]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
net: Introduce unregister_netdevice_queue()
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
83#include <linux/mutex.h>
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/ethtool.h>
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
96#include <net/net_namespace.h>
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
103#include <linux/if_macvlan.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
114#include <net/wext.h>
115#include <net/iw_handler.h>
116#include <asm/current.h>
117#include <linux/audit.h>
118#include <linux/dmaengine.h>
119#include <linux/err.h>
120#include <linux/ctype.h>
121#include <linux/if_arp.h>
122#include <linux/if_vlan.h>
123#include <linux/ip.h>
124#include <net/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
127#include <linux/jhash.h>
128#include <linux/random.h>
129#include <trace/events/napi.h>
130
131#include "net-sysfs.h"
132
133/* Instead of increasing this, you should create a hash table. */
134#define MAX_GRO_SKBS 8
135
136/* This should be increased if a protocol with a bigger head is added. */
137#define GRO_MAX_HEAD (MAX_HEADER + 128)
138
139/*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
150 * the average user (w/out VLANs) will not be adversely affected.
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
167#define PTYPE_HASH_SIZE (16)
168#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
170static DEFINE_SPINLOCK(ptype_lock);
171static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172static struct list_head ptype_all __read_mostly; /* Taps */
173
174/*
175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
181 * dev_base_head list, and hold dev_base_lock for writing when they do the
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
193DEFINE_RWLOCK(dev_base_lock);
194EXPORT_SYMBOL(dev_base_lock);
195
196static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
197{
198 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
199 return &net->dev_name_head[hash & (NETDEV_HASHENTRIES - 1)];
200}
201
202static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
203{
204 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
205}
206
207/* Device list insertion */
208static int list_netdevice(struct net_device *dev)
209{
210 struct net *net = dev_net(dev);
211
212 ASSERT_RTNL();
213
214 write_lock_bh(&dev_base_lock);
215 list_add_tail(&dev->dev_list, &net->dev_base_head);
216 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
217 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
218 write_unlock_bh(&dev_base_lock);
219 return 0;
220}
221
222/* Device list removal */
223static void unlist_netdevice(struct net_device *dev)
224{
225 ASSERT_RTNL();
226
227 /* Unlink dev from the device chain */
228 write_lock_bh(&dev_base_lock);
229 list_del(&dev->dev_list);
230 hlist_del(&dev->name_hlist);
231 hlist_del(&dev->index_hlist);
232 write_unlock_bh(&dev_base_lock);
233}
234
235/*
236 * Our notifier list
237 */
238
239static RAW_NOTIFIER_HEAD(netdev_chain);
240
241/*
242 * Device drivers call our routines to queue packets here. We empty the
243 * queue in the local softnet handler.
244 */
245
246DEFINE_PER_CPU(struct softnet_data, softnet_data);
247EXPORT_PER_CPU_SYMBOL(softnet_data);
248
249#ifdef CONFIG_LOCKDEP
250/*
251 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
252 * according to dev->type
253 */
254static const unsigned short netdev_lock_type[] =
255 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
256 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
257 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
258 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
259 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
260 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
261 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
262 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
263 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
264 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
265 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
266 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
267 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
268 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
269 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
270 ARPHRD_VOID, ARPHRD_NONE};
271
272static const char *const netdev_lock_name[] =
273 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
274 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
275 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
276 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
277 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
278 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
279 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
280 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
281 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
282 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
283 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
284 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
285 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
286 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
287 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
288 "_xmit_VOID", "_xmit_NONE"};
289
290static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
291static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
292
293static inline unsigned short netdev_lock_pos(unsigned short dev_type)
294{
295 int i;
296
297 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
298 if (netdev_lock_type[i] == dev_type)
299 return i;
300 /* the last key is used by default */
301 return ARRAY_SIZE(netdev_lock_type) - 1;
302}
303
304static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
305 unsigned short dev_type)
306{
307 int i;
308
309 i = netdev_lock_pos(dev_type);
310 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
311 netdev_lock_name[i]);
312}
313
314static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
315{
316 int i;
317
318 i = netdev_lock_pos(dev->type);
319 lockdep_set_class_and_name(&dev->addr_list_lock,
320 &netdev_addr_lock_key[i],
321 netdev_lock_name[i]);
322}
323#else
324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326{
327}
328static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
329{
330}
331#endif
332
333/*******************************************************************************
334
335 Protocol management and registration routines
336
337*******************************************************************************/
338
339/*
340 * Add a protocol ID to the list. Now that the input handler is
341 * smarter we can dispense with all the messy stuff that used to be
342 * here.
343 *
344 * BEWARE!!! Protocol handlers, mangling input packets,
345 * MUST BE last in hash buckets and checking protocol handlers
346 * MUST start from promiscuous ptype_all chain in net_bh.
347 * It is true now, do not change it.
348 * Explanation follows: if protocol handler, mangling packet, will
349 * be the first on list, it is not able to sense, that packet
350 * is cloned and should be copied-on-write, so that it will
351 * change it and subsequent readers will get broken packet.
352 * --ANK (980803)
353 */
354
355/**
356 * dev_add_pack - add packet handler
357 * @pt: packet type declaration
358 *
359 * Add a protocol handler to the networking stack. The passed &packet_type
360 * is linked into kernel lists and may not be freed until it has been
361 * removed from the kernel lists.
362 *
363 * This call does not sleep therefore it can not
364 * guarantee all CPU's that are in middle of receiving packets
365 * will see the new packet type (until the next received packet).
366 */
367
368void dev_add_pack(struct packet_type *pt)
369{
370 int hash;
371
372 spin_lock_bh(&ptype_lock);
373 if (pt->type == htons(ETH_P_ALL))
374 list_add_rcu(&pt->list, &ptype_all);
375 else {
376 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
377 list_add_rcu(&pt->list, &ptype_base[hash]);
378 }
379 spin_unlock_bh(&ptype_lock);
380}
381EXPORT_SYMBOL(dev_add_pack);
382
383/**
384 * __dev_remove_pack - remove packet handler
385 * @pt: packet type declaration
386 *
387 * Remove a protocol handler that was previously added to the kernel
388 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
389 * from the kernel lists and can be freed or reused once this function
390 * returns.
391 *
392 * The packet type might still be in use by receivers
393 * and must not be freed until after all the CPU's have gone
394 * through a quiescent state.
395 */
396void __dev_remove_pack(struct packet_type *pt)
397{
398 struct list_head *head;
399 struct packet_type *pt1;
400
401 spin_lock_bh(&ptype_lock);
402
403 if (pt->type == htons(ETH_P_ALL))
404 head = &ptype_all;
405 else
406 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
407
408 list_for_each_entry(pt1, head, list) {
409 if (pt == pt1) {
410 list_del_rcu(&pt->list);
411 goto out;
412 }
413 }
414
415 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
416out:
417 spin_unlock_bh(&ptype_lock);
418}
419EXPORT_SYMBOL(__dev_remove_pack);
420
421/**
422 * dev_remove_pack - remove packet handler
423 * @pt: packet type declaration
424 *
425 * Remove a protocol handler that was previously added to the kernel
426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
427 * from the kernel lists and can be freed or reused once this function
428 * returns.
429 *
430 * This call sleeps to guarantee that no CPU is looking at the packet
431 * type after return.
432 */
433void dev_remove_pack(struct packet_type *pt)
434{
435 __dev_remove_pack(pt);
436
437 synchronize_net();
438}
439EXPORT_SYMBOL(dev_remove_pack);
440
441/******************************************************************************
442
443 Device Boot-time Settings Routines
444
445*******************************************************************************/
446
447/* Boot time configuration table */
448static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
449
450/**
451 * netdev_boot_setup_add - add new setup entry
452 * @name: name of the device
453 * @map: configured settings for the device
454 *
455 * Adds new setup entry to the dev_boot_setup list. The function
456 * returns 0 on error and 1 on success. This is a generic routine to
457 * all netdevices.
458 */
459static int netdev_boot_setup_add(char *name, struct ifmap *map)
460{
461 struct netdev_boot_setup *s;
462 int i;
463
464 s = dev_boot_setup;
465 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
466 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
467 memset(s[i].name, 0, sizeof(s[i].name));
468 strlcpy(s[i].name, name, IFNAMSIZ);
469 memcpy(&s[i].map, map, sizeof(s[i].map));
470 break;
471 }
472 }
473
474 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
475}
476
477/**
478 * netdev_boot_setup_check - check boot time settings
479 * @dev: the netdevice
480 *
481 * Check boot time settings for the device.
482 * The found settings are set for the device to be used
483 * later in the device probing.
484 * Returns 0 if no settings found, 1 if they are.
485 */
486int netdev_boot_setup_check(struct net_device *dev)
487{
488 struct netdev_boot_setup *s = dev_boot_setup;
489 int i;
490
491 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
492 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
493 !strcmp(dev->name, s[i].name)) {
494 dev->irq = s[i].map.irq;
495 dev->base_addr = s[i].map.base_addr;
496 dev->mem_start = s[i].map.mem_start;
497 dev->mem_end = s[i].map.mem_end;
498 return 1;
499 }
500 }
501 return 0;
502}
503EXPORT_SYMBOL(netdev_boot_setup_check);
504
505
506/**
507 * netdev_boot_base - get address from boot time settings
508 * @prefix: prefix for network device
509 * @unit: id for network device
510 *
511 * Check boot time settings for the base address of device.
512 * The found settings are set for the device to be used
513 * later in the device probing.
514 * Returns 0 if no settings found.
515 */
516unsigned long netdev_boot_base(const char *prefix, int unit)
517{
518 const struct netdev_boot_setup *s = dev_boot_setup;
519 char name[IFNAMSIZ];
520 int i;
521
522 sprintf(name, "%s%d", prefix, unit);
523
524 /*
525 * If device already registered then return base of 1
526 * to indicate not to probe for this interface
527 */
528 if (__dev_get_by_name(&init_net, name))
529 return 1;
530
531 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
532 if (!strcmp(name, s[i].name))
533 return s[i].map.base_addr;
534 return 0;
535}
536
537/*
538 * Saves at boot time configured settings for any netdevice.
539 */
540int __init netdev_boot_setup(char *str)
541{
542 int ints[5];
543 struct ifmap map;
544
545 str = get_options(str, ARRAY_SIZE(ints), ints);
546 if (!str || !*str)
547 return 0;
548
549 /* Save settings */
550 memset(&map, 0, sizeof(map));
551 if (ints[0] > 0)
552 map.irq = ints[1];
553 if (ints[0] > 1)
554 map.base_addr = ints[2];
555 if (ints[0] > 2)
556 map.mem_start = ints[3];
557 if (ints[0] > 3)
558 map.mem_end = ints[4];
559
560 /* Add new entry to the list */
561 return netdev_boot_setup_add(str, &map);
562}
563
564__setup("netdev=", netdev_boot_setup);
565
566/*******************************************************************************
567
568 Device Interface Subroutines
569
570*******************************************************************************/
571
572/**
573 * __dev_get_by_name - find a device by its name
574 * @net: the applicable net namespace
575 * @name: name to find
576 *
577 * Find an interface by name. Must be called under RTNL semaphore
578 * or @dev_base_lock. If the name is found a pointer to the device
579 * is returned. If the name is not found then %NULL is returned. The
580 * reference counters are not incremented so the caller must be
581 * careful with locks.
582 */
583
584struct net_device *__dev_get_by_name(struct net *net, const char *name)
585{
586 struct hlist_node *p;
587
588 hlist_for_each(p, dev_name_hash(net, name)) {
589 struct net_device *dev
590 = hlist_entry(p, struct net_device, name_hlist);
591 if (!strncmp(dev->name, name, IFNAMSIZ))
592 return dev;
593 }
594 return NULL;
595}
596EXPORT_SYMBOL(__dev_get_by_name);
597
598/**
599 * dev_get_by_name - find a device by its name
600 * @net: the applicable net namespace
601 * @name: name to find
602 *
603 * Find an interface by name. This can be called from any
604 * context and does its own locking. The returned handle has
605 * the usage count incremented and the caller must use dev_put() to
606 * release it when it is no longer needed. %NULL is returned if no
607 * matching device is found.
608 */
609
610struct net_device *dev_get_by_name(struct net *net, const char *name)
611{
612 struct net_device *dev;
613
614 read_lock(&dev_base_lock);
615 dev = __dev_get_by_name(net, name);
616 if (dev)
617 dev_hold(dev);
618 read_unlock(&dev_base_lock);
619 return dev;
620}
621EXPORT_SYMBOL(dev_get_by_name);
622
623/**
624 * __dev_get_by_index - find a device by its ifindex
625 * @net: the applicable net namespace
626 * @ifindex: index of device
627 *
628 * Search for an interface by index. Returns %NULL if the device
629 * is not found or a pointer to the device. The device has not
630 * had its reference counter increased so the caller must be careful
631 * about locking. The caller must hold either the RTNL semaphore
632 * or @dev_base_lock.
633 */
634
635struct net_device *__dev_get_by_index(struct net *net, int ifindex)
636{
637 struct hlist_node *p;
638
639 hlist_for_each(p, dev_index_hash(net, ifindex)) {
640 struct net_device *dev
641 = hlist_entry(p, struct net_device, index_hlist);
642 if (dev->ifindex == ifindex)
643 return dev;
644 }
645 return NULL;
646}
647EXPORT_SYMBOL(__dev_get_by_index);
648
649
650/**
651 * dev_get_by_index - find a device by its ifindex
652 * @net: the applicable net namespace
653 * @ifindex: index of device
654 *
655 * Search for an interface by index. Returns NULL if the device
656 * is not found or a pointer to the device. The device returned has
657 * had a reference added and the pointer is safe until the user calls
658 * dev_put to indicate they have finished with it.
659 */
660
661struct net_device *dev_get_by_index(struct net *net, int ifindex)
662{
663 struct net_device *dev;
664
665 read_lock(&dev_base_lock);
666 dev = __dev_get_by_index(net, ifindex);
667 if (dev)
668 dev_hold(dev);
669 read_unlock(&dev_base_lock);
670 return dev;
671}
672EXPORT_SYMBOL(dev_get_by_index);
673
674/**
675 * dev_getbyhwaddr - find a device by its hardware address
676 * @net: the applicable net namespace
677 * @type: media type of device
678 * @ha: hardware address
679 *
680 * Search for an interface by MAC address. Returns NULL if the device
681 * is not found or a pointer to the device. The caller must hold the
682 * rtnl semaphore. The returned device has not had its ref count increased
683 * and the caller must therefore be careful about locking
684 *
685 * BUGS:
686 * If the API was consistent this would be __dev_get_by_hwaddr
687 */
688
689struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
690{
691 struct net_device *dev;
692
693 ASSERT_RTNL();
694
695 for_each_netdev(net, dev)
696 if (dev->type == type &&
697 !memcmp(dev->dev_addr, ha, dev->addr_len))
698 return dev;
699
700 return NULL;
701}
702EXPORT_SYMBOL(dev_getbyhwaddr);
703
704struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
705{
706 struct net_device *dev;
707
708 ASSERT_RTNL();
709 for_each_netdev(net, dev)
710 if (dev->type == type)
711 return dev;
712
713 return NULL;
714}
715EXPORT_SYMBOL(__dev_getfirstbyhwtype);
716
717struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
718{
719 struct net_device *dev;
720
721 rtnl_lock();
722 dev = __dev_getfirstbyhwtype(net, type);
723 if (dev)
724 dev_hold(dev);
725 rtnl_unlock();
726 return dev;
727}
728EXPORT_SYMBOL(dev_getfirstbyhwtype);
729
730/**
731 * dev_get_by_flags - find any device with given flags
732 * @net: the applicable net namespace
733 * @if_flags: IFF_* values
734 * @mask: bitmask of bits in if_flags to check
735 *
736 * Search for any interface with the given flags. Returns NULL if a device
737 * is not found or a pointer to the device. The device returned has
738 * had a reference added and the pointer is safe until the user calls
739 * dev_put to indicate they have finished with it.
740 */
741
742struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
743 unsigned short mask)
744{
745 struct net_device *dev, *ret;
746
747 ret = NULL;
748 read_lock(&dev_base_lock);
749 for_each_netdev(net, dev) {
750 if (((dev->flags ^ if_flags) & mask) == 0) {
751 dev_hold(dev);
752 ret = dev;
753 break;
754 }
755 }
756 read_unlock(&dev_base_lock);
757 return ret;
758}
759EXPORT_SYMBOL(dev_get_by_flags);
760
761/**
762 * dev_valid_name - check if name is okay for network device
763 * @name: name string
764 *
765 * Network device names need to be valid file names to
766 * to allow sysfs to work. We also disallow any kind of
767 * whitespace.
768 */
769int dev_valid_name(const char *name)
770{
771 if (*name == '\0')
772 return 0;
773 if (strlen(name) >= IFNAMSIZ)
774 return 0;
775 if (!strcmp(name, ".") || !strcmp(name, ".."))
776 return 0;
777
778 while (*name) {
779 if (*name == '/' || isspace(*name))
780 return 0;
781 name++;
782 }
783 return 1;
784}
785EXPORT_SYMBOL(dev_valid_name);
786
787/**
788 * __dev_alloc_name - allocate a name for a device
789 * @net: network namespace to allocate the device name in
790 * @name: name format string
791 * @buf: scratch buffer and result name string
792 *
793 * Passed a format string - eg "lt%d" it will try and find a suitable
794 * id. It scans list of devices to build up a free map, then chooses
795 * the first empty slot. The caller must hold the dev_base or rtnl lock
796 * while allocating the name and adding the device in order to avoid
797 * duplicates.
798 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
799 * Returns the number of the unit assigned or a negative errno code.
800 */
801
802static int __dev_alloc_name(struct net *net, const char *name, char *buf)
803{
804 int i = 0;
805 const char *p;
806 const int max_netdevices = 8*PAGE_SIZE;
807 unsigned long *inuse;
808 struct net_device *d;
809
810 p = strnchr(name, IFNAMSIZ-1, '%');
811 if (p) {
812 /*
813 * Verify the string as this thing may have come from
814 * the user. There must be either one "%d" and no other "%"
815 * characters.
816 */
817 if (p[1] != 'd' || strchr(p + 2, '%'))
818 return -EINVAL;
819
820 /* Use one page as a bit array of possible slots */
821 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
822 if (!inuse)
823 return -ENOMEM;
824
825 for_each_netdev(net, d) {
826 if (!sscanf(d->name, name, &i))
827 continue;
828 if (i < 0 || i >= max_netdevices)
829 continue;
830
831 /* avoid cases where sscanf is not exact inverse of printf */
832 snprintf(buf, IFNAMSIZ, name, i);
833 if (!strncmp(buf, d->name, IFNAMSIZ))
834 set_bit(i, inuse);
835 }
836
837 i = find_first_zero_bit(inuse, max_netdevices);
838 free_page((unsigned long) inuse);
839 }
840
841 snprintf(buf, IFNAMSIZ, name, i);
842 if (!__dev_get_by_name(net, buf))
843 return i;
844
845 /* It is possible to run out of possible slots
846 * when the name is long and there isn't enough space left
847 * for the digits, or if all bits are used.
848 */
849 return -ENFILE;
850}
851
852/**
853 * dev_alloc_name - allocate a name for a device
854 * @dev: device
855 * @name: name format string
856 *
857 * Passed a format string - eg "lt%d" it will try and find a suitable
858 * id. It scans list of devices to build up a free map, then chooses
859 * the first empty slot. The caller must hold the dev_base or rtnl lock
860 * while allocating the name and adding the device in order to avoid
861 * duplicates.
862 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
863 * Returns the number of the unit assigned or a negative errno code.
864 */
865
866int dev_alloc_name(struct net_device *dev, const char *name)
867{
868 char buf[IFNAMSIZ];
869 struct net *net;
870 int ret;
871
872 BUG_ON(!dev_net(dev));
873 net = dev_net(dev);
874 ret = __dev_alloc_name(net, name, buf);
875 if (ret >= 0)
876 strlcpy(dev->name, buf, IFNAMSIZ);
877 return ret;
878}
879EXPORT_SYMBOL(dev_alloc_name);
880
881
882/**
883 * dev_change_name - change name of a device
884 * @dev: device
885 * @newname: name (or format string) must be at least IFNAMSIZ
886 *
887 * Change name of a device, can pass format strings "eth%d".
