]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
NET:KS8695: add API for get rx interrupt bit
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122#include <linux/if_vlan.h>
123#include <linux/ip.h>
124#include <net/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130
131#include "net-sysfs.h"
132
133/* Instead of increasing this, you should create a hash table. */
134#define MAX_GRO_SKBS 8
135
136/* This should be increased if a protocol with a bigger head is added. */
137#define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139/*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167#define PTYPE_HASH_SIZE (16)
168#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170static DEFINE_SPINLOCK(ptype_lock);
171static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172static struct list_head ptype_all __read_mostly; /* Taps */
173
174/*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193DEFINE_RWLOCK(dev_base_lock);
194EXPORT_SYMBOL(dev_base_lock);
195
196static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197{
198 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199 return &net->dev_name_head[hash & (NETDEV_HASHENTRIES - 1)];
200}
201
202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203{
204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205}
206
207/* Device list insertion */
208static int list_netdevice(struct net_device *dev)
209{
210 struct net *net = dev_net(dev);
211
212 ASSERT_RTNL();
213
214 write_lock_bh(&dev_base_lock);
215 list_add_tail(&dev->dev_list, &net->dev_base_head);
216 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
217 hlist_add_head_rcu(&dev->index_hlist,
218 dev_index_hash(net, dev->ifindex));
219 write_unlock_bh(&dev_base_lock);
220 return 0;
221}
222
223/* Device list removal
224 * caller must respect a RCU grace period before freeing/reusing dev
225 */
226static void unlist_netdevice(struct net_device *dev)
227{
228 ASSERT_RTNL();
229
230 /* Unlink dev from the device chain */
231 write_lock_bh(&dev_base_lock);
232 list_del(&dev->dev_list);
233 hlist_del(&dev->name_hlist);
234 hlist_del_rcu(&dev->index_hlist);
235 write_unlock_bh(&dev_base_lock);
236}
237
238/*
239 * Our notifier list
240 */
241
242static RAW_NOTIFIER_HEAD(netdev_chain);
243
244/*
245 * Device drivers call our routines to queue packets here. We empty the
246 * queue in the local softnet handler.
247 */
248
249DEFINE_PER_CPU(struct softnet_data, softnet_data);
250EXPORT_PER_CPU_SYMBOL(softnet_data);
251
252#ifdef CONFIG_LOCKDEP
253/*
254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
255 * according to dev->type
256 */
257static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
273 ARPHRD_VOID, ARPHRD_NONE};
274
275static const char *const netdev_lock_name[] =
276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
291 "_xmit_VOID", "_xmit_NONE"};
292
293static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
295
296static inline unsigned short netdev_lock_pos(unsigned short dev_type)
297{
298 int i;
299
300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
301 if (netdev_lock_type[i] == dev_type)
302 return i;
303 /* the last key is used by default */
304 return ARRAY_SIZE(netdev_lock_type) - 1;
305}
306
307static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
308 unsigned short dev_type)
309{
310 int i;
311
312 i = netdev_lock_pos(dev_type);
313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
314 netdev_lock_name[i]);
315}
316
317static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
318{
319 int i;
320
321 i = netdev_lock_pos(dev->type);
322 lockdep_set_class_and_name(&dev->addr_list_lock,
323 &netdev_addr_lock_key[i],
324 netdev_lock_name[i]);
325}
326#else
327static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 unsigned short dev_type)
329{
330}
331static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332{
333}
334#endif
335
336/*******************************************************************************
337
338 Protocol management and registration routines
339
340*******************************************************************************/
341
342/*
343 * Add a protocol ID to the list. Now that the input handler is
344 * smarter we can dispense with all the messy stuff that used to be
345 * here.
346 *
347 * BEWARE!!! Protocol handlers, mangling input packets,
348 * MUST BE last in hash buckets and checking protocol handlers
349 * MUST start from promiscuous ptype_all chain in net_bh.
350 * It is true now, do not change it.
351 * Explanation follows: if protocol handler, mangling packet, will
352 * be the first on list, it is not able to sense, that packet
353 * is cloned and should be copied-on-write, so that it will
354 * change it and subsequent readers will get broken packet.
355 * --ANK (980803)
356 */
357
358/**
359 * dev_add_pack - add packet handler
360 * @pt: packet type declaration
361 *
362 * Add a protocol handler to the networking stack. The passed &packet_type
363 * is linked into kernel lists and may not be freed until it has been
364 * removed from the kernel lists.
365 *
366 * This call does not sleep therefore it can not
367 * guarantee all CPU's that are in middle of receiving packets
368 * will see the new packet type (until the next received packet).
369 */
370
371void dev_add_pack(struct packet_type *pt)
372{
373 int hash;
374
375 spin_lock_bh(&ptype_lock);
376 if (pt->type == htons(ETH_P_ALL))
377 list_add_rcu(&pt->list, &ptype_all);
378 else {
379 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
380 list_add_rcu(&pt->list, &ptype_base[hash]);
381 }
382 spin_unlock_bh(&ptype_lock);
383}
384EXPORT_SYMBOL(dev_add_pack);
385
386/**
387 * __dev_remove_pack - remove packet handler
388 * @pt: packet type declaration
389 *
390 * Remove a protocol handler that was previously added to the kernel
391 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
392 * from the kernel lists and can be freed or reused once this function
393 * returns.
394 *
395 * The packet type might still be in use by receivers
396 * and must not be freed until after all the CPU's have gone
397 * through a quiescent state.
398 */
399void __dev_remove_pack(struct packet_type *pt)
400{
401 struct list_head *head;
402 struct packet_type *pt1;
403
404 spin_lock_bh(&ptype_lock);
405
406 if (pt->type == htons(ETH_P_ALL))
407 head = &ptype_all;
408 else
409 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
410
411 list_for_each_entry(pt1, head, list) {
412 if (pt == pt1) {
413 list_del_rcu(&pt->list);
414 goto out;
415 }
416 }
417
418 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
419out:
420 spin_unlock_bh(&ptype_lock);
421}
422EXPORT_SYMBOL(__dev_remove_pack);
423
424/**
425 * dev_remove_pack - remove packet handler
426 * @pt: packet type declaration
427 *
428 * Remove a protocol handler that was previously added to the kernel
429 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
430 * from the kernel lists and can be freed or reused once this function
431 * returns.
432 *
433 * This call sleeps to guarantee that no CPU is looking at the packet
434 * type after return.
435 */
436void dev_remove_pack(struct packet_type *pt)
437{
438 __dev_remove_pack(pt);
439
440 synchronize_net();
441}
442EXPORT_SYMBOL(dev_remove_pack);
443
444/******************************************************************************
445
446 Device Boot-time Settings Routines
447
448*******************************************************************************/
449
450/* Boot time configuration table */
451static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
452
453/**
454 * netdev_boot_setup_add - add new setup entry
455 * @name: name of the device
456 * @map: configured settings for the device
457 *
458 * Adds new setup entry to the dev_boot_setup list. The function
459 * returns 0 on error and 1 on success. This is a generic routine to
460 * all netdevices.
461 */
462static int netdev_boot_setup_add(char *name, struct ifmap *map)
463{
464 struct netdev_boot_setup *s;
465 int i;
466
467 s = dev_boot_setup;
468 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
469 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
470 memset(s[i].name, 0, sizeof(s[i].name));
471 strlcpy(s[i].name, name, IFNAMSIZ);
472 memcpy(&s[i].map, map, sizeof(s[i].map));
473 break;
474 }
475 }
476
477 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
478}
479
480/**
481 * netdev_boot_setup_check - check boot time settings
482 * @dev: the netdevice
483 *
484 * Check boot time settings for the device.
485 * The found settings are set for the device to be used
486 * later in the device probing.
487 * Returns 0 if no settings found, 1 if they are.
488 */
489int netdev_boot_setup_check(struct net_device *dev)
490{
491 struct netdev_boot_setup *s = dev_boot_setup;
492 int i;
493
494 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
495 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
496 !strcmp(dev->name, s[i].name)) {
497 dev->irq = s[i].map.irq;
498 dev->base_addr = s[i].map.base_addr;
499 dev->mem_start = s[i].map.mem_start;
500 dev->mem_end = s[i].map.mem_end;
501 return 1;
502 }
503 }
504 return 0;
505}
506EXPORT_SYMBOL(netdev_boot_setup_check);
507
508
509/**
510 * netdev_boot_base - get address from boot time settings
511 * @prefix: prefix for network device
512 * @unit: id for network device
513 *
514 * Check boot time settings for the base address of device.
515 * The found settings are set for the device to be used
516 * later in the device probing.
517 * Returns 0 if no settings found.
518 */
519unsigned long netdev_boot_base(const char *prefix, int unit)
520{
521 const struct netdev_boot_setup *s = dev_boot_setup;
522 char name[IFNAMSIZ];
523 int i;
524
525 sprintf(name, "%s%d", prefix, unit);
526
527 /*
528 * If device already registered then return base of 1
529 * to indicate not to probe for this interface
530 */
531 if (__dev_get_by_name(&init_net, name))
532 return 1;
533
534 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
535 if (!strcmp(name, s[i].name))
536 return s[i].map.base_addr;
537 return 0;
538}
539
540/*
541 * Saves at boot time configured settings for any netdevice.
542 */
543int __init netdev_boot_setup(char *str)
544{
545 int ints[5];
546 struct ifmap map;
547
548 str = get_options(str, ARRAY_SIZE(ints), ints);
549 if (!str || !*str)
550 return 0;
551
552 /* Save settings */
553 memset(&map, 0, sizeof(map));
554 if (ints[0] > 0)
555 map.irq = ints[1];
556 if (ints[0] > 1)
557 map.base_addr = ints[2];
558 if (ints[0] > 2)
559 map.mem_start = ints[3];
560 if (ints[0] > 3)
561 map.mem_end = ints[4];
562
563 /* Add new entry to the list */
564 return netdev_boot_setup_add(str, &map);
565}
566
567__setup("netdev=", netdev_boot_setup);
568
569/*******************************************************************************
570
571 Device Interface Subroutines
572
573*******************************************************************************/
574
575/**
576 * __dev_get_by_name - find a device by its name
577 * @net: the applicable net namespace
578 * @name: name to find
579 *
580 * Find an interface by name. Must be called under RTNL semaphore
581 * or @dev_base_lock. If the name is found a pointer to the device
582 * is returned. If the name is not found then %NULL is returned. The
583 * reference counters are not incremented so the caller must be
584 * careful with locks.
585 */
586
587struct net_device *__dev_get_by_name(struct net *net, const char *name)
588{
589 struct hlist_node *p;
590 struct net_device *dev;
591 struct hlist_head *head = dev_name_hash(net, name);
592
593 hlist_for_each_entry(dev, p, head, name_hlist)
594 if (!strncmp(dev->name, name, IFNAMSIZ))
595 return dev;
596
597 return NULL;
598}
599EXPORT_SYMBOL(__dev_get_by_name);
600
601/**
602 * dev_get_by_name - find a device by its name
603 * @net: the applicable net namespace
604 * @name: name to find
605 *
606 * Find an interface by name. This can be called from any
607 * context and does its own locking. The returned handle has
608 * the usage count incremented and the caller must use dev_put() to
609 * release it when it is no longer needed. %NULL is returned if no
610 * matching device is found.
611 */
612
613struct net_device *dev_get_by_name(struct net *net, const char *name)
614{
615 struct net_device *dev;
616
617 read_lock(&dev_base_lock);
618 dev = __dev_get_by_name(net, name);
619 if (dev)
620 dev_hold(dev);
621 read_unlock(&dev_base_lock);
622 return dev;
623}
624EXPORT_SYMBOL(dev_get_by_name);
625
626/**
627 * __dev_get_by_index - find a device by its ifindex
628 * @net: the applicable net namespace
629 * @ifindex: index of device
630 *
631 * Search for an interface by index. Returns %NULL if the device
632 * is not found or a pointer to the device. The device has not
633 * had its reference counter increased so the caller must be careful
634 * about locking. The caller must hold either the RTNL semaphore
635 * or @dev_base_lock.
636 */
637
638struct net_device *__dev_get_by_index(struct net *net, int ifindex)
639{
640 struct hlist_node *p;
641 struct net_device *dev;
642 struct hlist_head *head = dev_index_hash(net, ifindex);
643
644 hlist_for_each_entry(dev, p, head, index_hlist)
645 if (dev->ifindex == ifindex)
646 return dev;
647
648 return NULL;
649}
650EXPORT_SYMBOL(__dev_get_by_index);
651
652/**
653 * dev_get_by_index_rcu - find a device by its ifindex
654 * @net: the applicable net namespace
655 * @ifindex: index of device
656 *
657 * Search for an interface by index. Returns %NULL if the device
658 * is not found or a pointer to the device. The device has not
659 * had its reference counter increased so the caller must be careful
660 * about locking. The caller must hold RCU lock.
661 */
662
663struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
664{
665 struct hlist_node *p;
666 struct net_device *dev;
667 struct hlist_head *head = dev_index_hash(net, ifindex);
668
669 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
670 if (dev->ifindex == ifindex)
671 return dev;
672
673 return NULL;
674}
675EXPORT_SYMBOL(dev_get_by_index_rcu);
676
677
678/**
679 * dev_get_by_index - find a device by its ifindex
680 * @net: the applicable net namespace
681 * @ifindex: index of device
682 *
683 * Search for an interface by index. Returns NULL if the device
684 * is not found or a pointer to the device. The device returned has
685 * had a reference added and the pointer is safe until the user calls
686 * dev_put to indicate they have finished with it.
687 */
688
689struct net_device *dev_get_by_index(struct net *net, int ifindex)
690{
691 struct net_device *dev;
692
693 rcu_read_lock();
694 dev = dev_get_by_index_rcu(net, ifindex);
695 if (dev)
696 dev_hold(dev);
697 rcu_read_unlock();
698 return dev;
699}
700EXPORT_SYMBOL(dev_get_by_index);
701
702/**
703 * dev_getbyhwaddr - find a device by its hardware address
704 * @net: the applicable net namespace
705 * @type: media type of device
706 * @ha: hardware address
707 *
708 * Search for an interface by MAC address. Returns NULL if the device
709 * is not found or a pointer to the device. The caller must hold the
710 * rtnl semaphore. The returned device has not had its ref count increased
711 * and the caller must therefore be careful about locking
712 *
713 * BUGS:
714 * If the API was consistent this would be __dev_get_by_hwaddr
715 */
716
717struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
718{
719 struct net_device *dev;
720
721 ASSERT_RTNL();
722
723 for_each_netdev(net, dev)
724 if (dev->type == type &&
725 !memcmp(dev->dev_addr, ha, dev->addr_len))
726 return dev;
727
728 return NULL;
729}
730EXPORT_SYMBOL(dev_getbyhwaddr);
731
732struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
733{
734 struct net_device *dev;
735
736 ASSERT_RTNL();
737 for_each_netdev(net, dev)
738 if (dev->type == type)
739 return dev;
740
741 return NULL;
742}
743EXPORT_SYMBOL(__dev_getfirstbyhwtype);
744
745struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
746{
747 struct net_device *dev;
748
749 rtnl_lock();
750 dev = __dev_getfirstbyhwtype(net, type);
751 if (dev)
752 dev_hold(dev);
753 rtnl_unlock();
754 return dev;
755}
756EXPORT_SYMBOL(dev_getfirstbyhwtype);
757
758/**
759 * dev_get_by_flags - find any device with given flags
760 * @net: the applicable net namespace
761 * @if_flags: IFF_* values
762 * @mask: bitmask of bits in if_flags to check
763 *
764 * Search for any interface with the given flags. Returns NULL if a device
765 * is not found or a pointer to the device. The device returned has
766 * had a reference added and the pointer is safe until the user calls
767 * dev_put to indicate they have finished with it.
768 */
769
770struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
771 unsigned short mask)
772{
773 struct net_device *dev, *ret;
774
775 ret = NULL;
776 read_lock(&dev_base_lock);
777 for_each_netdev(net, dev) {
778 if (((dev->flags ^ if_flags) & mask) == 0) {
779 dev_hold(dev);
780 ret = dev;
781 break;
782 }
783 }
784 read_unlock(&dev_base_lock);
785 return ret;
786}
787EXPORT_SYMBOL(dev_get_by_flags);
788
789/**
790 * dev_valid_name - check if name is okay for network device
791 * @name: name string
792 *
793 * Network device names need to be valid file names to
794 * to allow sysfs to work. We also disallow any kind of
795 * whitespace.
796 */
797int dev_valid_name(const char *name)
798{
799 if (*name == '\0')
800 return 0;
801 if (strlen(name) >= IFNAMSIZ)
802 return 0;
803 if (!strcmp(name, ".") || !strcmp(name, ".."))
804 return 0;
805
806 while (*name) {
807 if (*name == '/' || isspace(*name))
808 return 0;
809 name++;
810 }
811 return 1;
812}
813EXPORT_SYMBOL(dev_valid_name);
814
815/**
816 * __dev_alloc_name - allocate a name for a device
817 * @net: network namespace to allocate the device name in
818 * @name: name format string
819 * @buf: scratch buffer and result name string
820 *
821 * Passed a format string - eg "lt%d" it will try and find a suitable
822 * id. It scans list of devices to build up a free map, then chooses
823 * the first empty slot. The caller must hold the dev_base or rtnl lock
824 * while allocating the name and adding the device in order to avoid
825 * duplicates.
826 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
827 * Returns the number of the unit assigned or a negative errno code.
828 */
829
830static int __dev_alloc_name(struct net *net, const char *name, char *buf)
831{
832 int i = 0;
833 const char *p;
834 const int max_netdevices = 8*PAGE_SIZE;
835 unsigned long *inuse;
836 struct net_device *d;
837
838 p = strnchr(name, IFNAMSIZ-1, '%');
839 if (p) {
840 /*
841 * Verify the string as this thing may have come from
842 * the user. There must be either one "%d" and no other "%"
843 * characters.
844 */
845 if (p[1] != 'd' || strchr(p + 2, '%'))
846 return -EINVAL;
847
848 /* Use one page as a bit array of possible slots */
849 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
850 if (!inuse)
851 return -ENOMEM;
852
853 for_each_netdev(net, d) {
854 if (!sscanf(d->name, name, &i))
855 continue;
856 if (i < 0 || i >= max_netdevices)
857 continue;
858
859 /* avoid cases where sscanf is not exact inverse of printf */
860 snprintf(buf, IFNAMSIZ, name, i);
861 if (!strncmp(buf, d->name, IFNAMSIZ))
862 set_bit(i, inuse);
863 }
864
865 i = find_first_zero_bit(inuse, max_netdevices);
866 free_page((unsigned long) inuse);
867 }
868
869 snprintf(buf, IFNAMSIZ, name, i);
870 if (!__dev_get_by_name(net, buf))
871 return i;
872
873 /* It is possible to run out of possible slots
874 * when the name is long and there isn't enough space left
875 * for the digits, or if all bits are used.
876 */
877 return -ENFILE;
878}
879
880/**
881 * dev_alloc_name - allocate a name for a device
882 * @dev: device
883 * @name: name format string
884 *
885 * Passed a format string - eg "lt%d" it will try and find a suitable
886 * id. It scans list of devices to build up a free map, then chooses
887 * the first empty slot. The caller must hold the dev_base or rtnl lock
888 * while allocating the name and adding the device in order to avoid
889 * duplicates.
890 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
891 * Returns the number of the unit assigned or a negative errno code.
892 */
893
894int dev_alloc_name(struct net_device *dev, const char *name)
895{
896 char buf[IFNAMSIZ];
897 struct net *net;
898 int ret;
899
900 BUG_ON(!dev_net(dev));
901 net = dev_net(dev);
902 ret = __dev_alloc_name(net, name, buf);
903 if (ret >= 0)
904 strlcpy(dev->name, buf, IFNAMSIZ);
905 return ret;
906}
907EXPORT_SYMBOL(dev_alloc_name);
908
909
910/**
911 * dev_change_name - change name of a device
912 * @dev: device
913 * @newname: name (or format string) must be at least IFNAMSIZ
914 *
915 * Change name of a device, can pass format strings "eth%d".
916 * for wildcarding.
