]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
gre: convert hash tables locking to RCU
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122#include <linux/if_vlan.h>
123#include <linux/ip.h>
124#include <net/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130
131#include "net-sysfs.h"
132
133/* Instead of increasing this, you should create a hash table. */
134#define MAX_GRO_SKBS 8
135
136/* This should be increased if a protocol with a bigger head is added. */
137#define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139/*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167#define PTYPE_HASH_SIZE (16)
168#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170static DEFINE_SPINLOCK(ptype_lock);
171static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172static struct list_head ptype_all __read_mostly; /* Taps */
173
174/*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193DEFINE_RWLOCK(dev_base_lock);
194EXPORT_SYMBOL(dev_base_lock);
195
196#define NETDEV_HASHBITS 8
197#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
198
199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
200{
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
202 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
203}
204
205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
206{
207 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
208}
209
210/* Device list insertion */
211static int list_netdevice(struct net_device *dev)
212{
213 struct net *net = dev_net(dev);
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
218 list_add_tail(&dev->dev_list, &net->dev_base_head);
219 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
220 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223}
224
225/* Device list removal */
226static void unlist_netdevice(struct net_device *dev)
227{
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236}
237
238/*
239 * Our notifier list
240 */
241
242static RAW_NOTIFIER_HEAD(netdev_chain);
243
244/*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249DEFINE_PER_CPU(struct softnet_data, softnet_data);
250EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252#ifdef CONFIG_LOCKDEP
253/*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
274
275static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
292
293static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
295
296static inline unsigned short netdev_lock_pos(unsigned short dev_type)
297{
298 int i;
299
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
305}
306
307static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
309{
310 int i;
311
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
315}
316
317static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
318{
319 int i;
320
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
325}
326#else
327static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329{
330}
331static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332{
333}
334#endif
335
336/*******************************************************************************
337
338 Protocol management and registration routines
339
340*******************************************************************************/
341
342/*
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
346 *
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
356 */
357
358/**
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
361 *
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
365 *
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
369 */
370
371void dev_add_pack(struct packet_type *pt)
372{
373 int hash;
374
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
381 }
382 spin_unlock_bh(&ptype_lock);
383}
384EXPORT_SYMBOL(dev_add_pack);
385
386/**
387 * __dev_remove_pack - remove packet handler
388 * @pt: packet type declaration
389 *
390 * Remove a protocol handler that was previously added to the kernel
391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
392 * from the kernel lists and can be freed or reused once this function
393 * returns.
394 *
395 * The packet type might still be in use by receivers
396 * and must not be freed until after all the CPU's have gone
397 * through a quiescent state.
398 */
399void __dev_remove_pack(struct packet_type *pt)
400{
401 struct list_head *head;
402 struct packet_type *pt1;
403
404 spin_lock_bh(&ptype_lock);
405
406 if (pt->type == htons(ETH_P_ALL))
407 head = &ptype_all;
408 else
409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
410
411 list_for_each_entry(pt1, head, list) {
412 if (pt == pt1) {
413 list_del_rcu(&pt->list);
414 goto out;
415 }
416 }
417
418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
419out:
420 spin_unlock_bh(&ptype_lock);
421}
422EXPORT_SYMBOL(__dev_remove_pack);
423
424/**
425 * dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
427 *
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
432 *
433 * This call sleeps to guarantee that no CPU is looking at the packet
434 * type after return.
435 */
436void dev_remove_pack(struct packet_type *pt)
437{
438 __dev_remove_pack(pt);
439
440 synchronize_net();
441}
442EXPORT_SYMBOL(dev_remove_pack);
443
444/******************************************************************************
445
446 Device Boot-time Settings Routines
447
448*******************************************************************************/
449
450/* Boot time configuration table */
451static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
452
453/**
454 * netdev_boot_setup_add - add new setup entry
455 * @name: name of the device
456 * @map: configured settings for the device
457 *
458 * Adds new setup entry to the dev_boot_setup list. The function
459 * returns 0 on error and 1 on success. This is a generic routine to
460 * all netdevices.
461 */
462static int netdev_boot_setup_add(char *name, struct ifmap *map)
463{
464 struct netdev_boot_setup *s;
465 int i;
466
467 s = dev_boot_setup;
468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
470 memset(s[i].name, 0, sizeof(s[i].name));
471 strlcpy(s[i].name, name, IFNAMSIZ);
472 memcpy(&s[i].map, map, sizeof(s[i].map));
473 break;
474 }
475 }
476
477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
478}
479
480/**
481 * netdev_boot_setup_check - check boot time settings
482 * @dev: the netdevice
483 *
484 * Check boot time settings for the device.
485 * The found settings are set for the device to be used
486 * later in the device probing.
487 * Returns 0 if no settings found, 1 if they are.
488 */
489int netdev_boot_setup_check(struct net_device *dev)
490{
491 struct netdev_boot_setup *s = dev_boot_setup;
492 int i;
493
494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
496 !strcmp(dev->name, s[i].name)) {
497 dev->irq = s[i].map.irq;
498 dev->base_addr = s[i].map.base_addr;
499 dev->mem_start = s[i].map.mem_start;
500 dev->mem_end = s[i].map.mem_end;
501 return 1;
502 }
503 }
504 return 0;
505}
506EXPORT_SYMBOL(netdev_boot_setup_check);
507
508
509/**
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
513 *
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
518 */
519unsigned long netdev_boot_base(const char *prefix, int unit)
520{
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
524
525 sprintf(name, "%s%d", prefix, unit);
526
527 /*
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
530 */
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
533
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
538}
539
540/*
541 * Saves at boot time configured settings for any netdevice.
542 */
543int __init netdev_boot_setup(char *str)
544{
545 int ints[5];
546 struct ifmap map;
547
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
551
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
562
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
565}
566
567__setup("netdev=", netdev_boot_setup);
568
569/*******************************************************************************
570
571 Device Interface Subroutines
572
573*******************************************************************************/
574
575/**
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
579 *
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
585 */
586
587struct net_device *__dev_get_by_name(struct net *net, const char *name)
588{
589 struct hlist_node *p;
590
591 hlist_for_each(p, dev_name_hash(net, name)) {
592 struct net_device *dev
593 = hlist_entry(p, struct net_device, name_hlist);
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
596 }
597 return NULL;
598}
599EXPORT_SYMBOL(__dev_get_by_name);
600
601/**
602 * dev_get_by_name - find a device by its name
603 * @net: the applicable net namespace
604 * @name: name to find
605 *
606 * Find an interface by name. This can be called from any
607 * context and does its own locking. The returned handle has
608 * the usage count incremented and the caller must use dev_put() to
609 * release it when it is no longer needed. %NULL is returned if no
610 * matching device is found.
611 */
612
613struct net_device *dev_get_by_name(struct net *net, const char *name)
614{
615 struct net_device *dev;
616
617 read_lock(&dev_base_lock);
618 dev = __dev_get_by_name(net, name);
619 if (dev)
620 dev_hold(dev);
621 read_unlock(&dev_base_lock);
622 return dev;
623}
624EXPORT_SYMBOL(dev_get_by_name);
625
626/**
627 * __dev_get_by_index - find a device by its ifindex
628 * @net: the applicable net namespace
629 * @ifindex: index of device
630 *
631 * Search for an interface by index. Returns %NULL if the device
632 * is not found or a pointer to the device. The device has not
633 * had its reference counter increased so the caller must be careful
634 * about locking. The caller must hold either the RTNL semaphore
635 * or @dev_base_lock.
636 */
637
638struct net_device *__dev_get_by_index(struct net *net, int ifindex)
639{
640 struct hlist_node *p;
641
642 hlist_for_each(p, dev_index_hash(net, ifindex)) {
643 struct net_device *dev
644 = hlist_entry(p, struct net_device, index_hlist);
645 if (dev->ifindex == ifindex)
646 return dev;
647 }
648 return NULL;
649}
650EXPORT_SYMBOL(__dev_get_by_index);
651
652
653/**
654 * dev_get_by_index - find a device by its ifindex
655 * @net: the applicable net namespace
656 * @ifindex: index of device
657 *
658 * Search for an interface by index. Returns NULL if the device
659 * is not found or a pointer to the device. The device returned has
660 * had a reference added and the pointer is safe until the user calls
661 * dev_put to indicate they have finished with it.
662 */
663
664struct net_device *dev_get_by_index(struct net *net, int ifindex)
665{
666 struct net_device *dev;
667
668 read_lock(&dev_base_lock);
669 dev = __dev_get_by_index(net, ifindex);
670 if (dev)
671 dev_hold(dev);
672 read_unlock(&dev_base_lock);
673 return dev;
674}
675EXPORT_SYMBOL(dev_get_by_index);
676
677/**
678 * dev_getbyhwaddr - find a device by its hardware address
679 * @net: the applicable net namespace
680 * @type: media type of device
681 * @ha: hardware address
682 *
683 * Search for an interface by MAC address. Returns NULL if the device
684 * is not found or a pointer to the device. The caller must hold the
685 * rtnl semaphore. The returned device has not had its ref count increased
686 * and the caller must therefore be careful about locking
687 *
688 * BUGS:
689 * If the API was consistent this would be __dev_get_by_hwaddr
690 */
691
692struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
693{
694 struct net_device *dev;
695
696 ASSERT_RTNL();
697
698 for_each_netdev(net, dev)
699 if (dev->type == type &&
700 !memcmp(dev->dev_addr, ha, dev->addr_len))
701 return dev;
702
703 return NULL;
704}
705EXPORT_SYMBOL(dev_getbyhwaddr);
706
707struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
708{
709 struct net_device *dev;
710
711 ASSERT_RTNL();
712 for_each_netdev(net, dev)
713 if (dev->type == type)
714 return dev;
715
716 return NULL;
717}
718EXPORT_SYMBOL(__dev_getfirstbyhwtype);
719
720struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
721{
722 struct net_device *dev;
723
724 rtnl_lock();
725 dev = __dev_getfirstbyhwtype(net, type);
726 if (dev)
727 dev_hold(dev);
728 rtnl_unlock();
729 return dev;
730}
731EXPORT_SYMBOL(dev_getfirstbyhwtype);
732
733/**
734 * dev_get_by_flags - find any device with given flags
735 * @net: the applicable net namespace
736 * @if_flags: IFF_* values
737 * @mask: bitmask of bits in if_flags to check
738 *
739 * Search for any interface with the given flags. Returns NULL if a device
740 * is not found or a pointer to the device. The device returned has
741 * had a reference added and the pointer is safe until the user calls
742 * dev_put to indicate they have finished with it.
743 */
744
745struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
746 unsigned short mask)
747{
748 struct net_device *dev, *ret;
749
750 ret = NULL;
751 read_lock(&dev_base_lock);
752 for_each_netdev(net, dev) {
753 if (((dev->flags ^ if_flags) & mask) == 0) {
754 dev_hold(dev);
755 ret = dev;
756 break;
757 }
758 }
759 read_unlock(&dev_base_lock);
760 return ret;
761}
762EXPORT_SYMBOL(dev_get_by_flags);
763
764/**
765 * dev_valid_name - check if name is okay for network device
766 * @name: name string
767 *
768 * Network device names need to be valid file names to
769 * to allow sysfs to work. We also disallow any kind of
770 * whitespace.
771 */
772int dev_valid_name(const char *name)
773{
774 if (*name == '\0')
775 return 0;
776 if (strlen(name) >= IFNAMSIZ)
777 return 0;
778 if (!strcmp(name, ".") || !strcmp(name, ".."))
779 return 0;
780
781 while (*name) {
782 if (*name == '/' || isspace(*name))
783 return 0;
784 name++;
785 }
786 return 1;
787}
788EXPORT_SYMBOL(dev_valid_name);
789
790/**
791 * __dev_alloc_name - allocate a name for a device
792 * @net: network namespace to allocate the device name in
793 * @name: name format string
794 * @buf: scratch buffer and result name string
795 *
796 * Passed a format string - eg "lt%d" it will try and find a suitable
797 * id. It scans list of devices to build up a free map, then chooses
798 * the first empty slot. The caller must hold the dev_base or rtnl lock
799 * while allocating the name and adding the device in order to avoid
800 * duplicates.
801 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
802 * Returns the number of the unit assigned or a negative errno code.
803 */
804
805static int __dev_alloc_name(struct net *net, const char *name, char *buf)
806{
807 int i = 0;
808 const char *p;
809 const int max_netdevices = 8*PAGE_SIZE;
810 unsigned long *inuse;
811 struct net_device *d;
812
813 p = strnchr(name, IFNAMSIZ-1, '%');
814 if (p) {
815 /*
816 * Verify the string as this thing may have come from
817 * the user. There must be either one "%d" and no other "%"
818 * characters.
819 */
820 if (p[1] != 'd' || strchr(p + 2, '%'))
821 return -EINVAL;
822
823 /* Use one page as a bit array of possible slots */
824 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
825 if (!inuse)
826 return -ENOMEM;
827
828 for_each_netdev(net, d) {
829 if (!sscanf(d->name, name, &i))
830 continue;
831 if (i < 0 || i >= max_netdevices)
832 continue;
833
834 /* avoid cases where sscanf is not exact inverse of printf */
835 snprintf(buf, IFNAMSIZ, name, i);
836 if (!strncmp(buf, d->name, IFNAMSIZ))
837 set_bit(i, inuse);
838 }
839
840 i = find_first_zero_bit(inuse, max_netdevices);
841 free_page((unsigned long) inuse);
842 }
843
844 snprintf(buf, IFNAMSIZ, name, i);
845 if (!__dev_get_by_name(net, buf))
846 return i;
847
848 /* It is possible to run out of possible slots
849 * when the name is long and there isn't enough space left
850 * for the digits, or if all bits are used.
851 */
852 return -ENFILE;
853}
854
855/**
856 * dev_alloc_name - allocate a name for a device
857 * @dev: device
858 * @name: name format string
859 *
860 * Passed a format string - eg "lt%d" it will try and find a suitable
861 * id. It scans list of devices to build up a free map, then chooses
862 * the first empty slot. The caller must hold the dev_base or rtnl lock
863 * while allocating the name and adding the device in order to avoid
864 * duplicates.
865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866 * Returns the number of the unit assigned or a negative errno code.
867 */
868
869int dev_alloc_name(struct net_device *dev, const char *name)
870{
871 char buf[IFNAMSIZ];
872 struct net *net;
873 int ret;
874
875 BUG_ON(!dev_net(dev));
876 net = dev_net(dev);
877 ret = __dev_alloc_name(net, name, buf);
878 if (ret >= 0)
879 strlcpy(dev->name, buf, IFNAMSIZ);
880 return ret;
881}
882EXPORT_SYMBOL(dev_alloc_name);
883
884
885/**
886 * dev_change_name - change name of a device
887 * @dev: device
888 * @newname: name (or format string) must be at least IFNAMSIZ
889 *
890 * Change name of a device, can pass format strings "eth%d".
891 * for wildcarding.
892 */
893int dev_change_name(struct net_device *dev, const char *newname)
894{
895 char oldname[IFNAMSIZ];
896 int err = 0;
897 int ret;
898 struct net *net;
899
900 ASSERT_RTNL();
901 BUG_ON(!dev_net(dev));
902
903 net = dev_net(dev);
904 if (dev->flags & IFF_UP)
905 return -EBUSY;
906
907 if (!dev_valid_name(newname))
908 return -EINVAL;
909
910 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 return 0;
912
913 memcpy(oldname, dev->name, IFNAMSIZ);
914
915 if (strchr(newname, '%')) {
916 err = dev_alloc_name(dev, newname);
917 if (err < 0)
918 return err;
919 } else if (__dev_get_by_name(net, newname))
920 return -EEXIST;
921 else
922 strlcpy(dev->name, newname, IFNAMSIZ);
923
924rollback:
925 /* For now only devices in the initial network namespace
926 * are in sysfs.
927 */
928 if (net == &init_net) {
929 ret = device_rename(&dev->dev, dev->name);
930 if (ret) {
931 memcpy(dev->name, oldname, IFNAMSIZ);
932 return ret;
933 }
934 }
935
936 write_lock_bh(&dev_base_lock);
937 hlist_del(&dev->name_hlist);
938 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
939 write_unlock_bh(&dev_base_lock);
940
941 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
942 ret = notifier_to_errno(ret);
943
944 if (ret) {
945 if (err) {
946 printk(KERN_ERR
947 "%s: name change rollback failed: %d.\n",
948 dev->name, ret);
949 } else {
950 err = ret;
951 memcpy(dev->name, oldname, IFNAMSIZ);
952 goto rollback;
953 }
954 }
955
956 return err;
957}
958
959/**
960 * dev_set_alias - change ifalias of a device
961 * @dev: device
962 * @alias: name up to IFALIASZ
963 * @len: limit of bytes to copy from info
964 *
965 * Set ifalias for a device,
966 */
967int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
968{
969 ASSERT_RTNL();
970
971 if (len >= IFALIASZ)
972 return -EINVAL;
973
974 if (!len) {
975 if (dev->ifalias) {
976 kfree(dev->ifalias);
977 dev->ifalias = NULL;
978 }
979 return 0;
980 }
981
982 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
983 if (!dev->ifalias)
984 return -ENOMEM;
985
986 strlcpy(dev->ifalias, alias, len+1);
987 return len;
988}
989
990
991/**
992 * netdev_features_change - device changes features
993 * @dev: device to cause notification
994 *
995 * Called to indicate a device has changed features.
996 */
997void netdev_features_change(struct net_device *dev)
998{
999 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1000}
1001EXPORT_SYMBOL(netdev_features_change);
1002
1003/**
1004 * netdev_state_change - device changes state
1005 * @dev: device to cause notification
1006 *
1007 * Called to indicate a device has changed state. This function calls
1008 * the notifier chains for netdev_chain and sends a NEWLINK message
1009 * to the routing socket.
1010 */
1011void netdev_state_change(struct net_device *dev)
1012{
1013 if (dev->flags & IFF_UP) {
1014 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1015 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1016 }
1017}
1018EXPORT_SYMBOL(netdev_state_change);
1019
1020void netdev_bonding_change(struct net_device *dev, unsigned long event)
1021{
1022 call_netdevice_notifiers(event, dev);
1023}
1024EXPORT_SYMBOL(netdev_bonding_change);
1025
1026/**
1027 * dev_load - load a network module
1028 * @net: the applicable net namespace
1029 * @name: name of interface
1030 *
1031 * If a network interface is not present and the process has suitable
1032 * privileges this function loads the module. If module loading is not
1033 * available in this kernel then it becomes a nop.
1034 */
1035
1036void dev_load(struct net *net, const char *name)
1037{
1038 struct net_device *dev;
1039
1040 read_lock(&dev_base_lock);
1041 dev = __dev_get_by_name(net, name);
1042 read_unlock(&dev_base_lock);
1043
1044 if (!dev && capable(CAP_NET_ADMIN))
1045 request_module("%s", name);
1046}
1047EXPORT_SYMBOL(dev_load);
1048
1049/**
1050 * dev_open - prepare an interface for use.
1051 * @dev: device to open
1052 *
1053 * Takes a device from down to up state. The device's private open
1054 * function is invoked and then the multicast lists are loaded. Finally
1055 * the device is moved into the up state and a %NETDEV_UP message is
1056 * sent to the netdev notifier chain.
1057 *
1058 * Calling this function on an active interface is a nop. On a failure
1059 * a negative errno code is returned.