888 * for wildcarding.
889 */
890int dev_change_name(struct net_device *dev, const char *newname)
891{
892 char oldname[IFNAMSIZ];
893 int err = 0;
894 int ret;
895 struct net *net;
896
897 ASSERT_RTNL();
898 BUG_ON(!dev_net(dev));
899
900 net = dev_net(dev);
901 if (dev->flags & IFF_UP)
902 return -EBUSY;
903
904 if (!dev_valid_name(newname))
905 return -EINVAL;
906
907 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
908 return 0;
909
910 memcpy(oldname, dev->name, IFNAMSIZ);
911
912 if (strchr(newname, '%')) {
913 err = dev_alloc_name(dev, newname);
914 if (err < 0)
915 return err;
916 } else if (__dev_get_by_name(net, newname))
917 return -EEXIST;
918 else
919 strlcpy(dev->name, newname, IFNAMSIZ);
920
921rollback:
922 /* For now only devices in the initial network namespace
923 * are in sysfs.
924 */
925 if (net == &init_net) {
926 ret = device_rename(&dev->dev, dev->name);
927 if (ret) {
928 memcpy(dev->name, oldname, IFNAMSIZ);
929 return ret;
930 }
931 }
932
933 write_lock_bh(&dev_base_lock);
934 hlist_del(&dev->name_hlist);
935 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 write_unlock_bh(&dev_base_lock);
937
938 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 ret = notifier_to_errno(ret);
940
941 if (ret) {
942 if (err) {
943 printk(KERN_ERR
944 "%s: name change rollback failed: %d.\n",
945 dev->name, ret);
946 } else {
947 err = ret;
948 memcpy(dev->name, oldname, IFNAMSIZ);
949 goto rollback;
950 }
951 }
952
953 return err;
954}
955
956/**
957 * dev_set_alias - change ifalias of a device
958 * @dev: device
959 * @alias: name up to IFALIASZ
960 * @len: limit of bytes to copy from info
961 *
962 * Set ifalias for a device,
963 */
964int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
965{
966 ASSERT_RTNL();
967
968 if (len >= IFALIASZ)
969 return -EINVAL;
970
971 if (!len) {
972 if (dev->ifalias) {
973 kfree(dev->ifalias);
974 dev->ifalias = NULL;
975 }
976 return 0;
977 }
978
979 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
980 if (!dev->ifalias)
981 return -ENOMEM;
982
983 strlcpy(dev->ifalias, alias, len+1);
984 return len;
985}
986
987
988/**
989 * netdev_features_change - device changes features
990 * @dev: device to cause notification
991 *
992 * Called to indicate a device has changed features.
993 */
994void netdev_features_change(struct net_device *dev)
995{
996 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
997}
998EXPORT_SYMBOL(netdev_features_change);
999
1000/**
1001 * netdev_state_change - device changes state
1002 * @dev: device to cause notification
1003 *
1004 * Called to indicate a device has changed state. This function calls
1005 * the notifier chains for netdev_chain and sends a NEWLINK message
1006 * to the routing socket.
1007 */
1008void netdev_state_change(struct net_device *dev)
1009{
1010 if (dev->flags & IFF_UP) {
1011 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1012 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1013 }
1014}
1015EXPORT_SYMBOL(netdev_state_change);
1016
1017void netdev_bonding_change(struct net_device *dev, unsigned long event)
1018{
1019 call_netdevice_notifiers(event, dev);
1020}
1021EXPORT_SYMBOL(netdev_bonding_change);
1022
1023/**
1024 * dev_load - load a network module
1025 * @net: the applicable net namespace
1026 * @name: name of interface
1027 *
1028 * If a network interface is not present and the process has suitable
1029 * privileges this function loads the module. If module loading is not
1030 * available in this kernel then it becomes a nop.
1031 */
1032
1033void dev_load(struct net *net, const char *name)
1034{
1035 struct net_device *dev;
1036
1037 read_lock(&dev_base_lock);
1038 dev = __dev_get_by_name(net, name);
1039 read_unlock(&dev_base_lock);
1040
1041 if (!dev && capable(CAP_NET_ADMIN))
1042 request_module("%s", name);
1043}
1044EXPORT_SYMBOL(dev_load);
1045
1046/**
1047 * dev_open - prepare an interface for use.
1048 * @dev: device to open
1049 *
1050 * Takes a device from down to up state. The device's private open
1051 * function is invoked and then the multicast lists are loaded. Finally
1052 * the device is moved into the up state and a %NETDEV_UP message is
1053 * sent to the netdev notifier chain.
1054 *
1055 * Calling this function on an active interface is a nop. On a failure
1056 * a negative errno code is returned.
1057 */
1058int dev_open(struct net_device *dev)
1059{
1060 const struct net_device_ops *ops = dev->netdev_ops;
1061 int ret;
1062
1063 ASSERT_RTNL();
1064
1065 /*
1066 * Is it already up?
1067 */
1068
1069 if (dev->flags & IFF_UP)
1070 return 0;
1071
1072 /*
1073 * Is it even present?
1074 */
1075 if (!netif_device_present(dev))
1076 return -ENODEV;
1077
1078 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1079 ret = notifier_to_errno(ret);
1080 if (ret)
1081 return ret;
1082
1083 /*
1084 * Call device private open method
1085 */
1086 set_bit(__LINK_STATE_START, &dev->state);
1087
1088 if (ops->ndo_validate_addr)
1089 ret = ops->ndo_validate_addr(dev);
1090
1091 if (!ret && ops->ndo_open)
1092 ret = ops->ndo_open(dev);
1093
1094 /*
1095 * If it went open OK then:
1096 */
1097
1098 if (ret)
1099 clear_bit(__LINK_STATE_START, &dev->state);
1100 else {
1101 /*
1102 * Set the flags.
1103 */
1104 dev->flags |= IFF_UP;
1105
1106 /*
1107 * Enable NET_DMA
1108 */
1109 net_dmaengine_get();
1110
1111 /*
1112 * Initialize multicasting status
1113 */
1114 dev_set_rx_mode(dev);
1115
1116 /*
1117 * Wakeup transmit queue engine
1118 */
1119 dev_activate(dev);
1120
1121 /*
1122 * ... and announce new interface.
1123 */
1124 call_netdevice_notifiers(NETDEV_UP, dev);
1125 }
1126
1127 return ret;
1128}
1129EXPORT_SYMBOL(dev_open);
1130
1131/**
1132 * dev_close - shutdown an interface.
1133 * @dev: device to shutdown
1134 *
1135 * This function moves an active device into down state. A
1136 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1137 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1138 * chain.
1139 */
1140int dev_close(struct net_device *dev)
1141{
1142 const struct net_device_ops *ops = dev->netdev_ops;
1143 ASSERT_RTNL();
1144
1145 might_sleep();
1146
1147 if (!(dev->flags & IFF_UP))
1148 return 0;
1149
1150 /*
1151 * Tell people we are going down, so that they can
1152 * prepare to death, when device is still operating.
1153 */
1154 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1155
1156 clear_bit(__LINK_STATE_START, &dev->state);
1157
1158 /* Synchronize to scheduled poll. We cannot touch poll list,
1159 * it can be even on different cpu. So just clear netif_running().
1160 *
1161 * dev->stop() will invoke napi_disable() on all of it's
1162 * napi_struct instances on this device.
1163 */
1164 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1165
1166 dev_deactivate(dev);
1167
1168 /*
1169 * Call the device specific close. This cannot fail.
1170 * Only if device is UP
1171 *
1172 * We allow it to be called even after a DETACH hot-plug
1173 * event.
1174 */
1175 if (ops->ndo_stop)
1176 ops->ndo_stop(dev);
1177
1178 /*
1179 * Device is now down.
1180 */
1181
1182 dev->flags &= ~IFF_UP;
1183
1184 /*
1185 * Tell people we are down
1186 */
1187 call_netdevice_notifiers(NETDEV_DOWN, dev);
1188
1189 /*
1190 * Shutdown NET_DMA
1191 */
1192 net_dmaengine_put();
1193
1194 return 0;
1195}
1196EXPORT_SYMBOL(dev_close);
1197
1198
1199/**
1200 * dev_disable_lro - disable Large Receive Offload on a device
1201 * @dev: device
1202 *
1203 * Disable Large Receive Offload (LRO) on a net device. Must be
1204 * called under RTNL. This is needed if received packets may be
1205 * forwarded to another interface.
1206 */
1207void dev_disable_lro(struct net_device *dev)
1208{
1209 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1210 dev->ethtool_ops->set_flags) {
1211 u32 flags = dev->ethtool_ops->get_flags(dev);
1212 if (flags & ETH_FLAG_LRO) {
1213 flags &= ~ETH_FLAG_LRO;
1214 dev->ethtool_ops->set_flags(dev, flags);
1215 }
1216 }
1217 WARN_ON(dev->features & NETIF_F_LRO);
1218}
1219EXPORT_SYMBOL(dev_disable_lro);
1220
1221
1222static int dev_boot_phase = 1;
1223
1224/*
1225 * Device change register/unregister. These are not inline or static
1226 * as we export them to the world.
1227 */
1228
1229/**
1230 * register_netdevice_notifier - register a network notifier block
1231 * @nb: notifier
1232 *
1233 * Register a notifier to be called when network device events occur.
1234 * The notifier passed is linked into the kernel structures and must
1235 * not be reused until it has been unregistered. A negative errno code
1236 * is returned on a failure.
1237 *
1238 * When registered all registration and up events are replayed
1239 * to the new notifier to allow device to have a race free
1240 * view of the network device list.
1241 */
1242
1243int register_netdevice_notifier(struct notifier_block *nb)
1244{
1245 struct net_device *dev;
1246 struct net_device *last;
1247 struct net *net;
1248 int err;
1249
1250 rtnl_lock();
1251 err = raw_notifier_chain_register(&netdev_chain, nb);
1252 if (err)
1253 goto unlock;
1254 if (dev_boot_phase)
1255 goto unlock;
1256 for_each_net(net) {
1257 for_each_netdev(net, dev) {
1258 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1259 err = notifier_to_errno(err);
1260 if (err)
1261 goto rollback;
1262
1263 if (!(dev->flags & IFF_UP))
1264 continue;
1265
1266 nb->notifier_call(nb, NETDEV_UP, dev);
1267 }
1268 }
1269
1270unlock:
1271 rtnl_unlock();
1272 return err;
1273
1274rollback:
1275 last = dev;
1276 for_each_net(net) {
1277 for_each_netdev(net, dev) {
1278 if (dev == last)
1279 break;
1280
1281 if (dev->flags & IFF_UP) {
1282 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1283 nb->notifier_call(nb, NETDEV_DOWN, dev);
1284 }
1285 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1286 }
1287 }
1288
1289 raw_notifier_chain_unregister(&netdev_chain, nb);
1290 goto unlock;
1291}
1292EXPORT_SYMBOL(register_netdevice_notifier);
1293
1294/**
1295 * unregister_netdevice_notifier - unregister a network notifier block
1296 * @nb: notifier
1297 *
1298 * Unregister a notifier previously registered by
1299 * register_netdevice_notifier(). The notifier is unlinked into the
1300 * kernel structures and may then be reused. A negative errno code
1301 * is returned on a failure.
1302 */
1303
1304int unregister_netdevice_notifier(struct notifier_block *nb)
1305{
1306 int err;
1307
1308 rtnl_lock();
1309 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1310 rtnl_unlock();
1311 return err;
1312}
1313EXPORT_SYMBOL(unregister_netdevice_notifier);
1314
1315/**
1316 * call_netdevice_notifiers - call all network notifier blocks
1317 * @val: value passed unmodified to notifier function
1318 * @dev: net_device pointer passed unmodified to notifier function
1319 *
1320 * Call all network notifier blocks. Parameters and return value
1321 * are as for raw_notifier_call_chain().
1322 */
1323
1324int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1325{
1326 return raw_notifier_call_chain(&netdev_chain, val, dev);
1327}
1328
1329/* When > 0 there are consumers of rx skb time stamps */
1330static atomic_t netstamp_needed = ATOMIC_INIT(0);
1331
1332void net_enable_timestamp(void)
1333{
1334 atomic_inc(&netstamp_needed);
1335}
1336EXPORT_SYMBOL(net_enable_timestamp);
1337
1338void net_disable_timestamp(void)
1339{
1340 atomic_dec(&netstamp_needed);
1341}
1342EXPORT_SYMBOL(net_disable_timestamp);
1343
1344static inline void net_timestamp(struct sk_buff *skb)
1345{
1346 if (atomic_read(&netstamp_needed))
1347 __net_timestamp(skb);
1348 else
1349 skb->tstamp.tv64 = 0;
1350}
1351
1352/*
1353 * Support routine. Sends outgoing frames to any network
1354 * taps currently in use.
1355 */
1356
1357static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1358{
1359 struct packet_type *ptype;
1360
1361#ifdef CONFIG_NET_CLS_ACT
1362 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1363 net_timestamp(skb);
1364#else
1365 net_timestamp(skb);
1366#endif
1367
1368 rcu_read_lock();
1369 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1370 /* Never send packets back to the socket
1371 * they originated from - MvS (miquels@drinkel.ow.org)
1372 */
1373 if ((ptype->dev == dev || !ptype->dev) &&
1374 (ptype->af_packet_priv == NULL ||
1375 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1376 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1377 if (!skb2)
1378 break;
1379
1380 /* skb->nh should be correctly
1381 set by sender, so that the second statement is
1382 just protection against buggy protocols.
1383 */
1384 skb_reset_mac_header(skb2);
1385
1386 if (skb_network_header(skb2) < skb2->data ||
1387 skb2->network_header > skb2->tail) {
1388 if (net_ratelimit())
1389 printk(KERN_CRIT "protocol %04x is "
1390 "buggy, dev %s\n",
1391 skb2->protocol, dev->name);
1392 skb_reset_network_header(skb2);
1393 }
1394
1395 skb2->transport_header = skb2->network_header;
1396 skb2->pkt_type = PACKET_OUTGOING;
1397 ptype->func(skb2, skb->dev, ptype, skb->dev);
1398 }
1399 }
1400 rcu_read_unlock();
1401}
1402
1403
1404static inline void __netif_reschedule(struct Qdisc *q)
1405{
1406 struct softnet_data *sd;
1407 unsigned long flags;
1408
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 q->next_sched = sd->output_queue;
1412 sd->output_queue = q;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1415}
1416
1417void __netif_schedule(struct Qdisc *q)
1418{
1419 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1420 __netif_reschedule(q);
1421}
1422EXPORT_SYMBOL(__netif_schedule);
1423
1424void dev_kfree_skb_irq(struct sk_buff *skb)
1425{
1426 if (atomic_dec_and_test(&skb->users)) {
1427 struct softnet_data *sd;
1428 unsigned long flags;
1429
1430 local_irq_save(flags);
1431 sd = &__get_cpu_var(softnet_data);
1432 skb->next = sd->completion_queue;
1433 sd->completion_queue = skb;
1434 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1435 local_irq_restore(flags);
1436 }
1437}
1438EXPORT_SYMBOL(dev_kfree_skb_irq);
1439
1440void dev_kfree_skb_any(struct sk_buff *skb)
1441{
1442 if (in_irq() || irqs_disabled())
1443 dev_kfree_skb_irq(skb);
1444 else
1445 dev_kfree_skb(skb);
1446}
1447EXPORT_SYMBOL(dev_kfree_skb_any);
1448
1449
1450/**
1451 * netif_device_detach - mark device as removed
1452 * @dev: network device
1453 *
1454 * Mark device as removed from system and therefore no longer available.
1455 */
1456void netif_device_detach(struct net_device *dev)
1457{
1458 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1459 netif_running(dev)) {
1460 netif_tx_stop_all_queues(dev);
1461 }
1462}
1463EXPORT_SYMBOL(netif_device_detach);
1464
1465/**
1466 * netif_device_attach - mark device as attached
1467 * @dev: network device
1468 *
1469 * Mark device as attached from system and restart if needed.
1470 */
1471void netif_device_attach(struct net_device *dev)
1472{
1473 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1474 netif_running(dev)) {
1475 netif_tx_wake_all_queues(dev);
1476 __netdev_watchdog_up(dev);
1477 }
1478}
1479EXPORT_SYMBOL(netif_device_attach);
1480
1481static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1482{
1483 return ((features & NETIF_F_GEN_CSUM) ||
1484 ((features & NETIF_F_IP_CSUM) &&
1485 protocol == htons(ETH_P_IP)) ||
1486 ((features & NETIF_F_IPV6_CSUM) &&
1487 protocol == htons(ETH_P_IPV6)) ||
1488 ((features & NETIF_F_FCOE_CRC) &&
1489 protocol == htons(ETH_P_FCOE)));
1490}
1491
1492static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1493{
1494 if (can_checksum_protocol(dev->features, skb->protocol))
1495 return true;
1496
1497 if (skb->protocol == htons(ETH_P_8021Q)) {
1498 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1499 if (can_checksum_protocol(dev->features & dev->vlan_features,
1500 veh->h_vlan_encapsulated_proto))
1501 return true;
1502 }
1503
1504 return false;
1505}
1506
1507/*
1508 * Invalidate hardware checksum when packet is to be mangled, and
1509 * complete checksum manually on outgoing path.
1510 */
1511int skb_checksum_help(struct sk_buff *skb)
1512{
1513 __wsum csum;
1514 int ret = 0, offset;
1515
1516 if (skb->ip_summed == CHECKSUM_COMPLETE)
1517 goto out_set_summed;
1518
1519 if (unlikely(skb_shinfo(skb)->gso_size)) {
1520 /* Let GSO fix up the checksum. */
1521 goto out_set_summed;
1522 }
1523
1524 offset = skb->csum_start - skb_headroom(skb);
1525 BUG_ON(offset >= skb_headlen(skb));
1526 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1527
1528 offset += skb->csum_offset;
1529 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1530
1531 if (skb_cloned(skb) &&
1532 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1533 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1534 if (ret)
1535 goto out;
1536 }
1537
1538 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1539out_set_summed:
1540 skb->ip_summed = CHECKSUM_NONE;
1541out:
1542 return ret;
1543}
1544EXPORT_SYMBOL(skb_checksum_help);
1545
1546/**
1547 * skb_gso_segment - Perform segmentation on skb.
1548 * @skb: buffer to segment
1549 * @features: features for the output path (see dev->features)
1550 *
1551 * This function segments the given skb and returns a list of segments.
1552 *
1553 * It may return NULL if the skb requires no segmentation. This is
1554 * only possible when GSO is used for verifying header integrity.
1555 */
1556struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1557{
1558 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1559 struct packet_type *ptype;
1560 __be16 type = skb->protocol;
1561 int err;
1562
1563 skb_reset_mac_header(skb);
1564 skb->mac_len = skb->network_header - skb->mac_header;
1565 __skb_pull(skb, skb->mac_len);
1566
1567 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1568 struct net_device *dev = skb->dev;
1569 struct ethtool_drvinfo info = {};
1570
1571 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1572 dev->ethtool_ops->get_drvinfo(dev, &info);
1573
1574 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1575 "ip_summed=%d",
1576 info.driver, dev ? dev->features : 0L,
1577 skb->sk ? skb->sk->sk_route_caps : 0L,
1578 skb->len, skb->data_len, skb->ip_summed);
1579
1580 if (skb_header_cloned(skb) &&
1581 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1582 return ERR_PTR(err);
1583 }
1584
1585 rcu_read_lock();
1586 list_for_each_entry_rcu(ptype,
1587 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1588 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1589 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1590 err = ptype->gso_send_check(skb);
1591 segs = ERR_PTR(err);
1592 if (err || skb_gso_ok(skb, features))
1593 break;
1594 __skb_push(skb, (skb->data -
1595 skb_network_header(skb)));
1596 }
1597 segs = ptype->gso_segment(skb, features);
1598 break;
1599 }
1600 }
1601 rcu_read_unlock();
1602
1603 __skb_push(skb, skb->data - skb_mac_header(skb));
1604
1605 return segs;
1606}
1607EXPORT_SYMBOL(skb_gso_segment);
1608
1609/* Take action when hardware reception checksum errors are detected. */
1610#ifdef CONFIG_BUG
1611void netdev_rx_csum_fault(struct net_device *dev)
1612{
1613 if (net_ratelimit()) {
1614 printk(KERN_ERR "%s: hw csum failure.\n",
1615 dev ? dev->name : "<unknown>");
1616 dump_stack();
1617 }
1618}
1619EXPORT_SYMBOL(netdev_rx_csum_fault);
1620#endif
1621
1622/* Actually, we should eliminate this check as soon as we know, that:
1623 * 1. IOMMU is present and allows to map all the memory.