917 */
918int dev_change_name(struct net_device *dev, const char *newname)
919{
920 char oldname[IFNAMSIZ];
921 int err = 0;
922 int ret;
923 struct net *net;
924
925 ASSERT_RTNL();
926 BUG_ON(!dev_net(dev));
927
928 net = dev_net(dev);
929 if (dev->flags & IFF_UP)
930 return -EBUSY;
931
932 if (!dev_valid_name(newname))
933 return -EINVAL;
934
935 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
936 return 0;
937
938 memcpy(oldname, dev->name, IFNAMSIZ);
939
940 if (strchr(newname, '%')) {
941 err = dev_alloc_name(dev, newname);
942 if (err < 0)
943 return err;
944 } else if (__dev_get_by_name(net, newname))
945 return -EEXIST;
946 else
947 strlcpy(dev->name, newname, IFNAMSIZ);
948
949rollback:
950 /* For now only devices in the initial network namespace
951 * are in sysfs.
952 */
953 if (net == &init_net) {
954 ret = device_rename(&dev->dev, dev->name);
955 if (ret) {
956 memcpy(dev->name, oldname, IFNAMSIZ);
957 return ret;
958 }
959 }
960
961 write_lock_bh(&dev_base_lock);
962 hlist_del(&dev->name_hlist);
963 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
964 write_unlock_bh(&dev_base_lock);
965
966 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
967 ret = notifier_to_errno(ret);
968
969 if (ret) {
970 if (err) {
971 printk(KERN_ERR
972 "%s: name change rollback failed: %d.\n",
973 dev->name, ret);
974 } else {
975 err = ret;
976 memcpy(dev->name, oldname, IFNAMSIZ);
977 goto rollback;
978 }
979 }
980
981 return err;
982}
983
984/**
985 * dev_set_alias - change ifalias of a device
986 * @dev: device
987 * @alias: name up to IFALIASZ
988 * @len: limit of bytes to copy from info
989 *
990 * Set ifalias for a device,
991 */
992int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
993{
994 ASSERT_RTNL();
995
996 if (len >= IFALIASZ)
997 return -EINVAL;
998
999 if (!len) {
1000 if (dev->ifalias) {
1001 kfree(dev->ifalias);
1002 dev->ifalias = NULL;
1003 }
1004 return 0;
1005 }
1006
1007 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1008 if (!dev->ifalias)
1009 return -ENOMEM;
1010
1011 strlcpy(dev->ifalias, alias, len+1);
1012 return len;
1013}
1014
1015
1016/**
1017 * netdev_features_change - device changes features
1018 * @dev: device to cause notification
1019 *
1020 * Called to indicate a device has changed features.
1021 */
1022void netdev_features_change(struct net_device *dev)
1023{
1024 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1025}
1026EXPORT_SYMBOL(netdev_features_change);
1027
1028/**
1029 * netdev_state_change - device changes state
1030 * @dev: device to cause notification
1031 *
1032 * Called to indicate a device has changed state. This function calls
1033 * the notifier chains for netdev_chain and sends a NEWLINK message
1034 * to the routing socket.
1035 */
1036void netdev_state_change(struct net_device *dev)
1037{
1038 if (dev->flags & IFF_UP) {
1039 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1040 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1041 }
1042}
1043EXPORT_SYMBOL(netdev_state_change);
1044
1045void netdev_bonding_change(struct net_device *dev, unsigned long event)
1046{
1047 call_netdevice_notifiers(event, dev);
1048}
1049EXPORT_SYMBOL(netdev_bonding_change);
1050
1051/**
1052 * dev_load - load a network module
1053 * @net: the applicable net namespace
1054 * @name: name of interface
1055 *
1056 * If a network interface is not present and the process has suitable
1057 * privileges this function loads the module. If module loading is not
1058 * available in this kernel then it becomes a nop.
1059 */
1060
1061void dev_load(struct net *net, const char *name)
1062{
1063 struct net_device *dev;
1064
1065 read_lock(&dev_base_lock);
1066 dev = __dev_get_by_name(net, name);
1067 read_unlock(&dev_base_lock);
1068
1069 if (!dev && capable(CAP_NET_ADMIN))
1070 request_module("%s", name);
1071}
1072EXPORT_SYMBOL(dev_load);
1073
1074/**
1075 * dev_open - prepare an interface for use.
1076 * @dev: device to open
1077 *
1078 * Takes a device from down to up state. The device's private open
1079 * function is invoked and then the multicast lists are loaded. Finally
1080 * the device is moved into the up state and a %NETDEV_UP message is
1081 * sent to the netdev notifier chain.
1082 *
1083 * Calling this function on an active interface is a nop. On a failure
1084 * a negative errno code is returned.
1085 */
1086int dev_open(struct net_device *dev)
1087{
1088 const struct net_device_ops *ops = dev->netdev_ops;
1089 int ret;
1090
1091 ASSERT_RTNL();
1092
1093 /*
1094 * Is it already up?
1095 */
1096
1097 if (dev->flags & IFF_UP)
1098 return 0;
1099
1100 /*
1101 * Is it even present?
1102 */
1103 if (!netif_device_present(dev))
1104 return -ENODEV;
1105
1106 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1107 ret = notifier_to_errno(ret);
1108 if (ret)
1109 return ret;
1110
1111 /*
1112 * Call device private open method
1113 */
1114 set_bit(__LINK_STATE_START, &dev->state);
1115
1116 if (ops->ndo_validate_addr)
1117 ret = ops->ndo_validate_addr(dev);
1118
1119 if (!ret && ops->ndo_open)
1120 ret = ops->ndo_open(dev);
1121
1122 /*
1123 * If it went open OK then:
1124 */
1125
1126 if (ret)
1127 clear_bit(__LINK_STATE_START, &dev->state);
1128 else {
1129 /*
1130 * Set the flags.
1131 */
1132 dev->flags |= IFF_UP;
1133
1134 /*
1135 * Enable NET_DMA
1136 */
1137 net_dmaengine_get();
1138
1139 /*
1140 * Initialize multicasting status
1141 */
1142 dev_set_rx_mode(dev);
1143
1144 /*
1145 * Wakeup transmit queue engine
1146 */
1147 dev_activate(dev);
1148
1149 /*
1150 * ... and announce new interface.
1151 */
1152 call_netdevice_notifiers(NETDEV_UP, dev);
1153 }
1154
1155 return ret;
1156}
1157EXPORT_SYMBOL(dev_open);
1158
1159/**
1160 * dev_close - shutdown an interface.
1161 * @dev: device to shutdown
1162 *
1163 * This function moves an active device into down state. A
1164 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1165 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1166 * chain.
1167 */
1168int dev_close(struct net_device *dev)
1169{
1170 const struct net_device_ops *ops = dev->netdev_ops;
1171 ASSERT_RTNL();
1172
1173 might_sleep();
1174
1175 if (!(dev->flags & IFF_UP))
1176 return 0;
1177
1178 /*
1179 * Tell people we are going down, so that they can
1180 * prepare to death, when device is still operating.
1181 */
1182 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1183
1184 clear_bit(__LINK_STATE_START, &dev->state);
1185
1186 /* Synchronize to scheduled poll. We cannot touch poll list,
1187 * it can be even on different cpu. So just clear netif_running().
1188 *
1189 * dev->stop() will invoke napi_disable() on all of it's
1190 * napi_struct instances on this device.
1191 */
1192 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1193
1194 dev_deactivate(dev);
1195
1196 /*
1197 * Call the device specific close. This cannot fail.
1198 * Only if device is UP
1199 *
1200 * We allow it to be called even after a DETACH hot-plug
1201 * event.
1202 */
1203 if (ops->ndo_stop)
1204 ops->ndo_stop(dev);
1205
1206 /*
1207 * Device is now down.
1208 */
1209
1210 dev->flags &= ~IFF_UP;
1211
1212 /*
1213 * Tell people we are down
1214 */
1215 call_netdevice_notifiers(NETDEV_DOWN, dev);
1216
1217 /*
1218 * Shutdown NET_DMA
1219 */
1220 net_dmaengine_put();
1221
1222 return 0;
1223}
1224EXPORT_SYMBOL(dev_close);
1225
1226
1227/**
1228 * dev_disable_lro - disable Large Receive Offload on a device
1229 * @dev: device
1230 *
1231 * Disable Large Receive Offload (LRO) on a net device. Must be
1232 * called under RTNL. This is needed if received packets may be
1233 * forwarded to another interface.
1234 */
1235void dev_disable_lro(struct net_device *dev)
1236{
1237 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1238 dev->ethtool_ops->set_flags) {
1239 u32 flags = dev->ethtool_ops->get_flags(dev);
1240 if (flags & ETH_FLAG_LRO) {
1241 flags &= ~ETH_FLAG_LRO;
1242 dev->ethtool_ops->set_flags(dev, flags);
1243 }
1244 }
1245 WARN_ON(dev->features & NETIF_F_LRO);
1246}
1247EXPORT_SYMBOL(dev_disable_lro);
1248
1249
1250static int dev_boot_phase = 1;
1251
1252/*
1253 * Device change register/unregister. These are not inline or static
1254 * as we export them to the world.
1255 */
1256
1257/**
1258 * register_netdevice_notifier - register a network notifier block
1259 * @nb: notifier
1260 *
1261 * Register a notifier to be called when network device events occur.
1262 * The notifier passed is linked into the kernel structures and must
1263 * not be reused until it has been unregistered. A negative errno code
1264 * is returned on a failure.
1265 *
1266 * When registered all registration and up events are replayed
1267 * to the new notifier to allow device to have a race free
1268 * view of the network device list.
1269 */
1270
1271int register_netdevice_notifier(struct notifier_block *nb)
1272{
1273 struct net_device *dev;
1274 struct net_device *last;
1275 struct net *net;
1276 int err;
1277
1278 rtnl_lock();
1279 err = raw_notifier_chain_register(&netdev_chain, nb);
1280 if (err)
1281 goto unlock;
1282 if (dev_boot_phase)
1283 goto unlock;
1284 for_each_net(net) {
1285 for_each_netdev(net, dev) {
1286 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1287 err = notifier_to_errno(err);
1288 if (err)
1289 goto rollback;
1290
1291 if (!(dev->flags & IFF_UP))
1292 continue;
1293
1294 nb->notifier_call(nb, NETDEV_UP, dev);
1295 }
1296 }
1297
1298unlock:
1299 rtnl_unlock();
1300 return err;
1301
1302rollback:
1303 last = dev;
1304 for_each_net(net) {
1305 for_each_netdev(net, dev) {
1306 if (dev == last)
1307 break;
1308
1309 if (dev->flags & IFF_UP) {
1310 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1311 nb->notifier_call(nb, NETDEV_DOWN, dev);
1312 }
1313 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1314 }
1315 }
1316
1317 raw_notifier_chain_unregister(&netdev_chain, nb);
1318 goto unlock;
1319}
1320EXPORT_SYMBOL(register_netdevice_notifier);
1321
1322/**
1323 * unregister_netdevice_notifier - unregister a network notifier block
1324 * @nb: notifier
1325 *
1326 * Unregister a notifier previously registered by
1327 * register_netdevice_notifier(). The notifier is unlinked into the
1328 * kernel structures and may then be reused. A negative errno code
1329 * is returned on a failure.
1330 */
1331
1332int unregister_netdevice_notifier(struct notifier_block *nb)
1333{
1334 int err;
1335
1336 rtnl_lock();
1337 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1338 rtnl_unlock();
1339 return err;
1340}
1341EXPORT_SYMBOL(unregister_netdevice_notifier);
1342
1343/**
1344 * call_netdevice_notifiers - call all network notifier blocks
1345 * @val: value passed unmodified to notifier function
1346 * @dev: net_device pointer passed unmodified to notifier function
1347 *
1348 * Call all network notifier blocks. Parameters and return value
1349 * are as for raw_notifier_call_chain().
1350 */
1351
1352int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1353{
1354 return raw_notifier_call_chain(&netdev_chain, val, dev);
1355}
1356
1357/* When > 0 there are consumers of rx skb time stamps */
1358static atomic_t netstamp_needed = ATOMIC_INIT(0);
1359
1360void net_enable_timestamp(void)
1361{
1362 atomic_inc(&netstamp_needed);
1363}
1364EXPORT_SYMBOL(net_enable_timestamp);
1365
1366void net_disable_timestamp(void)
1367{
1368 atomic_dec(&netstamp_needed);
1369}
1370EXPORT_SYMBOL(net_disable_timestamp);
1371
1372static inline void net_timestamp(struct sk_buff *skb)
1373{
1374 if (atomic_read(&netstamp_needed))
1375 __net_timestamp(skb);
1376 else
1377 skb->tstamp.tv64 = 0;
1378}
1379
1380/*
1381 * Support routine. Sends outgoing frames to any network
1382 * taps currently in use.
1383 */
1384
1385static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1386{
1387 struct packet_type *ptype;
1388
1389#ifdef CONFIG_NET_CLS_ACT
1390 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1391 net_timestamp(skb);
1392#else
1393 net_timestamp(skb);
1394#endif
1395
1396 rcu_read_lock();
1397 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1398 /* Never send packets back to the socket
1399 * they originated from - MvS (miquels@drinkel.ow.org)
1400 */
1401 if ((ptype->dev == dev || !ptype->dev) &&
1402 (ptype->af_packet_priv == NULL ||
1403 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1404 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1405 if (!skb2)
1406 break;
1407
1408 /* skb->nh should be correctly
1409 set by sender, so that the second statement is
1410 just protection against buggy protocols.
1411 */
1412 skb_reset_mac_header(skb2);
1413
1414 if (skb_network_header(skb2) < skb2->data ||
1415 skb2->network_header > skb2->tail) {
1416 if (net_ratelimit())
1417 printk(KERN_CRIT "protocol %04x is "
1418 "buggy, dev %s\n",
1419 skb2->protocol, dev->name);
1420 skb_reset_network_header(skb2);
1421 }
1422
1423 skb2->transport_header = skb2->network_header;
1424 skb2->pkt_type = PACKET_OUTGOING;
1425 ptype->func(skb2, skb->dev, ptype, skb->dev);
1426 }
1427 }
1428 rcu_read_unlock();
1429}
1430
1431
1432static inline void __netif_reschedule(struct Qdisc *q)
1433{
1434 struct softnet_data *sd;
1435 unsigned long flags;
1436
1437 local_irq_save(flags);
1438 sd = &__get_cpu_var(softnet_data);
1439 q->next_sched = sd->output_queue;
1440 sd->output_queue = q;
1441 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1442 local_irq_restore(flags);
1443}
1444
1445void __netif_schedule(struct Qdisc *q)
1446{
1447 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1448 __netif_reschedule(q);
1449}
1450EXPORT_SYMBOL(__netif_schedule);
1451
1452void dev_kfree_skb_irq(struct sk_buff *skb)
1453{
1454 if (atomic_dec_and_test(&skb->users)) {
1455 struct softnet_data *sd;
1456 unsigned long flags;
1457
1458 local_irq_save(flags);
1459 sd = &__get_cpu_var(softnet_data);
1460 skb->next = sd->completion_queue;
1461 sd->completion_queue = skb;
1462 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1463 local_irq_restore(flags);
1464 }
1465}
1466EXPORT_SYMBOL(dev_kfree_skb_irq);
1467
1468void dev_kfree_skb_any(struct sk_buff *skb)
1469{
1470 if (in_irq() || irqs_disabled())
1471 dev_kfree_skb_irq(skb);
1472 else
1473 dev_kfree_skb(skb);
1474}
1475EXPORT_SYMBOL(dev_kfree_skb_any);
1476
1477
1478/**
1479 * netif_device_detach - mark device as removed
1480 * @dev: network device
1481 *
1482 * Mark device as removed from system and therefore no longer available.
1483 */
1484void netif_device_detach(struct net_device *dev)
1485{
1486 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1487 netif_running(dev)) {
1488 netif_tx_stop_all_queues(dev);
1489 }
1490}
1491EXPORT_SYMBOL(netif_device_detach);
1492
1493/**
1494 * netif_device_attach - mark device as attached
1495 * @dev: network device
1496 *
1497 * Mark device as attached from system and restart if needed.
1498 */
1499void netif_device_attach(struct net_device *dev)
1500{
1501 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1502 netif_running(dev)) {
1503 netif_tx_wake_all_queues(dev);
1504 __netdev_watchdog_up(dev);
1505 }
1506}
1507EXPORT_SYMBOL(netif_device_attach);
1508
1509static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1510{
1511 return ((features & NETIF_F_GEN_CSUM) ||
1512 ((features & NETIF_F_IP_CSUM) &&
1513 protocol == htons(ETH_P_IP)) ||
1514 ((features & NETIF_F_IPV6_CSUM) &&
1515 protocol == htons(ETH_P_IPV6)) ||
1516 ((features & NETIF_F_FCOE_CRC) &&
1517 protocol == htons(ETH_P_FCOE)));
1518}
1519
1520static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1521{
1522 if (can_checksum_protocol(dev->features, skb->protocol))
1523 return true;
1524
1525 if (skb->protocol == htons(ETH_P_8021Q)) {
1526 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1527 if (can_checksum_protocol(dev->features & dev->vlan_features,
1528 veh->h_vlan_encapsulated_proto))
1529 return true;
1530 }
1531
1532 return false;
1533}
1534
1535/*
1536 * Invalidate hardware checksum when packet is to be mangled, and
1537 * complete checksum manually on outgoing path.
1538 */
1539int skb_checksum_help(struct sk_buff *skb)
1540{
1541 __wsum csum;
1542 int ret = 0, offset;
1543
1544 if (skb->ip_summed == CHECKSUM_COMPLETE)
1545 goto out_set_summed;
1546
1547 if (unlikely(skb_shinfo(skb)->gso_size)) {
1548 /* Let GSO fix up the checksum. */
1549 goto out_set_summed;
1550 }
1551
1552 offset = skb->csum_start - skb_headroom(skb);
1553 BUG_ON(offset >= skb_headlen(skb));
1554 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1555
1556 offset += skb->csum_offset;
1557 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1558
1559 if (skb_cloned(skb) &&
1560 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1561 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1562 if (ret)
1563 goto out;
1564 }
1565
1566 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1567out_set_summed:
1568 skb->ip_summed = CHECKSUM_NONE;
1569out:
1570 return ret;
1571}
1572EXPORT_SYMBOL(skb_checksum_help);
1573
1574/**
1575 * skb_gso_segment - Perform segmentation on skb.
1576 * @skb: buffer to segment
1577 * @features: features for the output path (see dev->features)
1578 *
1579 * This function segments the given skb and returns a list of segments.
1580 *
1581 * It may return NULL if the skb requires no segmentation. This is
1582 * only possible when GSO is used for verifying header integrity.
1583 */
1584struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1585{
1586 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1587 struct packet_type *ptype;
1588 __be16 type = skb->protocol;
1589 int err;
1590
1591 skb_reset_mac_header(skb);
1592 skb->mac_len = skb->network_header - skb->mac_header;
1593 __skb_pull(skb, skb->mac_len);
1594
1595 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1596 struct net_device *dev = skb->dev;
1597 struct ethtool_drvinfo info = {};
1598
1599 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1600 dev->ethtool_ops->get_drvinfo(dev, &info);
1601
1602 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1603 "ip_summed=%d",
1604 info.driver, dev ? dev->features : 0L,
1605 skb->sk ? skb->sk->sk_route_caps : 0L,
1606 skb->len, skb->data_len, skb->ip_summed);
1607
1608 if (skb_header_cloned(skb) &&
1609 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1610 return ERR_PTR(err);
1611 }
1612
1613 rcu_read_lock();
1614 list_for_each_entry_rcu(ptype,
1615 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1616 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1617 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1618 err = ptype->gso_send_check(skb);
1619 segs = ERR_PTR(err);
1620 if (err || skb_gso_ok(skb, features))
1621 break;
1622 __skb_push(skb, (skb->data -
1623 skb_network_header(skb)));
1624 }
1625 segs = ptype->gso_segment(skb, features);
1626 break;
1627 }
1628 }
1629 rcu_read_unlock();
1630
1631 __skb_push(skb, skb->data - skb_mac_header(skb));
1632
1633 return segs;
1634}
1635EXPORT_SYMBOL(skb_gso_segment);
1636
1637/* Take action when hardware reception checksum errors are detected. */
1638#ifdef CONFIG_BUG
1639void netdev_rx_csum_fault(struct net_device *dev)
1640{
1641 if (net_ratelimit()) {
1642 printk(KERN_ERR "%s: hw csum failure.\n",
1643 dev ? dev->name : "<unknown>");
1644 dump_stack();
1645 }
1646}
1647EXPORT_SYMBOL(netdev_rx_csum_fault);
1648#endif
1649
1650/* Actually, we should eliminate this check as soon as we know, that:
1651 * 1. IOMMU is present and allows to map all the memory.
