]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
net/core: neighbour update Oops
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <linux/if_bridge.h>
105#include <linux/if_macvlan.h>
106#include <net/dst.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/kmod.h>
113#include <linux/module.h>
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
117#include <net/wext.h>
118#include <net/iw_handler.h>
119#include <asm/current.h>
120#include <linux/audit.h>
121#include <linux/dmaengine.h>
122#include <linux/err.h>
123#include <linux/ctype.h>
124#include <linux/if_arp.h>
125#include <linux/if_vlan.h>
126#include <linux/ip.h>
127#include <net/ip.h>
128#include <linux/ipv6.h>
129#include <linux/in.h>
130#include <linux/jhash.h>
131#include <linux/random.h>
132#include <trace/events/napi.h>
133#include <linux/pci.h>
134
135#include "net-sysfs.h"
136
137/* Instead of increasing this, you should create a hash table. */
138#define MAX_GRO_SKBS 8
139
140/* This should be increased if a protocol with a bigger head is added. */
141#define GRO_MAX_HEAD (MAX_HEADER + 128)
142
143/*
144 * The list of packet types we will receive (as opposed to discard)
145 * and the routines to invoke.
146 *
147 * Why 16. Because with 16 the only overlap we get on a hash of the
148 * low nibble of the protocol value is RARP/SNAP/X.25.
149 *
150 * NOTE: That is no longer true with the addition of VLAN tags. Not
151 * sure which should go first, but I bet it won't make much
152 * difference if we are running VLANs. The good news is that
153 * this protocol won't be in the list unless compiled in, so
154 * the average user (w/out VLANs) will not be adversely affected.
155 * --BLG
156 *
157 * 0800 IP
158 * 8100 802.1Q VLAN
159 * 0001 802.3
160 * 0002 AX.25
161 * 0004 802.2
162 * 8035 RARP
163 * 0005 SNAP
164 * 0805 X.25
165 * 0806 ARP
166 * 8137 IPX
167 * 0009 Localtalk
168 * 86DD IPv6
169 */
170
171#define PTYPE_HASH_SIZE (16)
172#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
173
174static DEFINE_SPINLOCK(ptype_lock);
175static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176static struct list_head ptype_all __read_mostly; /* Taps */
177
178/*
179 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180 * semaphore.
181 *
182 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183 *
184 * Writers must hold the rtnl semaphore while they loop through the
185 * dev_base_head list, and hold dev_base_lock for writing when they do the
186 * actual updates. This allows pure readers to access the list even
187 * while a writer is preparing to update it.
188 *
189 * To put it another way, dev_base_lock is held for writing only to
190 * protect against pure readers; the rtnl semaphore provides the
191 * protection against other writers.
192 *
193 * See, for example usages, register_netdevice() and
194 * unregister_netdevice(), which must be called with the rtnl
195 * semaphore held.
196 */
197DEFINE_RWLOCK(dev_base_lock);
198EXPORT_SYMBOL(dev_base_lock);
199
200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204}
205
206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207{
208 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209}
210
211static inline void rps_lock(struct softnet_data *sd)
212{
213#ifdef CONFIG_RPS
214 spin_lock(&sd->input_pkt_queue.lock);
215#endif
216}
217
218static inline void rps_unlock(struct softnet_data *sd)
219{
220#ifdef CONFIG_RPS
221 spin_unlock(&sd->input_pkt_queue.lock);
222#endif
223}
224
225/* Device list insertion */
226static int list_netdevice(struct net_device *dev)
227{
228 struct net *net = dev_net(dev);
229
230 ASSERT_RTNL();
231
232 write_lock_bh(&dev_base_lock);
233 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 hlist_add_head_rcu(&dev->index_hlist,
236 dev_index_hash(net, dev->ifindex));
237 write_unlock_bh(&dev_base_lock);
238 return 0;
239}
240
241/* Device list removal
242 * caller must respect a RCU grace period before freeing/reusing dev
243 */
244static void unlist_netdevice(struct net_device *dev)
245{
246 ASSERT_RTNL();
247
248 /* Unlink dev from the device chain */
249 write_lock_bh(&dev_base_lock);
250 list_del_rcu(&dev->dev_list);
251 hlist_del_rcu(&dev->name_hlist);
252 hlist_del_rcu(&dev->index_hlist);
253 write_unlock_bh(&dev_base_lock);
254}
255
256/*
257 * Our notifier list
258 */
259
260static RAW_NOTIFIER_HEAD(netdev_chain);
261
262/*
263 * Device drivers call our routines to queue packets here. We empty the
264 * queue in the local softnet handler.
265 */
266
267DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268EXPORT_PER_CPU_SYMBOL(softnet_data);
269
270#ifdef CONFIG_LOCKDEP
271/*
272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273 * according to dev->type
274 */
275static const unsigned short netdev_lock_type[] =
276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 ARPHRD_VOID, ARPHRD_NONE};
292
293static const char *const netdev_lock_name[] =
294 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 "_xmit_VOID", "_xmit_NONE"};
310
311static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313
314static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315{
316 int i;
317
318 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 if (netdev_lock_type[i] == dev_type)
320 return i;
321 /* the last key is used by default */
322 return ARRAY_SIZE(netdev_lock_type) - 1;
323}
324
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328 int i;
329
330 i = netdev_lock_pos(dev_type);
331 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 netdev_lock_name[i]);
333}
334
335static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336{
337 int i;
338
339 i = netdev_lock_pos(dev->type);
340 lockdep_set_class_and_name(&dev->addr_list_lock,
341 &netdev_addr_lock_key[i],
342 netdev_lock_name[i]);
343}
344#else
345static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 unsigned short dev_type)
347{
348}
349static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350{
351}
352#endif
353
354/*******************************************************************************
355
356 Protocol management and registration routines
357
358*******************************************************************************/
359
360/*
361 * Add a protocol ID to the list. Now that the input handler is
362 * smarter we can dispense with all the messy stuff that used to be
363 * here.
364 *
365 * BEWARE!!! Protocol handlers, mangling input packets,
366 * MUST BE last in hash buckets and checking protocol handlers
367 * MUST start from promiscuous ptype_all chain in net_bh.
368 * It is true now, do not change it.
369 * Explanation follows: if protocol handler, mangling packet, will
370 * be the first on list, it is not able to sense, that packet
371 * is cloned and should be copied-on-write, so that it will
372 * change it and subsequent readers will get broken packet.
373 * --ANK (980803)
374 */
375
376/**
377 * dev_add_pack - add packet handler
378 * @pt: packet type declaration
379 *
380 * Add a protocol handler to the networking stack. The passed &packet_type
381 * is linked into kernel lists and may not be freed until it has been
382 * removed from the kernel lists.
383 *
384 * This call does not sleep therefore it can not
385 * guarantee all CPU's that are in middle of receiving packets
386 * will see the new packet type (until the next received packet).
387 */
388
389void dev_add_pack(struct packet_type *pt)
390{
391 int hash;
392
393 spin_lock_bh(&ptype_lock);
394 if (pt->type == htons(ETH_P_ALL))
395 list_add_rcu(&pt->list, &ptype_all);
396 else {
397 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 list_add_rcu(&pt->list, &ptype_base[hash]);
399 }
400 spin_unlock_bh(&ptype_lock);
401}
402EXPORT_SYMBOL(dev_add_pack);
403
404/**
405 * __dev_remove_pack - remove packet handler
406 * @pt: packet type declaration
407 *
408 * Remove a protocol handler that was previously added to the kernel
409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
410 * from the kernel lists and can be freed or reused once this function
411 * returns.
412 *
413 * The packet type might still be in use by receivers
414 * and must not be freed until after all the CPU's have gone
415 * through a quiescent state.
416 */
417void __dev_remove_pack(struct packet_type *pt)
418{
419 struct list_head *head;
420 struct packet_type *pt1;
421
422 spin_lock_bh(&ptype_lock);
423
424 if (pt->type == htons(ETH_P_ALL))
425 head = &ptype_all;
426 else
427 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428
429 list_for_each_entry(pt1, head, list) {
430 if (pt == pt1) {
431 list_del_rcu(&pt->list);
432 goto out;
433 }
434 }
435
436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437out:
438 spin_unlock_bh(&ptype_lock);
439}
440EXPORT_SYMBOL(__dev_remove_pack);
441
442/**
443 * dev_remove_pack - remove packet handler
444 * @pt: packet type declaration
445 *
446 * Remove a protocol handler that was previously added to the kernel
447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
448 * from the kernel lists and can be freed or reused once this function
449 * returns.
450 *
451 * This call sleeps to guarantee that no CPU is looking at the packet
452 * type after return.
453 */
454void dev_remove_pack(struct packet_type *pt)
455{
456 __dev_remove_pack(pt);
457
458 synchronize_net();
459}
460EXPORT_SYMBOL(dev_remove_pack);
461
462/******************************************************************************
463
464 Device Boot-time Settings Routines
465
466*******************************************************************************/
467
468/* Boot time configuration table */
469static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470
471/**
472 * netdev_boot_setup_add - add new setup entry
473 * @name: name of the device
474 * @map: configured settings for the device
475 *
476 * Adds new setup entry to the dev_boot_setup list. The function
477 * returns 0 on error and 1 on success. This is a generic routine to
478 * all netdevices.
479 */
480static int netdev_boot_setup_add(char *name, struct ifmap *map)
481{
482 struct netdev_boot_setup *s;
483 int i;
484
485 s = dev_boot_setup;
486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 memset(s[i].name, 0, sizeof(s[i].name));
489 strlcpy(s[i].name, name, IFNAMSIZ);
490 memcpy(&s[i].map, map, sizeof(s[i].map));
491 break;
492 }
493 }
494
495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496}
497
498/**
499 * netdev_boot_setup_check - check boot time settings
500 * @dev: the netdevice
501 *
502 * Check boot time settings for the device.
503 * The found settings are set for the device to be used
504 * later in the device probing.
505 * Returns 0 if no settings found, 1 if they are.
506 */
507int netdev_boot_setup_check(struct net_device *dev)
508{
509 struct netdev_boot_setup *s = dev_boot_setup;
510 int i;
511
512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 !strcmp(dev->name, s[i].name)) {
515 dev->irq = s[i].map.irq;
516 dev->base_addr = s[i].map.base_addr;
517 dev->mem_start = s[i].map.mem_start;
518 dev->mem_end = s[i].map.mem_end;
519 return 1;
520 }
521 }
522 return 0;
523}
524EXPORT_SYMBOL(netdev_boot_setup_check);
525
526
527/**
528 * netdev_boot_base - get address from boot time settings
529 * @prefix: prefix for network device
530 * @unit: id for network device
531 *
532 * Check boot time settings for the base address of device.
533 * The found settings are set for the device to be used
534 * later in the device probing.
535 * Returns 0 if no settings found.
536 */
537unsigned long netdev_boot_base(const char *prefix, int unit)
538{
539 const struct netdev_boot_setup *s = dev_boot_setup;
540 char name[IFNAMSIZ];
541 int i;
542
543 sprintf(name, "%s%d", prefix, unit);
544
545 /*
546 * If device already registered then return base of 1
547 * to indicate not to probe for this interface
548 */
549 if (__dev_get_by_name(&init_net, name))
550 return 1;
551
552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 if (!strcmp(name, s[i].name))
554 return s[i].map.base_addr;
555 return 0;
556}
557
558/*
559 * Saves at boot time configured settings for any netdevice.
560 */
561int __init netdev_boot_setup(char *str)
562{
563 int ints[5];
564 struct ifmap map;
565
566 str = get_options(str, ARRAY_SIZE(ints), ints);
567 if (!str || !*str)
568 return 0;
569
570 /* Save settings */
571 memset(&map, 0, sizeof(map));
572 if (ints[0] > 0)
573 map.irq = ints[1];
574 if (ints[0] > 1)
575 map.base_addr = ints[2];
576 if (ints[0] > 2)
577 map.mem_start = ints[3];
578 if (ints[0] > 3)
579 map.mem_end = ints[4];
580
581 /* Add new entry to the list */
582 return netdev_boot_setup_add(str, &map);
583}
584
585__setup("netdev=", netdev_boot_setup);
586
587/*******************************************************************************
588
589 Device Interface Subroutines
590
591*******************************************************************************/
592
593/**
594 * __dev_get_by_name - find a device by its name
595 * @net: the applicable net namespace
596 * @name: name to find
597 *
598 * Find an interface by name. Must be called under RTNL semaphore
599 * or @dev_base_lock. If the name is found a pointer to the device
600 * is returned. If the name is not found then %NULL is returned. The
601 * reference counters are not incremented so the caller must be
602 * careful with locks.
603 */
604
605struct net_device *__dev_get_by_name(struct net *net, const char *name)
606{
607 struct hlist_node *p;
608 struct net_device *dev;
609 struct hlist_head *head = dev_name_hash(net, name);
610
611 hlist_for_each_entry(dev, p, head, name_hlist)
612 if (!strncmp(dev->name, name, IFNAMSIZ))
613 return dev;
614
615 return NULL;
616}
617EXPORT_SYMBOL(__dev_get_by_name);
618
619/**
620 * dev_get_by_name_rcu - find a device by its name
621 * @net: the applicable net namespace
622 * @name: name to find
623 *
624 * Find an interface by name.
625 * If the name is found a pointer to the device is returned.
626 * If the name is not found then %NULL is returned.
627 * The reference counters are not incremented so the caller must be
628 * careful with locks. The caller must hold RCU lock.
629 */
630
631struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632{
633 struct hlist_node *p;
634 struct net_device *dev;
635 struct hlist_head *head = dev_name_hash(net, name);
636
637 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 if (!strncmp(dev->name, name, IFNAMSIZ))
639 return dev;
640
641 return NULL;
642}
643EXPORT_SYMBOL(dev_get_by_name_rcu);
644
645/**
646 * dev_get_by_name - find a device by its name
647 * @net: the applicable net namespace
648 * @name: name to find
649 *
650 * Find an interface by name. This can be called from any
651 * context and does its own locking. The returned handle has
652 * the usage count incremented and the caller must use dev_put() to
653 * release it when it is no longer needed. %NULL is returned if no
654 * matching device is found.
655 */
656
657struct net_device *dev_get_by_name(struct net *net, const char *name)
658{
659 struct net_device *dev;
660
661 rcu_read_lock();
662 dev = dev_get_by_name_rcu(net, name);
663 if (dev)
664 dev_hold(dev);
665 rcu_read_unlock();
666 return dev;
667}
668EXPORT_SYMBOL(dev_get_by_name);
669
670/**
671 * __dev_get_by_index - find a device by its ifindex
672 * @net: the applicable net namespace
673 * @ifindex: index of device
674 *
675 * Search for an interface by index. Returns %NULL if the device
676 * is not found or a pointer to the device. The device has not
677 * had its reference counter increased so the caller must be careful
678 * about locking. The caller must hold either the RTNL semaphore
679 * or @dev_base_lock.
680 */
681
682struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683{
684 struct hlist_node *p;
685 struct net_device *dev;
686 struct hlist_head *head = dev_index_hash(net, ifindex);
687
688 hlist_for_each_entry(dev, p, head, index_hlist)
689 if (dev->ifindex == ifindex)
690 return dev;
691
692 return NULL;
693}
694EXPORT_SYMBOL(__dev_get_by_index);
695
696/**
697 * dev_get_by_index_rcu - find a device by its ifindex
698 * @net: the applicable net namespace
699 * @ifindex: index of device
700 *
701 * Search for an interface by index. Returns %NULL if the device
702 * is not found or a pointer to the device. The device has not
703 * had its reference counter increased so the caller must be careful
704 * about locking. The caller must hold RCU lock.
705 */
706
707struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708{
709 struct hlist_node *p;
710 struct net_device *dev;
711 struct hlist_head *head = dev_index_hash(net, ifindex);
712
713 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 if (dev->ifindex == ifindex)
715 return dev;
716
717 return NULL;
718}
719EXPORT_SYMBOL(dev_get_by_index_rcu);
720
721
722/**
723 * dev_get_by_index - find a device by its ifindex
724 * @net: the applicable net namespace
725 * @ifindex: index of device
726 *
727 * Search for an interface by index. Returns NULL if the device
728 * is not found or a pointer to the device. The device returned has
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
733struct net_device *dev_get_by_index(struct net *net, int ifindex)
734{
735 struct net_device *dev;
736
737 rcu_read_lock();
738 dev = dev_get_by_index_rcu(net, ifindex);
739 if (dev)
740 dev_hold(dev);
741 rcu_read_unlock();
742 return dev;
743}
744EXPORT_SYMBOL(dev_get_by_index);
745
746/**
747 * dev_getbyhwaddr - find a device by its hardware address
748 * @net: the applicable net namespace
749 * @type: media type of device
750 * @ha: hardware address
751 *
752 * Search for an interface by MAC address. Returns NULL if the device
753 * is not found or a pointer to the device. The caller must hold the
754 * rtnl semaphore. The returned device has not had its ref count increased
755 * and the caller must therefore be careful about locking
756 *
757 * BUGS:
758 * If the API was consistent this would be __dev_get_by_hwaddr
759 */
760
761struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762{
763 struct net_device *dev;
764
765 ASSERT_RTNL();
766
767 for_each_netdev(net, dev)
768 if (dev->type == type &&
769 !memcmp(dev->dev_addr, ha, dev->addr_len))
770 return dev;
771
772 return NULL;
773}
774EXPORT_SYMBOL(dev_getbyhwaddr);
775
776struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777{
778 struct net_device *dev;
779
780 ASSERT_RTNL();
781 for_each_netdev(net, dev)
782 if (dev->type == type)
783 return dev;
784
785 return NULL;
786}
787EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788
789struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790{
791 struct net_device *dev, *ret = NULL;
792
793 rcu_read_lock();
794 for_each_netdev_rcu(net, dev)
795 if (dev->type == type) {
796 dev_hold(dev);
797 ret = dev;
798 break;
799 }
800 rcu_read_unlock();
801 return ret;
802}
803EXPORT_SYMBOL(dev_getfirstbyhwtype);
804
805/**
806 * dev_get_by_flags - find any device with given flags
807 * @net: the applicable net namespace
808 * @if_flags: IFF_* values
809 * @mask: bitmask of bits in if_flags to check
810 *
811 * Search for any interface with the given flags. Returns NULL if a device
812 * is not found or a pointer to the device. The device returned has
813 * had a reference added and the pointer is safe until the user calls
814 * dev_put to indicate they have finished with it.
815 */
816
817struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 unsigned short mask)
819{
820 struct net_device *dev, *ret;
821
822 ret = NULL;
823 rcu_read_lock();
824 for_each_netdev_rcu(net, dev) {
825 if (((dev->flags ^ if_flags) & mask) == 0) {
826 dev_hold(dev);
827 ret = dev;
828 break;
829 }
830 }
831 rcu_read_unlock();
832 return ret;
833}
834EXPORT_SYMBOL(dev_get_by_flags);
835
836/**
837 * dev_valid_name - check if name is okay for network device
838 * @name: name string
839 *
840 * Network device names need to be valid file names to
841 * to allow sysfs to work. We also disallow any kind of
842 * whitespace.
843 */
844int dev_valid_name(const char *name)
845{
846 if (*name == '\0')
847 return 0;
848 if (strlen(name) >= IFNAMSIZ)
849 return 0;
850 if (!strcmp(name, ".") || !strcmp(name, ".."))
851 return 0;
852
853 while (*name) {
854 if (*name == '/' || isspace(*name))
855 return 0;
856 name++;
857 }
858 return 1;
859}
860EXPORT_SYMBOL(dev_valid_name);
861
862/**
863 * __dev_alloc_name - allocate a name for a device
864 * @net: network namespace to allocate the device name in
865 * @name: name format string
866 * @buf: scratch buffer and result name string
867 *
868 * Passed a format string - eg "lt%d" it will try and find a suitable
869 * id. It scans list of devices to build up a free map, then chooses
870 * the first empty slot. The caller must hold the dev_base or rtnl lock
871 * while allocating the name and adding the device in order to avoid
872 * duplicates.
873 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874 * Returns the number of the unit assigned or a negative errno code.
875 */
876
877static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878{
879 int i = 0;
880 const char *p;
881 const int max_netdevices = 8*PAGE_SIZE;
882 unsigned long *inuse;
883 struct net_device *d;
884
885 p = strnchr(name, IFNAMSIZ-1, '%');
886 if (p) {
887 /*
888 * Verify the string as this thing may have come from
889 * the user. There must be either one "%d" and no other "%"
890 * characters.
891 */
892 if (p[1] != 'd' || strchr(p + 2, '%'))
893 return -EINVAL;
894
895 /* Use one page as a bit array of possible slots */
896 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 if (!inuse)
898 return -ENOMEM;
899
900 for_each_netdev(net, d) {
901 if (!sscanf(d->name, name, &i))
902 continue;
903 if (i < 0 || i >= max_netdevices)
904 continue;
905
906 /* avoid cases where sscanf is not exact inverse of printf */
907 snprintf(buf, IFNAMSIZ, name, i);
908 if (!strncmp(buf, d->name, IFNAMSIZ))
909 set_bit(i, inuse);
910 }
911
912 i = find_first_zero_bit(inuse, max_netdevices);
913 free_page((unsigned long) inuse);
914 }
915
916 if (buf != name)
917 snprintf(buf, IFNAMSIZ, name, i);
918 if (!__dev_get_by_name(net, buf))
919 return i;
920
921 /* It is possible to run out of possible slots
922 * when the name is long and there isn't enough space left
923 * for the digits, or if all bits are used.