1060 */
1061int dev_open(struct net_device *dev)
1062{
1063 const struct net_device_ops *ops = dev->netdev_ops;
1064 int ret;
1065
1066 ASSERT_RTNL();
1067
1068 /*
1069 * Is it already up?
1070 */
1071
1072 if (dev->flags & IFF_UP)
1073 return 0;
1074
1075 /*
1076 * Is it even present?
1077 */
1078 if (!netif_device_present(dev))
1079 return -ENODEV;
1080
1081 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1082 ret = notifier_to_errno(ret);
1083 if (ret)
1084 return ret;
1085
1086 /*
1087 * Call device private open method
1088 */
1089 set_bit(__LINK_STATE_START, &dev->state);
1090
1091 if (ops->ndo_validate_addr)
1092 ret = ops->ndo_validate_addr(dev);
1093
1094 if (!ret && ops->ndo_open)
1095 ret = ops->ndo_open(dev);
1096
1097 /*
1098 * If it went open OK then:
1099 */
1100
1101 if (ret)
1102 clear_bit(__LINK_STATE_START, &dev->state);
1103 else {
1104 /*
1105 * Set the flags.
1106 */
1107 dev->flags |= IFF_UP;
1108
1109 /*
1110 * Enable NET_DMA
1111 */
1112 net_dmaengine_get();
1113
1114 /*
1115 * Initialize multicasting status
1116 */
1117 dev_set_rx_mode(dev);
1118
1119 /*
1120 * Wakeup transmit queue engine
1121 */
1122 dev_activate(dev);
1123
1124 /*
1125 * ... and announce new interface.
1126 */
1127 call_netdevice_notifiers(NETDEV_UP, dev);
1128 }
1129
1130 return ret;
1131}
1132EXPORT_SYMBOL(dev_open);
1133
1134/**
1135 * dev_close - shutdown an interface.
1136 * @dev: device to shutdown
1137 *
1138 * This function moves an active device into down state. A
1139 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1140 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1141 * chain.
1142 */
1143int dev_close(struct net_device *dev)
1144{
1145 const struct net_device_ops *ops = dev->netdev_ops;
1146 ASSERT_RTNL();
1147
1148 might_sleep();
1149
1150 if (!(dev->flags & IFF_UP))
1151 return 0;
1152
1153 /*
1154 * Tell people we are going down, so that they can
1155 * prepare to death, when device is still operating.
1156 */
1157 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1158
1159 clear_bit(__LINK_STATE_START, &dev->state);
1160
1161 /* Synchronize to scheduled poll. We cannot touch poll list,
1162 * it can be even on different cpu. So just clear netif_running().
1163 *
1164 * dev->stop() will invoke napi_disable() on all of it's
1165 * napi_struct instances on this device.
1166 */
1167 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1168
1169 dev_deactivate(dev);
1170
1171 /*
1172 * Call the device specific close. This cannot fail.
1173 * Only if device is UP
1174 *
1175 * We allow it to be called even after a DETACH hot-plug
1176 * event.
1177 */
1178 if (ops->ndo_stop)
1179 ops->ndo_stop(dev);
1180
1181 /*
1182 * Device is now down.
1183 */
1184
1185 dev->flags &= ~IFF_UP;
1186
1187 /*
1188 * Tell people we are down
1189 */
1190 call_netdevice_notifiers(NETDEV_DOWN, dev);
1191
1192 /*
1193 * Shutdown NET_DMA
1194 */
1195 net_dmaengine_put();
1196
1197 return 0;
1198}
1199EXPORT_SYMBOL(dev_close);
1200
1201
1202/**
1203 * dev_disable_lro - disable Large Receive Offload on a device
1204 * @dev: device
1205 *
1206 * Disable Large Receive Offload (LRO) on a net device. Must be
1207 * called under RTNL. This is needed if received packets may be
1208 * forwarded to another interface.
1209 */
1210void dev_disable_lro(struct net_device *dev)
1211{
1212 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1213 dev->ethtool_ops->set_flags) {
1214 u32 flags = dev->ethtool_ops->get_flags(dev);
1215 if (flags & ETH_FLAG_LRO) {
1216 flags &= ~ETH_FLAG_LRO;
1217 dev->ethtool_ops->set_flags(dev, flags);
1218 }
1219 }
1220 WARN_ON(dev->features & NETIF_F_LRO);
1221}
1222EXPORT_SYMBOL(dev_disable_lro);
1223
1224
1225static int dev_boot_phase = 1;
1226
1227/*
1228 * Device change register/unregister. These are not inline or static
1229 * as we export them to the world.
1230 */
1231
1232/**
1233 * register_netdevice_notifier - register a network notifier block
1234 * @nb: notifier
1235 *
1236 * Register a notifier to be called when network device events occur.
1237 * The notifier passed is linked into the kernel structures and must
1238 * not be reused until it has been unregistered. A negative errno code
1239 * is returned on a failure.
1240 *
1241 * When registered all registration and up events are replayed
1242 * to the new notifier to allow device to have a race free
1243 * view of the network device list.
1244 */
1245
1246int register_netdevice_notifier(struct notifier_block *nb)
1247{
1248 struct net_device *dev;
1249 struct net_device *last;
1250 struct net *net;
1251 int err;
1252
1253 rtnl_lock();
1254 err = raw_notifier_chain_register(&netdev_chain, nb);
1255 if (err)
1256 goto unlock;
1257 if (dev_boot_phase)
1258 goto unlock;
1259 for_each_net(net) {
1260 for_each_netdev(net, dev) {
1261 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1262 err = notifier_to_errno(err);
1263 if (err)
1264 goto rollback;
1265
1266 if (!(dev->flags & IFF_UP))
1267 continue;
1268
1269 nb->notifier_call(nb, NETDEV_UP, dev);
1270 }
1271 }
1272
1273unlock:
1274 rtnl_unlock();
1275 return err;
1276
1277rollback:
1278 last = dev;
1279 for_each_net(net) {
1280 for_each_netdev(net, dev) {
1281 if (dev == last)
1282 break;
1283
1284 if (dev->flags & IFF_UP) {
1285 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1286 nb->notifier_call(nb, NETDEV_DOWN, dev);
1287 }
1288 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1289 }
1290 }
1291
1292 raw_notifier_chain_unregister(&netdev_chain, nb);
1293 goto unlock;
1294}
1295EXPORT_SYMBOL(register_netdevice_notifier);
1296
1297/**
1298 * unregister_netdevice_notifier - unregister a network notifier block
1299 * @nb: notifier
1300 *
1301 * Unregister a notifier previously registered by
1302 * register_netdevice_notifier(). The notifier is unlinked into the
1303 * kernel structures and may then be reused. A negative errno code
1304 * is returned on a failure.
1305 */
1306
1307int unregister_netdevice_notifier(struct notifier_block *nb)
1308{
1309 int err;
1310
1311 rtnl_lock();
1312 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1313 rtnl_unlock();
1314 return err;
1315}
1316EXPORT_SYMBOL(unregister_netdevice_notifier);
1317
1318/**
1319 * call_netdevice_notifiers - call all network notifier blocks
1320 * @val: value passed unmodified to notifier function
1321 * @dev: net_device pointer passed unmodified to notifier function
1322 *
1323 * Call all network notifier blocks. Parameters and return value
1324 * are as for raw_notifier_call_chain().
1325 */
1326
1327int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1328{
1329 return raw_notifier_call_chain(&netdev_chain, val, dev);
1330}
1331
1332/* When > 0 there are consumers of rx skb time stamps */
1333static atomic_t netstamp_needed = ATOMIC_INIT(0);
1334
1335void net_enable_timestamp(void)
1336{
1337 atomic_inc(&netstamp_needed);
1338}
1339EXPORT_SYMBOL(net_enable_timestamp);
1340
1341void net_disable_timestamp(void)
1342{
1343 atomic_dec(&netstamp_needed);
1344}
1345EXPORT_SYMBOL(net_disable_timestamp);
1346
1347static inline void net_timestamp(struct sk_buff *skb)
1348{
1349 if (atomic_read(&netstamp_needed))
1350 __net_timestamp(skb);
1351 else
1352 skb->tstamp.tv64 = 0;
1353}
1354
1355/*
1356 * Support routine. Sends outgoing frames to any network
1357 * taps currently in use.
1358 */
1359
1360static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1361{
1362 struct packet_type *ptype;
1363
1364#ifdef CONFIG_NET_CLS_ACT
1365 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1366 net_timestamp(skb);
1367#else
1368 net_timestamp(skb);
1369#endif
1370
1371 rcu_read_lock();
1372 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1373 /* Never send packets back to the socket
1374 * they originated from - MvS (miquels@drinkel.ow.org)
1375 */
1376 if ((ptype->dev == dev || !ptype->dev) &&
1377 (ptype->af_packet_priv == NULL ||
1378 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1379 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1380 if (!skb2)
1381 break;
1382
1383 /* skb->nh should be correctly
1384 set by sender, so that the second statement is
1385 just protection against buggy protocols.
1386 */
1387 skb_reset_mac_header(skb2);
1388
1389 if (skb_network_header(skb2) < skb2->data ||
1390 skb2->network_header > skb2->tail) {
1391 if (net_ratelimit())
1392 printk(KERN_CRIT "protocol %04x is "
1393 "buggy, dev %s\n",
1394 skb2->protocol, dev->name);
1395 skb_reset_network_header(skb2);
1396 }
1397
1398 skb2->transport_header = skb2->network_header;
1399 skb2->pkt_type = PACKET_OUTGOING;
1400 ptype->func(skb2, skb->dev, ptype, skb->dev);
1401 }
1402 }
1403 rcu_read_unlock();
1404}
1405
1406
1407static inline void __netif_reschedule(struct Qdisc *q)
1408{
1409 struct softnet_data *sd;
1410 unsigned long flags;
1411
1412 local_irq_save(flags);
1413 sd = &__get_cpu_var(softnet_data);
1414 q->next_sched = sd->output_queue;
1415 sd->output_queue = q;
1416 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1417 local_irq_restore(flags);
1418}
1419
1420void __netif_schedule(struct Qdisc *q)
1421{
1422 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1423 __netif_reschedule(q);
1424}
1425EXPORT_SYMBOL(__netif_schedule);
1426
1427void dev_kfree_skb_irq(struct sk_buff *skb)
1428{
1429 if (atomic_dec_and_test(&skb->users)) {
1430 struct softnet_data *sd;
1431 unsigned long flags;
1432
1433 local_irq_save(flags);
1434 sd = &__get_cpu_var(softnet_data);
1435 skb->next = sd->completion_queue;
1436 sd->completion_queue = skb;
1437 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1438 local_irq_restore(flags);
1439 }
1440}
1441EXPORT_SYMBOL(dev_kfree_skb_irq);
1442
1443void dev_kfree_skb_any(struct sk_buff *skb)
1444{
1445 if (in_irq() || irqs_disabled())
1446 dev_kfree_skb_irq(skb);
1447 else
1448 dev_kfree_skb(skb);
1449}
1450EXPORT_SYMBOL(dev_kfree_skb_any);
1451
1452
1453/**
1454 * netif_device_detach - mark device as removed
1455 * @dev: network device
1456 *
1457 * Mark device as removed from system and therefore no longer available.
1458 */
1459void netif_device_detach(struct net_device *dev)
1460{
1461 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1462 netif_running(dev)) {
1463 netif_tx_stop_all_queues(dev);
1464 }
1465}
1466EXPORT_SYMBOL(netif_device_detach);
1467
1468/**
1469 * netif_device_attach - mark device as attached
1470 * @dev: network device
1471 *
1472 * Mark device as attached from system and restart if needed.
1473 */
1474void netif_device_attach(struct net_device *dev)
1475{
1476 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1477 netif_running(dev)) {
1478 netif_tx_wake_all_queues(dev);
1479 __netdev_watchdog_up(dev);
1480 }
1481}
1482EXPORT_SYMBOL(netif_device_attach);
1483
1484static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1485{
1486 return ((features & NETIF_F_GEN_CSUM) ||
1487 ((features & NETIF_F_IP_CSUM) &&
1488 protocol == htons(ETH_P_IP)) ||
1489 ((features & NETIF_F_IPV6_CSUM) &&
1490 protocol == htons(ETH_P_IPV6)) ||
1491 ((features & NETIF_F_FCOE_CRC) &&
1492 protocol == htons(ETH_P_FCOE)));
1493}
1494
1495static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1496{
1497 if (can_checksum_protocol(dev->features, skb->protocol))
1498 return true;
1499
1500 if (skb->protocol == htons(ETH_P_8021Q)) {
1501 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1502 if (can_checksum_protocol(dev->features & dev->vlan_features,
1503 veh->h_vlan_encapsulated_proto))
1504 return true;
1505 }
1506
1507 return false;
1508}
1509
1510/*
1511 * Invalidate hardware checksum when packet is to be mangled, and
1512 * complete checksum manually on outgoing path.
1513 */
1514int skb_checksum_help(struct sk_buff *skb)
1515{
1516 __wsum csum;
1517 int ret = 0, offset;
1518
1519 if (skb->ip_summed == CHECKSUM_COMPLETE)
1520 goto out_set_summed;
1521
1522 if (unlikely(skb_shinfo(skb)->gso_size)) {
1523 /* Let GSO fix up the checksum. */
1524 goto out_set_summed;
1525 }
1526
1527 offset = skb->csum_start - skb_headroom(skb);
1528 BUG_ON(offset >= skb_headlen(skb));
1529 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1530
1531 offset += skb->csum_offset;
1532 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1533
1534 if (skb_cloned(skb) &&
1535 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1536 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1537 if (ret)
1538 goto out;
1539 }
1540
1541 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1542out_set_summed:
1543 skb->ip_summed = CHECKSUM_NONE;
1544out:
1545 return ret;
1546}
1547EXPORT_SYMBOL(skb_checksum_help);
1548
1549/**
1550 * skb_gso_segment - Perform segmentation on skb.
1551 * @skb: buffer to segment
1552 * @features: features for the output path (see dev->features)
1553 *
1554 * This function segments the given skb and returns a list of segments.
1555 *
1556 * It may return NULL if the skb requires no segmentation. This is
1557 * only possible when GSO is used for verifying header integrity.
1558 */
1559struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1560{
1561 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1562 struct packet_type *ptype;
1563 __be16 type = skb->protocol;
1564 int err;
1565
1566 skb_reset_mac_header(skb);
1567 skb->mac_len = skb->network_header - skb->mac_header;
1568 __skb_pull(skb, skb->mac_len);
1569
1570 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1571 struct net_device *dev = skb->dev;
1572 struct ethtool_drvinfo info = {};
1573
1574 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1575 dev->ethtool_ops->get_drvinfo(dev, &info);
1576
1577 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1578 "ip_summed=%d",
1579 info.driver, dev ? dev->features : 0L,
1580 skb->sk ? skb->sk->sk_route_caps : 0L,
1581 skb->len, skb->data_len, skb->ip_summed);
1582
1583 if (skb_header_cloned(skb) &&
1584 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1585 return ERR_PTR(err);
1586 }
1587
1588 rcu_read_lock();
1589 list_for_each_entry_rcu(ptype,
1590 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1591 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1592 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1593 err = ptype->gso_send_check(skb);
1594 segs = ERR_PTR(err);
1595 if (err || skb_gso_ok(skb, features))
1596 break;
1597 __skb_push(skb, (skb->data -
1598 skb_network_header(skb)));
1599 }
1600 segs = ptype->gso_segment(skb, features);
1601 break;
1602 }
1603 }
1604 rcu_read_unlock();
1605
1606 __skb_push(skb, skb->data - skb_mac_header(skb));
1607
1608 return segs;
1609}
1610EXPORT_SYMBOL(skb_gso_segment);
1611
1612/* Take action when hardware reception checksum errors are detected. */
1613#ifdef CONFIG_BUG
1614void netdev_rx_csum_fault(struct net_device *dev)
1615{
1616 if (net_ratelimit()) {
1617 printk(KERN_ERR "%s: hw csum failure.\n",
1618 dev ? dev->name : "<unknown>");
1619 dump_stack();
1620 }
1621}
1622EXPORT_SYMBOL(netdev_rx_csum_fault);
1623#endif
1624
1625/* Actually, we should eliminate this check as soon as we know, that:
1626 * 1. IOMMU is present and allows to map all the memory.
1627 * 2. No high memory really exists on this machine.
1628 */
1629
1630static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1631{
1632#ifdef CONFIG_HIGHMEM
1633 int i;
1634
1635 if (dev->features & NETIF_F_HIGHDMA)
1636 return 0;
1637
1638 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1639 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1640 return 1;
1641
1642#endif
1643 return 0;
1644}
1645
1646struct dev_gso_cb {
1647 void (*destructor)(struct sk_buff *skb);
1648};
1649
1650#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1651
1652static void dev_gso_skb_destructor(struct sk_buff *skb)
1653{
1654 struct dev_gso_cb *cb;
1655
1656 do {
1657 struct sk_buff *nskb = skb->next;
1658
1659 skb->next = nskb->next;
1660 nskb->next = NULL;
1661 kfree_skb(nskb);
1662 } while (skb->next);
1663
1664 cb = DEV_GSO_CB(skb);
1665 if (cb->destructor)
1666 cb->destructor(skb);
1667}
1668
1669/**
1670 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1671 * @skb: buffer to segment
1672 *
1673 * This function segments the given skb and stores the list of segments
1674 * in skb->next.
1675 */
1676static int dev_gso_segment(struct sk_buff *skb)
1677{
1678 struct net_device *dev = skb->dev;
1679 struct sk_buff *segs;
1680 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1681 NETIF_F_SG : 0);
1682
1683 segs = skb_gso_segment(skb, features);
1684
1685 /* Verifying header integrity only. */
1686 if (!segs)
1687 return 0;
1688
1689 if (IS_ERR(segs))
1690 return PTR_ERR(segs);
1691
1692 skb->next = segs;
1693 DEV_GSO_CB(skb)->destructor = skb->destructor;
1694 skb->destructor = dev_gso_skb_destructor;
1695
1696 return 0;
1697}
1698
1699int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1700 struct netdev_queue *txq)
1701{
1702 const struct net_device_ops *ops = dev->netdev_ops;
1703 int rc;
1704
1705 if (likely(!skb->next)) {
1706 if (!list_empty(&ptype_all))
1707 dev_queue_xmit_nit(skb, dev);
1708
1709 if (netif_needs_gso(dev, skb)) {
1710 if (unlikely(dev_gso_segment(skb)))
1711 goto out_kfree_skb;
1712 if (skb->next)
1713 goto gso;
1714 }
1715
1716 /*
1717 * If device doesnt need skb->dst, release it right now while
1718 * its hot in this cpu cache
1719 */
1720 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1721 skb_dst_drop(skb);
1722
1723 rc = ops->ndo_start_xmit(skb, dev);
1724 if (rc == NETDEV_TX_OK)
1725 txq_trans_update(txq);
1726 /*
1727 * TODO: if skb_orphan() was called by
1728 * dev->hard_start_xmit() (for example, the unmodified
1729 * igb driver does that; bnx2 doesn't), then
1730 * skb_tx_software_timestamp() will be unable to send
1731 * back the time stamp.
1732 *
1733 * How can this be prevented? Always create another
1734 * reference to the socket before calling
1735 * dev->hard_start_xmit()? Prevent that skb_orphan()
1736 * does anything in dev->hard_start_xmit() by clearing
1737 * the skb destructor before the call and restoring it
1738 * afterwards, then doing the skb_orphan() ourselves?