1624 * 2. No high memory really exists on this machine.
1625 */
1626
1627static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1628{
1629#ifdef CONFIG_HIGHMEM
1630 int i;
1631
1632 if (dev->features & NETIF_F_HIGHDMA)
1633 return 0;
1634
1635 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1636 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1637 return 1;
1638
1639#endif
1640 return 0;
1641}
1642
1643struct dev_gso_cb {
1644 void (*destructor)(struct sk_buff *skb);
1645};
1646
1647#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1648
1649static void dev_gso_skb_destructor(struct sk_buff *skb)
1650{
1651 struct dev_gso_cb *cb;
1652
1653 do {
1654 struct sk_buff *nskb = skb->next;
1655
1656 skb->next = nskb->next;
1657 nskb->next = NULL;
1658 kfree_skb(nskb);
1659 } while (skb->next);
1660
1661 cb = DEV_GSO_CB(skb);
1662 if (cb->destructor)
1663 cb->destructor(skb);
1664}
1665
1666/**
1667 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1668 * @skb: buffer to segment
1669 *
1670 * This function segments the given skb and stores the list of segments
1671 * in skb->next.
1672 */
1673static int dev_gso_segment(struct sk_buff *skb)
1674{
1675 struct net_device *dev = skb->dev;
1676 struct sk_buff *segs;
1677 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1678 NETIF_F_SG : 0);
1679
1680 segs = skb_gso_segment(skb, features);
1681
1682 /* Verifying header integrity only. */
1683 if (!segs)
1684 return 0;
1685
1686 if (IS_ERR(segs))
1687 return PTR_ERR(segs);
1688
1689 skb->next = segs;
1690 DEV_GSO_CB(skb)->destructor = skb->destructor;
1691 skb->destructor = dev_gso_skb_destructor;
1692
1693 return 0;
1694}
1695
1696int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1697 struct netdev_queue *txq)
1698{
1699 const struct net_device_ops *ops = dev->netdev_ops;
1700 int rc;
1701
1702 if (likely(!skb->next)) {
1703 if (!list_empty(&ptype_all))
1704 dev_queue_xmit_nit(skb, dev);
1705
1706 if (netif_needs_gso(dev, skb)) {
1707 if (unlikely(dev_gso_segment(skb)))
1708 goto out_kfree_skb;
1709 if (skb->next)
1710 goto gso;
1711 }
1712
1713 /*
1714 * If device doesnt need skb->dst, release it right now while
1715 * its hot in this cpu cache
1716 */
1717 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1718 skb_dst_drop(skb);
1719
1720 rc = ops->ndo_start_xmit(skb, dev);
1721 if (rc == NETDEV_TX_OK)
1722 txq_trans_update(txq);
1723 /*
1724 * TODO: if skb_orphan() was called by
1725 * dev->hard_start_xmit() (for example, the unmodified
1726 * igb driver does that; bnx2 doesn't), then
1727 * skb_tx_software_timestamp() will be unable to send
1728 * back the time stamp.
1729 *
1730 * How can this be prevented? Always create another
1731 * reference to the socket before calling
1732 * dev->hard_start_xmit()? Prevent that skb_orphan()
1733 * does anything in dev->hard_start_xmit() by clearing
1734 * the skb destructor before the call and restoring it
1735 * afterwards, then doing the skb_orphan() ourselves?
1736 */
1737 return rc;
1738 }
1739
1740gso:
1741 do {
1742 struct sk_buff *nskb = skb->next;
1743
1744 skb->next = nskb->next;
1745 nskb->next = NULL;
1746 rc = ops->ndo_start_xmit(nskb, dev);
1747 if (unlikely(rc != NETDEV_TX_OK)) {
1748 nskb->next = skb->next;
1749 skb->next = nskb;
1750 return rc;
1751 }
1752 txq_trans_update(txq);
1753 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1754 return NETDEV_TX_BUSY;
1755 } while (skb->next);
1756
1757 skb->destructor = DEV_GSO_CB(skb)->destructor;
1758
1759out_kfree_skb:
1760 kfree_skb(skb);
1761 return NETDEV_TX_OK;
1762}
1763
1764static u32 skb_tx_hashrnd;
1765
1766u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1767{
1768 u32 hash;
1769
1770 if (skb_rx_queue_recorded(skb)) {
1771 hash = skb_get_rx_queue(skb);
1772 while (unlikely(hash >= dev->real_num_tx_queues))
1773 hash -= dev->real_num_tx_queues;
1774 return hash;
1775 }
1776
1777 if (skb->sk && skb->sk->sk_hash)
1778 hash = skb->sk->sk_hash;
1779 else
1780 hash = skb->protocol;
1781
1782 hash = jhash_1word(hash, skb_tx_hashrnd);
1783
1784 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1785}
1786EXPORT_SYMBOL(skb_tx_hash);
1787
1788static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1789 struct sk_buff *skb)
1790{
1791 u16 queue_index;
1792 struct sock *sk = skb->sk;
1793
1794 if (sk_tx_queue_recorded(sk)) {
1795 queue_index = sk_tx_queue_get(sk);
1796 } else {
1797 const struct net_device_ops *ops = dev->netdev_ops;
1798
1799 if (ops->ndo_select_queue) {
1800 queue_index = ops->ndo_select_queue(dev, skb);
1801 } else {
1802 queue_index = 0;
1803 if (dev->real_num_tx_queues > 1)
1804 queue_index = skb_tx_hash(dev, skb);
1805
1806 if (sk && sk->sk_dst_cache)
1807 sk_tx_queue_set(sk, queue_index);
1808 }
1809 }
1810
1811 skb_set_queue_mapping(skb, queue_index);
1812 return netdev_get_tx_queue(dev, queue_index);
1813}
1814
1815static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
1816 struct net_device *dev,
1817 struct netdev_queue *txq)
1818{
1819 spinlock_t *root_lock = qdisc_lock(q);
1820 int rc;
1821
1822 spin_lock(root_lock);
1823 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1824 kfree_skb(skb);
1825 rc = NET_XMIT_DROP;
1826 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
1827 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
1828 /*
1829 * This is a work-conserving queue; there are no old skbs
1830 * waiting to be sent out; and the qdisc is not running -
1831 * xmit the skb directly.
1832 */
1833 __qdisc_update_bstats(q, skb->len);
1834 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
1835 __qdisc_run(q);
1836 else
1837 clear_bit(__QDISC_STATE_RUNNING, &q->state);
1838
1839 rc = NET_XMIT_SUCCESS;
1840 } else {
1841 rc = qdisc_enqueue_root(skb, q);
1842 qdisc_run(q);
1843 }
1844 spin_unlock(root_lock);
1845
1846 return rc;
1847}
1848
1849/**
1850 * dev_queue_xmit - transmit a buffer
1851 * @skb: buffer to transmit
1852 *
1853 * Queue a buffer for transmission to a network device. The caller must
1854 * have set the device and priority and built the buffer before calling
1855 * this function. The function can be called from an interrupt.
1856 *
1857 * A negative errno code is returned on a failure. A success does not
1858 * guarantee the frame will be transmitted as it may be dropped due
1859 * to congestion or traffic shaping.
1860 *
1861 * -----------------------------------------------------------------------------------
1862 * I notice this method can also return errors from the queue disciplines,
1863 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1864 * be positive.
1865 *
1866 * Regardless of the return value, the skb is consumed, so it is currently
1867 * difficult to retry a send to this method. (You can bump the ref count
1868 * before sending to hold a reference for retry if you are careful.)
1869 *
1870 * When calling this method, interrupts MUST be enabled. This is because
1871 * the BH enable code must have IRQs enabled so that it will not deadlock.
1872 * --BLG
1873 */
1874int dev_queue_xmit(struct sk_buff *skb)
1875{
1876 struct net_device *dev = skb->dev;
1877 struct netdev_queue *txq;
1878 struct Qdisc *q;
1879 int rc = -ENOMEM;
1880
1881 /* GSO will handle the following emulations directly. */
1882 if (netif_needs_gso(dev, skb))
1883 goto gso;
1884
1885 if (skb_has_frags(skb) &&
1886 !(dev->features & NETIF_F_FRAGLIST) &&
1887 __skb_linearize(skb))
1888 goto out_kfree_skb;
1889
1890 /* Fragmented skb is linearized if device does not support SG,
1891 * or if at least one of fragments is in highmem and device
1892 * does not support DMA from it.
1893 */
1894 if (skb_shinfo(skb)->nr_frags &&
1895 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1896 __skb_linearize(skb))
1897 goto out_kfree_skb;
1898
1899 /* If packet is not checksummed and device does not support
1900 * checksumming for this protocol, complete checksumming here.
1901 */
1902 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1903 skb_set_transport_header(skb, skb->csum_start -
1904 skb_headroom(skb));
1905 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1906 goto out_kfree_skb;
1907 }
1908
1909gso:
1910 /* Disable soft irqs for various locks below. Also
1911 * stops preemption for RCU.
1912 */
1913 rcu_read_lock_bh();
1914
1915 txq = dev_pick_tx(dev, skb);
1916 q = rcu_dereference(txq->qdisc);
1917
1918#ifdef CONFIG_NET_CLS_ACT
1919 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1920#endif
1921 if (q->enqueue) {
1922 rc = __dev_xmit_skb(skb, q, dev, txq);
1923 goto out;
1924 }
1925
1926 /* The device has no queue. Common case for software devices:
1927 loopback, all the sorts of tunnels...
1928
1929 Really, it is unlikely that netif_tx_lock protection is necessary
1930 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1931 counters.)
1932 However, it is possible, that they rely on protection
1933 made by us here.
1934
1935 Check this and shot the lock. It is not prone from deadlocks.
1936 Either shot noqueue qdisc, it is even simpler 8)
1937 */
1938 if (dev->flags & IFF_UP) {
1939 int cpu = smp_processor_id(); /* ok because BHs are off */
1940
1941 if (txq->xmit_lock_owner != cpu) {
1942
1943 HARD_TX_LOCK(dev, txq, cpu);
1944
1945 if (!netif_tx_queue_stopped(txq)) {
1946 rc = NET_XMIT_SUCCESS;
1947 if (!dev_hard_start_xmit(skb, dev, txq)) {
1948 HARD_TX_UNLOCK(dev, txq);
1949 goto out;
1950 }
1951 }
1952 HARD_TX_UNLOCK(dev, txq);
1953 if (net_ratelimit())
1954 printk(KERN_CRIT "Virtual device %s asks to "
1955 "queue packet!\n", dev->name);
1956 } else {
1957 /* Recursion is detected! It is possible,
1958 * unfortunately */
1959 if (net_ratelimit())
1960 printk(KERN_CRIT "Dead loop on virtual device "
1961 "%s, fix it urgently!\n", dev->name);
1962 }
1963 }
1964
1965 rc = -ENETDOWN;
1966 rcu_read_unlock_bh();
1967
1968out_kfree_skb:
1969 kfree_skb(skb);
1970 return rc;
1971out:
1972 rcu_read_unlock_bh();
1973 return rc;
1974}
1975EXPORT_SYMBOL(dev_queue_xmit);
1976
1977
1978/*=======================================================================
1979 Receiver routines
1980 =======================================================================*/
1981
1982int netdev_max_backlog __read_mostly = 1000;
1983int netdev_budget __read_mostly = 300;
1984int weight_p __read_mostly = 64; /* old backlog weight */
1985
1986DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1987
1988
1989/**
1990 * netif_rx - post buffer to the network code
1991 * @skb: buffer to post
1992 *
1993 * This function receives a packet from a device driver and queues it for
1994 * the upper (protocol) levels to process. It always succeeds. The buffer
1995 * may be dropped during processing for congestion control or by the
1996 * protocol layers.
1997 *
1998 * return values:
1999 * NET_RX_SUCCESS (no congestion)
2000 * NET_RX_DROP (packet was dropped)
2001 *
2002 */
2003
2004int netif_rx(struct sk_buff *skb)
2005{
2006 struct softnet_data *queue;
2007 unsigned long flags;
2008
2009 /* if netpoll wants it, pretend we never saw it */
2010 if (netpoll_rx(skb))
2011 return NET_RX_DROP;
2012
2013 if (!skb->tstamp.tv64)
2014 net_timestamp(skb);
2015
2016 /*
2017 * The code is rearranged so that the path is the most
2018 * short when CPU is congested, but is still operating.
2019 */
2020 local_irq_save(flags);
2021 queue = &__get_cpu_var(softnet_data);
2022
2023 __get_cpu_var(netdev_rx_stat).total++;
2024 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2025 if (queue->input_pkt_queue.qlen) {
2026enqueue:
2027 __skb_queue_tail(&queue->input_pkt_queue, skb);
2028 local_irq_restore(flags);
2029 return NET_RX_SUCCESS;
2030 }
2031
2032 napi_schedule(&queue->backlog);
2033 goto enqueue;
2034 }
2035
2036 __get_cpu_var(netdev_rx_stat).dropped++;
2037 local_irq_restore(flags);
2038
2039 kfree_skb(skb);
2040 return NET_RX_DROP;
2041}
2042EXPORT_SYMBOL(netif_rx);
2043
2044int netif_rx_ni(struct sk_buff *skb)
2045{
2046 int err;
2047
2048 preempt_disable();
2049 err = netif_rx(skb);
2050 if (local_softirq_pending())
2051 do_softirq();
2052 preempt_enable();
2053
2054 return err;
2055}
2056EXPORT_SYMBOL(netif_rx_ni);
2057
2058static void net_tx_action(struct softirq_action *h)
2059{
2060 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2061
2062 if (sd->completion_queue) {
2063 struct sk_buff *clist;
2064
2065 local_irq_disable();
2066 clist = sd->completion_queue;
2067 sd->completion_queue = NULL;
2068 local_irq_enable();
2069
2070 while (clist) {
2071 struct sk_buff *skb = clist;
2072 clist = clist->next;
2073
2074 WARN_ON(atomic_read(&skb->users));
2075 __kfree_skb(skb);
2076 }
2077 }
2078
2079 if (sd->output_queue) {
2080 struct Qdisc *head;
2081
2082 local_irq_disable();
2083 head = sd->output_queue;
2084 sd->output_queue = NULL;
2085 local_irq_enable();
2086
2087 while (head) {
2088 struct Qdisc *q = head;
2089 spinlock_t *root_lock;
2090
2091 head = head->next_sched;
2092
2093 root_lock = qdisc_lock(q);
2094 if (spin_trylock(root_lock)) {
2095 smp_mb__before_clear_bit();
2096 clear_bit(__QDISC_STATE_SCHED,
2097 &q->state);
2098 qdisc_run(q);
2099 spin_unlock(root_lock);
2100 } else {
2101 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2102 &q->state)) {
2103 __netif_reschedule(q);
2104 } else {
2105 smp_mb__before_clear_bit();
2106 clear_bit(__QDISC_STATE_SCHED,
2107 &q->state);
2108 }
2109 }
2110 }
2111 }
2112}
2113
2114static inline int deliver_skb(struct sk_buff *skb,
2115 struct packet_type *pt_prev,
2116 struct net_device *orig_dev)
2117{
2118 atomic_inc(&skb->users);
2119 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2120}
2121
2122#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2123
2124#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2125/* This hook is defined here for ATM LANE */
2126int (*br_fdb_test_addr_hook)(struct net_device *dev,
2127 unsigned char *addr) __read_mostly;
2128EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2129#endif
2130
2131/*
2132 * If bridge module is loaded call bridging hook.
2133 * returns NULL if packet was consumed.
2134 */
2135struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2136 struct sk_buff *skb) __read_mostly;
2137EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2138
2139static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2140 struct packet_type **pt_prev, int *ret,
2141 struct net_device *orig_dev)
2142{
2143 struct net_bridge_port *port;
2144
2145 if (skb->pkt_type == PACKET_LOOPBACK ||
2146 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2147 return skb;
2148
2149 if (*pt_prev) {
2150 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2151 *pt_prev = NULL;
2152 }
2153
2154 return br_handle_frame_hook(port, skb);
2155}
2156#else
2157#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2158#endif
2159
2160#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2161struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2162EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2163
2164static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2165 struct packet_type **pt_prev,
2166 int *ret,
2167 struct net_device *orig_dev)
2168{
2169 if (skb->dev->macvlan_port == NULL)
2170 return skb;
2171
2172 if (*pt_prev) {
2173 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2174 *pt_prev = NULL;
2175 }
2176 return macvlan_handle_frame_hook(skb);
2177}
2178#else
2179#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2180#endif
2181
2182#ifdef CONFIG_NET_CLS_ACT
2183/* TODO: Maybe we should just force sch_ingress to be compiled in
2184 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2185 * a compare and 2 stores extra right now if we dont have it on
2186 * but have CONFIG_NET_CLS_ACT
2187 * NOTE: This doesnt stop any functionality; if you dont have
2188 * the ingress scheduler, you just cant add policies on ingress.
2189 *
2190 */
2191static int ing_filter(struct sk_buff *skb)
2192{
2193 struct net_device *dev = skb->dev;
2194 u32 ttl = G_TC_RTTL(skb->tc_verd);
2195 struct netdev_queue *rxq;
2196 int result = TC_ACT_OK;
2197 struct Qdisc *q;
2198
2199 if (MAX_RED_LOOP < ttl++) {
2200 printk(KERN_WARNING
2201 "Redir loop detected Dropping packet (%d->%d)\n",
2202 skb->iif, dev->ifindex);
2203 return TC_ACT_SHOT;
2204 }
2205
2206 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2207 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2208
2209 rxq = &dev->rx_queue;
2210
2211 q = rxq->qdisc;
2212 if (q != &noop_qdisc) {
2213 spin_lock(qdisc_lock(q));
2214 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2215 result = qdisc_enqueue_root(skb, q);
2216 spin_unlock(qdisc_lock(q));
2217 }
2218
2219 return result;
2220}
2221
2222static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2223 struct packet_type **pt_prev,
2224 int *ret, struct net_device *orig_dev)
2225{
2226 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2227 goto out;
2228
2229 if (*pt_prev) {
2230 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2231 *pt_prev = NULL;
2232 } else {
2233 /* Huh? Why does turning on AF_PACKET affect this? */
2234 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2235 }
2236
2237 switch (ing_filter(skb)) {
2238 case TC_ACT_SHOT:
2239 case TC_ACT_STOLEN:
2240 kfree_skb(skb);
2241 return NULL;
2242 }
2243
2244out:
2245 skb->tc_verd = 0;
2246 return skb;
2247}
2248#endif
2249
2250/*
2251 * netif_nit_deliver - deliver received packets to network taps
2252 * @skb: buffer
2253 *
2254 * This function is used to deliver incoming packets to network
2255 * taps. It should be used when the normal netif_receive_skb path
2256 * is bypassed, for example because of VLAN acceleration.
2257 */
2258void netif_nit_deliver(struct sk_buff *skb)
2259{
2260 struct packet_type *ptype;
2261
2262 if (list_empty(&ptype_all))
2263 return;
2264
2265 skb_reset_network_header(skb);
2266 skb_reset_transport_header(skb);
2267 skb->mac_len = skb->network_header - skb->mac_header;
2268
2269 rcu_read_lock();
2270 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2271 if (!ptype->dev || ptype->dev == skb->dev)
2272 deliver_skb(skb, ptype, skb->dev);
2273 }
2274 rcu_read_unlock();
2275}
2276
2277/**
2278 * netif_receive_skb - process receive buffer from network
2279 * @skb: buffer to process
2280 *
2281 * netif_receive_skb() is the main receive data processing function.
2282 * It always succeeds. The buffer may be dropped during processing
2283 * for congestion control or by the protocol layers.