924 */
925 return -ENFILE;
926}
927
928/**
929 * dev_alloc_name - allocate a name for a device
930 * @dev: device
931 * @name: name format string
932 *
933 * Passed a format string - eg "lt%d" it will try and find a suitable
934 * id. It scans list of devices to build up a free map, then chooses
935 * the first empty slot. The caller must hold the dev_base or rtnl lock
936 * while allocating the name and adding the device in order to avoid
937 * duplicates.
938 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939 * Returns the number of the unit assigned or a negative errno code.
940 */
941
942int dev_alloc_name(struct net_device *dev, const char *name)
943{
944 char buf[IFNAMSIZ];
945 struct net *net;
946 int ret;
947
948 BUG_ON(!dev_net(dev));
949 net = dev_net(dev);
950 ret = __dev_alloc_name(net, name, buf);
951 if (ret >= 0)
952 strlcpy(dev->name, buf, IFNAMSIZ);
953 return ret;
954}
955EXPORT_SYMBOL(dev_alloc_name);
956
957static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958{
959 struct net *net;
960
961 BUG_ON(!dev_net(dev));
962 net = dev_net(dev);
963
964 if (!dev_valid_name(name))
965 return -EINVAL;
966
967 if (fmt && strchr(name, '%'))
968 return dev_alloc_name(dev, name);
969 else if (__dev_get_by_name(net, name))
970 return -EEXIST;
971 else if (dev->name != name)
972 strlcpy(dev->name, name, IFNAMSIZ);
973
974 return 0;
975}
976
977/**
978 * dev_change_name - change name of a device
979 * @dev: device
980 * @newname: name (or format string) must be at least IFNAMSIZ
981 *
982 * Change name of a device, can pass format strings "eth%d".
983 * for wildcarding.
984 */
985int dev_change_name(struct net_device *dev, const char *newname)
986{
987 char oldname[IFNAMSIZ];
988 int err = 0;
989 int ret;
990 struct net *net;
991
992 ASSERT_RTNL();
993 BUG_ON(!dev_net(dev));
994
995 net = dev_net(dev);
996 if (dev->flags & IFF_UP)
997 return -EBUSY;
998
999 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 return 0;
1001
1002 memcpy(oldname, dev->name, IFNAMSIZ);
1003
1004 err = dev_get_valid_name(dev, newname, 1);
1005 if (err < 0)
1006 return err;
1007
1008rollback:
1009 ret = device_rename(&dev->dev, dev->name);
1010 if (ret) {
1011 memcpy(dev->name, oldname, IFNAMSIZ);
1012 return ret;
1013 }
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_del(&dev->name_hlist);
1017 write_unlock_bh(&dev_base_lock);
1018
1019 synchronize_rcu();
1020
1021 write_lock_bh(&dev_base_lock);
1022 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 write_unlock_bh(&dev_base_lock);
1024
1025 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 ret = notifier_to_errno(ret);
1027
1028 if (ret) {
1029 /* err >= 0 after dev_alloc_name() or stores the first errno */
1030 if (err >= 0) {
1031 err = ret;
1032 memcpy(dev->name, oldname, IFNAMSIZ);
1033 goto rollback;
1034 } else {
1035 printk(KERN_ERR
1036 "%s: name change rollback failed: %d.\n",
1037 dev->name, ret);
1038 }
1039 }
1040
1041 return err;
1042}
1043
1044/**
1045 * dev_set_alias - change ifalias of a device
1046 * @dev: device
1047 * @alias: name up to IFALIASZ
1048 * @len: limit of bytes to copy from info
1049 *
1050 * Set ifalias for a device,
1051 */
1052int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053{
1054 ASSERT_RTNL();
1055
1056 if (len >= IFALIASZ)
1057 return -EINVAL;
1058
1059 if (!len) {
1060 if (dev->ifalias) {
1061 kfree(dev->ifalias);
1062 dev->ifalias = NULL;
1063 }
1064 return 0;
1065 }
1066
1067 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 if (!dev->ifalias)
1069 return -ENOMEM;
1070
1071 strlcpy(dev->ifalias, alias, len+1);
1072 return len;
1073}
1074
1075
1076/**
1077 * netdev_features_change - device changes features
1078 * @dev: device to cause notification
1079 *
1080 * Called to indicate a device has changed features.
1081 */
1082void netdev_features_change(struct net_device *dev)
1083{
1084 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085}
1086EXPORT_SYMBOL(netdev_features_change);
1087
1088/**
1089 * netdev_state_change - device changes state
1090 * @dev: device to cause notification
1091 *
1092 * Called to indicate a device has changed state. This function calls
1093 * the notifier chains for netdev_chain and sends a NEWLINK message
1094 * to the routing socket.
1095 */
1096void netdev_state_change(struct net_device *dev)
1097{
1098 if (dev->flags & IFF_UP) {
1099 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 }
1102}
1103EXPORT_SYMBOL(netdev_state_change);
1104
1105int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106{
1107 return call_netdevice_notifiers(event, dev);
1108}
1109EXPORT_SYMBOL(netdev_bonding_change);
1110
1111/**
1112 * dev_load - load a network module
1113 * @net: the applicable net namespace
1114 * @name: name of interface
1115 *
1116 * If a network interface is not present and the process has suitable
1117 * privileges this function loads the module. If module loading is not
1118 * available in this kernel then it becomes a nop.
1119 */
1120
1121void dev_load(struct net *net, const char *name)
1122{
1123 struct net_device *dev;
1124
1125 rcu_read_lock();
1126 dev = dev_get_by_name_rcu(net, name);
1127 rcu_read_unlock();
1128
1129 if (!dev && capable(CAP_NET_ADMIN))
1130 request_module("%s", name);
1131}
1132EXPORT_SYMBOL(dev_load);
1133
1134static int __dev_open(struct net_device *dev)
1135{
1136 const struct net_device_ops *ops = dev->netdev_ops;
1137 int ret;
1138
1139 ASSERT_RTNL();
1140
1141 /*
1142 * Is it even present?
1143 */
1144 if (!netif_device_present(dev))
1145 return -ENODEV;
1146
1147 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 ret = notifier_to_errno(ret);
1149 if (ret)
1150 return ret;
1151
1152 /*
1153 * Call device private open method
1154 */
1155 set_bit(__LINK_STATE_START, &dev->state);
1156
1157 if (ops->ndo_validate_addr)
1158 ret = ops->ndo_validate_addr(dev);
1159
1160 if (!ret && ops->ndo_open)
1161 ret = ops->ndo_open(dev);
1162
1163 /*
1164 * If it went open OK then:
1165 */
1166
1167 if (ret)
1168 clear_bit(__LINK_STATE_START, &dev->state);
1169 else {
1170 /*
1171 * Set the flags.
1172 */
1173 dev->flags |= IFF_UP;
1174
1175 /*
1176 * Enable NET_DMA
1177 */
1178 net_dmaengine_get();
1179
1180 /*
1181 * Initialize multicasting status
1182 */
1183 dev_set_rx_mode(dev);
1184
1185 /*
1186 * Wakeup transmit queue engine
1187 */
1188 dev_activate(dev);
1189 }
1190
1191 return ret;
1192}
1193
1194/**
1195 * dev_open - prepare an interface for use.
1196 * @dev: device to open
1197 *
1198 * Takes a device from down to up state. The device's private open
1199 * function is invoked and then the multicast lists are loaded. Finally
1200 * the device is moved into the up state and a %NETDEV_UP message is
1201 * sent to the netdev notifier chain.
1202 *
1203 * Calling this function on an active interface is a nop. On a failure
1204 * a negative errno code is returned.
1205 */
1206int dev_open(struct net_device *dev)
1207{
1208 int ret;
1209
1210 /*
1211 * Is it already up?
1212 */
1213 if (dev->flags & IFF_UP)
1214 return 0;
1215
1216 /*
1217 * Open device
1218 */
1219 ret = __dev_open(dev);
1220 if (ret < 0)
1221 return ret;
1222
1223 /*
1224 * ... and announce new interface.
1225 */
1226 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 call_netdevice_notifiers(NETDEV_UP, dev);
1228
1229 return ret;
1230}
1231EXPORT_SYMBOL(dev_open);
1232
1233static int __dev_close(struct net_device *dev)
1234{
1235 const struct net_device_ops *ops = dev->netdev_ops;
1236
1237 ASSERT_RTNL();
1238 might_sleep();
1239
1240 /*
1241 * Tell people we are going down, so that they can
1242 * prepare to death, when device is still operating.
1243 */
1244 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245
1246 clear_bit(__LINK_STATE_START, &dev->state);
1247
1248 /* Synchronize to scheduled poll. We cannot touch poll list,
1249 * it can be even on different cpu. So just clear netif_running().
1250 *
1251 * dev->stop() will invoke napi_disable() on all of it's
1252 * napi_struct instances on this device.
1253 */
1254 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255
1256 dev_deactivate(dev);
1257
1258 /*
1259 * Call the device specific close. This cannot fail.
1260 * Only if device is UP
1261 *
1262 * We allow it to be called even after a DETACH hot-plug
1263 * event.
1264 */
1265 if (ops->ndo_stop)
1266 ops->ndo_stop(dev);
1267
1268 /*
1269 * Device is now down.
1270 */
1271
1272 dev->flags &= ~IFF_UP;
1273
1274 /*
1275 * Shutdown NET_DMA
1276 */
1277 net_dmaengine_put();
1278
1279 return 0;
1280}
1281
1282/**
1283 * dev_close - shutdown an interface.
1284 * @dev: device to shutdown
1285 *
1286 * This function moves an active device into down state. A
1287 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289 * chain.
1290 */
1291int dev_close(struct net_device *dev)
1292{
1293 if (!(dev->flags & IFF_UP))
1294 return 0;
1295
1296 __dev_close(dev);
1297
1298 /*
1299 * Tell people we are down
1300 */
1301 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 call_netdevice_notifiers(NETDEV_DOWN, dev);
1303
1304 return 0;
1305}
1306EXPORT_SYMBOL(dev_close);
1307
1308
1309/**
1310 * dev_disable_lro - disable Large Receive Offload on a device
1311 * @dev: device
1312 *
1313 * Disable Large Receive Offload (LRO) on a net device. Must be
1314 * called under RTNL. This is needed if received packets may be
1315 * forwarded to another interface.
1316 */
1317void dev_disable_lro(struct net_device *dev)
1318{
1319 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 dev->ethtool_ops->set_flags) {
1321 u32 flags = dev->ethtool_ops->get_flags(dev);
1322 if (flags & ETH_FLAG_LRO) {
1323 flags &= ~ETH_FLAG_LRO;
1324 dev->ethtool_ops->set_flags(dev, flags);
1325 }
1326 }
1327 WARN_ON(dev->features & NETIF_F_LRO);
1328}
1329EXPORT_SYMBOL(dev_disable_lro);
1330
1331
1332static int dev_boot_phase = 1;
1333
1334/*
1335 * Device change register/unregister. These are not inline or static
1336 * as we export them to the world.
1337 */
1338
1339/**
1340 * register_netdevice_notifier - register a network notifier block
1341 * @nb: notifier
1342 *
1343 * Register a notifier to be called when network device events occur.
1344 * The notifier passed is linked into the kernel structures and must
1345 * not be reused until it has been unregistered. A negative errno code
1346 * is returned on a failure.
1347 *
1348 * When registered all registration and up events are replayed
1349 * to the new notifier to allow device to have a race free
1350 * view of the network device list.
1351 */
1352
1353int register_netdevice_notifier(struct notifier_block *nb)
1354{
1355 struct net_device *dev;
1356 struct net_device *last;
1357 struct net *net;
1358 int err;
1359
1360 rtnl_lock();
1361 err = raw_notifier_chain_register(&netdev_chain, nb);
1362 if (err)
1363 goto unlock;
1364 if (dev_boot_phase)
1365 goto unlock;
1366 for_each_net(net) {
1367 for_each_netdev(net, dev) {
1368 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 err = notifier_to_errno(err);
1370 if (err)
1371 goto rollback;
1372
1373 if (!(dev->flags & IFF_UP))
1374 continue;
1375
1376 nb->notifier_call(nb, NETDEV_UP, dev);
1377 }
1378 }
1379
1380unlock:
1381 rtnl_unlock();
1382 return err;
1383
1384rollback:
1385 last = dev;
1386 for_each_net(net) {
1387 for_each_netdev(net, dev) {
1388 if (dev == last)
1389 break;
1390
1391 if (dev->flags & IFF_UP) {
1392 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 }
1395 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 }
1398 }
1399
1400 raw_notifier_chain_unregister(&netdev_chain, nb);
1401 goto unlock;
1402}
1403EXPORT_SYMBOL(register_netdevice_notifier);
1404
1405/**
1406 * unregister_netdevice_notifier - unregister a network notifier block
1407 * @nb: notifier
1408 *
1409 * Unregister a notifier previously registered by
1410 * register_netdevice_notifier(). The notifier is unlinked into the
1411 * kernel structures and may then be reused. A negative errno code
1412 * is returned on a failure.
1413 */
1414
1415int unregister_netdevice_notifier(struct notifier_block *nb)
1416{
1417 int err;
1418
1419 rtnl_lock();
1420 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 rtnl_unlock();
1422 return err;
1423}
1424EXPORT_SYMBOL(unregister_netdevice_notifier);
1425
1426/**
1427 * call_netdevice_notifiers - call all network notifier blocks
1428 * @val: value passed unmodified to notifier function
1429 * @dev: net_device pointer passed unmodified to notifier function
1430 *
1431 * Call all network notifier blocks. Parameters and return value
1432 * are as for raw_notifier_call_chain().
1433 */
1434
1435int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436{
1437 ASSERT_RTNL();
1438 return raw_notifier_call_chain(&netdev_chain, val, dev);
1439}
1440
1441/* When > 0 there are consumers of rx skb time stamps */
1442static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443
1444void net_enable_timestamp(void)
1445{
1446 atomic_inc(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_enable_timestamp);
1449
1450void net_disable_timestamp(void)
1451{
1452 atomic_dec(&netstamp_needed);
1453}
1454EXPORT_SYMBOL(net_disable_timestamp);
1455
1456static inline void net_timestamp_set(struct sk_buff *skb)
1457{
1458 if (atomic_read(&netstamp_needed))
1459 __net_timestamp(skb);
1460 else
1461 skb->tstamp.tv64 = 0;
1462}
1463
1464static inline void net_timestamp_check(struct sk_buff *skb)
1465{
1466 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 __net_timestamp(skb);
1468}
1469
1470/**
1471 * dev_forward_skb - loopback an skb to another netif
1472 *
1473 * @dev: destination network device
1474 * @skb: buffer to forward
1475 *
1476 * return values:
1477 * NET_RX_SUCCESS (no congestion)
1478 * NET_RX_DROP (packet was dropped, but freed)
1479 *
1480 * dev_forward_skb can be used for injecting an skb from the
1481 * start_xmit function of one device into the receive queue
1482 * of another device.
1483 *
1484 * The receiving device may be in another namespace, so
1485 * we have to clear all information in the skb that could
1486 * impact namespace isolation.
1487 */
1488int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489{
1490 skb_orphan(skb);
1491
1492 if (!(dev->flags & IFF_UP) ||
1493 (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 kfree_skb(skb);
1495 return NET_RX_DROP;
1496 }
1497 skb_set_dev(skb, dev);
1498 skb->tstamp.tv64 = 0;
1499 skb->pkt_type = PACKET_HOST;
1500 skb->protocol = eth_type_trans(skb, dev);
1501 return netif_rx(skb);
1502}
1503EXPORT_SYMBOL_GPL(dev_forward_skb);
1504
1505/*
1506 * Support routine. Sends outgoing frames to any network
1507 * taps currently in use.
1508 */
1509
1510static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511{
1512 struct packet_type *ptype;
1513
1514#ifdef CONFIG_NET_CLS_ACT
1515 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 net_timestamp_set(skb);
1517#else
1518 net_timestamp_set(skb);
1519#endif
1520
1521 rcu_read_lock();
1522 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 /* Never send packets back to the socket
1524 * they originated from - MvS (miquels@drinkel.ow.org)
1525 */
1526 if ((ptype->dev == dev || !ptype->dev) &&
1527 (ptype->af_packet_priv == NULL ||
1528 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 if (!skb2)
1531 break;
1532
1533 /* skb->nh should be correctly
1534 set by sender, so that the second statement is
1535 just protection against buggy protocols.
1536 */
1537 skb_reset_mac_header(skb2);
1538
1539 if (skb_network_header(skb2) < skb2->data ||
1540 skb2->network_header > skb2->tail) {
1541 if (net_ratelimit())
1542 printk(KERN_CRIT "protocol %04x is "
1543 "buggy, dev %s\n",
1544 skb2->protocol, dev->name);
1545 skb_reset_network_header(skb2);
1546 }
1547
1548 skb2->transport_header = skb2->network_header;
1549 skb2->pkt_type = PACKET_OUTGOING;
1550 ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 }
1552 }
1553 rcu_read_unlock();
1554}
1555
1556/*
1557 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1558 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1559 */
1560void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1561{
1562 unsigned int real_num = dev->real_num_tx_queues;
1563
1564 if (unlikely(txq > dev->num_tx_queues))
1565 ;
1566 else if (txq > real_num)
1567 dev->real_num_tx_queues = txq;
1568 else if (txq < real_num) {
1569 dev->real_num_tx_queues = txq;
1570 qdisc_reset_all_tx_gt(dev, txq);
1571 }
1572}
1573EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574
1575static inline void __netif_reschedule(struct Qdisc *q)
1576{
1577 struct softnet_data *sd;
1578 unsigned long flags;
1579
1580 local_irq_save(flags);
1581 sd = &__get_cpu_var(softnet_data);
1582 q->next_sched = NULL;
1583 *sd->output_queue_tailp = q;
1584 sd->output_queue_tailp = &q->next_sched;
1585 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1586 local_irq_restore(flags);
1587}
1588
1589void __netif_schedule(struct Qdisc *q)
1590{
1591 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1592 __netif_reschedule(q);
1593}
1594EXPORT_SYMBOL(__netif_schedule);
1595
1596void dev_kfree_skb_irq(struct sk_buff *skb)
1597{
1598 if (atomic_dec_and_test(&skb->users)) {
1599 struct softnet_data *sd;
1600 unsigned long flags;
1601
1602 local_irq_save(flags);
1603 sd = &__get_cpu_var(softnet_data);
1604 skb->next = sd->completion_queue;
1605 sd->completion_queue = skb;
1606 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1607 local_irq_restore(flags);
1608 }
1609}
1610EXPORT_SYMBOL(dev_kfree_skb_irq);
1611
1612void dev_kfree_skb_any(struct sk_buff *skb)
1613{
1614 if (in_irq() || irqs_disabled())
1615 dev_kfree_skb_irq(skb);
1616 else
1617 dev_kfree_skb(skb);
1618}
1619EXPORT_SYMBOL(dev_kfree_skb_any);
1620
1621
1622/**
1623 * netif_device_detach - mark device as removed
1624 * @dev: network device
1625 *
1626 * Mark device as removed from system and therefore no longer available.
1627 */
1628void netif_device_detach(struct net_device *dev)
1629{
1630 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1631 netif_running(dev)) {
1632 netif_tx_stop_all_queues(dev);
1633 }
1634}
1635EXPORT_SYMBOL(netif_device_detach);
1636
1637/**
1638 * netif_device_attach - mark device as attached
1639 * @dev: network device
1640 *
1641 * Mark device as attached from system and restart if needed.
1642 */
1643void netif_device_attach(struct net_device *dev)
1644{
1645 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1646 netif_running(dev)) {
1647 netif_tx_wake_all_queues(dev);
1648 __netdev_watchdog_up(dev);
1649 }
1650}
1651EXPORT_SYMBOL(netif_device_attach);
1652
1653static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1654{
1655 return ((features & NETIF_F_GEN_CSUM) ||
1656 ((features & NETIF_F_IP_CSUM) &&
1657 protocol == htons(ETH_P_IP)) ||
1658 ((features & NETIF_F_IPV6_CSUM) &&
1659 protocol == htons(ETH_P_IPV6)) ||
1660 ((features & NETIF_F_FCOE_CRC) &&
1661 protocol == htons(ETH_P_FCOE)));
1662}
1663
1664static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1665{
1666 if (can_checksum_protocol(dev->features, skb->protocol))
1667 return true;
1668
1669 if (skb->protocol == htons(ETH_P_8021Q)) {
1670 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1671 if (can_checksum_protocol(dev->features & dev->vlan_features,
1672 veh->h_vlan_encapsulated_proto))
1673 return true;
1674 }
1675
1676 return false;
1677}
1678
1679/**
1680 * skb_dev_set -- assign a new device to a buffer
1681 * @skb: buffer for the new device
1682 * @dev: network device
1683 *
1684 * If an skb is owned by a device already, we have to reset
1685 * all data private to the namespace a device belongs to
1686 * before assigning it a new device.
