device
3100 * @addr: address to delete
3101 * @alen: length of @addr
3102 *
3103 * Release reference to a secondary unicast address and remove it
3104 * from the device if the reference count drops to zero.
3105 *
3106 * The caller must hold the rtnl_mutex.
3107 */
3108int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3109{
3110 int err;
3111
3112 ASSERT_RTNL();
3113
3114 netif_addr_lock_bh(dev);
3115 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3116 if (!err)
3117 __dev_set_rx_mode(dev);
3118 netif_addr_unlock_bh(dev);
3119 return err;
3120}
3121EXPORT_SYMBOL(dev_unicast_delete);
3122
3123/**
3124 * dev_unicast_add - add a secondary unicast address
3125 * @dev: device
3126 * @addr: address to add
3127 * @alen: length of @addr
3128 *
3129 * Add a secondary unicast address to the device or increase
3130 * the reference count if it already exists.
3131 *
3132 * The caller must hold the rtnl_mutex.
3133 */
3134int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3135{
3136 int err;
3137
3138 ASSERT_RTNL();
3139
3140 netif_addr_lock_bh(dev);
3141 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3142 if (!err)
3143 __dev_set_rx_mode(dev);
3144 netif_addr_unlock_bh(dev);
3145 return err;
3146}
3147EXPORT_SYMBOL(dev_unicast_add);
3148
3149int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3150 struct dev_addr_list **from, int *from_count)
3151{
3152 struct dev_addr_list *da, *next;
3153 int err = 0;
3154
3155 da = *from;
3156 while (da != NULL) {
3157 next = da->next;
3158 if (!da->da_synced) {
3159 err = __dev_addr_add(to, to_count,
3160 da->da_addr, da->da_addrlen, 0);
3161 if (err < 0)
3162 break;
3163 da->da_synced = 1;
3164 da->da_users++;
3165 } else if (da->da_users == 1) {
3166 __dev_addr_delete(to, to_count,
3167 da->da_addr, da->da_addrlen, 0);
3168 __dev_addr_delete(from, from_count,
3169 da->da_addr, da->da_addrlen, 0);
3170 }
3171 da = next;
3172 }
3173 return err;
3174}
3175
3176void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3177 struct dev_addr_list **from, int *from_count)
3178{
3179 struct dev_addr_list *da, *next;
3180
3181 da = *from;
3182 while (da != NULL) {
3183 next = da->next;
3184 if (da->da_synced) {
3185 __dev_addr_delete(to, to_count,
3186 da->da_addr, da->da_addrlen, 0);
3187 da->da_synced = 0;
3188 __dev_addr_delete(from, from_count,
3189 da->da_addr, da->da_addrlen, 0);
3190 }
3191 da = next;
3192 }
3193}
3194
3195/**
3196 * dev_unicast_sync - Synchronize device's unicast list to another device
3197 * @to: destination device
3198 * @from: source device
3199 *
3200 * Add newly added addresses to the destination device and release
3201 * addresses that have no users left. The source device must be
3202 * locked by netif_tx_lock_bh.
3203 *
3204 * This function is intended to be called from the dev->set_rx_mode
3205 * function of layered software devices.
3206 */
3207int dev_unicast_sync(struct net_device *to, struct net_device *from)
3208{
3209 int err = 0;
3210
3211 netif_addr_lock_bh(to);
3212 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3213 &from->uc_list, &from->uc_count);
3214 if (!err)
3215 __dev_set_rx_mode(to);
3216 netif_addr_unlock_bh(to);
3217 return err;
3218}
3219EXPORT_SYMBOL(dev_unicast_sync);
3220
3221/**
3222 * dev_unicast_unsync - Remove synchronized addresses from the destination device
3223 * @to: destination device
3224 * @from: source device
3225 *
3226 * Remove all addresses that were added to the destination device by
3227 * dev_unicast_sync(). This function is intended to be called from the
3228 * dev->stop function of layered software devices.
3229 */
3230void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3231{
3232 netif_addr_lock_bh(from);
3233 netif_addr_lock(to);
3234
3235 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3236 &from->uc_list, &from->uc_count);
3237 __dev_set_rx_mode(to);
3238
3239 netif_addr_unlock(to);
3240 netif_addr_unlock_bh(from);
3241}
3242EXPORT_SYMBOL(dev_unicast_unsync);
3243
3244static void __dev_addr_discard(struct dev_addr_list **list)
3245{
3246 struct dev_addr_list *tmp;
3247
3248 while (*list != NULL) {
3249 tmp = *list;
3250 *list = tmp->next;
3251 if (tmp->da_users > tmp->da_gusers)
3252 printk("__dev_addr_discard: address leakage! "
3253 "da_users=%d\n", tmp->da_users);
3254 kfree(tmp);
3255 }
3256}
3257
3258static void dev_addr_discard(struct net_device *dev)
3259{
3260 netif_addr_lock_bh(dev);
3261
3262 __dev_addr_discard(&dev->uc_list);
3263 dev->uc_count = 0;
3264
3265 __dev_addr_discard(&dev->mc_list);
3266 dev->mc_count = 0;
3267
3268 netif_addr_unlock_bh(dev);
3269}
3270
3271unsigned dev_get_flags(const struct net_device *dev)
3272{
3273 unsigned flags;
3274
3275 flags = (dev->flags & ~(IFF_PROMISC |
3276 IFF_ALLMULTI |
3277 IFF_RUNNING |
3278 IFF_LOWER_UP |
3279 IFF_DORMANT)) |
3280 (dev->gflags & (IFF_PROMISC |
3281 IFF_ALLMULTI));
3282
3283 if (netif_running(dev)) {
3284 if (netif_oper_up(dev))
3285 flags |= IFF_RUNNING;
3286 if (netif_carrier_ok(dev))
3287 flags |= IFF_LOWER_UP;
3288 if (netif_dormant(dev))
3289 flags |= IFF_DORMANT;
3290 }
3291
3292 return flags;
3293}
3294
3295int dev_change_flags(struct net_device *dev, unsigned flags)
3296{
3297 int ret, changes;
3298 int old_flags = dev->flags;
3299
3300 ASSERT_RTNL();
3301
3302 /*
3303 * Set the flags on our device.
3304 */
3305
3306 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3307 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3308 IFF_AUTOMEDIA)) |
3309 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3310 IFF_ALLMULTI));
3311
3312 /*
3313 * Load in the correct multicast list now the flags have changed.
3314 */
3315
3316 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3317 dev->change_rx_flags(dev, IFF_MULTICAST);
3318
3319 dev_set_rx_mode(dev);
3320
3321 /*
3322 * Have we downed the interface. We handle IFF_UP ourselves
3323 * according to user attempts to set it, rather than blindly
3324 * setting it.