2284 *
2285 * This function may only be called from softirq context and interrupts
2286 * should be enabled.
2287 *
2288 * Return values (usually ignored):
2289 * NET_RX_SUCCESS: no congestion
2290 * NET_RX_DROP: packet was dropped
2291 */
2292int netif_receive_skb(struct sk_buff *skb)
2293{
2294 struct packet_type *ptype, *pt_prev;
2295 struct net_device *orig_dev;
2296 struct net_device *null_or_orig;
2297 int ret = NET_RX_DROP;
2298 __be16 type;
2299
2300 if (!skb->tstamp.tv64)
2301 net_timestamp(skb);
2302
2303 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2304 return NET_RX_SUCCESS;
2305
2306 /* if we've gotten here through NAPI, check netpoll */
2307 if (netpoll_receive_skb(skb))
2308 return NET_RX_DROP;
2309
2310 if (!skb->iif)
2311 skb->iif = skb->dev->ifindex;
2312
2313 null_or_orig = NULL;
2314 orig_dev = skb->dev;
2315 if (orig_dev->master) {
2316 if (skb_bond_should_drop(skb))
2317 null_or_orig = orig_dev; /* deliver only exact match */
2318 else
2319 skb->dev = orig_dev->master;
2320 }
2321
2322 __get_cpu_var(netdev_rx_stat).total++;
2323
2324 skb_reset_network_header(skb);
2325 skb_reset_transport_header(skb);
2326 skb->mac_len = skb->network_header - skb->mac_header;
2327
2328 pt_prev = NULL;
2329
2330 rcu_read_lock();
2331
2332#ifdef CONFIG_NET_CLS_ACT
2333 if (skb->tc_verd & TC_NCLS) {
2334 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2335 goto ncls;
2336 }
2337#endif
2338
2339 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2340 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2341 ptype->dev == orig_dev) {
2342 if (pt_prev)
2343 ret = deliver_skb(skb, pt_prev, orig_dev);
2344 pt_prev = ptype;
2345 }
2346 }
2347
2348#ifdef CONFIG_NET_CLS_ACT
2349 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2350 if (!skb)
2351 goto out;
2352ncls:
2353#endif
2354
2355 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2356 if (!skb)
2357 goto out;
2358 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2359 if (!skb)
2360 goto out;
2361
2362 type = skb->protocol;
2363 list_for_each_entry_rcu(ptype,
2364 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2365 if (ptype->type == type &&
2366 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2367 ptype->dev == orig_dev)) {
2368 if (pt_prev)
2369 ret = deliver_skb(skb, pt_prev, orig_dev);
2370 pt_prev = ptype;
2371 }
2372 }
2373
2374 if (pt_prev) {
2375 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2376 } else {
2377 kfree_skb(skb);
2378 /* Jamal, now you will not able to escape explaining
2379 * me how you were going to use this. :-)
2380 */
2381 ret = NET_RX_DROP;
2382 }
2383
2384out:
2385 rcu_read_unlock();
2386 return ret;
2387}
2388EXPORT_SYMBOL(netif_receive_skb);
2389
2390/* Network device is going away, flush any packets still pending */
2391static void flush_backlog(void *arg)
2392{
2393 struct net_device *dev = arg;
2394 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2395 struct sk_buff *skb, *tmp;
2396
2397 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2398 if (skb->dev == dev) {
2399 __skb_unlink(skb, &queue->input_pkt_queue);
2400 kfree_skb(skb);
2401 }
2402}
2403
2404static int napi_gro_complete(struct sk_buff *skb)
2405{
2406 struct packet_type *ptype;
2407 __be16 type = skb->protocol;
2408 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2409 int err = -ENOENT;
2410
2411 if (NAPI_GRO_CB(skb)->count == 1) {
2412 skb_shinfo(skb)->gso_size = 0;
2413 goto out;
2414 }
2415
2416 rcu_read_lock();
2417 list_for_each_entry_rcu(ptype, head, list) {
2418 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2419 continue;
2420
2421 err = ptype->gro_complete(skb);
2422 break;
2423 }
2424 rcu_read_unlock();
2425
2426 if (err) {
2427 WARN_ON(&ptype->list == head);
2428 kfree_skb(skb);
2429 return NET_RX_SUCCESS;
2430 }
2431
2432out:
2433 return netif_receive_skb(skb);
2434}
2435
2436void napi_gro_flush(struct napi_struct *napi)
2437{
2438 struct sk_buff *skb, *next;
2439
2440 for (skb = napi->gro_list; skb; skb = next) {
2441 next = skb->next;
2442 skb->next = NULL;
2443 napi_gro_complete(skb);
2444 }
2445
2446 napi->gro_count = 0;
2447 napi->gro_list = NULL;
2448}
2449EXPORT_SYMBOL(napi_gro_flush);
2450
2451int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2452{
2453 struct sk_buff **pp = NULL;
2454 struct packet_type *ptype;
2455 __be16 type = skb->protocol;
2456 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2457 int same_flow;
2458 int mac_len;
2459 int ret;
2460
2461 if (!(skb->dev->features & NETIF_F_GRO))
2462 goto normal;
2463
2464 if (skb_is_gso(skb) || skb_has_frags(skb))
2465 goto normal;
2466
2467 rcu_read_lock();
2468 list_for_each_entry_rcu(ptype, head, list) {
2469 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2470 continue;
2471
2472 skb_set_network_header(skb, skb_gro_offset(skb));
2473 mac_len = skb->network_header - skb->mac_header;
2474 skb->mac_len = mac_len;
2475 NAPI_GRO_CB(skb)->same_flow = 0;
2476 NAPI_GRO_CB(skb)->flush = 0;
2477 NAPI_GRO_CB(skb)->free = 0;
2478
2479 pp = ptype->gro_receive(&napi->gro_list, skb);
2480 break;
2481 }
2482 rcu_read_unlock();
2483
2484 if (&ptype->list == head)
2485 goto normal;
2486
2487 same_flow = NAPI_GRO_CB(skb)->same_flow;
2488 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2489
2490 if (pp) {
2491 struct sk_buff *nskb = *pp;
2492
2493 *pp = nskb->next;
2494 nskb->next = NULL;
2495 napi_gro_complete(nskb);
2496 napi->gro_count--;
2497 }
2498
2499 if (same_flow)
2500 goto ok;
2501
2502 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2503 goto normal;
2504
2505 napi->gro_count++;
2506 NAPI_GRO_CB(skb)->count = 1;
2507 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2508 skb->next = napi->gro_list;
2509 napi->gro_list = skb;
2510 ret = GRO_HELD;
2511
2512pull:
2513 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2514 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2515
2516 BUG_ON(skb->end - skb->tail < grow);
2517
2518 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2519
2520 skb->tail += grow;
2521 skb->data_len -= grow;
2522
2523 skb_shinfo(skb)->frags[0].page_offset += grow;
2524 skb_shinfo(skb)->frags[0].size -= grow;
2525
2526 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2527 put_page(skb_shinfo(skb)->frags[0].page);
2528 memmove(skb_shinfo(skb)->frags,
2529 skb_shinfo(skb)->frags + 1,
2530 --skb_shinfo(skb)->nr_frags);
2531 }
2532 }
2533
2534ok:
2535 return ret;
2536
2537normal:
2538 ret = GRO_NORMAL;
2539 goto pull;
2540}
2541EXPORT_SYMBOL(dev_gro_receive);
2542
2543static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2544{
2545 struct sk_buff *p;
2546
2547 if (netpoll_rx_on(skb))
2548 return GRO_NORMAL;
2549
2550 for (p = napi->gro_list; p; p = p->next) {
2551 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2552 && !compare_ether_header(skb_mac_header(p),
2553 skb_gro_mac_header(skb));
2554 NAPI_GRO_CB(p)->flush = 0;
2555 }
2556
2557 return dev_gro_receive(napi, skb);
2558}
2559
2560int napi_skb_finish(int ret, struct sk_buff *skb)
2561{
2562 int err = NET_RX_SUCCESS;
2563
2564 switch (ret) {
2565 case GRO_NORMAL:
2566 return netif_receive_skb(skb);
2567
2568 case GRO_DROP:
2569 err = NET_RX_DROP;
2570 /* fall through */
2571
2572 case GRO_MERGED_FREE:
2573 kfree_skb(skb);
2574 break;
2575 }
2576
2577 return err;
2578}
2579EXPORT_SYMBOL(napi_skb_finish);
2580
2581void skb_gro_reset_offset(struct sk_buff *skb)
2582{
2583 NAPI_GRO_CB(skb)->data_offset = 0;
2584 NAPI_GRO_CB(skb)->frag0 = NULL;
2585 NAPI_GRO_CB(skb)->frag0_len = 0;
2586
2587 if (skb->mac_header == skb->tail &&
2588 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2589 NAPI_GRO_CB(skb)->frag0 =
2590 page_address(skb_shinfo(skb)->frags[0].page) +
2591 skb_shinfo(skb)->frags[0].page_offset;
2592 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2593 }
2594}
2595EXPORT_SYMBOL(skb_gro_reset_offset);
2596
2597int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2598{
2599 skb_gro_reset_offset(skb);
2600
2601 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2602}
2603EXPORT_SYMBOL(napi_gro_receive);
2604
2605void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2606{
2607 __skb_pull(skb, skb_headlen(skb));
2608 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2609
2610 napi->skb = skb;
2611}
2612EXPORT_SYMBOL(napi_reuse_skb);
2613
2614struct sk_buff *napi_get_frags(struct napi_struct *napi)
2615{
2616 struct sk_buff *skb = napi->skb;
2617
2618 if (!skb) {
2619 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2620 if (skb)
2621 napi->skb = skb;
2622 }
2623 return skb;
2624}
2625EXPORT_SYMBOL(napi_get_frags);
2626
2627int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
2628{
2629 int err = NET_RX_SUCCESS;
2630
2631 switch (ret) {
2632 case GRO_NORMAL:
2633 case GRO_HELD:
2634 skb->protocol = eth_type_trans(skb, napi->dev);
2635
2636 if (ret == GRO_NORMAL)
2637 return netif_receive_skb(skb);
2638
2639 skb_gro_pull(skb, -ETH_HLEN);
2640 break;
2641
2642 case GRO_DROP:
2643 err = NET_RX_DROP;
2644 /* fall through */
2645
2646 case GRO_MERGED_FREE:
2647 napi_reuse_skb(napi, skb);
2648 break;
2649 }
2650
2651 return err;
2652}
2653EXPORT_SYMBOL(napi_frags_finish);
2654
2655struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2656{
2657 struct sk_buff *skb = napi->skb;
2658 struct ethhdr *eth;
2659 unsigned int hlen;
2660 unsigned int off;
2661
2662 napi->skb = NULL;
2663
2664 skb_reset_mac_header(skb);
2665 skb_gro_reset_offset(skb);
2666
2667 off = skb_gro_offset(skb);
2668 hlen = off + sizeof(*eth);
2669 eth = skb_gro_header_fast(skb, off);
2670 if (skb_gro_header_hard(skb, hlen)) {
2671 eth = skb_gro_header_slow(skb, hlen, off);
2672 if (unlikely(!eth)) {
2673 napi_reuse_skb(napi, skb);
2674 skb = NULL;
2675 goto out;
2676 }
2677 }
2678
2679 skb_gro_pull(skb, sizeof(*eth));
2680
2681 /*
2682 * This works because the only protocols we care about don't require
2683 * special handling. We'll fix it up properly at the end.
2684 */
2685 skb->protocol = eth->h_proto;
2686
2687out:
2688 return skb;
2689}
2690EXPORT_SYMBOL(napi_frags_skb);
2691
2692int napi_gro_frags(struct napi_struct *napi)
2693{
2694 struct sk_buff *skb = napi_frags_skb(napi);
2695
2696 if (!skb)
2697 return NET_RX_DROP;
2698
2699 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2700}
2701EXPORT_SYMBOL(napi_gro_frags);
2702
2703static int process_backlog(struct napi_struct *napi, int quota)
2704{
2705 int work = 0;
2706 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2707 unsigned long start_time = jiffies;
2708
2709 napi->weight = weight_p;
2710 do {
2711 struct sk_buff *skb;
2712
2713 local_irq_disable();
2714 skb = __skb_dequeue(&queue->input_pkt_queue);
2715 if (!skb) {
2716 __napi_complete(napi);
2717 local_irq_enable();
2718 break;
2719 }
2720 local_irq_enable();
2721
2722 netif_receive_skb(skb);
2723 } while (++work < quota && jiffies == start_time);
2724
2725 return work;
2726}
2727
2728/**
2729 * __napi_schedule - schedule for receive
2730 * @n: entry to schedule
2731 *
2732 * The entry's receive function will be scheduled to run
2733 */
2734void __napi_schedule(struct napi_struct *n)
2735{
2736 unsigned long flags;
2737
2738 local_irq_save(flags);
2739 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2740 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2741 local_irq_restore(flags);
2742}
2743EXPORT_SYMBOL(__napi_schedule);
2744
2745void __napi_complete(struct napi_struct *n)
2746{
2747 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2748 BUG_ON(n->gro_list);
2749
2750 list_del(&n->poll_list);
2751 smp_mb__before_clear_bit();
2752 clear_bit(NAPI_STATE_SCHED, &n->state);
2753}
2754EXPORT_SYMBOL(__napi_complete);
2755
2756void napi_complete(struct napi_struct *n)
2757{
2758 unsigned long flags;
2759
2760 /*
2761 * don't let napi dequeue from the cpu poll list
2762 * just in case its running on a different cpu
2763 */
2764 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2765 return;
2766
2767 napi_gro_flush(n);
2768 local_irq_save(flags);
2769 __napi_complete(n);
2770 local_irq_restore(flags);
2771}
2772EXPORT_SYMBOL(napi_complete);
2773
2774void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2775 int (*poll)(struct napi_struct *, int), int weight)
2776{
2777 INIT_LIST_HEAD(&napi->poll_list);
2778 napi->gro_count = 0;
2779 napi->gro_list = NULL;
2780 napi->skb = NULL;
2781 napi->poll = poll;
2782 napi->weight = weight;
2783 list_add(&napi->dev_list, &dev->napi_list);
2784 napi->dev = dev;
2785#ifdef CONFIG_NETPOLL
2786 spin_lock_init(&napi->poll_lock);
2787 napi->poll_owner = -1;
2788#endif
2789 set_bit(NAPI_STATE_SCHED, &napi->state);
2790}
2791EXPORT_SYMBOL(netif_napi_add);
2792
2793void netif_napi_del(struct napi_struct *napi)
2794{
2795 struct sk_buff *skb, *next;
2796
2797 list_del_init(&napi->dev_list);
2798 napi_free_frags(napi);
2799
2800 for (skb = napi->gro_list; skb; skb = next) {
2801 next = skb->next;
2802 skb->next = NULL;
2803 kfree_skb(skb);
2804 }
2805
2806 napi->gro_list = NULL;
2807 napi->gro_count = 0;
2808}
2809EXPORT_SYMBOL(netif_napi_del);
2810
2811
2812static void net_rx_action(struct softirq_action *h)
2813{
2814 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2815 unsigned long time_limit = jiffies + 2;
2816 int budget = netdev_budget;
2817 void *have;
2818
2819 local_irq_disable();
2820
2821 while (!list_empty(list)) {
2822 struct napi_struct *n;
2823 int work, weight;
2824
2825 /* If softirq window is exhuasted then punt.
2826 * Allow this to run for 2 jiffies since which will allow
2827 * an average latency of 1.5/HZ.
2828 */
2829 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2830 goto softnet_break;
2831
2832 local_irq_enable();
2833
2834 /* Even though interrupts have been re-enabled, this
2835 * access is safe because interrupts can only add new
2836 * entries to the tail of this list, and only ->poll()
2837 * calls can remove this head entry from the list.
2838 */
2839 n = list_entry(list->next, struct napi_struct, poll_list);
2840
2841 have = netpoll_poll_lock(n);
2842
2843 weight = n->weight;
2844
2845 /* This NAPI_STATE_SCHED test is for avoiding a race
2846 * with netpoll's poll_napi(). Only the entity which
2847 * obtains the lock and sees NAPI_STATE_SCHED set will
2848 * actually make the ->poll() call. Therefore we avoid
2849 * accidently calling ->poll() when NAPI is not scheduled.
2850 */
2851 work = 0;
2852 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
2853 work = n->poll(n, weight);
2854 trace_napi_poll(n);
2855 }
2856
2857 WARN_ON_ONCE(work > weight);
2858
2859 budget -= work;
2860
2861 local_irq_disable();
2862
2863 /* Drivers must not modify the NAPI state if they
2864 * consume the entire weight. In such cases this code
2865 * still "owns" the NAPI instance and therefore can
2866 * move the instance around on the list at-will.
2867 */
2868 if (unlikely(work == weight)) {
2869 if (unlikely(napi_disable_pending(n))) {
2870 local_irq_enable();
2871 napi_complete(n);
2872 local_irq_disable();
2873 } else
2874 list_move_tail(&n->poll_list, list);
2875 }
2876
2877 netpoll_poll_unlock(have);
2878 }
2879out:
2880 local_irq_enable();
2881
2882#ifdef CONFIG_NET_DMA
2883 /*
2884 * There may not be any more sk_buffs coming right now, so push
2885 * any pending DMA copies to hardware
2886 */
2887 dma_issue_pending_all();
2888#endif
2889
2890 return;
2891
2892softnet_break:
2893 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2894 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2895 goto out;
2896}
2897
2898static gifconf_func_t *gifconf_list[NPROTO];
2899
2900/**
2901 * register_gifconf - register a SIOCGIF handler
2902 * @family: Address family
2903 * @gifconf: Function handler
2904 *
2905 * Register protocol dependent address dumping routines. The handler
2906 * that is passed must not be freed or reused until it has been replaced
2907 * by another handler.
2908 */
2909int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
2910{
2911 if (family >= NPROTO)
2912 return -EINVAL;
2913 gifconf_list[family] = gifconf;
2914 return 0;
2915}
2916EXPORT_SYMBOL(register_gifconf);
2917
2918
2919/*
2920 * Map an interface index to its name (SIOCGIFNAME)
2921 */
2922
2923/*
2924 * We need this ioctl for efficient implementation of the
2925 * if_indextoname() function required by the IPv6 API. Without
2926 * it, we would have to search all the interfaces to find a
2927 * match. --pb
2928 */
2929
2930static int dev_ifname(struct net *net, struct ifreq __user *arg)
2931{
2932 struct net_device *dev;
2933 struct ifreq ifr;
2934
2935 /*
2936 * Fetch the caller's info block.
2937 */
2938
2939 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2940 return -EFAULT;
2941
2942 read_lock(&dev_base_lock);
2943 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2944 if (!dev) {
2945 read_unlock(&dev_base_lock);
2946 return -ENODEV;
2947 }
2948
2949 strcpy(ifr.ifr_name, dev->name);
2950 read_unlock(&dev_base_lock);
2951
2952 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2953 return -EFAULT;
2954 return 0;
2955}
2956
2957/*
2958 * Perform a SIOCGIFCONF call. This structure will change
2959 * size eventually, and there is nothing I can do about it.
2960 * Thus we will need a 'compatibility mode'.
2961 */
2962
2963static int dev_ifconf(struct net *net, char __user *arg)
2964{
2965 struct ifconf ifc;
2966 struct net_device *dev;
2967 char __user *pos;
2968 int len;
2969 int total;
2970 int i;
2971
2972 /*
2973 * Fetch the caller's info block.
2974 */
2975
2976 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2977 return -EFAULT;
2978
2979 pos = ifc.ifc_buf;
2980 len = ifc.ifc_len;
2981
2982 /*
2983 * Loop over the interfaces, and write an info block for each.
2984 */
2985
2986 total = 0;
2987 for_each_netdev(net, dev) {
2988 for (i = 0; i < NPROTO; i++) {
2989 if (gifconf_list[i]) {
2990 int done;
2991 if (!pos)
2992 done = gifconf_list[i](dev, NULL, 0);
2993 else
2994 done = gifconf_list[i](dev, pos + total,
2995 len - total);
2996 if (done < 0)
2997 return -EFAULT;
2998 total += done;
2999 }
3000 }
3001 }
3002
3003 /*
3004 * All done. Write the updated control block back to the caller.