1652 * 2. No high memory really exists on this machine.
1653 */
1654
1655static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1656{
1657#ifdef CONFIG_HIGHMEM
1658 int i;
1659
1660 if (dev->features & NETIF_F_HIGHDMA)
1661 return 0;
1662
1663 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1664 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1665 return 1;
1666
1667#endif
1668 return 0;
1669}
1670
1671struct dev_gso_cb {
1672 void (*destructor)(struct sk_buff *skb);
1673};
1674
1675#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1676
1677static void dev_gso_skb_destructor(struct sk_buff *skb)
1678{
1679 struct dev_gso_cb *cb;
1680
1681 do {
1682 struct sk_buff *nskb = skb->next;
1683
1684 skb->next = nskb->next;
1685 nskb->next = NULL;
1686 kfree_skb(nskb);
1687 } while (skb->next);
1688
1689 cb = DEV_GSO_CB(skb);
1690 if (cb->destructor)
1691 cb->destructor(skb);
1692}
1693
1694/**
1695 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1696 * @skb: buffer to segment
1697 *
1698 * This function segments the given skb and stores the list of segments
1699 * in skb->next.
1700 */
1701static int dev_gso_segment(struct sk_buff *skb)
1702{
1703 struct net_device *dev = skb->dev;
1704 struct sk_buff *segs;
1705 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1706 NETIF_F_SG : 0);
1707
1708 segs = skb_gso_segment(skb, features);
1709
1710 /* Verifying header integrity only. */
1711 if (!segs)
1712 return 0;
1713
1714 if (IS_ERR(segs))
1715 return PTR_ERR(segs);
1716
1717 skb->next = segs;
1718 DEV_GSO_CB(skb)->destructor = skb->destructor;
1719 skb->destructor = dev_gso_skb_destructor;
1720
1721 return 0;
1722}
1723
1724int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1725 struct netdev_queue *txq)
1726{
1727 const struct net_device_ops *ops = dev->netdev_ops;
1728 int rc;
1729
1730 if (likely(!skb->next)) {
1731 if (!list_empty(&ptype_all))
1732 dev_queue_xmit_nit(skb, dev);
1733
1734 if (netif_needs_gso(dev, skb)) {
1735 if (unlikely(dev_gso_segment(skb)))
1736 goto out_kfree_skb;
1737 if (skb->next)
1738 goto gso;
1739 }
1740
1741 /*
1742 * If device doesnt need skb->dst, release it right now while
1743 * its hot in this cpu cache
1744 */
1745 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1746 skb_dst_drop(skb);
1747
1748 rc = ops->ndo_start_xmit(skb, dev);
1749 if (rc == NETDEV_TX_OK)
1750 txq_trans_update(txq);
1751 /*
1752 * TODO: if skb_orphan() was called by
1753 * dev->hard_start_xmit() (for example, the unmodified
1754 * igb driver does that; bnx2 doesn't), then
1755 * skb_tx_software_timestamp() will be unable to send
1756 * back the time stamp.
1757 *
1758 * How can this be prevented? Always create another
1759 * reference to the socket before calling
1760 * dev->hard_start_xmit()? Prevent that skb_orphan()
1761 * does anything in dev->hard_start_xmit() by clearing
1762 * the skb destructor before the call and restoring it
1763 * afterwards, then doing the skb_orphan() ourselves?
1764 */
1765 return rc;
1766 }
1767
1768gso:
1769 do {
1770 struct sk_buff *nskb = skb->next;
1771
1772 skb->next = nskb->next;
1773 nskb->next = NULL;
1774 rc = ops->ndo_start_xmit(nskb, dev);
1775 if (unlikely(rc != NETDEV_TX_OK)) {
1776 nskb->next = skb->next;
1777 skb->next = nskb;
1778 return rc;
1779 }
1780 txq_trans_update(txq);
1781 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1782 return NETDEV_TX_BUSY;
1783 } while (skb->next);
1784
1785 skb->destructor = DEV_GSO_CB(skb)->destructor;
1786
1787out_kfree_skb:
1788 kfree_skb(skb);
1789 return NETDEV_TX_OK;
1790}
1791
1792static u32 skb_tx_hashrnd;
1793
1794u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1795{
1796 u32 hash;
1797
1798 if (skb_rx_queue_recorded(skb)) {
1799 hash = skb_get_rx_queue(skb);
1800 while (unlikely(hash >= dev->real_num_tx_queues))
1801 hash -= dev->real_num_tx_queues;
1802 return hash;
1803 }
1804
1805 if (skb->sk && skb->sk->sk_hash)
1806 hash = skb->sk->sk_hash;
1807 else
1808 hash = skb->protocol;
1809
1810 hash = jhash_1word(hash, skb_tx_hashrnd);
1811
1812 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1813}
1814EXPORT_SYMBOL(skb_tx_hash);
1815
1816static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1817 struct sk_buff *skb)
1818{
1819 u16 queue_index;
1820 struct sock *sk = skb->sk;
1821
1822 if (sk_tx_queue_recorded(sk)) {
1823 queue_index = sk_tx_queue_get(sk);
1824 } else {
1825 const struct net_device_ops *ops = dev->netdev_ops;
1826
1827 if (ops->ndo_select_queue) {
1828 queue_index = ops->ndo_select_queue(dev, skb);
1829 } else {
1830 queue_index = 0;
1831 if (dev->real_num_tx_queues > 1)
1832 queue_index = skb_tx_hash(dev, skb);
1833
1834 if (sk && sk->sk_dst_cache)
1835 sk_tx_queue_set(sk, queue_index);
1836 }
1837 }
1838
1839 skb_set_queue_mapping(skb, queue_index);
1840 return netdev_get_tx_queue(dev, queue_index);
1841}
1842
1843static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1844 struct net_device *dev,
1845 struct netdev_queue *txq)
1846{
1847 spinlock_t *root_lock = qdisc_lock(q);
1848 int rc;
1849
1850 spin_lock(root_lock);
1851 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1852 kfree_skb(skb);
1853 rc = NET_XMIT_DROP;
1854 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1855 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1856 /*
1857 * This is a work-conserving queue; there are no old skbs
1858 * waiting to be sent out; and the qdisc is not running -
1859 * xmit the skb directly.
1860 */
1861 __qdisc_update_bstats(q, skb->len);
1862 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1863 __qdisc_run(q);
1864 else
1865 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1866
1867 rc = NET_XMIT_SUCCESS;
1868 } else {
1869 rc = qdisc_enqueue_root(skb, q);
1870 qdisc_run(q);
1871 }
1872 spin_unlock(root_lock);
1873
1874 return rc;
1875}
1876
1877/**
1878 * dev_queue_xmit - transmit a buffer
1879 * @skb: buffer to transmit
1880 *
1881 * Queue a buffer for transmission to a network device. The caller must
1882 * have set the device and priority and built the buffer before calling
1883 * this function. The function can be called from an interrupt.
1884 *
1885 * A negative errno code is returned on a failure. A success does not
1886 * guarantee the frame will be transmitted as it may be dropped due
1887 * to congestion or traffic shaping.
1888 *
1889 * -----------------------------------------------------------------------------------
1890 * I notice this method can also return errors from the queue disciplines,
1891 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1892 * be positive.
1893 *
1894 * Regardless of the return value, the skb is consumed, so it is currently
1895 * difficult to retry a send to this method. (You can bump the ref count
1896 * before sending to hold a reference for retry if you are careful.)
1897 *
1898 * When calling this method, interrupts MUST be enabled. This is because
1899 * the BH enable code must have IRQs enabled so that it will not deadlock.
1900 * --BLG
1901 */
1902int dev_queue_xmit(struct sk_buff *skb)
1903{
1904 struct net_device *dev = skb->dev;
1905 struct netdev_queue *txq;
1906 struct Qdisc *q;
1907 int rc = -ENOMEM;
1908
1909 /* GSO will handle the following emulations directly. */
1910 if (netif_needs_gso(dev, skb))
1911 goto gso;
1912
1913 if (skb_has_frags(skb) &&
1914 !(dev->features & NETIF_F_FRAGLIST) &&
1915 __skb_linearize(skb))
1916 goto out_kfree_skb;
1917
1918 /* Fragmented skb is linearized if device does not support SG,
1919 * or if at least one of fragments is in highmem and device
1920 * does not support DMA from it.
1921 */
1922 if (skb_shinfo(skb)->nr_frags &&
1923 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1924 __skb_linearize(skb))
1925 goto out_kfree_skb;
1926
1927 /* If packet is not checksummed and device does not support
1928 * checksumming for this protocol, complete checksumming here.
1929 */
1930 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1931 skb_set_transport_header(skb, skb->csum_start -
1932 skb_headroom(skb));
1933 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1934 goto out_kfree_skb;
1935 }
1936
1937gso:
1938 /* Disable soft irqs for various locks below. Also
1939 * stops preemption for RCU.
1940 */
1941 rcu_read_lock_bh();
1942
1943 txq = dev_pick_tx(dev, skb);
1944 q = rcu_dereference(txq->qdisc);
1945
1946#ifdef CONFIG_NET_CLS_ACT
1947 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1948#endif
1949 if (q->enqueue) {
1950 rc = __dev_xmit_skb(skb, q, dev, txq);
1951 goto out;
1952 }
1953
1954 /* The device has no queue. Common case for software devices:
1955 loopback, all the sorts of tunnels...
1956
1957 Really, it is unlikely that netif_tx_lock protection is necessary
1958 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1959 counters.)
1960 However, it is possible, that they rely on protection
1961 made by us here.
1962
1963 Check this and shot the lock. It is not prone from deadlocks.
1964 Either shot noqueue qdisc, it is even simpler 8)
1965 */
1966 if (dev->flags & IFF_UP) {
1967 int cpu = smp_processor_id(); /* ok because BHs are off */
1968
1969 if (txq->xmit_lock_owner != cpu) {
1970
1971 HARD_TX_LOCK(dev, txq, cpu);
1972
1973 if (!netif_tx_queue_stopped(txq)) {
1974 rc = NET_XMIT_SUCCESS;
1975 if (!dev_hard_start_xmit(skb, dev, txq)) {
1976 HARD_TX_UNLOCK(dev, txq);
1977 goto out;
1978 }
1979 }
1980 HARD_TX_UNLOCK(dev, txq);
1981 if (net_ratelimit())
1982 printk(KERN_CRIT "Virtual device %s asks to "
1983 "queue packet!\n", dev->name);
1984 } else {
1985 /* Recursion is detected! It is possible,
1986 * unfortunately */
1987 if (net_ratelimit())
1988 printk(KERN_CRIT "Dead loop on virtual device "
1989 "%s, fix it urgently!\n", dev->name);
1990 }
1991 }
1992
1993 rc = -ENETDOWN;
1994 rcu_read_unlock_bh();
1995
1996out_kfree_skb:
1997 kfree_skb(skb);
1998 return rc;
1999out:
2000 rcu_read_unlock_bh();
2001 return rc;
2002}
2003EXPORT_SYMBOL(dev_queue_xmit);
2004
2005
2006/*=======================================================================
2007 Receiver routines
2008 =======================================================================*/
2009
2010int netdev_max_backlog __read_mostly = 1000;
2011int netdev_budget __read_mostly = 300;
2012int weight_p __read_mostly = 64; /* old backlog weight */
2013
2014DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2015
2016
2017/**
2018 * netif_rx - post buffer to the network code
2019 * @skb: buffer to post
2020 *
2021 * This function receives a packet from a device driver and queues it for
2022 * the upper (protocol) levels to process. It always succeeds. The buffer
2023 * may be dropped during processing for congestion control or by the
2024 * protocol layers.
2025 *
2026 * return values:
2027 * NET_RX_SUCCESS (no congestion)
2028 * NET_RX_DROP (packet was dropped)
2029 *
2030 */
2031
2032int netif_rx(struct sk_buff *skb)
2033{
2034 struct softnet_data *queue;
2035 unsigned long flags;
2036
2037 /* if netpoll wants it, pretend we never saw it */
2038 if (netpoll_rx(skb))
2039 return NET_RX_DROP;
2040
2041 if (!skb->tstamp.tv64)
2042 net_timestamp(skb);
2043
2044 /*
2045 * The code is rearranged so that the path is the most
2046 * short when CPU is congested, but is still operating.
2047 */
2048 local_irq_save(flags);
2049 queue = &__get_cpu_var(softnet_data);
2050
2051 __get_cpu_var(netdev_rx_stat).total++;
2052 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2053 if (queue->input_pkt_queue.qlen) {
2054enqueue:
2055 __skb_queue_tail(&queue->input_pkt_queue, skb);
2056 local_irq_restore(flags);
2057 return NET_RX_SUCCESS;
2058 }
2059
2060 napi_schedule(&queue->backlog);
2061 goto enqueue;
2062 }
2063
2064 __get_cpu_var(netdev_rx_stat).dropped++;
2065 local_irq_restore(flags);
2066
2067 kfree_skb(skb);
2068 return NET_RX_DROP;
2069}
2070EXPORT_SYMBOL(netif_rx);
2071
2072int netif_rx_ni(struct sk_buff *skb)
2073{
2074 int err;
2075
2076 preempt_disable();
2077 err = netif_rx(skb);
2078 if (local_softirq_pending())
2079 do_softirq();
2080 preempt_enable();
2081
2082 return err;
2083}
2084EXPORT_SYMBOL(netif_rx_ni);
2085
2086static void net_tx_action(struct softirq_action *h)
2087{
2088 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2089
2090 if (sd->completion_queue) {
2091 struct sk_buff *clist;
2092
2093 local_irq_disable();
2094 clist = sd->completion_queue;
2095 sd->completion_queue = NULL;
2096 local_irq_enable();
2097
2098 while (clist) {
2099 struct sk_buff *skb = clist;
2100 clist = clist->next;
2101
2102 WARN_ON(atomic_read(&skb->users));
2103 __kfree_skb(skb);
2104 }
2105 }
2106
2107 if (sd->output_queue) {
2108 struct Qdisc *head;
2109
2110 local_irq_disable();
2111 head = sd->output_queue;
2112 sd->output_queue = NULL;
2113 local_irq_enable();
2114
2115 while (head) {
2116 struct Qdisc *q = head;
2117 spinlock_t *root_lock;
2118
2119 head = head->next_sched;
2120
2121 root_lock = qdisc_lock(q);
2122 if (spin_trylock(root_lock)) {
2123 smp_mb__before_clear_bit();
2124 clear_bit(__QDISC_STATE_SCHED,
2125 &q->state);
2126 qdisc_run(q);
2127 spin_unlock(root_lock);
2128 } else {
2129 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2130 &q->state)) {
2131 __netif_reschedule(q);
2132 } else {
2133 smp_mb__before_clear_bit();
2134 clear_bit(__QDISC_STATE_SCHED,
2135 &q->state);
2136 }
2137 }
2138 }
2139 }
2140}
2141
2142static inline int deliver_skb(struct sk_buff *skb,
2143 struct packet_type *pt_prev,
2144 struct net_device *orig_dev)
2145{
2146 atomic_inc(&skb->users);
2147 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2148}
2149
2150#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2151
2152#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2153/* This hook is defined here for ATM LANE */
2154int (*br_fdb_test_addr_hook)(struct net_device *dev,
2155 unsigned char *addr) __read_mostly;
2156EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2157#endif
2158
2159/*
2160 * If bridge module is loaded call bridging hook.
2161 * returns NULL if packet was consumed.
2162 */
2163struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2164 struct sk_buff *skb) __read_mostly;
2165EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2166
2167static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2168 struct packet_type **pt_prev, int *ret,
2169 struct net_device *orig_dev)
2170{
2171 struct net_bridge_port *port;
2172
2173 if (skb->pkt_type == PACKET_LOOPBACK ||
2174 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2175 return skb;
2176
2177 if (*pt_prev) {
2178 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2179 *pt_prev = NULL;
2180 }
2181
2182 return br_handle_frame_hook(port, skb);
2183}
2184#else
2185#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2186#endif
2187
2188#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2189struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2190EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2191
2192static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2193 struct packet_type **pt_prev,
2194 int *ret,
2195 struct net_device *orig_dev)
2196{
2197 if (skb->dev->macvlan_port == NULL)
2198 return skb;
2199
2200 if (*pt_prev) {
2201 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2202 *pt_prev = NULL;
2203 }
2204 return macvlan_handle_frame_hook(skb);
2205}
2206#else
2207#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2208#endif
2209
2210#ifdef CONFIG_NET_CLS_ACT
2211/* TODO: Maybe we should just force sch_ingress to be compiled in
2212 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2213 * a compare and 2 stores extra right now if we dont have it on
2214 * but have CONFIG_NET_CLS_ACT
2215 * NOTE: This doesnt stop any functionality; if you dont have
2216 * the ingress scheduler, you just cant add policies on ingress.
2217 *
2218 */
2219static int ing_filter(struct sk_buff *skb)
2220{
2221 struct net_device *dev = skb->dev;
2222 u32 ttl = G_TC_RTTL(skb->tc_verd);
2223 struct netdev_queue *rxq;
2224 int result = TC_ACT_OK;
2225 struct Qdisc *q;
2226
2227 if (MAX_RED_LOOP < ttl++) {
2228 printk(KERN_WARNING
2229 "Redir loop detected Dropping packet (%d->%d)\n",
2230 skb->iif, dev->ifindex);
2231 return TC_ACT_SHOT;
2232 }
2233
2234 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2235 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2236
2237 rxq = &dev->rx_queue;
2238
2239 q = rxq->qdisc;
2240 if (q != &noop_qdisc) {
2241 spin_lock(qdisc_lock(q));
2242 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2243 result = qdisc_enqueue_root(skb, q);
2244 spin_unlock(qdisc_lock(q));
2245 }
2246
2247 return result;
2248}
2249
2250static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2251 struct packet_type **pt_prev,
2252 int *ret, struct net_device *orig_dev)
2253{
2254 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2255 goto out;
2256
2257 if (*pt_prev) {
2258 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2259 *pt_prev = NULL;
2260 } else {
2261 /* Huh? Why does turning on AF_PACKET affect this? */
2262 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2263 }
2264
2265 switch (ing_filter(skb)) {
2266 case TC_ACT_SHOT:
2267 case TC_ACT_STOLEN:
2268 kfree_skb(skb);
2269 return NULL;
2270 }
2271
2272out:
2273 skb->tc_verd = 0;
2274 return skb;
2275}
2276#endif
2277
2278/*
2279 * netif_nit_deliver - deliver received packets to network taps
2280 * @skb: buffer
2281 *
2282 * This function is used to deliver incoming packets to network
2283 * taps. It should be used when the normal netif_receive_skb path
2284 * is bypassed, for example because of VLAN acceleration.
2285 */
2286void netif_nit_deliver(struct sk_buff *skb)
2287{
2288 struct packet_type *ptype;
2289
2290 if (list_empty(&ptype_all))
2291 return;
2292
2293 skb_reset_network_header(skb);
2294 skb_reset_transport_header(skb);
2295 skb->mac_len = skb->network_header - skb->mac_header;
2296
2297 rcu_read_lock();
2298 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2299 if (!ptype->dev || ptype->dev == skb->dev)
2300 deliver_skb(skb, ptype, skb->dev);
2301 }
2302 rcu_read_unlock();
2303}
2304
2305/**
2306 * netif_receive_skb - process receive buffer from network
2307 * @skb: buffer to process
2308 *
2309 * netif_receive_skb() is the main receive data processing function.
2310 * It always succeeds. The buffer may be dropped during processing
2311 * for congestion control or by the protocol layers.
2312 *
2313 * This function may only be called from softirq context and interrupts
2314 * should be enabled.