3325 */
3326
3327 ret = 0;
3328 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3329 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3330
3331 if (!ret)
3332 dev_set_rx_mode(dev);
3333 }
3334
3335 if (dev->flags & IFF_UP &&
3336 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3337 IFF_VOLATILE)))
3338 call_netdevice_notifiers(NETDEV_CHANGE, dev);
3339
3340 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3341 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3342 dev->gflags ^= IFF_PROMISC;
3343 dev_set_promiscuity(dev, inc);
3344 }
3345
3346 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3347 is important. Some (broken) drivers set IFF_PROMISC, when
3348 IFF_ALLMULTI is requested not asking us and not reporting.
3349 */
3350 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3351 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3352 dev->gflags ^= IFF_ALLMULTI;
3353 dev_set_allmulti(dev, inc);
3354 }
3355
3356 /* Exclude state transition flags, already notified */
3357 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3358 if (changes)
3359 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3360
3361 return ret;
3362}
3363
3364int dev_set_mtu(struct net_device *dev, int new_mtu)
3365{
3366 int err;
3367
3368 if (new_mtu == dev->mtu)
3369 return 0;
3370
3371 /* MTU must be positive. */
3372 if (new_mtu < 0)
3373 return -EINVAL;
3374
3375 if (!netif_device_present(dev))
3376 return -ENODEV;
3377
3378 err = 0;
3379 if (dev->change_mtu)
3380 err = dev->change_mtu(dev, new_mtu);
3381 else
3382 dev->mtu = new_mtu;
3383 if (!err && dev->flags & IFF_UP)
3384 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3385 return err;
3386}
3387
3388int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3389{
3390 int err;
3391
3392 if (!dev->set_mac_address)
3393 return -EOPNOTSUPP;
3394 if (sa->sa_family != dev->type)
3395 return -EINVAL;
3396 if (!netif_device_present(dev))
3397 return -ENODEV;
3398 err = dev->set_mac_address(dev, sa);
3399 if (!err)
3400 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3401 return err;
3402}
3403
3404/*
3405 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3406 */
3407static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3408{
3409 int err;
3410 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3411
3412 if (!dev)
3413 return -ENODEV;
3414
3415 switch (cmd) {
3416 case SIOCGIFFLAGS: /* Get interface flags */
3417 ifr->ifr_flags = dev_get_flags(dev);
3418 return 0;
3419
3420 case SIOCGIFMETRIC: /* Get the metric on the interface
3421 (currently unused) */
3422 ifr->ifr_metric = 0;
3423 return 0;
3424
3425 case SIOCGIFMTU: /* Get the MTU of a device */
3426 ifr->ifr_mtu = dev->mtu;
3427 return 0;
3428
3429 case SIOCGIFHWADDR:
3430 if (!dev->addr_len)
3431 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3432 else
3433 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3434 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3435 ifr->ifr_hwaddr.sa_family = dev->type;
3436 return 0;
3437
3438 case SIOCGIFSLAVE:
3439 err = -EINVAL;
3440 break;
3441
3442 case SIOCGIFMAP:
3443 ifr->ifr_map.mem_start = dev->mem_start;
3444 ifr->ifr_map.mem_end = dev->mem_end;
3445 ifr->ifr_map.base_addr = dev->base_addr;
3446 ifr->ifr_map.irq = dev->irq;
3447 ifr->ifr_map.dma = dev->dma;
3448 ifr->ifr_map.port = dev->if_port;
3449 return 0;
3450
3451 case SIOCGIFINDEX:
3452 ifr->ifr_ifindex = dev->ifindex;
3453 return 0;
3454
3455 case SIOCGIFTXQLEN:
3456 ifr->ifr_qlen = dev->tx_queue_len;
3457 return 0;
3458
3459 default:
3460 /* dev_ioctl() should ensure this case
3461 * is never reached
3462 */
3463 WARN_ON(1);
3464 err = -EINVAL;
3465 break;
3466
3467 }
3468 return err;
3469}
3470
3471/*
3472 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3473 */
3474static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3475{
3476 int err;
3477 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3478
3479 if (!dev)
3480 return -ENODEV;
3481
3482 switch (cmd) {
3483 case SIOCSIFFLAGS: /* Set interface flags */
3484 return dev_change_flags(dev, ifr->ifr_flags);
3485
3486 case SIOCSIFMETRIC: /* Set the metric on the interface
3487 (currently unused) */
3488 return -EOPNOTSUPP;
3489
3490 case SIOCSIFMTU: /* Set the MTU of a device */
3491 return dev_set_mtu(dev, ifr->ifr_mtu);
3492
3493 case SIOCSIFHWADDR:
3494 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3495
3496 case SIOCSIFHWBROADCAST:
3497 if (ifr->ifr_hwaddr.sa_family != dev->type)
3498 return -EINVAL;
3499 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3500 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3501 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3502 return 0;
3503
3504 case SIOCSIFMAP:
3505 if (dev->set_config) {
3506 if (!netif_device_present(dev))
3507 return -ENODEV;
3508 return dev->set_config(dev, &ifr->ifr_map);
3509 }
3510 return -EOPNOTSUPP;
3511
3512 case SIOCADDMULTI:
3513 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3514 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3515 return -EINVAL;
3516 if (!netif_device_present(dev))
3517 return -ENODEV;
3518 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3519 dev->addr_len, 1);
3520
3521 case SIOCDELMULTI:
3522 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3523 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3524 return -EINVAL;
3525 if (!netif_device_present(dev))
3526 return -ENODEV;
3527 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3528 dev->addr_len, 1);
3529
3530 case SIOCSIFTXQLEN:
3531 if (ifr->ifr_qlen < 0)
3532 return -EINVAL;
3533 dev->tx_queue_len = ifr->ifr_qlen;
3534 return 0;
3535
3536 case SIOCSIFNAME:
3537 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3538 return dev_change_name(dev, ifr->ifr_newname);
3539
3540 /*
3541 * Unknown or private ioctl
3542 */
3543
3544 default:
3545 if ((cmd >= SIOCDEVPRIVATE &&
3546 cmd <= SIOCDEVPRIVATE + 15) ||
3547 cmd == SIOCBONDENSLAVE ||
3548 cmd == SIOCBONDRELEASE ||
3549 cmd == SIOCBONDSETHWADDR ||
3550 cmd == SIOCBONDSLAVEINFOQUERY ||
3551 cmd == SIOCBONDINFOQUERY ||
3552 cmd == SIOCBONDCHANGEACTIVE ||
3553 cmd == SIOCGMIIPHY ||
3554 cmd == SIOCGMIIREG ||
3555 cmd == SIOCSMIIREG ||
3556 cmd == SIOCBRADDIF ||
3557 cmd == SIOCBRDELIF ||
3558 cmd == SIOCWANDEV) {
3559 err = -EOPNOTSUPP;
3560 if (dev->do_ioctl) {
3561 if (netif_device_present(dev))
3562 err = dev->do_ioctl(dev, ifr,
3563 cmd);
3564 else
3565 err = -ENODEV;
3566 }
3567 } else
3568 err = -EINVAL;
3569
3570 }
3571 return err;
3572}
3573
3574/*
3575 * This function handles all "interface"-type I/O control requests. The actual
3576 * 'doing' part of this is dev_ifsioc above.