1739 */
1740 return rc;
1741 }
1742
1743gso:
1744 do {
1745 struct sk_buff *nskb = skb->next;
1746
1747 skb->next = nskb->next;
1748 nskb->next = NULL;
1749 rc = ops->ndo_start_xmit(nskb, dev);
1750 if (unlikely(rc != NETDEV_TX_OK)) {
1751 nskb->next = skb->next;
1752 skb->next = nskb;
1753 return rc;
1754 }
1755 txq_trans_update(txq);
1756 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1757 return NETDEV_TX_BUSY;
1758 } while (skb->next);
1759
1760 skb->destructor = DEV_GSO_CB(skb)->destructor;
1761
1762out_kfree_skb:
1763 kfree_skb(skb);
1764 return NETDEV_TX_OK;
1765}
1766
1767static u32 skb_tx_hashrnd;
1768
1769u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1770{
1771 u32 hash;
1772
1773 if (skb_rx_queue_recorded(skb)) {
1774 hash = skb_get_rx_queue(skb);
1775 while (unlikely(hash >= dev->real_num_tx_queues))
1776 hash -= dev->real_num_tx_queues;
1777 return hash;
1778 }
1779
1780 if (skb->sk && skb->sk->sk_hash)
1781 hash = skb->sk->sk_hash;
1782 else
1783 hash = skb->protocol;
1784
1785 hash = jhash_1word(hash, skb_tx_hashrnd);
1786
1787 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1788}
1789EXPORT_SYMBOL(skb_tx_hash);
1790
1791static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1792 struct sk_buff *skb)
1793{
1794 u16 queue_index;
1795 struct sock *sk = skb->sk;
1796
1797 if (sk_tx_queue_recorded(sk)) {
1798 queue_index = sk_tx_queue_get(sk);
1799 } else {
1800 const struct net_device_ops *ops = dev->netdev_ops;
1801
1802 if (ops->ndo_select_queue) {
1803 queue_index = ops->ndo_select_queue(dev, skb);
1804 } else {
1805 queue_index = 0;
1806 if (dev->real_num_tx_queues > 1)
1807 queue_index = skb_tx_hash(dev, skb);
1808
1809 if (sk && sk->sk_dst_cache)
1810 sk_tx_queue_set(sk, queue_index);
1811 }
1812 }
1813
1814 skb_set_queue_mapping(skb, queue_index);
1815 return netdev_get_tx_queue(dev, queue_index);
1816}
1817
1818static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1819 struct net_device *dev,
1820 struct netdev_queue *txq)
1821{
1822 spinlock_t *root_lock = qdisc_lock(q);
1823 int rc;
1824
1825 spin_lock(root_lock);
1826 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1827 kfree_skb(skb);
1828 rc = NET_XMIT_DROP;
1829 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1830 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1831 /*
1832 * This is a work-conserving queue; there are no old skbs
1833 * waiting to be sent out; and the qdisc is not running -
1834 * xmit the skb directly.
1835 */
1836 __qdisc_update_bstats(q, skb->len);
1837 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1838 __qdisc_run(q);
1839 else
1840 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1841
1842 rc = NET_XMIT_SUCCESS;
1843 } else {
1844 rc = qdisc_enqueue_root(skb, q);
1845 qdisc_run(q);
1846 }
1847 spin_unlock(root_lock);
1848
1849 return rc;
1850}
1851
1852/**
1853 * dev_queue_xmit - transmit a buffer
1854 * @skb: buffer to transmit
1855 *
1856 * Queue a buffer for transmission to a network device. The caller must
1857 * have set the device and priority and built the buffer before calling
1858 * this function. The function can be called from an interrupt.
1859 *
1860 * A negative errno code is returned on a failure. A success does not
1861 * guarantee the frame will be transmitted as it may be dropped due
1862 * to congestion or traffic shaping.
1863 *
1864 * -----------------------------------------------------------------------------------
1865 * I notice this method can also return errors from the queue disciplines,
1866 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1867 * be positive.
1868 *
1869 * Regardless of the return value, the skb is consumed, so it is currently
1870 * difficult to retry a send to this method. (You can bump the ref count
1871 * before sending to hold a reference for retry if you are careful.)
1872 *
1873 * When calling this method, interrupts MUST be enabled. This is because
1874 * the BH enable code must have IRQs enabled so that it will not deadlock.
1875 * --BLG
1876 */
1877int dev_queue_xmit(struct sk_buff *skb)
1878{
1879 struct net_device *dev = skb->dev;
1880 struct netdev_queue *txq;
1881 struct Qdisc *q;
1882 int rc = -ENOMEM;
1883
1884 /* GSO will handle the following emulations directly. */
1885 if (netif_needs_gso(dev, skb))
1886 goto gso;
1887
1888 if (skb_has_frags(skb) &&
1889 !(dev->features & NETIF_F_FRAGLIST) &&
1890 __skb_linearize(skb))
1891 goto out_kfree_skb;
1892
1893 /* Fragmented skb is linearized if device does not support SG,
1894 * or if at least one of fragments is in highmem and device
1895 * does not support DMA from it.
1896 */
1897 if (skb_shinfo(skb)->nr_frags &&
1898 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1899 __skb_linearize(skb))
1900 goto out_kfree_skb;
1901
1902 /* If packet is not checksummed and device does not support
1903 * checksumming for this protocol, complete checksumming here.
1904 */
1905 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1906 skb_set_transport_header(skb, skb->csum_start -
1907 skb_headroom(skb));
1908 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1909 goto out_kfree_skb;
1910 }
1911
1912gso:
1913 /* Disable soft irqs for various locks below. Also
1914 * stops preemption for RCU.
1915 */
1916 rcu_read_lock_bh();
1917
1918 txq = dev_pick_tx(dev, skb);
1919 q = rcu_dereference(txq->qdisc);
1920
1921#ifdef CONFIG_NET_CLS_ACT
1922 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1923#endif
1924 if (q->enqueue) {
1925 rc = __dev_xmit_skb(skb, q, dev, txq);
1926 goto out;
1927 }
1928
1929 /* The device has no queue. Common case for software devices:
1930 loopback, all the sorts of tunnels...
1931
1932 Really, it is unlikely that netif_tx_lock protection is necessary
1933 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1934 counters.)
1935 However, it is possible, that they rely on protection
1936 made by us here.
1937
1938 Check this and shot the lock. It is not prone from deadlocks.
1939 Either shot noqueue qdisc, it is even simpler 8)
1940 */
1941 if (dev->flags & IFF_UP) {
1942 int cpu = smp_processor_id(); /* ok because BHs are off */
1943
1944 if (txq->xmit_lock_owner != cpu) {
1945
1946 HARD_TX_LOCK(dev, txq, cpu);
1947
1948 if (!netif_tx_queue_stopped(txq)) {
1949 rc = NET_XMIT_SUCCESS;
1950 if (!dev_hard_start_xmit(skb, dev, txq)) {
1951 HARD_TX_UNLOCK(dev, txq);
1952 goto out;
1953 }
1954 }
1955 HARD_TX_UNLOCK(dev, txq);
1956 if (net_ratelimit())
1957 printk(KERN_CRIT "Virtual device %s asks to "
1958 "queue packet!\n", dev->name);
1959 } else {
1960 /* Recursion is detected! It is possible,
1961 * unfortunately */
1962 if (net_ratelimit())
1963 printk(KERN_CRIT "Dead loop on virtual device "
1964 "%s, fix it urgently!\n", dev->name);
1965 }
1966 }
1967
1968 rc = -ENETDOWN;
1969 rcu_read_unlock_bh();
1970
1971out_kfree_skb:
1972 kfree_skb(skb);
1973 return rc;
1974out:
1975 rcu_read_unlock_bh();
1976 return rc;
1977}
1978EXPORT_SYMBOL(dev_queue_xmit);
1979
1980
1981/*=======================================================================
1982 Receiver routines
1983 =======================================================================*/
1984
1985int netdev_max_backlog __read_mostly = 1000;
1986int netdev_budget __read_mostly = 300;
1987int weight_p __read_mostly = 64; /* old backlog weight */
1988
1989DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1990
1991
1992/**
1993 * netif_rx - post buffer to the network code
1994 * @skb: buffer to post
1995 *
1996 * This function receives a packet from a device driver and queues it for
1997 * the upper (protocol) levels to process. It always succeeds. The buffer
1998 * may be dropped during processing for congestion control or by the
1999 * protocol layers.
2000 *
2001 * return values:
2002 * NET_RX_SUCCESS (no congestion)
2003 * NET_RX_DROP (packet was dropped)
2004 *
2005 */
2006
2007int netif_rx(struct sk_buff *skb)
2008{
2009 struct softnet_data *queue;
2010 unsigned long flags;
2011
2012 /* if netpoll wants it, pretend we never saw it */
2013 if (netpoll_rx(skb))
2014 return NET_RX_DROP;
2015
2016 if (!skb->tstamp.tv64)
2017 net_timestamp(skb);
2018
2019 /*
2020 * The code is rearranged so that the path is the most
2021 * short when CPU is congested, but is still operating.
2022 */
2023 local_irq_save(flags);
2024 queue = &__get_cpu_var(softnet_data);
2025
2026 __get_cpu_var(netdev_rx_stat).total++;
2027 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2028 if (queue->input_pkt_queue.qlen) {
2029enqueue:
2030 __skb_queue_tail(&queue->input_pkt_queue, skb);
2031 local_irq_restore(flags);
2032 return NET_RX_SUCCESS;
2033 }
2034
2035 napi_schedule(&queue->backlog);
2036 goto enqueue;
2037 }
2038
2039 __get_cpu_var(netdev_rx_stat).dropped++;
2040 local_irq_restore(flags);
2041
2042 kfree_skb(skb);
2043 return NET_RX_DROP;
2044}
2045EXPORT_SYMBOL(netif_rx);
2046
2047int netif_rx_ni(struct sk_buff *skb)
2048{
2049 int err;
2050
2051 preempt_disable();
2052 err = netif_rx(skb);
2053 if (local_softirq_pending())
2054 do_softirq();
2055 preempt_enable();
2056
2057 return err;
2058}
2059EXPORT_SYMBOL(netif_rx_ni);
2060
2061static void net_tx_action(struct softirq_action *h)
2062{
2063 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2064
2065 if (sd->completion_queue) {
2066 struct sk_buff *clist;
2067
2068 local_irq_disable();
2069 clist = sd->completion_queue;
2070 sd->completion_queue = NULL;
2071 local_irq_enable();
2072
2073 while (clist) {
2074 struct sk_buff *skb = clist;
2075 clist = clist->next;
2076
2077 WARN_ON(atomic_read(&skb->users));
2078 __kfree_skb(skb);
2079 }
2080 }
2081
2082 if (sd->output_queue) {
2083 struct Qdisc *head;
2084
2085 local_irq_disable();
2086 head = sd->output_queue;
2087 sd->output_queue = NULL;
2088 local_irq_enable();
2089
2090 while (head) {
2091 struct Qdisc *q = head;
2092 spinlock_t *root_lock;
2093
2094 head = head->next_sched;
2095
2096 root_lock = qdisc_lock(q);
2097 if (spin_trylock(root_lock)) {
2098 smp_mb__before_clear_bit();
2099 clear_bit(__QDISC_STATE_SCHED,
2100 &q->state);
2101 qdisc_run(q);
2102 spin_unlock(root_lock);
2103 } else {
2104 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2105 &q->state)) {
2106 __netif_reschedule(q);
2107 } else {
2108 smp_mb__before_clear_bit();
2109 clear_bit(__QDISC_STATE_SCHED,
2110 &q->state);
2111 }
2112 }
2113 }
2114 }
2115}
2116
2117static inline int deliver_skb(struct sk_buff *skb,
2118 struct packet_type *pt_prev,
2119 struct net_device *orig_dev)
2120{
2121 atomic_inc(&skb->users);
2122 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2123}
2124
2125#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2126
2127#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2128/* This hook is defined here for ATM LANE */
2129int (*br_fdb_test_addr_hook)(struct net_device *dev,
2130 unsigned char *addr) __read_mostly;
2131EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2132#endif
2133
2134/*
2135 * If bridge module is loaded call bridging hook.
2136 * returns NULL if packet was consumed.
2137 */
2138struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2139 struct sk_buff *skb) __read_mostly;
2140EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2141
2142static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2143 struct packet_type **pt_prev, int *ret,
2144 struct net_device *orig_dev)
2145{
2146 struct net_bridge_port *port;
2147
2148 if (skb->pkt_type == PACKET_LOOPBACK ||
2149 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2150 return skb;
2151
2152 if (*pt_prev) {
2153 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2154 *pt_prev = NULL;
2155 }
2156
2157 return br_handle_frame_hook(port, skb);
2158}
2159#else
2160#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2161#endif
2162
2163#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2164struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2165EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2166
2167static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2168 struct packet_type **pt_prev,
2169 int *ret,
2170 struct net_device *orig_dev)
2171{
2172 if (skb->dev->macvlan_port == NULL)
2173 return skb;
2174
2175 if (*pt_prev) {
2176 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2177 *pt_prev = NULL;
2178 }
2179 return macvlan_handle_frame_hook(skb);
2180}
2181#else
2182#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2183#endif
2184
2185#ifdef CONFIG_NET_CLS_ACT
2186/* TODO: Maybe we should just force sch_ingress to be compiled in
2187 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2188 * a compare and 2 stores extra right now if we dont have it on
2189 * but have CONFIG_NET_CLS_ACT
2190 * NOTE: This doesnt stop any functionality; if you dont have
2191 * the ingress scheduler, you just cant add policies on ingress.
2192 *
2193 */
2194static int ing_filter(struct sk_buff *skb)
2195{
2196 struct net_device *dev = skb->dev;
2197 u32 ttl = G_TC_RTTL(skb->tc_verd);
2198 struct netdev_queue *rxq;
2199 int result = TC_ACT_OK;
2200 struct Qdisc *q;
2201
2202 if (MAX_RED_LOOP < ttl++) {
2203 printk(KERN_WARNING
2204 "Redir loop detected Dropping packet (%d->%d)\n",
2205 skb->iif, dev->ifindex);
2206 return TC_ACT_SHOT;
2207 }
2208
2209 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2210 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2211
2212 rxq = &dev->rx_queue;
2213
2214 q = rxq->qdisc;
2215 if (q != &noop_qdisc) {
2216 spin_lock(qdisc_lock(q));
2217 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2218 result = qdisc_enqueue_root(skb, q);
2219 spin_unlock(qdisc_lock(q));
2220 }
2221
2222 return result;
2223}
2224
2225static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2226 struct packet_type **pt_prev,
2227 int *ret, struct net_device *orig_dev)
2228{
2229 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2230 goto out;
2231
2232 if (*pt_prev) {
2233 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2234 *pt_prev = NULL;
2235 } else {
2236 /* Huh? Why does turning on AF_PACKET affect this? */
2237 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2238 }
2239
2240 switch (ing_filter(skb)) {
2241 case TC_ACT_SHOT:
2242 case TC_ACT_STOLEN:
2243 kfree_skb(skb);
2244 return NULL;
2245 }
2246
2247out:
2248 skb->tc_verd = 0;
2249 return skb;
2250}
2251#endif
2252
2253/*
2254 * netif_nit_deliver - deliver received packets to network taps
2255 * @skb: buffer
2256 *
2257 * This function is used to deliver incoming packets to network
2258 * taps. It should be used when the normal netif_receive_skb path
2259 * is bypassed, for example because of VLAN acceleration.
2260 */
2261void netif_nit_deliver(struct sk_buff *skb)
2262{
2263 struct packet_type *ptype;
2264
2265 if (list_empty(&ptype_all))
2266 return;
2267
2268 skb_reset_network_header(skb);
2269 skb_reset_transport_header(skb);
2270 skb->mac_len = skb->network_header - skb->mac_header;
2271
2272 rcu_read_lock();
2273 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2274 if (!ptype->dev || ptype->dev == skb->dev)
2275 deliver_skb(skb, ptype, skb->dev);
2276 }
2277 rcu_read_unlock();
2278}
2279
2280/**
2281 * netif_receive_skb - process receive buffer from network
2282 * @skb: buffer to process
2283 *
2284 * netif_receive_skb() is the main receive data processing function.
2285 * It always succeeds. The buffer may be dropped during processing
2286 * for congestion control or by the protocol layers.
2287 *
2288 * This function may only be called from softirq context and interrupts
2289 * should be enabled.