2315 *
2316 * Return values (usually ignored):
2317 * NET_RX_SUCCESS: no congestion
2318 * NET_RX_DROP: packet was dropped
2319 */
2320int netif_receive_skb(struct sk_buff *skb)
2321{
2322 struct packet_type *ptype, *pt_prev;
2323 struct net_device *orig_dev;
2324 struct net_device *null_or_orig;
2325 int ret = NET_RX_DROP;
2326 __be16 type;
2327
2328 if (!skb->tstamp.tv64)
2329 net_timestamp(skb);
2330
2331 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2332 return NET_RX_SUCCESS;
2333
2334 /* if we've gotten here through NAPI, check netpoll */
2335 if (netpoll_receive_skb(skb))
2336 return NET_RX_DROP;
2337
2338 if (!skb->iif)
2339 skb->iif = skb->dev->ifindex;
2340
2341 null_or_orig = NULL;
2342 orig_dev = skb->dev;
2343 if (orig_dev->master) {
2344 if (skb_bond_should_drop(skb))
2345 null_or_orig = orig_dev; /* deliver only exact match */
2346 else
2347 skb->dev = orig_dev->master;
2348 }
2349
2350 __get_cpu_var(netdev_rx_stat).total++;
2351
2352 skb_reset_network_header(skb);
2353 skb_reset_transport_header(skb);
2354 skb->mac_len = skb->network_header - skb->mac_header;
2355
2356 pt_prev = NULL;
2357
2358 rcu_read_lock();
2359
2360#ifdef CONFIG_NET_CLS_ACT
2361 if (skb->tc_verd & TC_NCLS) {
2362 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2363 goto ncls;
2364 }
2365#endif
2366
2367 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2368 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2369 ptype->dev == orig_dev) {
2370 if (pt_prev)
2371 ret = deliver_skb(skb, pt_prev, orig_dev);
2372 pt_prev = ptype;
2373 }
2374 }
2375
2376#ifdef CONFIG_NET_CLS_ACT
2377 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2378 if (!skb)
2379 goto out;
2380ncls:
2381#endif
2382
2383 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2384 if (!skb)
2385 goto out;
2386 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2387 if (!skb)
2388 goto out;
2389
2390 type = skb->protocol;
2391 list_for_each_entry_rcu(ptype,
2392 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2393 if (ptype->type == type &&
2394 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2395 ptype->dev == orig_dev)) {
2396 if (pt_prev)
2397 ret = deliver_skb(skb, pt_prev, orig_dev);
2398 pt_prev = ptype;
2399 }
2400 }
2401
2402 if (pt_prev) {
2403 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2404 } else {
2405 kfree_skb(skb);
2406 /* Jamal, now you will not able to escape explaining
2407 * me how you were going to use this. :-)
2408 */
2409 ret = NET_RX_DROP;
2410 }
2411
2412out:
2413 rcu_read_unlock();
2414 return ret;
2415}
2416EXPORT_SYMBOL(netif_receive_skb);
2417
2418/* Network device is going away, flush any packets still pending */
2419static void flush_backlog(void *arg)
2420{
2421 struct net_device *dev = arg;
2422 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2423 struct sk_buff *skb, *tmp;
2424
2425 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2426 if (skb->dev == dev) {
2427 __skb_unlink(skb, &queue->input_pkt_queue);
2428 kfree_skb(skb);
2429 }
2430}
2431
2432static int napi_gro_complete(struct sk_buff *skb)
2433{
2434 struct packet_type *ptype;
2435 __be16 type = skb->protocol;
2436 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2437 int err = -ENOENT;
2438
2439 if (NAPI_GRO_CB(skb)->count == 1) {
2440 skb_shinfo(skb)->gso_size = 0;
2441 goto out;
2442 }
2443
2444 rcu_read_lock();
2445 list_for_each_entry_rcu(ptype, head, list) {
2446 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2447 continue;
2448
2449 err = ptype->gro_complete(skb);
2450 break;
2451 }
2452 rcu_read_unlock();
2453
2454 if (err) {
2455 WARN_ON(&ptype->list == head);
2456 kfree_skb(skb);
2457 return NET_RX_SUCCESS;
2458 }
2459
2460out:
2461 return netif_receive_skb(skb);
2462}
2463
2464void napi_gro_flush(struct napi_struct *napi)
2465{
2466 struct sk_buff *skb, *next;
2467
2468 for (skb = napi->gro_list; skb; skb = next) {
2469 next = skb->next;
2470 skb->next = NULL;
2471 napi_gro_complete(skb);
2472 }
2473
2474 napi->gro_count = 0;
2475 napi->gro_list = NULL;
2476}
2477EXPORT_SYMBOL(napi_gro_flush);
2478
2479enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2480{
2481 struct sk_buff **pp = NULL;
2482 struct packet_type *ptype;
2483 __be16 type = skb->protocol;
2484 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2485 int same_flow;
2486 int mac_len;
2487 enum gro_result ret;
2488
2489 if (!(skb->dev->features & NETIF_F_GRO))
2490 goto normal;
2491
2492 if (skb_is_gso(skb) || skb_has_frags(skb))
2493 goto normal;
2494
2495 rcu_read_lock();
2496 list_for_each_entry_rcu(ptype, head, list) {
2497 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2498 continue;
2499
2500 skb_set_network_header(skb, skb_gro_offset(skb));
2501 mac_len = skb->network_header - skb->mac_header;
2502 skb->mac_len = mac_len;
2503 NAPI_GRO_CB(skb)->same_flow = 0;
2504 NAPI_GRO_CB(skb)->flush = 0;
2505 NAPI_GRO_CB(skb)->free = 0;
2506
2507 pp = ptype->gro_receive(&napi->gro_list, skb);
2508 break;
2509 }
2510 rcu_read_unlock();
2511
2512 if (&ptype->list == head)
2513 goto normal;
2514
2515 same_flow = NAPI_GRO_CB(skb)->same_flow;
2516 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2517
2518 if (pp) {
2519 struct sk_buff *nskb = *pp;
2520
2521 *pp = nskb->next;
2522 nskb->next = NULL;
2523 napi_gro_complete(nskb);
2524 napi->gro_count--;
2525 }
2526
2527 if (same_flow)
2528 goto ok;
2529
2530 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2531 goto normal;
2532
2533 napi->gro_count++;
2534 NAPI_GRO_CB(skb)->count = 1;
2535 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2536 skb->next = napi->gro_list;
2537 napi->gro_list = skb;
2538 ret = GRO_HELD;
2539
2540pull:
2541 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2542 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2543
2544 BUG_ON(skb->end - skb->tail < grow);
2545
2546 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2547
2548 skb->tail += grow;
2549 skb->data_len -= grow;
2550
2551 skb_shinfo(skb)->frags[0].page_offset += grow;
2552 skb_shinfo(skb)->frags[0].size -= grow;
2553
2554 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2555 put_page(skb_shinfo(skb)->frags[0].page);
2556 memmove(skb_shinfo(skb)->frags,
2557 skb_shinfo(skb)->frags + 1,
2558 --skb_shinfo(skb)->nr_frags);
2559 }
2560 }
2561
2562ok:
2563 return ret;
2564
2565normal:
2566 ret = GRO_NORMAL;
2567 goto pull;
2568}
2569EXPORT_SYMBOL(dev_gro_receive);
2570
2571static gro_result_t
2572__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2573{
2574 struct sk_buff *p;
2575
2576 if (netpoll_rx_on(skb))
2577 return GRO_NORMAL;
2578
2579 for (p = napi->gro_list; p; p = p->next) {
2580 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2581 && !compare_ether_header(skb_mac_header(p),
2582 skb_gro_mac_header(skb));
2583 NAPI_GRO_CB(p)->flush = 0;
2584 }
2585
2586 return dev_gro_receive(napi, skb);
2587}
2588
2589gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2590{
2591 switch (ret) {
2592 case GRO_NORMAL:
2593 if (netif_receive_skb(skb))
2594 ret = GRO_DROP;
2595 break;
2596
2597 case GRO_DROP:
2598 case GRO_MERGED_FREE:
2599 kfree_skb(skb);
2600 break;
2601
2602 case GRO_HELD:
2603 case GRO_MERGED:
2604 break;
2605 }
2606
2607 return ret;
2608}
2609EXPORT_SYMBOL(napi_skb_finish);
2610
2611void skb_gro_reset_offset(struct sk_buff *skb)
2612{
2613 NAPI_GRO_CB(skb)->data_offset = 0;
2614 NAPI_GRO_CB(skb)->frag0 = NULL;
2615 NAPI_GRO_CB(skb)->frag0_len = 0;
2616
2617 if (skb->mac_header == skb->tail &&
2618 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2619 NAPI_GRO_CB(skb)->frag0 =
2620 page_address(skb_shinfo(skb)->frags[0].page) +
2621 skb_shinfo(skb)->frags[0].page_offset;
2622 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2623 }
2624}
2625EXPORT_SYMBOL(skb_gro_reset_offset);
2626
2627gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2628{
2629 skb_gro_reset_offset(skb);
2630
2631 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2632}
2633EXPORT_SYMBOL(napi_gro_receive);
2634
2635void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2636{
2637 __skb_pull(skb, skb_headlen(skb));
2638 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2639
2640 napi->skb = skb;
2641}
2642EXPORT_SYMBOL(napi_reuse_skb);
2643
2644struct sk_buff *napi_get_frags(struct napi_struct *napi)
2645{
2646 struct sk_buff *skb = napi->skb;
2647
2648 if (!skb) {
2649 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2650 if (skb)
2651 napi->skb = skb;
2652 }
2653 return skb;
2654}
2655EXPORT_SYMBOL(napi_get_frags);
2656
2657gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2658 gro_result_t ret)
2659{
2660 switch (ret) {
2661 case GRO_NORMAL:
2662 case GRO_HELD:
2663 skb->protocol = eth_type_trans(skb, napi->dev);
2664
2665 if (ret == GRO_HELD)
2666 skb_gro_pull(skb, -ETH_HLEN);
2667 else if (netif_receive_skb(skb))
2668 ret = GRO_DROP;
2669 break;
2670
2671 case GRO_DROP:
2672 case GRO_MERGED_FREE:
2673 napi_reuse_skb(napi, skb);
2674 break;
2675
2676 case GRO_MERGED:
2677 break;
2678 }
2679
2680 return ret;
2681}
2682EXPORT_SYMBOL(napi_frags_finish);
2683
2684struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2685{
2686 struct sk_buff *skb = napi->skb;
2687 struct ethhdr *eth;
2688 unsigned int hlen;
2689 unsigned int off;
2690
2691 napi->skb = NULL;
2692
2693 skb_reset_mac_header(skb);
2694 skb_gro_reset_offset(skb);
2695
2696 off = skb_gro_offset(skb);
2697 hlen = off + sizeof(*eth);
2698 eth = skb_gro_header_fast(skb, off);
2699 if (skb_gro_header_hard(skb, hlen)) {
2700 eth = skb_gro_header_slow(skb, hlen, off);
2701 if (unlikely(!eth)) {
2702 napi_reuse_skb(napi, skb);
2703 skb = NULL;
2704 goto out;
2705 }
2706 }
2707
2708 skb_gro_pull(skb, sizeof(*eth));
2709
2710 /*
2711 * This works because the only protocols we care about don't require
2712 * special handling. We'll fix it up properly at the end.
2713 */
2714 skb->protocol = eth->h_proto;
2715
2716out:
2717 return skb;
2718}
2719EXPORT_SYMBOL(napi_frags_skb);
2720
2721gro_result_t napi_gro_frags(struct napi_struct *napi)
2722{
2723 struct sk_buff *skb = napi_frags_skb(napi);
2724
2725 if (!skb)
2726 return GRO_DROP;
2727
2728 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2729}
2730EXPORT_SYMBOL(napi_gro_frags);
2731
2732static int process_backlog(struct napi_struct *napi, int quota)
2733{
2734 int work = 0;
2735 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2736 unsigned long start_time = jiffies;
2737
2738 napi->weight = weight_p;
2739 do {
2740 struct sk_buff *skb;
2741
2742 local_irq_disable();
2743 skb = __skb_dequeue(&queue->input_pkt_queue);
2744 if (!skb) {
2745 __napi_complete(napi);
2746 local_irq_enable();
2747 break;
2748 }
2749 local_irq_enable();
2750
2751 netif_receive_skb(skb);
2752 } while (++work < quota && jiffies == start_time);
2753
2754 return work;
2755}
2756
2757/**
2758 * __napi_schedule - schedule for receive
2759 * @n: entry to schedule
2760 *
2761 * The entry's receive function will be scheduled to run
2762 */
2763void __napi_schedule(struct napi_struct *n)
2764{
2765 unsigned long flags;
2766
2767 local_irq_save(flags);
2768 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2769 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2770 local_irq_restore(flags);
2771}
2772EXPORT_SYMBOL(__napi_schedule);
2773
2774void __napi_complete(struct napi_struct *n)
2775{
2776 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2777 BUG_ON(n->gro_list);
2778
2779 list_del(&n->poll_list);
2780 smp_mb__before_clear_bit();
2781 clear_bit(NAPI_STATE_SCHED, &n->state);
2782}
2783EXPORT_SYMBOL(__napi_complete);
2784
2785void napi_complete(struct napi_struct *n)
2786{
2787 unsigned long flags;
2788
2789 /*
2790 * don't let napi dequeue from the cpu poll list
2791 * just in case its running on a different cpu
2792 */
2793 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2794 return;
2795
2796 napi_gro_flush(n);
2797 local_irq_save(flags);
2798 __napi_complete(n);
2799 local_irq_restore(flags);
2800}
2801EXPORT_SYMBOL(napi_complete);
2802
2803void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2804 int (*poll)(struct napi_struct *, int), int weight)
2805{
2806 INIT_LIST_HEAD(&napi->poll_list);
2807 napi->gro_count = 0;
2808 napi->gro_list = NULL;
2809 napi->skb = NULL;
2810 napi->poll = poll;
2811 napi->weight = weight;
2812 list_add(&napi->dev_list, &dev->napi_list);
2813 napi->dev = dev;
2814#ifdef CONFIG_NETPOLL
2815 spin_lock_init(&napi->poll_lock);
2816 napi->poll_owner = -1;
2817#endif
2818 set_bit(NAPI_STATE_SCHED, &napi->state);
2819}
2820EXPORT_SYMBOL(netif_napi_add);
2821
2822void netif_napi_del(struct napi_struct *napi)
2823{
2824 struct sk_buff *skb, *next;
2825
2826 list_del_init(&napi->dev_list);
2827 napi_free_frags(napi);
2828
2829 for (skb = napi->gro_list; skb; skb = next) {
2830 next = skb->next;
2831 skb->next = NULL;
2832 kfree_skb(skb);
2833 }
2834
2835 napi->gro_list = NULL;
2836 napi->gro_count = 0;
2837}
2838EXPORT_SYMBOL(netif_napi_del);
2839
2840
2841static void net_rx_action(struct softirq_action *h)
2842{
2843 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2844 unsigned long time_limit = jiffies + 2;
2845 int budget = netdev_budget;
2846 void *have;
2847
2848 local_irq_disable();
2849
2850 while (!list_empty(list)) {
2851 struct napi_struct *n;
2852 int work, weight;
2853
2854 /* If softirq window is exhuasted then punt.
2855 * Allow this to run for 2 jiffies since which will allow
2856 * an average latency of 1.5/HZ.
2857 */
2858 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2859 goto softnet_break;
2860
2861 local_irq_enable();
2862
2863 /* Even though interrupts have been re-enabled, this
2864 * access is safe because interrupts can only add new
2865 * entries to the tail of this list, and only ->poll()
2866 * calls can remove this head entry from the list.
2867 */
2868 n = list_entry(list->next, struct napi_struct, poll_list);
2869
2870 have = netpoll_poll_lock(n);
2871
2872 weight = n->weight;
2873
2874 /* This NAPI_STATE_SCHED test is for avoiding a race
2875 * with netpoll's poll_napi(). Only the entity which
2876 * obtains the lock and sees NAPI_STATE_SCHED set will
2877 * actually make the ->poll() call. Therefore we avoid
2878 * accidently calling ->poll() when NAPI is not scheduled.
2879 */
2880 work = 0;
2881 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2882 work = n->poll(n, weight);
2883 trace_napi_poll(n);
2884 }
2885
2886 WARN_ON_ONCE(work > weight);
2887
2888 budget -= work;
2889
2890 local_irq_disable();
2891
2892 /* Drivers must not modify the NAPI state if they
2893 * consume the entire weight. In such cases this code
2894 * still "owns" the NAPI instance and therefore can
2895 * move the instance around on the list at-will.
2896 */
2897 if (unlikely(work == weight)) {
2898 if (unlikely(napi_disable_pending(n))) {
2899 local_irq_enable();
2900 napi_complete(n);
2901 local_irq_disable();
2902 } else
2903 list_move_tail(&n->poll_list, list);
2904 }
2905
2906 netpoll_poll_unlock(have);
2907 }
2908out:
2909 local_irq_enable();
2910
2911#ifdef CONFIG_NET_DMA
2912 /*
2913 * There may not be any more sk_buffs coming right now, so push
2914 * any pending DMA copies to hardware
2915 */
2916 dma_issue_pending_all();
2917#endif
2918
2919 return;
2920
2921softnet_break:
2922 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2923 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2924 goto out;
2925}
2926
2927static gifconf_func_t *gifconf_list[NPROTO];
2928
2929/**
2930 * register_gifconf - register a SIOCGIF handler
2931 * @family: Address family
2932 * @gifconf: Function handler
2933 *
2934 * Register protocol dependent address dumping routines. The handler
2935 * that is passed must not be freed or reused until it has been replaced
2936 * by another handler.
2937 */
2938int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2939{
2940 if (family >= NPROTO)
2941 return -EINVAL;
2942 gifconf_list[family] = gifconf;
2943 return 0;
2944}
2945EXPORT_SYMBOL(register_gifconf);
2946
2947
2948/*
2949 * Map an interface index to its name (SIOCGIFNAME)
2950 */
2951
2952/*
2953 * We need this ioctl for efficient implementation of the
2954 * if_indextoname() function required by the IPv6 API. Without
2955 * it, we would have to search all the interfaces to find a
2956 * match. --pb
2957 */
2958
2959static int dev_ifname(struct net *net, struct ifreq __user *arg)
2960{
2961 struct net_device *dev;
2962 struct ifreq ifr;
2963
2964 /*
2965 * Fetch the caller's info block.
2966 */
2967
2968 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2969 return -EFAULT;
2970
2971 rcu_read_lock();
2972 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
2973 if (!dev) {
2974 rcu_read_unlock();
2975 return -ENODEV;
2976 }
2977
2978 strcpy(ifr.ifr_name, dev->name);
2979 rcu_read_unlock();
2980
2981 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2982 return -EFAULT;
2983 return 0;
2984}
2985
2986/*
2987 * Perform a SIOCGIFCONF call. This structure will change
2988 * size eventually, and there is nothing I can do about it.
2989 * Thus we will need a 'compatibility mode'.
2990 */
2991
2992static int dev_ifconf(struct net *net, char __user *arg)
2993{
2994 struct ifconf ifc;
2995 struct net_device *dev;
2996 char __user *pos;
2997 int len;
2998 int total;
2999 int i;
3000
3001 /*
3002 * Fetch the caller's info block.
3003 */
3004
3005 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3006 return -EFAULT;
3007
3008 pos = ifc.ifc_buf;
3009 len = ifc.ifc_len;
3010
3011 /*
3012 * Loop over the interfaces, and write an info block for each.
3013 */
3014
3015 total = 0;
3016 for_each_netdev(net, dev) {
3017 for (i = 0; i < NPROTO; i++) {
3018 if (gifconf_list[i]) {
3019 int done;
3020 if (!pos)
3021 done = gifconf_list[i](dev, NULL, 0);
3022 else
3023 done = gifconf_list[i](dev, pos + total,
3024 len - total);
3025 if (done < 0)
3026 return -EFAULT;
3027 total += done;
3028 }
3029 }
3030 }
3031
3032 /*
3033 * All done. Write the updated control block back to the caller.
3034 */
3035 ifc.ifc_len = total;
3036
3037 /*
3038 * Both BSD and Solaris return 0 here, so we do too.