3577 */
3578
3579/**
3580 * dev_ioctl - network device ioctl
3581 * @net: the applicable net namespace
3582 * @cmd: command to issue
3583 * @arg: pointer to a struct ifreq in user space
3584 *
3585 * Issue ioctl functions to devices. This is normally called by the
3586 * user space syscall interfaces but can sometimes be useful for
3587 * other purposes. The return value is the return from the syscall if
3588 * positive or a negative errno code on error.
3589 */
3590
3591int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3592{
3593 struct ifreq ifr;
3594 int ret;
3595 char *colon;
3596
3597 /* One special case: SIOCGIFCONF takes ifconf argument
3598 and requires shared lock, because it sleeps writing
3599 to user space.
3600 */
3601
3602 if (cmd == SIOCGIFCONF) {
3603 rtnl_lock();
3604 ret = dev_ifconf(net, (char __user *) arg);
3605 rtnl_unlock();
3606 return ret;
3607 }
3608 if (cmd == SIOCGIFNAME)
3609 return dev_ifname(net, (struct ifreq __user *)arg);
3610
3611 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3612 return -EFAULT;
3613
3614 ifr.ifr_name[IFNAMSIZ-1] = 0;
3615
3616 colon = strchr(ifr.ifr_name, ':');
3617 if (colon)
3618 *colon = 0;
3619
3620 /*
3621 * See which interface the caller is talking about.
3622 */
3623
3624 switch (cmd) {
3625 /*
3626 * These ioctl calls:
3627 * - can be done by all.
3628 * - atomic and do not require locking.
3629 * - return a value
3630 */
3631 case SIOCGIFFLAGS:
3632 case SIOCGIFMETRIC:
3633 case SIOCGIFMTU:
3634 case SIOCGIFHWADDR:
3635 case SIOCGIFSLAVE:
3636 case SIOCGIFMAP:
3637 case SIOCGIFINDEX:
3638 case SIOCGIFTXQLEN:
3639 dev_load(net, ifr.ifr_name);
3640 read_lock(&dev_base_lock);
3641 ret = dev_ifsioc_locked(net, &ifr, cmd);
3642 read_unlock(&dev_base_lock);
3643 if (!ret) {
3644 if (colon)
3645 *colon = ':';
3646 if (copy_to_user(arg, &ifr,
3647 sizeof(struct ifreq)))
3648 ret = -EFAULT;
3649 }
3650 return ret;
3651
3652 case SIOCETHTOOL:
3653 dev_load(net, ifr.ifr_name);
3654 rtnl_lock();
3655 ret = dev_ethtool(net, &ifr);
3656 rtnl_unlock();
3657 if (!ret) {
3658 if (colon)
3659 *colon = ':';
3660 if (copy_to_user(arg, &ifr,
3661 sizeof(struct ifreq)))
3662 ret = -EFAULT;
3663 }
3664 return ret;
3665
3666 /*
3667 * These ioctl calls:
3668 * - require superuser power.
3669 * - require strict serialization.
3670 * - return a value
3671 */
3672 case SIOCGMIIPHY:
3673 case SIOCGMIIREG:
3674 case SIOCSIFNAME:
3675 if (!capable(CAP_NET_ADMIN))
3676 return -EPERM;
3677 dev_load(net, ifr.ifr_name);
3678 rtnl_lock();
3679 ret = dev_ifsioc(net, &ifr, cmd);
3680 rtnl_unlock();
3681 if (!ret) {
3682 if (colon)
3683 *colon = ':';
3684 if (copy_to_user(arg, &ifr,
3685 sizeof(struct ifreq)))
3686 ret = -EFAULT;
3687 }
3688 return ret;
3689
3690 /*
3691 * These ioctl calls:
3692 * - require superuser power.
3693 * - require strict serialization.
3694 * - do not return a value
3695 */
3696 case SIOCSIFFLAGS:
3697 case SIOCSIFMETRIC:
3698 case SIOCSIFMTU:
3699 case SIOCSIFMAP:
3700 case SIOCSIFHWADDR:
3701 case SIOCSIFSLAVE:
3702 case SIOCADDMULTI:
3703 case SIOCDELMULTI:
3704 case SIOCSIFHWBROADCAST:
3705 case SIOCSIFTXQLEN:
3706 case SIOCSMIIREG:
3707 case SIOCBONDENSLAVE:
3708 case SIOCBONDRELEASE:
3709 case SIOCBONDSETHWADDR:
3710 case SIOCBONDCHANGEACTIVE:
3711 case SIOCBRADDIF:
3712 case SIOCBRDELIF:
3713 if (!capable(CAP_NET_ADMIN))
3714 return -EPERM;
3715 /* fall through */
3716 case SIOCBONDSLAVEINFOQUERY:
3717 case SIOCBONDINFOQUERY:
3718 dev_load(net, ifr.ifr_name);
3719 rtnl_lock();
3720 ret = dev_ifsioc(net, &ifr, cmd);
3721 rtnl_unlock();
3722 return ret;
3723
3724 case SIOCGIFMEM:
3725 /* Get the per device memory space. We can add this but
3726 * currently do not support it */
3727 case SIOCSIFMEM:
3728 /* Set the per device memory buffer space.
3729 * Not applicable in our case */
3730 case SIOCSIFLINK:
3731 return -EINVAL;
3732
3733 /*
3734 * Unknown or private ioctl.
3735 */
3736 default:
3737 if (cmd == SIOCWANDEV ||
3738 (cmd >= SIOCDEVPRIVATE &&
3739 cmd <= SIOCDEVPRIVATE + 15)) {
3740 dev_load(net, ifr.ifr_name);
3741 rtnl_lock();
3742 ret = dev_ifsioc(net, &ifr, cmd);
3743 rtnl_unlock();
3744 if (!ret && copy_to_user(arg, &ifr,
3745 sizeof(struct ifreq)))
3746 ret = -EFAULT;
3747 return ret;
3748 }
3749 /* Take care of Wireless Extensions */
3750 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3751 return wext_handle_ioctl(net, &ifr, cmd, arg);
3752 return -EINVAL;
3753 }
3754}
3755
3756
3757/**
3758 * dev_new_index - allocate an ifindex
3759 * @net: the applicable net namespace
3760 *
3761 * Returns a suitable unique value for a new device interface
3762 * number. The caller must hold the rtnl semaphore or the
3763 * dev_base_lock to be sure it remains unique.