2290 *
2291 * Return values (usually ignored):
2292 * NET_RX_SUCCESS: no congestion
2293 * NET_RX_DROP: packet was dropped
2294 */
2295int netif_receive_skb(struct sk_buff *skb)
2296{
2297 struct packet_type *ptype, *pt_prev;
2298 struct net_device *orig_dev;
2299 struct net_device *null_or_orig;
2300 int ret = NET_RX_DROP;
2301 __be16 type;
2302
2303 if (!skb->tstamp.tv64)
2304 net_timestamp(skb);
2305
2306 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2307 return NET_RX_SUCCESS;
2308
2309 /* if we've gotten here through NAPI, check netpoll */
2310 if (netpoll_receive_skb(skb))
2311 return NET_RX_DROP;
2312
2313 if (!skb->iif)
2314 skb->iif = skb->dev->ifindex;
2315
2316 null_or_orig = NULL;
2317 orig_dev = skb->dev;
2318 if (orig_dev->master) {
2319 if (skb_bond_should_drop(skb))
2320 null_or_orig = orig_dev; /* deliver only exact match */
2321 else
2322 skb->dev = orig_dev->master;
2323 }
2324
2325 __get_cpu_var(netdev_rx_stat).total++;
2326
2327 skb_reset_network_header(skb);
2328 skb_reset_transport_header(skb);
2329 skb->mac_len = skb->network_header - skb->mac_header;
2330
2331 pt_prev = NULL;
2332
2333 rcu_read_lock();
2334
2335#ifdef CONFIG_NET_CLS_ACT
2336 if (skb->tc_verd & TC_NCLS) {
2337 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2338 goto ncls;
2339 }
2340#endif
2341
2342 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2343 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2344 ptype->dev == orig_dev) {
2345 if (pt_prev)
2346 ret = deliver_skb(skb, pt_prev, orig_dev);
2347 pt_prev = ptype;
2348 }
2349 }
2350
2351#ifdef CONFIG_NET_CLS_ACT
2352 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2353 if (!skb)
2354 goto out;
2355ncls:
2356#endif
2357
2358 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2359 if (!skb)
2360 goto out;
2361 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2362 if (!skb)
2363 goto out;
2364
2365 type = skb->protocol;
2366 list_for_each_entry_rcu(ptype,
2367 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2368 if (ptype->type == type &&
2369 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2370 ptype->dev == orig_dev)) {
2371 if (pt_prev)
2372 ret = deliver_skb(skb, pt_prev, orig_dev);
2373 pt_prev = ptype;
2374 }
2375 }
2376
2377 if (pt_prev) {
2378 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2379 } else {
2380 kfree_skb(skb);
2381 /* Jamal, now you will not able to escape explaining
2382 * me how you were going to use this. :-)
2383 */
2384 ret = NET_RX_DROP;
2385 }
2386
2387out:
2388 rcu_read_unlock();
2389 return ret;
2390}
2391EXPORT_SYMBOL(netif_receive_skb);
2392
2393/* Network device is going away, flush any packets still pending */
2394static void flush_backlog(void *arg)
2395{
2396 struct net_device *dev = arg;
2397 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2398 struct sk_buff *skb, *tmp;
2399
2400 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2401 if (skb->dev == dev) {
2402 __skb_unlink(skb, &queue->input_pkt_queue);
2403 kfree_skb(skb);
2404 }
2405}
2406
2407static int napi_gro_complete(struct sk_buff *skb)
2408{
2409 struct packet_type *ptype;
2410 __be16 type = skb->protocol;
2411 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2412 int err = -ENOENT;
2413
2414 if (NAPI_GRO_CB(skb)->count == 1) {
2415 skb_shinfo(skb)->gso_size = 0;
2416 goto out;
2417 }
2418
2419 rcu_read_lock();
2420 list_for_each_entry_rcu(ptype, head, list) {
2421 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2422 continue;
2423
2424 err = ptype->gro_complete(skb);
2425 break;
2426 }
2427 rcu_read_unlock();
2428
2429 if (err) {
2430 WARN_ON(&ptype->list == head);
2431 kfree_skb(skb);
2432 return NET_RX_SUCCESS;
2433 }
2434
2435out:
2436 return netif_receive_skb(skb);
2437}
2438
2439void napi_gro_flush(struct napi_struct *napi)
2440{
2441 struct sk_buff *skb, *next;
2442
2443 for (skb = napi->gro_list; skb; skb = next) {
2444 next = skb->next;
2445 skb->next = NULL;
2446 napi_gro_complete(skb);
2447 }
2448
2449 napi->gro_count = 0;
2450 napi->gro_list = NULL;
2451}
2452EXPORT_SYMBOL(napi_gro_flush);
2453
2454int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2455{
2456 struct sk_buff **pp = NULL;
2457 struct packet_type *ptype;
2458 __be16 type = skb->protocol;
2459 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2460 int same_flow;
2461 int mac_len;
2462 int ret;
2463
2464 if (!(skb->dev->features & NETIF_F_GRO))
2465 goto normal;
2466
2467 if (skb_is_gso(skb) || skb_has_frags(skb))
2468 goto normal;
2469
2470 rcu_read_lock();
2471 list_for_each_entry_rcu(ptype, head, list) {
2472 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2473 continue;
2474
2475 skb_set_network_header(skb, skb_gro_offset(skb));
2476 mac_len = skb->network_header - skb->mac_header;
2477 skb->mac_len = mac_len;
2478 NAPI_GRO_CB(skb)->same_flow = 0;
2479 NAPI_GRO_CB(skb)->flush = 0;
2480 NAPI_GRO_CB(skb)->free = 0;
2481
2482 pp = ptype->gro_receive(&napi->gro_list, skb);
2483 break;
2484 }
2485 rcu_read_unlock();
2486
2487 if (&ptype->list == head)
2488 goto normal;
2489
2490 same_flow = NAPI_GRO_CB(skb)->same_flow;
2491 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2492
2493 if (pp) {
2494 struct sk_buff *nskb = *pp;
2495
2496 *pp = nskb->next;
2497 nskb->next = NULL;
2498 napi_gro_complete(nskb);
2499 napi->gro_count--;
2500 }
2501
2502 if (same_flow)
2503 goto ok;
2504
2505 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2506 goto normal;
2507
2508 napi->gro_count++;
2509 NAPI_GRO_CB(skb)->count = 1;
2510 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2511 skb->next = napi->gro_list;
2512 napi->gro_list = skb;
2513 ret = GRO_HELD;
2514
2515pull:
2516 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2517 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2518
2519 BUG_ON(skb->end - skb->tail < grow);
2520
2521 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2522
2523 skb->tail += grow;
2524 skb->data_len -= grow;
2525
2526 skb_shinfo(skb)->frags[0].page_offset += grow;
2527 skb_shinfo(skb)->frags[0].size -= grow;
2528
2529 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2530 put_page(skb_shinfo(skb)->frags[0].page);
2531 memmove(skb_shinfo(skb)->frags,
2532 skb_shinfo(skb)->frags + 1,
2533 --skb_shinfo(skb)->nr_frags);
2534 }
2535 }
2536
2537ok:
2538 return ret;
2539
2540normal:
2541 ret = GRO_NORMAL;
2542 goto pull;
2543}
2544EXPORT_SYMBOL(dev_gro_receive);
2545
2546static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2547{
2548 struct sk_buff *p;
2549
2550 if (netpoll_rx_on(skb))
2551 return GRO_NORMAL;
2552
2553 for (p = napi->gro_list; p; p = p->next) {
2554 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2555 && !compare_ether_header(skb_mac_header(p),
2556 skb_gro_mac_header(skb));
2557 NAPI_GRO_CB(p)->flush = 0;
2558 }
2559
2560 return dev_gro_receive(napi, skb);
2561}
2562
2563int napi_skb_finish(int ret, struct sk_buff *skb)
2564{
2565 int err = NET_RX_SUCCESS;
2566
2567 switch (ret) {
2568 case GRO_NORMAL:
2569 return netif_receive_skb(skb);
2570
2571 case GRO_DROP:
2572 err = NET_RX_DROP;
2573 /* fall through */
2574
2575 case GRO_MERGED_FREE:
2576 kfree_skb(skb);
2577 break;
2578 }
2579
2580 return err;
2581}
2582EXPORT_SYMBOL(napi_skb_finish);
2583
2584void skb_gro_reset_offset(struct sk_buff *skb)
2585{
2586 NAPI_GRO_CB(skb)->data_offset = 0;
2587 NAPI_GRO_CB(skb)->frag0 = NULL;
2588 NAPI_GRO_CB(skb)->frag0_len = 0;
2589
2590 if (skb->mac_header == skb->tail &&
2591 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2592 NAPI_GRO_CB(skb)->frag0 =
2593 page_address(skb_shinfo(skb)->frags[0].page) +
2594 skb_shinfo(skb)->frags[0].page_offset;
2595 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2596 }
2597}
2598EXPORT_SYMBOL(skb_gro_reset_offset);
2599
2600int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2601{
2602 skb_gro_reset_offset(skb);
2603
2604 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2605}
2606EXPORT_SYMBOL(napi_gro_receive);
2607
2608void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2609{
2610 __skb_pull(skb, skb_headlen(skb));
2611 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2612
2613 napi->skb = skb;
2614}
2615EXPORT_SYMBOL(napi_reuse_skb);
2616
2617struct sk_buff *napi_get_frags(struct napi_struct *napi)
2618{
2619 struct sk_buff *skb = napi->skb;
2620
2621 if (!skb) {
2622 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2623 if (skb)
2624 napi->skb = skb;
2625 }
2626 return skb;
2627}
2628EXPORT_SYMBOL(napi_get_frags);
2629
2630int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2631{
2632 int err = NET_RX_SUCCESS;
2633
2634 switch (ret) {
2635 case GRO_NORMAL:
2636 case GRO_HELD:
2637 skb->protocol = eth_type_trans(skb, napi->dev);
2638
2639 if (ret == GRO_NORMAL)
2640 return netif_receive_skb(skb);
2641
2642 skb_gro_pull(skb, -ETH_HLEN);
2643 break;
2644
2645 case GRO_DROP:
2646 err = NET_RX_DROP;
2647 /* fall through */
2648
2649 case GRO_MERGED_FREE:
2650 napi_reuse_skb(napi, skb);
2651 break;
2652 }
2653
2654 return err;
2655}
2656EXPORT_SYMBOL(napi_frags_finish);
2657
2658struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2659{
2660 struct sk_buff *skb = napi->skb;
2661 struct ethhdr *eth;
2662 unsigned int hlen;
2663 unsigned int off;
2664
2665 napi->skb = NULL;
2666
2667 skb_reset_mac_header(skb);
2668 skb_gro_reset_offset(skb);
2669
2670 off = skb_gro_offset(skb);
2671 hlen = off + sizeof(*eth);
2672 eth = skb_gro_header_fast(skb, off);
2673 if (skb_gro_header_hard(skb, hlen)) {
2674 eth = skb_gro_header_slow(skb, hlen, off);
2675 if (unlikely(!eth)) {
2676 napi_reuse_skb(napi, skb);
2677 skb = NULL;
2678 goto out;
2679 }
2680 }
2681
2682 skb_gro_pull(skb, sizeof(*eth));
2683
2684 /*
2685 * This works because the only protocols we care about don't require
2686 * special handling. We'll fix it up properly at the end.
2687 */
2688 skb->protocol = eth->h_proto;
2689
2690out:
2691 return skb;
2692}
2693EXPORT_SYMBOL(napi_frags_skb);
2694
2695int napi_gro_frags(struct napi_struct *napi)
2696{
2697 struct sk_buff *skb = napi_frags_skb(napi);
2698
2699 if (!skb)
2700 return NET_RX_DROP;
2701
2702 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2703}
2704EXPORT_SYMBOL(napi_gro_frags);
2705
2706static int process_backlog(struct napi_struct *napi, int quota)
2707{
2708 int work = 0;
2709 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2710 unsigned long start_time = jiffies;
2711
2712 napi->weight = weight_p;
2713 do {
2714 struct sk_buff *skb;
2715
2716 local_irq_disable();
2717 skb = __skb_dequeue(&queue->input_pkt_queue);
2718 if (!skb) {
2719 __napi_complete(napi);
2720 local_irq_enable();
2721 break;
2722 }
2723 local_irq_enable();
2724
2725 netif_receive_skb(skb);
2726 } while (++work < quota && jiffies == start_time);
2727
2728 return work;
2729}
2730
2731/**
2732 * __napi_schedule - schedule for receive
2733 * @n: entry to schedule
2734 *
2735 * The entry's receive function will be scheduled to run
2736 */
2737void __napi_schedule(struct napi_struct *n)
2738{
2739 unsigned long flags;
2740
2741 local_irq_save(flags);
2742 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2743 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2744 local_irq_restore(flags);
2745}
2746EXPORT_SYMBOL(__napi_schedule);
2747
2748void __napi_complete(struct napi_struct *n)
2749{
2750 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2751 BUG_ON(n->gro_list);
2752
2753 list_del(&n->poll_list);
2754 smp_mb__before_clear_bit();
2755 clear_bit(NAPI_STATE_SCHED, &n->state);
2756}
2757EXPORT_SYMBOL(__napi_complete);
2758
2759void napi_complete(struct napi_struct *n)
2760{
2761 unsigned long flags;
2762
2763 /*
2764 * don't let napi dequeue from the cpu poll list
2765 * just in case its running on a different cpu
2766 */
2767 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2768 return;
2769
2770 napi_gro_flush(n);
2771 local_irq_save(flags);
2772 __napi_complete(n);
2773 local_irq_restore(flags);
2774}
2775EXPORT_SYMBOL(napi_complete);
2776
2777void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2778 int (*poll)(struct napi_struct *, int), int weight)
2779{
2780 INIT_LIST_HEAD(&napi->poll_list);
2781 napi->gro_count = 0;
2782 napi->gro_list = NULL;
2783 napi->skb = NULL;
2784 napi->poll = poll;
2785 napi->weight = weight;
2786 list_add(&napi->dev_list, &dev->napi_list);
2787 napi->dev = dev;
2788#ifdef CONFIG_NETPOLL
2789 spin_lock_init(&napi->poll_lock);
2790 napi->poll_owner = -1;
2791#endif
2792 set_bit(NAPI_STATE_SCHED, &napi->state);
2793}
2794EXPORT_SYMBOL(netif_napi_add);
2795
2796void netif_napi_del(struct napi_struct *napi)
2797{
2798 struct sk_buff *skb, *next;
2799
2800 list_del_init(&napi->dev_list);
2801 napi_free_frags(napi);
2802
2803 for (skb = napi->gro_list; skb; skb = next) {
2804 next = skb->next;
2805 skb->next = NULL;
2806 kfree_skb(skb);
2807 }
2808
2809 napi->gro_list = NULL;
2810 napi->gro_count = 0;
2811}
2812EXPORT_SYMBOL(netif_napi_del);
2813
2814
2815static void net_rx_action(struct softirq_action *h)
2816{
2817 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2818 unsigned long time_limit = jiffies + 2;
2819 int budget = netdev_budget;
2820 void *have;
2821
2822 local_irq_disable();
2823
2824 while (!list_empty(list)) {
2825 struct napi_struct *n;
2826 int work, weight;
2827
2828 /* If softirq window is exhuasted then punt.
2829 * Allow this to run for 2 jiffies since which will allow
2830 * an average latency of 1.5/HZ.
2831 */
2832 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2833 goto softnet_break;
2834
2835 local_irq_enable();
2836
2837 /* Even though interrupts have been re-enabled, this
2838 * access is safe because interrupts can only add new
2839 * entries to the tail of this list, and only ->poll()
2840 * calls can remove this head entry from the list.
2841 */
2842 n = list_entry(list->next, struct napi_struct, poll_list);
2843
2844 have = netpoll_poll_lock(n);
2845
2846 weight = n->weight;
2847
2848 /* This NAPI_STATE_SCHED test is for avoiding a race
2849 * with netpoll's poll_napi(). Only the entity which
2850 * obtains the lock and sees NAPI_STATE_SCHED set will
2851 * actually make the ->poll() call. Therefore we avoid
2852 * accidently calling ->poll() when NAPI is not scheduled.
2853 */
2854 work = 0;
2855 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2856 work = n->poll(n, weight);
2857 trace_napi_poll(n);
2858 }
2859
2860 WARN_ON_ONCE(work > weight);
2861
2862 budget -= work;
2863
2864 local_irq_disable();
2865
2866 /* Drivers must not modify the NAPI state if they
2867 * consume the entire weight. In such cases this code
2868 * still "owns" the NAPI instance and therefore can
2869 * move the instance around on the list at-will.
2870 */
2871 if (unlikely(work == weight)) {
2872 if (unlikely(napi_disable_pending(n))) {
2873 local_irq_enable();
2874 napi_complete(n);
2875 local_irq_disable();
2876 } else
2877 list_move_tail(&n->poll_list, list);
2878 }
2879
2880 netpoll_poll_unlock(have);
2881 }
2882out:
2883 local_irq_enable();
2884
2885#ifdef CONFIG_NET_DMA
2886 /*
2887 * There may not be any more sk_buffs coming right now, so push
2888 * any pending DMA copies to hardware
2889 */
2890 dma_issue_pending_all();
2891#endif
2892
2893 return;
2894
2895softnet_break:
2896 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2897 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2898 goto out;
2899}
2900
2901static gifconf_func_t *gifconf_list[NPROTO];
2902
2903/**
2904 * register_gifconf - register a SIOCGIF handler
2905 * @family: Address family
2906 * @gifconf: Function handler
2907 *
2908 * Register protocol dependent address dumping routines. The handler
2909 * that is passed must not be freed or reused until it has been replaced
2910 * by another handler.
2911 */
2912int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2913{
2914 if (family >= NPROTO)
2915 return -EINVAL;
2916 gifconf_list[family] = gifconf;
2917 return 0;
2918}
2919EXPORT_SYMBOL(register_gifconf);
2920
2921
2922/*
2923 * Map an interface index to its name (SIOCGIFNAME)
2924 */
2925
2926/*
2927 * We need this ioctl for efficient implementation of the
2928 * if_indextoname() function required by the IPv6 API. Without
2929 * it, we would have to search all the interfaces to find a
2930 * match. --pb
2931 */
2932
2933static int dev_ifname(struct net *net, struct ifreq __user *arg)
2934{
2935 struct net_device *dev;
2936 struct ifreq ifr;
2937
2938 /*
2939 * Fetch the caller's info block.
2940 */
2941
2942 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2943 return -EFAULT;
2944
2945 read_lock(&dev_base_lock);
2946 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2947 if (!dev) {
2948 read_unlock(&dev_base_lock);
2949 return -ENODEV;
2950 }
2951
2952 strcpy(ifr.ifr_name, dev->name);
2953 read_unlock(&dev_base_lock);
2954
2955 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2956 return -EFAULT;
2957 return 0;
2958}
2959
2960/*
2961 * Perform a SIOCGIFCONF call. This structure will change
2962 * size eventually, and there is nothing I can do about it.
2963 * Thus we will need a 'compatibility mode'.
2964 */
2965
2966static int dev_ifconf(struct net *net, char __user *arg)
2967{
2968 struct ifconf ifc;
2969 struct net_device *dev;
2970 char __user *pos;
2971 int len;
2972 int total;
2973 int i;
2974
2975 /*
2976 * Fetch the caller's info block.
2977 */
2978
2979 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2980 return -EFAULT;
2981
2982 pos = ifc.ifc_buf;
2983 len = ifc.ifc_len;
2984
2985 /*
2986 * Loop over the interfaces, and write an info block for each.
2987 */
2988
2989 total = 0;
2990 for_each_netdev(net, dev) {
2991 for (i = 0; i < NPROTO; i++) {
2992 if (gifconf_list[i]) {
2993 int done;
2994 if (!pos)
2995 done = gifconf_list[i](dev, NULL, 0);
2996 else
2997 done = gifconf_list[i](dev, pos + total,
2998 len - total);
2999 if (done < 0)
3000 return -EFAULT;
3001 total += done;
3002 }
3003 }
3004 }
3005
3006 /*
3007 * All done. Write the updated control block back to the caller.
3008 */
3009 ifc.ifc_len = total;
3010
3011 /*
3012 * Both BSD and Solaris return 0 here, so we do too.
3013 */
3014 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3015}
3016
3017#ifdef CONFIG_PROC_FS
3018/*
3019 * This is invoked by the /proc filesystem handler to display a device
3020 * in detail.
3021 */
3022void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3023 __acquires(dev_base_lock)
3024{
3025 struct net *net = seq_file_net(seq);
3026 loff_t off;
3027 struct net_device *dev;
3028
3029 read_lock(&dev_base_lock);
3030 if (!*pos)
3031 return SEQ_START_TOKEN;
3032
3033 off = 1;
3034 for_each_netdev(net, dev)
3035 if (off++ == *pos)
3036 return dev;
3037
3038 return NULL;
3039}
3040
3041void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3042{
3043 struct net *net = seq_file_net(seq);
3044 ++*pos;
3045 return v == SEQ_START_TOKEN ?