1687 */
1688#ifdef CONFIG_NET_NS
1689void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1690{
1691 skb_dst_drop(skb);
1692 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1693 secpath_reset(skb);
1694 nf_reset(skb);
1695 skb_init_secmark(skb);
1696 skb->mark = 0;
1697 skb->priority = 0;
1698 skb->nf_trace = 0;
1699 skb->ipvs_property = 0;
1700#ifdef CONFIG_NET_SCHED
1701 skb->tc_index = 0;
1702#endif
1703 }
1704 skb->dev = dev;
1705}
1706EXPORT_SYMBOL(skb_set_dev);
1707#endif /* CONFIG_NET_NS */
1708
1709/*
1710 * Invalidate hardware checksum when packet is to be mangled, and
1711 * complete checksum manually on outgoing path.
1712 */
1713int skb_checksum_help(struct sk_buff *skb)
1714{
1715 __wsum csum;
1716 int ret = 0, offset;
1717
1718 if (skb->ip_summed == CHECKSUM_COMPLETE)
1719 goto out_set_summed;
1720
1721 if (unlikely(skb_shinfo(skb)->gso_size)) {
1722 /* Let GSO fix up the checksum. */
1723 goto out_set_summed;
1724 }
1725
1726 offset = skb->csum_start - skb_headroom(skb);
1727 BUG_ON(offset >= skb_headlen(skb));
1728 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1729
1730 offset += skb->csum_offset;
1731 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1732
1733 if (skb_cloned(skb) &&
1734 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1735 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1736 if (ret)
1737 goto out;
1738 }
1739
1740 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1741out_set_summed:
1742 skb->ip_summed = CHECKSUM_NONE;
1743out:
1744 return ret;
1745}
1746EXPORT_SYMBOL(skb_checksum_help);
1747
1748/**
1749 * skb_gso_segment - Perform segmentation on skb.
1750 * @skb: buffer to segment
1751 * @features: features for the output path (see dev->features)
1752 *
1753 * This function segments the given skb and returns a list of segments.
1754 *
1755 * It may return NULL if the skb requires no segmentation. This is
1756 * only possible when GSO is used for verifying header integrity.
1757 */
1758struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1759{
1760 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1761 struct packet_type *ptype;
1762 __be16 type = skb->protocol;
1763 int err;
1764
1765 skb_reset_mac_header(skb);
1766 skb->mac_len = skb->network_header - skb->mac_header;
1767 __skb_pull(skb, skb->mac_len);
1768
1769 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1770 struct net_device *dev = skb->dev;
1771 struct ethtool_drvinfo info = {};
1772
1773 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1774 dev->ethtool_ops->get_drvinfo(dev, &info);
1775
1776 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1777 "ip_summed=%d",
1778 info.driver, dev ? dev->features : 0L,
1779 skb->sk ? skb->sk->sk_route_caps : 0L,
1780 skb->len, skb->data_len, skb->ip_summed);
1781
1782 if (skb_header_cloned(skb) &&
1783 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1784 return ERR_PTR(err);
1785 }
1786
1787 rcu_read_lock();
1788 list_for_each_entry_rcu(ptype,
1789 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1790 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1791 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1792 err = ptype->gso_send_check(skb);
1793 segs = ERR_PTR(err);
1794 if (err || skb_gso_ok(skb, features))
1795 break;
1796 __skb_push(skb, (skb->data -
1797 skb_network_header(skb)));
1798 }
1799 segs = ptype->gso_segment(skb, features);
1800 break;
1801 }
1802 }
1803 rcu_read_unlock();
1804
1805 __skb_push(skb, skb->data - skb_mac_header(skb));
1806
1807 return segs;
1808}
1809EXPORT_SYMBOL(skb_gso_segment);
1810
1811/* Take action when hardware reception checksum errors are detected. */
1812#ifdef CONFIG_BUG
1813void netdev_rx_csum_fault(struct net_device *dev)
1814{
1815 if (net_ratelimit()) {
1816 printk(KERN_ERR "%s: hw csum failure.\n",
1817 dev ? dev->name : "<unknown>");
1818 dump_stack();
1819 }
1820}
1821EXPORT_SYMBOL(netdev_rx_csum_fault);
1822#endif
1823
1824/* Actually, we should eliminate this check as soon as we know, that:
1825 * 1. IOMMU is present and allows to map all the memory.
1826 * 2. No high memory really exists on this machine.
1827 */
1828
1829static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1830{
1831#ifdef CONFIG_HIGHMEM
1832 int i;
1833 if (!(dev->features & NETIF_F_HIGHDMA)) {
1834 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1835 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1836 return 1;
1837 }
1838
1839 if (PCI_DMA_BUS_IS_PHYS) {
1840 struct device *pdev = dev->dev.parent;
1841
1842 if (!pdev)
1843 return 0;
1844 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1846 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1847 return 1;
1848 }
1849 }
1850#endif
1851 return 0;
1852}
1853
1854struct dev_gso_cb {
1855 void (*destructor)(struct sk_buff *skb);
1856};
1857
1858#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1859
1860static void dev_gso_skb_destructor(struct sk_buff *skb)
1861{
1862 struct dev_gso_cb *cb;
1863
1864 do {
1865 struct sk_buff *nskb = skb->next;
1866
1867 skb->next = nskb->next;
1868 nskb->next = NULL;
1869 kfree_skb(nskb);
1870 } while (skb->next);
1871
1872 cb = DEV_GSO_CB(skb);
1873 if (cb->destructor)
1874 cb->destructor(skb);
1875}
1876
1877/**
1878 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1879 * @skb: buffer to segment
1880 *
1881 * This function segments the given skb and stores the list of segments
1882 * in skb->next.
1883 */
1884static int dev_gso_segment(struct sk_buff *skb)
1885{
1886 struct net_device *dev = skb->dev;
1887 struct sk_buff *segs;
1888 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1889 NETIF_F_SG : 0);
1890
1891 segs = skb_gso_segment(skb, features);
1892
1893 /* Verifying header integrity only. */
1894 if (!segs)
1895 return 0;
1896
1897 if (IS_ERR(segs))
1898 return PTR_ERR(segs);
1899
1900 skb->next = segs;
1901 DEV_GSO_CB(skb)->destructor = skb->destructor;
1902 skb->destructor = dev_gso_skb_destructor;
1903
1904 return 0;
1905}
1906
1907/*
1908 * Try to orphan skb early, right before transmission by the device.
1909 * We cannot orphan skb if tx timestamp is requested, since
1910 * drivers need to call skb_tstamp_tx() to send the timestamp.
1911 */
1912static inline void skb_orphan_try(struct sk_buff *skb)
1913{
1914 struct sock *sk = skb->sk;
1915
1916 if (sk && !skb_tx(skb)->flags) {
1917 /* skb_tx_hash() wont be able to get sk.
1918 * We copy sk_hash into skb->rxhash
1919 */
1920 if (!skb->rxhash)
1921 skb->rxhash = sk->sk_hash;
1922 skb_orphan(skb);
1923 }
1924}
1925
1926int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1927 struct netdev_queue *txq)
1928{
1929 const struct net_device_ops *ops = dev->netdev_ops;
1930 int rc = NETDEV_TX_OK;
1931
1932 if (likely(!skb->next)) {
1933 if (!list_empty(&ptype_all))
1934 dev_queue_xmit_nit(skb, dev);
1935
1936 /*
1937 * If device doesnt need skb->dst, release it right now while
1938 * its hot in this cpu cache
1939 */
1940 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1941 skb_dst_drop(skb);
1942
1943 skb_orphan_try(skb);
1944
1945 if (netif_needs_gso(dev, skb)) {
1946 if (unlikely(dev_gso_segment(skb)))
1947 goto out_kfree_skb;
1948 if (skb->next)
1949 goto gso;
1950 }
1951
1952 rc = ops->ndo_start_xmit(skb, dev);
1953 if (rc == NETDEV_TX_OK)
1954 txq_trans_update(txq);
1955 return rc;
1956 }
1957
1958gso:
1959 do {
1960 struct sk_buff *nskb = skb->next;
1961
1962 skb->next = nskb->next;
1963 nskb->next = NULL;
1964
1965 /*
1966 * If device doesnt need nskb->dst, release it right now while
1967 * its hot in this cpu cache
1968 */
1969 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1970 skb_dst_drop(nskb);
1971
1972 rc = ops->ndo_start_xmit(nskb, dev);
1973 if (unlikely(rc != NETDEV_TX_OK)) {
1974 if (rc & ~NETDEV_TX_MASK)
1975 goto out_kfree_gso_skb;
1976 nskb->next = skb->next;
1977 skb->next = nskb;
1978 return rc;
1979 }
1980 txq_trans_update(txq);
1981 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1982 return NETDEV_TX_BUSY;
1983 } while (skb->next);
1984
1985out_kfree_gso_skb:
1986 if (likely(skb->next == NULL))
1987 skb->destructor = DEV_GSO_CB(skb)->destructor;
1988out_kfree_skb:
1989 kfree_skb(skb);
1990 return rc;
1991}
1992
1993static u32 hashrnd __read_mostly;
1994
1995u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1996{
1997 u32 hash;
1998
1999 if (skb_rx_queue_recorded(skb)) {
2000 hash = skb_get_rx_queue(skb);
2001 while (unlikely(hash >= dev->real_num_tx_queues))
2002 hash -= dev->real_num_tx_queues;
2003 return hash;
2004 }
2005
2006 if (skb->sk && skb->sk->sk_hash)
2007 hash = skb->sk->sk_hash;
2008 else
2009 hash = (__force u16) skb->protocol ^ skb->rxhash;
2010 hash = jhash_1word(hash, hashrnd);
2011
2012 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2013}
2014EXPORT_SYMBOL(skb_tx_hash);
2015
2016static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2017{
2018 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2019 if (net_ratelimit()) {
2020 pr_warning("%s selects TX queue %d, but "
2021 "real number of TX queues is %d\n",
2022 dev->name, queue_index, dev->real_num_tx_queues);
2023 }
2024 return 0;
2025 }
2026 return queue_index;
2027}
2028
2029static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2030 struct sk_buff *skb)
2031{
2032 u16 queue_index;
2033 struct sock *sk = skb->sk;
2034
2035 if (sk_tx_queue_recorded(sk)) {
2036 queue_index = sk_tx_queue_get(sk);
2037 } else {
2038 const struct net_device_ops *ops = dev->netdev_ops;
2039
2040 if (ops->ndo_select_queue) {
2041 queue_index = ops->ndo_select_queue(dev, skb);
2042 queue_index = dev_cap_txqueue(dev, queue_index);
2043 } else {
2044 queue_index = 0;
2045 if (dev->real_num_tx_queues > 1)
2046 queue_index = skb_tx_hash(dev, skb);
2047
2048 if (sk) {
2049 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2050
2051 if (dst && skb_dst(skb) == dst)
2052 sk_tx_queue_set(sk, queue_index);
2053 }
2054 }
2055 }
2056
2057 skb_set_queue_mapping(skb, queue_index);
2058 return netdev_get_tx_queue(dev, queue_index);
2059}
2060
2061static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2062 struct net_device *dev,
2063 struct netdev_queue *txq)
2064{
2065 spinlock_t *root_lock = qdisc_lock(q);
2066 int rc;
2067
2068 spin_lock(root_lock);
2069 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2070 kfree_skb(skb);
2071 rc = NET_XMIT_DROP;
2072 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2073 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2074 /*
2075 * This is a work-conserving queue; there are no old skbs
2076 * waiting to be sent out; and the qdisc is not running -
2077 * xmit the skb directly.
2078 */
2079 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2080 skb_dst_force(skb);
2081 __qdisc_update_bstats(q, skb->len);
2082 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2083 __qdisc_run(q);
2084 else
2085 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2086
2087 rc = NET_XMIT_SUCCESS;
2088 } else {
2089 skb_dst_force(skb);
2090 rc = qdisc_enqueue_root(skb, q);
2091 qdisc_run(q);
2092 }
2093 spin_unlock(root_lock);
2094
2095 return rc;
2096}
2097
2098/*
2099 * Returns true if either:
2100 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2101 * 2. skb is fragmented and the device does not support SG, or if
2102 * at least one of fragments is in highmem and device does not
2103 * support DMA from it.
2104 */
2105static inline int skb_needs_linearize(struct sk_buff *skb,
2106 struct net_device *dev)
2107{
2108 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2109 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2110 illegal_highdma(dev, skb)));
2111}
2112
2113/**
2114 * dev_queue_xmit - transmit a buffer
2115 * @skb: buffer to transmit
2116 *
2117 * Queue a buffer for transmission to a network device. The caller must
2118 * have set the device and priority and built the buffer before calling
2119 * this function. The function can be called from an interrupt.
2120 *
2121 * A negative errno code is returned on a failure. A success does not
2122 * guarantee the frame will be transmitted as it may be dropped due
2123 * to congestion or traffic shaping.
2124 *
2125 * -----------------------------------------------------------------------------------
2126 * I notice this method can also return errors from the queue disciplines,
2127 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2128 * be positive.
2129 *
2130 * Regardless of the return value, the skb is consumed, so it is currently
2131 * difficult to retry a send to this method. (You can bump the ref count
2132 * before sending to hold a reference for retry if you are careful.)
2133 *
2134 * When calling this method, interrupts MUST be enabled. This is because
2135 * the BH enable code must have IRQs enabled so that it will not deadlock.
2136 * --BLG
2137 */
2138int dev_queue_xmit(struct sk_buff *skb)
2139{
2140 struct net_device *dev = skb->dev;
2141 struct netdev_queue *txq;
2142 struct Qdisc *q;
2143 int rc = -ENOMEM;
2144
2145 /* GSO will handle the following emulations directly. */
2146 if (netif_needs_gso(dev, skb))
2147 goto gso;
2148
2149 /* Convert a paged skb to linear, if required */
2150 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2151 goto out_kfree_skb;
2152
2153 /* If packet is not checksummed and device does not support
2154 * checksumming for this protocol, complete checksumming here.
2155 */
2156 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2157 skb_set_transport_header(skb, skb->csum_start -
2158 skb_headroom(skb));
2159 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2160 goto out_kfree_skb;
2161 }
2162
2163gso:
2164 /* Disable soft irqs for various locks below. Also
2165 * stops preemption for RCU.
2166 */
2167 rcu_read_lock_bh();
2168
2169 txq = dev_pick_tx(dev, skb);
2170 q = rcu_dereference_bh(txq->qdisc);
2171
2172#ifdef CONFIG_NET_CLS_ACT
2173 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2174#endif
2175 if (q->enqueue) {
2176 rc = __dev_xmit_skb(skb, q, dev, txq);
2177 goto out;
2178 }
2179
2180 /* The device has no queue. Common case for software devices:
2181 loopback, all the sorts of tunnels...
2182
2183 Really, it is unlikely that netif_tx_lock protection is necessary
2184 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2185 counters.)
2186 However, it is possible, that they rely on protection
2187 made by us here.
2188
2189 Check this and shot the lock. It is not prone from deadlocks.
2190 Either shot noqueue qdisc, it is even simpler 8)
2191 */
2192 if (dev->flags & IFF_UP) {
2193 int cpu = smp_processor_id(); /* ok because BHs are off */
2194
2195 if (txq->xmit_lock_owner != cpu) {
2196
2197 HARD_TX_LOCK(dev, txq, cpu);
2198
2199 if (!netif_tx_queue_stopped(txq)) {
2200 rc = dev_hard_start_xmit(skb, dev, txq);
2201 if (dev_xmit_complete(rc)) {
2202 HARD_TX_UNLOCK(dev, txq);
2203 goto out;
2204 }
2205 }
2206 HARD_TX_UNLOCK(dev, txq);
2207 if (net_ratelimit())
2208 printk(KERN_CRIT "Virtual device %s asks to "
2209 "queue packet!\n", dev->name);
2210 } else {
2211 /* Recursion is detected! It is possible,
2212 * unfortunately */
2213 if (net_ratelimit())
2214 printk(KERN_CRIT "Dead loop on virtual device "
2215 "%s, fix it urgently!\n", dev->name);
2216 }
2217 }
2218
2219 rc = -ENETDOWN;
2220 rcu_read_unlock_bh();
2221
2222out_kfree_skb:
2223 kfree_skb(skb);
2224 return rc;
2225out:
2226 rcu_read_unlock_bh();
2227 return rc;
2228}
2229EXPORT_SYMBOL(dev_queue_xmit);
2230
2231
2232/*=======================================================================
2233 Receiver routines
2234 =======================================================================*/
2235
2236int netdev_max_backlog __read_mostly = 1000;
2237int netdev_tstamp_prequeue __read_mostly = 1;
2238int netdev_budget __read_mostly = 300;
2239int weight_p __read_mostly = 64; /* old backlog weight */
2240
2241/* Called with irq disabled */
2242static inline void ____napi_schedule(struct softnet_data *sd,
2243 struct napi_struct *napi)
2244{
2245 list_add_tail(&napi->poll_list, &sd->poll_list);
2246 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2247}
2248
2249#ifdef CONFIG_RPS
2250
2251/* One global table that all flow-based protocols share. */
2252struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2253EXPORT_SYMBOL(rps_sock_flow_table);
2254
2255/*
2256 * get_rps_cpu is called from netif_receive_skb and returns the target
2257 * CPU from the RPS map of the receiving queue for a given skb.
2258 * rcu_read_lock must be held on entry.
2259 */
2260static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2261 struct rps_dev_flow **rflowp)
2262{
2263 struct ipv6hdr *ip6;
2264 struct iphdr *ip;
2265 struct netdev_rx_queue *rxqueue;
2266 struct rps_map *map;
2267 struct rps_dev_flow_table *flow_table;
2268 struct rps_sock_flow_table *sock_flow_table;
2269 int cpu = -1;
2270 u8 ip_proto;
2271 u16 tcpu;
2272 u32 addr1, addr2, ihl;
2273 union {
2274 u32 v32;
2275 u16 v16[2];
2276 } ports;
2277
2278 if (skb_rx_queue_recorded(skb)) {
2279 u16 index = skb_get_rx_queue(skb);
2280 if (unlikely(index >= dev->num_rx_queues)) {
2281 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2282 "on queue %u, but number of RX queues is %u\n",
2283 dev->name, index, dev->num_rx_queues);
2284 goto done;
2285 }
2286 rxqueue = dev->_rx + index;
2287 } else
2288 rxqueue = dev->_rx;
2289
2290 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2291 goto done;
2292
2293 if (skb->rxhash)
2294 goto got_hash; /* Skip hash computation on packet header */
2295
2296 switch (skb->protocol) {
2297 case __constant_htons(ETH_P_IP):
2298 if (!pskb_may_pull(skb, sizeof(*ip)))
2299 goto done;
2300
2301 ip = (struct iphdr *) skb->data;
2302 ip_proto = ip->protocol;
2303 addr1 = (__force u32) ip->saddr;
2304 addr2 = (__force u32) ip->daddr;
2305 ihl = ip->ihl;
2306 break;
2307 case __constant_htons(ETH_P_IPV6):
2308 if (!pskb_may_pull(skb, sizeof(*ip6)))
2309 goto done;
2310
2311 ip6 = (struct ipv6hdr *) skb->data;
2312 ip_proto = ip6->nexthdr;
2313 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2314 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2315 ihl = (40 >> 2);
2316 break;
2317 default:
2318 goto done;
2319 }
2320 switch (ip_proto) {
2321 case IPPROTO_TCP:
2322 case IPPROTO_UDP:
2323 case IPPROTO_DCCP:
2324 case IPPROTO_ESP:
2325 case IPPROTO_AH:
2326 case IPPROTO_SCTP:
2327 case IPPROTO_UDPLITE:
2328 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2329 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2330 if (ports.v16[1] < ports.v16[0])
2331 swap(ports.v16[0], ports.v16[1]);
2332 break;
2333 }
2334 default:
2335 ports.v32 = 0;
2336 break;
2337 }
2338
2339 /* get a consistent hash (same value on both flow directions) */
2340 if (addr2 < addr1)
2341 swap(addr1, addr2);
2342 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2343 if (!skb->rxhash)
2344 skb->rxhash = 1;
2345
2346got_hash:
2347 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2348 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2349 if (flow_table && sock_flow_table) {
2350 u16 next_cpu;
2351 struct rps_dev_flow *rflow;
2352
2353 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2354 tcpu = rflow->cpu;
2355
2356 next_cpu = sock_flow_table->ents[skb->rxhash &
2357 sock_flow_table->mask];
2358
2359 /*
2360 * If the desired CPU (where last recvmsg was done) is
2361 * different from current CPU (one in the rx-queue flow
2362 * table entry), switch if one of the following holds:
2363 * - Current CPU is unset (equal to RPS_NO_CPU).
2364 * - Current CPU is offline.
2365 * - The current CPU's queue tail has advanced beyond the
2366 * last packet that was enqueued using this table entry.
2367 * This guarantees that all previous packets for the flow
2368 * have been dequeued, thus preserving in order delivery.