3764 */
3765static int dev_new_index(struct net *net)
3766{
3767 static int ifindex;
3768 for (;;) {
3769 if (++ifindex <= 0)
3770 ifindex = 1;
3771 if (!__dev_get_by_index(net, ifindex))
3772 return ifindex;
3773 }
3774}
3775
3776/* Delayed registration/unregisteration */
3777static DEFINE_SPINLOCK(net_todo_list_lock);
3778static LIST_HEAD(net_todo_list);
3779
3780static void net_set_todo(struct net_device *dev)
3781{
3782 spin_lock(&net_todo_list_lock);
3783 list_add_tail(&dev->todo_list, &net_todo_list);
3784 spin_unlock(&net_todo_list_lock);
3785}
3786
3787static void rollback_registered(struct net_device *dev)
3788{
3789 BUG_ON(dev_boot_phase);
3790 ASSERT_RTNL();
3791
3792 /* Some devices call without registering for initialization unwind. */
3793 if (dev->reg_state == NETREG_UNINITIALIZED) {
3794 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3795 "was registered\n", dev->name, dev);
3796
3797 WARN_ON(1);
3798 return;
3799 }
3800
3801 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3802
3803 /* If device is running, close it first. */
3804 dev_close(dev);
3805
3806 /* And unlink it from device chain. */
3807 unlist_netdevice(dev);
3808
3809 dev->reg_state = NETREG_UNREGISTERING;
3810
3811 synchronize_net();
3812
3813 /* Shutdown queueing discipline. */
3814 dev_shutdown(dev);
3815
3816
3817 /* Notify protocols, that we are about to destroy
3818 this device. They should clean all the things.
3819 */
3820 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3821
3822 /*
3823 * Flush the unicast and multicast chains
3824 */
3825 dev_addr_discard(dev);
3826
3827 if (dev->uninit)
3828 dev->uninit(dev);
3829
3830 /* Notifier chain MUST detach us from master device. */
3831 BUG_TRAP(!dev->master);
3832
3833 /* Remove entries from kobject tree */
3834 netdev_unregister_kobject(dev);
3835
3836 synchronize_net();
3837
3838 dev_put(dev);
3839}
3840
3841static void __netdev_init_queue_locks_one(struct net_device *dev,
3842 struct netdev_queue *dev_queue,
3843 void *_unused)
3844{
3845 spin_lock_init(&dev_queue->_xmit_lock);
3846 netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3847 dev_queue->xmit_lock_owner = -1;
3848}
3849
3850static void netdev_init_queue_locks(struct net_device *dev)
3851{
3852 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3853 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3854}
3855
3856/**
3857 * register_netdevice - register a network device
3858 * @dev: device to register
3859 *
3860 * Take a completed network device structure and add it to the kernel
3861 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3862 * chain. 0 is returned on success. A negative errno code is returned
3863 * on a failure to set up the device, or if the name is a duplicate.
3864 *
3865 * Callers must hold the rtnl semaphore. You may want
3866 * register_netdev() instead of this.
3867 *
3868 * BUGS:
3869 * The locking appears insufficient to guarantee two parallel registers
3870 * will not get the same name.
3871 */
3872
3873int register_netdevice(struct net_device *dev)
3874{
3875 struct hlist_head *head;
3876 struct hlist_node *p;
3877 int ret;
3878 struct net *net;
3879
3880 BUG_ON(dev_boot_phase);
3881 ASSERT_RTNL();
3882
3883 might_sleep();
3884
3885 /* When net_device's are persistent, this will be fatal. */
3886 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3887 BUG_ON(!dev_net(dev));
3888 net = dev_net(dev);
3889
3890 spin_lock_init(&dev->addr_list_lock);
3891 netdev_init_queue_locks(dev);
3892
3893 dev->iflink = -1;
3894
3895 /* Init, if this function is available */
3896 if (dev->init) {
3897 ret = dev->init(dev);
3898 if (ret) {
3899 if (ret > 0)
3900 ret = -EIO;
3901 goto out;
3902 }
3903 }
3904
3905 if (!dev_valid_name(dev->name)) {
3906 ret = -EINVAL;
3907 goto err_uninit;
3908 }
3909
3910 dev->ifindex = dev_new_index(net);
3911 if (dev->iflink == -1)
3912 dev->iflink = dev->ifindex;
3913
3914 /* Check for existence of name */
3915 head = dev_name_hash(net, dev->name);
3916 hlist_for_each(p, head) {
3917 struct net_device *d
3918 = hlist_entry(p, struct net_device, name_hlist);
3919 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3920 ret = -EEXIST;
3921 goto err_uninit;
3922 }
3923 }
3924
3925 /* Fix illegal checksum combinations */
3926 if ((dev->features & NETIF_F_HW_CSUM) &&
3927 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3928 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3929 dev->name);
3930 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3931 }
3932
3933 if ((dev->features & NETIF_F_NO_CSUM) &&
3934 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3935 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3936 dev->name);
3937 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3938 }
3939
3940
3941 /* Fix illegal SG+CSUM combinations. */
3942 if ((dev->features & NETIF_F_SG) &&
3943 !(dev->features & NETIF_F_ALL_CSUM)) {
3944 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3945 dev->name);
3946 dev->features &= ~NETIF_F_SG;
3947 }
3948
3949 /* TSO requires that SG is present as well. */
3950 if ((dev->features & NETIF_F_TSO) &&
3951 !(dev->features & NETIF_F_SG)) {
3952 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3953 dev->name);
3954 dev->features &= ~NETIF_F_TSO;
3955 }
3956 if (dev->features & NETIF_F_UFO) {
3957 if (!(dev->features & NETIF_F_HW_CSUM)) {
3958 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3959 "NETIF_F_HW_CSUM feature.\n",
3960 dev->name);
3961 dev->features &= ~NETIF_F_UFO;
3962 }
3963 if (!(dev->features & NETIF_F_SG)) {
3964 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3965 "NETIF_F_SG feature.\n",
3966 dev->name);
3967 dev->features &= ~NETIF_F_UFO;
3968 }
3969 }
3970
3971 netdev_initialize_kobject(dev);
3972 ret = netdev_register_kobject(dev);
3973 if (ret)
3974 goto err_uninit;
3975 dev->reg_state = NETREG_REGISTERED;
3976
3977 /*
3978 * Default initial state at registry is that the
3979 * device is present.