3046 first_net_device(net) : next_net_device((struct net_device *)v);
3047}
3048
3049void dev_seq_stop(struct seq_file *seq, void *v)
3050 __releases(dev_base_lock)
3051{
3052 read_unlock(&dev_base_lock);
3053}
3054
3055static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3056{
3057 const struct net_device_stats *stats = dev_get_stats(dev);
3058
3059 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3060 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3061 dev->name, stats->rx_bytes, stats->rx_packets,
3062 stats->rx_errors,
3063 stats->rx_dropped + stats->rx_missed_errors,
3064 stats->rx_fifo_errors,
3065 stats->rx_length_errors + stats->rx_over_errors +
3066 stats->rx_crc_errors + stats->rx_frame_errors,
3067 stats->rx_compressed, stats->multicast,
3068 stats->tx_bytes, stats->tx_packets,
3069 stats->tx_errors, stats->tx_dropped,
3070 stats->tx_fifo_errors, stats->collisions,
3071 stats->tx_carrier_errors +
3072 stats->tx_aborted_errors +
3073 stats->tx_window_errors +
3074 stats->tx_heartbeat_errors,
3075 stats->tx_compressed);
3076}
3077
3078/*
3079 * Called from the PROCfs module. This now uses the new arbitrary sized
3080 * /proc/net interface to create /proc/net/dev
3081 */
3082static int dev_seq_show(struct seq_file *seq, void *v)
3083{
3084 if (v == SEQ_START_TOKEN)
3085 seq_puts(seq, "Inter-| Receive "
3086 " | Transmit\n"
3087 " face |bytes packets errs drop fifo frame "
3088 "compressed multicast|bytes packets errs "
3089 "drop fifo colls carrier compressed\n");
3090 else
3091 dev_seq_printf_stats(seq, v);
3092 return 0;
3093}
3094
3095static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3096{
3097 struct netif_rx_stats *rc = NULL;
3098
3099 while (*pos < nr_cpu_ids)
3100 if (cpu_online(*pos)) {
3101 rc = &per_cpu(netdev_rx_stat, *pos);
3102 break;
3103 } else
3104 ++*pos;
3105 return rc;
3106}
3107
3108static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3109{
3110 return softnet_get_online(pos);
3111}
3112
3113static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3114{
3115 ++*pos;
3116 return softnet_get_online(pos);
3117}
3118
3119static void softnet_seq_stop(struct seq_file *seq, void *v)
3120{
3121}
3122
3123static int softnet_seq_show(struct seq_file *seq, void *v)
3124{
3125 struct netif_rx_stats *s = v;
3126
3127 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3128 s->total, s->dropped, s->time_squeeze, 0,
3129 0, 0, 0, 0, /* was fastroute */
3130 s->cpu_collision);
3131 return 0;
3132}
3133
3134static const struct seq_operations dev_seq_ops = {
3135 .start = dev_seq_start,
3136 .next = dev_seq_next,
3137 .stop = dev_seq_stop,
3138 .show = dev_seq_show,
3139};
3140
3141static int dev_seq_open(struct inode *inode, struct file *file)
3142{
3143 return seq_open_net(inode, file, &dev_seq_ops,
3144 sizeof(struct seq_net_private));
3145}
3146
3147static const struct file_operations dev_seq_fops = {
3148 .owner = THIS_MODULE,
3149 .open = dev_seq_open,
3150 .read = seq_read,
3151 .llseek = seq_lseek,
3152 .release = seq_release_net,
3153};
3154
3155static const struct seq_operations softnet_seq_ops = {
3156 .start = softnet_seq_start,
3157 .next = softnet_seq_next,
3158 .stop = softnet_seq_stop,
3159 .show = softnet_seq_show,
3160};
3161
3162static int softnet_seq_open(struct inode *inode, struct file *file)
3163{
3164 return seq_open(file, &softnet_seq_ops);
3165}
3166
3167static const struct file_operations softnet_seq_fops = {
3168 .owner = THIS_MODULE,
3169 .open = softnet_seq_open,
3170 .read = seq_read,
3171 .llseek = seq_lseek,
3172 .release = seq_release,
3173};
3174
3175static void *ptype_get_idx(loff_t pos)
3176{
3177 struct packet_type *pt = NULL;
3178 loff_t i = 0;
3179 int t;
3180
3181 list_for_each_entry_rcu(pt, &ptype_all, list) {
3182 if (i == pos)
3183 return pt;
3184 ++i;
3185 }
3186
3187 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3188 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3189 if (i == pos)
3190 return pt;
3191 ++i;
3192 }
3193 }
3194 return NULL;
3195}
3196
3197static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3198 __acquires(RCU)
3199{
3200 rcu_read_lock();
3201 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3202}
3203
3204static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3205{
3206 struct packet_type *pt;
3207 struct list_head *nxt;
3208 int hash;
3209
3210 ++*pos;
3211 if (v == SEQ_START_TOKEN)
3212 return ptype_get_idx(0);
3213
3214 pt = v;
3215 nxt = pt->list.next;
3216 if (pt->type == htons(ETH_P_ALL)) {
3217 if (nxt != &ptype_all)
3218 goto found;
3219 hash = 0;
3220 nxt = ptype_base[0].next;
3221 } else
3222 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3223
3224 while (nxt == &ptype_base[hash]) {
3225 if (++hash >= PTYPE_HASH_SIZE)
3226 return NULL;
3227 nxt = ptype_base[hash].next;
3228 }
3229found:
3230 return list_entry(nxt, struct packet_type, list);
3231}
3232
3233static void ptype_seq_stop(struct seq_file *seq, void *v)
3234 __releases(RCU)
3235{
3236 rcu_read_unlock();
3237}
3238
3239static int ptype_seq_show(struct seq_file *seq, void *v)
3240{
3241 struct packet_type *pt = v;
3242
3243 if (v == SEQ_START_TOKEN)
3244 seq_puts(seq, "Type Device Function\n");
3245 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3246 if (pt->type == htons(ETH_P_ALL))
3247 seq_puts(seq, "ALL ");
3248 else
3249 seq_printf(seq, "%04x", ntohs(pt->type));
3250
3251 seq_printf(seq, " %-8s %pF\n",
3252 pt->dev ? pt->dev->name : "", pt->func);
3253 }
3254
3255 return 0;
3256}
3257
3258static const struct seq_operations ptype_seq_ops = {
3259 .start = ptype_seq_start,
3260 .next = ptype_seq_next,
3261 .stop = ptype_seq_stop,
3262 .show = ptype_seq_show,
3263};
3264
3265static int ptype_seq_open(struct inode *inode, struct file *file)
3266{
3267 return seq_open_net(inode, file, &ptype_seq_ops,
3268 sizeof(struct seq_net_private));
3269}
3270
3271static const struct file_operations ptype_seq_fops = {
3272 .owner = THIS_MODULE,
3273 .open = ptype_seq_open,
3274 .read = seq_read,
3275 .llseek = seq_lseek,
3276 .release = seq_release_net,
3277};
3278
3279
3280static int __net_init dev_proc_net_init(struct net *net)
3281{
3282 int rc = -ENOMEM;
3283
3284 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3285 goto out;
3286 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3287 goto out_dev;
3288 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3289 goto out_softnet;
3290
3291 if (wext_proc_init(net))
3292 goto out_ptype;
3293 rc = 0;
3294out:
3295 return rc;
3296out_ptype:
3297 proc_net_remove(net, "ptype");
3298out_softnet:
3299 proc_net_remove(net, "softnet_stat");
3300out_dev:
3301 proc_net_remove(net, "dev");
3302 goto out;
3303}
3304
3305static void __net_exit dev_proc_net_exit(struct net *net)
3306{
3307 wext_proc_exit(net);
3308
3309 proc_net_remove(net, "ptype");
3310 proc_net_remove(net, "softnet_stat");
3311 proc_net_remove(net, "dev");
3312}
3313
3314static struct pernet_operations __net_initdata dev_proc_ops = {
3315 .init = dev_proc_net_init,
3316 .exit = dev_proc_net_exit,
3317};
3318
3319static int __init dev_proc_init(void)
3320{
3321 return register_pernet_subsys(&dev_proc_ops);
3322}
3323#else
3324#define dev_proc_init() 0
3325#endif /* CONFIG_PROC_FS */
3326
3327
3328/**
3329 * netdev_set_master - set up master/slave pair
3330 * @slave: slave device
3331 * @master: new master device
3332 *
3333 * Changes the master device of the slave. Pass %NULL to break the
3334 * bonding. The caller must hold the RTNL semaphore. On a failure
3335 * a negative errno code is returned. On success the reference counts
3336 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3337 * function returns zero.
3338 */
3339int netdev_set_master(struct net_device *slave, struct net_device *master)
3340{
3341 struct net_device *old = slave->master;
3342
3343 ASSERT_RTNL();
3344
3345 if (master) {
3346 if (old)
3347 return -EBUSY;
3348 dev_hold(master);
3349 }
3350
3351 slave->master = master;
3352
3353 synchronize_net();
3354
3355 if (old)
3356 dev_put(old);
3357
3358 if (master)
3359 slave->flags |= IFF_SLAVE;
3360 else
3361 slave->flags &= ~IFF_SLAVE;
3362
3363 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3364 return 0;
3365}
3366EXPORT_SYMBOL(netdev_set_master);
3367
3368static void dev_change_rx_flags(struct net_device *dev, int flags)
3369{
3370 const struct net_device_ops *ops = dev->netdev_ops;
3371
3372 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3373 ops->ndo_change_rx_flags(dev, flags);
3374}
3375
3376static int __dev_set_promiscuity(struct net_device *dev, int inc)
3377{
3378 unsigned short old_flags = dev->flags;
3379 uid_t uid;
3380 gid_t gid;
3381
3382 ASSERT_RTNL();
3383
3384 dev->flags |= IFF_PROMISC;
3385 dev->promiscuity += inc;
3386 if (dev->promiscuity == 0) {
3387 /*
3388 * Avoid overflow.
3389 * If inc causes overflow, untouch promisc and return error.
3390 */
3391 if (inc < 0)
3392 dev->flags &= ~IFF_PROMISC;
3393 else {
3394 dev->promiscuity -= inc;
3395 printk(KERN_WARNING "%s: promiscuity touches roof, "
3396 "set promiscuity failed, promiscuity feature "
3397 "of device might be broken.\n", dev->name);
3398 return -EOVERFLOW;
3399 }
3400 }
3401 if (dev->flags != old_flags) {
3402 printk(KERN_INFO "device %s %s promiscuous mode\n",
3403 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3404 "left");
3405 if (audit_enabled) {
3406 current_uid_gid(&uid, &gid);
3407 audit_log(current->audit_context, GFP_ATOMIC,
3408 AUDIT_ANOM_PROMISCUOUS,
3409 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3410 dev->name, (dev->flags & IFF_PROMISC),
3411 (old_flags & IFF_PROMISC),
3412 audit_get_loginuid(current),
3413 uid, gid,
3414 audit_get_sessionid(current));
3415 }
3416
3417 dev_change_rx_flags(dev, IFF_PROMISC);
3418 }
3419 return 0;
3420}
3421
3422/**
3423 * dev_set_promiscuity - update promiscuity count on a device
3424 * @dev: device
3425 * @inc: modifier
3426 *
3427 * Add or remove promiscuity from a device. While the count in the device
3428 * remains above zero the interface remains promiscuous. Once it hits zero
3429 * the device reverts back to normal filtering operation. A negative inc
3430 * value is used to drop promiscuity on the device.
3431 * Return 0 if successful or a negative errno code on error.
3432 */
3433int dev_set_promiscuity(struct net_device *dev, int inc)
3434{
3435 unsigned short old_flags = dev->flags;
3436 int err;
3437
3438 err = __dev_set_promiscuity(dev, inc);
3439 if (err < 0)
3440 return err;
3441 if (dev->flags != old_flags)
3442 dev_set_rx_mode(dev);
3443 return err;
3444}
3445EXPORT_SYMBOL(dev_set_promiscuity);
3446
3447/**
3448 * dev_set_allmulti - update allmulti count on a device
3449 * @dev: device
3450 * @inc: modifier
3451 *
3452 * Add or remove reception of all multicast frames to a device. While the
3453 * count in the device remains above zero the interface remains listening
3454 * to all interfaces. Once it hits zero the device reverts back to normal
3455 * filtering operation. A negative @inc value is used to drop the counter
3456 * when releasing a resource needing all multicasts.
3457 * Return 0 if successful or a negative errno code on error.
3458 */
3459
3460int dev_set_allmulti(struct net_device *dev, int inc)
3461{
3462 unsigned short old_flags = dev->flags;
3463
3464 ASSERT_RTNL();
3465
3466 dev->flags |= IFF_ALLMULTI;
3467 dev->allmulti += inc;
3468 if (dev->allmulti == 0) {
3469 /*
3470 * Avoid overflow.
3471 * If inc causes overflow, untouch allmulti and return error.
3472 */
3473 if (inc < 0)
3474 dev->flags &= ~IFF_ALLMULTI;
3475 else {
3476 dev->allmulti -= inc;
3477 printk(KERN_WARNING "%s: allmulti touches roof, "
3478 "set allmulti failed, allmulti feature of "
3479 "device might be broken.\n", dev->name);
3480 return -EOVERFLOW;
3481 }
3482 }
3483 if (dev->flags ^ old_flags) {
3484 dev_change_rx_flags(dev, IFF_ALLMULTI);
3485 dev_set_rx_mode(dev);
3486 }
3487 return 0;
3488}
3489EXPORT_SYMBOL(dev_set_allmulti);
3490
3491/*
3492 * Upload unicast and multicast address lists to device and
3493 * configure RX filtering. When the device doesn't support unicast
3494 * filtering it is put in promiscuous mode while unicast addresses
3495 * are present.
3496 */
3497void __dev_set_rx_mode(struct net_device *dev)
3498{
3499 const struct net_device_ops *ops = dev->netdev_ops;
3500
3501 /* dev_open will call this function so the list will stay sane. */
3502 if (!(dev->flags&IFF_UP))
3503 return;
3504
3505 if (!netif_device_present(dev))
3506 return;
3507
3508 if (ops->ndo_set_rx_mode)
3509 ops->ndo_set_rx_mode(dev);
3510 else {
3511 /* Unicast addresses changes may only happen under the rtnl,
3512 * therefore calling __dev_set_promiscuity here is safe.
3513 */
3514 if (dev->uc.count > 0 && !dev->uc_promisc) {
3515 __dev_set_promiscuity(dev, 1);
3516 dev->uc_promisc = 1;
3517 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3518 __dev_set_promiscuity(dev, -1);
3519 dev->uc_promisc = 0;
3520 }
3521
3522 if (ops->ndo_set_multicast_list)
3523 ops->ndo_set_multicast_list(dev);
3524 }
3525}
3526
3527void dev_set_rx_mode(struct net_device *dev)
3528{
3529 netif_addr_lock_bh(dev);
3530 __dev_set_rx_mode(dev);
3531 netif_addr_unlock_bh(dev);
3532}
3533
3534/* hw addresses list handling functions */
3535
3536static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3537 int addr_len, unsigned char addr_type)
3538{
3539 struct netdev_hw_addr *ha;
3540 int alloc_size;
3541
3542 if (addr_len > MAX_ADDR_LEN)
3543 return -EINVAL;
3544
3545 list_for_each_entry(ha, &list->list, list) {
3546 if (!memcmp(ha->addr, addr, addr_len) &&
3547 ha->type == addr_type) {
3548 ha->refcount++;
3549 return 0;
3550 }
3551 }
3552
3553
3554 alloc_size = sizeof(*ha);
3555 if (alloc_size < L1_CACHE_BYTES)
3556 alloc_size = L1_CACHE_BYTES;
3557 ha = kmalloc(alloc_size, GFP_ATOMIC);
3558 if (!ha)
3559 return -ENOMEM;
3560 memcpy(ha->addr, addr, addr_len);
3561 ha->type = addr_type;
3562 ha->refcount = 1;
3563 ha->synced = false;
3564 list_add_tail_rcu(&ha->list, &list->list);
3565 list->count++;
3566 return 0;
3567}
3568
3569static void ha_rcu_free(struct rcu_head *head)
3570{
3571 struct netdev_hw_addr *ha;
3572
3573 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3574 kfree(ha);
3575}
3576
3577static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3578 int addr_len, unsigned char addr_type)
3579{
3580 struct netdev_hw_addr *ha;
3581
3582 list_for_each_entry(ha, &list->list, list) {
3583 if (!memcmp(ha->addr, addr, addr_len) &&
3584 (ha->type == addr_type || !addr_type)) {
3585 if (--ha->refcount)
3586 return 0;
3587 list_del_rcu(&ha->list);
3588 call_rcu(&ha->rcu_head, ha_rcu_free);
3589 list->count--;
3590 return 0;
3591 }
3592 }
3593 return -ENOENT;
3594}
3595
3596static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3597 struct netdev_hw_addr_list *from_list,
3598 int addr_len,
3599 unsigned char addr_type)
3600{
3601 int err;
3602 struct netdev_hw_addr *ha, *ha2;
3603 unsigned char type;
3604
3605 list_for_each_entry(ha, &from_list->list, list) {
3606 type = addr_type ? addr_type : ha->type;
3607 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3608 if (err)
3609 goto unroll;
3610 }
3611 return 0;
3612
3613unroll:
3614 list_for_each_entry(ha2, &from_list->list, list) {
3615 if (ha2 == ha)
3616 break;
3617 type = addr_type ? addr_type : ha2->type;
3618 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3619 }
3620 return err;
3621}
3622
3623static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3624 struct netdev_hw_addr_list *from_list,
3625 int addr_len,
3626 unsigned char addr_type)
3627{
3628 struct netdev_hw_addr *ha;
3629 unsigned char type;
3630
3631 list_for_each_entry(ha, &from_list->list, list) {
3632 type = addr_type ? addr_type : ha->type;
3633 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3634 }
3635}
3636
3637static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3638 struct netdev_hw_addr_list *from_list,
3639 int addr_len)
3640{
3641 int err = 0;
3642 struct netdev_hw_addr *ha, *tmp;
3643
3644 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3645 if (!ha->synced) {
3646 err = __hw_addr_add(to_list, ha->addr,
3647 addr_len, ha->type);
3648 if (err)
3649 break;
3650 ha->synced = true;
3651 ha->refcount++;
3652 } else if (ha->refcount == 1) {
3653 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3654 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3655 }
3656 }
3657 return err;
3658}
3659
3660static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3661 struct netdev_hw_addr_list *from_list,
3662 int addr_len)
3663{
3664 struct netdev_hw_addr *ha, *tmp;
3665
3666 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3667 if (ha->synced) {
3668 __hw_addr_del(to_list, ha->addr,
3669 addr_len, ha->type);
3670 ha->synced = false;
3671 __hw_addr_del(from_list, ha->addr,
3672 addr_len, ha->type);
3673 }
3674 }
3675}
3676
3677static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3678{
3679 struct netdev_hw_addr *ha, *tmp;
3680
3681 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3682 list_del_rcu(&ha->list);
3683 call_rcu(&ha->rcu_head, ha_rcu_free);
3684 }
3685 list->count = 0;
3686}
3687
3688static void __hw_addr_init(struct netdev_hw_addr_list *list)
3689{
3690 INIT_LIST_HEAD(&list->list);
3691 list->count = 0;
3692}
3693
3694/* Device addresses handling functions */
3695
3696static void dev_addr_flush(struct net_device *dev)
3697{
3698 /* rtnl_mutex must be held here */
3699
3700 __hw_addr_flush(&dev->dev_addrs);
3701 dev->dev_addr = NULL;
3702}
3703
3704static int dev_addr_init(struct net_device *dev)
3705{
3706 unsigned char addr[MAX_ADDR_LEN];
3707 struct netdev_hw_addr *ha;
3708 int err;
3709
3710 /* rtnl_mutex must be held here */
3711
3712 __hw_addr_init(&dev->dev_addrs);
3713 memset(addr, 0, sizeof(addr));
3714 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3715 NETDEV_HW_ADDR_T_LAN);
3716 if (!err) {
3717 /*
3718 * Get the first (previously created) address from the list
3719 * and set dev_addr pointer to this location.
3720 */
3721 ha = list_first_entry(&dev->dev_addrs.list,
3722 struct netdev_hw_addr, list);
3723 dev->dev_addr = ha->addr;
3724 }
3725 return err;
3726}
3727
3728/**
3729 * dev_addr_add - Add a device address
3730 * @dev: device
3731 * @addr: address to add
3732 * @addr_type: address type
3733 *
3734 * Add a device address to the device or increase the reference count if
3735 * it already exists.
3736 *
3737 * The caller must hold the rtnl_mutex.