3039 */
3040 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3041}
3042
3043#ifdef CONFIG_PROC_FS
3044/*
3045 * This is invoked by the /proc filesystem handler to display a device
3046 * in detail.
3047 */
3048void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3049 __acquires(dev_base_lock)
3050{
3051 struct net *net = seq_file_net(seq);
3052 loff_t off;
3053 struct net_device *dev;
3054
3055 read_lock(&dev_base_lock);
3056 if (!*pos)
3057 return SEQ_START_TOKEN;
3058
3059 off = 1;
3060 for_each_netdev(net, dev)
3061 if (off++ == *pos)
3062 return dev;
3063
3064 return NULL;
3065}
3066
3067void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3068{
3069 struct net *net = seq_file_net(seq);
3070 ++*pos;
3071 return v == SEQ_START_TOKEN ?
3072 first_net_device(net) : next_net_device((struct net_device *)v);
3073}
3074
3075void dev_seq_stop(struct seq_file *seq, void *v)
3076 __releases(dev_base_lock)
3077{
3078 read_unlock(&dev_base_lock);
3079}
3080
3081static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3082{
3083 const struct net_device_stats *stats = dev_get_stats(dev);
3084
3085 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3086 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3087 dev->name, stats->rx_bytes, stats->rx_packets,
3088 stats->rx_errors,
3089 stats->rx_dropped + stats->rx_missed_errors,
3090 stats->rx_fifo_errors,
3091 stats->rx_length_errors + stats->rx_over_errors +
3092 stats->rx_crc_errors + stats->rx_frame_errors,
3093 stats->rx_compressed, stats->multicast,
3094 stats->tx_bytes, stats->tx_packets,
3095 stats->tx_errors, stats->tx_dropped,
3096 stats->tx_fifo_errors, stats->collisions,
3097 stats->tx_carrier_errors +
3098 stats->tx_aborted_errors +
3099 stats->tx_window_errors +
3100 stats->tx_heartbeat_errors,
3101 stats->tx_compressed);
3102}
3103
3104/*
3105 * Called from the PROCfs module. This now uses the new arbitrary sized
3106 * /proc/net interface to create /proc/net/dev
3107 */
3108static int dev_seq_show(struct seq_file *seq, void *v)
3109{
3110 if (v == SEQ_START_TOKEN)
3111 seq_puts(seq, "Inter-| Receive "
3112 " | Transmit\n"
3113 " face |bytes packets errs drop fifo frame "
3114 "compressed multicast|bytes packets errs "
3115 "drop fifo colls carrier compressed\n");
3116 else
3117 dev_seq_printf_stats(seq, v);
3118 return 0;
3119}
3120
3121static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3122{
3123 struct netif_rx_stats *rc = NULL;
3124
3125 while (*pos < nr_cpu_ids)
3126 if (cpu_online(*pos)) {
3127 rc = &per_cpu(netdev_rx_stat, *pos);
3128 break;
3129 } else
3130 ++*pos;
3131 return rc;
3132}
3133
3134static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3135{
3136 return softnet_get_online(pos);
3137}
3138
3139static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3140{
3141 ++*pos;
3142 return softnet_get_online(pos);
3143}
3144
3145static void softnet_seq_stop(struct seq_file *seq, void *v)
3146{
3147}
3148
3149static int softnet_seq_show(struct seq_file *seq, void *v)
3150{
3151 struct netif_rx_stats *s = v;
3152
3153 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3154 s->total, s->dropped, s->time_squeeze, 0,
3155 0, 0, 0, 0, /* was fastroute */
3156 s->cpu_collision);
3157 return 0;
3158}
3159
3160static const struct seq_operations dev_seq_ops = {
3161 .start = dev_seq_start,
3162 .next = dev_seq_next,
3163 .stop = dev_seq_stop,
3164 .show = dev_seq_show,
3165};
3166
3167static int dev_seq_open(struct inode *inode, struct file *file)
3168{
3169 return seq_open_net(inode, file, &dev_seq_ops,
3170 sizeof(struct seq_net_private));
3171}
3172
3173static const struct file_operations dev_seq_fops = {
3174 .owner = THIS_MODULE,
3175 .open = dev_seq_open,
3176 .read = seq_read,
3177 .llseek = seq_lseek,
3178 .release = seq_release_net,
3179};
3180
3181static const struct seq_operations softnet_seq_ops = {
3182 .start = softnet_seq_start,
3183 .next = softnet_seq_next,
3184 .stop = softnet_seq_stop,
3185 .show = softnet_seq_show,
3186};
3187
3188static int softnet_seq_open(struct inode *inode, struct file *file)
3189{
3190 return seq_open(file, &softnet_seq_ops);
3191}
3192
3193static const struct file_operations softnet_seq_fops = {
3194 .owner = THIS_MODULE,
3195 .open = softnet_seq_open,
3196 .read = seq_read,
3197 .llseek = seq_lseek,
3198 .release = seq_release,
3199};
3200
3201static void *ptype_get_idx(loff_t pos)
3202{
3203 struct packet_type *pt = NULL;
3204 loff_t i = 0;
3205 int t;
3206
3207 list_for_each_entry_rcu(pt, &ptype_all, list) {
3208 if (i == pos)
3209 return pt;
3210 ++i;
3211 }
3212
3213 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3214 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3215 if (i == pos)
3216 return pt;
3217 ++i;
3218 }
3219 }
3220 return NULL;
3221}
3222
3223static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3224 __acquires(RCU)
3225{
3226 rcu_read_lock();
3227 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3228}
3229
3230static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3231{
3232 struct packet_type *pt;
3233 struct list_head *nxt;
3234 int hash;
3235
3236 ++*pos;
3237 if (v == SEQ_START_TOKEN)
3238 return ptype_get_idx(0);
3239
3240 pt = v;
3241 nxt = pt->list.next;
3242 if (pt->type == htons(ETH_P_ALL)) {
3243 if (nxt != &ptype_all)
3244 goto found;
3245 hash = 0;
3246 nxt = ptype_base[0].next;
3247 } else
3248 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3249
3250 while (nxt == &ptype_base[hash]) {
3251 if (++hash >= PTYPE_HASH_SIZE)
3252 return NULL;
3253 nxt = ptype_base[hash].next;
3254 }
3255found:
3256 return list_entry(nxt, struct packet_type, list);
3257}
3258
3259static void ptype_seq_stop(struct seq_file *seq, void *v)
3260 __releases(RCU)
3261{
3262 rcu_read_unlock();
3263}
3264
3265static int ptype_seq_show(struct seq_file *seq, void *v)
3266{
3267 struct packet_type *pt = v;
3268
3269 if (v == SEQ_START_TOKEN)
3270 seq_puts(seq, "Type Device Function\n");
3271 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3272 if (pt->type == htons(ETH_P_ALL))
3273 seq_puts(seq, "ALL ");
3274 else
3275 seq_printf(seq, "%04x", ntohs(pt->type));
3276
3277 seq_printf(seq, " %-8s %pF\n",
3278 pt->dev ? pt->dev->name : "", pt->func);
3279 }
3280
3281 return 0;
3282}
3283
3284static const struct seq_operations ptype_seq_ops = {
3285 .start = ptype_seq_start,
3286 .next = ptype_seq_next,
3287 .stop = ptype_seq_stop,
3288 .show = ptype_seq_show,
3289};
3290
3291static int ptype_seq_open(struct inode *inode, struct file *file)
3292{
3293 return seq_open_net(inode, file, &ptype_seq_ops,
3294 sizeof(struct seq_net_private));
3295}
3296
3297static const struct file_operations ptype_seq_fops = {
3298 .owner = THIS_MODULE,
3299 .open = ptype_seq_open,
3300 .read = seq_read,
3301 .llseek = seq_lseek,
3302 .release = seq_release_net,
3303};
3304
3305
3306static int __net_init dev_proc_net_init(struct net *net)
3307{
3308 int rc = -ENOMEM;
3309
3310 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3311 goto out;
3312 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3313 goto out_dev;
3314 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3315 goto out_softnet;
3316
3317 if (wext_proc_init(net))
3318 goto out_ptype;
3319 rc = 0;
3320out:
3321 return rc;
3322out_ptype:
3323 proc_net_remove(net, "ptype");
3324out_softnet:
3325 proc_net_remove(net, "softnet_stat");
3326out_dev:
3327 proc_net_remove(net, "dev");
3328 goto out;
3329}
3330
3331static void __net_exit dev_proc_net_exit(struct net *net)
3332{
3333 wext_proc_exit(net);
3334
3335 proc_net_remove(net, "ptype");
3336 proc_net_remove(net, "softnet_stat");
3337 proc_net_remove(net, "dev");
3338}
3339
3340static struct pernet_operations __net_initdata dev_proc_ops = {
3341 .init = dev_proc_net_init,
3342 .exit = dev_proc_net_exit,
3343};
3344
3345static int __init dev_proc_init(void)
3346{
3347 return register_pernet_subsys(&dev_proc_ops);
3348}
3349#else
3350#define dev_proc_init() 0
3351#endif /* CONFIG_PROC_FS */
3352
3353
3354/**
3355 * netdev_set_master - set up master/slave pair
3356 * @slave: slave device
3357 * @master: new master device
3358 *
3359 * Changes the master device of the slave. Pass %NULL to break the
3360 * bonding. The caller must hold the RTNL semaphore. On a failure
3361 * a negative errno code is returned. On success the reference counts
3362 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3363 * function returns zero.
3364 */
3365int netdev_set_master(struct net_device *slave, struct net_device *master)
3366{
3367 struct net_device *old = slave->master;
3368
3369 ASSERT_RTNL();
3370
3371 if (master) {
3372 if (old)
3373 return -EBUSY;
3374 dev_hold(master);
3375 }
3376
3377 slave->master = master;
3378
3379 synchronize_net();
3380
3381 if (old)
3382 dev_put(old);
3383
3384 if (master)
3385 slave->flags |= IFF_SLAVE;
3386 else
3387 slave->flags &= ~IFF_SLAVE;
3388
3389 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3390 return 0;
3391}
3392EXPORT_SYMBOL(netdev_set_master);
3393
3394static void dev_change_rx_flags(struct net_device *dev, int flags)
3395{
3396 const struct net_device_ops *ops = dev->netdev_ops;
3397
3398 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3399 ops->ndo_change_rx_flags(dev, flags);
3400}
3401
3402static int __dev_set_promiscuity(struct net_device *dev, int inc)
3403{
3404 unsigned short old_flags = dev->flags;
3405 uid_t uid;
3406 gid_t gid;
3407
3408 ASSERT_RTNL();
3409
3410 dev->flags |= IFF_PROMISC;
3411 dev->promiscuity += inc;
3412 if (dev->promiscuity == 0) {
3413 /*
3414 * Avoid overflow.
3415 * If inc causes overflow, untouch promisc and return error.
3416 */
3417 if (inc < 0)
3418 dev->flags &= ~IFF_PROMISC;
3419 else {
3420 dev->promiscuity -= inc;
3421 printk(KERN_WARNING "%s: promiscuity touches roof, "
3422 "set promiscuity failed, promiscuity feature "
3423 "of device might be broken.\n", dev->name);
3424 return -EOVERFLOW;
3425 }
3426 }
3427 if (dev->flags != old_flags) {
3428 printk(KERN_INFO "device %s %s promiscuous mode\n",
3429 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3430 "left");
3431 if (audit_enabled) {
3432 current_uid_gid(&uid, &gid);
3433 audit_log(current->audit_context, GFP_ATOMIC,
3434 AUDIT_ANOM_PROMISCUOUS,
3435 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3436 dev->name, (dev->flags & IFF_PROMISC),
3437 (old_flags & IFF_PROMISC),
3438 audit_get_loginuid(current),
3439 uid, gid,
3440 audit_get_sessionid(current));
3441 }
3442
3443 dev_change_rx_flags(dev, IFF_PROMISC);
3444 }
3445 return 0;
3446}
3447
3448/**
3449 * dev_set_promiscuity - update promiscuity count on a device
3450 * @dev: device
3451 * @inc: modifier
3452 *
3453 * Add or remove promiscuity from a device. While the count in the device
3454 * remains above zero the interface remains promiscuous. Once it hits zero
3455 * the device reverts back to normal filtering operation. A negative inc
3456 * value is used to drop promiscuity on the device.
3457 * Return 0 if successful or a negative errno code on error.
3458 */
3459int dev_set_promiscuity(struct net_device *dev, int inc)
3460{
3461 unsigned short old_flags = dev->flags;
3462 int err;
3463
3464 err = __dev_set_promiscuity(dev, inc);
3465 if (err < 0)
3466 return err;
3467 if (dev->flags != old_flags)
3468 dev_set_rx_mode(dev);
3469 return err;
3470}
3471EXPORT_SYMBOL(dev_set_promiscuity);
3472
3473/**
3474 * dev_set_allmulti - update allmulti count on a device
3475 * @dev: device
3476 * @inc: modifier
3477 *
3478 * Add or remove reception of all multicast frames to a device. While the
3479 * count in the device remains above zero the interface remains listening
3480 * to all interfaces. Once it hits zero the device reverts back to normal
3481 * filtering operation. A negative @inc value is used to drop the counter
3482 * when releasing a resource needing all multicasts.
3483 * Return 0 if successful or a negative errno code on error.
3484 */
3485
3486int dev_set_allmulti(struct net_device *dev, int inc)
3487{
3488 unsigned short old_flags = dev->flags;
3489
3490 ASSERT_RTNL();
3491
3492 dev->flags |= IFF_ALLMULTI;
3493 dev->allmulti += inc;
3494 if (dev->allmulti == 0) {
3495 /*
3496 * Avoid overflow.
3497 * If inc causes overflow, untouch allmulti and return error.
3498 */
3499 if (inc < 0)
3500 dev->flags &= ~IFF_ALLMULTI;
3501 else {
3502 dev->allmulti -= inc;
3503 printk(KERN_WARNING "%s: allmulti touches roof, "
3504 "set allmulti failed, allmulti feature of "
3505 "device might be broken.\n", dev->name);
3506 return -EOVERFLOW;
3507 }
3508 }
3509 if (dev->flags ^ old_flags) {
3510 dev_change_rx_flags(dev, IFF_ALLMULTI);
3511 dev_set_rx_mode(dev);
3512 }
3513 return 0;
3514}
3515EXPORT_SYMBOL(dev_set_allmulti);
3516
3517/*
3518 * Upload unicast and multicast address lists to device and
3519 * configure RX filtering. When the device doesn't support unicast
3520 * filtering it is put in promiscuous mode while unicast addresses
3521 * are present.
3522 */
3523void __dev_set_rx_mode(struct net_device *dev)
3524{
3525 const struct net_device_ops *ops = dev->netdev_ops;
3526
3527 /* dev_open will call this function so the list will stay sane. */
3528 if (!(dev->flags&IFF_UP))
3529 return;
3530
3531 if (!netif_device_present(dev))
3532 return;
3533
3534 if (ops->ndo_set_rx_mode)
3535 ops->ndo_set_rx_mode(dev);
3536 else {
3537 /* Unicast addresses changes may only happen under the rtnl,
3538 * therefore calling __dev_set_promiscuity here is safe.
3539 */
3540 if (dev->uc.count > 0 && !dev->uc_promisc) {
3541 __dev_set_promiscuity(dev, 1);
3542 dev->uc_promisc = 1;
3543 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3544 __dev_set_promiscuity(dev, -1);
3545 dev->uc_promisc = 0;
3546 }
3547
3548 if (ops->ndo_set_multicast_list)
3549 ops->ndo_set_multicast_list(dev);
3550 }
3551}
3552
3553void dev_set_rx_mode(struct net_device *dev)
3554{
3555 netif_addr_lock_bh(dev);
3556 __dev_set_rx_mode(dev);
3557 netif_addr_unlock_bh(dev);
3558}
3559
3560/* hw addresses list handling functions */
3561
3562static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3563 int addr_len, unsigned char addr_type)
3564{
3565 struct netdev_hw_addr *ha;
3566 int alloc_size;
3567
3568 if (addr_len > MAX_ADDR_LEN)
3569 return -EINVAL;
3570
3571 list_for_each_entry(ha, &list->list, list) {
3572 if (!memcmp(ha->addr, addr, addr_len) &&
3573 ha->type == addr_type) {
3574 ha->refcount++;
3575 return 0;
3576 }
3577 }
3578
3579
3580 alloc_size = sizeof(*ha);
3581 if (alloc_size < L1_CACHE_BYTES)
3582 alloc_size = L1_CACHE_BYTES;
3583 ha = kmalloc(alloc_size, GFP_ATOMIC);
3584 if (!ha)
3585 return -ENOMEM;
3586 memcpy(ha->addr, addr, addr_len);
3587 ha->type = addr_type;
3588 ha->refcount = 1;
3589 ha->synced = false;
3590 list_add_tail_rcu(&ha->list, &list->list);
3591 list->count++;
3592 return 0;
3593}
3594
3595static void ha_rcu_free(struct rcu_head *head)
3596{
3597 struct netdev_hw_addr *ha;
3598
3599 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3600 kfree(ha);
3601}
3602
3603static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3604 int addr_len, unsigned char addr_type)
3605{
3606 struct netdev_hw_addr *ha;
3607
3608 list_for_each_entry(ha, &list->list, list) {
3609 if (!memcmp(ha->addr, addr, addr_len) &&
3610 (ha->type == addr_type || !addr_type)) {
3611 if (--ha->refcount)
3612 return 0;
3613 list_del_rcu(&ha->list);
3614 call_rcu(&ha->rcu_head, ha_rcu_free);
3615 list->count--;
3616 return 0;
3617 }
3618 }
3619 return -ENOENT;
3620}
3621
3622static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3623 struct netdev_hw_addr_list *from_list,
3624 int addr_len,
3625 unsigned char addr_type)
3626{
3627 int err;
3628 struct netdev_hw_addr *ha, *ha2;
3629 unsigned char type;
3630
3631 list_for_each_entry(ha, &from_list->list, list) {
3632 type = addr_type ? addr_type : ha->type;
3633 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3634 if (err)
3635 goto unroll;
3636 }
3637 return 0;
3638
3639unroll:
3640 list_for_each_entry(ha2, &from_list->list, list) {
3641 if (ha2 == ha)
3642 break;
3643 type = addr_type ? addr_type : ha2->type;
3644 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3645 }
3646 return err;
3647}
3648
3649static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3650 struct netdev_hw_addr_list *from_list,
3651 int addr_len,
3652 unsigned char addr_type)
3653{
3654 struct netdev_hw_addr *ha;
3655 unsigned char type;
3656
3657 list_for_each_entry(ha, &from_list->list, list) {
3658 type = addr_type ? addr_type : ha->type;
3659 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3660 }
3661}
3662
3663static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3664 struct netdev_hw_addr_list *from_list,
3665 int addr_len)
3666{
3667 int err = 0;
3668 struct netdev_hw_addr *ha, *tmp;
3669
3670 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3671 if (!ha->synced) {
3672 err = __hw_addr_add(to_list, ha->addr,
3673 addr_len, ha->type);
3674 if (err)
3675 break;
3676 ha->synced = true;
3677 ha->refcount++;
3678 } else if (ha->refcount == 1) {
3679 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3680 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3681 }
3682 }
3683 return err;
3684}
3685
3686static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3687 struct netdev_hw_addr_list *from_list,
3688 int addr_len)
3689{
3690 struct netdev_hw_addr *ha, *tmp;
3691
3692 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3693 if (ha->synced) {
3694 __hw_addr_del(to_list, ha->addr,
3695 addr_len, ha->type);
3696 ha->synced = false;
3697 __hw_addr_del(from_list, ha->addr,
3698 addr_len, ha->type);
3699 }
3700 }
3701}
3702
3703static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3704{
3705 struct netdev_hw_addr *ha, *tmp;
3706
3707 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3708 list_del_rcu(&ha->list);
3709 call_rcu(&ha->rcu_head, ha_rcu_free);
3710 }
3711 list->count = 0;
3712}
3713
3714static void __hw_addr_init(struct netdev_hw_addr_list *list)
3715{
3716 INIT_LIST_HEAD(&list->list);
3717 list->count = 0;
3718}
3719
3720/* Device addresses handling functions */
3721
3722static void dev_addr_flush(struct net_device *dev)
3723{
3724 /* rtnl_mutex must be held here */
3725
3726 __hw_addr_flush(&dev->dev_addrs);
3727 dev->dev_addr = NULL;
3728}
3729
3730static int dev_addr_init(struct net_device *dev)
3731{
3732 unsigned char addr[MAX_ADDR_LEN];
3733 struct netdev_hw_addr *ha;
3734 int err;
3735
3736 /* rtnl_mutex must be held here */
3737
3738 __hw_addr_init(&dev->dev_addrs);
3739 memset(addr, 0, sizeof(addr));
3740 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3741 NETDEV_HW_ADDR_T_LAN);
3742 if (!err) {
3743 /*
3744 * Get the first (previously created) address from the list
3745 * and set dev_addr pointer to this location.
