]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
net: rps: reset network header before calling skb_get_rxhash()
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/kmod.h>
111#include <linux/module.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130#include <trace/events/napi.h>
131#include <linux/pci.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172static DEFINE_SPINLOCK(ptype_lock);
173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174static struct list_head ptype_all __read_mostly; /* Taps */
175
176/*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195DEFINE_RWLOCK(dev_base_lock);
196EXPORT_SYMBOL(dev_base_lock);
197
198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202}
203
204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205{
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207}
208
209static inline void rps_lock(struct softnet_data *sd)
210{
211#ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213#endif
214}
215
216static inline void rps_unlock(struct softnet_data *sd)
217{
218#ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220#endif
221}
222
223/* Device list insertion */
224static int list_netdevice(struct net_device *dev)
225{
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237}
238
239/* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242static void unlist_netdevice(struct net_device *dev)
243{
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252}
253
254/*
255 * Our notifier list
256 */
257
258static RAW_NOTIFIER_HEAD(netdev_chain);
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268#ifdef CONFIG_LOCKDEP
269/*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 ARPHRD_VOID, ARPHRD_NONE};
290
291static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 "_xmit_VOID", "_xmit_NONE"};
308
309static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313{
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321}
322
323static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325{
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331}
332
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334{
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341}
342#else
343static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345{
346}
347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348{
349}
350#endif
351
352/*******************************************************************************
353
354 Protocol management and registration routines
355
356*******************************************************************************/
357
358/*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374/**
375 * dev_add_pack - add packet handler
376 * @pt: packet type declaration
377 *
378 * Add a protocol handler to the networking stack. The passed &packet_type
379 * is linked into kernel lists and may not be freed until it has been
380 * removed from the kernel lists.
381 *
382 * This call does not sleep therefore it can not
383 * guarantee all CPU's that are in middle of receiving packets
384 * will see the new packet type (until the next received packet).
385 */
386
387void dev_add_pack(struct packet_type *pt)
388{
389 int hash;
390
391 spin_lock_bh(&ptype_lock);
392 if (pt->type == htons(ETH_P_ALL))
393 list_add_rcu(&pt->list, &ptype_all);
394 else {
395 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 list_add_rcu(&pt->list, &ptype_base[hash]);
397 }
398 spin_unlock_bh(&ptype_lock);
399}
400EXPORT_SYMBOL(dev_add_pack);
401
402/**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415void __dev_remove_pack(struct packet_type *pt)
416{
417 struct list_head *head;
418 struct packet_type *pt1;
419
420 spin_lock_bh(&ptype_lock);
421
422 if (pt->type == htons(ETH_P_ALL))
423 head = &ptype_all;
424 else
425 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
435out:
436 spin_unlock_bh(&ptype_lock);
437}
438EXPORT_SYMBOL(__dev_remove_pack);
439
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457}
458EXPORT_SYMBOL(dev_remove_pack);
459
460/******************************************************************************
461
462 Device Boot-time Settings Routines
463
464*******************************************************************************/
465
466/* Boot time configuration table */
467static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
468
469/**
470 * netdev_boot_setup_add - add new setup entry
471 * @name: name of the device
472 * @map: configured settings for the device
473 *
474 * Adds new setup entry to the dev_boot_setup list. The function
475 * returns 0 on error and 1 on success. This is a generic routine to
476 * all netdevices.
477 */
478static int netdev_boot_setup_add(char *name, struct ifmap *map)
479{
480 struct netdev_boot_setup *s;
481 int i;
482
483 s = dev_boot_setup;
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
486 memset(s[i].name, 0, sizeof(s[i].name));
487 strlcpy(s[i].name, name, IFNAMSIZ);
488 memcpy(&s[i].map, map, sizeof(s[i].map));
489 break;
490 }
491 }
492
493 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
494}
495
496/**
497 * netdev_boot_setup_check - check boot time settings
498 * @dev: the netdevice
499 *
500 * Check boot time settings for the device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found, 1 if they are.
504 */
505int netdev_boot_setup_check(struct net_device *dev)
506{
507 struct netdev_boot_setup *s = dev_boot_setup;
508 int i;
509
510 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
511 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
512 !strcmp(dev->name, s[i].name)) {
513 dev->irq = s[i].map.irq;
514 dev->base_addr = s[i].map.base_addr;
515 dev->mem_start = s[i].map.mem_start;
516 dev->mem_end = s[i].map.mem_end;
517 return 1;
518 }
519 }
520 return 0;
521}
522EXPORT_SYMBOL(netdev_boot_setup_check);
523
524
525/**
526 * netdev_boot_base - get address from boot time settings
527 * @prefix: prefix for network device
528 * @unit: id for network device
529 *
530 * Check boot time settings for the base address of device.