2369 */
2370 if (unlikely(tcpu != next_cpu) &&
2371 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2372 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2373 rflow->last_qtail)) >= 0)) {
2374 tcpu = rflow->cpu = next_cpu;
2375 if (tcpu != RPS_NO_CPU)
2376 rflow->last_qtail = per_cpu(softnet_data,
2377 tcpu).input_queue_head;
2378 }
2379 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2380 *rflowp = rflow;
2381 cpu = tcpu;
2382 goto done;
2383 }
2384 }
2385
2386 map = rcu_dereference(rxqueue->rps_map);
2387 if (map) {
2388 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2389
2390 if (cpu_online(tcpu)) {
2391 cpu = tcpu;
2392 goto done;
2393 }
2394 }
2395
2396done:
2397 return cpu;
2398}
2399
2400/* Called from hardirq (IPI) context */
2401static void rps_trigger_softirq(void *data)
2402{
2403 struct softnet_data *sd = data;
2404
2405 ____napi_schedule(sd, &sd->backlog);
2406 sd->received_rps++;
2407}
2408
2409#endif /* CONFIG_RPS */
2410
2411/*
2412 * Check if this softnet_data structure is another cpu one
2413 * If yes, queue it to our IPI list and return 1
2414 * If no, return 0
2415 */
2416static int rps_ipi_queued(struct softnet_data *sd)
2417{
2418#ifdef CONFIG_RPS
2419 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2420
2421 if (sd != mysd) {
2422 sd->rps_ipi_next = mysd->rps_ipi_list;
2423 mysd->rps_ipi_list = sd;
2424
2425 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2426 return 1;
2427 }
2428#endif /* CONFIG_RPS */
2429 return 0;
2430}
2431
2432/*
2433 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2434 * queue (may be a remote CPU queue).
2435 */
2436static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2437 unsigned int *qtail)
2438{
2439 struct softnet_data *sd;
2440 unsigned long flags;
2441
2442 sd = &per_cpu(softnet_data, cpu);
2443
2444 local_irq_save(flags);
2445
2446 rps_lock(sd);
2447 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2448 if (skb_queue_len(&sd->input_pkt_queue)) {
2449enqueue:
2450 __skb_queue_tail(&sd->input_pkt_queue, skb);
2451 input_queue_tail_incr_save(sd, qtail);
2452 rps_unlock(sd);
2453 local_irq_restore(flags);
2454 return NET_RX_SUCCESS;
2455 }
2456
2457 /* Schedule NAPI for backlog device
2458 * We can use non atomic operation since we own the queue lock
2459 */
2460 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2461 if (!rps_ipi_queued(sd))
2462 ____napi_schedule(sd, &sd->backlog);
2463 }
2464 goto enqueue;
2465 }
2466
2467 sd->dropped++;
2468 rps_unlock(sd);
2469
2470 local_irq_restore(flags);
2471
2472 kfree_skb(skb);
2473 return NET_RX_DROP;
2474}
2475
2476/**
2477 * netif_rx - post buffer to the network code
2478 * @skb: buffer to post
2479 *
2480 * This function receives a packet from a device driver and queues it for
2481 * the upper (protocol) levels to process. It always succeeds. The buffer
2482 * may be dropped during processing for congestion control or by the
2483 * protocol layers.
2484 *
2485 * return values:
2486 * NET_RX_SUCCESS (no congestion)
2487 * NET_RX_DROP (packet was dropped)
2488 *
2489 */
2490
2491int netif_rx(struct sk_buff *skb)
2492{
2493 int ret;
2494
2495 /* if netpoll wants it, pretend we never saw it */
2496 if (netpoll_rx(skb))
2497 return NET_RX_DROP;
2498
2499 if (netdev_tstamp_prequeue)
2500 net_timestamp_check(skb);
2501
2502#ifdef CONFIG_RPS
2503 {
2504 struct rps_dev_flow voidflow, *rflow = &voidflow;
2505 int cpu;
2506
2507 rcu_read_lock();
2508
2509 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2510 if (cpu < 0)
2511 cpu = smp_processor_id();
2512
2513 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2514
2515 rcu_read_unlock();
2516 }
2517#else
2518 {
2519 unsigned int qtail;
2520 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2521 put_cpu();
2522 }
2523#endif
2524 return ret;
2525}
2526EXPORT_SYMBOL(netif_rx);
2527
2528int netif_rx_ni(struct sk_buff *skb)
2529{
2530 int err;
2531
2532 preempt_disable();
2533 err = netif_rx(skb);
2534 if (local_softirq_pending())
2535 do_softirq();
2536 preempt_enable();
2537
2538 return err;
2539}
2540EXPORT_SYMBOL(netif_rx_ni);
2541
2542static void net_tx_action(struct softirq_action *h)
2543{
2544 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2545
2546 if (sd->completion_queue) {
2547 struct sk_buff *clist;
2548
2549 local_irq_disable();
2550 clist = sd->completion_queue;
2551 sd->completion_queue = NULL;
2552 local_irq_enable();
2553
2554 while (clist) {
2555 struct sk_buff *skb = clist;
2556 clist = clist->next;
2557
2558 WARN_ON(atomic_read(&skb->users));
2559 __kfree_skb(skb);
2560 }
2561 }
2562
2563 if (sd->output_queue) {
2564 struct Qdisc *head;
2565
2566 local_irq_disable();
2567 head = sd->output_queue;
2568 sd->output_queue = NULL;
2569 sd->output_queue_tailp = &sd->output_queue;
2570 local_irq_enable();
2571
2572 while (head) {
2573 struct Qdisc *q = head;
2574 spinlock_t *root_lock;
2575
2576 head = head->next_sched;
2577
2578 root_lock = qdisc_lock(q);
2579 if (spin_trylock(root_lock)) {
2580 smp_mb__before_clear_bit();
2581 clear_bit(__QDISC_STATE_SCHED,
2582 &q->state);
2583 qdisc_run(q);
2584 spin_unlock(root_lock);
2585 } else {
2586 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2587 &q->state)) {
2588 __netif_reschedule(q);
2589 } else {
2590 smp_mb__before_clear_bit();
2591 clear_bit(__QDISC_STATE_SCHED,
2592 &q->state);
2593 }
2594 }
2595 }
2596 }
2597}
2598
2599static inline int deliver_skb(struct sk_buff *skb,
2600 struct packet_type *pt_prev,
2601 struct net_device *orig_dev)
2602{
2603 atomic_inc(&skb->users);
2604 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2605}
2606
2607#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2608
2609#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2610/* This hook is defined here for ATM LANE */
2611int (*br_fdb_test_addr_hook)(struct net_device *dev,
2612 unsigned char *addr) __read_mostly;
2613EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2614#endif
2615
2616/*
2617 * If bridge module is loaded call bridging hook.
2618 * returns NULL if packet was consumed.
2619 */
2620struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2621 struct sk_buff *skb) __read_mostly;
2622EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2623
2624static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2625 struct packet_type **pt_prev, int *ret,
2626 struct net_device *orig_dev)
2627{
2628 struct net_bridge_port *port;
2629
2630 if (skb->pkt_type == PACKET_LOOPBACK ||
2631 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2632 return skb;
2633
2634 if (*pt_prev) {
2635 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2636 *pt_prev = NULL;
2637 }
2638
2639 return br_handle_frame_hook(port, skb);
2640}
2641#else
2642#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2643#endif
2644
2645#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2646struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2647 struct sk_buff *skb) __read_mostly;
2648EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2649
2650static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2651 struct packet_type **pt_prev,
2652 int *ret,
2653 struct net_device *orig_dev)
2654{
2655 struct macvlan_port *port;
2656
2657 port = rcu_dereference(skb->dev->macvlan_port);
2658 if (!port)
2659 return skb;
2660
2661 if (*pt_prev) {
2662 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2663 *pt_prev = NULL;
2664 }
2665 return macvlan_handle_frame_hook(port, skb);
2666}
2667#else
2668#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2669#endif
2670
2671#ifdef CONFIG_NET_CLS_ACT
2672/* TODO: Maybe we should just force sch_ingress to be compiled in
2673 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2674 * a compare and 2 stores extra right now if we dont have it on
2675 * but have CONFIG_NET_CLS_ACT
2676 * NOTE: This doesnt stop any functionality; if you dont have
2677 * the ingress scheduler, you just cant add policies on ingress.
2678 *
2679 */
2680static int ing_filter(struct sk_buff *skb)
2681{
2682 struct net_device *dev = skb->dev;
2683 u32 ttl = G_TC_RTTL(skb->tc_verd);
2684 struct netdev_queue *rxq;
2685 int result = TC_ACT_OK;
2686 struct Qdisc *q;
2687
2688 if (MAX_RED_LOOP < ttl++) {
2689 printk(KERN_WARNING
2690 "Redir loop detected Dropping packet (%d->%d)\n",
2691 skb->skb_iif, dev->ifindex);
2692 return TC_ACT_SHOT;
2693 }
2694
2695 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2696 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2697
2698 rxq = &dev->rx_queue;
2699
2700 q = rxq->qdisc;
2701 if (q != &noop_qdisc) {
2702 spin_lock(qdisc_lock(q));
2703 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2704 result = qdisc_enqueue_root(skb, q);
2705 spin_unlock(qdisc_lock(q));
2706 }
2707
2708 return result;
2709}
2710
2711static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2712 struct packet_type **pt_prev,
2713 int *ret, struct net_device *orig_dev)
2714{
2715 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2716 goto out;
2717
2718 if (*pt_prev) {
2719 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2720 *pt_prev = NULL;
2721 } else {
2722 /* Huh? Why does turning on AF_PACKET affect this? */
2723 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2724 }
2725
2726 switch (ing_filter(skb)) {
2727 case TC_ACT_SHOT:
2728 case TC_ACT_STOLEN:
2729 kfree_skb(skb);
2730 return NULL;
2731 }
2732
2733out:
2734 skb->tc_verd = 0;
2735 return skb;
2736}
2737#endif
2738
2739/*
2740 * netif_nit_deliver - deliver received packets to network taps
2741 * @skb: buffer
2742 *
2743 * This function is used to deliver incoming packets to network
2744 * taps. It should be used when the normal netif_receive_skb path
2745 * is bypassed, for example because of VLAN acceleration.
2746 */
2747void netif_nit_deliver(struct sk_buff *skb)
2748{
2749 struct packet_type *ptype;
2750
2751 if (list_empty(&ptype_all))
2752 return;
2753
2754 skb_reset_network_header(skb);
2755 skb_reset_transport_header(skb);
2756 skb->mac_len = skb->network_header - skb->mac_header;
2757
2758 rcu_read_lock();
2759 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2760 if (!ptype->dev || ptype->dev == skb->dev)
2761 deliver_skb(skb, ptype, skb->dev);
2762 }
2763 rcu_read_unlock();
2764}
2765
2766static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2767 struct net_device *master)
2768{
2769 if (skb->pkt_type == PACKET_HOST) {
2770 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2771
2772 memcpy(dest, master->dev_addr, ETH_ALEN);
2773 }
2774}
2775
2776/* On bonding slaves other than the currently active slave, suppress
2777 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2778 * ARP on active-backup slaves with arp_validate enabled.
2779 */
2780int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2781{
2782 struct net_device *dev = skb->dev;
2783
2784 if (master->priv_flags & IFF_MASTER_ARPMON)
2785 dev->last_rx = jiffies;
2786
2787 if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2788 /* Do address unmangle. The local destination address
2789 * will be always the one master has. Provides the right
2790 * functionality in a bridge.
2791 */
2792 skb_bond_set_mac_by_master(skb, master);
2793 }
2794
2795 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2796 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2797 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2798 return 0;
2799
2800 if (master->priv_flags & IFF_MASTER_ALB) {
2801 if (skb->pkt_type != PACKET_BROADCAST &&
2802 skb->pkt_type != PACKET_MULTICAST)
2803 return 0;
2804 }
2805 if (master->priv_flags & IFF_MASTER_8023AD &&
2806 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2807 return 0;
2808
2809 return 1;
2810 }
2811 return 0;
2812}
2813EXPORT_SYMBOL(__skb_bond_should_drop);
2814
2815static int __netif_receive_skb(struct sk_buff *skb)
2816{
2817 struct packet_type *ptype, *pt_prev;
2818 struct net_device *orig_dev;
2819 struct net_device *master;
2820 struct net_device *null_or_orig;
2821 struct net_device *orig_or_bond;
2822 int ret = NET_RX_DROP;
2823 __be16 type;
2824
2825 if (!netdev_tstamp_prequeue)
2826 net_timestamp_check(skb);
2827
2828 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2829 return NET_RX_SUCCESS;
2830
2831 /* if we've gotten here through NAPI, check netpoll */
2832 if (netpoll_receive_skb(skb))
2833 return NET_RX_DROP;
2834
2835 if (!skb->skb_iif)
2836 skb->skb_iif = skb->dev->ifindex;
2837
2838 /*
2839 * bonding note: skbs received on inactive slaves should only
2840 * be delivered to pkt handlers that are exact matches. Also
2841 * the deliver_no_wcard flag will be set. If packet handlers
2842 * are sensitive to duplicate packets these skbs will need to
2843 * be dropped at the handler. The vlan accel path may have
2844 * already set the deliver_no_wcard flag.
2845 */
2846 null_or_orig = NULL;
2847 orig_dev = skb->dev;
2848 master = ACCESS_ONCE(orig_dev->master);
2849 if (skb->deliver_no_wcard)
2850 null_or_orig = orig_dev;
2851 else if (master) {
2852 if (skb_bond_should_drop(skb, master)) {
2853 skb->deliver_no_wcard = 1;
2854 null_or_orig = orig_dev; /* deliver only exact match */
2855 } else
2856 skb->dev = master;
2857 }
2858
2859 __get_cpu_var(softnet_data).processed++;
2860
2861 skb_reset_network_header(skb);
2862 skb_reset_transport_header(skb);
2863 skb->mac_len = skb->network_header - skb->mac_header;
2864
2865 pt_prev = NULL;
2866
2867 rcu_read_lock();
2868
2869#ifdef CONFIG_NET_CLS_ACT
2870 if (skb->tc_verd & TC_NCLS) {
2871 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2872 goto ncls;
2873 }
2874#endif
2875
2876 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2877 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2878 ptype->dev == orig_dev) {
2879 if (pt_prev)
2880 ret = deliver_skb(skb, pt_prev, orig_dev);
2881 pt_prev = ptype;
2882 }
2883 }
2884
2885#ifdef CONFIG_NET_CLS_ACT
2886 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2887 if (!skb)
2888 goto out;
2889ncls:
2890#endif
2891
2892 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2893 if (!skb)
2894 goto out;
2895 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2896 if (!skb)
2897 goto out;
2898
2899 /*
2900 * Make sure frames received on VLAN interfaces stacked on
2901 * bonding interfaces still make their way to any base bonding
2902 * device that may have registered for a specific ptype. The
2903 * handler may have to adjust skb->dev and orig_dev.
2904 */
2905 orig_or_bond = orig_dev;
2906 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2907 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2908 orig_or_bond = vlan_dev_real_dev(skb->dev);
2909 }
2910
2911 type = skb->protocol;
2912 list_for_each_entry_rcu(ptype,
2913 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2914 if (ptype->type == type && (ptype->dev == null_or_orig ||
2915 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2916 ptype->dev == orig_or_bond)) {
2917 if (pt_prev)
2918 ret = deliver_skb(skb, pt_prev, orig_dev);
2919 pt_prev = ptype;
2920 }
2921 }
2922
2923 if (pt_prev) {
2924 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2925 } else {
2926 kfree_skb(skb);
2927 /* Jamal, now you will not able to escape explaining
2928 * me how you were going to use this. :-)
2929 */
2930 ret = NET_RX_DROP;
2931 }
2932
2933out:
2934 rcu_read_unlock();
2935 return ret;
2936}
2937
2938/**
2939 * netif_receive_skb - process receive buffer from network
2940 * @skb: buffer to process
2941 *
2942 * netif_receive_skb() is the main receive data processing function.
2943 * It always succeeds. The buffer may be dropped during processing
2944 * for congestion control or by the protocol layers.
2945 *
2946 * This function may only be called from softirq context and interrupts
2947 * should be enabled.
2948 *
2949 * Return values (usually ignored):
2950 * NET_RX_SUCCESS: no congestion
2951 * NET_RX_DROP: packet was dropped
2952 */
2953int netif_receive_skb(struct sk_buff *skb)
2954{
2955 if (netdev_tstamp_prequeue)
2956 net_timestamp_check(skb);
2957
2958#ifdef CONFIG_RPS
2959 {
2960 struct rps_dev_flow voidflow, *rflow = &voidflow;
2961 int cpu, ret;
2962
2963 rcu_read_lock();
2964
2965 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2966
2967 if (cpu >= 0) {
2968 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2969 rcu_read_unlock();
2970 } else {
2971 rcu_read_unlock();
2972 ret = __netif_receive_skb(skb);
2973 }
2974
2975 return ret;
2976 }
2977#else
2978 return __netif_receive_skb(skb);
2979#endif
2980}
2981EXPORT_SYMBOL(netif_receive_skb);
2982
2983/* Network device is going away, flush any packets still pending
2984 * Called with irqs disabled.