3980 */
3981
3982 set_bit(__LINK_STATE_PRESENT, &dev->state);
3983
3984 dev_init_scheduler(dev);
3985 dev_hold(dev);
3986 list_netdevice(dev);
3987
3988 /* Notify protocols, that a new device appeared. */
3989 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3990 ret = notifier_to_errno(ret);
3991 if (ret) {
3992 rollback_registered(dev);
3993 dev->reg_state = NETREG_UNREGISTERED;
3994 }
3995
3996out:
3997 return ret;
3998
3999err_uninit:
4000 if (dev->uninit)
4001 dev->uninit(dev);
4002 goto out;
4003}
4004
4005/**
4006 * register_netdev - register a network device
4007 * @dev: device to register
4008 *
4009 * Take a completed network device structure and add it to the kernel
4010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4011 * chain. 0 is returned on success. A negative errno code is returned
4012 * on a failure to set up the device, or if the name is a duplicate.
4013 *
4014 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4015 * and expands the device name if you passed a format string to
4016 * alloc_netdev.
4017 */
4018int register_netdev(struct net_device *dev)
4019{
4020 int err;
4021
4022 rtnl_lock();
4023
4024 /*
4025 * If the name is a format string the caller wants us to do a
4026 * name allocation.
4027 */
4028 if (strchr(dev->name, '%')) {
4029 err = dev_alloc_name(dev, dev->name);
4030 if (err < 0)
4031 goto out;
4032 }
4033
4034 err = register_netdevice(dev);
4035out:
4036 rtnl_unlock();
4037 return err;
4038}
4039EXPORT_SYMBOL(register_netdev);
4040
4041/*
4042 * netdev_wait_allrefs - wait until all references are gone.
4043 *
4044 * This is called when unregistering network devices.
4045 *
4046 * Any protocol or device that holds a reference should register
4047 * for netdevice notification, and cleanup and put back the
4048 * reference if they receive an UNREGISTER event.
4049 * We can get stuck here if buggy protocols don't correctly
4050 * call dev_put.
4051 */
4052static void netdev_wait_allrefs(struct net_device *dev)
4053{
4054 unsigned long rebroadcast_time, warning_time;
4055
4056 rebroadcast_time = warning_time = jiffies;
4057 while (atomic_read(&dev->refcnt) != 0) {
4058 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4059 rtnl_lock();
4060
4061 /* Rebroadcast unregister notification */
4062 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4063
4064 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4065 &dev->state)) {
4066 /* We must not have linkwatch events
4067 * pending on unregister. If this
4068 * happens, we simply run the queue
4069 * unscheduled, resulting in a noop
4070 * for this device.
4071 */
4072 linkwatch_run_queue();
4073 }
4074
4075 __rtnl_unlock();
4076
4077 rebroadcast_time = jiffies;
4078 }
4079
4080 msleep(250);
4081
4082 if (time_after(jiffies, warning_time + 10 * HZ)) {
4083 printk(KERN_EMERG "unregister_netdevice: "
4084 "waiting for %s to become free. Usage "
4085 "count = %d\n",
4086 dev->name, atomic_read(&dev->refcnt));
4087 warning_time = jiffies;
4088 }
4089 }
4090}
4091
4092/* The sequence is:
4093 *
4094 * rtnl_lock();
4095 * ...
4096 * register_netdevice(x1);
4097 * register_netdevice(x2);
4098 * ...
4099 * unregister_netdevice(y1);
4100 * unregister_netdevice(y2);
4101 * ...
4102 * rtnl_unlock();
4103 * free_netdev(y1);
4104 * free_netdev(y2);
4105 *
4106 * We are invoked by rtnl_unlock() after it drops the semaphore.
4107 * This allows us to deal with problems:
4108 * 1) We can delete sysfs objects which invoke hotplug
4109 * without deadlocking with linkwatch via keventd.
4110 * 2) Since we run with the RTNL semaphore not held, we can sleep
4111 * safely in order to wait for the netdev refcnt to drop to zero.
4112 */
4113static DEFINE_MUTEX(net_todo_run_mutex);
4114void netdev_run_todo(void)
4115{
4116 struct list_head list;
4117
4118 /* Need to guard against multiple cpu's getting out of order. */
4119 mutex_lock(&net_todo_run_mutex);
4120
4121 /* Not safe to do outside the semaphore. We must not return
4122 * until all unregister events invoked by the local processor
4123 * have been completed (either by this todo run, or one on
4124 * another cpu).
4125 */
4126 if (list_empty(&net_todo_list))
4127 goto out;
4128
4129 /* Snapshot list, allow later requests */
4130 spin_lock(&net_todo_list_lock);
4131 list_replace_init(&net_todo_list, &list);
4132 spin_unlock(&net_todo_list_lock);
4133
4134 while (!list_empty(&list)) {
4135 struct net_device *dev
4136 = list_entry(list.next, struct net_device, todo_list);
4137 list_del(&dev->todo_list);
4138
4139 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4140 printk(KERN_ERR "network todo '%s' but state %d\n",
4141 dev->name, dev->reg_state);
4142 dump_stack();
4143 continue;
4144 }
4145
4146 dev->reg_state = NETREG_UNREGISTERED;
4147
4148 netdev_wait_allrefs(dev);
4149
4150 /* paranoia */
4151 BUG_ON(atomic_read(&dev->refcnt));
4152 BUG_TRAP(!dev->ip_ptr);
4153 BUG_TRAP(!dev->ip6_ptr);
4154 BUG_TRAP(!dev->dn_ptr);
4155
4156 if (dev->destructor)
4157 dev->destructor(dev);
4158
4159 /* Free network device */
4160 kobject_put(&dev->dev.kobj);
4161 }
4162
4163out:
4164 mutex_unlock(&net_todo_run_mutex);
4165}
4166
4167static struct net_device_stats *internal_stats(struct net_device *dev)
4168{
4169 return &dev->stats;
4170}
4171
4172static void netdev_init_one_queue(struct net_device *dev,
4173 struct netdev_queue *queue,
4174 void *_unused)
4175{
4176 queue->dev = dev;
4177}
4178
4179static void netdev_init_queues(struct net_device *dev)
4180{
4181 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4182 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4183}
4184
4185/**
4186 * alloc_netdev_mq - allocate network device
4187 * @sizeof_priv: size of private data to allocate space for
4188 * @name: device name format string
4189 * @setup: callback to initialize device
4190 * @queue_count: the number of subqueues to allocate
4191 *
4192 * Allocates a struct net_device with private data area for driver use
4193 * and performs basic initialization. Also allocates subquue structs
4194 * for each queue on the device at the end of the netdevice.