3005 */
3006 ifc.ifc_len = total;
3007
3008 /*
3009 * Both BSD and Solaris return 0 here, so we do too.
3010 */
3011 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3012}
3013
3014#ifdef CONFIG_PROC_FS
3015/*
3016 * This is invoked by the /proc filesystem handler to display a device
3017 * in detail.
3018 */
3019void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3020 __acquires(dev_base_lock)
3021{
3022 struct net *net = seq_file_net(seq);
3023 loff_t off;
3024 struct net_device *dev;
3025
3026 read_lock(&dev_base_lock);
3027 if (!*pos)
3028 return SEQ_START_TOKEN;
3029
3030 off = 1;
3031 for_each_netdev(net, dev)
3032 if (off++ == *pos)
3033 return dev;
3034
3035 return NULL;
3036}
3037
3038void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3039{
3040 struct net *net = seq_file_net(seq);
3041 ++*pos;
3042 return v == SEQ_START_TOKEN ?
3043 first_net_device(net) : next_net_device((struct net_device *)v);
3044}
3045
3046void dev_seq_stop(struct seq_file *seq, void *v)
3047 __releases(dev_base_lock)
3048{
3049 read_unlock(&dev_base_lock);
3050}
3051
3052static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3053{
3054 const struct net_device_stats *stats = dev_get_stats(dev);
3055
3056 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3057 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3058 dev->name, stats->rx_bytes, stats->rx_packets,
3059 stats->rx_errors,
3060 stats->rx_dropped + stats->rx_missed_errors,
3061 stats->rx_fifo_errors,
3062 stats->rx_length_errors + stats->rx_over_errors +
3063 stats->rx_crc_errors + stats->rx_frame_errors,
3064 stats->rx_compressed, stats->multicast,
3065 stats->tx_bytes, stats->tx_packets,
3066 stats->tx_errors, stats->tx_dropped,
3067 stats->tx_fifo_errors, stats->collisions,
3068 stats->tx_carrier_errors +
3069 stats->tx_aborted_errors +
3070 stats->tx_window_errors +
3071 stats->tx_heartbeat_errors,
3072 stats->tx_compressed);
3073}
3074
3075/*
3076 * Called from the PROCfs module. This now uses the new arbitrary sized
3077 * /proc/net interface to create /proc/net/dev
3078 */
3079static int dev_seq_show(struct seq_file *seq, void *v)
3080{
3081 if (v == SEQ_START_TOKEN)
3082 seq_puts(seq, "Inter-| Receive "
3083 " | Transmit\n"
3084 " face |bytes packets errs drop fifo frame "
3085 "compressed multicast|bytes packets errs "
3086 "drop fifo colls carrier compressed\n");
3087 else
3088 dev_seq_printf_stats(seq, v);
3089 return 0;
3090}
3091
3092static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3093{
3094 struct netif_rx_stats *rc = NULL;
3095
3096 while (*pos < nr_cpu_ids)
3097 if (cpu_online(*pos)) {
3098 rc = &per_cpu(netdev_rx_stat, *pos);
3099 break;
3100 } else
3101 ++*pos;
3102 return rc;
3103}
3104
3105static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3106{
3107 return softnet_get_online(pos);
3108}
3109
3110static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3111{
3112 ++*pos;
3113 return softnet_get_online(pos);
3114}
3115
3116static void softnet_seq_stop(struct seq_file *seq, void *v)
3117{
3118}
3119
3120static int softnet_seq_show(struct seq_file *seq, void *v)
3121{
3122 struct netif_rx_stats *s = v;
3123
3124 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3125 s->total, s->dropped, s->time_squeeze, 0,
3126 0, 0, 0, 0, /* was fastroute */
3127 s->cpu_collision);
3128 return 0;
3129}
3130
3131static const struct seq_operations dev_seq_ops = {
3132 .start = dev_seq_start,
3133 .next = dev_seq_next,
3134 .stop = dev_seq_stop,
3135 .show = dev_seq_show,
3136};
3137
3138static int dev_seq_open(struct inode *inode, struct file *file)
3139{
3140 return seq_open_net(inode, file, &dev_seq_ops,
3141 sizeof(struct seq_net_private));
3142}
3143
3144static const struct file_operations dev_seq_fops = {
3145 .owner = THIS_MODULE,
3146 .open = dev_seq_open,
3147 .read = seq_read,
3148 .llseek = seq_lseek,
3149 .release = seq_release_net,
3150};
3151
3152static const struct seq_operations softnet_seq_ops = {
3153 .start = softnet_seq_start,
3154 .next = softnet_seq_next,
3155 .stop = softnet_seq_stop,
3156 .show = softnet_seq_show,
3157};
3158
3159static int softnet_seq_open(struct inode *inode, struct file *file)
3160{
3161 return seq_open(file, &softnet_seq_ops);
3162}
3163
3164static const struct file_operations softnet_seq_fops = {
3165 .owner = THIS_MODULE,
3166 .open = softnet_seq_open,
3167 .read = seq_read,
3168 .llseek = seq_lseek,
3169 .release = seq_release,
3170};
3171
3172static void *ptype_get_idx(loff_t pos)
3173{
3174 struct packet_type *pt = NULL;
3175 loff_t i = 0;
3176 int t;
3177
3178 list_for_each_entry_rcu(pt, &ptype_all, list) {
3179 if (i == pos)
3180 return pt;
3181 ++i;
3182 }
3183
3184 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3185 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3186 if (i == pos)
3187 return pt;
3188 ++i;
3189 }
3190 }
3191 return NULL;
3192}
3193
3194static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3195 __acquires(RCU)
3196{
3197 rcu_read_lock();
3198 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3199}
3200
3201static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3202{
3203 struct packet_type *pt;
3204 struct list_head *nxt;
3205 int hash;
3206
3207 ++*pos;
3208 if (v == SEQ_START_TOKEN)
3209 return ptype_get_idx(0);
3210
3211 pt = v;
3212 nxt = pt->list.next;
3213 if (pt->type == htons(ETH_P_ALL)) {
3214 if (nxt != &ptype_all)
3215 goto found;
3216 hash = 0;
3217 nxt = ptype_base[0].next;
3218 } else
3219 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3220
3221 while (nxt == &ptype_base[hash]) {
3222 if (++hash >= PTYPE_HASH_SIZE)
3223 return NULL;
3224 nxt = ptype_base[hash].next;
3225 }
3226found:
3227 return list_entry(nxt, struct packet_type, list);
3228}
3229
3230static void ptype_seq_stop(struct seq_file *seq, void *v)
3231 __releases(RCU)
3232{
3233 rcu_read_unlock();
3234}
3235
3236static int ptype_seq_show(struct seq_file *seq, void *v)
3237{
3238 struct packet_type *pt = v;
3239
3240 if (v == SEQ_START_TOKEN)
3241 seq_puts(seq, "Type Device Function\n");
3242 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3243 if (pt->type == htons(ETH_P_ALL))
3244 seq_puts(seq, "ALL ");
3245 else
3246 seq_printf(seq, "%04x", ntohs(pt->type));
3247
3248 seq_printf(seq, " %-8s %pF\n",
3249 pt->dev ? pt->dev->name : "", pt->func);
3250 }
3251
3252 return 0;
3253}
3254
3255static const struct seq_operations ptype_seq_ops = {
3256 .start = ptype_seq_start,
3257 .next = ptype_seq_next,
3258 .stop = ptype_seq_stop,
3259 .show = ptype_seq_show,
3260};
3261
3262static int ptype_seq_open(struct inode *inode, struct file *file)
3263{
3264 return seq_open_net(inode, file, &ptype_seq_ops,
3265 sizeof(struct seq_net_private));
3266}
3267
3268static const struct file_operations ptype_seq_fops = {
3269 .owner = THIS_MODULE,
3270 .open = ptype_seq_open,
3271 .read = seq_read,
3272 .llseek = seq_lseek,
3273 .release = seq_release_net,
3274};
3275
3276
3277static int __net_init dev_proc_net_init(struct net *net)
3278{
3279 int rc = -ENOMEM;
3280
3281 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3282 goto out;
3283 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3284 goto out_dev;
3285 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3286 goto out_softnet;
3287
3288 if (wext_proc_init(net))
3289 goto out_ptype;
3290 rc = 0;
3291out:
3292 return rc;
3293out_ptype:
3294 proc_net_remove(net, "ptype");
3295out_softnet:
3296 proc_net_remove(net, "softnet_stat");
3297out_dev:
3298 proc_net_remove(net, "dev");
3299 goto out;
3300}
3301
3302static void __net_exit dev_proc_net_exit(struct net *net)
3303{
3304 wext_proc_exit(net);
3305
3306 proc_net_remove(net, "ptype");
3307 proc_net_remove(net, "softnet_stat");
3308 proc_net_remove(net, "dev");
3309}
3310
3311static struct pernet_operations __net_initdata dev_proc_ops = {
3312 .init = dev_proc_net_init,
3313 .exit = dev_proc_net_exit,
3314};
3315
3316static int __init dev_proc_init(void)
3317{
3318 return register_pernet_subsys(&dev_proc_ops);
3319}
3320#else
3321#define dev_proc_init() 0
3322#endif /* CONFIG_PROC_FS */
3323
3324
3325/**
3326 * netdev_set_master - set up master/slave pair
3327 * @slave: slave device
3328 * @master: new master device
3329 *
3330 * Changes the master device of the slave. Pass %NULL to break the
3331 * bonding. The caller must hold the RTNL semaphore. On a failure
3332 * a negative errno code is returned. On success the reference counts
3333 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3334 * function returns zero.
3335 */
3336int netdev_set_master(struct net_device *slave, struct net_device *master)
3337{
3338 struct net_device *old = slave->master;
3339
3340 ASSERT_RTNL();
3341
3342 if (master) {
3343 if (old)
3344 return -EBUSY;
3345 dev_hold(master);
3346 }
3347
3348 slave->master = master;
3349
3350 synchronize_net();
3351
3352 if (old)
3353 dev_put(old);
3354
3355 if (master)
3356 slave->flags |= IFF_SLAVE;
3357 else
3358 slave->flags &= ~IFF_SLAVE;
3359
3360 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3361 return 0;
3362}
3363EXPORT_SYMBOL(netdev_set_master);
3364
3365static void dev_change_rx_flags(struct net_device *dev, int flags)
3366{
3367 const struct net_device_ops *ops = dev->netdev_ops;
3368
3369 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3370 ops->ndo_change_rx_flags(dev, flags);
3371}
3372
3373static int __dev_set_promiscuity(struct net_device *dev, int inc)
3374{
3375 unsigned short old_flags = dev->flags;
3376 uid_t uid;
3377 gid_t gid;
3378
3379 ASSERT_RTNL();
3380
3381 dev->flags |= IFF_PROMISC;
3382 dev->promiscuity += inc;
3383 if (dev->promiscuity == 0) {
3384 /*
3385 * Avoid overflow.
3386 * If inc causes overflow, untouch promisc and return error.
3387 */
3388 if (inc < 0)
3389 dev->flags &= ~IFF_PROMISC;
3390 else {
3391 dev->promiscuity -= inc;
3392 printk(KERN_WARNING "%s: promiscuity touches roof, "
3393 "set promiscuity failed, promiscuity feature "
3394 "of device might be broken.\n", dev->name);
3395 return -EOVERFLOW;
3396 }
3397 }
3398 if (dev->flags != old_flags) {
3399 printk(KERN_INFO "device %s %s promiscuous mode\n",
3400 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3401 "left");
3402 if (audit_enabled) {
3403 current_uid_gid(&uid, &gid);
3404 audit_log(current->audit_context, GFP_ATOMIC,
3405 AUDIT_ANOM_PROMISCUOUS,
3406 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3407 dev->name, (dev->flags & IFF_PROMISC),
3408 (old_flags & IFF_PROMISC),
3409 audit_get_loginuid(current),
3410 uid, gid,
3411 audit_get_sessionid(current));
3412 }
3413
3414 dev_change_rx_flags(dev, IFF_PROMISC);
3415 }
3416 return 0;
3417}
3418
3419/**
3420 * dev_set_promiscuity - update promiscuity count on a device
3421 * @dev: device
3422 * @inc: modifier
3423 *
3424 * Add or remove promiscuity from a device. While the count in the device
3425 * remains above zero the interface remains promiscuous. Once it hits zero
3426 * the device reverts back to normal filtering operation. A negative inc
3427 * value is used to drop promiscuity on the device.
3428 * Return 0 if successful or a negative errno code on error.
3429 */
3430int dev_set_promiscuity(struct net_device *dev, int inc)
3431{
3432 unsigned short old_flags = dev->flags;
3433 int err;
3434
3435 err = __dev_set_promiscuity(dev, inc);
3436 if (err < 0)
3437 return err;
3438 if (dev->flags != old_flags)
3439 dev_set_rx_mode(dev);
3440 return err;
3441}
3442EXPORT_SYMBOL(dev_set_promiscuity);
3443
3444/**
3445 * dev_set_allmulti - update allmulti count on a device
3446 * @dev: device
3447 * @inc: modifier
3448 *
3449 * Add or remove reception of all multicast frames to a device. While the
3450 * count in the device remains above zero the interface remains listening
3451 * to all interfaces. Once it hits zero the device reverts back to normal
3452 * filtering operation. A negative @inc value is used to drop the counter
3453 * when releasing a resource needing all multicasts.
3454 * Return 0 if successful or a negative errno code on error.
3455 */
3456
3457int dev_set_allmulti(struct net_device *dev, int inc)
3458{
3459 unsigned short old_flags = dev->flags;
3460
3461 ASSERT_RTNL();
3462
3463 dev->flags |= IFF_ALLMULTI;
3464 dev->allmulti += inc;
3465 if (dev->allmulti == 0) {
3466 /*
3467 * Avoid overflow.
3468 * If inc causes overflow, untouch allmulti and return error.
3469 */
3470 if (inc < 0)
3471 dev->flags &= ~IFF_ALLMULTI;
3472 else {
3473 dev->allmulti -= inc;
3474 printk(KERN_WARNING "%s: allmulti touches roof, "
3475 "set allmulti failed, allmulti feature of "
3476 "device might be broken.\n", dev->name);
3477 return -EOVERFLOW;
3478 }
3479 }
3480 if (dev->flags ^ old_flags) {
3481 dev_change_rx_flags(dev, IFF_ALLMULTI);
3482 dev_set_rx_mode(dev);
3483 }
3484 return 0;
3485}
3486EXPORT_SYMBOL(dev_set_allmulti);
3487
3488/*
3489 * Upload unicast and multicast address lists to device and
3490 * configure RX filtering. When the device doesn't support unicast
3491 * filtering it is put in promiscuous mode while unicast addresses
3492 * are present.
3493 */
3494void __dev_set_rx_mode(struct net_device *dev)
3495{
3496 const struct net_device_ops *ops = dev->netdev_ops;
3497
3498 /* dev_open will call this function so the list will stay sane. */
3499 if (!(dev->flags&IFF_UP))
3500 return;
3501
3502 if (!netif_device_present(dev))
3503 return;
3504
3505 if (ops->ndo_set_rx_mode)
3506 ops->ndo_set_rx_mode(dev);
3507 else {
3508 /* Unicast addresses changes may only happen under the rtnl,
3509 * therefore calling __dev_set_promiscuity here is safe.
3510 */
3511 if (dev->uc.count > 0 && !dev->uc_promisc) {
3512 __dev_set_promiscuity(dev, 1);
3513 dev->uc_promisc = 1;
3514 } else if (dev->uc.count == 0 && dev->uc_promisc) {
3515 __dev_set_promiscuity(dev, -1);
3516 dev->uc_promisc = 0;
3517 }
3518
3519 if (ops->ndo_set_multicast_list)
3520 ops->ndo_set_multicast_list(dev);
3521 }
3522}
3523
3524void dev_set_rx_mode(struct net_device *dev)
3525{
3526 netif_addr_lock_bh(dev);
3527 __dev_set_rx_mode(dev);
3528 netif_addr_unlock_bh(dev);
3529}
3530
3531/* hw addresses list handling functions */
3532
3533static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3534 int addr_len, unsigned char addr_type)
3535{
3536 struct netdev_hw_addr *ha;
3537 int alloc_size;
3538
3539 if (addr_len > MAX_ADDR_LEN)
3540 return -EINVAL;
3541
3542 list_for_each_entry(ha, &list->list, list) {
3543 if (!memcmp(ha->addr, addr, addr_len) &&
3544 ha->type == addr_type) {
3545 ha->refcount++;
3546 return 0;
3547 }
3548 }
3549
3550
3551 alloc_size = sizeof(*ha);
3552 if (alloc_size < L1_CACHE_BYTES)
3553 alloc_size = L1_CACHE_BYTES;
3554 ha = kmalloc(alloc_size, GFP_ATOMIC);
3555 if (!ha)
3556 return -ENOMEM;
3557 memcpy(ha->addr, addr, addr_len);
3558 ha->type = addr_type;
3559 ha->refcount = 1;
3560 ha->synced = false;
3561 list_add_tail_rcu(&ha->list, &list->list);
3562 list->count++;
3563 return 0;
3564}
3565
3566static void ha_rcu_free(struct rcu_head *head)
3567{
3568 struct netdev_hw_addr *ha;
3569
3570 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3571 kfree(ha);
3572}
3573
3574static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3575 int addr_len, unsigned char addr_type)
3576{
3577 struct netdev_hw_addr *ha;
3578
3579 list_for_each_entry(ha, &list->list, list) {
3580 if (!memcmp(ha->addr, addr, addr_len) &&
3581 (ha->type == addr_type || !addr_type)) {
3582 if (--ha->refcount)
3583 return 0;
3584 list_del_rcu(&ha->list);
3585 call_rcu(&ha->rcu_head, ha_rcu_free);
3586 list->count--;
3587 return 0;
3588 }
3589 }
3590 return -ENOENT;
3591}
3592
3593static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3594 struct netdev_hw_addr_list *from_list,
3595 int addr_len,
3596 unsigned char addr_type)
3597{
3598 int err;
3599 struct netdev_hw_addr *ha, *ha2;
3600 unsigned char type;
3601
3602 list_for_each_entry(ha, &from_list->list, list) {
3603 type = addr_type ? addr_type : ha->type;
3604 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3605 if (err)
3606 goto unroll;
3607 }
3608 return 0;
3609
3610unroll:
3611 list_for_each_entry(ha2, &from_list->list, list) {
3612 if (ha2 == ha)
3613 break;
3614 type = addr_type ? addr_type : ha2->type;
3615 __hw_addr_del(to_list, ha2->addr, addr_len, type);
3616 }
3617 return err;
3618}
3619
3620static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3621 struct netdev_hw_addr_list *from_list,
3622 int addr_len,
3623 unsigned char addr_type)
3624{
3625 struct netdev_hw_addr *ha;
3626 unsigned char type;
3627
3628 list_for_each_entry(ha, &from_list->list, list) {
3629 type = addr_type ? addr_type : ha->type;
3630 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
3631 }
3632}
3633
3634static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3635 struct netdev_hw_addr_list *from_list,
3636 int addr_len)
3637{
3638 int err = 0;
3639 struct netdev_hw_addr *ha, *tmp;
3640
3641 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3642 if (!ha->synced) {
3643 err = __hw_addr_add(to_list, ha->addr,
3644 addr_len, ha->type);
3645 if (err)
3646 break;
3647 ha->synced = true;
3648 ha->refcount++;
3649 } else if (ha->refcount == 1) {
3650 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3651 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
3652 }
3653 }
3654 return err;
3655}
3656
3657static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3658 struct netdev_hw_addr_list *from_list,
3659 int addr_len)
3660{
3661 struct netdev_hw_addr *ha, *tmp;
3662
3663 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
3664 if (ha->synced) {
3665 __hw_addr_del(to_list, ha->addr,
3666 addr_len, ha->type);
3667 ha->synced = false;
3668 __hw_addr_del(from_list, ha->addr,
3669 addr_len, ha->type);
3670 }
3671 }
3672}
3673
3674static void __hw_addr_flush(struct netdev_hw_addr_list *list)
3675{
3676 struct netdev_hw_addr *ha, *tmp;
3677
3678 list_for_each_entry_safe(ha, tmp, &list->list, list) {
3679 list_del_rcu(&ha->list);
3680 call_rcu(&ha->rcu_head, ha_rcu_free);
3681 }
3682 list->count = 0;
3683}
3684
3685static void __hw_addr_init(struct netdev_hw_addr_list *list)
3686{
3687 INIT_LIST_HEAD(&list->list);
3688 list->count = 0;
3689}
3690
3691/* Device addresses handling functions */
3692
3693static void dev_addr_flush(struct net_device *dev)
3694{
3695 /* rtnl_mutex must be held here */
3696
3697 __hw_addr_flush(&dev->dev_addrs);
3698 dev->dev_addr = NULL;
3699}
3700
3701static int dev_addr_init(struct net_device *dev)
3702{
3703 unsigned char addr[MAX_ADDR_LEN];
3704 struct netdev_hw_addr *ha;
3705 int err;
3706
3707 /* rtnl_mutex must be held here */
3708
3709 __hw_addr_init(&dev->dev_addrs);
3710 memset(addr, 0, sizeof(addr));
3711 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
3712 NETDEV_HW_ADDR_T_LAN);
3713 if (!err) {
3714 /*
3715 * Get the first (previously created) address from the list
3716 * and set dev_addr pointer to this location.