2985 */
2986static void flush_backlog(void *arg)
2987{
2988 struct net_device *dev = arg;
2989 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2990 struct sk_buff *skb, *tmp;
2991
2992 rps_lock(sd);
2993 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2994 if (skb->dev == dev) {
2995 __skb_unlink(skb, &sd->input_pkt_queue);
2996 kfree_skb(skb);
2997 input_queue_head_incr(sd);
2998 }
2999 }
3000 rps_unlock(sd);
3001
3002 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3003 if (skb->dev == dev) {
3004 __skb_unlink(skb, &sd->process_queue);
3005 kfree_skb(skb);
3006 input_queue_head_incr(sd);
3007 }
3008 }
3009}
3010
3011static int napi_gro_complete(struct sk_buff *skb)
3012{
3013 struct packet_type *ptype;
3014 __be16 type = skb->protocol;
3015 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3016 int err = -ENOENT;
3017
3018 if (NAPI_GRO_CB(skb)->count == 1) {
3019 skb_shinfo(skb)->gso_size = 0;
3020 goto out;
3021 }
3022
3023 rcu_read_lock();
3024 list_for_each_entry_rcu(ptype, head, list) {
3025 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3026 continue;
3027
3028 err = ptype->gro_complete(skb);
3029 break;
3030 }
3031 rcu_read_unlock();
3032
3033 if (err) {
3034 WARN_ON(&ptype->list == head);
3035 kfree_skb(skb);
3036 return NET_RX_SUCCESS;
3037 }
3038
3039out:
3040 return netif_receive_skb(skb);
3041}
3042
3043static void napi_gro_flush(struct napi_struct *napi)
3044{
3045 struct sk_buff *skb, *next;
3046
3047 for (skb = napi->gro_list; skb; skb = next) {
3048 next = skb->next;
3049 skb->next = NULL;
3050 napi_gro_complete(skb);
3051 }
3052
3053 napi->gro_count = 0;
3054 napi->gro_list = NULL;
3055}
3056
3057enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3058{
3059 struct sk_buff **pp = NULL;
3060 struct packet_type *ptype;
3061 __be16 type = skb->protocol;
3062 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3063 int same_flow;
3064 int mac_len;
3065 enum gro_result ret;
3066
3067 if (!(skb->dev->features & NETIF_F_GRO))
3068 goto normal;
3069
3070 if (skb_is_gso(skb) || skb_has_frags(skb))
3071 goto normal;
3072
3073 rcu_read_lock();
3074 list_for_each_entry_rcu(ptype, head, list) {
3075 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3076 continue;
3077
3078 skb_set_network_header(skb, skb_gro_offset(skb));
3079 mac_len = skb->network_header - skb->mac_header;
3080 skb->mac_len = mac_len;
3081 NAPI_GRO_CB(skb)->same_flow = 0;
3082 NAPI_GRO_CB(skb)->flush = 0;
3083 NAPI_GRO_CB(skb)->free = 0;
3084
3085 pp = ptype->gro_receive(&napi->gro_list, skb);
3086 break;
3087 }
3088 rcu_read_unlock();
3089
3090 if (&ptype->list == head)
3091 goto normal;
3092
3093 same_flow = NAPI_GRO_CB(skb)->same_flow;
3094 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3095
3096 if (pp) {
3097 struct sk_buff *nskb = *pp;
3098
3099 *pp = nskb->next;
3100 nskb->next = NULL;
3101 napi_gro_complete(nskb);
3102 napi->gro_count--;
3103 }
3104
3105 if (same_flow)
3106 goto ok;
3107
3108 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3109 goto normal;
3110
3111 napi->gro_count++;
3112 NAPI_GRO_CB(skb)->count = 1;
3113 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3114 skb->next = napi->gro_list;
3115 napi->gro_list = skb;
3116 ret = GRO_HELD;
3117
3118pull:
3119 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3120 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3121
3122 BUG_ON(skb->end - skb->tail < grow);
3123
3124 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3125
3126 skb->tail += grow;
3127 skb->data_len -= grow;
3128
3129 skb_shinfo(skb)->frags[0].page_offset += grow;
3130 skb_shinfo(skb)->frags[0].size -= grow;
3131
3132 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3133 put_page(skb_shinfo(skb)->frags[0].page);
3134 memmove(skb_shinfo(skb)->frags,
3135 skb_shinfo(skb)->frags + 1,
3136 --skb_shinfo(skb)->nr_frags);
3137 }
3138 }
3139
3140ok:
3141 return ret;
3142
3143normal:
3144 ret = GRO_NORMAL;
3145 goto pull;
3146}
3147EXPORT_SYMBOL(dev_gro_receive);
3148
3149static gro_result_t
3150__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3151{
3152 struct sk_buff *p;
3153
3154 if (netpoll_rx_on(skb))
3155 return GRO_NORMAL;
3156
3157 for (p = napi->gro_list; p; p = p->next) {
3158 NAPI_GRO_CB(p)->same_flow =
3159 (p->dev == skb->dev) &&
3160 !compare_ether_header(skb_mac_header(p),
3161 skb_gro_mac_header(skb));
3162 NAPI_GRO_CB(p)->flush = 0;
3163 }
3164
3165 return dev_gro_receive(napi, skb);
3166}
3167
3168gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3169{
3170 switch (ret) {
3171 case GRO_NORMAL:
3172 if (netif_receive_skb(skb))
3173 ret = GRO_DROP;
3174 break;
3175
3176 case GRO_DROP:
3177 case GRO_MERGED_FREE:
3178 kfree_skb(skb);
3179 break;
3180
3181 case GRO_HELD:
3182 case GRO_MERGED:
3183 break;
3184 }
3185
3186 return ret;
3187}
3188EXPORT_SYMBOL(napi_skb_finish);
3189
3190void skb_gro_reset_offset(struct sk_buff *skb)
3191{
3192 NAPI_GRO_CB(skb)->data_offset = 0;
3193 NAPI_GRO_CB(skb)->frag0 = NULL;
3194 NAPI_GRO_CB(skb)->frag0_len = 0;
3195
3196 if (skb->mac_header == skb->tail &&
3197 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3198 NAPI_GRO_CB(skb)->frag0 =
3199 page_address(skb_shinfo(skb)->frags[0].page) +
3200 skb_shinfo(skb)->frags[0].page_offset;
3201 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3202 }
3203}
3204EXPORT_SYMBOL(skb_gro_reset_offset);
3205
3206gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3207{
3208 skb_gro_reset_offset(skb);
3209
3210 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3211}
3212EXPORT_SYMBOL(napi_gro_receive);
3213
3214void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3215{
3216 __skb_pull(skb, skb_headlen(skb));
3217 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3218
3219 napi->skb = skb;
3220}
3221EXPORT_SYMBOL(napi_reuse_skb);
3222
3223struct sk_buff *napi_get_frags(struct napi_struct *napi)
3224{
3225 struct sk_buff *skb = napi->skb;
3226
3227 if (!skb) {
3228 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3229 if (skb)
3230 napi->skb = skb;
3231 }
3232 return skb;
3233}
3234EXPORT_SYMBOL(napi_get_frags);
3235
3236gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3237 gro_result_t ret)
3238{
3239 switch (ret) {
3240 case GRO_NORMAL:
3241 case GRO_HELD:
3242 skb->protocol = eth_type_trans(skb, skb->dev);
3243
3244 if (ret == GRO_HELD)
3245 skb_gro_pull(skb, -ETH_HLEN);
3246 else if (netif_receive_skb(skb))
3247 ret = GRO_DROP;
3248 break;
3249
3250 case GRO_DROP:
3251 case GRO_MERGED_FREE:
3252 napi_reuse_skb(napi, skb);
3253 break;
3254
3255 case GRO_MERGED:
3256 break;
3257 }
3258
3259 return ret;
3260}
3261EXPORT_SYMBOL(napi_frags_finish);
3262
3263struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3264{
3265 struct sk_buff *skb = napi->skb;
3266 struct ethhdr *eth;
3267 unsigned int hlen;
3268 unsigned int off;
3269
3270 napi->skb = NULL;
3271
3272 skb_reset_mac_header(skb);
3273 skb_gro_reset_offset(skb);
3274
3275 off = skb_gro_offset(skb);
3276 hlen = off + sizeof(*eth);
3277 eth = skb_gro_header_fast(skb, off);
3278 if (skb_gro_header_hard(skb, hlen)) {
3279 eth = skb_gro_header_slow(skb, hlen, off);
3280 if (unlikely(!eth)) {
3281 napi_reuse_skb(napi, skb);
3282 skb = NULL;
3283 goto out;
3284 }
3285 }
3286
3287 skb_gro_pull(skb, sizeof(*eth));
3288
3289 /*
3290 * This works because the only protocols we care about don't require
3291 * special handling. We'll fix it up properly at the end.
3292 */
3293 skb->protocol = eth->h_proto;
3294
3295out:
3296 return skb;
3297}
3298EXPORT_SYMBOL(napi_frags_skb);
3299
3300gro_result_t napi_gro_frags(struct napi_struct *napi)
3301{
3302 struct sk_buff *skb = napi_frags_skb(napi);
3303
3304 if (!skb)
3305 return GRO_DROP;
3306
3307 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3308}
3309EXPORT_SYMBOL(napi_gro_frags);
3310
3311/*
3312 * net_rps_action sends any pending IPI's for rps.
3313 * Note: called with local irq disabled, but exits with local irq enabled.
3314 */
3315static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3316{
3317#ifdef CONFIG_RPS
3318 struct softnet_data *remsd = sd->rps_ipi_list;
3319
3320 if (remsd) {
3321 sd->rps_ipi_list = NULL;
3322
3323 local_irq_enable();
3324
3325 /* Send pending IPI's to kick RPS processing on remote cpus. */
3326 while (remsd) {
3327 struct softnet_data *next = remsd->rps_ipi_next;
3328
3329 if (cpu_online(remsd->cpu))
3330 __smp_call_function_single(remsd->cpu,
3331 &remsd->csd, 0);
3332 remsd = next;
3333 }
3334 } else
3335#endif
3336 local_irq_enable();
3337}
3338
3339static int process_backlog(struct napi_struct *napi, int quota)
3340{
3341 int work = 0;
3342 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3343
3344#ifdef CONFIG_RPS
3345 /* Check if we have pending ipi, its better to send them now,
3346 * not waiting net_rx_action() end.
3347 */
3348 if (sd->rps_ipi_list) {
3349 local_irq_disable();
3350 net_rps_action_and_irq_enable(sd);
3351 }
3352#endif
3353 napi->weight = weight_p;
3354 local_irq_disable();
3355 while (work < quota) {
3356 struct sk_buff *skb;
3357 unsigned int qlen;
3358
3359 while ((skb = __skb_dequeue(&sd->process_queue))) {
3360 local_irq_enable();
3361 __netif_receive_skb(skb);
3362 local_irq_disable();
3363 input_queue_head_incr(sd);
3364 if (++work >= quota) {
3365 local_irq_enable();
3366 return work;
3367 }
3368 }
3369
3370 rps_lock(sd);
3371 qlen = skb_queue_len(&sd->input_pkt_queue);
3372 if (qlen)
3373 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3374 &sd->process_queue);
3375
3376 if (qlen < quota - work) {
3377 /*
3378 * Inline a custom version of __napi_complete().
3379 * only current cpu owns and manipulates this napi,
3380 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3381 * we can use a plain write instead of clear_bit(),
3382 * and we dont need an smp_mb() memory barrier.
3383 */
3384 list_del(&napi->poll_list);
3385 napi->state = 0;
3386
3387 quota = work + qlen;
3388 }
3389 rps_unlock(sd);
3390 }
3391 local_irq_enable();
3392
3393 return work;
3394}
3395
3396/**
3397 * __napi_schedule - schedule for receive
3398 * @n: entry to schedule
3399 *
3400 * The entry's receive function will be scheduled to run
3401 */
3402void __napi_schedule(struct napi_struct *n)
3403{
3404 unsigned long flags;
3405
3406 local_irq_save(flags);
3407 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3408 local_irq_restore(flags);
3409}
3410EXPORT_SYMBOL(__napi_schedule);
3411
3412void __napi_complete(struct napi_struct *n)
3413{
3414 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3415 BUG_ON(n->gro_list);
3416
3417 list_del(&n->poll_list);
3418 smp_mb__before_clear_bit();
3419 clear_bit(NAPI_STATE_SCHED, &n->state);
3420}
3421EXPORT_SYMBOL(__napi_complete);
3422
3423void napi_complete(struct napi_struct *n)
3424{
3425 unsigned long flags;
3426
3427 /*
3428 * don't let napi dequeue from the cpu poll list
3429 * just in case its running on a different cpu
3430 */
3431 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3432 return;
3433
3434 napi_gro_flush(n);
3435 local_irq_save(flags);
3436 __napi_complete(n);
3437 local_irq_restore(flags);
3438}
3439EXPORT_SYMBOL(napi_complete);
3440
3441void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3442 int (*poll)(struct napi_struct *, int), int weight)
3443{
3444 INIT_LIST_HEAD(&napi->poll_list);
3445 napi->gro_count = 0;
3446 napi->gro_list = NULL;
3447 napi->skb = NULL;
3448 napi->poll = poll;
3449 napi->weight = weight;
3450 list_add(&napi->dev_list, &dev->napi_list);
3451 napi->dev = dev;
3452#ifdef CONFIG_NETPOLL
3453 spin_lock_init(&napi->poll_lock);
3454 napi->poll_owner = -1;
3455#endif
3456 set_bit(NAPI_STATE_SCHED, &napi->state);
3457}
3458EXPORT_SYMBOL(netif_napi_add);
3459
3460void netif_napi_del(struct napi_struct *napi)
3461{
3462 struct sk_buff *skb, *next;
3463
3464 list_del_init(&napi->dev_list);
3465 napi_free_frags(napi);
3466
3467 for (skb = napi->gro_list; skb; skb = next) {
3468 next = skb->next;
3469 skb->next = NULL;
3470 kfree_skb(skb);
3471 }
3472
3473 napi->gro_list = NULL;
3474 napi->gro_count = 0;
3475}
3476EXPORT_SYMBOL(netif_napi_del);
3477
3478static void net_rx_action(struct softirq_action *h)
3479{
3480 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3481 unsigned long time_limit = jiffies + 2;
3482 int budget = netdev_budget;
3483 void *have;
3484
3485 local_irq_disable();
3486
3487 while (!list_empty(&sd->poll_list)) {
3488 struct napi_struct *n;
3489 int work, weight;
3490
3491 /* If softirq window is exhuasted then punt.
3492 * Allow this to run for 2 jiffies since which will allow
3493 * an average latency of 1.5/HZ.
3494 */
3495 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3496 goto softnet_break;
3497
3498 local_irq_enable();
3499
3500 /* Even though interrupts have been re-enabled, this
3501 * access is safe because interrupts can only add new
3502 * entries to the tail of this list, and only ->poll()
3503 * calls can remove this head entry from the list.
3504 */
3505 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3506
3507 have = netpoll_poll_lock(n);
3508
3509 weight = n->weight;
3510
3511 /* This NAPI_STATE_SCHED test is for avoiding a race
3512 * with netpoll's poll_napi(). Only the entity which
3513 * obtains the lock and sees NAPI_STATE_SCHED set will
3514 * actually make the ->poll() call. Therefore we avoid
3515 * accidently calling ->poll() when NAPI is not scheduled.
3516 */
3517 work = 0;
3518 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3519 work = n->poll(n, weight);
3520 trace_napi_poll(n);
3521 }
3522
3523 WARN_ON_ONCE(work > weight);
3524
3525 budget -= work;
3526
3527 local_irq_disable();
3528
3529 /* Drivers must not modify the NAPI state if they
3530 * consume the entire weight. In such cases this code
3531 * still "owns" the NAPI instance and therefore can
3532 * move the instance around on the list at-will.
3533 */
3534 if (unlikely(work == weight)) {
3535 if (unlikely(napi_disable_pending(n))) {
3536 local_irq_enable();
3537 napi_complete(n);
3538 local_irq_disable();
3539 } else
3540 list_move_tail(&n->poll_list, &sd->poll_list);
3541 }
3542
3543 netpoll_poll_unlock(have);
3544 }
3545out:
3546 net_rps_action_and_irq_enable(sd);
3547
3548#ifdef CONFIG_NET_DMA
3549 /*
3550 * There may not be any more sk_buffs coming right now, so push
3551 * any pending DMA copies to hardware
3552 */
3553 dma_issue_pending_all();
3554#endif
3555
3556 return;
3557
3558softnet_break:
3559 sd->time_squeeze++;
3560 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3561 goto out;
3562}
3563
3564static gifconf_func_t *gifconf_list[NPROTO];
3565
3566/**
3567 * register_gifconf - register a SIOCGIF handler
3568 * @family: Address family
3569 * @gifconf: Function handler
3570 *
3571 * Register protocol dependent address dumping routines. The handler
3572 * that is passed must not be freed or reused until it has been replaced
3573 * by another handler.
3574 */
3575int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3576{
3577 if (family >= NPROTO)
3578 return -EINVAL;
3579 gifconf_list[family] = gifconf;
3580 return 0;
3581}
3582EXPORT_SYMBOL(register_gifconf);
3583
3584
3585/*
3586 * Map an interface index to its name (SIOCGIFNAME)
3587 */
3588
3589/*
3590 * We need this ioctl for efficient implementation of the
3591 * if_indextoname() function required by the IPv6 API. Without
3592 * it, we would have to search all the interfaces to find a
3593 * match. --pb
3594 */
3595
3596static int dev_ifname(struct net *net, struct ifreq __user *arg)
3597{
3598 struct net_device *dev;
3599 struct ifreq ifr;
3600
3601 /*
3602 * Fetch the caller's info block.
3603 */
3604
3605 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3606 return -EFAULT;
3607
3608 rcu_read_lock();
3609 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3610 if (!dev) {
3611 rcu_read_unlock();
3612 return -ENODEV;
3613 }
3614
3615 strcpy(ifr.ifr_name, dev->name);
3616 rcu_read_unlock();
3617
3618 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3619 return -EFAULT;
3620 return 0;
3621}
3622
3623/*
3624 * Perform a SIOCGIFCONF call. This structure will change
3625 * size eventually, and there is nothing I can do about it.
3626 * Thus we will need a 'compatibility mode'.
3627 */
3628
3629static int dev_ifconf(struct net *net, char __user *arg)
3630{
3631 struct ifconf ifc;
3632 struct net_device *dev;
3633 char __user *pos;
3634 int len;
3635 int total;
3636 int i;
3637
3638 /*
3639 * Fetch the caller's info block.
3640 */
3641
3642 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3643 return -EFAULT;
3644
3645 pos = ifc.ifc_buf;
3646 len = ifc.ifc_len;
3647
3648 /*
3649 * Loop over the interfaces, and write an info block for each.
3650 */
3651
3652 total = 0;
3653 for_each_netdev(net, dev) {
3654 for (i = 0; i < NPROTO; i++) {
3655 if (gifconf_list[i]) {
3656 int done;
3657 if (!pos)
3658 done = gifconf_list[i](dev, NULL, 0);
3659 else
3660 done = gifconf_list[i](dev, pos + total,
3661 len - total);
3662 if (done < 0)
3663 return -EFAULT;
3664 total += done;
3665 }
3666 }
3667 }
3668
3669 /*
3670 * All done. Write the updated control block back to the caller.
3671 */
3672 ifc.ifc_len = total;
3673
3674 /*
3675 * Both BSD and Solaris return 0 here, so we do too.
3676 */
3677 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3678}
3679
3680#ifdef CONFIG_PROC_FS
3681/*
3682 * This is invoked by the /proc filesystem handler to display a device
3683 * in detail.
3684 */
3685void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3686 __acquires(RCU)
3687{
3688 struct net *net = seq_file_net(seq);
3689 loff_t off;
3690 struct net_device *dev;
3691
3692 rcu_read_lock();
3693 if (!*pos)
3694 return SEQ_START_TOKEN;
3695
3696 off = 1;
3697 for_each_netdev_rcu(net, dev)
3698 if (off++ == *pos)
3699 return dev;
3700
3701 return NULL;
3702}
3703
3704void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3705{
3706 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3707 first_net_device(seq_file_net(seq)) :
3708 next_net_device((struct net_device *)v);
3709
3710 ++*pos;
3711 return rcu_dereference(dev);
3712}
3713
3714void dev_seq_stop(struct seq_file *seq, void *v)
3715 __releases(RCU)
3716{
3717 rcu_read_unlock();
3718}
3719
3720static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3721{
3722 const struct net_device_stats *stats = dev_get_stats(dev);
3723
3724 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3725 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3726 dev->name, stats->rx_bytes, stats->rx_packets,
3727 stats->rx_errors,
3728 stats->rx_dropped + stats->rx_missed_errors,
3729 stats->rx_fifo_errors,
3730 stats->rx_length_errors + stats->rx_over_errors +
3731 stats->rx_crc_errors + stats->rx_frame_errors,
3732 stats->rx_compressed, stats->multicast,
3733 stats->tx_bytes, stats->tx_packets,
3734 stats->tx_errors, stats->tx_dropped,
3735 stats->tx_fifo_errors, stats->collisions,
3736 stats->tx_carrier_errors +
3737 stats->tx_aborted_errors +
3738 stats->tx_window_errors +
3739 stats->tx_heartbeat_errors,
3740 stats->tx_compressed);
3741}
3742
3743/*
3744 * Called from the PROCfs module. This now uses the new arbitrary sized
3745 * /proc/net interface to create /proc/net/dev
3746 */
3747static int dev_seq_show(struct seq_file *seq, void *v)
3748{
3749 if (v == SEQ_START_TOKEN)
3750 seq_puts(seq, "Inter-| Receive "
3751 " | Transmit\n"
3752 " face |bytes packets errs drop fifo frame "
3753 "compressed multicast|bytes packets errs "
3754 "drop fifo colls carrier compressed\n");
3755 else
3756 dev_seq_printf_stats(seq, v);
3757 return 0;
3758}
3759
3760static struct softnet_data *softnet_get_online(loff_t *pos)
3761{
3762 struct softnet_data *sd = NULL;
3763
3764 while (*pos < nr_cpu_ids)
3765 if (cpu_online(*pos)) {
3766 sd = &per_cpu(softnet_data, *pos);
3767 break;
3768 } else
3769 ++*pos;
3770 return sd;
3771}
3772
3773static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3774{
3775 return softnet_get_online(pos);
3776}
3777
3778static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3779{
3780 ++*pos;
3781 return softnet_get_online(pos);
3782}
3783
3784static void softnet_seq_stop(struct seq_file *seq, void *v)
3785{
3786}
3787
3788static int softnet_seq_show(struct seq_file *seq, void *v)
3789{
3790 struct softnet_data *sd = v;
3791
3792 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3793 sd->processed, sd->dropped, sd->time_squeeze, 0,
3794 0, 0, 0, 0, /* was fastroute */
3795 sd->cpu_collision, sd->received_rps);
3796 return 0;
3797}
3798
3799static const struct seq_operations dev_seq_ops = {
3800 .start = dev_seq_start,
3801 .next = dev_seq_next,
3802 .stop = dev_seq_stop,
3803 .show = dev_seq_show,
3804};
3805
3806static int dev_seq_open(struct inode *inode, struct file *file)
3807{
3808 return seq_open_net(inode, file, &dev_seq_ops,
3809 sizeof(struct seq_net_private));
3810}
3811
3812static const struct file_operations dev_seq_fops = {
3813 .owner = THIS_MODULE,
3814 .open = dev_seq_open,
3815 .read = seq_read,
3816 .llseek = seq_lseek,
3817 .release = seq_release_net,
3818};
3819
3820static const struct seq_operations softnet_seq_ops = {
3821 .start = softnet_seq_start,
3822 .next = softnet_seq_next,
3823 .stop = softnet_seq_stop,
3824 .show = softnet_seq_show,
3825};
3826
3827static int softnet_seq_open(struct inode *inode, struct file *file)
3828{
3829 return seq_open(file, &softnet_seq_ops);
3830}
3831
3832static const struct file_operations softnet_seq_fops = {
3833 .owner = THIS_MODULE,
3834 .open = softnet_seq_open,
3835 .read = seq_read,
3836 .llseek = seq_lseek,
3837 .release = seq_release,
3838};
3839
3840static void *ptype_get_idx(loff_t pos)
3841{
3842 struct packet_type *pt = NULL;
3843 loff_t i = 0;
3844 int t;
3845
3846 list_for_each_entry_rcu(pt, &ptype_all, list) {
3847 if (i == pos)
3848 return pt;
3849 ++i;
3850 }
3851
3852 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3853 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3854 if (i == pos)
3855 return pt;
3856 ++i;
3857 }
3858 }
3859 return NULL;
3860}
3861
3862static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3863 __acquires(RCU)
3864{
3865 rcu_read_lock();
3866 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3867}
3868
3869static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3870{
3871 struct packet_type *pt;
3872 struct list_head *nxt;
3873 int hash;
3874
3875 ++*pos;
3876 if (v == SEQ_START_TOKEN)
3877 return ptype_get_idx(0);
3878
3879 pt = v;
3880 nxt = pt->list.next;
3881 if (pt->type == htons(ETH_P_ALL)) {
3882 if (nxt != &ptype_all)
3883 goto found;
3884 hash = 0;
3885 nxt = ptype_base[0].next;
3886 } else
3887 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3888
3889 while (nxt == &ptype_base[hash]) {
3890 if (++hash >= PTYPE_HASH_SIZE)
3891 return NULL;
3892 nxt = ptype_base[hash].next;
3893 }
3894found:
3895 return list_entry(nxt, struct packet_type, list);
3896}
3897
3898static void ptype_seq_stop(struct seq_file *seq, void *v)
3899 __releases(RCU)
3900{
3901 rcu_read_unlock();
3902}
3903
3904static int ptype_seq_show(struct seq_file *seq, void *v)
3905{
3906 struct packet_type *pt = v;
3907
3908 if (v == SEQ_START_TOKEN)
3909 seq_puts(seq, "Type Device Function\n");
3910 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3911 if (pt->type == htons(ETH_P_ALL))
3912 seq_puts(seq, "ALL ");
3913 else
3914 seq_printf(seq, "%04x", ntohs(pt->type));
3915
3916 seq_printf(seq, " %-8s %pF\n",
3917 pt->dev ? pt->dev->name : "", pt->func);
3918 }
3919
3920 return 0;
3921}
3922
3923static const struct seq_operations ptype_seq_ops = {
3924 .start = ptype_seq_start,
3925 .next = ptype_seq_next,
3926 .stop = ptype_seq_stop,
3927 .show = ptype_seq_show,
3928};
3929
3930static int ptype_seq_open(struct inode *inode, struct file *file)
3931{
3932 return seq_open_net(inode, file, &ptype_seq_ops,
3933 sizeof(struct seq_net_private));
3934}
3935
3936static const struct file_operations ptype_seq_fops = {
3937 .owner = THIS_MODULE,
3938 .open = ptype_seq_open,
3939 .read = seq_read,
3940 .llseek = seq_lseek,
3941 .release = seq_release_net,
3942};
3943
3944
3945static int __net_init dev_proc_net_init(struct net *net)
3946{
3947 int rc = -ENOMEM;
3948
3949 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3950 goto out;
3951 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3952 goto out_dev;
3953 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3954 goto out_softnet;
3955
3956 if (wext_proc_init(net))
3957 goto out_ptype;
3958 rc = 0;
3959out:
3960 return rc;
3961out_ptype:
3962 proc_net_remove(net, "ptype");
3963out_softnet:
3964 proc_net_remove(net, "softnet_stat");
3965out_dev:
3966 proc_net_remove(net, "dev");
3967 goto out;
3968}
3969
3970static void __net_exit dev_proc_net_exit(struct net *net)
3971{
3972 wext_proc_exit(net);
3973
3974 proc_net_remove(net, "ptype");
3975 proc_net_remove(net, "softnet_stat");
3976 proc_net_remove(net, "dev");
3977}
3978
3979static struct pernet_operations __net_initdata dev_proc_ops = {
3980 .init = dev_proc_net_init,
3981 .exit = dev_proc_net_exit,
3982};
3983
3984static int __init dev_proc_init(void)
3985{
3986 return register_pernet_subsys(&dev_proc_ops);
3987}
3988#else
3989#define dev_proc_init() 0
3990#endif /* CONFIG_PROC_FS */
3991
3992
3993/**
3994 * netdev_set_master - set up master/slave pair
3995 * @slave: slave device
3996 * @master: new master device
3997 *
3998 * Changes the master device of the slave. Pass %NULL to break the
3999 * bonding. The caller must hold the RTNL semaphore. On a failure
4000 * a negative errno code is returned. On success the reference counts
4001 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4002 * function returns zero.