4195 */
4196struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4197 void (*setup)(struct net_device *), unsigned int queue_count)
4198{
4199 struct netdev_queue *tx;
4200 struct net_device *dev;
4201 int alloc_size;
4202 void *p;
4203
4204 BUG_ON(strlen(name) >= sizeof(dev->name));
4205
4206 alloc_size = sizeof(struct net_device);
4207 if (sizeof_priv) {
4208 /* ensure 32-byte alignment of private area */
4209 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4210 alloc_size += sizeof_priv;
4211 }
4212 /* ensure 32-byte alignment of whole construct */
4213 alloc_size += NETDEV_ALIGN_CONST;
4214
4215 p = kzalloc(alloc_size, GFP_KERNEL);
4216 if (!p) {
4217 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4218 return NULL;
4219 }
4220
4221 tx = kzalloc(sizeof(struct netdev_queue) * queue_count, GFP_KERNEL);
4222 if (!tx) {
4223 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4224 "tx qdiscs.\n");
4225 kfree(p);
4226 return NULL;
4227 }
4228
4229 dev = (struct net_device *)
4230 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4231 dev->padded = (char *)dev - (char *)p;
4232 dev_net_set(dev, &init_net);
4233
4234 dev->_tx = tx;
4235 dev->num_tx_queues = queue_count;
4236 dev->real_num_tx_queues = queue_count;
4237
4238 if (sizeof_priv) {
4239 dev->priv = ((char *)dev +
4240 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4241 & ~NETDEV_ALIGN_CONST));
4242 }
4243
4244 dev->gso_max_size = GSO_MAX_SIZE;
4245
4246 netdev_init_queues(dev);
4247
4248 dev->get_stats = internal_stats;
4249 netpoll_netdev_init(dev);
4250 setup(dev);
4251 strcpy(dev->name, name);
4252 return dev;
4253}
4254EXPORT_SYMBOL(alloc_netdev_mq);
4255
4256/**
4257 * free_netdev - free network device
4258 * @dev: device
4259 *
4260 * This function does the last stage of destroying an allocated device
4261 * interface. The reference to the device object is released.
4262 * If this is the last reference then it will be freed.
4263 */
4264void free_netdev(struct net_device *dev)
4265{
4266 release_net(dev_net(dev));
4267
4268 kfree(dev->_tx);
4269
4270 /* Compatibility with error handling in drivers */
4271 if (dev->reg_state == NETREG_UNINITIALIZED) {
4272 kfree((char *)dev - dev->padded);
4273 return;
4274 }
4275
4276 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4277 dev->reg_state = NETREG_RELEASED;
4278
4279 /* will free via device release */
4280 put_device(&dev->dev);
4281}
4282
4283/* Synchronize with packet receive processing. */
4284void synchronize_net(void)
4285{
4286 might_sleep();
4287 synchronize_rcu();
4288}
4289
4290/**
4291 * unregister_netdevice - remove device from the kernel
4292 * @dev: device
4293 *
4294 * This function shuts down a device interface and removes it
4295 * from the kernel tables.
4296 *
4297 * Callers must hold the rtnl semaphore. You may want
4298 * unregister_netdev() instead of this.
4299 */
4300
4301void unregister_netdevice(struct net_device *dev)
4302{
4303 ASSERT_RTNL();
4304
4305 rollback_registered(dev);
4306 /* Finish processing unregister after unlock */
4307 net_set_todo(dev);
4308}
4309
4310/**
4311 * unregister_netdev - remove device from the kernel
4312 * @dev: device
4313 *
4314 * This function shuts down a device interface and removes it
4315 * from the kernel tables.
4316 *
4317 * This is just a wrapper for unregister_netdevice that takes
4318 * the rtnl semaphore. In general you want to use this and not
4319 * unregister_netdevice.
4320 */
4321void unregister_netdev(struct net_device *dev)
4322{
4323 rtnl_lock();
4324 unregister_netdevice(dev);
4325 rtnl_unlock();
4326}
4327
4328EXPORT_SYMBOL(unregister_netdev);
4329
4330/**
4331 * dev_change_net_namespace - move device to different nethost namespace
4332 * @dev: device
4333 * @net: network namespace
4334 * @pat: If not NULL name pattern to try if the current device name
4335 * is already taken in the destination network namespace.
4336 *
4337 * This function shuts down a device interface and moves it
4338 * to a new network namespace. On success 0 is returned, on
4339 * a failure a netagive errno code is returned.
4340 *
4341 * Callers must hold the rtnl semaphore.
4342 */
4343
4344int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4345{
4346 char buf[IFNAMSIZ];
4347 const char *destname;
4348 int err;
4349
4350 ASSERT_RTNL();
4351
4352 /* Don't allow namespace local devices to be moved. */
4353 err = -EINVAL;
4354 if (dev->features & NETIF_F_NETNS_LOCAL)
4355 goto out;
4356
4357 /* Ensure the device has been registrered */
4358 err = -EINVAL;
4359 if (dev->reg_state != NETREG_REGISTERED)
4360 goto out;
4361
4362 /* Get out if there is nothing todo */
4363 err = 0;
4364 if (net_eq(dev_net(dev), net))
4365 goto out;
4366
4367 /* Pick the destination device name, and ensure
4368 * we can use it in the destination network namespace.
4369 */
4370 err = -EEXIST;
4371 destname = dev->name;
4372 if (__dev_get_by_name(net, destname)) {
4373 /* We get here if we can't use the current device name */
4374 if (!pat)
4375 goto out;
4376 if (!dev_valid_name(pat))
4377 goto out;
4378 if (strchr(pat, '%')) {
4379 if (__dev_alloc_name(net, pat, buf) < 0)
4380 goto out;
4381 destname = buf;
4382 } else
4383 destname = pat;
4384 if (__dev_get_by_name(net, destname))
4385 goto out;
4386 }
4387
4388 /*
4389 * And now a mini version of register_netdevice unregister_netdevice.
4390 */
4391
4392 /* If device is running close it first. */
4393 dev_close(dev);
4394
4395 /* And unlink it from device chain */
4396 err = -ENODEV;
4397 unlist_netdevice(dev);
4398
4399 synchronize_net();
4400
4401 /* Shutdown queueing discipline. */
4402 dev_shutdown(dev);
4403
4404 /* Notify protocols, that we are about to destroy
4405 this device. They should clean all the things.