3717 */
3718 ha = list_first_entry(&dev->dev_addrs.list,
3719 struct netdev_hw_addr, list);
3720 dev->dev_addr = ha->addr;
3721 }
3722 return err;
3723}
3724
3725/**
3726 * dev_addr_add - Add a device address
3727 * @dev: device
3728 * @addr: address to add
3729 * @addr_type: address type
3730 *
3731 * Add a device address to the device or increase the reference count if
3732 * it already exists.
3733 *
3734 * The caller must hold the rtnl_mutex.
3735 */
3736int dev_addr_add(struct net_device *dev, unsigned char *addr,
3737 unsigned char addr_type)
3738{
3739 int err;
3740
3741 ASSERT_RTNL();
3742
3743 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
3744 if (!err)
3745 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3746 return err;
3747}
3748EXPORT_SYMBOL(dev_addr_add);
3749
3750/**
3751 * dev_addr_del - Release a device address.
3752 * @dev: device
3753 * @addr: address to delete
3754 * @addr_type: address type
3755 *
3756 * Release reference to a device address and remove it from the device
3757 * if the reference count drops to zero.
3758 *
3759 * The caller must hold the rtnl_mutex.
3760 */
3761int dev_addr_del(struct net_device *dev, unsigned char *addr,
3762 unsigned char addr_type)
3763{
3764 int err;
3765 struct netdev_hw_addr *ha;
3766
3767 ASSERT_RTNL();
3768
3769 /*
3770 * We can not remove the first address from the list because
3771 * dev->dev_addr points to that.
3772 */
3773 ha = list_first_entry(&dev->dev_addrs.list,
3774 struct netdev_hw_addr, list);
3775 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3776 return -ENOENT;
3777
3778 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
3779 addr_type);
3780 if (!err)
3781 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3782 return err;
3783}
3784EXPORT_SYMBOL(dev_addr_del);
3785
3786/**
3787 * dev_addr_add_multiple - Add device addresses from another device
3788 * @to_dev: device to which addresses will be added
3789 * @from_dev: device from which addresses will be added
3790 * @addr_type: address type - 0 means type will be used from from_dev
3791 *
3792 * Add device addresses of the one device to another.
3793 **
3794 * The caller must hold the rtnl_mutex.
3795 */
3796int dev_addr_add_multiple(struct net_device *to_dev,
3797 struct net_device *from_dev,
3798 unsigned char addr_type)
3799{
3800 int err;
3801
3802 ASSERT_RTNL();
3803
3804 if (from_dev->addr_len != to_dev->addr_len)
3805 return -EINVAL;
3806 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3807 to_dev->addr_len, addr_type);
3808 if (!err)
3809 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3810 return err;
3811}
3812EXPORT_SYMBOL(dev_addr_add_multiple);
3813
3814/**
3815 * dev_addr_del_multiple - Delete device addresses by another device
3816 * @to_dev: device where the addresses will be deleted
3817 * @from_dev: device by which addresses the addresses will be deleted
3818 * @addr_type: address type - 0 means type will used from from_dev
3819 *
3820 * Deletes addresses in to device by the list of addresses in from device.
3821 *
3822 * The caller must hold the rtnl_mutex.
3823 */
3824int dev_addr_del_multiple(struct net_device *to_dev,
3825 struct net_device *from_dev,
3826 unsigned char addr_type)
3827{
3828 ASSERT_RTNL();
3829
3830 if (from_dev->addr_len != to_dev->addr_len)
3831 return -EINVAL;
3832 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
3833 to_dev->addr_len, addr_type);
3834 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3835 return 0;
3836}
3837EXPORT_SYMBOL(dev_addr_del_multiple);
3838
3839/* multicast addresses handling functions */
3840
3841int __dev_addr_delete(struct dev_addr_list **list, int *count,
3842 void *addr, int alen, int glbl)
3843{
3844 struct dev_addr_list *da;
3845
3846 for (; (da = *list) != NULL; list = &da->next) {
3847 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3848 alen == da->da_addrlen) {
3849 if (glbl) {
3850 int old_glbl = da->da_gusers;
3851 da->da_gusers = 0;
3852 if (old_glbl == 0)
3853 break;
3854 }
3855 if (--da->da_users)
3856 return 0;
3857
3858 *list = da->next;
3859 kfree(da);
3860 (*count)--;
3861 return 0;
3862 }
3863 }
3864 return -ENOENT;
3865}
3866
3867int __dev_addr_add(struct dev_addr_list **list, int *count,
3868 void *addr, int alen, int glbl)
3869{
3870 struct dev_addr_list *da;
3871
3872 for (da = *list; da != NULL; da = da->next) {
3873 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3874 da->da_addrlen == alen) {
3875 if (glbl) {
3876 int old_glbl = da->da_gusers;
3877 da->da_gusers = 1;
3878 if (old_glbl)
3879 return 0;
3880 }
3881 da->da_users++;
3882 return 0;
3883 }
3884 }
3885
3886 da = kzalloc(sizeof(*da), GFP_ATOMIC);
3887 if (da == NULL)
3888 return -ENOMEM;
3889 memcpy(da->da_addr, addr, alen);
3890 da->da_addrlen = alen;
3891 da->da_users = 1;
3892 da->da_gusers = glbl ? 1 : 0;
3893 da->next = *list;
3894 *list = da;
3895 (*count)++;
3896 return 0;
3897}
3898
3899/**
3900 * dev_unicast_delete - Release secondary unicast address.
3901 * @dev: device
3902 * @addr: address to delete
3903 *
3904 * Release reference to a secondary unicast address and remove it
3905 * from the device if the reference count drops to zero.
3906 *
3907 * The caller must hold the rtnl_mutex.
3908 */
3909int dev_unicast_delete(struct net_device *dev, void *addr)
3910{
3911 int err;
3912
3913 ASSERT_RTNL();
3914
3915 netif_addr_lock_bh(dev);
3916 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
3917 NETDEV_HW_ADDR_T_UNICAST);
3918 if (!err)
3919 __dev_set_rx_mode(dev);
3920 netif_addr_unlock_bh(dev);
3921 return err;
3922}
3923EXPORT_SYMBOL(dev_unicast_delete);
3924
3925/**
3926 * dev_unicast_add - add a secondary unicast address
3927 * @dev: device
3928 * @addr: address to add
3929 *
3930 * Add a secondary unicast address to the device or increase
3931 * the reference count if it already exists.
3932 *
3933 * The caller must hold the rtnl_mutex.
3934 */
3935int dev_unicast_add(struct net_device *dev, void *addr)
3936{
3937 int err;
3938
3939 ASSERT_RTNL();
3940
3941 netif_addr_lock_bh(dev);
3942 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
3943 NETDEV_HW_ADDR_T_UNICAST);
3944 if (!err)
3945 __dev_set_rx_mode(dev);
3946 netif_addr_unlock_bh(dev);
3947 return err;
3948}
3949EXPORT_SYMBOL(dev_unicast_add);
3950
3951int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3952 struct dev_addr_list **from, int *from_count)
3953{
3954 struct dev_addr_list *da, *next;
3955 int err = 0;
3956
3957 da = *from;
3958 while (da != NULL) {
3959 next = da->next;
3960 if (!da->da_synced) {
3961 err = __dev_addr_add(to, to_count,
3962 da->da_addr, da->da_addrlen, 0);
3963 if (err < 0)
3964 break;
3965 da->da_synced = 1;
3966 da->da_users++;
3967 } else if (da->da_users == 1) {
3968 __dev_addr_delete(to, to_count,
3969 da->da_addr, da->da_addrlen, 0);
3970 __dev_addr_delete(from, from_count,
3971 da->da_addr, da->da_addrlen, 0);
3972 }
3973 da = next;
3974 }
3975 return err;
3976}
3977EXPORT_SYMBOL_GPL(__dev_addr_sync);
3978
3979void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3980 struct dev_addr_list **from, int *from_count)
3981{
3982 struct dev_addr_list *da, *next;
3983
3984 da = *from;
3985 while (da != NULL) {
3986 next = da->next;
3987 if (da->da_synced) {
3988 __dev_addr_delete(to, to_count,
3989 da->da_addr, da->da_addrlen, 0);
3990 da->da_synced = 0;
3991 __dev_addr_delete(from, from_count,
3992 da->da_addr, da->da_addrlen, 0);
3993 }
3994 da = next;
3995 }
3996}
3997EXPORT_SYMBOL_GPL(__dev_addr_unsync);
3998
3999/**
4000 * dev_unicast_sync - Synchronize device's unicast list to another device
4001 * @to: destination device
4002 * @from: source device
4003 *
4004 * Add newly added addresses to the destination device and release
4005 * addresses that have no users left. The source device must be
4006 * locked by netif_tx_lock_bh.
4007 *
4008 * This function is intended to be called from the dev->set_rx_mode
4009 * function of layered software devices.
4010 */
4011int dev_unicast_sync(struct net_device *to, struct net_device *from)
4012{
4013 int err = 0;
4014
4015 if (to->addr_len != from->addr_len)
4016 return -EINVAL;
4017
4018 netif_addr_lock_bh(to);
4019 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4020 if (!err)
4021 __dev_set_rx_mode(to);
4022 netif_addr_unlock_bh(to);
4023 return err;
4024}
4025EXPORT_SYMBOL(dev_unicast_sync);
4026
4027/**
4028 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4029 * @to: destination device
4030 * @from: source device
4031 *
4032 * Remove all addresses that were added to the destination device by
4033 * dev_unicast_sync(). This function is intended to be called from the
4034 * dev->stop function of layered software devices.
4035 */
4036void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4037{
4038 if (to->addr_len != from->addr_len)
4039 return;
4040
4041 netif_addr_lock_bh(from);
4042 netif_addr_lock(to);
4043 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4044 __dev_set_rx_mode(to);
4045 netif_addr_unlock(to);
4046 netif_addr_unlock_bh(from);
4047}
4048EXPORT_SYMBOL(dev_unicast_unsync);
4049
4050static void dev_unicast_flush(struct net_device *dev)
4051{
4052 netif_addr_lock_bh(dev);
4053 __hw_addr_flush(&dev->uc);
4054 netif_addr_unlock_bh(dev);
4055}
4056
4057static void dev_unicast_init(struct net_device *dev)
4058{
4059 __hw_addr_init(&dev->uc);
4060}
4061
4062
4063static void __dev_addr_discard(struct dev_addr_list **list)
4064{
4065 struct dev_addr_list *tmp;
4066
4067 while (*list != NULL) {
4068 tmp = *list;
4069 *list = tmp->next;
4070 if (tmp->da_users > tmp->da_gusers)
4071 printk("__dev_addr_discard: address leakage! "
4072 "da_users=%d\n", tmp->da_users);
4073 kfree(tmp);
4074 }
4075}
4076
4077static void dev_addr_discard(struct net_device *dev)
4078{
4079 netif_addr_lock_bh(dev);
4080
4081 __dev_addr_discard(&dev->mc_list);
4082 dev->mc_count = 0;
4083
4084 netif_addr_unlock_bh(dev);
4085}
4086
4087/**
4088 * dev_get_flags - get flags reported to userspace
4089 * @dev: device
4090 *
4091 * Get the combination of flag bits exported through APIs to userspace.
4092 */
4093unsigned dev_get_flags(const struct net_device *dev)
4094{
4095 unsigned flags;
4096
4097 flags = (dev->flags & ~(IFF_PROMISC |
4098 IFF_ALLMULTI |
4099 IFF_RUNNING |
4100 IFF_LOWER_UP |
4101 IFF_DORMANT)) |
4102 (dev->gflags & (IFF_PROMISC |
4103 IFF_ALLMULTI));
4104
4105 if (netif_running(dev)) {
4106 if (netif_oper_up(dev))
4107 flags |= IFF_RUNNING;
4108 if (netif_carrier_ok(dev))
4109 flags |= IFF_LOWER_UP;
4110 if (netif_dormant(dev))
4111 flags |= IFF_DORMANT;
4112 }
4113
4114 return flags;
4115}
4116EXPORT_SYMBOL(dev_get_flags);
4117
4118/**
4119 * dev_change_flags - change device settings
4120 * @dev: device
4121 * @flags: device state flags
4122 *
4123 * Change settings on device based state flags. The flags are
4124 * in the userspace exported format.
4125 */
4126int dev_change_flags(struct net_device *dev, unsigned flags)
4127{
4128 int ret, changes;
4129 int old_flags = dev->flags;
4130
4131 ASSERT_RTNL();
4132
4133 /*
4134 * Set the flags on our device.
4135 */
4136
4137 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4138 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4139 IFF_AUTOMEDIA)) |
4140 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4141 IFF_ALLMULTI));
4142
4143 /*
4144 * Load in the correct multicast list now the flags have changed.
4145 */
4146
4147 if ((old_flags ^ flags) & IFF_MULTICAST)
4148 dev_change_rx_flags(dev, IFF_MULTICAST);
4149
4150 dev_set_rx_mode(dev);
4151
4152 /*
4153 * Have we downed the interface. We handle IFF_UP ourselves
4154 * according to user attempts to set it, rather than blindly
4155 * setting it.
4156 */
4157
4158 ret = 0;
4159 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4160 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4161
4162 if (!ret)
4163 dev_set_rx_mode(dev);
4164 }
4165
4166 if (dev->flags & IFF_UP &&
4167 ((old_flags ^ dev->flags) & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4168 IFF_VOLATILE)))
4169 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4170
4171 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4172 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4173
4174 dev->gflags ^= IFF_PROMISC;
4175 dev_set_promiscuity(dev, inc);
4176 }
4177
4178 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4179 is important. Some (broken) drivers set IFF_PROMISC, when
4180 IFF_ALLMULTI is requested not asking us and not reporting.
4181 */
4182 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4183 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4184
4185 dev->gflags ^= IFF_ALLMULTI;
4186 dev_set_allmulti(dev, inc);
4187 }
4188
4189 /* Exclude state transition flags, already notified */
4190 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4191 if (changes)
4192 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4193
4194 return ret;
4195}
4196EXPORT_SYMBOL(dev_change_flags);
4197
4198/**
4199 * dev_set_mtu - Change maximum transfer unit
4200 * @dev: device
4201 * @new_mtu: new transfer unit
4202 *
4203 * Change the maximum transfer size of the network device.
4204 */
4205int dev_set_mtu(struct net_device *dev, int new_mtu)
4206{
4207 const struct net_device_ops *ops = dev->netdev_ops;
4208 int err;
4209
4210 if (new_mtu == dev->mtu)
4211 return 0;
4212
4213 /* MTU must be positive. */
4214 if (new_mtu < 0)
4215 return -EINVAL;
4216
4217 if (!netif_device_present(dev))
4218 return -ENODEV;
4219
4220 err = 0;
4221 if (ops->ndo_change_mtu)
4222 err = ops->ndo_change_mtu(dev, new_mtu);
4223 else
4224 dev->mtu = new_mtu;
4225
4226 if (!err && dev->flags & IFF_UP)
4227 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4228 return err;
4229}
4230EXPORT_SYMBOL(dev_set_mtu);
4231
4232/**
4233 * dev_set_mac_address - Change Media Access Control Address
4234 * @dev: device
4235 * @sa: new address
4236 *
4237 * Change the hardware (MAC) address of the device
4238 */
4239int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4240{
4241 const struct net_device_ops *ops = dev->netdev_ops;
4242 int err;
4243
4244 if (!ops->ndo_set_mac_address)
4245 return -EOPNOTSUPP;
4246 if (sa->sa_family != dev->type)
4247 return -EINVAL;
4248 if (!netif_device_present(dev))
4249 return -ENODEV;
4250 err = ops->ndo_set_mac_address(dev, sa);
4251 if (!err)
4252 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4253 return err;
4254}
4255EXPORT_SYMBOL(dev_set_mac_address);
4256
4257/*
4258 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
4259 */
4260static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4261{
4262 int err;
4263 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4264
4265 if (!dev)
4266 return -ENODEV;
4267
4268 switch (cmd) {
4269 case SIOCGIFFLAGS: /* Get interface flags */
4270 ifr->ifr_flags = (short) dev_get_flags(dev);
4271 return 0;
4272
4273 case SIOCGIFMETRIC: /* Get the metric on the interface
4274 (currently unused) */
4275 ifr->ifr_metric = 0;
4276 return 0;
4277
4278 case SIOCGIFMTU: /* Get the MTU of a device */
4279 ifr->ifr_mtu = dev->mtu;
4280 return 0;
4281
4282 case SIOCGIFHWADDR:
4283 if (!dev->addr_len)
4284 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4285 else
4286 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4287 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4288 ifr->ifr_hwaddr.sa_family = dev->type;
4289 return 0;
4290
4291 case SIOCGIFSLAVE:
4292 err = -EINVAL;
4293 break;
4294
4295 case SIOCGIFMAP:
4296 ifr->ifr_map.mem_start = dev->mem_start;
4297 ifr->ifr_map.mem_end = dev->mem_end;
4298 ifr->ifr_map.base_addr = dev->base_addr;
4299 ifr->ifr_map.irq = dev->irq;
4300 ifr->ifr_map.dma = dev->dma;
4301 ifr->ifr_map.port = dev->if_port;
4302 return 0;
4303
4304 case SIOCGIFINDEX:
4305 ifr->ifr_ifindex = dev->ifindex;
4306 return 0;
4307
4308 case SIOCGIFTXQLEN:
4309 ifr->ifr_qlen = dev->tx_queue_len;
4310 return 0;
4311
4312 default:
4313 /* dev_ioctl() should ensure this case
4314 * is never reached
4315 */
4316 WARN_ON(1);
4317 err = -EINVAL;
4318 break;
4319
4320 }
4321 return err;
4322}
4323
4324/*
4325 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4326 */
4327static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4328{
4329 int err;
4330 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4331 const struct net_device_ops *ops;
4332
4333 if (!dev)
4334 return -ENODEV;
4335
4336 ops = dev->netdev_ops;
4337
4338 switch (cmd) {
4339 case SIOCSIFFLAGS: /* Set interface flags */
4340 return dev_change_flags(dev, ifr->ifr_flags);
4341
4342 case SIOCSIFMETRIC: /* Set the metric on the interface
4343 (currently unused) */
4344 return -EOPNOTSUPP;
4345
4346 case SIOCSIFMTU: /* Set the MTU of a device */
4347 return dev_set_mtu(dev, ifr->ifr_mtu);
4348
4349 case SIOCSIFHWADDR:
4350 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4351
4352 case SIOCSIFHWBROADCAST:
4353 if (ifr->ifr_hwaddr.sa_family != dev->type)
4354 return -EINVAL;
4355 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4356 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4357 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4358 return 0;
4359
4360 case SIOCSIFMAP:
4361 if (ops->ndo_set_config) {
4362 if (!netif_device_present(dev))
4363 return -ENODEV;
4364 return ops->ndo_set_config(dev, &ifr->ifr_map);
4365 }
4366 return -EOPNOTSUPP;
4367
4368 case SIOCADDMULTI:
4369 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4370 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4371 return -EINVAL;
4372 if (!netif_device_present(dev))
4373 return -ENODEV;
4374 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4375 dev->addr_len, 1);
4376
4377 case SIOCDELMULTI:
4378 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4379 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4380 return -EINVAL;
4381 if (!netif_device_present(dev))
4382 return -ENODEV;
4383 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4384 dev->addr_len, 1);
4385
4386 case SIOCSIFTXQLEN:
4387 if (ifr->ifr_qlen < 0)
4388 return -EINVAL;
4389 dev->tx_queue_len = ifr->ifr_qlen;
4390 return 0;
4391
4392 case SIOCSIFNAME:
4393 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4394 return dev_change_name(dev, ifr->ifr_newname);
4395
4396 /*
4397 * Unknown or private ioctl
4398 */
4399 default:
4400 if ((cmd >= SIOCDEVPRIVATE &&
4401 cmd <= SIOCDEVPRIVATE + 15) ||
4402 cmd == SIOCBONDENSLAVE ||
4403 cmd == SIOCBONDRELEASE ||
4404 cmd == SIOCBONDSETHWADDR ||
4405 cmd == SIOCBONDSLAVEINFOQUERY ||
4406 cmd == SIOCBONDINFOQUERY ||
4407 cmd == SIOCBONDCHANGEACTIVE ||
4408 cmd == SIOCGMIIPHY ||
4409 cmd == SIOCGMIIREG ||
4410 cmd == SIOCSMIIREG ||
4411 cmd == SIOCBRADDIF ||
4412 cmd == SIOCBRDELIF ||
4413 cmd == SIOCSHWTSTAMP ||
4414 cmd == SIOCWANDEV) {
4415 err = -EOPNOTSUPP;
4416 if (ops->ndo_do_ioctl) {
4417 if (netif_device_present(dev))
4418 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4419 else
4420 err = -ENODEV;
4421 }
4422 } else
4423 err = -EINVAL;
4424
4425 }
4426 return err;
4427}
4428
4429/*
4430 * This function handles all "interface"-type I/O control requests. The actual
4431 * 'doing' part of this is dev_ifsioc above.