4003 */
4004int netdev_set_master(struct net_device *slave, struct net_device *master)
4005{
4006 struct net_device *old = slave->master;
4007
4008 ASSERT_RTNL();
4009
4010 if (master) {
4011 if (old)
4012 return -EBUSY;
4013 dev_hold(master);
4014 }
4015
4016 slave->master = master;
4017
4018 if (old) {
4019 synchronize_net();
4020 dev_put(old);
4021 }
4022 if (master)
4023 slave->flags |= IFF_SLAVE;
4024 else
4025 slave->flags &= ~IFF_SLAVE;
4026
4027 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4028 return 0;
4029}
4030EXPORT_SYMBOL(netdev_set_master);
4031
4032static void dev_change_rx_flags(struct net_device *dev, int flags)
4033{
4034 const struct net_device_ops *ops = dev->netdev_ops;
4035
4036 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4037 ops->ndo_change_rx_flags(dev, flags);
4038}
4039
4040static int __dev_set_promiscuity(struct net_device *dev, int inc)
4041{
4042 unsigned short old_flags = dev->flags;
4043 uid_t uid;
4044 gid_t gid;
4045
4046 ASSERT_RTNL();
4047
4048 dev->flags |= IFF_PROMISC;
4049 dev->promiscuity += inc;
4050 if (dev->promiscuity == 0) {
4051 /*
4052 * Avoid overflow.
4053 * If inc causes overflow, untouch promisc and return error.
4054 */
4055 if (inc < 0)
4056 dev->flags &= ~IFF_PROMISC;
4057 else {
4058 dev->promiscuity -= inc;
4059 printk(KERN_WARNING "%s: promiscuity touches roof, "
4060 "set promiscuity failed, promiscuity feature "
4061 "of device might be broken.\n", dev->name);
4062 return -EOVERFLOW;
4063 }
4064 }
4065 if (dev->flags != old_flags) {
4066 printk(KERN_INFO "device %s %s promiscuous mode\n",
4067 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4068 "left");
4069 if (audit_enabled) {
4070 current_uid_gid(&uid, &gid);
4071 audit_log(current->audit_context, GFP_ATOMIC,
4072 AUDIT_ANOM_PROMISCUOUS,
4073 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4074 dev->name, (dev->flags & IFF_PROMISC),
4075 (old_flags & IFF_PROMISC),
4076 audit_get_loginuid(current),
4077 uid, gid,
4078 audit_get_sessionid(current));
4079 }
4080
4081 dev_change_rx_flags(dev, IFF_PROMISC);
4082 }
4083 return 0;
4084}
4085
4086/**
4087 * dev_set_promiscuity - update promiscuity count on a device
4088 * @dev: device
4089 * @inc: modifier
4090 *
4091 * Add or remove promiscuity from a device. While the count in the device
4092 * remains above zero the interface remains promiscuous. Once it hits zero
4093 * the device reverts back to normal filtering operation. A negative inc
4094 * value is used to drop promiscuity on the device.
4095 * Return 0 if successful or a negative errno code on error.
4096 */
4097int dev_set_promiscuity(struct net_device *dev, int inc)
4098{
4099 unsigned short old_flags = dev->flags;
4100 int err;
4101
4102 err = __dev_set_promiscuity(dev, inc);
4103 if (err < 0)
4104 return err;
4105 if (dev->flags != old_flags)
4106 dev_set_rx_mode(dev);
4107 return err;
4108}
4109EXPORT_SYMBOL(dev_set_promiscuity);
4110
4111/**
4112 * dev_set_allmulti - update allmulti count on a device
4113 * @dev: device
4114 * @inc: modifier
4115 *
4116 * Add or remove reception of all multicast frames to a device. While the
4117 * count in the device remains above zero the interface remains listening
4118 * to all interfaces. Once it hits zero the device reverts back to normal
4119 * filtering operation. A negative @inc value is used to drop the counter
4120 * when releasing a resource needing all multicasts.
4121 * Return 0 if successful or a negative errno code on error.
4122 */
4123
4124int dev_set_allmulti(struct net_device *dev, int inc)
4125{
4126 unsigned short old_flags = dev->flags;
4127
4128 ASSERT_RTNL();
4129
4130 dev->flags |= IFF_ALLMULTI;
4131 dev->allmulti += inc;
4132 if (dev->allmulti == 0) {
4133 /*
4134 * Avoid overflow.
4135 * If inc causes overflow, untouch allmulti and return error.
4136 */
4137 if (inc < 0)
4138 dev->flags &= ~IFF_ALLMULTI;
4139 else {
4140 dev->allmulti -= inc;
4141 printk(KERN_WARNING "%s: allmulti touches roof, "
4142 "set allmulti failed, allmulti feature of "
4143 "device might be broken.\n", dev->name);
4144 return -EOVERFLOW;
4145 }
4146 }
4147 if (dev->flags ^ old_flags) {
4148 dev_change_rx_flags(dev, IFF_ALLMULTI);
4149 dev_set_rx_mode(dev);
4150 }
4151 return 0;
4152}
4153EXPORT_SYMBOL(dev_set_allmulti);
4154
4155/*
4156 * Upload unicast and multicast address lists to device and
4157 * configure RX filtering. When the device doesn't support unicast
4158 * filtering it is put in promiscuous mode while unicast addresses
4159 * are present.
4160 */
4161void __dev_set_rx_mode(struct net_device *dev)
4162{
4163 const struct net_device_ops *ops = dev->netdev_ops;
4164
4165 /* dev_open will call this function so the list will stay sane. */
4166 if (!(dev->flags&IFF_UP))
4167 return;
4168
4169 if (!netif_device_present(dev))
4170 return;
4171
4172 if (ops->ndo_set_rx_mode)
4173 ops->ndo_set_rx_mode(dev);
4174 else {
4175 /* Unicast addresses changes may only happen under the rtnl,
4176 * therefore calling __dev_set_promiscuity here is safe.
4177 */
4178 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4179 __dev_set_promiscuity(dev, 1);
4180 dev->uc_promisc = 1;
4181 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4182 __dev_set_promiscuity(dev, -1);
4183 dev->uc_promisc = 0;
4184 }
4185
4186 if (ops->ndo_set_multicast_list)
4187 ops->ndo_set_multicast_list(dev);
4188 }
4189}
4190
4191void dev_set_rx_mode(struct net_device *dev)
4192{
4193 netif_addr_lock_bh(dev);
4194 __dev_set_rx_mode(dev);
4195 netif_addr_unlock_bh(dev);
4196}
4197
4198/**
4199 * dev_get_flags - get flags reported to userspace
4200 * @dev: device
4201 *
4202 * Get the combination of flag bits exported through APIs to userspace.
4203 */
4204unsigned dev_get_flags(const struct net_device *dev)
4205{
4206 unsigned flags;
4207
4208 flags = (dev->flags & ~(IFF_PROMISC |
4209 IFF_ALLMULTI |
4210 IFF_RUNNING |
4211 IFF_LOWER_UP |
4212 IFF_DORMANT)) |
4213 (dev->gflags & (IFF_PROMISC |
4214 IFF_ALLMULTI));
4215
4216 if (netif_running(dev)) {
4217 if (netif_oper_up(dev))
4218 flags |= IFF_RUNNING;
4219 if (netif_carrier_ok(dev))
4220 flags |= IFF_LOWER_UP;
4221 if (netif_dormant(dev))
4222 flags |= IFF_DORMANT;
4223 }
4224
4225 return flags;
4226}
4227EXPORT_SYMBOL(dev_get_flags);
4228
4229int __dev_change_flags(struct net_device *dev, unsigned int flags)
4230{
4231 int old_flags = dev->flags;
4232 int ret;
4233
4234 ASSERT_RTNL();
4235
4236 /*
4237 * Set the flags on our device.
4238 */
4239
4240 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4241 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4242 IFF_AUTOMEDIA)) |
4243 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4244 IFF_ALLMULTI));
4245
4246 /*
4247 * Load in the correct multicast list now the flags have changed.
4248 */
4249
4250 if ((old_flags ^ flags) & IFF_MULTICAST)
4251 dev_change_rx_flags(dev, IFF_MULTICAST);
4252
4253 dev_set_rx_mode(dev);
4254
4255 /*
4256 * Have we downed the interface. We handle IFF_UP ourselves
4257 * according to user attempts to set it, rather than blindly
4258 * setting it.
4259 */
4260
4261 ret = 0;
4262 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4263 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4264
4265 if (!ret)
4266 dev_set_rx_mode(dev);
4267 }
4268
4269 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4270 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4271
4272 dev->gflags ^= IFF_PROMISC;
4273 dev_set_promiscuity(dev, inc);
4274 }
4275
4276 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4277 is important. Some (broken) drivers set IFF_PROMISC, when
4278 IFF_ALLMULTI is requested not asking us and not reporting.
4279 */
4280 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4281 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4282
4283 dev->gflags ^= IFF_ALLMULTI;
4284 dev_set_allmulti(dev, inc);
4285 }
4286
4287 return ret;
4288}
4289
4290void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4291{
4292 unsigned int changes = dev->flags ^ old_flags;
4293
4294 if (changes & IFF_UP) {
4295 if (dev->flags & IFF_UP)
4296 call_netdevice_notifiers(NETDEV_UP, dev);
4297 else
4298 call_netdevice_notifiers(NETDEV_DOWN, dev);
4299 }
4300
4301 if (dev->flags & IFF_UP &&
4302 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4303 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4304}
4305
4306/**
4307 * dev_change_flags - change device settings
4308 * @dev: device
4309 * @flags: device state flags
4310 *
4311 * Change settings on device based state flags. The flags are
4312 * in the userspace exported format.
4313 */
4314int dev_change_flags(struct net_device *dev, unsigned flags)
4315{
4316 int ret, changes;
4317 int old_flags = dev->flags;
4318
4319 ret = __dev_change_flags(dev, flags);
4320 if (ret < 0)
4321 return ret;
4322
4323 changes = old_flags ^ dev->flags;
4324 if (changes)
4325 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4326
4327 __dev_notify_flags(dev, old_flags);
4328 return ret;
4329}
4330EXPORT_SYMBOL(dev_change_flags);
4331
4332/**
4333 * dev_set_mtu - Change maximum transfer unit
4334 * @dev: device
4335 * @new_mtu: new transfer unit
4336 *
4337 * Change the maximum transfer size of the network device.
4338 */
4339int dev_set_mtu(struct net_device *dev, int new_mtu)
4340{
4341 const struct net_device_ops *ops = dev->netdev_ops;
4342 int err;
4343
4344 if (new_mtu == dev->mtu)
4345 return 0;
4346
4347 /* MTU must be positive. */
4348 if (new_mtu < 0)
4349 return -EINVAL;
4350
4351 if (!netif_device_present(dev))
4352 return -ENODEV;
4353
4354 err = 0;
4355 if (ops->ndo_change_mtu)
4356 err = ops->ndo_change_mtu(dev, new_mtu);
4357 else
4358 dev->mtu = new_mtu;
4359
4360 if (!err && dev->flags & IFF_UP)
4361 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4362 return err;
4363}
4364EXPORT_SYMBOL(dev_set_mtu);
4365
4366/**
4367 * dev_set_mac_address - Change Media Access Control Address
4368 * @dev: device
4369 * @sa: new address
4370 *
4371 * Change the hardware (MAC) address of the device
4372 */
4373int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4374{
4375 const struct net_device_ops *ops = dev->netdev_ops;
4376 int err;
4377
4378 if (!ops->ndo_set_mac_address)
4379 return -EOPNOTSUPP;
4380 if (sa->sa_family != dev->type)
4381 return -EINVAL;
4382 if (!netif_device_present(dev))
4383 return -ENODEV;
4384 err = ops->ndo_set_mac_address(dev, sa);
4385 if (!err)
4386 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4387 return err;
4388}
4389EXPORT_SYMBOL(dev_set_mac_address);
4390
4391/*
4392 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4393 */
4394static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4395{
4396 int err;
4397 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4398
4399 if (!dev)
4400 return -ENODEV;
4401
4402 switch (cmd) {
4403 case SIOCGIFFLAGS: /* Get interface flags */
4404 ifr->ifr_flags = (short) dev_get_flags(dev);
4405 return 0;
4406
4407 case SIOCGIFMETRIC: /* Get the metric on the interface
4408 (currently unused) */
4409 ifr->ifr_metric = 0;
4410 return 0;
4411
4412 case SIOCGIFMTU: /* Get the MTU of a device */
4413 ifr->ifr_mtu = dev->mtu;
4414 return 0;
4415
4416 case SIOCGIFHWADDR:
4417 if (!dev->addr_len)
4418 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4419 else
4420 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4421 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4422 ifr->ifr_hwaddr.sa_family = dev->type;
4423 return 0;
4424
4425 case SIOCGIFSLAVE:
4426 err = -EINVAL;
4427 break;
4428
4429 case SIOCGIFMAP:
4430 ifr->ifr_map.mem_start = dev->mem_start;
4431 ifr->ifr_map.mem_end = dev->mem_end;
4432 ifr->ifr_map.base_addr = dev->base_addr;
4433 ifr->ifr_map.irq = dev->irq;
4434 ifr->ifr_map.dma = dev->dma;
4435 ifr->ifr_map.port = dev->if_port;
4436 return 0;
4437
4438 case SIOCGIFINDEX:
4439 ifr->ifr_ifindex = dev->ifindex;
4440 return 0;
4441
4442 case SIOCGIFTXQLEN:
4443 ifr->ifr_qlen = dev->tx_queue_len;
4444 return 0;
4445
4446 default:
4447 /* dev_ioctl() should ensure this case
4448 * is never reached
4449 */
4450 WARN_ON(1);
4451 err = -EINVAL;
4452 break;
4453
4454 }
4455 return err;
4456}
4457
4458/*
4459 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4460 */
4461static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4462{
4463 int err;
4464 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4465 const struct net_device_ops *ops;
4466
4467 if (!dev)
4468 return -ENODEV;
4469
4470 ops = dev->netdev_ops;
4471
4472 switch (cmd) {
4473 case SIOCSIFFLAGS: /* Set interface flags */
4474 return dev_change_flags(dev, ifr->ifr_flags);
4475
4476 case SIOCSIFMETRIC: /* Set the metric on the interface
4477 (currently unused) */
4478 return -EOPNOTSUPP;
4479
4480 case SIOCSIFMTU: /* Set the MTU of a device */
4481 return dev_set_mtu(dev, ifr->ifr_mtu);
4482
4483 case SIOCSIFHWADDR:
4484 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4485
4486 case SIOCSIFHWBROADCAST:
4487 if (ifr->ifr_hwaddr.sa_family != dev->type)
4488 return -EINVAL;
4489 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4490 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4491 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4492 return 0;
4493
4494 case SIOCSIFMAP:
4495 if (ops->ndo_set_config) {
4496 if (!netif_device_present(dev))
4497 return -ENODEV;
4498 return ops->ndo_set_config(dev, &ifr->ifr_map);
4499 }
4500 return -EOPNOTSUPP;
4501
4502 case SIOCADDMULTI:
4503 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4504 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4505 return -EINVAL;
4506 if (!netif_device_present(dev))
4507 return -ENODEV;
4508 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4509
4510 case SIOCDELMULTI:
4511 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4512 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4513 return -EINVAL;
4514 if (!netif_device_present(dev))
4515 return -ENODEV;
4516 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4517
4518 case SIOCSIFTXQLEN:
4519 if (ifr->ifr_qlen < 0)
4520 return -EINVAL;
4521 dev->tx_queue_len = ifr->ifr_qlen;
4522 return 0;
4523
4524 case SIOCSIFNAME:
4525 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4526 return dev_change_name(dev, ifr->ifr_newname);
4527
4528 /*
4529 * Unknown or private ioctl
4530 */
4531 default:
4532 if ((cmd >= SIOCDEVPRIVATE &&
4533 cmd <= SIOCDEVPRIVATE + 15) ||
4534 cmd == SIOCBONDENSLAVE ||
4535 cmd == SIOCBONDRELEASE ||
4536 cmd == SIOCBONDSETHWADDR ||
4537 cmd == SIOCBONDSLAVEINFOQUERY ||
4538 cmd == SIOCBONDINFOQUERY ||
4539 cmd == SIOCBONDCHANGEACTIVE ||
4540 cmd == SIOCGMIIPHY ||
4541 cmd == SIOCGMIIREG ||
4542 cmd == SIOCSMIIREG ||
4543 cmd == SIOCBRADDIF ||
4544 cmd == SIOCBRDELIF ||
4545 cmd == SIOCSHWTSTAMP ||
4546 cmd == SIOCWANDEV) {
4547 err = -EOPNOTSUPP;
4548 if (ops->ndo_do_ioctl) {
4549 if (netif_device_present(dev))
4550 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4551 else
4552 err = -ENODEV;
4553 }
4554 } else
4555 err = -EINVAL;
4556
4557 }
4558 return err;
4559}
4560
4561/*
4562 * This function handles all "interface"-type I/O control requests. The actual
4563 * 'doing' part of this is dev_ifsioc above.
4564 */
4565
4566/**
4567 * dev_ioctl - network device ioctl
4568 * @net: the applicable net namespace
4569 * @cmd: command to issue
4570 * @arg: pointer to a struct ifreq in user space
4571 *
4572 * Issue ioctl functions to devices. This is normally called by the
4573 * user space syscall interfaces but can sometimes be useful for
4574 * other purposes. The return value is the return from the syscall if
4575 * positive or a negative errno code on error.