4406 */
4407 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4408
4409 /*
4410 * Flush the unicast and multicast chains
4411 */
4412 dev_addr_discard(dev);
4413
4414 /* Actually switch the network namespace */
4415 dev_net_set(dev, net);
4416
4417 /* Assign the new device name */
4418 if (destname != dev->name)
4419 strcpy(dev->name, destname);
4420
4421 /* If there is an ifindex conflict assign a new one */
4422 if (__dev_get_by_index(net, dev->ifindex)) {
4423 int iflink = (dev->iflink == dev->ifindex);
4424 dev->ifindex = dev_new_index(net);
4425 if (iflink)
4426 dev->iflink = dev->ifindex;
4427 }
4428
4429 /* Fixup kobjects */
4430 netdev_unregister_kobject(dev);
4431 err = netdev_register_kobject(dev);
4432 WARN_ON(err);
4433
4434 /* Add the device back in the hashes */
4435 list_netdevice(dev);
4436
4437 /* Notify protocols, that a new device appeared. */
4438 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4439
4440 synchronize_net();
4441 err = 0;
4442out:
4443 return err;
4444}
4445
4446static int dev_cpu_callback(struct notifier_block *nfb,
4447 unsigned long action,
4448 void *ocpu)
4449{
4450 struct sk_buff **list_skb;
4451 struct Qdisc **list_net;
4452 struct sk_buff *skb;
4453 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4454 struct softnet_data *sd, *oldsd;
4455
4456 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4457 return NOTIFY_OK;
4458
4459 local_irq_disable();
4460 cpu = smp_processor_id();
4461 sd = &per_cpu(softnet_data, cpu);
4462 oldsd = &per_cpu(softnet_data, oldcpu);
4463
4464 /* Find end of our completion_queue. */
4465 list_skb = &sd->completion_queue;
4466 while (*list_skb)
4467 list_skb = &(*list_skb)->next;
4468 /* Append completion queue from offline CPU. */
4469 *list_skb = oldsd->completion_queue;
4470 oldsd->completion_queue = NULL;
4471
4472 /* Find end of our output_queue. */
4473 list_net = &sd->output_queue;
4474 while (*list_net)
4475 list_net = &(*list_net)->next_sched;
4476 /* Append output queue from offline CPU. */
4477 *list_net = oldsd->output_queue;
4478 oldsd->output_queue = NULL;
4479
4480 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4481 local_irq_enable();
4482
4483 /* Process offline CPU's input_pkt_queue */
4484 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4485 netif_rx(skb);
4486
4487 return NOTIFY_OK;
4488}
4489
4490#ifdef CONFIG_NET_DMA
4491/**
4492 * net_dma_rebalance - try to maintain one DMA channel per CPU
4493 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4494 *
4495 * This is called when the number of channels allocated to the net_dma client
4496 * changes. The net_dma client tries to have one DMA channel per CPU.
4497 */
4498
4499static void net_dma_rebalance(struct net_dma *net_dma)
4500{
4501 unsigned int cpu, i, n, chan_idx;
4502 struct dma_chan *chan;
4503
4504 if (cpus_empty(net_dma->channel_mask)) {
4505 for_each_online_cpu(cpu)
4506 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4507 return;
4508 }
4509
4510 i = 0;
4511 cpu = first_cpu(cpu_online_map);
4512
4513 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4514 chan = net_dma->channels[chan_idx];
4515
4516 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4517 + (i < (num_online_cpus() %
4518 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4519
4520 while(n) {
4521 per_cpu(softnet_data, cpu).net_dma = chan;
4522 cpu = next_cpu(cpu, cpu_online_map);
4523 n--;
4524 }
4525 i++;
4526 }
4527}
4528
4529/**
4530 * netdev_dma_event - event callback for the net_dma_client
4531 * @client: should always be net_dma_client
4532 * @chan: DMA channel for the event
4533 * @state: DMA state to be handled
4534 */
4535static enum dma_state_client
4536netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4537 enum dma_state state)
4538{
4539 int i, found = 0, pos = -1;
4540 struct net_dma *net_dma =
4541 container_of(client, struct net_dma, client);
4542 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4543
4544 spin_lock(&net_dma->lock);
4545 switch (state) {
4546 case DMA_RESOURCE_AVAILABLE:
4547 for (i = 0; i < nr_cpu_ids; i++)
4548 if (net_dma->channels[i] == chan) {
4549 found = 1;
4550 break;
4551 } else if (net_dma->channels[i] == NULL && pos < 0)
4552 pos = i;
4553
4554 if (!found && pos >= 0) {
4555 ack = DMA_ACK;
4556 net_dma->channels[pos] = chan;
4557 cpu_set(pos, net_dma->channel_mask);
4558 net_dma_rebalance(net_dma);
4559 }
4560 break;
4561 case DMA_RESOURCE_REMOVED:
4562 for (i = 0; i < nr_cpu_ids; i++)
4563 if (net_dma->channels[i] == chan) {
4564 found = 1;
4565 pos = i;
4566 break;
4567 }
4568
4569 if (found) {
4570 ack = DMA_ACK;
4571 cpu_clear(pos, net_dma->channel_mask);
4572 net_dma->channels[i] = NULL;
4573 net_dma_rebalance(net_dma);
4574 }
4575 break;
4576 default:
4577 break;
4578 }
4579 spin_unlock(&net_dma->lock);
4580
4581 return ack;
4582}
4583
4584/**
4585 * netdev_dma_regiser - register the networking subsystem as a DMA client
4586 */
4587static int __init netdev_dma_register(void)
4588{
4589 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4590 GFP_KERNEL);
4591 if (unlikely(!net_dma.channels)) {
4592 printk(KERN_NOTICE
4593 "netdev_dma: no memory for net_dma.channels\n");
4594 return -ENOMEM;
4595 }
4596 spin_lock_init(&net_dma.lock);
4597 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4598 dma_async_client_register(&net_dma.client);
4599 dma_async_client_chan_request(&net_dma.client);
4600 return 0;
4601}
4602
4603#else
4604static int __init netdev_dma_register(void) { return -ENODEV; }
4605#endif /* CONFIG_NET_DMA */
4606
4607/**
4608 * netdev_compute_feature - compute conjunction of two feature sets
4609 * @all: first feature set
4610 * @one: second feature set
4611 *
4612 * Computes a new feature set after adding a device with feature set
4613 * @one to the master device with current feature set @all. Returns
4614 * the new feature set.