4432 */
4433
4434/**
4435 * dev_ioctl - network device ioctl
4436 * @net: the applicable net namespace
4437 * @cmd: command to issue
4438 * @arg: pointer to a struct ifreq in user space
4439 *
4440 * Issue ioctl functions to devices. This is normally called by the
4441 * user space syscall interfaces but can sometimes be useful for
4442 * other purposes. The return value is the return from the syscall if
4443 * positive or a negative errno code on error.
4444 */
4445
4446int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4447{
4448 struct ifreq ifr;
4449 int ret;
4450 char *colon;
4451
4452 /* One special case: SIOCGIFCONF takes ifconf argument
4453 and requires shared lock, because it sleeps writing
4454 to user space.
4455 */
4456
4457 if (cmd == SIOCGIFCONF) {
4458 rtnl_lock();
4459 ret = dev_ifconf(net, (char __user *) arg);
4460 rtnl_unlock();
4461 return ret;
4462 }
4463 if (cmd == SIOCGIFNAME)
4464 return dev_ifname(net, (struct ifreq __user *)arg);
4465
4466 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4467 return -EFAULT;
4468
4469 ifr.ifr_name[IFNAMSIZ-1] = 0;
4470
4471 colon = strchr(ifr.ifr_name, ':');
4472 if (colon)
4473 *colon = 0;
4474
4475 /*
4476 * See which interface the caller is talking about.
4477 */
4478
4479 switch (cmd) {
4480 /*
4481 * These ioctl calls:
4482 * - can be done by all.
4483 * - atomic and do not require locking.
4484 * - return a value
4485 */
4486 case SIOCGIFFLAGS:
4487 case SIOCGIFMETRIC:
4488 case SIOCGIFMTU:
4489 case SIOCGIFHWADDR:
4490 case SIOCGIFSLAVE:
4491 case SIOCGIFMAP:
4492 case SIOCGIFINDEX:
4493 case SIOCGIFTXQLEN:
4494 dev_load(net, ifr.ifr_name);
4495 read_lock(&dev_base_lock);
4496 ret = dev_ifsioc_locked(net, &ifr, cmd);
4497 read_unlock(&dev_base_lock);
4498 if (!ret) {
4499 if (colon)
4500 *colon = ':';
4501 if (copy_to_user(arg, &ifr,
4502 sizeof(struct ifreq)))
4503 ret = -EFAULT;
4504 }
4505 return ret;
4506
4507 case SIOCETHTOOL:
4508 dev_load(net, ifr.ifr_name);
4509 rtnl_lock();
4510 ret = dev_ethtool(net, &ifr);
4511 rtnl_unlock();
4512 if (!ret) {
4513 if (colon)
4514 *colon = ':';
4515 if (copy_to_user(arg, &ifr,
4516 sizeof(struct ifreq)))
4517 ret = -EFAULT;
4518 }
4519 return ret;
4520
4521 /*
4522 * These ioctl calls:
4523 * - require superuser power.
4524 * - require strict serialization.
4525 * - return a value
4526 */
4527 case SIOCGMIIPHY:
4528 case SIOCGMIIREG:
4529 case SIOCSIFNAME:
4530 if (!capable(CAP_NET_ADMIN))
4531 return -EPERM;
4532 dev_load(net, ifr.ifr_name);
4533 rtnl_lock();
4534 ret = dev_ifsioc(net, &ifr, cmd);
4535 rtnl_unlock();
4536 if (!ret) {
4537 if (colon)
4538 *colon = ':';
4539 if (copy_to_user(arg, &ifr,
4540 sizeof(struct ifreq)))
4541 ret = -EFAULT;
4542 }
4543 return ret;
4544
4545 /*
4546 * These ioctl calls:
4547 * - require superuser power.
4548 * - require strict serialization.
4549 * - do not return a value
4550 */
4551 case SIOCSIFFLAGS:
4552 case SIOCSIFMETRIC:
4553 case SIOCSIFMTU:
4554 case SIOCSIFMAP:
4555 case SIOCSIFHWADDR:
4556 case SIOCSIFSLAVE:
4557 case SIOCADDMULTI:
4558 case SIOCDELMULTI:
4559 case SIOCSIFHWBROADCAST:
4560 case SIOCSIFTXQLEN:
4561 case SIOCSMIIREG:
4562 case SIOCBONDENSLAVE:
4563 case SIOCBONDRELEASE:
4564 case SIOCBONDSETHWADDR:
4565 case SIOCBONDCHANGEACTIVE:
4566 case SIOCBRADDIF:
4567 case SIOCBRDELIF:
4568 case SIOCSHWTSTAMP:
4569 if (!capable(CAP_NET_ADMIN))
4570 return -EPERM;
4571 /* fall through */
4572 case SIOCBONDSLAVEINFOQUERY:
4573 case SIOCBONDINFOQUERY:
4574 dev_load(net, ifr.ifr_name);
4575 rtnl_lock();
4576 ret = dev_ifsioc(net, &ifr, cmd);
4577 rtnl_unlock();
4578 return ret;
4579
4580 case SIOCGIFMEM:
4581 /* Get the per device memory space. We can add this but
4582 * currently do not support it */
4583 case SIOCSIFMEM:
4584 /* Set the per device memory buffer space.
4585 * Not applicable in our case */
4586 case SIOCSIFLINK:
4587 return -EINVAL;
4588
4589 /*
4590 * Unknown or private ioctl.
4591 */
4592 default:
4593 if (cmd == SIOCWANDEV ||
4594 (cmd >= SIOCDEVPRIVATE &&
4595 cmd <= SIOCDEVPRIVATE + 15)) {
4596 dev_load(net, ifr.ifr_name);
4597 rtnl_lock();
4598 ret = dev_ifsioc(net, &ifr, cmd);
4599 rtnl_unlock();
4600 if (!ret && copy_to_user(arg, &ifr,
4601 sizeof(struct ifreq)))
4602 ret = -EFAULT;
4603 return ret;
4604 }
4605 /* Take care of Wireless Extensions */
4606 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4607 return wext_handle_ioctl(net, &ifr, cmd, arg);
4608 return -EINVAL;
4609 }
4610}
4611
4612
4613/**
4614 * dev_new_index - allocate an ifindex
4615 * @net: the applicable net namespace
4616 *
4617 * Returns a suitable unique value for a new device interface
4618 * number. The caller must hold the rtnl semaphore or the
4619 * dev_base_lock to be sure it remains unique.
4620 */
4621static int dev_new_index(struct net *net)
4622{
4623 static int ifindex;
4624 for (;;) {
4625 if (++ifindex <= 0)
4626 ifindex = 1;
4627 if (!__dev_get_by_index(net, ifindex))
4628 return ifindex;
4629 }
4630}
4631
4632/* Delayed registration/unregisteration */
4633static LIST_HEAD(net_todo_list);
4634
4635static void net_set_todo(struct net_device *dev)
4636{
4637 list_add_tail(&dev->todo_list, &net_todo_list);
4638}
4639
4640static void rollback_registered(struct net_device *dev)
4641{
4642 BUG_ON(dev_boot_phase);
4643 ASSERT_RTNL();
4644
4645 /* Some devices call without registering for initialization unwind. */
4646 if (dev->reg_state == NETREG_UNINITIALIZED) {
4647 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4648 "was registered\n", dev->name, dev);
4649
4650 WARN_ON(1);
4651 return;
4652 }
4653
4654 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4655
4656 /* If device is running, close it first. */
4657 dev_close(dev);
4658
4659 /* And unlink it from device chain. */
4660 unlist_netdevice(dev);
4661
4662 dev->reg_state = NETREG_UNREGISTERING;
4663
4664 synchronize_net();
4665
4666 /* Shutdown queueing discipline. */
4667 dev_shutdown(dev);
4668
4669
4670 /* Notify protocols, that we are about to destroy
4671 this device. They should clean all the things.
4672 */
4673 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4674
4675 /*
4676 * Flush the unicast and multicast chains
4677 */
4678 dev_unicast_flush(dev);
4679 dev_addr_discard(dev);
4680
4681 if (dev->netdev_ops->ndo_uninit)
4682 dev->netdev_ops->ndo_uninit(dev);
4683
4684 /* Notifier chain MUST detach us from master device. */
4685 WARN_ON(dev->master);
4686
4687 /* Remove entries from kobject tree */
4688 netdev_unregister_kobject(dev);
4689
4690 synchronize_net();
4691
4692 dev_put(dev);
4693}
4694
4695static void __netdev_init_queue_locks_one(struct net_device *dev,
4696 struct netdev_queue *dev_queue,
4697 void *_unused)
4698{
4699 spin_lock_init(&dev_queue->_xmit_lock);
4700 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4701 dev_queue->xmit_lock_owner = -1;
4702}
4703
4704static void netdev_init_queue_locks(struct net_device *dev)
4705{
4706 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4707 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4708}
4709
4710unsigned long netdev_fix_features(unsigned long features, const char *name)
4711{
4712 /* Fix illegal SG+CSUM combinations. */
4713 if ((features & NETIF_F_SG) &&
4714 !(features & NETIF_F_ALL_CSUM)) {
4715 if (name)
4716 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4717 "checksum feature.\n", name);
4718 features &= ~NETIF_F_SG;
4719 }
4720
4721 /* TSO requires that SG is present as well. */
4722 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4723 if (name)
4724 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4725 "SG feature.\n", name);
4726 features &= ~NETIF_F_TSO;
4727 }
4728
4729 if (features & NETIF_F_UFO) {
4730 if (!(features & NETIF_F_GEN_CSUM)) {
4731 if (name)
4732 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4733 "since no NETIF_F_HW_CSUM feature.\n",
4734 name);
4735 features &= ~NETIF_F_UFO;
4736 }
4737
4738 if (!(features & NETIF_F_SG)) {
4739 if (name)
4740 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4741 "since no NETIF_F_SG feature.\n", name);
4742 features &= ~NETIF_F_UFO;
4743 }
4744 }
4745
4746 return features;
4747}
4748EXPORT_SYMBOL(netdev_fix_features);
4749
4750/**
4751 * register_netdevice - register a network device
4752 * @dev: device to register
4753 *
4754 * Take a completed network device structure and add it to the kernel
4755 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4756 * chain. 0 is returned on success. A negative errno code is returned
4757 * on a failure to set up the device, or if the name is a duplicate.
4758 *
4759 * Callers must hold the rtnl semaphore. You may want
4760 * register_netdev() instead of this.
4761 *
4762 * BUGS:
4763 * The locking appears insufficient to guarantee two parallel registers
4764 * will not get the same name.
4765 */
4766
4767int register_netdevice(struct net_device *dev)
4768{
4769 struct hlist_head *head;
4770 struct hlist_node *p;
4771 int ret;
4772 struct net *net = dev_net(dev);
4773
4774 BUG_ON(dev_boot_phase);
4775 ASSERT_RTNL();
4776
4777 might_sleep();
4778
4779 /* When net_device's are persistent, this will be fatal. */
4780 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4781 BUG_ON(!net);
4782
4783 spin_lock_init(&dev->addr_list_lock);
4784 netdev_set_addr_lockdep_class(dev);
4785 netdev_init_queue_locks(dev);
4786
4787 dev->iflink = -1;
4788
4789 /* Init, if this function is available */
4790 if (dev->netdev_ops->ndo_init) {
4791 ret = dev->netdev_ops->ndo_init(dev);
4792 if (ret) {
4793 if (ret > 0)
4794 ret = -EIO;
4795 goto out;
4796 }
4797 }
4798
4799 if (!dev_valid_name(dev->name)) {
4800 ret = -EINVAL;
4801 goto err_uninit;
4802 }
4803
4804 dev->ifindex = dev_new_index(net);
4805 if (dev->iflink == -1)
4806 dev->iflink = dev->ifindex;
4807
4808 /* Check for existence of name */
4809 head = dev_name_hash(net, dev->name);
4810 hlist_for_each(p, head) {
4811 struct net_device *d
4812 = hlist_entry(p, struct net_device, name_hlist);
4813 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4814 ret = -EEXIST;
4815 goto err_uninit;
4816 }
4817 }
4818
4819 /* Fix illegal checksum combinations */
4820 if ((dev->features & NETIF_F_HW_CSUM) &&
4821 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4822 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4823 dev->name);
4824 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4825 }
4826
4827 if ((dev->features & NETIF_F_NO_CSUM) &&
4828 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4829 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4830 dev->name);
4831 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4832 }
4833
4834 dev->features = netdev_fix_features(dev->features, dev->name);
4835
4836 /* Enable software GSO if SG is supported. */
4837 if (dev->features & NETIF_F_SG)
4838 dev->features |= NETIF_F_GSO;
4839
4840 netdev_initialize_kobject(dev);
4841
4842 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
4843 ret = notifier_to_errno(ret);
4844 if (ret)
4845 goto err_uninit;
4846
4847 ret = netdev_register_kobject(dev);
4848 if (ret)
4849 goto err_uninit;
4850 dev->reg_state = NETREG_REGISTERED;
4851
4852 /*
4853 * Default initial state at registry is that the
4854 * device is present.
4855 */
4856
4857 set_bit(__LINK_STATE_PRESENT, &dev->state);
4858
4859 dev_init_scheduler(dev);
4860 dev_hold(dev);
4861 list_netdevice(dev);
4862
4863 /* Notify protocols, that a new device appeared. */
4864 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4865 ret = notifier_to_errno(ret);
4866 if (ret) {
4867 rollback_registered(dev);
4868 dev->reg_state = NETREG_UNREGISTERED;
4869 }
4870
4871out:
4872 return ret;
4873
4874err_uninit:
4875 if (dev->netdev_ops->ndo_uninit)
4876 dev->netdev_ops->ndo_uninit(dev);
4877 goto out;
4878}
4879EXPORT_SYMBOL(register_netdevice);
4880
4881/**
4882 * init_dummy_netdev - init a dummy network device for NAPI
4883 * @dev: device to init
4884 *
4885 * This takes a network device structure and initialize the minimum
4886 * amount of fields so it can be used to schedule NAPI polls without
4887 * registering a full blown interface. This is to be used by drivers
4888 * that need to tie several hardware interfaces to a single NAPI
4889 * poll scheduler due to HW limitations.
4890 */
4891int init_dummy_netdev(struct net_device *dev)
4892{
4893 /* Clear everything. Note we don't initialize spinlocks
4894 * are they aren't supposed to be taken by any of the
4895 * NAPI code and this dummy netdev is supposed to be
4896 * only ever used for NAPI polls
4897 */
4898 memset(dev, 0, sizeof(struct net_device));
4899
4900 /* make sure we BUG if trying to hit standard
4901 * register/unregister code path
4902 */
4903 dev->reg_state = NETREG_DUMMY;
4904
4905 /* initialize the ref count */
4906 atomic_set(&dev->refcnt, 1);
4907
4908 /* NAPI wants this */
4909 INIT_LIST_HEAD(&dev->napi_list);
4910
4911 /* a dummy interface is started by default */
4912 set_bit(__LINK_STATE_PRESENT, &dev->state);
4913 set_bit(__LINK_STATE_START, &dev->state);
4914
4915 return 0;
4916}
4917EXPORT_SYMBOL_GPL(init_dummy_netdev);
4918
4919
4920/**
4921 * register_netdev - register a network device
4922 * @dev: device to register
4923 *
4924 * Take a completed network device structure and add it to the kernel
4925 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4926 * chain. 0 is returned on success. A negative errno code is returned
4927 * on a failure to set up the device, or if the name is a duplicate.
4928 *
4929 * This is a wrapper around register_netdevice that takes the rtnl semaphore
4930 * and expands the device name if you passed a format string to
4931 * alloc_netdev.
4932 */
4933int register_netdev(struct net_device *dev)
4934{
4935 int err;
4936
4937 rtnl_lock();
4938
4939 /*
4940 * If the name is a format string the caller wants us to do a
4941 * name allocation.
4942 */
4943 if (strchr(dev->name, '%')) {
4944 err = dev_alloc_name(dev, dev->name);
4945 if (err < 0)
4946 goto out;
4947 }
4948
4949 err = register_netdevice(dev);
4950out:
4951 rtnl_unlock();
4952 return err;
4953}
4954EXPORT_SYMBOL(register_netdev);
4955
4956/*
4957 * netdev_wait_allrefs - wait until all references are gone.
4958 *
4959 * This is called when unregistering network devices.
4960 *
4961 * Any protocol or device that holds a reference should register
4962 * for netdevice notification, and cleanup and put back the
4963 * reference if they receive an UNREGISTER event.
4964 * We can get stuck here if buggy protocols don't correctly
4965 * call dev_put.
4966 */
4967static void netdev_wait_allrefs(struct net_device *dev)
4968{
4969 unsigned long rebroadcast_time, warning_time;
4970
4971 rebroadcast_time = warning_time = jiffies;
4972 while (atomic_read(&dev->refcnt) != 0) {
4973 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4974 rtnl_lock();
4975
4976 /* Rebroadcast unregister notification */
4977 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4978
4979 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4980 &dev->state)) {
4981 /* We must not have linkwatch events
4982 * pending on unregister. If this
4983 * happens, we simply run the queue
4984 * unscheduled, resulting in a noop
4985 * for this device.
4986 */
4987 linkwatch_run_queue();
4988 }
4989
4990 __rtnl_unlock();
4991
4992 rebroadcast_time = jiffies;
4993 }
4994
4995 msleep(250);
4996
4997 if (time_after(jiffies, warning_time + 10 * HZ)) {
4998 printk(KERN_EMERG "unregister_netdevice: "
4999 "waiting for %s to become free. Usage "
5000 "count = %d\n",
5001 dev->name, atomic_read(&dev->refcnt));
5002 warning_time = jiffies;
5003 }
5004 }
5005}
5006
5007/* The sequence is:
5008 *
5009 * rtnl_lock();
5010 * ...
5011 * register_netdevice(x1);
5012 * register_netdevice(x2);
5013 * ...
5014 * unregister_netdevice(y1);
5015 * unregister_netdevice(y2);
5016 * ...