3746 */
3747 ha = list_first_entry(&dev->dev_addrs.list,
3748 struct netdev_hw_addr, list);
3749 dev->dev_addr = ha->addr;
3750 }
3751 return err;
3752}
3753
3754/**
3755 * dev_addr_add - Add a device address
3756 * @dev: device
3757 * @addr: address to add
3758 * @addr_type: address type
3759 *
3760 * Add a device address to the device or increase the reference count if
3761 * it already exists.
3762 *
3763 * The caller must hold the rtnl_mutex.
3764 */
3765int dev_addr_add(struct net_device *dev, unsigned char *addr,
3766 unsigned char addr_type)
3767{
3768 int err;
3769
3770 ASSERT_RTNL();
3771
3772 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3773 if (!err)
3774 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3775 return err;
3776}
3777EXPORT_SYMBOL(dev_addr_add);
3778
3779/**
3780 * dev_addr_del - Release a device address.
3781 * @dev: device
3782 * @addr: address to delete
3783 * @addr_type: address type
3784 *
3785 * Release reference to a device address and remove it from the device
3786 * if the reference count drops to zero.
3787 *
3788 * The caller must hold the rtnl_mutex.
3789 */
3790int dev_addr_del(struct net_device *dev, unsigned char *addr,
3791 unsigned char addr_type)
3792{
3793 int err;
3794 struct netdev_hw_addr *ha;
3795
3796 ASSERT_RTNL();
3797
3798 /*
3799 * We can not remove the first address from the list because
3800 * dev->dev_addr points to that.
3801 */
3802 ha = list_first_entry(&dev->dev_addrs.list,
3803 struct netdev_hw_addr, list);
3804 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3805 return -ENOENT;
3806
3807 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3808 addr_type);
3809 if (!err)
3810 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3811 return err;
3812}
3813EXPORT_SYMBOL(dev_addr_del);
3814
3815/**
3816 * dev_addr_add_multiple - Add device addresses from another device
3817 * @to_dev: device to which addresses will be added
3818 * @from_dev: device from which addresses will be added
3819 * @addr_type: address type - 0 means type will be used from from_dev
3820 *
3821 * Add device addresses of the one device to another.
3822 **
3823 * The caller must hold the rtnl_mutex.
3824 */
3825int dev_addr_add_multiple(struct net_device *to_dev,
3826 struct net_device *from_dev,
3827 unsigned char addr_type)
3828{
3829 int err;
3830
3831 ASSERT_RTNL();
3832
3833 if (from_dev->addr_len != to_dev->addr_len)
3834 return -EINVAL;
3835 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3836 to_dev->addr_len, addr_type);
3837 if (!err)
3838 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3839 return err;
3840}
3841EXPORT_SYMBOL(dev_addr_add_multiple);
3842
3843/**
3844 * dev_addr_del_multiple - Delete device addresses by another device
3845 * @to_dev: device where the addresses will be deleted
3846 * @from_dev: device by which addresses the addresses will be deleted
3847 * @addr_type: address type - 0 means type will used from from_dev
3848 *
3849 * Deletes addresses in to device by the list of addresses in from device.
3850 *
3851 * The caller must hold the rtnl_mutex.
3852 */
3853int dev_addr_del_multiple(struct net_device *to_dev,
3854 struct net_device *from_dev,
3855 unsigned char addr_type)
3856{
3857 ASSERT_RTNL();
3858
3859 if (from_dev->addr_len != to_dev->addr_len)
3860 return -EINVAL;
3861 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3862 to_dev->addr_len, addr_type);
3863 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3864 return 0;
3865}
3866EXPORT_SYMBOL(dev_addr_del_multiple);
3867
3868/* multicast addresses handling functions */
3869
3870int __dev_addr_delete(struct dev_addr_list **list, int *count,
3871 void *addr, int alen, int glbl)
3872{
3873 struct dev_addr_list *da;
3874
3875 for (; (da = *list) != NULL; list = &da->next) {
3876 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3877 alen == da->da_addrlen) {
3878 if (glbl) {
3879 int old_glbl = da->da_gusers;
3880 da->da_gusers = 0;
3881 if (old_glbl == 0)
3882 break;
3883 }
3884 if (--da->da_users)
3885 return 0;
3886
3887 *list = da->next;
3888 kfree(da);
3889 (*count)--;
3890 return 0;
3891 }
3892 }
3893 return -ENOENT;
3894}
3895
3896int __dev_addr_add(struct dev_addr_list **list, int *count,
3897 void *addr, int alen, int glbl)
3898{
3899 struct dev_addr_list *da;
3900
3901 for (da = *list; da != NULL; da = da->next) {
3902 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3903 da->da_addrlen == alen) {
3904 if (glbl) {
3905 int old_glbl = da->da_gusers;
3906 da->da_gusers = 1;
3907 if (old_glbl)
3908 return 0;
3909 }
3910 da->da_users++;
3911 return 0;
3912 }
3913 }
3914
3915 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3916 if (da == NULL)
3917 return -ENOMEM;
3918 memcpy(da->da_addr, addr, alen);
3919 da->da_addrlen = alen;
3920 da->da_users = 1;
3921 da->da_gusers = glbl ? 1 : 0;
3922 da->next = *list;
3923 *list = da;
3924 (*count)++;
3925 return 0;
3926}
3927
3928/**
3929 * dev_unicast_delete - Release secondary unicast address.
3930 * @dev: device
3931 * @addr: address to delete
3932 *
3933 * Release reference to a secondary unicast address and remove it
3934 * from the device if the reference count drops to zero.
3935 *
3936 * The caller must hold the rtnl_mutex.
3937 */
3938int dev_unicast_delete(struct net_device *dev, void *addr)
3939{
3940 int err;
3941
3942 ASSERT_RTNL();
3943
3944 netif_addr_lock_bh(dev);
3945 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3946 NETDEV_HW_ADDR_T_UNICAST);
3947 if (!err)
3948 __dev_set_rx_mode(dev);
3949 netif_addr_unlock_bh(dev);
3950 return err;
3951}
3952EXPORT_SYMBOL(dev_unicast_delete);
3953
3954/**
3955 * dev_unicast_add - add a secondary unicast address
3956 * @dev: device
3957 * @addr: address to add
3958 *
3959 * Add a secondary unicast address to the device or increase
3960 * the reference count if it already exists.
3961 *
3962 * The caller must hold the rtnl_mutex.
3963 */
3964int dev_unicast_add(struct net_device *dev, void *addr)
3965{
3966 int err;
3967
3968 ASSERT_RTNL();
3969
3970 netif_addr_lock_bh(dev);
3971 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3972 NETDEV_HW_ADDR_T_UNICAST);
3973 if (!err)
3974 __dev_set_rx_mode(dev);
3975 netif_addr_unlock_bh(dev);
3976 return err;
3977}
3978EXPORT_SYMBOL(dev_unicast_add);
3979
3980int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3981 struct dev_addr_list **from, int *from_count)
3982{
3983 struct dev_addr_list *da, *next;
3984 int err = 0;
3985
3986 da = *from;
3987 while (da != NULL) {
3988 next = da->next;
3989 if (!da->da_synced) {
3990 err = __dev_addr_add(to, to_count,
3991 da->da_addr, da->da_addrlen, 0);
3992 if (err < 0)
3993 break;
3994 da->da_synced = 1;
3995 da->da_users++;
3996 } else if (da->da_users == 1) {
3997 __dev_addr_delete(to, to_count,
3998 da->da_addr, da->da_addrlen, 0);
3999 __dev_addr_delete(from, from_count,
4000 da->da_addr, da->da_addrlen, 0);
4001 }
4002 da = next;
4003 }
4004 return err;
4005}
4006EXPORT_SYMBOL_GPL(__dev_addr_sync);
4007
4008void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4009 struct dev_addr_list **from, int *from_count)
4010{
4011 struct dev_addr_list *da, *next;
4012
4013 da = *from;
4014 while (da != NULL) {
4015 next = da->next;
4016 if (da->da_synced) {
4017 __dev_addr_delete(to, to_count,
4018 da->da_addr, da->da_addrlen, 0);
4019 da->da_synced = 0;
4020 __dev_addr_delete(from, from_count,
4021 da->da_addr, da->da_addrlen, 0);
4022 }
4023 da = next;
4024 }
4025}
4026EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4027
4028/**
4029 * dev_unicast_sync - Synchronize device's unicast list to another device
4030 * @to: destination device
4031 * @from: source device
4032 *
4033 * Add newly added addresses to the destination device and release
4034 * addresses that have no users left. The source device must be
4035 * locked by netif_tx_lock_bh.
4036 *
4037 * This function is intended to be called from the dev->set_rx_mode
4038 * function of layered software devices.
4039 */
4040int dev_unicast_sync(struct net_device *to, struct net_device *from)
4041{
4042 int err = 0;
4043
4044 if (to->addr_len != from->addr_len)
4045 return -EINVAL;
4046
4047 netif_addr_lock_bh(to);
4048 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4049 if (!err)
4050 __dev_set_rx_mode(to);
4051 netif_addr_unlock_bh(to);
4052 return err;
4053}
4054EXPORT_SYMBOL(dev_unicast_sync);
4055
4056/**
4057 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4058 * @to: destination device
4059 * @from: source device
4060 *
4061 * Remove all addresses that were added to the destination device by
4062 * dev_unicast_sync(). This function is intended to be called from the
4063 * dev->stop function of layered software devices.
4064 */
4065void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4066{
4067 if (to->addr_len != from->addr_len)
4068 return;
4069
4070 netif_addr_lock_bh(from);
4071 netif_addr_lock(to);
4072 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4073 __dev_set_rx_mode(to);
4074 netif_addr_unlock(to);
4075 netif_addr_unlock_bh(from);
4076}
4077EXPORT_SYMBOL(dev_unicast_unsync);
4078
4079static void dev_unicast_flush(struct net_device *dev)
4080{
4081 netif_addr_lock_bh(dev);
4082 __hw_addr_flush(&dev->uc);
4083 netif_addr_unlock_bh(dev);
4084}
4085
4086static void dev_unicast_init(struct net_device *dev)
4087{
4088 __hw_addr_init(&dev->uc);
4089}
4090
4091
4092static void __dev_addr_discard(struct dev_addr_list **list)
4093{
4094 struct dev_addr_list *tmp;
4095
4096 while (*list != NULL) {
4097 tmp = *list;
4098 *list = tmp->next;
4099 if (tmp->da_users > tmp->da_gusers)
4100 printk("__dev_addr_discard: address leakage! "
4101 "da_users=%d\n", tmp->da_users);
4102 kfree(tmp);
4103 }
4104}
4105
4106static void dev_addr_discard(struct net_device *dev)
4107{
4108 netif_addr_lock_bh(dev);
4109
4110 __dev_addr_discard(&dev->mc_list);
4111 dev->mc_count = 0;
4112
4113 netif_addr_unlock_bh(dev);
4114}
4115
4116/**
4117 * dev_get_flags - get flags reported to userspace
4118 * @dev: device
4119 *
4120 * Get the combination of flag bits exported through APIs to userspace.
4121 */
4122unsigned dev_get_flags(const struct net_device *dev)
4123{
4124 unsigned flags;
4125
4126 flags = (dev->flags & ~(IFF_PROMISC |
4127 IFF_ALLMULTI |
4128 IFF_RUNNING |
4129 IFF_LOWER_UP |
4130 IFF_DORMANT)) |
4131 (dev->gflags & (IFF_PROMISC |
4132 IFF_ALLMULTI));
4133
4134 if (netif_running(dev)) {
4135 if (netif_oper_up(dev))
4136 flags |= IFF_RUNNING;
4137 if (netif_carrier_ok(dev))
4138 flags |= IFF_LOWER_UP;
4139 if (netif_dormant(dev))
4140 flags |= IFF_DORMANT;
4141 }
4142
4143 return flags;
4144}
4145EXPORT_SYMBOL(dev_get_flags);
4146
4147/**
4148 * dev_change_flags - change device settings
4149 * @dev: device
4150 * @flags: device state flags
4151 *
4152 * Change settings on device based state flags. The flags are
4153 * in the userspace exported format.
4154 */
4155int dev_change_flags(struct net_device *dev, unsigned flags)
4156{
4157 int ret, changes;
4158 int old_flags = dev->flags;
4159
4160 ASSERT_RTNL();
4161
4162 /*
4163 * Set the flags on our device.
4164 */
4165
4166 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4167 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4168 IFF_AUTOMEDIA)) |
4169 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4170 IFF_ALLMULTI));
4171
4172 /*
4173 * Load in the correct multicast list now the flags have changed.
4174 */
4175
4176 if ((old_flags ^ flags) & IFF_MULTICAST)
4177 dev_change_rx_flags(dev, IFF_MULTICAST);
4178
4179 dev_set_rx_mode(dev);
4180
4181 /*
4182 * Have we downed the interface. We handle IFF_UP ourselves
4183 * according to user attempts to set it, rather than blindly
4184 * setting it.
4185 */
4186
4187 ret = 0;
4188 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4189 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4190
4191 if (!ret)
4192 dev_set_rx_mode(dev);
4193 }
4194
4195 if (dev->flags & IFF_UP &&
4196 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4197 IFF_VOLATILE)))
4198 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4199
4200 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4201 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4202
4203 dev->gflags ^= IFF_PROMISC;
4204 dev_set_promiscuity(dev, inc);
4205 }
4206
4207 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4208 is important. Some (broken) drivers set IFF_PROMISC, when
4209 IFF_ALLMULTI is requested not asking us and not reporting.
4210 */
4211 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4212 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4213
4214 dev->gflags ^= IFF_ALLMULTI;
4215 dev_set_allmulti(dev, inc);
4216 }
4217
4218 /* Exclude state transition flags, already notified */
4219 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4220 if (changes)
4221 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4222
4223 return ret;
4224}
4225EXPORT_SYMBOL(dev_change_flags);
4226
4227/**
4228 * dev_set_mtu - Change maximum transfer unit
4229 * @dev: device
4230 * @new_mtu: new transfer unit
4231 *
4232 * Change the maximum transfer size of the network device.
4233 */
4234int dev_set_mtu(struct net_device *dev, int new_mtu)
4235{
4236 const struct net_device_ops *ops = dev->netdev_ops;
4237 int err;
4238
4239 if (new_mtu == dev->mtu)
4240 return 0;
4241
4242 /* MTU must be positive. */
4243 if (new_mtu < 0)
4244 return -EINVAL;
4245
4246 if (!netif_device_present(dev))
4247 return -ENODEV;
4248
4249 err = 0;
4250 if (ops->ndo_change_mtu)
4251 err = ops->ndo_change_mtu(dev, new_mtu);
4252 else
4253 dev->mtu = new_mtu;
4254
4255 if (!err && dev->flags & IFF_UP)
4256 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4257 return err;
4258}
4259EXPORT_SYMBOL(dev_set_mtu);
4260
4261/**
4262 * dev_set_mac_address - Change Media Access Control Address
4263 * @dev: device
4264 * @sa: new address
4265 *
4266 * Change the hardware (MAC) address of the device
4267 */
4268int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4269{
4270 const struct net_device_ops *ops = dev->netdev_ops;
4271 int err;
4272
4273 if (!ops->ndo_set_mac_address)
4274 return -EOPNOTSUPP;
4275 if (sa->sa_family != dev->type)
4276 return -EINVAL;
4277 if (!netif_device_present(dev))
4278 return -ENODEV;
4279 err = ops->ndo_set_mac_address(dev, sa);
4280 if (!err)
4281 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4282 return err;
4283}
4284EXPORT_SYMBOL(dev_set_mac_address);
4285
4286/*
4287 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4288 */
4289static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4290{
4291 int err;
4292 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4293
4294 if (!dev)
4295 return -ENODEV;
4296
4297 switch (cmd) {
4298 case SIOCGIFFLAGS: /* Get interface flags */
4299 ifr->ifr_flags = (short) dev_get_flags(dev);
4300 return 0;
4301
4302 case SIOCGIFMETRIC: /* Get the metric on the interface
4303 (currently unused) */
4304 ifr->ifr_metric = 0;
4305 return 0;
4306
4307 case SIOCGIFMTU: /* Get the MTU of a device */
4308 ifr->ifr_mtu = dev->mtu;
4309 return 0;
4310
4311 case SIOCGIFHWADDR:
4312 if (!dev->addr_len)
4313 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4314 else
4315 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4316 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4317 ifr->ifr_hwaddr.sa_family = dev->type;
4318 return 0;
4319
4320 case SIOCGIFSLAVE:
4321 err = -EINVAL;
4322 break;
4323
4324 case SIOCGIFMAP:
4325 ifr->ifr_map.mem_start = dev->mem_start;
4326 ifr->ifr_map.mem_end = dev->mem_end;
4327 ifr->ifr_map.base_addr = dev->base_addr;
4328 ifr->ifr_map.irq = dev->irq;
4329 ifr->ifr_map.dma = dev->dma;
4330 ifr->ifr_map.port = dev->if_port;
4331 return 0;
4332
4333 case SIOCGIFINDEX:
4334 ifr->ifr_ifindex = dev->ifindex;
4335 return 0;
4336
4337 case SIOCGIFTXQLEN:
4338 ifr->ifr_qlen = dev->tx_queue_len;
4339 return 0;
4340
4341 default:
4342 /* dev_ioctl() should ensure this case
4343 * is never reached
4344 */
4345 WARN_ON(1);
4346 err = -EINVAL;
4347 break;
4348
4349 }
4350 return err;
4351}
4352
4353/*
4354 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4355 */
4356static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4357{
4358 int err;
4359 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4360 const struct net_device_ops *ops;
4361
4362 if (!dev)
4363 return -ENODEV;
4364
4365 ops = dev->netdev_ops;
4366
4367 switch (cmd) {
4368 case SIOCSIFFLAGS: /* Set interface flags */
4369 return dev_change_flags(dev, ifr->ifr_flags);
4370
4371 case SIOCSIFMETRIC: /* Set the metric on the interface
4372 (currently unused) */
4373 return -EOPNOTSUPP;
4374
4375 case SIOCSIFMTU: /* Set the MTU of a device */
4376 return dev_set_mtu(dev, ifr->ifr_mtu);
4377
4378 case SIOCSIFHWADDR:
4379 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4380
4381 case SIOCSIFHWBROADCAST:
4382 if (ifr->ifr_hwaddr.sa_family != dev->type)
4383 return -EINVAL;
4384 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4385 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4386 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4387 return 0;
4388
4389 case SIOCSIFMAP:
4390 if (ops->ndo_set_config) {
4391 if (!netif_device_present(dev))
4392 return -ENODEV;
4393 return ops->ndo_set_config(dev, &ifr->ifr_map);
4394 }
4395 return -EOPNOTSUPP;
4396
4397 case SIOCADDMULTI:
4398 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4399 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4400 return -EINVAL;
4401 if (!netif_device_present(dev))
4402 return -ENODEV;
4403 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4404 dev->addr_len, 1);
4405
4406 case SIOCDELMULTI:
4407 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4408 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4409 return -EINVAL;
4410 if (!netif_device_present(dev))
4411 return -ENODEV;
4412 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4413 dev->addr_len, 1);
4414
4415 case SIOCSIFTXQLEN:
4416 if (ifr->ifr_qlen < 0)
4417 return -EINVAL;
4418 dev->tx_queue_len = ifr->ifr_qlen;
4419 return 0;
4420
4421 case SIOCSIFNAME:
4422 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4423 return dev_change_name(dev, ifr->ifr_newname);
4424
4425 /*
4426 * Unknown or private ioctl
4427 */
4428 default:
4429 if ((cmd >= SIOCDEVPRIVATE &&
4430 cmd <= SIOCDEVPRIVATE + 15) ||
4431 cmd == SIOCBONDENSLAVE ||
4432 cmd == SIOCBONDRELEASE ||
4433 cmd == SIOCBONDSETHWADDR ||
4434 cmd == SIOCBONDSLAVEINFOQUERY ||
4435 cmd == SIOCBONDINFOQUERY ||
4436 cmd == SIOCBONDCHANGEACTIVE ||
4437 cmd == SIOCGMIIPHY ||
4438 cmd == SIOCGMIIREG ||
4439 cmd == SIOCSMIIREG ||
4440 cmd == SIOCBRADDIF ||
4441 cmd == SIOCBRDELIF ||
4442 cmd == SIOCSHWTSTAMP ||
4443 cmd == SIOCWANDEV) {
4444 err = -EOPNOTSUPP;
4445 if (ops->ndo_do_ioctl) {
4446 if (netif_device_present(dev))
4447 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4448 else
4449 err = -ENODEV;
4450 }
4451 } else
4452 err = -EINVAL;
4453
4454 }
4455 return err;
4456}
4457
4458/*
4459 * This function handles all "interface"-type I/O control requests. The actual
4460 * 'doing' part of this is dev_ifsioc above.