4576 */
4577
4578int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4579{
4580 struct ifreq ifr;
4581 int ret;
4582 char *colon;
4583
4584 /* One special case: SIOCGIFCONF takes ifconf argument
4585 and requires shared lock, because it sleeps writing
4586 to user space.
4587 */
4588
4589 if (cmd == SIOCGIFCONF) {
4590 rtnl_lock();
4591 ret = dev_ifconf(net, (char __user *) arg);
4592 rtnl_unlock();
4593 return ret;
4594 }
4595 if (cmd == SIOCGIFNAME)
4596 return dev_ifname(net, (struct ifreq __user *)arg);
4597
4598 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4599 return -EFAULT;
4600
4601 ifr.ifr_name[IFNAMSIZ-1] = 0;
4602
4603 colon = strchr(ifr.ifr_name, ':');
4604 if (colon)
4605 *colon = 0;
4606
4607 /*
4608 * See which interface the caller is talking about.
4609 */
4610
4611 switch (cmd) {
4612 /*
4613 * These ioctl calls:
4614 * - can be done by all.
4615 * - atomic and do not require locking.
4616 * - return a value
4617 */
4618 case SIOCGIFFLAGS:
4619 case SIOCGIFMETRIC:
4620 case SIOCGIFMTU:
4621 case SIOCGIFHWADDR:
4622 case SIOCGIFSLAVE:
4623 case SIOCGIFMAP:
4624 case SIOCGIFINDEX:
4625 case SIOCGIFTXQLEN:
4626 dev_load(net, ifr.ifr_name);
4627 rcu_read_lock();
4628 ret = dev_ifsioc_locked(net, &ifr, cmd);
4629 rcu_read_unlock();
4630 if (!ret) {
4631 if (colon)
4632 *colon = ':';
4633 if (copy_to_user(arg, &ifr,
4634 sizeof(struct ifreq)))
4635 ret = -EFAULT;
4636 }
4637 return ret;
4638
4639 case SIOCETHTOOL:
4640 dev_load(net, ifr.ifr_name);
4641 rtnl_lock();
4642 ret = dev_ethtool(net, &ifr);
4643 rtnl_unlock();
4644 if (!ret) {
4645 if (colon)
4646 *colon = ':';
4647 if (copy_to_user(arg, &ifr,
4648 sizeof(struct ifreq)))
4649 ret = -EFAULT;
4650 }
4651 return ret;
4652
4653 /*
4654 * These ioctl calls:
4655 * - require superuser power.
4656 * - require strict serialization.
4657 * - return a value
4658 */
4659 case SIOCGMIIPHY:
4660 case SIOCGMIIREG:
4661 case SIOCSIFNAME:
4662 if (!capable(CAP_NET_ADMIN))
4663 return -EPERM;
4664 dev_load(net, ifr.ifr_name);
4665 rtnl_lock();
4666 ret = dev_ifsioc(net, &ifr, cmd);
4667 rtnl_unlock();
4668 if (!ret) {
4669 if (colon)
4670 *colon = ':';
4671 if (copy_to_user(arg, &ifr,
4672 sizeof(struct ifreq)))
4673 ret = -EFAULT;
4674 }
4675 return ret;
4676
4677 /*
4678 * These ioctl calls:
4679 * - require superuser power.
4680 * - require strict serialization.
4681 * - do not return a value
4682 */
4683 case SIOCSIFFLAGS:
4684 case SIOCSIFMETRIC:
4685 case SIOCSIFMTU:
4686 case SIOCSIFMAP:
4687 case SIOCSIFHWADDR:
4688 case SIOCSIFSLAVE:
4689 case SIOCADDMULTI:
4690 case SIOCDELMULTI:
4691 case SIOCSIFHWBROADCAST:
4692 case SIOCSIFTXQLEN:
4693 case SIOCSMIIREG:
4694 case SIOCBONDENSLAVE:
4695 case SIOCBONDRELEASE:
4696 case SIOCBONDSETHWADDR:
4697 case SIOCBONDCHANGEACTIVE:
4698 case SIOCBRADDIF:
4699 case SIOCBRDELIF:
4700 case SIOCSHWTSTAMP:
4701 if (!capable(CAP_NET_ADMIN))
4702 return -EPERM;
4703 /* fall through */
4704 case SIOCBONDSLAVEINFOQUERY:
4705 case SIOCBONDINFOQUERY:
4706 dev_load(net, ifr.ifr_name);
4707 rtnl_lock();
4708 ret = dev_ifsioc(net, &ifr, cmd);
4709 rtnl_unlock();
4710 return ret;
4711
4712 case SIOCGIFMEM:
4713 /* Get the per device memory space. We can add this but
4714 * currently do not support it */
4715 case SIOCSIFMEM:
4716 /* Set the per device memory buffer space.
4717 * Not applicable in our case */
4718 case SIOCSIFLINK:
4719 return -EINVAL;
4720
4721 /*
4722 * Unknown or private ioctl.
4723 */
4724 default:
4725 if (cmd == SIOCWANDEV ||
4726 (cmd >= SIOCDEVPRIVATE &&
4727 cmd <= SIOCDEVPRIVATE + 15)) {
4728 dev_load(net, ifr.ifr_name);
4729 rtnl_lock();
4730 ret = dev_ifsioc(net, &ifr, cmd);
4731 rtnl_unlock();
4732 if (!ret && copy_to_user(arg, &ifr,
4733 sizeof(struct ifreq)))
4734 ret = -EFAULT;
4735 return ret;
4736 }
4737 /* Take care of Wireless Extensions */
4738 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4739 return wext_handle_ioctl(net, &ifr, cmd, arg);
4740 return -EINVAL;
4741 }
4742}
4743
4744
4745/**
4746 * dev_new_index - allocate an ifindex
4747 * @net: the applicable net namespace
4748 *
4749 * Returns a suitable unique value for a new device interface
4750 * number. The caller must hold the rtnl semaphore or the
4751 * dev_base_lock to be sure it remains unique.
4752 */
4753static int dev_new_index(struct net *net)
4754{
4755 static int ifindex;
4756 for (;;) {
4757 if (++ifindex <= 0)
4758 ifindex = 1;
4759 if (!__dev_get_by_index(net, ifindex))
4760 return ifindex;
4761 }
4762}
4763
4764/* Delayed registration/unregisteration */
4765static LIST_HEAD(net_todo_list);
4766
4767static void net_set_todo(struct net_device *dev)
4768{
4769 list_add_tail(&dev->todo_list, &net_todo_list);
4770}
4771
4772static void rollback_registered_many(struct list_head *head)
4773{
4774 struct net_device *dev, *tmp;
4775
4776 BUG_ON(dev_boot_phase);
4777 ASSERT_RTNL();
4778
4779 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4780 /* Some devices call without registering
4781 * for initialization unwind. Remove those
4782 * devices and proceed with the remaining.
4783 */
4784 if (dev->reg_state == NETREG_UNINITIALIZED) {
4785 pr_debug("unregister_netdevice: device %s/%p never "
4786 "was registered\n", dev->name, dev);
4787
4788 WARN_ON(1);
4789 list_del(&dev->unreg_list);
4790 continue;
4791 }
4792
4793 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4794
4795 /* If device is running, close it first. */
4796 dev_close(dev);
4797
4798 /* And unlink it from device chain. */
4799 unlist_netdevice(dev);
4800
4801 dev->reg_state = NETREG_UNREGISTERING;
4802 }
4803
4804 synchronize_net();
4805
4806 list_for_each_entry(dev, head, unreg_list) {
4807 /* Shutdown queueing discipline. */
4808 dev_shutdown(dev);
4809
4810
4811 /* Notify protocols, that we are about to destroy
4812 this device. They should clean all the things.
4813 */
4814 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4815
4816 if (!dev->rtnl_link_ops ||
4817 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4818 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4819
4820 /*
4821 * Flush the unicast and multicast chains
4822 */
4823 dev_uc_flush(dev);
4824 dev_mc_flush(dev);
4825
4826 if (dev->netdev_ops->ndo_uninit)
4827 dev->netdev_ops->ndo_uninit(dev);
4828
4829 /* Notifier chain MUST detach us from master device. */
4830 WARN_ON(dev->master);
4831
4832 /* Remove entries from kobject tree */
4833 netdev_unregister_kobject(dev);
4834 }
4835
4836 /* Process any work delayed until the end of the batch */
4837 dev = list_first_entry(head, struct net_device, unreg_list);
4838 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4839
4840 synchronize_net();
4841
4842 list_for_each_entry(dev, head, unreg_list)
4843 dev_put(dev);
4844}
4845
4846static void rollback_registered(struct net_device *dev)
4847{
4848 LIST_HEAD(single);
4849
4850 list_add(&dev->unreg_list, &single);
4851 rollback_registered_many(&single);
4852}
4853
4854static void __netdev_init_queue_locks_one(struct net_device *dev,
4855 struct netdev_queue *dev_queue,
4856 void *_unused)
4857{
4858 spin_lock_init(&dev_queue->_xmit_lock);
4859 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4860 dev_queue->xmit_lock_owner = -1;
4861}
4862
4863static void netdev_init_queue_locks(struct net_device *dev)
4864{
4865 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4866 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4867}
4868
4869unsigned long netdev_fix_features(unsigned long features, const char *name)
4870{
4871 /* Fix illegal SG+CSUM combinations. */
4872 if ((features & NETIF_F_SG) &&
4873 !(features & NETIF_F_ALL_CSUM)) {
4874 if (name)
4875 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4876 "checksum feature.\n", name);
4877 features &= ~NETIF_F_SG;
4878 }
4879
4880 /* TSO requires that SG is present as well. */
4881 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4882 if (name)
4883 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4884 "SG feature.\n", name);
4885 features &= ~NETIF_F_TSO;
4886 }
4887
4888 if (features & NETIF_F_UFO) {
4889 if (!(features & NETIF_F_GEN_CSUM)) {
4890 if (name)
4891 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4892 "since no NETIF_F_HW_CSUM feature.\n",
4893 name);
4894 features &= ~NETIF_F_UFO;
4895 }
4896
4897 if (!(features & NETIF_F_SG)) {
4898 if (name)
4899 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4900 "since no NETIF_F_SG feature.\n", name);
4901 features &= ~NETIF_F_UFO;
4902 }
4903 }
4904
4905 return features;
4906}
4907EXPORT_SYMBOL(netdev_fix_features);
4908
4909/**
4910 * netif_stacked_transfer_operstate - transfer operstate
4911 * @rootdev: the root or lower level device to transfer state from
4912 * @dev: the device to transfer operstate to
4913 *
4914 * Transfer operational state from root to device. This is normally
4915 * called when a stacking relationship exists between the root
4916 * device and the device(a leaf device).
4917 */
4918void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4919 struct net_device *dev)
4920{
4921 if (rootdev->operstate == IF_OPER_DORMANT)
4922 netif_dormant_on(dev);
4923 else
4924 netif_dormant_off(dev);
4925
4926 if (netif_carrier_ok(rootdev)) {
4927 if (!netif_carrier_ok(dev))
4928 netif_carrier_on(dev);
4929 } else {
4930 if (netif_carrier_ok(dev))
4931 netif_carrier_off(dev);
4932 }
4933}
4934EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4935
4936/**
4937 * register_netdevice - register a network device
4938 * @dev: device to register
4939 *
4940 * Take a completed network device structure and add it to the kernel
4941 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4942 * chain. 0 is returned on success. A negative errno code is returned
4943 * on a failure to set up the device, or if the name is a duplicate.
4944 *
4945 * Callers must hold the rtnl semaphore. You may want
4946 * register_netdev() instead of this.
4947 *
4948 * BUGS:
4949 * The locking appears insufficient to guarantee two parallel registers
4950 * will not get the same name.
4951 */
4952
4953int register_netdevice(struct net_device *dev)
4954{
4955 int ret;
4956 struct net *net = dev_net(dev);
4957
4958 BUG_ON(dev_boot_phase);
4959 ASSERT_RTNL();
4960
4961 might_sleep();
4962
4963 /* When net_device's are persistent, this will be fatal. */
4964 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4965 BUG_ON(!net);
4966
4967 spin_lock_init(&dev->addr_list_lock);
4968 netdev_set_addr_lockdep_class(dev);
4969 netdev_init_queue_locks(dev);
4970
4971 dev->iflink = -1;
4972
4973#ifdef CONFIG_RPS
4974 if (!dev->num_rx_queues) {
4975 /*
4976 * Allocate a single RX queue if driver never called
4977 * alloc_netdev_mq
4978 */
4979
4980 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4981 if (!dev->_rx) {
4982 ret = -ENOMEM;
4983 goto out;
4984 }
4985
4986 dev->_rx->first = dev->_rx;
4987 atomic_set(&dev->_rx->count, 1);
4988 dev->num_rx_queues = 1;
4989 }
4990#endif
4991 /* Init, if this function is available */
4992 if (dev->netdev_ops->ndo_init) {
4993 ret = dev->netdev_ops->ndo_init(dev);
4994 if (ret) {
4995 if (ret > 0)
4996 ret = -EIO;
4997 goto out;
4998 }
4999 }
5000
5001 ret = dev_get_valid_name(dev, dev->name, 0);
5002 if (ret)
5003 goto err_uninit;
5004
5005 dev->ifindex = dev_new_index(net);
5006 if (dev->iflink == -1)
5007 dev->iflink = dev->ifindex;
5008
5009 /* Fix illegal checksum combinations */
5010 if ((dev->features & NETIF_F_HW_CSUM) &&
5011 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5012 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5013 dev->name);
5014 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5015 }
5016
5017 if ((dev->features & NETIF_F_NO_CSUM) &&
5018 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5019 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5020 dev->name);
5021 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5022 }
5023
5024 dev->features = netdev_fix_features(dev->features, dev->name);
5025
5026 /* Enable software GSO if SG is supported. */
5027 if (dev->features & NETIF_F_SG)
5028 dev->features |= NETIF_F_GSO;
5029
5030 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5031 ret = notifier_to_errno(ret);
5032 if (ret)
5033 goto err_uninit;
5034
5035 ret = netdev_register_kobject(dev);
5036 if (ret)
5037 goto err_uninit;
5038 dev->reg_state = NETREG_REGISTERED;
5039
5040 /*
5041 * Default initial state at registry is that the
5042 * device is present.
5043 */
5044
5045 set_bit(__LINK_STATE_PRESENT, &dev->state);
5046
5047 dev_init_scheduler(dev);
5048 dev_hold(dev);
5049 list_netdevice(dev);
5050
5051 /* Notify protocols, that a new device appeared. */
5052 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5053 ret = notifier_to_errno(ret);
5054 if (ret) {
5055 rollback_registered(dev);
5056 dev->reg_state = NETREG_UNREGISTERED;
5057 }
5058 /*
5059 * Prevent userspace races by waiting until the network
5060 * device is fully setup before sending notifications.
5061 */
5062 if (!dev->rtnl_link_ops ||
5063 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5064 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5065
5066out:
5067 return ret;
5068
5069err_uninit:
5070 if (dev->netdev_ops->ndo_uninit)
5071 dev->netdev_ops->ndo_uninit(dev);
5072 goto out;
5073}
5074EXPORT_SYMBOL(register_netdevice);
5075
5076/**
5077 * init_dummy_netdev - init a dummy network device for NAPI
5078 * @dev: device to init
5079 *
5080 * This takes a network device structure and initialize the minimum
5081 * amount of fields so it can be used to schedule NAPI polls without
5082 * registering a full blown interface. This is to be used by drivers
5083 * that need to tie several hardware interfaces to a single NAPI
5084 * poll scheduler due to HW limitations.
5085 */
5086int init_dummy_netdev(struct net_device *dev)
5087{
5088 /* Clear everything. Note we don't initialize spinlocks
5089 * are they aren't supposed to be taken by any of the
5090 * NAPI code and this dummy netdev is supposed to be
5091 * only ever used for NAPI polls
5092 */
5093 memset(dev, 0, sizeof(struct net_device));
5094
5095 /* make sure we BUG if trying to hit standard
5096 * register/unregister code path
5097 */
5098 dev->reg_state = NETREG_DUMMY;
5099
5100 /* initialize the ref count */
5101 atomic_set(&dev->refcnt, 1);
5102
5103 /* NAPI wants this */
5104 INIT_LIST_HEAD(&dev->napi_list);
5105
5106 /* a dummy interface is started by default */
5107 set_bit(__LINK_STATE_PRESENT, &dev->state);
5108 set_bit(__LINK_STATE_START, &dev->state);
5109
5110 return 0;
5111}
5112EXPORT_SYMBOL_GPL(init_dummy_netdev);
5113
5114
5115/**
5116 * register_netdev - register a network device
5117 * @dev: device to register
5118 *
5119 * Take a completed network device structure and add it to the kernel
5120 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5121 * chain. 0 is returned on success. A negative errno code is returned
5122 * on a failure to set up the device, or if the name is a duplicate.
5123 *
5124 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5125 * and expands the device name if you passed a format string to
5126 * alloc_netdev.
5127 */
5128int register_netdev(struct net_device *dev)
5129{
5130 int err;
5131
5132 rtnl_lock();
5133
5134 /*
5135 * If the name is a format string the caller wants us to do a
5136 * name allocation.
5137 */
5138 if (strchr(dev->name, '%')) {
5139 err = dev_alloc_name(dev, dev->name);
5140 if (err < 0)
5141 goto out;
5142 }
5143
5144 err = register_netdevice(dev);
5145out:
5146 rtnl_unlock();
5147 return err;
5148}
5149EXPORT_SYMBOL(register_netdev);
5150
5151/*
5152 * netdev_wait_allrefs - wait until all references are gone.
5153 *
5154 * This is called when unregistering network devices.
5155 *
5156 * Any protocol or device that holds a reference should register
5157 * for netdevice notification, and cleanup and put back the
5158 * reference if they receive an UNREGISTER event.
5159 * We can get stuck here if buggy protocols don't correctly
5160 * call dev_put.
5161 */
5162static void netdev_wait_allrefs(struct net_device *dev)
5163{
5164 unsigned long rebroadcast_time, warning_time;
5165
5166 linkwatch_forget_dev(dev);
5167
5168 rebroadcast_time = warning_time = jiffies;
5169 while (atomic_read(&dev->refcnt) != 0) {
5170 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5171 rtnl_lock();
5172
5173 /* Rebroadcast unregister notification */
5174 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5175 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5176 * should have already handle it the first time */
5177
5178 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5179 &dev->state)) {
5180 /* We must not have linkwatch events
5181 * pending on unregister. If this
5182 * happens, we simply run the queue
5183 * unscheduled, resulting in a noop
5184 * for this device.
5185 */
5186 linkwatch_run_queue();
5187 }
5188
5189 __rtnl_unlock();
5190
5191 rebroadcast_time = jiffies;
5192 }
5193
5194 msleep(250);
5195
5196 if (time_after(jiffies, warning_time + 10 * HZ)) {
5197 printk(KERN_EMERG "unregister_netdevice: "
5198 "waiting for %s to become free. Usage "
5199 "count = %d\n",
5200 dev->name, atomic_read(&dev->refcnt));
5201 warning_time = jiffies;
5202 }
5203 }
5204}
5205
5206/* The sequence is:
5207 *
5208 * rtnl_lock();
5209 * ...
5210 * register_netdevice(x1);
5211 * register_netdevice(x2);
5212 * ...
5213 * unregister_netdevice(y1);
5214 * unregister_netdevice(y2);
5215 * ...
5216 * rtnl_unlock();
5217 * free_netdev(y1);
5218 * free_netdev(y2);
5219 *
5220 * We are invoked by rtnl_unlock().
5221 * This allows us to deal with problems:
5222 * 1) We can delete sysfs objects which invoke hotplug
5223 * without deadlocking with linkwatch via keventd.
5224 * 2) Since we run with the RTNL semaphore not held, we can sleep
5225 * safely in order to wait for the netdev refcnt to drop to zero.
5226 *
5227 * We must not return until all unregister events added during
5228 * the interval the lock was held have been completed.
5229 */
5230void netdev_run_todo(void)
5231{
5232 struct list_head list;
5233
5234 /* Snapshot list, allow later requests */
5235 list_replace_init(&net_todo_list, &list);
5236
5237 __rtnl_unlock();
5238
5239 while (!list_empty(&list)) {
5240 struct net_device *dev
5241 = list_first_entry(&list, struct net_device, todo_list);
5242 list_del(&dev->todo_list);
5243
5244 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5245 printk(KERN_ERR "network todo '%s' but state %d\n",
5246 dev->name, dev->reg_state);
5247 dump_stack();
5248 continue;
5249 }
5250
5251 dev->reg_state = NETREG_UNREGISTERED;
5252
5253 on_each_cpu(flush_backlog, dev, 1);
5254
5255 netdev_wait_allrefs(dev);
5256
5257 /* paranoia */
5258 BUG_ON(atomic_read(&dev->refcnt));
5259 WARN_ON(dev->ip_ptr);
5260 WARN_ON(dev->ip6_ptr);
5261 WARN_ON(dev->dn_ptr);
5262
5263 if (dev->destructor)
5264 dev->destructor(dev);
5265
5266 /* Free network device */
5267 kobject_put(&dev->dev.kobj);
5268 }
5269}
5270
5271/**
5272 * dev_txq_stats_fold - fold tx_queues stats
5273 * @dev: device to get statistics from
5274 * @stats: struct net_device_stats to hold results
5275 */
5276void dev_txq_stats_fold(const struct net_device *dev,
5277 struct net_device_stats *stats)
5278{
5279 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5280 unsigned int i;
5281 struct netdev_queue *txq;
5282
5283 for (i = 0; i < dev->num_tx_queues; i++) {
5284 txq = netdev_get_tx_queue(dev, i);
5285 tx_bytes += txq->tx_bytes;
5286 tx_packets += txq->tx_packets;
5287 tx_dropped += txq->tx_dropped;
5288 }
5289 if (tx_bytes || tx_packets || tx_dropped) {
5290 stats->tx_bytes = tx_bytes;
5291 stats->tx_packets = tx_packets;
5292 stats->tx_dropped = tx_dropped;
5293 }
5294}
5295EXPORT_SYMBOL(dev_txq_stats_fold);
5296
5297/**
5298 * dev_get_stats - get network device statistics
5299 * @dev: device to get statistics from
5300 *
5301 * Get network statistics from device. The device driver may provide
5302 * its own method by setting dev->netdev_ops->get_stats; otherwise
5303 * the internal statistics structure is used.