3738 */
3739int dev_addr_add(struct net_device *dev, unsigned char *addr,
3740 unsigned char addr_type)
3741{
3742 int err;
3743
3744 ASSERT_RTNL();
3745
3746 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3747 if (!err)
3748 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3749 return err;
3750}
3751EXPORT_SYMBOL(dev_addr_add);
3752
3753/**
3754 * dev_addr_del - Release a device address.
3755 * @dev: device
3756 * @addr: address to delete
3757 * @addr_type: address type
3758 *
3759 * Release reference to a device address and remove it from the device
3760 * if the reference count drops to zero.
3761 *
3762 * The caller must hold the rtnl_mutex.
3763 */
3764int dev_addr_del(struct net_device *dev, unsigned char *addr,
3765 unsigned char addr_type)
3766{
3767 int err;
3768 struct netdev_hw_addr *ha;
3769
3770 ASSERT_RTNL();
3771
3772 /*
3773 * We can not remove the first address from the list because
3774 * dev->dev_addr points to that.
3775 */
3776 ha = list_first_entry(&dev->dev_addrs.list,
3777 struct netdev_hw_addr, list);
3778 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3779 return -ENOENT;
3780
3781 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3782 addr_type);
3783 if (!err)
3784 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3785 return err;
3786}
3787EXPORT_SYMBOL(dev_addr_del);
3788
3789/**
3790 * dev_addr_add_multiple - Add device addresses from another device
3791 * @to_dev: device to which addresses will be added
3792 * @from_dev: device from which addresses will be added
3793 * @addr_type: address type - 0 means type will be used from from_dev
3794 *
3795 * Add device addresses of the one device to another.
3796 **
3797 * The caller must hold the rtnl_mutex.
3798 */
3799int dev_addr_add_multiple(struct net_device *to_dev,
3800 struct net_device *from_dev,
3801 unsigned char addr_type)
3802{
3803 int err;
3804
3805 ASSERT_RTNL();
3806
3807 if (from_dev->addr_len != to_dev->addr_len)
3808 return -EINVAL;
3809 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3810 to_dev->addr_len, addr_type);
3811 if (!err)
3812 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3813 return err;
3814}
3815EXPORT_SYMBOL(dev_addr_add_multiple);
3816
3817/**
3818 * dev_addr_del_multiple - Delete device addresses by another device
3819 * @to_dev: device where the addresses will be deleted
3820 * @from_dev: device by which addresses the addresses will be deleted
3821 * @addr_type: address type - 0 means type will used from from_dev
3822 *
3823 * Deletes addresses in to device by the list of addresses in from device.
3824 *
3825 * The caller must hold the rtnl_mutex.
3826 */
3827int dev_addr_del_multiple(struct net_device *to_dev,
3828 struct net_device *from_dev,
3829 unsigned char addr_type)
3830{
3831 ASSERT_RTNL();
3832
3833 if (from_dev->addr_len != to_dev->addr_len)
3834 return -EINVAL;
3835 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3836 to_dev->addr_len, addr_type);
3837 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3838 return 0;
3839}
3840EXPORT_SYMBOL(dev_addr_del_multiple);
3841
3842/* multicast addresses handling functions */
3843
3844int __dev_addr_delete(struct dev_addr_list **list, int *count,
3845 void *addr, int alen, int glbl)
3846{
3847 struct dev_addr_list *da;
3848
3849 for (; (da = *list) != NULL; list = &da->next) {
3850 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3851 alen == da->da_addrlen) {
3852 if (glbl) {
3853 int old_glbl = da->da_gusers;
3854 da->da_gusers = 0;
3855 if (old_glbl == 0)
3856 break;
3857 }
3858 if (--da->da_users)
3859 return 0;
3860
3861 *list = da->next;
3862 kfree(da);
3863 (*count)--;
3864 return 0;
3865 }
3866 }
3867 return -ENOENT;
3868}
3869
3870int __dev_addr_add(struct dev_addr_list **list, int *count,
3871 void *addr, int alen, int glbl)
3872{
3873 struct dev_addr_list *da;
3874
3875 for (da = *list; da != NULL; da = da->next) {
3876 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3877 da->da_addrlen == alen) {
3878 if (glbl) {
3879 int old_glbl = da->da_gusers;
3880 da->da_gusers = 1;
3881 if (old_glbl)
3882 return 0;
3883 }
3884 da->da_users++;
3885 return 0;
3886 }
3887 }
3888
3889 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3890 if (da == NULL)
3891 return -ENOMEM;
3892 memcpy(da->da_addr, addr, alen);
3893 da->da_addrlen = alen;
3894 da->da_users = 1;
3895 da->da_gusers = glbl ? 1 : 0;
3896 da->next = *list;
3897 *list = da;
3898 (*count)++;
3899 return 0;
3900}
3901
3902/**
3903 * dev_unicast_delete - Release secondary unicast address.
3904 * @dev: device
3905 * @addr: address to delete
3906 *
3907 * Release reference to a secondary unicast address and remove it
3908 * from the device if the reference count drops to zero.
3909 *
3910 * The caller must hold the rtnl_mutex.
3911 */
3912int dev_unicast_delete(struct net_device *dev, void *addr)
3913{
3914 int err;
3915
3916 ASSERT_RTNL();
3917
3918 netif_addr_lock_bh(dev);
3919 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3920 NETDEV_HW_ADDR_T_UNICAST);
3921 if (!err)
3922 __dev_set_rx_mode(dev);
3923 netif_addr_unlock_bh(dev);
3924 return err;
3925}
3926EXPORT_SYMBOL(dev_unicast_delete);
3927
3928/**
3929 * dev_unicast_add - add a secondary unicast address
3930 * @dev: device
3931 * @addr: address to add
3932 *
3933 * Add a secondary unicast address to the device or increase
3934 * the reference count if it already exists.
3935 *
3936 * The caller must hold the rtnl_mutex.
3937 */
3938int dev_unicast_add(struct net_device *dev, void *addr)
3939{
3940 int err;
3941
3942 ASSERT_RTNL();
3943
3944 netif_addr_lock_bh(dev);
3945 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3946 NETDEV_HW_ADDR_T_UNICAST);
3947 if (!err)
3948 __dev_set_rx_mode(dev);
3949 netif_addr_unlock_bh(dev);
3950 return err;
3951}
3952EXPORT_SYMBOL(dev_unicast_add);
3953
3954int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3955 struct dev_addr_list **from, int *from_count)
3956{
3957 struct dev_addr_list *da, *next;
3958 int err = 0;
3959
3960 da = *from;
3961 while (da != NULL) {
3962 next = da->next;
3963 if (!da->da_synced) {
3964 err = __dev_addr_add(to, to_count,
3965 da->da_addr, da->da_addrlen, 0);
3966 if (err < 0)
3967 break;
3968 da->da_synced = 1;
3969 da->da_users++;
3970 } else if (da->da_users == 1) {
3971 __dev_addr_delete(to, to_count,
3972 da->da_addr, da->da_addrlen, 0);
3973 __dev_addr_delete(from, from_count,
3974 da->da_addr, da->da_addrlen, 0);
3975 }
3976 da = next;
3977 }
3978 return err;
3979}
3980EXPORT_SYMBOL_GPL(__dev_addr_sync);
3981
3982void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3983 struct dev_addr_list **from, int *from_count)
3984{
3985 struct dev_addr_list *da, *next;
3986
3987 da = *from;
3988 while (da != NULL) {
3989 next = da->next;
3990 if (da->da_synced) {
3991 __dev_addr_delete(to, to_count,
3992 da->da_addr, da->da_addrlen, 0);
3993 da->da_synced = 0;
3994 __dev_addr_delete(from, from_count,
3995 da->da_addr, da->da_addrlen, 0);
3996 }
3997 da = next;
3998 }
3999}
4000EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4001
4002/**
4003 * dev_unicast_sync - Synchronize device's unicast list to another device
4004 * @to: destination device
4005 * @from: source device
4006 *
4007 * Add newly added addresses to the destination device and release
4008 * addresses that have no users left. The source device must be
4009 * locked by netif_tx_lock_bh.
4010 *
4011 * This function is intended to be called from the dev->set_rx_mode
4012 * function of layered software devices.
4013 */
4014int dev_unicast_sync(struct net_device *to, struct net_device *from)
4015{
4016 int err = 0;
4017
4018 if (to->addr_len != from->addr_len)
4019 return -EINVAL;
4020
4021 netif_addr_lock_bh(to);
4022 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4023 if (!err)
4024 __dev_set_rx_mode(to);
4025 netif_addr_unlock_bh(to);
4026 return err;
4027}
4028EXPORT_SYMBOL(dev_unicast_sync);
4029
4030/**
4031 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4032 * @to: destination device
4033 * @from: source device
4034 *
4035 * Remove all addresses that were added to the destination device by
4036 * dev_unicast_sync(). This function is intended to be called from the
4037 * dev->stop function of layered software devices.
4038 */
4039void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4040{
4041 if (to->addr_len != from->addr_len)
4042 return;
4043
4044 netif_addr_lock_bh(from);
4045 netif_addr_lock(to);
4046 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4047 __dev_set_rx_mode(to);
4048 netif_addr_unlock(to);
4049 netif_addr_unlock_bh(from);
4050}
4051EXPORT_SYMBOL(dev_unicast_unsync);
4052
4053static void dev_unicast_flush(struct net_device *dev)
4054{
4055 netif_addr_lock_bh(dev);
4056 __hw_addr_flush(&dev->uc);
4057 netif_addr_unlock_bh(dev);
4058}
4059
4060static void dev_unicast_init(struct net_device *dev)
4061{
4062 __hw_addr_init(&dev->uc);
4063}
4064
4065
4066static void __dev_addr_discard(struct dev_addr_list **list)
4067{
4068 struct dev_addr_list *tmp;
4069
4070 while (*list != NULL) {
4071 tmp = *list;
4072 *list = tmp->next;
4073 if (tmp->da_users > tmp->da_gusers)
4074 printk("__dev_addr_discard: address leakage! "
4075 "da_users=%d\n", tmp->da_users);
4076 kfree(tmp);
4077 }
4078}
4079
4080static void dev_addr_discard(struct net_device *dev)
4081{
4082 netif_addr_lock_bh(dev);
4083
4084 __dev_addr_discard(&dev->mc_list);
4085 dev->mc_count = 0;
4086
4087 netif_addr_unlock_bh(dev);
4088}
4089
4090/**
4091 * dev_get_flags - get flags reported to userspace
4092 * @dev: device
4093 *
4094 * Get the combination of flag bits exported through APIs to userspace.
4095 */
4096unsigned dev_get_flags(const struct net_device *dev)
4097{
4098 unsigned flags;
4099
4100 flags = (dev->flags & ~(IFF_PROMISC |
4101 IFF_ALLMULTI |
4102 IFF_RUNNING |
4103 IFF_LOWER_UP |
4104 IFF_DORMANT)) |
4105 (dev->gflags & (IFF_PROMISC |
4106 IFF_ALLMULTI));
4107
4108 if (netif_running(dev)) {
4109 if (netif_oper_up(dev))
4110 flags |= IFF_RUNNING;
4111 if (netif_carrier_ok(dev))
4112 flags |= IFF_LOWER_UP;
4113 if (netif_dormant(dev))
4114 flags |= IFF_DORMANT;
4115 }
4116
4117 return flags;
4118}
4119EXPORT_SYMBOL(dev_get_flags);
4120
4121/**
4122 * dev_change_flags - change device settings
4123 * @dev: device
4124 * @flags: device state flags
4125 *
4126 * Change settings on device based state flags. The flags are
4127 * in the userspace exported format.
4128 */
4129int dev_change_flags(struct net_device *dev, unsigned flags)
4130{
4131 int ret, changes;
4132 int old_flags = dev->flags;
4133
4134 ASSERT_RTNL();
4135
4136 /*
4137 * Set the flags on our device.
4138 */
4139
4140 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4141 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4142 IFF_AUTOMEDIA)) |
4143 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4144 IFF_ALLMULTI));
4145
4146 /*
4147 * Load in the correct multicast list now the flags have changed.
4148 */
4149
4150 if ((old_flags ^ flags) & IFF_MULTICAST)
4151 dev_change_rx_flags(dev, IFF_MULTICAST);
4152
4153 dev_set_rx_mode(dev);
4154
4155 /*
4156 * Have we downed the interface. We handle IFF_UP ourselves
4157 * according to user attempts to set it, rather than blindly
4158 * setting it.
4159 */
4160
4161 ret = 0;
4162 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4163 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4164
4165 if (!ret)
4166 dev_set_rx_mode(dev);
4167 }
4168
4169 if (dev->flags & IFF_UP &&
4170 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4171 IFF_VOLATILE)))
4172 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4173
4174 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4175 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4176
4177 dev->gflags ^= IFF_PROMISC;
4178 dev_set_promiscuity(dev, inc);
4179 }
4180
4181 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4182 is important. Some (broken) drivers set IFF_PROMISC, when
4183 IFF_ALLMULTI is requested not asking us and not reporting.
4184 */
4185 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4186 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4187
4188 dev->gflags ^= IFF_ALLMULTI;
4189 dev_set_allmulti(dev, inc);
4190 }
4191
4192 /* Exclude state transition flags, already notified */
4193 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4194 if (changes)
4195 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4196
4197 return ret;
4198}
4199EXPORT_SYMBOL(dev_change_flags);
4200
4201/**
4202 * dev_set_mtu - Change maximum transfer unit
4203 * @dev: device
4204 * @new_mtu: new transfer unit
4205 *
4206 * Change the maximum transfer size of the network device.
4207 */
4208int dev_set_mtu(struct net_device *dev, int new_mtu)
4209{
4210 const struct net_device_ops *ops = dev->netdev_ops;
4211 int err;
4212
4213 if (new_mtu == dev->mtu)
4214 return 0;
4215
4216 /* MTU must be positive. */
4217 if (new_mtu < 0)
4218 return -EINVAL;
4219
4220 if (!netif_device_present(dev))
4221 return -ENODEV;
4222
4223 err = 0;
4224 if (ops->ndo_change_mtu)
4225 err = ops->ndo_change_mtu(dev, new_mtu);
4226 else
4227 dev->mtu = new_mtu;
4228
4229 if (!err && dev->flags & IFF_UP)
4230 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4231 return err;
4232}
4233EXPORT_SYMBOL(dev_set_mtu);
4234
4235/**
4236 * dev_set_mac_address - Change Media Access Control Address
4237 * @dev: device
4238 * @sa: new address
4239 *
4240 * Change the hardware (MAC) address of the device
4241 */
4242int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4243{
4244 const struct net_device_ops *ops = dev->netdev_ops;
4245 int err;
4246
4247 if (!ops->ndo_set_mac_address)
4248 return -EOPNOTSUPP;
4249 if (sa->sa_family != dev->type)
4250 return -EINVAL;
4251 if (!netif_device_present(dev))
4252 return -ENODEV;
4253 err = ops->ndo_set_mac_address(dev, sa);
4254 if (!err)
4255 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4256 return err;
4257}
4258EXPORT_SYMBOL(dev_set_mac_address);
4259
4260/*
4261 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4262 */
4263static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4264{
4265 int err;
4266 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4267
4268 if (!dev)
4269 return -ENODEV;
4270
4271 switch (cmd) {
4272 case SIOCGIFFLAGS: /* Get interface flags */
4273 ifr->ifr_flags = (short) dev_get_flags(dev);
4274 return 0;
4275
4276 case SIOCGIFMETRIC: /* Get the metric on the interface
4277 (currently unused) */
4278 ifr->ifr_metric = 0;
4279 return 0;
4280
4281 case SIOCGIFMTU: /* Get the MTU of a device */
4282 ifr->ifr_mtu = dev->mtu;
4283 return 0;
4284
4285 case SIOCGIFHWADDR:
4286 if (!dev->addr_len)
4287 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4288 else
4289 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4290 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4291 ifr->ifr_hwaddr.sa_family = dev->type;
4292 return 0;
4293
4294 case SIOCGIFSLAVE:
4295 err = -EINVAL;
4296 break;
4297
4298 case SIOCGIFMAP:
4299 ifr->ifr_map.mem_start = dev->mem_start;
4300 ifr->ifr_map.mem_end = dev->mem_end;
4301 ifr->ifr_map.base_addr = dev->base_addr;
4302 ifr->ifr_map.irq = dev->irq;
4303 ifr->ifr_map.dma = dev->dma;
4304 ifr->ifr_map.port = dev->if_port;
4305 return 0;
4306
4307 case SIOCGIFINDEX:
4308 ifr->ifr_ifindex = dev->ifindex;
4309 return 0;
4310
4311 case SIOCGIFTXQLEN:
4312 ifr->ifr_qlen = dev->tx_queue_len;
4313 return 0;
4314
4315 default:
4316 /* dev_ioctl() should ensure this case
4317 * is never reached
4318 */
4319 WARN_ON(1);
4320 err = -EINVAL;
4321 break;
4322
4323 }
4324 return err;
4325}
4326
4327/*
4328 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4329 */
4330static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4331{
4332 int err;
4333 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4334 const struct net_device_ops *ops;
4335
4336 if (!dev)
4337 return -ENODEV;
4338
4339 ops = dev->netdev_ops;
4340
4341 switch (cmd) {
4342 case SIOCSIFFLAGS: /* Set interface flags */
4343 return dev_change_flags(dev, ifr->ifr_flags);
4344
4345 case SIOCSIFMETRIC: /* Set the metric on the interface
4346 (currently unused) */
4347 return -EOPNOTSUPP;
4348
4349 case SIOCSIFMTU: /* Set the MTU of a device */
4350 return dev_set_mtu(dev, ifr->ifr_mtu);
4351
4352 case SIOCSIFHWADDR:
4353 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4354
4355 case SIOCSIFHWBROADCAST:
4356 if (ifr->ifr_hwaddr.sa_family != dev->type)
4357 return -EINVAL;
4358 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4359 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4360 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4361 return 0;
4362
4363 case SIOCSIFMAP:
4364 if (ops->ndo_set_config) {
4365 if (!netif_device_present(dev))
4366 return -ENODEV;
4367 return ops->ndo_set_config(dev, &ifr->ifr_map);
4368 }
4369 return -EOPNOTSUPP;
4370
4371 case SIOCADDMULTI:
4372 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4373 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4374 return -EINVAL;
4375 if (!netif_device_present(dev))
4376 return -ENODEV;
4377 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4378 dev->addr_len, 1);
4379
4380 case SIOCDELMULTI:
4381 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4382 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4383 return -EINVAL;
4384 if (!netif_device_present(dev))
4385 return -ENODEV;
4386 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4387 dev->addr_len, 1);
4388
4389 case SIOCSIFTXQLEN:
4390 if (ifr->ifr_qlen < 0)
4391 return -EINVAL;
4392 dev->tx_queue_len = ifr->ifr_qlen;
4393 return 0;
4394
4395 case SIOCSIFNAME:
4396 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4397 return dev_change_name(dev, ifr->ifr_newname);
4398
4399 /*
4400 * Unknown or private ioctl
4401 */
4402 default:
4403 if ((cmd >= SIOCDEVPRIVATE &&
4404 cmd <= SIOCDEVPRIVATE + 15) ||
4405 cmd == SIOCBONDENSLAVE ||
4406 cmd == SIOCBONDRELEASE ||
4407 cmd == SIOCBONDSETHWADDR ||
4408 cmd == SIOCBONDSLAVEINFOQUERY ||
4409 cmd == SIOCBONDINFOQUERY ||
4410 cmd == SIOCBONDCHANGEACTIVE ||
4411 cmd == SIOCGMIIPHY ||
4412 cmd == SIOCGMIIREG ||
4413 cmd == SIOCSMIIREG ||
4414 cmd == SIOCBRADDIF ||
4415 cmd == SIOCBRDELIF ||
4416 cmd == SIOCSHWTSTAMP ||
4417 cmd == SIOCWANDEV) {
4418 err = -EOPNOTSUPP;
4419 if (ops->ndo_do_ioctl) {
4420 if (netif_device_present(dev))
4421 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4422 else
4423 err = -ENODEV;
4424 }
4425 } else
4426 err = -EINVAL;
4427
4428 }
4429 return err;
4430}
4431
4432/*
4433 * This function handles all "interface"-type I/O control requests. The actual
4434 * 'doing' part of this is dev_ifsioc above.