531 * The found settings are set for the device to be used
532 * later in the device probing.
533 * Returns 0 if no settings found.
534 */
535unsigned long netdev_boot_base(const char *prefix, int unit)
536{
537 const struct netdev_boot_setup *s = dev_boot_setup;
538 char name[IFNAMSIZ];
539 int i;
540
541 sprintf(name, "%s%d", prefix, unit);
542
543 /*
544 * If device already registered then return base of 1
545 * to indicate not to probe for this interface
546 */
547 if (__dev_get_by_name(&init_net, name))
548 return 1;
549
550 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
551 if (!strcmp(name, s[i].name))
552 return s[i].map.base_addr;
553 return 0;
554}
555
556/*
557 * Saves at boot time configured settings for any netdevice.
558 */
559int __init netdev_boot_setup(char *str)
560{
561 int ints[5];
562 struct ifmap map;
563
564 str = get_options(str, ARRAY_SIZE(ints), ints);
565 if (!str || !*str)
566 return 0;
567
568 /* Save settings */
569 memset(&map, 0, sizeof(map));
570 if (ints[0] > 0)
571 map.irq = ints[1];
572 if (ints[0] > 1)
573 map.base_addr = ints[2];
574 if (ints[0] > 2)
575 map.mem_start = ints[3];
576 if (ints[0] > 3)
577 map.mem_end = ints[4];
578
579 /* Add new entry to the list */
580 return netdev_boot_setup_add(str, &map);
581}
582
583__setup("netdev=", netdev_boot_setup);
584
585/*******************************************************************************
586
587 Device Interface Subroutines
588
589*******************************************************************************/
590
591/**
592 * __dev_get_by_name - find a device by its name
593 * @net: the applicable net namespace
594 * @name: name to find
595 *
596 * Find an interface by name. Must be called under RTNL semaphore
597 * or @dev_base_lock. If the name is found a pointer to the device
598 * is returned. If the name is not found then %NULL is returned. The
599 * reference counters are not incremented so the caller must be
600 * careful with locks.
601 */
602
603struct net_device *__dev_get_by_name(struct net *net, const char *name)
604{
605 struct hlist_node *p;
606 struct net_device *dev;
607 struct hlist_head *head = dev_name_hash(net, name);
608
609 hlist_for_each_entry(dev, p, head, name_hlist)
610 if (!strncmp(dev->name, name, IFNAMSIZ))
611 return dev;
612
613 return NULL;
614}
615EXPORT_SYMBOL(__dev_get_by_name);
616
617/**
618 * dev_get_by_name_rcu - find a device by its name
619 * @net: the applicable net namespace
620 * @name: name to find
621 *
622 * Find an interface by name.
623 * If the name is found a pointer to the device is returned.
624 * If the name is not found then %NULL is returned.
625 * The reference counters are not incremented so the caller must be
626 * careful with locks. The caller must hold RCU lock.
627 */
628
629struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
630{
631 struct hlist_node *p;
632 struct net_device *dev;
633 struct hlist_head *head = dev_name_hash(net, name);
634
635 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
636 if (!strncmp(dev->name, name, IFNAMSIZ))
637 return dev;
638
639 return NULL;
640}
641EXPORT_SYMBOL(dev_get_by_name_rcu);
642
643/**
644 * dev_get_by_name - find a device by its name
645 * @net: the applicable net namespace
646 * @name: name to find
647 *
648 * Find an interface by name. This can be called from any
649 * context and does its own locking. The returned handle has
650 * the usage count incremented and the caller must use dev_put() to
651 * release it when it is no longer needed. %NULL is returned if no
652 * matching device is found.
653 */
654
655struct net_device *dev_get_by_name(struct net *net, const char *name)
656{
657 struct net_device *dev;
658
659 rcu_read_lock();
660 dev = dev_get_by_name_rcu(net, name);
661 if (dev)
662 dev_hold(dev);
663 rcu_read_unlock();
664 return dev;
665}
666EXPORT_SYMBOL(dev_get_by_name);
667
668/**
669 * __dev_get_by_index - find a device by its ifindex
670 * @net: the applicable net namespace
671 * @ifindex: index of device
672 *
673 * Search for an interface by index. Returns %NULL if the device
674 * is not found or a pointer to the device. The device has not
675 * had its reference counter increased so the caller must be careful
676 * about locking. The caller must hold either the RTNL semaphore
677 * or @dev_base_lock.