5017 * rtnl_unlock();
5018 * free_netdev(y1);
5019 * free_netdev(y2);
5020 *
5021 * We are invoked by rtnl_unlock().
5022 * This allows us to deal with problems:
5023 * 1) We can delete sysfs objects which invoke hotplug
5024 * without deadlocking with linkwatch via keventd.
5025 * 2) Since we run with the RTNL semaphore not held, we can sleep
5026 * safely in order to wait for the netdev refcnt to drop to zero.
5027 *
5028 * We must not return until all unregister events added during
5029 * the interval the lock was held have been completed.
5030 */
5031void netdev_run_todo(void)
5032{
5033 struct list_head list;
5034
5035 /* Snapshot list, allow later requests */
5036 list_replace_init(&net_todo_list, &list);
5037
5038 __rtnl_unlock();
5039
5040 while (!list_empty(&list)) {
5041 struct net_device *dev
5042 = list_entry(list.next, struct net_device, todo_list);
5043 list_del(&dev->todo_list);
5044
5045 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5046 printk(KERN_ERR "network todo '%s' but state %d\n",
5047 dev->name, dev->reg_state);
5048 dump_stack();
5049 continue;
5050 }
5051
5052 dev->reg_state = NETREG_UNREGISTERED;
5053
5054 on_each_cpu(flush_backlog, dev, 1);
5055
5056 netdev_wait_allrefs(dev);
5057
5058 /* paranoia */
5059 BUG_ON(atomic_read(&dev->refcnt));
5060 WARN_ON(dev->ip_ptr);
5061 WARN_ON(dev->ip6_ptr);
5062 WARN_ON(dev->dn_ptr);
5063
5064 if (dev->destructor)
5065 dev->destructor(dev);
5066
5067 /* Free network device */
5068 kobject_put(&dev->dev.kobj);
5069 }
5070}
5071
5072/**
5073 * dev_get_stats - get network device statistics
5074 * @dev: device to get statistics from
5075 *
5076 * Get network statistics from device. The device driver may provide
5077 * its own method by setting dev->netdev_ops->get_stats; otherwise
5078 * the internal statistics structure is used.
5079 */
5080const struct net_device_stats *dev_get_stats(struct net_device *dev)
5081{
5082 const struct net_device_ops *ops = dev->netdev_ops;
5083
5084 if (ops->ndo_get_stats)
5085 return ops->ndo_get_stats(dev);
5086 else {
5087 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5088 struct net_device_stats *stats = &dev->stats;
5089 unsigned int i;
5090 struct netdev_queue *txq;
5091
5092 for (i = 0; i < dev->num_tx_queues; i++) {
5093 txq = netdev_get_tx_queue(dev, i);
5094 tx_bytes += txq->tx_bytes;
5095 tx_packets += txq->tx_packets;
5096 tx_dropped += txq->tx_dropped;
5097 }
5098 if (tx_bytes || tx_packets || tx_dropped) {
5099 stats->tx_bytes = tx_bytes;
5100 stats->tx_packets = tx_packets;
5101 stats->tx_dropped = tx_dropped;
5102 }
5103 return stats;
5104 }
5105}
5106EXPORT_SYMBOL(dev_get_stats);
5107
5108static void netdev_init_one_queue(struct net_device *dev,
5109 struct netdev_queue *queue,
5110 void *_unused)
5111{
5112 queue->dev = dev;
5113}
5114
5115static void netdev_init_queues(struct net_device *dev)
5116{
5117 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5118 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5119 spin_lock_init(&dev->tx_global_lock);
5120}
5121
5122/**
5123 * alloc_netdev_mq - allocate network device
5124 * @sizeof_priv: size of private data to allocate space for
5125 * @name: device name format string
5126 * @setup: callback to initialize device
5127 * @queue_count: the number of subqueues to allocate
5128 *
5129 * Allocates a struct net_device with private data area for driver use
5130 * and performs basic initialization. Also allocates subquue structs
5131 * for each queue on the device at the end of the netdevice.
5132 */
5133struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5134 void (*setup)(struct net_device *), unsigned int queue_count)
5135{
5136 struct netdev_queue *tx;
5137 struct net_device *dev;
5138 size_t alloc_size;
5139 struct net_device *p;
5140
5141 BUG_ON(strlen(name) >= sizeof(dev->name));
5142
5143 alloc_size = sizeof(struct net_device);
5144 if (sizeof_priv) {
5145 /* ensure 32-byte alignment of private area */
5146 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5147 alloc_size += sizeof_priv;
5148 }
5149 /* ensure 32-byte alignment of whole construct */
5150 alloc_size += NETDEV_ALIGN - 1;
5151
5152 p = kzalloc(alloc_size, GFP_KERNEL);
5153 if (!p) {
5154 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5155 return NULL;
5156 }
5157
5158 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5159 if (!tx) {
5160 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5161 "tx qdiscs.\n");
5162 goto free_p;
5163 }
5164
5165 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5166 dev->padded = (char *)dev - (char *)p;
5167
5168 if (dev_addr_init(dev))
5169 goto free_tx;
5170
5171 dev_unicast_init(dev);
5172
5173 dev_net_set(dev, &init_net);
5174
5175 dev->_tx = tx;
5176 dev->num_tx_queues = queue_count;
5177 dev->real_num_tx_queues = queue_count;
5178
5179 dev->gso_max_size = GSO_MAX_SIZE;
5180
5181 netdev_init_queues(dev);
5182
5183 INIT_LIST_HEAD(&dev->napi_list);
5184 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5185 setup(dev);
5186 strcpy(dev->name, name);
5187 return dev;
5188
5189free_tx:
5190 kfree(tx);
5191
5192free_p:
5193 kfree(p);
5194 return NULL;
5195}
5196EXPORT_SYMBOL(alloc_netdev_mq);
5197
5198/**
5199 * free_netdev - free network device
5200 * @dev: device
5201 *
5202 * This function does the last stage of destroying an allocated device
5203 * interface. The reference to the device object is released.
5204 * If this is the last reference then it will be freed.
5205 */
5206void free_netdev(struct net_device *dev)
5207{
5208 struct napi_struct *p, *n;
5209
5210 release_net(dev_net(dev));
5211
5212 kfree(dev->_tx);
5213
5214 /* Flush device addresses */
5215 dev_addr_flush(dev);
5216
5217 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5218 netif_napi_del(p);
5219
5220 /* Compatibility with error handling in drivers */
5221 if (dev->reg_state == NETREG_UNINITIALIZED) {
5222 kfree((char *)dev - dev->padded);
5223 return;
5224 }
5225
5226 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5227 dev->reg_state = NETREG_RELEASED;
5228
5229 /* will free via device release */
5230 put_device(&dev->dev);
5231}
5232EXPORT_SYMBOL(free_netdev);
5233
5234/**
5235 * synchronize_net - Synchronize with packet receive processing
5236 *
5237 * Wait for packets currently being received to be done.
5238 * Does not block later packets from starting.
5239 */
5240void synchronize_net(void)
5241{
5242 might_sleep();
5243 synchronize_rcu();
5244}
5245EXPORT_SYMBOL(synchronize_net);
5246
5247/**
5248 * unregister_netdevice_queue - remove device from the kernel
5249 * @dev: device
5250 * @head: list
5251
5252 * This function shuts down a device interface and removes it
5253 * from the kernel tables.
5254 * If head not NULL, device is queued to be unregistered later.
5255 *
5256 * Callers must hold the rtnl semaphore. You may want
5257 * unregister_netdev() instead of this.
5258 */
5259
5260void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5261{
5262 ASSERT_RTNL();
5263
5264 if (head) {
5265 list_add_tail(&dev->unreg_list, head);
5266 } else {
5267 rollback_registered(dev);
5268 /* Finish processing unregister after unlock */
5269 net_set_todo(dev);
5270 }
5271}
5272EXPORT_SYMBOL(unregister_netdevice_queue);
5273
5274/**
5275 * unregister_netdev - remove device from the kernel
5276 * @dev: device
5277 *
5278 * This function shuts down a device interface and removes it
5279 * from the kernel tables.
5280 *
5281 * This is just a wrapper for unregister_netdevice that takes
5282 * the rtnl semaphore. In general you want to use this and not
5283 * unregister_netdevice.
5284 */
5285void unregister_netdev(struct net_device *dev)
5286{
5287 rtnl_lock();
5288 unregister_netdevice(dev);
5289 rtnl_unlock();
5290}
5291EXPORT_SYMBOL(unregister_netdev);
5292
5293/**
5294 * dev_change_net_namespace - move device to different nethost namespace
5295 * @dev: device
5296 * @net: network namespace
5297 * @pat: If not NULL name pattern to try if the current device name
5298 * is already taken in the destination network namespace.
5299 *
5300 * This function shuts down a device interface and moves it
5301 * to a new network namespace. On success 0 is returned, on
5302 * a failure a netagive errno code is returned.
5303 *
5304 * Callers must hold the rtnl semaphore.
5305 */
5306
5307int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5308{
5309 char buf[IFNAMSIZ];
5310 const char *destname;
5311 int err;
5312
5313 ASSERT_RTNL();
5314
5315 /* Don't allow namespace local devices to be moved. */
5316 err = -EINVAL;
5317 if (dev->features & NETIF_F_NETNS_LOCAL)
5318 goto out;
5319
5320#ifdef CONFIG_SYSFS
5321 /* Don't allow real devices to be moved when sysfs
5322 * is enabled.
5323 */
5324 err = -EINVAL;
5325 if (dev->dev.parent)
5326 goto out;
5327#endif
5328
5329 /* Ensure the device has been registrered */
5330 err = -EINVAL;
5331 if (dev->reg_state != NETREG_REGISTERED)
5332 goto out;
5333
5334 /* Get out if there is nothing todo */
5335 err = 0;
5336 if (net_eq(dev_net(dev), net))
5337 goto out;
5338
5339 /* Pick the destination device name, and ensure
5340 * we can use it in the destination network namespace.
5341 */
5342 err = -EEXIST;
5343 destname = dev->name;
5344 if (__dev_get_by_name(net, destname)) {
5345 /* We get here if we can't use the current device name */
5346 if (!pat)
5347 goto out;
5348 if (!dev_valid_name(pat))
5349 goto out;
5350 if (strchr(pat, '%')) {
5351 if (__dev_alloc_name(net, pat, buf) < 0)
5352 goto out;
5353 destname = buf;
5354 } else
5355 destname = pat;
5356 if (__dev_get_by_name(net, destname))
5357 goto out;
5358 }
5359
5360 /*
5361 * And now a mini version of register_netdevice unregister_netdevice.
5362 */
5363
5364 /* If device is running close it first. */
5365 dev_close(dev);
5366
5367 /* And unlink it from device chain */
5368 err = -ENODEV;
5369 unlist_netdevice(dev);
5370
5371 synchronize_net();
5372
5373 /* Shutdown queueing discipline. */
5374 dev_shutdown(dev);
5375
5376 /* Notify protocols, that we are about to destroy
5377 this device. They should clean all the things.
5378 */
5379 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5380
5381 /*
5382 * Flush the unicast and multicast chains
5383 */
5384 dev_unicast_flush(dev);
5385 dev_addr_discard(dev);
5386
5387 netdev_unregister_kobject(dev);
5388
5389 /* Actually switch the network namespace */
5390 dev_net_set(dev, net);
5391
5392 /* Assign the new device name */
5393 if (destname != dev->name)
5394 strcpy(dev->name, destname);
5395
5396 /* If there is an ifindex conflict assign a new one */
5397 if (__dev_get_by_index(net, dev->ifindex)) {
5398 int iflink = (dev->iflink == dev->ifindex);
5399 dev->ifindex = dev_new_index(net);
5400 if (iflink)
5401 dev->iflink = dev->ifindex;
5402 }
5403
5404 /* Fixup kobjects */
5405 err = netdev_register_kobject(dev);
5406 WARN_ON(err);
5407
5408 /* Add the device back in the hashes */
5409 list_netdevice(dev);
5410
5411 /* Notify protocols, that a new device appeared. */
5412 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5413
5414 synchronize_net();
5415 err = 0;
5416out:
5417 return err;
5418}
5419EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5420
5421static int dev_cpu_callback(struct notifier_block *nfb,
5422 unsigned long action,
5423 void *ocpu)
5424{
5425 struct sk_buff **list_skb;
5426 struct Qdisc **list_net;
5427 struct sk_buff *skb;
5428 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5429 struct softnet_data *sd, *oldsd;
5430
5431 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5432 return NOTIFY_OK;
5433
5434 local_irq_disable();
5435 cpu = smp_processor_id();
5436 sd = &per_cpu(softnet_data, cpu);
5437 oldsd = &per_cpu(softnet_data, oldcpu);
5438
5439 /* Find end of our completion_queue. */
5440 list_skb = &sd->completion_queue;
5441 while (*list_skb)
5442 list_skb = &(*list_skb)->next;
5443 /* Append completion queue from offline CPU. */
5444 *list_skb = oldsd->completion_queue;
5445 oldsd->completion_queue = NULL;
5446
5447 /* Find end of our output_queue. */
5448 list_net = &sd->output_queue;
5449 while (*list_net)
5450 list_net = &(*list_net)->next_sched;
5451 /* Append output queue from offline CPU. */
5452 *list_net = oldsd->output_queue;
5453 oldsd->output_queue = NULL;
5454
5455 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5456 local_irq_enable();
5457
5458 /* Process offline CPU's input_pkt_queue */
5459 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5460 netif_rx(skb);
5461
5462 return NOTIFY_OK;
5463}
5464
5465
5466/**
5467 * netdev_increment_features - increment feature set by one
5468 * @all: current feature set
5469 * @one: new feature set
5470 * @mask: mask feature set
5471 *
5472 * Computes a new feature set after adding a device with feature set
5473 * @one to the master device with current feature set @all. Will not
5474 * enable anything that is off in @mask. Returns the new feature set.
5475 */
5476unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5477 unsigned long mask)
5478{
5479 /* If device needs checksumming, downgrade to it. */
5480 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5481 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5482 else if (mask & NETIF_F_ALL_CSUM) {
5483 /* If one device supports v4/v6 checksumming, set for all. */
5484 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5485 !(all & NETIF_F_GEN_CSUM)) {
5486 all &= ~NETIF_F_ALL_CSUM;
5487 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5488 }
5489
5490 /* If one device supports hw checksumming, set for all. */
5491 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5492 all &= ~NETIF_F_ALL_CSUM;
5493 all |= NETIF_F_HW_CSUM;
5494 }
5495 }
5496
5497 one |= NETIF_F_ALL_CSUM;
5498
5499 one |= all & NETIF_F_ONE_FOR_ALL;
5500 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5501 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5502
5503 return all;
5504}
5505EXPORT_SYMBOL(netdev_increment_features);
5506
5507static struct hlist_head *netdev_create_hash(void)
5508{
5509 int i;
5510 struct hlist_head *hash;
5511
5512 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5513 if (hash != NULL)
5514 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5515 INIT_HLIST_HEAD(&hash[i]);
5516
5517 return hash;
5518}
5519
5520/* Initialize per network namespace state */
5521static int __net_init netdev_init(struct net *net)
5522{
5523 INIT_LIST_HEAD(&net->dev_base_head);
5524
5525 net->dev_name_head = netdev_create_hash();
5526 if (net->dev_name_head == NULL)
5527 goto err_name;
5528
5529 net->dev_index_head = netdev_create_hash();
5530 if (net->dev_index_head == NULL)
5531 goto err_idx;
5532
5533 return 0;
5534
5535err_idx:
5536 kfree(net->dev_name_head);
5537err_name:
5538 return -ENOMEM;
5539}
5540
5541/**
5542 * netdev_drivername - network driver for the device
5543 * @dev: network device
5544 * @buffer: buffer for resulting name
5545 * @len: size of buffer
5546 *
5547 * Determine network driver for device.
5548 */
5549char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5550{
5551 const struct device_driver *driver;
5552 const struct device *parent;
5553
5554 if (len <= 0 || !buffer)
5555 return buffer;
5556 buffer[0] = 0;
5557
5558 parent = dev->dev.parent;
5559
5560 if (!parent)
5561 return buffer;
5562
5563 driver = parent->driver;
5564 if (driver && driver->name)
5565 strlcpy(buffer, driver->name, len);
5566 return buffer;
5567}
5568
5569static void __net_exit netdev_exit(struct net *net)
5570{
5571 kfree(net->dev_name_head);
5572 kfree(net->dev_index_head);
5573}
5574
5575static struct pernet_operations __net_initdata netdev_net_ops = {
5576 .init = netdev_init,
5577 .exit = netdev_exit,
5578};
5579
5580static void __net_exit default_device_exit(struct net *net)
5581{
5582 struct net_device *dev;
5583 /*
5584 * Push all migratable of the network devices back to the
5585 * initial network namespace
5586 */
5587 rtnl_lock();
5588restart:
5589 for_each_netdev(net, dev) {
5590 int err;
5591 char fb_name[IFNAMSIZ];
5592
5593 /* Ignore unmoveable devices (i.e. loopback) */
5594 if (dev->features & NETIF_F_NETNS_LOCAL)
5595 continue;
5596
5597 /* Delete virtual devices */
5598 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5599 dev->rtnl_link_ops->dellink(dev);
5600 goto restart;
5601 }
5602
5603 /* Push remaing network devices to init_net */
5604 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5605 err = dev_change_net_namespace(dev, &init_net, fb_name);
5606 if (err) {
5607 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5608 __func__, dev->name, err);
5609 BUG();
5610 }
5611 goto restart;
5612 }
5613 rtnl_unlock();
5614}
5615
5616static struct pernet_operations __net_initdata default_device_ops = {
5617 .exit = default_device_exit,
5618};
5619
5620/*
5621 * Initialize the DEV module. At boot time this walks the device list and
5622 * unhooks any devices that fail to initialise (normally hardware not
5623 * present) and leaves us with a valid list of present and active devices.
5624 *
5625 */
5626
5627/*
5628 * This is called single threaded during boot, so no need
5629 * to take the rtnl semaphore.
5630 */
5631static int __init net_dev_init(void)
5632{
5633 int i, rc = -ENOMEM;
5634
5635 BUG_ON(!dev_boot_phase);
5636
5637 if (dev_proc_init())
5638 goto out;
5639
5640 if (netdev_kobject_init())
5641 goto out;
5642
5643 INIT_LIST_HEAD(&ptype_all);
5644 for (i = 0; i < PTYPE_HASH_SIZE; i++)
5645 INIT_LIST_HEAD(&ptype_base[i]);
5646
5647 if (register_pernet_subsys(&netdev_net_ops))
5648 goto out;
5649
5650 /*
5651 * Initialise the packet receive queues.
5652 */
5653
5654 for_each_possible_cpu(i) {
5655 struct softnet_data *queue;
5656
5657 queue = &per_cpu(softnet_data, i);
5658 skb_queue_head_init(&queue->input_pkt_queue);
5659 queue->completion_queue = NULL;
5660 INIT_LIST_HEAD(&queue->poll_list);
5661
5662 queue->backlog.poll = process_backlog;
5663 queue->backlog.weight = weight_p;
5664 queue->backlog.gro_list = NULL;
5665 queue->backlog.gro_count = 0;
5666 }
5667
5668 dev_boot_phase = 0;
5669
5670 /* The loopback device is special if any other network devices
5671 * is present in a network namespace the loopback device must
5672 * be present. Since we now dynamically allocate and free the
5673 * loopback device ensure this invariant is maintained by
5674 * keeping the loopback device as the first device on the
5675 * list of network devices. Ensuring the loopback devices
5676 * is the first device that appears and the last network device
5677 * that disappears.
5678 */
5679 if (register_pernet_device(&loopback_net_ops))
5680 goto out;
5681
5682 if (register_pernet_device(&default_device_ops))
5683 goto out;
5684
5685 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5686 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5687
5688 hotcpu_notifier(dev_cpu_callback, 0);
5689 dst_init();
5690 dev_mcast_init();
5691 rc = 0;
5692out:
5693 return rc;
5694}
5695
5696subsys_initcall(net_dev_init);
5697
5698static int __init initialize_hashrnd(void)
5699{
5700 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5701 return 0;
5702}
5703
5704late_initcall_sync(initialize_hashrnd);
5705