4461 */
4462
4463/**
4464 * dev_ioctl - network device ioctl
4465 * @net: the applicable net namespace
4466 * @cmd: command to issue
4467 * @arg: pointer to a struct ifreq in user space
4468 *
4469 * Issue ioctl functions to devices. This is normally called by the
4470 * user space syscall interfaces but can sometimes be useful for
4471 * other purposes. The return value is the return from the syscall if
4472 * positive or a negative errno code on error.
4473 */
4474
4475int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4476{
4477 struct ifreq ifr;
4478 int ret;
4479 char *colon;
4480
4481 /* One special case: SIOCGIFCONF takes ifconf argument
4482 and requires shared lock, because it sleeps writing
4483 to user space.
4484 */
4485
4486 if (cmd == SIOCGIFCONF) {
4487 rtnl_lock();
4488 ret = dev_ifconf(net, (char __user *) arg);
4489 rtnl_unlock();
4490 return ret;
4491 }
4492 if (cmd == SIOCGIFNAME)
4493 return dev_ifname(net, (struct ifreq __user *)arg);
4494
4495 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4496 return -EFAULT;
4497
4498 ifr.ifr_name[IFNAMSIZ-1] = 0;
4499
4500 colon = strchr(ifr.ifr_name, ':');
4501 if (colon)
4502 *colon = 0;
4503
4504 /*
4505 * See which interface the caller is talking about.
4506 */
4507
4508 switch (cmd) {
4509 /*
4510 * These ioctl calls:
4511 * - can be done by all.
4512 * - atomic and do not require locking.
4513 * - return a value
4514 */
4515 case SIOCGIFFLAGS:
4516 case SIOCGIFMETRIC:
4517 case SIOCGIFMTU:
4518 case SIOCGIFHWADDR:
4519 case SIOCGIFSLAVE:
4520 case SIOCGIFMAP:
4521 case SIOCGIFINDEX:
4522 case SIOCGIFTXQLEN:
4523 dev_load(net, ifr.ifr_name);
4524 read_lock(&dev_base_lock);
4525 ret = dev_ifsioc_locked(net, &ifr, cmd);
4526 read_unlock(&dev_base_lock);
4527 if (!ret) {
4528 if (colon)
4529 *colon = ':';
4530 if (copy_to_user(arg, &ifr,
4531 sizeof(struct ifreq)))
4532 ret = -EFAULT;
4533 }
4534 return ret;
4535
4536 case SIOCETHTOOL:
4537 dev_load(net, ifr.ifr_name);
4538 rtnl_lock();
4539 ret = dev_ethtool(net, &ifr);
4540 rtnl_unlock();
4541 if (!ret) {
4542 if (colon)
4543 *colon = ':';
4544 if (copy_to_user(arg, &ifr,
4545 sizeof(struct ifreq)))
4546 ret = -EFAULT;
4547 }
4548 return ret;
4549
4550 /*
4551 * These ioctl calls:
4552 * - require superuser power.
4553 * - require strict serialization.
4554 * - return a value
4555 */
4556 case SIOCGMIIPHY:
4557 case SIOCGMIIREG:
4558 case SIOCSIFNAME:
4559 if (!capable(CAP_NET_ADMIN))
4560 return -EPERM;
4561 dev_load(net, ifr.ifr_name);
4562 rtnl_lock();
4563 ret = dev_ifsioc(net, &ifr, cmd);
4564 rtnl_unlock();
4565 if (!ret) {
4566 if (colon)
4567 *colon = ':';
4568 if (copy_to_user(arg, &ifr,
4569 sizeof(struct ifreq)))
4570 ret = -EFAULT;
4571 }
4572 return ret;
4573
4574 /*
4575 * These ioctl calls:
4576 * - require superuser power.
4577 * - require strict serialization.
4578 * - do not return a value
4579 */
4580 case SIOCSIFFLAGS:
4581 case SIOCSIFMETRIC:
4582 case SIOCSIFMTU:
4583 case SIOCSIFMAP:
4584 case SIOCSIFHWADDR:
4585 case SIOCSIFSLAVE:
4586 case SIOCADDMULTI:
4587 case SIOCDELMULTI:
4588 case SIOCSIFHWBROADCAST:
4589 case SIOCSIFTXQLEN:
4590 case SIOCSMIIREG:
4591 case SIOCBONDENSLAVE:
4592 case SIOCBONDRELEASE:
4593 case SIOCBONDSETHWADDR:
4594 case SIOCBONDCHANGEACTIVE:
4595 case SIOCBRADDIF:
4596 case SIOCBRDELIF:
4597 case SIOCSHWTSTAMP:
4598 if (!capable(CAP_NET_ADMIN))
4599 return -EPERM;
4600 /* fall through */
4601 case SIOCBONDSLAVEINFOQUERY:
4602 case SIOCBONDINFOQUERY:
4603 dev_load(net, ifr.ifr_name);
4604 rtnl_lock();
4605 ret = dev_ifsioc(net, &ifr, cmd);
4606 rtnl_unlock();
4607 return ret;
4608
4609 case SIOCGIFMEM:
4610 /* Get the per device memory space. We can add this but
4611 * currently do not support it */
4612 case SIOCSIFMEM:
4613 /* Set the per device memory buffer space.
4614 * Not applicable in our case */
4615 case SIOCSIFLINK:
4616 return -EINVAL;
4617
4618 /*
4619 * Unknown or private ioctl.
4620 */
4621 default:
4622 if (cmd == SIOCWANDEV ||
4623 (cmd >= SIOCDEVPRIVATE &&
4624 cmd <= SIOCDEVPRIVATE + 15)) {
4625 dev_load(net, ifr.ifr_name);
4626 rtnl_lock();
4627 ret = dev_ifsioc(net, &ifr, cmd);
4628 rtnl_unlock();
4629 if (!ret && copy_to_user(arg, &ifr,
4630 sizeof(struct ifreq)))
4631 ret = -EFAULT;
4632 return ret;
4633 }
4634 /* Take care of Wireless Extensions */
4635 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4636 return wext_handle_ioctl(net, &ifr, cmd, arg);
4637 return -EINVAL;
4638 }
4639}
4640
4641
4642/**
4643 * dev_new_index - allocate an ifindex
4644 * @net: the applicable net namespace
4645 *
4646 * Returns a suitable unique value for a new device interface
4647 * number. The caller must hold the rtnl semaphore or the
4648 * dev_base_lock to be sure it remains unique.
4649 */
4650static int dev_new_index(struct net *net)
4651{
4652 static int ifindex;
4653 for (;;) {
4654 if (++ifindex <= 0)
4655 ifindex = 1;
4656 if (!__dev_get_by_index(net, ifindex))
4657 return ifindex;
4658 }
4659}
4660
4661/* Delayed registration/unregisteration */
4662static LIST_HEAD(net_todo_list);
4663
4664static void net_set_todo(struct net_device *dev)
4665{
4666 list_add_tail(&dev->todo_list, &net_todo_list);
4667}
4668
4669static void rollback_registered_many(struct list_head *head)
4670{
4671 struct net_device *dev;
4672
4673 BUG_ON(dev_boot_phase);
4674 ASSERT_RTNL();
4675
4676 list_for_each_entry(dev, head, unreg_list) {
4677 /* Some devices call without registering
4678 * for initialization unwind.
4679 */
4680 if (dev->reg_state == NETREG_UNINITIALIZED) {
4681 pr_debug("unregister_netdevice: device %s/%p never "
4682 "was registered\n", dev->name, dev);
4683
4684 WARN_ON(1);
4685 return;
4686 }
4687
4688 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4689
4690 /* If device is running, close it first. */
4691 dev_close(dev);
4692
4693 /* And unlink it from device chain. */
4694 unlist_netdevice(dev);
4695
4696 dev->reg_state = NETREG_UNREGISTERING;
4697 }
4698
4699 synchronize_net();
4700
4701 list_for_each_entry(dev, head, unreg_list) {
4702 /* Shutdown queueing discipline. */
4703 dev_shutdown(dev);
4704
4705
4706 /* Notify protocols, that we are about to destroy
4707 this device. They should clean all the things.
4708 */
4709 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4710
4711 /*
4712 * Flush the unicast and multicast chains
4713 */
4714 dev_unicast_flush(dev);
4715 dev_addr_discard(dev);
4716
4717 if (dev->netdev_ops->ndo_uninit)
4718 dev->netdev_ops->ndo_uninit(dev);
4719
4720 /* Notifier chain MUST detach us from master device. */
4721 WARN_ON(dev->master);
4722
4723 /* Remove entries from kobject tree */
4724 netdev_unregister_kobject(dev);
4725 }
4726
4727 synchronize_net();
4728
4729 list_for_each_entry(dev, head, unreg_list)
4730 dev_put(dev);
4731}
4732
4733static void rollback_registered(struct net_device *dev)
4734{
4735 LIST_HEAD(single);
4736
4737 list_add(&dev->unreg_list, &single);
4738 rollback_registered_many(&single);
4739}
4740
4741static void __netdev_init_queue_locks_one(struct net_device *dev,
4742 struct netdev_queue *dev_queue,
4743 void *_unused)
4744{
4745 spin_lock_init(&dev_queue->_xmit_lock);
4746 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4747 dev_queue->xmit_lock_owner = -1;
4748}
4749
4750static void netdev_init_queue_locks(struct net_device *dev)
4751{
4752 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4753 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4754}
4755
4756unsigned long netdev_fix_features(unsigned long features, const char *name)
4757{
4758 /* Fix illegal SG+CSUM combinations. */
4759 if ((features & NETIF_F_SG) &&
4760 !(features & NETIF_F_ALL_CSUM)) {
4761 if (name)
4762 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4763 "checksum feature.\n", name);
4764 features &= ~NETIF_F_SG;
4765 }
4766
4767 /* TSO requires that SG is present as well. */
4768 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4769 if (name)
4770 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4771 "SG feature.\n", name);
4772 features &= ~NETIF_F_TSO;
4773 }
4774
4775 if (features & NETIF_F_UFO) {
4776 if (!(features & NETIF_F_GEN_CSUM)) {
4777 if (name)
4778 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4779 "since no NETIF_F_HW_CSUM feature.\n",
4780 name);
4781 features &= ~NETIF_F_UFO;
4782 }
4783
4784 if (!(features & NETIF_F_SG)) {
4785 if (name)
4786 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4787 "since no NETIF_F_SG feature.\n", name);
4788 features &= ~NETIF_F_UFO;
4789 }
4790 }
4791
4792 return features;
4793}
4794EXPORT_SYMBOL(netdev_fix_features);
4795
4796/**
4797 * register_netdevice - register a network device
4798 * @dev: device to register
4799 *
4800 * Take a completed network device structure and add it to the kernel
4801 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4802 * chain. 0 is returned on success. A negative errno code is returned
4803 * on a failure to set up the device, or if the name is a duplicate.
4804 *
4805 * Callers must hold the rtnl semaphore. You may want
4806 * register_netdev() instead of this.
4807 *
4808 * BUGS:
4809 * The locking appears insufficient to guarantee two parallel registers
4810 * will not get the same name.
4811 */
4812
4813int register_netdevice(struct net_device *dev)
4814{
4815 struct hlist_head *head;
4816 struct hlist_node *p;
4817 int ret;
4818 struct net *net = dev_net(dev);
4819
4820 BUG_ON(dev_boot_phase);
4821 ASSERT_RTNL();
4822
4823 might_sleep();
4824
4825 /* When net_device's are persistent, this will be fatal. */
4826 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4827 BUG_ON(!net);
4828
4829 spin_lock_init(&dev->addr_list_lock);
4830 netdev_set_addr_lockdep_class(dev);
4831 netdev_init_queue_locks(dev);
4832
4833 dev->iflink = -1;
4834
4835 /* Init, if this function is available */
4836 if (dev->netdev_ops->ndo_init) {
4837 ret = dev->netdev_ops->ndo_init(dev);
4838 if (ret) {
4839 if (ret > 0)
4840 ret = -EIO;
4841 goto out;
4842 }
4843 }
4844
4845 if (!dev_valid_name(dev->name)) {
4846 ret = -EINVAL;
4847 goto err_uninit;
4848 }
4849
4850 dev->ifindex = dev_new_index(net);
4851 if (dev->iflink == -1)
4852 dev->iflink = dev->ifindex;
4853
4854 /* Check for existence of name */
4855 head = dev_name_hash(net, dev->name);
4856 hlist_for_each(p, head) {
4857 struct net_device *d
4858 = hlist_entry(p, struct net_device, name_hlist);
4859 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4860 ret = -EEXIST;
4861 goto err_uninit;
4862 }
4863 }
4864
4865 /* Fix illegal checksum combinations */
4866 if ((dev->features & NETIF_F_HW_CSUM) &&
4867 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4868 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4869 dev->name);
4870 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4871 }
4872
4873 if ((dev->features & NETIF_F_NO_CSUM) &&
4874 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4875 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4876 dev->name);
4877 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4878 }
4879
4880 dev->features = netdev_fix_features(dev->features, dev->name);
4881
4882 /* Enable software GSO if SG is supported. */
4883 if (dev->features & NETIF_F_SG)
4884 dev->features |= NETIF_F_GSO;
4885
4886 netdev_initialize_kobject(dev);
4887
4888 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4889 ret = notifier_to_errno(ret);
4890 if (ret)
4891 goto err_uninit;
4892
4893 ret = netdev_register_kobject(dev);
4894 if (ret)
4895 goto err_uninit;
4896 dev->reg_state = NETREG_REGISTERED;
4897
4898 /*
4899 * Default initial state at registry is that the
4900 * device is present.
4901 */
4902
4903 set_bit(__LINK_STATE_PRESENT, &dev->state);
4904
4905 dev_init_scheduler(dev);
4906 dev_hold(dev);
4907 list_netdevice(dev);
4908
4909 /* Notify protocols, that a new device appeared. */
4910 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4911 ret = notifier_to_errno(ret);
4912 if (ret) {
4913 rollback_registered(dev);
4914 dev->reg_state = NETREG_UNREGISTERED;
4915 }
4916
4917out:
4918 return ret;
4919
4920err_uninit:
4921 if (dev->netdev_ops->ndo_uninit)
4922 dev->netdev_ops->ndo_uninit(dev);
4923 goto out;
4924}
4925EXPORT_SYMBOL(register_netdevice);
4926
4927/**
4928 * init_dummy_netdev - init a dummy network device for NAPI
4929 * @dev: device to init
4930 *
4931 * This takes a network device structure and initialize the minimum
4932 * amount of fields so it can be used to schedule NAPI polls without
4933 * registering a full blown interface. This is to be used by drivers
4934 * that need to tie several hardware interfaces to a single NAPI
4935 * poll scheduler due to HW limitations.
4936 */
4937int init_dummy_netdev(struct net_device *dev)
4938{
4939 /* Clear everything. Note we don't initialize spinlocks
4940 * are they aren't supposed to be taken by any of the
4941 * NAPI code and this dummy netdev is supposed to be
4942 * only ever used for NAPI polls
4943 */
4944 memset(dev, 0, sizeof(struct net_device));
4945
4946 /* make sure we BUG if trying to hit standard
4947 * register/unregister code path
4948 */
4949 dev->reg_state = NETREG_DUMMY;
4950
4951 /* initialize the ref count */
4952 atomic_set(&dev->refcnt, 1);
4953
4954 /* NAPI wants this */
4955 INIT_LIST_HEAD(&dev->napi_list);
4956
4957 /* a dummy interface is started by default */
4958 set_bit(__LINK_STATE_PRESENT, &dev->state);
4959 set_bit(__LINK_STATE_START, &dev->state);
4960
4961 return 0;
4962}
4963EXPORT_SYMBOL_GPL(init_dummy_netdev);
4964
4965
4966/**
4967 * register_netdev - register a network device
4968 * @dev: device to register
4969 *
4970 * Take a completed network device structure and add it to the kernel
4971 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4972 * chain. 0 is returned on success. A negative errno code is returned
4973 * on a failure to set up the device, or if the name is a duplicate.
4974 *
4975 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4976 * and expands the device name if you passed a format string to
4977 * alloc_netdev.
4978 */
4979int register_netdev(struct net_device *dev)
4980{
4981 int err;
4982
4983 rtnl_lock();
4984
4985 /*
4986 * If the name is a format string the caller wants us to do a
4987 * name allocation.
4988 */
4989 if (strchr(dev->name, '%')) {
4990 err = dev_alloc_name(dev, dev->name);
4991 if (err < 0)
4992 goto out;
4993 }
4994
4995 err = register_netdevice(dev);
4996out:
4997 rtnl_unlock();
4998 return err;
4999}
5000EXPORT_SYMBOL(register_netdev);
5001
5002/*
5003 * netdev_wait_allrefs - wait until all references are gone.
5004 *
5005 * This is called when unregistering network devices.
5006 *
5007 * Any protocol or device that holds a reference should register
5008 * for netdevice notification, and cleanup and put back the
5009 * reference if they receive an UNREGISTER event.
5010 * We can get stuck here if buggy protocols don't correctly
5011 * call dev_put.
5012 */
5013static void netdev_wait_allrefs(struct net_device *dev)
5014{
5015 unsigned long rebroadcast_time, warning_time;
5016
5017 rebroadcast_time = warning_time = jiffies;
5018 while (atomic_read(&dev->refcnt) != 0) {
5019 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5020 rtnl_lock();
5021
5022 /* Rebroadcast unregister notification */
5023 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5024
5025 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5026 &dev->state)) {
5027 /* We must not have linkwatch events
5028 * pending on unregister. If this
5029 * happens, we simply run the queue
5030 * unscheduled, resulting in a noop
5031 * for this device.
5032 */
5033 linkwatch_run_queue();
5034 }
5035
5036 __rtnl_unlock();
5037
5038 rebroadcast_time = jiffies;
5039 }
5040
5041 msleep(250);
5042
5043 if (time_after(jiffies, warning_time + 10 * HZ)) {
5044 printk(KERN_EMERG "unregister_netdevice: "
5045 "waiting for %s to become free. Usage "
5046 "count = %d\n",
5047 dev->name, atomic_read(&dev->refcnt));
5048 warning_time = jiffies;
5049 }
5050 }
5051}
5052
5053/* The sequence is:
5054 *
5055 * rtnl_lock();
5056 * ...
5057 * register_netdevice(x1);
5058 * register_netdevice(x2);
5059 * ...
5060 * unregister_netdevice(y1);
5061 * unregister_netdevice(y2);
5062 * ...
5063 * rtnl_unlock();
5064 * free_netdev(y1);
5065 * free_netdev(y2);
5066 *
5067 * We are invoked by rtnl_unlock().
5068 * This allows us to deal with problems:
5069 * 1) We can delete sysfs objects which invoke hotplug
5070 * without deadlocking with linkwatch via keventd.
5071 * 2) Since we run with the RTNL semaphore not held, we can sleep
5072 * safely in order to wait for the netdev refcnt to drop to zero.