5304 */
5305const struct net_device_stats *dev_get_stats(struct net_device *dev)
5306{
5307 const struct net_device_ops *ops = dev->netdev_ops;
5308
5309 if (ops->ndo_get_stats)
5310 return ops->ndo_get_stats(dev);
5311
5312 dev_txq_stats_fold(dev, &dev->stats);
5313 return &dev->stats;
5314}
5315EXPORT_SYMBOL(dev_get_stats);
5316
5317static void netdev_init_one_queue(struct net_device *dev,
5318 struct netdev_queue *queue,
5319 void *_unused)
5320{
5321 queue->dev = dev;
5322}
5323
5324static void netdev_init_queues(struct net_device *dev)
5325{
5326 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5327 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5328 spin_lock_init(&dev->tx_global_lock);
5329}
5330
5331/**
5332 * alloc_netdev_mq - allocate network device
5333 * @sizeof_priv: size of private data to allocate space for
5334 * @name: device name format string
5335 * @setup: callback to initialize device
5336 * @queue_count: the number of subqueues to allocate
5337 *
5338 * Allocates a struct net_device with private data area for driver use
5339 * and performs basic initialization. Also allocates subquue structs
5340 * for each queue on the device at the end of the netdevice.
5341 */
5342struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5343 void (*setup)(struct net_device *), unsigned int queue_count)
5344{
5345 struct netdev_queue *tx;
5346 struct net_device *dev;
5347 size_t alloc_size;
5348 struct net_device *p;
5349#ifdef CONFIG_RPS
5350 struct netdev_rx_queue *rx;
5351 int i;
5352#endif
5353
5354 BUG_ON(strlen(name) >= sizeof(dev->name));
5355
5356 alloc_size = sizeof(struct net_device);
5357 if (sizeof_priv) {
5358 /* ensure 32-byte alignment of private area */
5359 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5360 alloc_size += sizeof_priv;
5361 }
5362 /* ensure 32-byte alignment of whole construct */
5363 alloc_size += NETDEV_ALIGN - 1;
5364
5365 p = kzalloc(alloc_size, GFP_KERNEL);
5366 if (!p) {
5367 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5368 return NULL;
5369 }
5370
5371 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5372 if (!tx) {
5373 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5374 "tx qdiscs.\n");
5375 goto free_p;
5376 }
5377
5378#ifdef CONFIG_RPS
5379 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5380 if (!rx) {
5381 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5382 "rx queues.\n");
5383 goto free_tx;
5384 }
5385
5386 atomic_set(&rx->count, queue_count);
5387
5388 /*
5389 * Set a pointer to first element in the array which holds the
5390 * reference count.
5391 */
5392 for (i = 0; i < queue_count; i++)
5393 rx[i].first = rx;
5394#endif
5395
5396 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5397 dev->padded = (char *)dev - (char *)p;
5398
5399 if (dev_addr_init(dev))
5400 goto free_rx;
5401
5402 dev_mc_init(dev);
5403 dev_uc_init(dev);
5404
5405 dev_net_set(dev, &init_net);
5406
5407 dev->_tx = tx;
5408 dev->num_tx_queues = queue_count;
5409 dev->real_num_tx_queues = queue_count;
5410
5411#ifdef CONFIG_RPS
5412 dev->_rx = rx;
5413 dev->num_rx_queues = queue_count;
5414#endif
5415
5416 dev->gso_max_size = GSO_MAX_SIZE;
5417
5418 netdev_init_queues(dev);
5419
5420 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5421 dev->ethtool_ntuple_list.count = 0;
5422 INIT_LIST_HEAD(&dev->napi_list);
5423 INIT_LIST_HEAD(&dev->unreg_list);
5424 INIT_LIST_HEAD(&dev->link_watch_list);
5425 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5426 setup(dev);
5427 strcpy(dev->name, name);
5428 return dev;
5429
5430free_rx:
5431#ifdef CONFIG_RPS
5432 kfree(rx);
5433free_tx:
5434#endif
5435 kfree(tx);
5436free_p:
5437 kfree(p);
5438 return NULL;
5439}
5440EXPORT_SYMBOL(alloc_netdev_mq);
5441
5442/**
5443 * free_netdev - free network device
5444 * @dev: device
5445 *
5446 * This function does the last stage of destroying an allocated device
5447 * interface. The reference to the device object is released.
5448 * If this is the last reference then it will be freed.
5449 */
5450void free_netdev(struct net_device *dev)
5451{
5452 struct napi_struct *p, *n;
5453
5454 release_net(dev_net(dev));
5455
5456 kfree(dev->_tx);
5457
5458 /* Flush device addresses */
5459 dev_addr_flush(dev);
5460
5461 /* Clear ethtool n-tuple list */
5462 ethtool_ntuple_flush(dev);
5463
5464 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5465 netif_napi_del(p);
5466
5467 /* Compatibility with error handling in drivers */
5468 if (dev->reg_state == NETREG_UNINITIALIZED) {
5469 kfree((char *)dev - dev->padded);
5470 return;
5471 }
5472
5473 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5474 dev->reg_state = NETREG_RELEASED;
5475
5476 /* will free via device release */
5477 put_device(&dev->dev);
5478}
5479EXPORT_SYMBOL(free_netdev);
5480
5481/**
5482 * synchronize_net - Synchronize with packet receive processing
5483 *
5484 * Wait for packets currently being received to be done.
5485 * Does not block later packets from starting.
5486 */
5487void synchronize_net(void)
5488{
5489 might_sleep();
5490 synchronize_rcu();
5491}
5492EXPORT_SYMBOL(synchronize_net);
5493
5494/**
5495 * unregister_netdevice_queue - remove device from the kernel
5496 * @dev: device
5497 * @head: list
5498 *
5499 * This function shuts down a device interface and removes it
5500 * from the kernel tables.
5501 * If head not NULL, device is queued to be unregistered later.
5502 *
5503 * Callers must hold the rtnl semaphore. You may want
5504 * unregister_netdev() instead of this.
5505 */
5506
5507void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5508{
5509 ASSERT_RTNL();
5510
5511 if (head) {
5512 list_move_tail(&dev->unreg_list, head);
5513 } else {
5514 rollback_registered(dev);
5515 /* Finish processing unregister after unlock */
5516 net_set_todo(dev);
5517 }
5518}
5519EXPORT_SYMBOL(unregister_netdevice_queue);
5520
5521/**
5522 * unregister_netdevice_many - unregister many devices
5523 * @head: list of devices
5524 */
5525void unregister_netdevice_many(struct list_head *head)
5526{
5527 struct net_device *dev;
5528
5529 if (!list_empty(head)) {
5530 rollback_registered_many(head);
5531 list_for_each_entry(dev, head, unreg_list)
5532 net_set_todo(dev);
5533 }
5534}
5535EXPORT_SYMBOL(unregister_netdevice_many);
5536
5537/**
5538 * unregister_netdev - remove device from the kernel
5539 * @dev: device
5540 *
5541 * This function shuts down a device interface and removes it
5542 * from the kernel tables.
5543 *
5544 * This is just a wrapper for unregister_netdevice that takes
5545 * the rtnl semaphore. In general you want to use this and not
5546 * unregister_netdevice.
5547 */
5548void unregister_netdev(struct net_device *dev)
5549{
5550 rtnl_lock();
5551 unregister_netdevice(dev);
5552 rtnl_unlock();
5553}
5554EXPORT_SYMBOL(unregister_netdev);
5555
5556/**
5557 * dev_change_net_namespace - move device to different nethost namespace
5558 * @dev: device
5559 * @net: network namespace
5560 * @pat: If not NULL name pattern to try if the current device name
5561 * is already taken in the destination network namespace.
5562 *
5563 * This function shuts down a device interface and moves it
5564 * to a new network namespace. On success 0 is returned, on
5565 * a failure a netagive errno code is returned.
5566 *
5567 * Callers must hold the rtnl semaphore.
5568 */
5569
5570int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5571{
5572 int err;
5573
5574 ASSERT_RTNL();
5575
5576 /* Don't allow namespace local devices to be moved. */
5577 err = -EINVAL;
5578 if (dev->features & NETIF_F_NETNS_LOCAL)
5579 goto out;
5580
5581 /* Ensure the device has been registrered */
5582 err = -EINVAL;
5583 if (dev->reg_state != NETREG_REGISTERED)
5584 goto out;
5585
5586 /* Get out if there is nothing todo */
5587 err = 0;
5588 if (net_eq(dev_net(dev), net))
5589 goto out;
5590
5591 /* Pick the destination device name, and ensure
5592 * we can use it in the destination network namespace.
5593 */
5594 err = -EEXIST;
5595 if (__dev_get_by_name(net, dev->name)) {
5596 /* We get here if we can't use the current device name */
5597 if (!pat)
5598 goto out;
5599 if (dev_get_valid_name(dev, pat, 1))
5600 goto out;
5601 }
5602
5603 /*
5604 * And now a mini version of register_netdevice unregister_netdevice.
5605 */
5606
5607 /* If device is running close it first. */
5608 dev_close(dev);
5609
5610 /* And unlink it from device chain */
5611 err = -ENODEV;
5612 unlist_netdevice(dev);
5613
5614 synchronize_net();
5615
5616 /* Shutdown queueing discipline. */
5617 dev_shutdown(dev);
5618
5619 /* Notify protocols, that we are about to destroy
5620 this device. They should clean all the things.
5621 */
5622 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5623 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5624
5625 /*
5626 * Flush the unicast and multicast chains
5627 */
5628 dev_uc_flush(dev);
5629 dev_mc_flush(dev);
5630
5631 /* Actually switch the network namespace */
5632 dev_net_set(dev, net);
5633
5634 /* If there is an ifindex conflict assign a new one */
5635 if (__dev_get_by_index(net, dev->ifindex)) {
5636 int iflink = (dev->iflink == dev->ifindex);
5637 dev->ifindex = dev_new_index(net);
5638 if (iflink)
5639 dev->iflink = dev->ifindex;
5640 }
5641
5642 /* Fixup kobjects */
5643 err = device_rename(&dev->dev, dev->name);
5644 WARN_ON(err);
5645
5646 /* Add the device back in the hashes */
5647 list_netdevice(dev);
5648
5649 /* Notify protocols, that a new device appeared. */
5650 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5651
5652 /*
5653 * Prevent userspace races by waiting until the network
5654 * device is fully setup before sending notifications.
5655 */
5656 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5657
5658 synchronize_net();
5659 err = 0;
5660out:
5661 return err;
5662}
5663EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5664
5665static int dev_cpu_callback(struct notifier_block *nfb,
5666 unsigned long action,
5667 void *ocpu)
5668{
5669 struct sk_buff **list_skb;
5670 struct sk_buff *skb;
5671 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5672 struct softnet_data *sd, *oldsd;
5673
5674 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5675 return NOTIFY_OK;
5676
5677 local_irq_disable();
5678 cpu = smp_processor_id();
5679 sd = &per_cpu(softnet_data, cpu);
5680 oldsd = &per_cpu(softnet_data, oldcpu);
5681
5682 /* Find end of our completion_queue. */
5683 list_skb = &sd->completion_queue;
5684 while (*list_skb)
5685 list_skb = &(*list_skb)->next;
5686 /* Append completion queue from offline CPU. */
5687 *list_skb = oldsd->completion_queue;
5688 oldsd->completion_queue = NULL;
5689
5690 /* Append output queue from offline CPU. */
5691 if (oldsd->output_queue) {
5692 *sd->output_queue_tailp = oldsd->output_queue;
5693 sd->output_queue_tailp = oldsd->output_queue_tailp;
5694 oldsd->output_queue = NULL;
5695 oldsd->output_queue_tailp = &oldsd->output_queue;
5696 }
5697
5698 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5699 local_irq_enable();
5700
5701 /* Process offline CPU's input_pkt_queue */
5702 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5703 netif_rx(skb);
5704 input_queue_head_incr(oldsd);
5705 }
5706 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5707 netif_rx(skb);
5708 input_queue_head_incr(oldsd);
5709 }
5710
5711 return NOTIFY_OK;
5712}
5713
5714
5715/**
5716 * netdev_increment_features - increment feature set by one
5717 * @all: current feature set
5718 * @one: new feature set
5719 * @mask: mask feature set
5720 *
5721 * Computes a new feature set after adding a device with feature set
5722 * @one to the master device with current feature set @all. Will not
5723 * enable anything that is off in @mask. Returns the new feature set.
5724 */
5725unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5726 unsigned long mask)
5727{
5728 /* If device needs checksumming, downgrade to it. */
5729 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5730 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5731 else if (mask & NETIF_F_ALL_CSUM) {
5732 /* If one device supports v4/v6 checksumming, set for all. */
5733 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5734 !(all & NETIF_F_GEN_CSUM)) {
5735 all &= ~NETIF_F_ALL_CSUM;
5736 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5737 }
5738
5739 /* If one device supports hw checksumming, set for all. */
5740 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5741 all &= ~NETIF_F_ALL_CSUM;
5742 all |= NETIF_F_HW_CSUM;
5743 }
5744 }
5745
5746 one |= NETIF_F_ALL_CSUM;
5747
5748 one |= all & NETIF_F_ONE_FOR_ALL;
5749 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5750 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5751
5752 return all;
5753}
5754EXPORT_SYMBOL(netdev_increment_features);
5755
5756static struct hlist_head *netdev_create_hash(void)
5757{
5758 int i;
5759 struct hlist_head *hash;
5760
5761 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5762 if (hash != NULL)
5763 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5764 INIT_HLIST_HEAD(&hash[i]);
5765
5766 return hash;
5767}
5768
5769/* Initialize per network namespace state */
5770static int __net_init netdev_init(struct net *net)
5771{
5772 INIT_LIST_HEAD(&net->dev_base_head);
5773
5774 net->dev_name_head = netdev_create_hash();
5775 if (net->dev_name_head == NULL)
5776 goto err_name;
5777
5778 net->dev_index_head = netdev_create_hash();
5779 if (net->dev_index_head == NULL)
5780 goto err_idx;
5781
5782 return 0;
5783
5784err_idx:
5785 kfree(net->dev_name_head);
5786err_name:
5787 return -ENOMEM;
5788}
5789
5790/**
5791 * netdev_drivername - network driver for the device
5792 * @dev: network device
5793 * @buffer: buffer for resulting name
5794 * @len: size of buffer
5795 *
5796 * Determine network driver for device.
5797 */
5798char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5799{
5800 const struct device_driver *driver;
5801 const struct device *parent;
5802
5803 if (len <= 0 || !buffer)
5804 return buffer;
5805 buffer[0] = 0;
5806
5807 parent = dev->dev.parent;
5808
5809 if (!parent)
5810 return buffer;
5811
5812 driver = parent->driver;
5813 if (driver && driver->name)
5814 strlcpy(buffer, driver->name, len);
5815 return buffer;
5816}
5817
5818static void __net_exit netdev_exit(struct net *net)
5819{
5820 kfree(net->dev_name_head);
5821 kfree(net->dev_index_head);
5822}
5823
5824static struct pernet_operations __net_initdata netdev_net_ops = {
5825 .init = netdev_init,
5826 .exit = netdev_exit,
5827};
5828
5829static void __net_exit default_device_exit(struct net *net)
5830{
5831 struct net_device *dev, *aux;
5832 /*
5833 * Push all migratable network devices back to the
5834 * initial network namespace
5835 */
5836 rtnl_lock();
5837 for_each_netdev_safe(net, dev, aux) {
5838 int err;
5839 char fb_name[IFNAMSIZ];
5840
5841 /* Ignore unmoveable devices (i.e. loopback) */
5842 if (dev->features & NETIF_F_NETNS_LOCAL)
5843 continue;
5844
5845 /* Leave virtual devices for the generic cleanup */
5846 if (dev->rtnl_link_ops)
5847 continue;
5848
5849 /* Push remaing network devices to init_net */
5850 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5851 err = dev_change_net_namespace(dev, &init_net, fb_name);
5852 if (err) {
5853 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5854 __func__, dev->name, err);
5855 BUG();
5856 }
5857 }
5858 rtnl_unlock();
5859}
5860
5861static void __net_exit default_device_exit_batch(struct list_head *net_list)
5862{
5863 /* At exit all network devices most be removed from a network
5864 * namespace. Do this in the reverse order of registeration.
5865 * Do this across as many network namespaces as possible to
5866 * improve batching efficiency.
5867 */
5868 struct net_device *dev;
5869 struct net *net;
5870 LIST_HEAD(dev_kill_list);
5871
5872 rtnl_lock();
5873 list_for_each_entry(net, net_list, exit_list) {
5874 for_each_netdev_reverse(net, dev) {
5875 if (dev->rtnl_link_ops)
5876 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5877 else
5878 unregister_netdevice_queue(dev, &dev_kill_list);
5879 }
5880 }
5881 unregister_netdevice_many(&dev_kill_list);
5882 rtnl_unlock();
5883}
5884
5885static struct pernet_operations __net_initdata default_device_ops = {
5886 .exit = default_device_exit,
5887 .exit_batch = default_device_exit_batch,
5888};
5889
5890/*
5891 * Initialize the DEV module. At boot time this walks the device list and
5892 * unhooks any devices that fail to initialise (normally hardware not
5893 * present) and leaves us with a valid list of present and active devices.
5894 *
5895 */
5896
5897/*
5898 * This is called single threaded during boot, so no need
5899 * to take the rtnl semaphore.
5900 */
5901static int __init net_dev_init(void)
5902{
5903 int i, rc = -ENOMEM;
5904
5905 BUG_ON(!dev_boot_phase);
5906
5907 if (dev_proc_init())
5908 goto out;
5909
5910 if (netdev_kobject_init())
5911 goto out;
5912
5913 INIT_LIST_HEAD(&ptype_all);
5914 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5915 INIT_LIST_HEAD(&ptype_base[i]);
5916
5917 if (register_pernet_subsys(&netdev_net_ops))
5918 goto out;
5919
5920 /*
5921 * Initialise the packet receive queues.
5922 */
5923
5924 for_each_possible_cpu(i) {
5925 struct softnet_data *sd = &per_cpu(softnet_data, i);
5926
5927 memset(sd, 0, sizeof(*sd));
5928 skb_queue_head_init(&sd->input_pkt_queue);
5929 skb_queue_head_init(&sd->process_queue);
5930 sd->completion_queue = NULL;
5931 INIT_LIST_HEAD(&sd->poll_list);
5932 sd->output_queue = NULL;
5933 sd->output_queue_tailp = &sd->output_queue;
5934#ifdef CONFIG_RPS
5935 sd->csd.func = rps_trigger_softirq;
5936 sd->csd.info = sd;
5937 sd->csd.flags = 0;
5938 sd->cpu = i;
5939#endif
5940
5941 sd->backlog.poll = process_backlog;
5942 sd->backlog.weight = weight_p;
5943 sd->backlog.gro_list = NULL;
5944 sd->backlog.gro_count = 0;
5945 }
5946
5947 dev_boot_phase = 0;
5948
5949 /* The loopback device is special if any other network devices
5950 * is present in a network namespace the loopback device must
5951 * be present. Since we now dynamically allocate and free the
5952 * loopback device ensure this invariant is maintained by
5953 * keeping the loopback device as the first device on the
5954 * list of network devices. Ensuring the loopback devices
5955 * is the first device that appears and the last network device
5956 * that disappears.
5957 */
5958 if (register_pernet_device(&loopback_net_ops))
5959 goto out;
5960
5961 if (register_pernet_device(&default_device_ops))
5962 goto out;
5963
5964 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5965 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5966
5967 hotcpu_notifier(dev_cpu_callback, 0);
5968 dst_init();
5969 dev_mcast_init();
5970 rc = 0;
5971out:
5972 return rc;
5973}
5974
5975subsys_initcall(net_dev_init);
5976
5977static int __init initialize_hashrnd(void)
5978{
5979 get_random_bytes(&hashrnd, sizeof(hashrnd));
5980 return 0;
5981}
5982
5983late_initcall_sync(initialize_hashrnd);
5984