4435 */
4436
4437/**
4438 * dev_ioctl - network device ioctl
4439 * @net: the applicable net namespace
4440 * @cmd: command to issue
4441 * @arg: pointer to a struct ifreq in user space
4442 *
4443 * Issue ioctl functions to devices. This is normally called by the
4444 * user space syscall interfaces but can sometimes be useful for
4445 * other purposes. The return value is the return from the syscall if
4446 * positive or a negative errno code on error.
4447 */
4448
4449int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4450{
4451 struct ifreq ifr;
4452 int ret;
4453 char *colon;
4454
4455 /* One special case: SIOCGIFCONF takes ifconf argument
4456 and requires shared lock, because it sleeps writing
4457 to user space.
4458 */
4459
4460 if (cmd == SIOCGIFCONF) {
4461 rtnl_lock();
4462 ret = dev_ifconf(net, (char __user *) arg);
4463 rtnl_unlock();
4464 return ret;
4465 }
4466 if (cmd == SIOCGIFNAME)
4467 return dev_ifname(net, (struct ifreq __user *)arg);
4468
4469 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4470 return -EFAULT;
4471
4472 ifr.ifr_name[IFNAMSIZ-1] = 0;
4473
4474 colon = strchr(ifr.ifr_name, ':');
4475 if (colon)
4476 *colon = 0;
4477
4478 /*
4479 * See which interface the caller is talking about.
4480 */
4481
4482 switch (cmd) {
4483 /*
4484 * These ioctl calls:
4485 * - can be done by all.
4486 * - atomic and do not require locking.
4487 * - return a value
4488 */
4489 case SIOCGIFFLAGS:
4490 case SIOCGIFMETRIC:
4491 case SIOCGIFMTU:
4492 case SIOCGIFHWADDR:
4493 case SIOCGIFSLAVE:
4494 case SIOCGIFMAP:
4495 case SIOCGIFINDEX:
4496 case SIOCGIFTXQLEN:
4497 dev_load(net, ifr.ifr_name);
4498 read_lock(&dev_base_lock);
4499 ret = dev_ifsioc_locked(net, &ifr, cmd);
4500 read_unlock(&dev_base_lock);
4501 if (!ret) {
4502 if (colon)
4503 *colon = ':';
4504 if (copy_to_user(arg, &ifr,
4505 sizeof(struct ifreq)))
4506 ret = -EFAULT;
4507 }
4508 return ret;
4509
4510 case SIOCETHTOOL:
4511 dev_load(net, ifr.ifr_name);
4512 rtnl_lock();
4513 ret = dev_ethtool(net, &ifr);
4514 rtnl_unlock();
4515 if (!ret) {
4516 if (colon)
4517 *colon = ':';
4518 if (copy_to_user(arg, &ifr,
4519 sizeof(struct ifreq)))
4520 ret = -EFAULT;
4521 }
4522 return ret;
4523
4524 /*
4525 * These ioctl calls:
4526 * - require superuser power.
4527 * - require strict serialization.
4528 * - return a value
4529 */
4530 case SIOCGMIIPHY:
4531 case SIOCGMIIREG:
4532 case SIOCSIFNAME:
4533 if (!capable(CAP_NET_ADMIN))
4534 return -EPERM;
4535 dev_load(net, ifr.ifr_name);
4536 rtnl_lock();
4537 ret = dev_ifsioc(net, &ifr, cmd);
4538 rtnl_unlock();
4539 if (!ret) {
4540 if (colon)
4541 *colon = ':';
4542 if (copy_to_user(arg, &ifr,
4543 sizeof(struct ifreq)))
4544 ret = -EFAULT;
4545 }
4546 return ret;
4547
4548 /*
4549 * These ioctl calls:
4550 * - require superuser power.
4551 * - require strict serialization.
4552 * - do not return a value
4553 */
4554 case SIOCSIFFLAGS:
4555 case SIOCSIFMETRIC:
4556 case SIOCSIFMTU:
4557 case SIOCSIFMAP:
4558 case SIOCSIFHWADDR:
4559 case SIOCSIFSLAVE:
4560 case SIOCADDMULTI:
4561 case SIOCDELMULTI:
4562 case SIOCSIFHWBROADCAST:
4563 case SIOCSIFTXQLEN:
4564 case SIOCSMIIREG:
4565 case SIOCBONDENSLAVE:
4566 case SIOCBONDRELEASE:
4567 case SIOCBONDSETHWADDR:
4568 case SIOCBONDCHANGEACTIVE:
4569 case SIOCBRADDIF:
4570 case SIOCBRDELIF:
4571 case SIOCSHWTSTAMP:
4572 if (!capable(CAP_NET_ADMIN))
4573 return -EPERM;
4574 /* fall through */
4575 case SIOCBONDSLAVEINFOQUERY:
4576 case SIOCBONDINFOQUERY:
4577 dev_load(net, ifr.ifr_name);
4578 rtnl_lock();
4579 ret = dev_ifsioc(net, &ifr, cmd);
4580 rtnl_unlock();
4581 return ret;
4582
4583 case SIOCGIFMEM:
4584 /* Get the per device memory space. We can add this but
4585 * currently do not support it */
4586 case SIOCSIFMEM:
4587 /* Set the per device memory buffer space.
4588 * Not applicable in our case */
4589 case SIOCSIFLINK:
4590 return -EINVAL;
4591
4592 /*
4593 * Unknown or private ioctl.
4594 */
4595 default:
4596 if (cmd == SIOCWANDEV ||
4597 (cmd >= SIOCDEVPRIVATE &&
4598 cmd <= SIOCDEVPRIVATE + 15)) {
4599 dev_load(net, ifr.ifr_name);
4600 rtnl_lock();
4601 ret = dev_ifsioc(net, &ifr, cmd);
4602 rtnl_unlock();
4603 if (!ret && copy_to_user(arg, &ifr,
4604 sizeof(struct ifreq)))
4605 ret = -EFAULT;
4606 return ret;
4607 }
4608 /* Take care of Wireless Extensions */
4609 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4610 return wext_handle_ioctl(net, &ifr, cmd, arg);
4611 return -EINVAL;
4612 }
4613}
4614
4615
4616/**
4617 * dev_new_index - allocate an ifindex
4618 * @net: the applicable net namespace
4619 *
4620 * Returns a suitable unique value for a new device interface
4621 * number. The caller must hold the rtnl semaphore or the
4622 * dev_base_lock to be sure it remains unique.
4623 */
4624static int dev_new_index(struct net *net)
4625{
4626 static int ifindex;
4627 for (;;) {
4628 if (++ifindex <= 0)
4629 ifindex = 1;
4630 if (!__dev_get_by_index(net, ifindex))
4631 return ifindex;
4632 }
4633}
4634
4635/* Delayed registration/unregisteration */
4636static LIST_HEAD(net_todo_list);
4637
4638static void net_set_todo(struct net_device *dev)
4639{
4640 list_add_tail(&dev->todo_list, &net_todo_list);
4641}
4642
4643static void rollback_registered(struct net_device *dev)
4644{
4645 BUG_ON(dev_boot_phase);
4646 ASSERT_RTNL();
4647
4648 /* Some devices call without registering for initialization unwind. */
4649 if (dev->reg_state == NETREG_UNINITIALIZED) {
4650 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4651 "was registered\n", dev->name, dev);
4652
4653 WARN_ON(1);
4654 return;
4655 }
4656
4657 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4658
4659 /* If device is running, close it first. */
4660 dev_close(dev);
4661
4662 /* And unlink it from device chain. */
4663 unlist_netdevice(dev);
4664
4665 dev->reg_state = NETREG_UNREGISTERING;
4666
4667 synchronize_net();
4668
4669 /* Shutdown queueing discipline. */
4670 dev_shutdown(dev);
4671
4672
4673 /* Notify protocols, that we are about to destroy
4674 this device. They should clean all the things.
4675 */
4676 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4677
4678 /*
4679 * Flush the unicast and multicast chains
4680 */
4681 dev_unicast_flush(dev);
4682 dev_addr_discard(dev);
4683
4684 if (dev->netdev_ops->ndo_uninit)
4685 dev->netdev_ops->ndo_uninit(dev);
4686
4687 /* Notifier chain MUST detach us from master device. */
4688 WARN_ON(dev->master);
4689
4690 /* Remove entries from kobject tree */
4691 netdev_unregister_kobject(dev);
4692
4693 synchronize_net();
4694
4695 dev_put(dev);
4696}
4697
4698static void __netdev_init_queue_locks_one(struct net_device *dev,
4699 struct netdev_queue *dev_queue,
4700 void *_unused)
4701{
4702 spin_lock_init(&dev_queue->_xmit_lock);
4703 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4704 dev_queue->xmit_lock_owner = -1;
4705}
4706
4707static void netdev_init_queue_locks(struct net_device *dev)
4708{
4709 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4710 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4711}
4712
4713unsigned long netdev_fix_features(unsigned long features, const char *name)
4714{
4715 /* Fix illegal SG+CSUM combinations. */
4716 if ((features & NETIF_F_SG) &&
4717 !(features & NETIF_F_ALL_CSUM)) {
4718 if (name)
4719 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4720 "checksum feature.\n", name);
4721 features &= ~NETIF_F_SG;
4722 }
4723
4724 /* TSO requires that SG is present as well. */
4725 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4726 if (name)
4727 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4728 "SG feature.\n", name);
4729 features &= ~NETIF_F_TSO;
4730 }
4731
4732 if (features & NETIF_F_UFO) {
4733 if (!(features & NETIF_F_GEN_CSUM)) {
4734 if (name)
4735 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4736 "since no NETIF_F_HW_CSUM feature.\n",
4737 name);
4738 features &= ~NETIF_F_UFO;
4739 }
4740
4741 if (!(features & NETIF_F_SG)) {
4742 if (name)
4743 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4744 "since no NETIF_F_SG feature.\n", name);
4745 features &= ~NETIF_F_UFO;
4746 }
4747 }
4748
4749 return features;
4750}
4751EXPORT_SYMBOL(netdev_fix_features);
4752
4753/**
4754 * register_netdevice - register a network device
4755 * @dev: device to register
4756 *
4757 * Take a completed network device structure and add it to the kernel
4758 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4759 * chain. 0 is returned on success. A negative errno code is returned
4760 * on a failure to set up the device, or if the name is a duplicate.
4761 *
4762 * Callers must hold the rtnl semaphore. You may want
4763 * register_netdev() instead of this.
4764 *
4765 * BUGS:
4766 * The locking appears insufficient to guarantee two parallel registers
4767 * will not get the same name.
4768 */
4769
4770int register_netdevice(struct net_device *dev)
4771{
4772 struct hlist_head *head;
4773 struct hlist_node *p;
4774 int ret;
4775 struct net *net = dev_net(dev);
4776
4777 BUG_ON(dev_boot_phase);
4778 ASSERT_RTNL();
4779
4780 might_sleep();
4781
4782 /* When net_device's are persistent, this will be fatal. */
4783 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4784 BUG_ON(!net);
4785
4786 spin_lock_init(&dev->addr_list_lock);
4787 netdev_set_addr_lockdep_class(dev);
4788 netdev_init_queue_locks(dev);
4789
4790 dev->iflink = -1;
4791
4792 /* Init, if this function is available */
4793 if (dev->netdev_ops->ndo_init) {
4794 ret = dev->netdev_ops->ndo_init(dev);
4795 if (ret) {
4796 if (ret > 0)
4797 ret = -EIO;
4798 goto out;
4799 }
4800 }
4801
4802 if (!dev_valid_name(dev->name)) {
4803 ret = -EINVAL;
4804 goto err_uninit;
4805 }
4806
4807 dev->ifindex = dev_new_index(net);
4808 if (dev->iflink == -1)
4809 dev->iflink = dev->ifindex;
4810
4811 /* Check for existence of name */
4812 head = dev_name_hash(net, dev->name);
4813 hlist_for_each(p, head) {
4814 struct net_device *d
4815 = hlist_entry(p, struct net_device, name_hlist);
4816 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4817 ret = -EEXIST;
4818 goto err_uninit;
4819 }
4820 }
4821
4822 /* Fix illegal checksum combinations */
4823 if ((dev->features & NETIF_F_HW_CSUM) &&
4824 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4825 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4826 dev->name);
4827 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4828 }
4829
4830 if ((dev->features & NETIF_F_NO_CSUM) &&
4831 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4832 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4833 dev->name);
4834 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4835 }
4836
4837 dev->features = netdev_fix_features(dev->features, dev->name);
4838
4839 /* Enable software GSO if SG is supported. */
4840 if (dev->features & NETIF_F_SG)
4841 dev->features |= NETIF_F_GSO;
4842
4843 netdev_initialize_kobject(dev);
4844
4845 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4846 ret = notifier_to_errno(ret);
4847 if (ret)
4848 goto err_uninit;
4849
4850 ret = netdev_register_kobject(dev);
4851 if (ret)
4852 goto err_uninit;
4853 dev->reg_state = NETREG_REGISTERED;
4854
4855 /*
4856 * Default initial state at registry is that the
4857 * device is present.
4858 */
4859
4860 set_bit(__LINK_STATE_PRESENT, &dev->state);
4861
4862 dev_init_scheduler(dev);
4863 dev_hold(dev);
4864 list_netdevice(dev);
4865
4866 /* Notify protocols, that a new device appeared. */
4867 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4868 ret = notifier_to_errno(ret);
4869 if (ret) {
4870 rollback_registered(dev);
4871 dev->reg_state = NETREG_UNREGISTERED;
4872 }
4873
4874out:
4875 return ret;
4876
4877err_uninit:
4878 if (dev->netdev_ops->ndo_uninit)
4879 dev->netdev_ops->ndo_uninit(dev);
4880 goto out;
4881}
4882EXPORT_SYMBOL(register_netdevice);
4883
4884/**
4885 * init_dummy_netdev - init a dummy network device for NAPI
4886 * @dev: device to init
4887 *
4888 * This takes a network device structure and initialize the minimum
4889 * amount of fields so it can be used to schedule NAPI polls without
4890 * registering a full blown interface. This is to be used by drivers
4891 * that need to tie several hardware interfaces to a single NAPI
4892 * poll scheduler due to HW limitations.
4893 */
4894int init_dummy_netdev(struct net_device *dev)
4895{
4896 /* Clear everything. Note we don't initialize spinlocks
4897 * are they aren't supposed to be taken by any of the
4898 * NAPI code and this dummy netdev is supposed to be
4899 * only ever used for NAPI polls
4900 */
4901 memset(dev, 0, sizeof(struct net_device));
4902
4903 /* make sure we BUG if trying to hit standard
4904 * register/unregister code path
4905 */
4906 dev->reg_state = NETREG_DUMMY;
4907
4908 /* initialize the ref count */
4909 atomic_set(&dev->refcnt, 1);
4910
4911 /* NAPI wants this */
4912 INIT_LIST_HEAD(&dev->napi_list);
4913
4914 /* a dummy interface is started by default */
4915 set_bit(__LINK_STATE_PRESENT, &dev->state);
4916 set_bit(__LINK_STATE_START, &dev->state);
4917
4918 return 0;
4919}
4920EXPORT_SYMBOL_GPL(init_dummy_netdev);
4921
4922
4923/**
4924 * register_netdev - register a network device
4925 * @dev: device to register
4926 *
4927 * Take a completed network device structure and add it to the kernel
4928 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4929 * chain. 0 is returned on success. A negative errno code is returned
4930 * on a failure to set up the device, or if the name is a duplicate.
4931 *
4932 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4933 * and expands the device name if you passed a format string to
4934 * alloc_netdev.
4935 */
4936int register_netdev(struct net_device *dev)
4937{
4938 int err;
4939
4940 rtnl_lock();
4941
4942 /*
4943 * If the name is a format string the caller wants us to do a
4944 * name allocation.
4945 */
4946 if (strchr(dev->name, '%')) {
4947 err = dev_alloc_name(dev, dev->name);
4948 if (err < 0)
4949 goto out;
4950 }
4951
4952 err = register_netdevice(dev);
4953out:
4954 rtnl_unlock();
4955 return err;
4956}
4957EXPORT_SYMBOL(register_netdev);
4958
4959/*
4960 * netdev_wait_allrefs - wait until all references are gone.
4961 *
4962 * This is called when unregistering network devices.
4963 *
4964 * Any protocol or device that holds a reference should register
4965 * for netdevice notification, and cleanup and put back the
4966 * reference if they receive an UNREGISTER event.
4967 * We can get stuck here if buggy protocols don't correctly
4968 * call dev_put.
4969 */
4970static void netdev_wait_allrefs(struct net_device *dev)
4971{
4972 unsigned long rebroadcast_time, warning_time;
4973
4974 rebroadcast_time = warning_time = jiffies;
4975 while (atomic_read(&dev->refcnt) != 0) {
4976 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4977 rtnl_lock();
4978
4979 /* Rebroadcast unregister notification */
4980 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4981
4982 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4983 &dev->state)) {
4984 /* We must not have linkwatch events
4985 * pending on unregister. If this
4986 * happens, we simply run the queue
4987 * unscheduled, resulting in a noop
4988 * for this device.
4989 */
4990 linkwatch_run_queue();
4991 }
4992
4993 __rtnl_unlock();
4994
4995 rebroadcast_time = jiffies;
4996 }
4997
4998 msleep(250);
4999
5000 if (time_after(jiffies, warning_time + 10 * HZ)) {
5001 printk(KERN_EMERG "unregister_netdevice: "
5002 "waiting for %s to become free. Usage "
5003 "count = %d\n",
5004 dev->name, atomic_read(&dev->refcnt));
5005 warning_time = jiffies;
5006 }
5007 }
5008}
5009
5010/* The sequence is:
5011 *
5012 * rtnl_lock();
5013 * ...
5014 * register_netdevice(x1);
5015 * register_netdevice(x2);
5016 * ...
5017 * unregister_netdevice(y1);
5018 * unregister_netdevice(y2);
5019 * ...
5020 * rtnl_unlock();
5021 * free_netdev(y1);
5022 * free_netdev(y2);
5023 *
5024 * We are invoked by rtnl_unlock().
5025 * This allows us to deal with problems:
5026 * 1) We can delete sysfs objects which invoke hotplug
5027 * without deadlocking with linkwatch via keventd.
5028 * 2) Since we run with the RTNL semaphore not held, we can sleep
5029 * safely in order to wait for the netdev refcnt to drop to zero.
5030 *
5031 * We must not return until all unregister events added during
5032 * the interval the lock was held have been completed.