5073 *
5074 * We must not return until all unregister events added during
5075 * the interval the lock was held have been completed.
5076 */
5077void netdev_run_todo(void)
5078{
5079 struct list_head list;
5080
5081 /* Snapshot list, allow later requests */
5082 list_replace_init(&net_todo_list, &list);
5083
5084 __rtnl_unlock();
5085
5086 while (!list_empty(&list)) {
5087 struct net_device *dev
5088 = list_entry(list.next, struct net_device, todo_list);
5089 list_del(&dev->todo_list);
5090
5091 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5092 printk(KERN_ERR "network todo '%s' but state %d\n",
5093 dev->name, dev->reg_state);
5094 dump_stack();
5095 continue;
5096 }
5097
5098 dev->reg_state = NETREG_UNREGISTERED;
5099
5100 on_each_cpu(flush_backlog, dev, 1);
5101
5102 netdev_wait_allrefs(dev);
5103
5104 /* paranoia */
5105 BUG_ON(atomic_read(&dev->refcnt));
5106 WARN_ON(dev->ip_ptr);
5107 WARN_ON(dev->ip6_ptr);
5108 WARN_ON(dev->dn_ptr);
5109
5110 if (dev->destructor)
5111 dev->destructor(dev);
5112
5113 /* Free network device */
5114 kobject_put(&dev->dev.kobj);
5115 }
5116}
5117
5118/**
5119 * dev_get_stats - get network device statistics
5120 * @dev: device to get statistics from
5121 *
5122 * Get network statistics from device. The device driver may provide
5123 * its own method by setting dev->netdev_ops->get_stats; otherwise
5124 * the internal statistics structure is used.
5125 */
5126const struct net_device_stats *dev_get_stats(struct net_device *dev)
5127{
5128 const struct net_device_ops *ops = dev->netdev_ops;
5129
5130 if (ops->ndo_get_stats)
5131 return ops->ndo_get_stats(dev);
5132 else {
5133 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5134 struct net_device_stats *stats = &dev->stats;
5135 unsigned int i;
5136 struct netdev_queue *txq;
5137
5138 for (i = 0; i < dev->num_tx_queues; i++) {
5139 txq = netdev_get_tx_queue(dev, i);
5140 tx_bytes += txq->tx_bytes;
5141 tx_packets += txq->tx_packets;
5142 tx_dropped += txq->tx_dropped;
5143 }
5144 if (tx_bytes || tx_packets || tx_dropped) {
5145 stats->tx_bytes = tx_bytes;
5146 stats->tx_packets = tx_packets;
5147 stats->tx_dropped = tx_dropped;
5148 }
5149 return stats;
5150 }
5151}
5152EXPORT_SYMBOL(dev_get_stats);
5153
5154static void netdev_init_one_queue(struct net_device *dev,
5155 struct netdev_queue *queue,
5156 void *_unused)
5157{
5158 queue->dev = dev;
5159}
5160
5161static void netdev_init_queues(struct net_device *dev)
5162{
5163 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5164 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5165 spin_lock_init(&dev->tx_global_lock);
5166}
5167
5168/**
5169 * alloc_netdev_mq - allocate network device
5170 * @sizeof_priv: size of private data to allocate space for
5171 * @name: device name format string
5172 * @setup: callback to initialize device
5173 * @queue_count: the number of subqueues to allocate
5174 *
5175 * Allocates a struct net_device with private data area for driver use
5176 * and performs basic initialization. Also allocates subquue structs
5177 * for each queue on the device at the end of the netdevice.
5178 */
5179struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5180 void (*setup)(struct net_device *), unsigned int queue_count)
5181{
5182 struct netdev_queue *tx;
5183 struct net_device *dev;
5184 size_t alloc_size;
5185 struct net_device *p;
5186
5187 BUG_ON(strlen(name) >= sizeof(dev->name));
5188
5189 alloc_size = sizeof(struct net_device);
5190 if (sizeof_priv) {
5191 /* ensure 32-byte alignment of private area */
5192 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5193 alloc_size += sizeof_priv;
5194 }
5195 /* ensure 32-byte alignment of whole construct */
5196 alloc_size += NETDEV_ALIGN - 1;
5197
5198 p = kzalloc(alloc_size, GFP_KERNEL);
5199 if (!p) {
5200 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5201 return NULL;
5202 }
5203
5204 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5205 if (!tx) {
5206 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5207 "tx qdiscs.\n");
5208 goto free_p;
5209 }
5210
5211 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5212 dev->padded = (char *)dev - (char *)p;
5213
5214 if (dev_addr_init(dev))
5215 goto free_tx;
5216
5217 dev_unicast_init(dev);
5218
5219 dev_net_set(dev, &init_net);
5220
5221 dev->_tx = tx;
5222 dev->num_tx_queues = queue_count;
5223 dev->real_num_tx_queues = queue_count;
5224
5225 dev->gso_max_size = GSO_MAX_SIZE;
5226
5227 netdev_init_queues(dev);
5228
5229 INIT_LIST_HEAD(&dev->napi_list);
5230 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5231 setup(dev);
5232 strcpy(dev->name, name);
5233 return dev;
5234
5235free_tx:
5236 kfree(tx);
5237
5238free_p:
5239 kfree(p);
5240 return NULL;
5241}
5242EXPORT_SYMBOL(alloc_netdev_mq);
5243
5244/**
5245 * free_netdev - free network device
5246 * @dev: device
5247 *
5248 * This function does the last stage of destroying an allocated device
5249 * interface. The reference to the device object is released.
5250 * If this is the last reference then it will be freed.
5251 */
5252void free_netdev(struct net_device *dev)
5253{
5254 struct napi_struct *p, *n;
5255
5256 release_net(dev_net(dev));
5257
5258 kfree(dev->_tx);
5259
5260 /* Flush device addresses */
5261 dev_addr_flush(dev);
5262
5263 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5264 netif_napi_del(p);
5265
5266 /* Compatibility with error handling in drivers */
5267 if (dev->reg_state == NETREG_UNINITIALIZED) {
5268 kfree((char *)dev - dev->padded);
5269 return;
5270 }
5271
5272 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5273 dev->reg_state = NETREG_RELEASED;
5274
5275 /* will free via device release */
5276 put_device(&dev->dev);
5277}
5278EXPORT_SYMBOL(free_netdev);
5279
5280/**
5281 * synchronize_net - Synchronize with packet receive processing
5282 *
5283 * Wait for packets currently being received to be done.
5284 * Does not block later packets from starting.
5285 */
5286void synchronize_net(void)
5287{
5288 might_sleep();
5289 synchronize_rcu();
5290}
5291EXPORT_SYMBOL(synchronize_net);
5292
5293/**
5294 * unregister_netdevice_queue - remove device from the kernel
5295 * @dev: device
5296 * @head: list
5297
5298 * This function shuts down a device interface and removes it
5299 * from the kernel tables.
5300 * If head not NULL, device is queued to be unregistered later.
5301 *
5302 * Callers must hold the rtnl semaphore. You may want
5303 * unregister_netdev() instead of this.
5304 */
5305
5306void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5307{
5308 ASSERT_RTNL();
5309
5310 if (head) {
5311 list_add_tail(&dev->unreg_list, head);
5312 } else {
5313 rollback_registered(dev);
5314 /* Finish processing unregister after unlock */
5315 net_set_todo(dev);
5316 }
5317}
5318EXPORT_SYMBOL(unregister_netdevice_queue);
5319
5320/**
5321 * unregister_netdevice_many - unregister many devices
5322 * @head: list of devices
5323 *
5324 */
5325void unregister_netdevice_many(struct list_head *head)
5326{
5327 struct net_device *dev;
5328
5329 if (!list_empty(head)) {
5330 rollback_registered_many(head);
5331 list_for_each_entry(dev, head, unreg_list)
5332 net_set_todo(dev);
5333 }
5334}
5335EXPORT_SYMBOL(unregister_netdevice_many);
5336
5337/**
5338 * unregister_netdev - remove device from the kernel
5339 * @dev: device
5340 *
5341 * This function shuts down a device interface and removes it
5342 * from the kernel tables.
5343 *
5344 * This is just a wrapper for unregister_netdevice that takes
5345 * the rtnl semaphore. In general you want to use this and not
5346 * unregister_netdevice.
5347 */
5348void unregister_netdev(struct net_device *dev)
5349{
5350 rtnl_lock();
5351 unregister_netdevice(dev);
5352 rtnl_unlock();
5353}
5354EXPORT_SYMBOL(unregister_netdev);
5355
5356/**
5357 * dev_change_net_namespace - move device to different nethost namespace
5358 * @dev: device
5359 * @net: network namespace
5360 * @pat: If not NULL name pattern to try if the current device name
5361 * is already taken in the destination network namespace.
5362 *
5363 * This function shuts down a device interface and moves it
5364 * to a new network namespace. On success 0 is returned, on
5365 * a failure a netagive errno code is returned.
5366 *
5367 * Callers must hold the rtnl semaphore.
5368 */
5369
5370int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5371{
5372 char buf[IFNAMSIZ];
5373 const char *destname;
5374 int err;
5375
5376 ASSERT_RTNL();
5377
5378 /* Don't allow namespace local devices to be moved. */
5379 err = -EINVAL;
5380 if (dev->features & NETIF_F_NETNS_LOCAL)
5381 goto out;
5382
5383#ifdef CONFIG_SYSFS
5384 /* Don't allow real devices to be moved when sysfs
5385 * is enabled.
5386 */
5387 err = -EINVAL;
5388 if (dev->dev.parent)
5389 goto out;
5390#endif
5391
5392 /* Ensure the device has been registrered */
5393 err = -EINVAL;
5394 if (dev->reg_state != NETREG_REGISTERED)
5395 goto out;
5396
5397 /* Get out if there is nothing todo */
5398 err = 0;
5399 if (net_eq(dev_net(dev), net))
5400 goto out;
5401
5402 /* Pick the destination device name, and ensure
5403 * we can use it in the destination network namespace.
5404 */
5405 err = -EEXIST;
5406 destname = dev->name;
5407 if (__dev_get_by_name(net, destname)) {
5408 /* We get here if we can't use the current device name */
5409 if (!pat)
5410 goto out;
5411 if (!dev_valid_name(pat))
5412 goto out;
5413 if (strchr(pat, '%')) {
5414 if (__dev_alloc_name(net, pat, buf) < 0)
5415 goto out;
5416 destname = buf;
5417 } else
5418 destname = pat;
5419 if (__dev_get_by_name(net, destname))
5420 goto out;
5421 }
5422
5423 /*
5424 * And now a mini version of register_netdevice unregister_netdevice.
5425 */
5426
5427 /* If device is running close it first. */
5428 dev_close(dev);
5429
5430 /* And unlink it from device chain */
5431 err = -ENODEV;
5432 unlist_netdevice(dev);
5433
5434 synchronize_net();
5435
5436 /* Shutdown queueing discipline. */
5437 dev_shutdown(dev);
5438
5439 /* Notify protocols, that we are about to destroy
5440 this device. They should clean all the things.
5441 */
5442 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5443
5444 /*
5445 * Flush the unicast and multicast chains
5446 */
5447 dev_unicast_flush(dev);
5448 dev_addr_discard(dev);
5449
5450 netdev_unregister_kobject(dev);
5451
5452 /* Actually switch the network namespace */
5453 dev_net_set(dev, net);
5454
5455 /* Assign the new device name */
5456 if (destname != dev->name)
5457 strcpy(dev->name, destname);
5458
5459 /* If there is an ifindex conflict assign a new one */
5460 if (__dev_get_by_index(net, dev->ifindex)) {
5461 int iflink = (dev->iflink == dev->ifindex);
5462 dev->ifindex = dev_new_index(net);
5463 if (iflink)
5464 dev->iflink = dev->ifindex;
5465 }
5466
5467 /* Fixup kobjects */
5468 err = netdev_register_kobject(dev);
5469 WARN_ON(err);
5470
5471 /* Add the device back in the hashes */
5472 list_netdevice(dev);
5473
5474 /* Notify protocols, that a new device appeared. */
5475 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5476
5477 synchronize_net();
5478 err = 0;
5479out:
5480 return err;
5481}
5482EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5483
5484static int dev_cpu_callback(struct notifier_block *nfb,
5485 unsigned long action,
5486 void *ocpu)
5487{
5488 struct sk_buff **list_skb;
5489 struct Qdisc **list_net;
5490 struct sk_buff *skb;
5491 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5492 struct softnet_data *sd, *oldsd;
5493
5494 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5495 return NOTIFY_OK;
5496
5497 local_irq_disable();
5498 cpu = smp_processor_id();
5499 sd = &per_cpu(softnet_data, cpu);
5500 oldsd = &per_cpu(softnet_data, oldcpu);
5501
5502 /* Find end of our completion_queue. */
5503 list_skb = &sd->completion_queue;
5504 while (*list_skb)
5505 list_skb = &(*list_skb)->next;
5506 /* Append completion queue from offline CPU. */
5507 *list_skb = oldsd->completion_queue;
5508 oldsd->completion_queue = NULL;
5509
5510 /* Find end of our output_queue. */
5511 list_net = &sd->output_queue;
5512 while (*list_net)
5513 list_net = &(*list_net)->next_sched;
5514 /* Append output queue from offline CPU. */
5515 *list_net = oldsd->output_queue;
5516 oldsd->output_queue = NULL;
5517
5518 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5519 local_irq_enable();
5520
5521 /* Process offline CPU's input_pkt_queue */
5522 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5523 netif_rx(skb);
5524
5525 return NOTIFY_OK;
5526}
5527
5528
5529/**
5530 * netdev_increment_features - increment feature set by one
5531 * @all: current feature set
5532 * @one: new feature set
5533 * @mask: mask feature set
5534 *
5535 * Computes a new feature set after adding a device with feature set
5536 * @one to the master device with current feature set @all. Will not
5537 * enable anything that is off in @mask. Returns the new feature set.
5538 */
5539unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5540 unsigned long mask)
5541{
5542 /* If device needs checksumming, downgrade to it. */
5543 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5544 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5545 else if (mask & NETIF_F_ALL_CSUM) {
5546 /* If one device supports v4/v6 checksumming, set for all. */
5547 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5548 !(all & NETIF_F_GEN_CSUM)) {
5549 all &= ~NETIF_F_ALL_CSUM;
5550 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5551 }
5552
5553 /* If one device supports hw checksumming, set for all. */
5554 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5555 all &= ~NETIF_F_ALL_CSUM;
5556 all |= NETIF_F_HW_CSUM;
5557 }
5558 }
5559
5560 one |= NETIF_F_ALL_CSUM;
5561
5562 one |= all & NETIF_F_ONE_FOR_ALL;
5563 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5564 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5565
5566 return all;
5567}
5568EXPORT_SYMBOL(netdev_increment_features);
5569
5570static struct hlist_head *netdev_create_hash(void)
5571{
5572 int i;
5573 struct hlist_head *hash;
5574
5575 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5576 if (hash != NULL)
5577 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5578 INIT_HLIST_HEAD(&hash[i]);
5579
5580 return hash;
5581}
5582
5583/* Initialize per network namespace state */
5584static int __net_init netdev_init(struct net *net)
5585{
5586 INIT_LIST_HEAD(&net->dev_base_head);
5587
5588 net->dev_name_head = netdev_create_hash();
5589 if (net->dev_name_head == NULL)
5590 goto err_name;
5591
5592 net->dev_index_head = netdev_create_hash();
5593 if (net->dev_index_head == NULL)
5594 goto err_idx;
5595
5596 return 0;
5597
5598err_idx:
5599 kfree(net->dev_name_head);
5600err_name:
5601 return -ENOMEM;
5602}
5603
5604/**
5605 * netdev_drivername - network driver for the device
5606 * @dev: network device
5607 * @buffer: buffer for resulting name
5608 * @len: size of buffer
5609 *
5610 * Determine network driver for device.
5611 */
5612char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5613{
5614 const struct device_driver *driver;
5615 const struct device *parent;
5616
5617 if (len <= 0 || !buffer)
5618 return buffer;
5619 buffer[0] = 0;
5620
5621 parent = dev->dev.parent;
5622
5623 if (!parent)
5624 return buffer;
5625
5626 driver = parent->driver;
5627 if (driver && driver->name)
5628 strlcpy(buffer, driver->name, len);
5629 return buffer;
5630}
5631
5632static void __net_exit netdev_exit(struct net *net)
5633{
5634 kfree(net->dev_name_head);
5635 kfree(net->dev_index_head);
5636}
5637
5638static struct pernet_operations __net_initdata netdev_net_ops = {
5639 .init = netdev_init,
5640 .exit = netdev_exit,
5641};
5642
5643static void __net_exit default_device_exit(struct net *net)
5644{
5645 struct net_device *dev;
5646 /*
5647 * Push all migratable of the network devices back to the
5648 * initial network namespace
5649 */
5650 rtnl_lock();
5651restart:
5652 for_each_netdev(net, dev) {
5653 int err;
5654 char fb_name[IFNAMSIZ];
5655
5656 /* Ignore unmoveable devices (i.e. loopback) */
5657 if (dev->features & NETIF_F_NETNS_LOCAL)
5658 continue;
5659
5660 /* Delete virtual devices */
5661 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5662 dev->rtnl_link_ops->dellink(dev, NULL);
5663 goto restart;
5664 }
5665
5666 /* Push remaing network devices to init_net */
5667 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5668 err = dev_change_net_namespace(dev, &init_net, fb_name);
5669 if (err) {
5670 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5671 __func__, dev->name, err);
5672 BUG();
5673 }
5674 goto restart;
5675 }
5676 rtnl_unlock();
5677}
5678
5679static struct pernet_operations __net_initdata default_device_ops = {
5680 .exit = default_device_exit,
5681};
5682
5683/*
5684 * Initialize the DEV module. At boot time this walks the device list and
5685 * unhooks any devices that fail to initialise (normally hardware not
5686 * present) and leaves us with a valid list of present and active devices.
5687 *
5688 */
5689
5690/*
5691 * This is called single threaded during boot, so no need
5692 * to take the rtnl semaphore.
5693 */
5694static int __init net_dev_init(void)
5695{
5696 int i, rc = -ENOMEM;
5697
5698 BUG_ON(!dev_boot_phase);
5699
5700 if (dev_proc_init())
5701 goto out;
5702
5703 if (netdev_kobject_init())
5704 goto out;
5705
5706 INIT_LIST_HEAD(&ptype_all);
5707 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5708 INIT_LIST_HEAD(&ptype_base[i]);
5709
5710 if (register_pernet_subsys(&netdev_net_ops))
5711 goto out;
5712
5713 /*
5714 * Initialise the packet receive queues.
5715 */
5716
5717 for_each_possible_cpu(i) {
5718 struct softnet_data *queue;
5719
5720 queue = &per_cpu(softnet_data, i);
5721 skb_queue_head_init(&queue->input_pkt_queue);
5722 queue->completion_queue = NULL;
5723 INIT_LIST_HEAD(&queue->poll_list);
5724
5725 queue->backlog.poll = process_backlog;
5726 queue->backlog.weight = weight_p;
5727 queue->backlog.gro_list = NULL;
5728 queue->backlog.gro_count = 0;
5729 }
5730
5731 dev_boot_phase = 0;
5732
5733 /* The loopback device is special if any other network devices
5734 * is present in a network namespace the loopback device must
5735 * be present. Since we now dynamically allocate and free the
5736 * loopback device ensure this invariant is maintained by
5737 * keeping the loopback device as the first device on the
5738 * list of network devices. Ensuring the loopback devices
5739 * is the first device that appears and the last network device
5740 * that disappears.
5741 */
5742 if (register_pernet_device(&loopback_net_ops))
5743 goto out;
5744
5745 if (register_pernet_device(&default_device_ops))
5746 goto out;
5747
5748 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5749 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5750
5751 hotcpu_notifier(dev_cpu_callback, 0);
5752 dst_init();
5753 dev_mcast_init();
5754 rc = 0;
5755out:
5756 return rc;
5757}
5758
5759subsys_initcall(net_dev_init);
5760
5761static int __init initialize_hashrnd(void)
5762{
5763 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5764 return 0;
5765}
5766
5767late_initcall_sync(initialize_hashrnd);
5768