4615 */
4616int netdev_compute_features(unsigned long all, unsigned long one)
4617{
4618 /* if device needs checksumming, downgrade to hw checksumming */
4619 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4620 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4621
4622 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4623 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4624 all ^= NETIF_F_HW_CSUM
4625 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4626
4627 if (one & NETIF_F_GSO)
4628 one |= NETIF_F_GSO_SOFTWARE;
4629 one |= NETIF_F_GSO;
4630
4631 /* If even one device supports robust GSO, enable it for all. */
4632 if (one & NETIF_F_GSO_ROBUST)
4633 all |= NETIF_F_GSO_ROBUST;
4634
4635 all &= one | NETIF_F_LLTX;
4636
4637 if (!(all & NETIF_F_ALL_CSUM))
4638 all &= ~NETIF_F_SG;
4639 if (!(all & NETIF_F_SG))
4640 all &= ~NETIF_F_GSO_MASK;
4641
4642 return all;
4643}
4644EXPORT_SYMBOL(netdev_compute_features);
4645
4646static struct hlist_head *netdev_create_hash(void)
4647{
4648 int i;
4649 struct hlist_head *hash;
4650
4651 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4652 if (hash != NULL)
4653 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4654 INIT_HLIST_HEAD(&hash[i]);
4655
4656 return hash;
4657}
4658
4659/* Initialize per network namespace state */
4660static int __net_init netdev_init(struct net *net)
4661{
4662 INIT_LIST_HEAD(&net->dev_base_head);
4663
4664 net->dev_name_head = netdev_create_hash();
4665 if (net->dev_name_head == NULL)
4666 goto err_name;
4667
4668 net->dev_index_head = netdev_create_hash();
4669 if (net->dev_index_head == NULL)
4670 goto err_idx;
4671
4672 return 0;
4673
4674err_idx:
4675 kfree(net->dev_name_head);
4676err_name:
4677 return -ENOMEM;
4678}
4679
4680static void __net_exit netdev_exit(struct net *net)
4681{
4682 kfree(net->dev_name_head);
4683 kfree(net->dev_index_head);
4684}
4685
4686static struct pernet_operations __net_initdata netdev_net_ops = {
4687 .init = netdev_init,
4688 .exit = netdev_exit,
4689};
4690
4691static void __net_exit default_device_exit(struct net *net)
4692{
4693 struct net_device *dev, *next;
4694 /*
4695 * Push all migratable of the network devices back to the
4696 * initial network namespace
4697 */
4698 rtnl_lock();
4699 for_each_netdev_safe(net, dev, next) {
4700 int err;
4701 char fb_name[IFNAMSIZ];
4702
4703 /* Ignore unmoveable devices (i.e. loopback) */
4704 if (dev->features & NETIF_F_NETNS_LOCAL)
4705 continue;
4706
4707 /* Push remaing network devices to init_net */
4708 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4709 err = dev_change_net_namespace(dev, &init_net, fb_name);
4710 if (err) {
4711 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4712 __func__, dev->name, err);
4713 BUG();
4714 }
4715 }
4716 rtnl_unlock();
4717}
4718
4719static struct pernet_operations __net_initdata default_device_ops = {
4720 .exit = default_device_exit,
4721};
4722
4723/*
4724 * Initialize the DEV module. At boot time this walks the device list and
4725 * unhooks any devices that fail to initialise (normally hardware not
4726 * present) and leaves us with a valid list of present and active devices.
4727 *
4728 */
4729
4730/*
4731 * This is called single threaded during boot, so no need
4732 * to take the rtnl semaphore.
4733 */
4734static int __init net_dev_init(void)
4735{
4736 int i, rc = -ENOMEM;
4737
4738 BUG_ON(!dev_boot_phase);
4739
4740 if (dev_proc_init())
4741 goto out;
4742
4743 if (netdev_kobject_init())
4744 goto out;
4745
4746 INIT_LIST_HEAD(&ptype_all);
4747 for (i = 0; i < PTYPE_HASH_SIZE; i++)
4748 INIT_LIST_HEAD(&ptype_base[i]);
4749
4750 if (register_pernet_subsys(&netdev_net_ops))
4751 goto out;
4752
4753 if (register_pernet_device(&default_device_ops))
4754 goto out;
4755
4756 /*
4757 * Initialise the packet receive queues.
4758 */
4759
4760 for_each_possible_cpu(i) {
4761 struct softnet_data *queue;
4762
4763 queue = &per_cpu(softnet_data, i);
4764 skb_queue_head_init(&queue->input_pkt_queue);
4765 queue->completion_queue = NULL;
4766 INIT_LIST_HEAD(&queue->poll_list);
4767
4768 queue->backlog.poll = process_backlog;
4769 queue->backlog.weight = weight_p;
4770 }
4771
4772 netdev_dma_register();
4773
4774 dev_boot_phase = 0;
4775
4776 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4777 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4778
4779 hotcpu_notifier(dev_cpu_callback, 0);
4780 dst_init();
4781 dev_mcast_init();
4782 rc = 0;
4783out:
4784 return rc;
4785}
4786
4787subsys_initcall(net_dev_init);
4788
4789EXPORT_SYMBOL(__dev_get_by_index);
4790EXPORT_SYMBOL(__dev_get_by_name);
4791EXPORT_SYMBOL(__dev_remove_pack);
4792EXPORT_SYMBOL(dev_valid_name);
4793EXPORT_SYMBOL(dev_add_pack);
4794EXPORT_SYMBOL(dev_alloc_name);
4795EXPORT_SYMBOL(dev_close);
4796EXPORT_SYMBOL(dev_get_by_flags);
4797EXPORT_SYMBOL(dev_get_by_index);
4798EXPORT_SYMBOL(dev_get_by_name);
4799EXPORT_SYMBOL(dev_open);
4800EXPORT_SYMBOL(dev_queue_xmit);
4801EXPORT_SYMBOL(dev_remove_pack);
4802EXPORT_SYMBOL(dev_set_allmulti);
4803EXPORT_SYMBOL(dev_set_promiscuity);
4804EXPORT_SYMBOL(dev_change_flags);
4805EXPORT_SYMBOL(dev_set_mtu);
4806EXPORT_SYMBOL(dev_set_mac_address);
4807EXPORT_SYMBOL(free_netdev);
4808EXPORT_SYMBOL(netdev_boot_setup_check);
4809EXPORT_SYMBOL(netdev_set_master);
4810EXPORT_SYMBOL(netdev_state_change);
4811EXPORT_SYMBOL(netif_receive_skb);
4812EXPORT_SYMBOL(netif_rx);
4813EXPORT_SYMBOL(register_gifconf);
4814EXPORT_SYMBOL(register_netdevice);
4815EXPORT_SYMBOL(register_netdevice_notifier);
4816EXPORT_SYMBOL(skb_checksum_help);
4817EXPORT_SYMBOL(synchronize_net);
4818EXPORT_SYMBOL(unregister_netdevice);
4819EXPORT_SYMBOL(unregister_netdevice_notifier);
4820EXPORT_SYMBOL(net_enable_timestamp);
4821EXPORT_SYMBOL(net_disable_timestamp);
4822EXPORT_SYMBOL(dev_get_flags);
4823
4824#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4825EXPORT_SYMBOL(br_handle_frame_hook);
4826EXPORT_SYMBOL(br_fdb_get_hook);
4827EXPORT_SYMBOL(br_fdb_put_hook);
4828#endif
4829
4830#ifdef CONFIG_KMOD
4831EXPORT_SYMBOL(dev_load);
4832#endif
4833
4834EXPORT_PER_CPU_SYMBOL(softnet_data);