5033 */
5034void netdev_run_todo(void)
5035{
5036 struct list_head list;
5037
5038 /* Snapshot list, allow later requests */
5039 list_replace_init(&net_todo_list, &list);
5040
5041 __rtnl_unlock();
5042
5043 while (!list_empty(&list)) {
5044 struct net_device *dev
5045 = list_entry(list.next, struct net_device, todo_list);
5046 list_del(&dev->todo_list);
5047
5048 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5049 printk(KERN_ERR "network todo '%s' but state %d\n",
5050 dev->name, dev->reg_state);
5051 dump_stack();
5052 continue;
5053 }
5054
5055 dev->reg_state = NETREG_UNREGISTERED;
5056
5057 on_each_cpu(flush_backlog, dev, 1);
5058
5059 netdev_wait_allrefs(dev);
5060
5061 /* paranoia */
5062 BUG_ON(atomic_read(&dev->refcnt));
5063 WARN_ON(dev->ip_ptr);
5064 WARN_ON(dev->ip6_ptr);
5065 WARN_ON(dev->dn_ptr);
5066
5067 if (dev->destructor)
5068 dev->destructor(dev);
5069
5070 /* Free network device */
5071 kobject_put(&dev->dev.kobj);
5072 }
5073}
5074
5075/**
5076 * dev_get_stats - get network device statistics
5077 * @dev: device to get statistics from
5078 *
5079 * Get network statistics from device. The device driver may provide
5080 * its own method by setting dev->netdev_ops->get_stats; otherwise
5081 * the internal statistics structure is used.
5082 */
5083const struct net_device_stats *dev_get_stats(struct net_device *dev)
5084{
5085 const struct net_device_ops *ops = dev->netdev_ops;
5086
5087 if (ops->ndo_get_stats)
5088 return ops->ndo_get_stats(dev);
5089 else {
5090 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5091 struct net_device_stats *stats = &dev->stats;
5092 unsigned int i;
5093 struct netdev_queue *txq;
5094
5095 for (i = 0; i < dev->num_tx_queues; i++) {
5096 txq = netdev_get_tx_queue(dev, i);
5097 tx_bytes += txq->tx_bytes;
5098 tx_packets += txq->tx_packets;
5099 tx_dropped += txq->tx_dropped;
5100 }
5101 if (tx_bytes || tx_packets || tx_dropped) {
5102 stats->tx_bytes = tx_bytes;
5103 stats->tx_packets = tx_packets;
5104 stats->tx_dropped = tx_dropped;
5105 }
5106 return stats;
5107 }
5108}
5109EXPORT_SYMBOL(dev_get_stats);
5110
5111static void netdev_init_one_queue(struct net_device *dev,
5112 struct netdev_queue *queue,
5113 void *_unused)
5114{
5115 queue->dev = dev;
5116}
5117
5118static void netdev_init_queues(struct net_device *dev)
5119{
5120 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5121 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5122 spin_lock_init(&dev->tx_global_lock);
5123}
5124
5125/**
5126 * alloc_netdev_mq - allocate network device
5127 * @sizeof_priv: size of private data to allocate space for
5128 * @name: device name format string
5129 * @setup: callback to initialize device
5130 * @queue_count: the number of subqueues to allocate
5131 *
5132 * Allocates a struct net_device with private data area for driver use
5133 * and performs basic initialization. Also allocates subquue structs
5134 * for each queue on the device at the end of the netdevice.
5135 */
5136struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5137 void (*setup)(struct net_device *), unsigned int queue_count)
5138{
5139 struct netdev_queue *tx;
5140 struct net_device *dev;
5141 size_t alloc_size;
5142 struct net_device *p;
5143
5144 BUG_ON(strlen(name) >= sizeof(dev->name));
5145
5146 alloc_size = sizeof(struct net_device);
5147 if (sizeof_priv) {
5148 /* ensure 32-byte alignment of private area */
5149 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5150 alloc_size += sizeof_priv;
5151 }
5152 /* ensure 32-byte alignment of whole construct */
5153 alloc_size += NETDEV_ALIGN - 1;
5154
5155 p = kzalloc(alloc_size, GFP_KERNEL);
5156 if (!p) {
5157 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5158 return NULL;
5159 }
5160
5161 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5162 if (!tx) {
5163 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5164 "tx qdiscs.\n");
5165 goto free_p;
5166 }
5167
5168 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5169 dev->padded = (char *)dev - (char *)p;
5170
5171 if (dev_addr_init(dev))
5172 goto free_tx;
5173
5174 dev_unicast_init(dev);
5175
5176 dev_net_set(dev, &init_net);
5177
5178 dev->_tx = tx;
5179 dev->num_tx_queues = queue_count;
5180 dev->real_num_tx_queues = queue_count;
5181
5182 dev->gso_max_size = GSO_MAX_SIZE;
5183
5184 netdev_init_queues(dev);
5185
5186 INIT_LIST_HEAD(&dev->napi_list);
5187 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5188 setup(dev);
5189 strcpy(dev->name, name);
5190 return dev;
5191
5192free_tx:
5193 kfree(tx);
5194
5195free_p:
5196 kfree(p);
5197 return NULL;
5198}
5199EXPORT_SYMBOL(alloc_netdev_mq);
5200
5201/**
5202 * free_netdev - free network device
5203 * @dev: device
5204 *
5205 * This function does the last stage of destroying an allocated device
5206 * interface. The reference to the device object is released.
5207 * If this is the last reference then it will be freed.
5208 */
5209void free_netdev(struct net_device *dev)
5210{
5211 struct napi_struct *p, *n;
5212
5213 release_net(dev_net(dev));
5214
5215 kfree(dev->_tx);
5216
5217 /* Flush device addresses */
5218 dev_addr_flush(dev);
5219
5220 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5221 netif_napi_del(p);
5222
5223 /* Compatibility with error handling in drivers */
5224 if (dev->reg_state == NETREG_UNINITIALIZED) {
5225 kfree((char *)dev - dev->padded);
5226 return;
5227 }
5228
5229 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5230 dev->reg_state = NETREG_RELEASED;
5231
5232 /* will free via device release */
5233 put_device(&dev->dev);
5234}
5235EXPORT_SYMBOL(free_netdev);
5236
5237/**
5238 * synchronize_net - Synchronize with packet receive processing
5239 *
5240 * Wait for packets currently being received to be done.
5241 * Does not block later packets from starting.
5242 */
5243void synchronize_net(void)
5244{
5245 might_sleep();
5246 synchronize_rcu();
5247}
5248EXPORT_SYMBOL(synchronize_net);
5249
5250/**
5251 * unregister_netdevice - remove device from the kernel
5252 * @dev: device
5253 *
5254 * This function shuts down a device interface and removes it
5255 * from the kernel tables.
5256 *
5257 * Callers must hold the rtnl semaphore. You may want
5258 * unregister_netdev() instead of this.
5259 */
5260
5261void unregister_netdevice(struct net_device *dev)
5262{
5263 ASSERT_RTNL();
5264
5265 rollback_registered(dev);
5266 /* Finish processing unregister after unlock */
5267 net_set_todo(dev);
5268}
5269EXPORT_SYMBOL(unregister_netdevice);
5270
5271/**
5272 * unregister_netdev - remove device from the kernel
5273 * @dev: device
5274 *
5275 * This function shuts down a device interface and removes it
5276 * from the kernel tables.
5277 *
5278 * This is just a wrapper for unregister_netdevice that takes
5279 * the rtnl semaphore. In general you want to use this and not
5280 * unregister_netdevice.
5281 */
5282void unregister_netdev(struct net_device *dev)
5283{
5284 rtnl_lock();
5285 unregister_netdevice(dev);
5286 rtnl_unlock();
5287}
5288EXPORT_SYMBOL(unregister_netdev);
5289
5290/**
5291 * dev_change_net_namespace - move device to different nethost namespace
5292 * @dev: device
5293 * @net: network namespace
5294 * @pat: If not NULL name pattern to try if the current device name
5295 * is already taken in the destination network namespace.
5296 *
5297 * This function shuts down a device interface and moves it
5298 * to a new network namespace. On success 0 is returned, on
5299 * a failure a netagive errno code is returned.
5300 *
5301 * Callers must hold the rtnl semaphore.
5302 */
5303
5304int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5305{
5306 char buf[IFNAMSIZ];
5307 const char *destname;
5308 int err;
5309
5310 ASSERT_RTNL();
5311
5312 /* Don't allow namespace local devices to be moved. */
5313 err = -EINVAL;
5314 if (dev->features & NETIF_F_NETNS_LOCAL)
5315 goto out;
5316
5317#ifdef CONFIG_SYSFS
5318 /* Don't allow real devices to be moved when sysfs
5319 * is enabled.
5320 */
5321 err = -EINVAL;
5322 if (dev->dev.parent)
5323 goto out;
5324#endif
5325
5326 /* Ensure the device has been registrered */
5327 err = -EINVAL;
5328 if (dev->reg_state != NETREG_REGISTERED)
5329 goto out;
5330
5331 /* Get out if there is nothing todo */
5332 err = 0;
5333 if (net_eq(dev_net(dev), net))
5334 goto out;
5335
5336 /* Pick the destination device name, and ensure
5337 * we can use it in the destination network namespace.
5338 */
5339 err = -EEXIST;
5340 destname = dev->name;
5341 if (__dev_get_by_name(net, destname)) {
5342 /* We get here if we can't use the current device name */
5343 if (!pat)
5344 goto out;
5345 if (!dev_valid_name(pat))
5346 goto out;
5347 if (strchr(pat, '%')) {
5348 if (__dev_alloc_name(net, pat, buf) < 0)
5349 goto out;
5350 destname = buf;
5351 } else
5352 destname = pat;
5353 if (__dev_get_by_name(net, destname))
5354 goto out;
5355 }
5356
5357 /*
5358 * And now a mini version of register_netdevice unregister_netdevice.
5359 */
5360
5361 /* If device is running close it first. */
5362 dev_close(dev);
5363
5364 /* And unlink it from device chain */
5365 err = -ENODEV;
5366 unlist_netdevice(dev);
5367
5368 synchronize_net();
5369
5370 /* Shutdown queueing discipline. */
5371 dev_shutdown(dev);
5372
5373 /* Notify protocols, that we are about to destroy
5374 this device. They should clean all the things.
5375 */
5376 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5377
5378 /*
5379 * Flush the unicast and multicast chains
5380 */
5381 dev_unicast_flush(dev);
5382 dev_addr_discard(dev);
5383
5384 netdev_unregister_kobject(dev);
5385
5386 /* Actually switch the network namespace */
5387 dev_net_set(dev, net);
5388
5389 /* Assign the new device name */
5390 if (destname != dev->name)
5391 strcpy(dev->name, destname);
5392
5393 /* If there is an ifindex conflict assign a new one */
5394 if (__dev_get_by_index(net, dev->ifindex)) {
5395 int iflink = (dev->iflink == dev->ifindex);
5396 dev->ifindex = dev_new_index(net);
5397 if (iflink)
5398 dev->iflink = dev->ifindex;
5399 }
5400
5401 /* Fixup kobjects */
5402 err = netdev_register_kobject(dev);
5403 WARN_ON(err);
5404
5405 /* Add the device back in the hashes */
5406 list_netdevice(dev);
5407
5408 /* Notify protocols, that a new device appeared. */
5409 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5410
5411 synchronize_net();
5412 err = 0;
5413out:
5414 return err;
5415}
5416EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5417
5418static int dev_cpu_callback(struct notifier_block *nfb,
5419 unsigned long action,
5420 void *ocpu)
5421{
5422 struct sk_buff **list_skb;
5423 struct Qdisc **list_net;
5424 struct sk_buff *skb;
5425 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5426 struct softnet_data *sd, *oldsd;
5427
5428 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5429 return NOTIFY_OK;
5430
5431 local_irq_disable();
5432 cpu = smp_processor_id();
5433 sd = &per_cpu(softnet_data, cpu);
5434 oldsd = &per_cpu(softnet_data, oldcpu);
5435
5436 /* Find end of our completion_queue. */
5437 list_skb = &sd->completion_queue;
5438 while (*list_skb)
5439 list_skb = &(*list_skb)->next;
5440 /* Append completion queue from offline CPU. */
5441 *list_skb = oldsd->completion_queue;
5442 oldsd->completion_queue = NULL;
5443
5444 /* Find end of our output_queue. */
5445 list_net = &sd->output_queue;
5446 while (*list_net)
5447 list_net = &(*list_net)->next_sched;
5448 /* Append output queue from offline CPU. */
5449 *list_net = oldsd->output_queue;
5450 oldsd->output_queue = NULL;
5451
5452 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5453 local_irq_enable();
5454
5455 /* Process offline CPU's input_pkt_queue */
5456 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5457 netif_rx(skb);
5458
5459 return NOTIFY_OK;
5460}
5461
5462
5463/**
5464 * netdev_increment_features - increment feature set by one
5465 * @all: current feature set
5466 * @one: new feature set
5467 * @mask: mask feature set
5468 *
5469 * Computes a new feature set after adding a device with feature set
5470 * @one to the master device with current feature set @all. Will not
5471 * enable anything that is off in @mask. Returns the new feature set.
5472 */
5473unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5474 unsigned long mask)
5475{
5476 /* If device needs checksumming, downgrade to it. */
5477 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5478 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5479 else if (mask & NETIF_F_ALL_CSUM) {
5480 /* If one device supports v4/v6 checksumming, set for all. */
5481 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5482 !(all & NETIF_F_GEN_CSUM)) {
5483 all &= ~NETIF_F_ALL_CSUM;
5484 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5485 }
5486
5487 /* If one device supports hw checksumming, set for all. */
5488 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5489 all &= ~NETIF_F_ALL_CSUM;
5490 all |= NETIF_F_HW_CSUM;
5491 }
5492 }
5493
5494 one |= NETIF_F_ALL_CSUM;
5495
5496 one |= all & NETIF_F_ONE_FOR_ALL;
5497 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5498 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5499
5500 return all;
5501}
5502EXPORT_SYMBOL(netdev_increment_features);
5503
5504static struct hlist_head *netdev_create_hash(void)
5505{
5506 int i;
5507 struct hlist_head *hash;
5508
5509 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5510 if (hash != NULL)
5511 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5512 INIT_HLIST_HEAD(&hash[i]);
5513
5514 return hash;
5515}
5516
5517/* Initialize per network namespace state */
5518static int __net_init netdev_init(struct net *net)
5519{
5520 INIT_LIST_HEAD(&net->dev_base_head);
5521
5522 net->dev_name_head = netdev_create_hash();
5523 if (net->dev_name_head == NULL)
5524 goto err_name;
5525
5526 net->dev_index_head = netdev_create_hash();
5527 if (net->dev_index_head == NULL)
5528 goto err_idx;
5529
5530 return 0;
5531
5532err_idx:
5533 kfree(net->dev_name_head);
5534err_name:
5535 return -ENOMEM;
5536}
5537
5538/**
5539 * netdev_drivername - network driver for the device
5540 * @dev: network device
5541 * @buffer: buffer for resulting name
5542 * @len: size of buffer
5543 *
5544 * Determine network driver for device.
5545 */
5546char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5547{
5548 const struct device_driver *driver;
5549 const struct device *parent;
5550
5551 if (len <= 0 || !buffer)
5552 return buffer;
5553 buffer[0] = 0;
5554
5555 parent = dev->dev.parent;
5556
5557 if (!parent)
5558 return buffer;
5559
5560 driver = parent->driver;
5561 if (driver && driver->name)
5562 strlcpy(buffer, driver->name, len);
5563 return buffer;
5564}
5565
5566static void __net_exit netdev_exit(struct net *net)
5567{
5568 kfree(net->dev_name_head);
5569 kfree(net->dev_index_head);
5570}
5571
5572static struct pernet_operations __net_initdata netdev_net_ops = {
5573 .init = netdev_init,
5574 .exit = netdev_exit,
5575};
5576
5577static void __net_exit default_device_exit(struct net *net)
5578{
5579 struct net_device *dev;
5580 /*
5581 * Push all migratable of the network devices back to the
5582 * initial network namespace
5583 */
5584 rtnl_lock();
5585restart:
5586 for_each_netdev(net, dev) {
5587 int err;
5588 char fb_name[IFNAMSIZ];
5589
5590 /* Ignore unmoveable devices (i.e. loopback) */
5591 if (dev->features & NETIF_F_NETNS_LOCAL)
5592 continue;
5593
5594 /* Delete virtual devices */
5595 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5596 dev->rtnl_link_ops->dellink(dev);
5597 goto restart;
5598 }
5599
5600 /* Push remaing network devices to init_net */
5601 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5602 err = dev_change_net_namespace(dev, &init_net, fb_name);
5603 if (err) {
5604 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5605 __func__, dev->name, err);
5606 BUG();
5607 }
5608 goto restart;
5609 }
5610 rtnl_unlock();
5611}
5612
5613static struct pernet_operations __net_initdata default_device_ops = {
5614 .exit = default_device_exit,
5615};
5616
5617/*
5618 * Initialize the DEV module. At boot time this walks the device list and
5619 * unhooks any devices that fail to initialise (normally hardware not
5620 * present) and leaves us with a valid list of present and active devices.
5621 *
5622 */
5623
5624/*
5625 * This is called single threaded during boot, so no need
5626 * to take the rtnl semaphore.
5627 */
5628static int __init net_dev_init(void)
5629{
5630 int i, rc = -ENOMEM;
5631
5632 BUG_ON(!dev_boot_phase);
5633
5634 if (dev_proc_init())
5635 goto out;
5636
5637 if (netdev_kobject_init())
5638 goto out;
5639
5640 INIT_LIST_HEAD(&ptype_all);
5641 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5642 INIT_LIST_HEAD(&ptype_base[i]);
5643
5644 if (register_pernet_subsys(&netdev_net_ops))
5645 goto out;
5646
5647 /*
5648 * Initialise the packet receive queues.
5649 */
5650
5651 for_each_possible_cpu(i) {
5652 struct softnet_data *queue;
5653
5654 queue = &per_cpu(softnet_data, i);
5655 skb_queue_head_init(&queue->input_pkt_queue);
5656 queue->completion_queue = NULL;
5657 INIT_LIST_HEAD(&queue->poll_list);
5658
5659 queue->backlog.poll = process_backlog;
5660 queue->backlog.weight = weight_p;
5661 queue->backlog.gro_list = NULL;
5662 queue->backlog.gro_count = 0;
5663 }
5664
5665 dev_boot_phase = 0;
5666
5667 /* The loopback device is special if any other network devices
5668 * is present in a network namespace the loopback device must
5669 * be present. Since we now dynamically allocate and free the
5670 * loopback device ensure this invariant is maintained by
5671 * keeping the loopback device as the first device on the
5672 * list of network devices. Ensuring the loopback devices
5673 * is the first device that appears and the last network device
5674 * that disappears.
5675 */
5676 if (register_pernet_device(&loopback_net_ops))
5677 goto out;
5678
5679 if (register_pernet_device(&default_device_ops))
5680 goto out;
5681
5682 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5683 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5684
5685 hotcpu_notifier(dev_cpu_callback, 0);
5686 dst_init();
5687 dev_mcast_init();
5688 rc = 0;
5689out:
5690 return rc;
5691}
5692
5693subsys_initcall(net_dev_init);
5694
5695static int __init initialize_hashrnd(void)
5696{
5697 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5698 return 0;
5699}
5700
5701late_initcall_sync(initialize_hashrnd);
5702