678 */
679
680struct net_device *__dev_get_by_index(struct net *net, int ifindex)
681{
682 struct hlist_node *p;
683 struct net_device *dev;
684 struct hlist_head *head = dev_index_hash(net, ifindex);
685
686 hlist_for_each_entry(dev, p, head, index_hlist)
687 if (dev->ifindex == ifindex)
688 return dev;
689
690 return NULL;
691}
692EXPORT_SYMBOL(__dev_get_by_index);
693
694/**
695 * dev_get_by_index_rcu - find a device by its ifindex
696 * @net: the applicable net namespace
697 * @ifindex: index of device
698 *
699 * Search for an interface by index. Returns %NULL if the device
700 * is not found or a pointer to the device. The device has not
701 * had its reference counter increased so the caller must be careful
702 * about locking. The caller must hold RCU lock.
703 */
704
705struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
706{
707 struct hlist_node *p;
708 struct net_device *dev;
709 struct hlist_head *head = dev_index_hash(net, ifindex);
710
711 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
712 if (dev->ifindex == ifindex)
713 return dev;
714
715 return NULL;
716}
717EXPORT_SYMBOL(dev_get_by_index_rcu);
718
719
720/**
721 * dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
724 *
725 * Search for an interface by index. Returns NULL if the device
726 * is not found or a pointer to the device. The device returned has
727 * had a reference added and the pointer is safe until the user calls
728 * dev_put to indicate they have finished with it.
729 */
730
731struct net_device *dev_get_by_index(struct net *net, int ifindex)
732{
733 struct net_device *dev;
734
735 rcu_read_lock();
736 dev = dev_get_by_index_rcu(net, ifindex);
737 if (dev)
738 dev_hold(dev);
739 rcu_read_unlock();
740 return dev;
741}
742EXPORT_SYMBOL(dev_get_by_index);
743
744/**
745 * dev_getbyhwaddr - find a device by its hardware address
746 * @net: the applicable net namespace
747 * @type: media type of device
748 * @ha: hardware address
749 *
750 * Search for an interface by MAC address. Returns NULL if the device
751 * is not found or a pointer to the device. The caller must hold the
752 * rtnl semaphore. The returned device has not had its ref count increased
753 * and the caller must therefore be careful about locking
754 *
755 * BUGS:
756 * If the API was consistent this would be __dev_get_by_hwaddr
757 */
758
759struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
760{
761 struct net_device *dev;
762
763 ASSERT_RTNL();
764
765 for_each_netdev(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_getbyhwaddr);
773
774struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775{
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784}
785EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788{
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800}
801EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803/**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816{
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827}
828EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830/**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838int dev_valid_name(const char *name)
839{
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853}
854EXPORT_SYMBOL(dev_valid_name);
855
856/**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872{
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920}
921
922/**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936int dev_alloc_name(struct net_device *dev, const char *name)
937{
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948}
949EXPORT_SYMBOL(dev_alloc_name);
950
951static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952{
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969}
970
971/**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979int dev_change_name(struct net_device *dev, const char *newname)
980{
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036}
1037
1038/**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047{
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067}
1068
1069
1070/**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076void netdev_features_change(struct net_device *dev)
1077{
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079}
1080EXPORT_SYMBOL(netdev_features_change);
1081
1082/**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090void netdev_state_change(struct net_device *dev)
1091{
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096}
1097EXPORT_SYMBOL(netdev_state_change);
1098
1099int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100{
1101 return call_netdevice_notifiers(event, dev);
1102}
1103EXPORT_SYMBOL(netdev_bonding_change);
1104
1105/**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115void dev_load(struct net *net, const char *name)
1116{
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125}
1126EXPORT_SYMBOL(dev_load);
1127
1128static int __dev_open(struct net_device *dev)
1129{
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186}
1187
1188/**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200int dev_open(struct net_device *dev)
1201{
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224}
1225EXPORT_SYMBOL(dev_open);
1226
1227static int __dev_close(struct net_device *dev)
1228{
1229 const struct net_device_ops *ops = dev->netdev_ops;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list,
1243 * it can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249
1250 dev_deactivate(dev);
1251
1252 /*
1253 * Call the device specific close. This cannot fail.
1254 * Only if device is UP
1255 *
1256 * We allow it to be called even after a DETACH hot-plug
1257 * event.
1258 */
1259 if (ops->ndo_stop)
1260 ops->ndo_stop(dev);
1261
1262 /*
1263 * Device is now down.
1264 */
1265
1266 dev->flags &= ~IFF_UP;
1267
1268 /*
1269 * Shutdown NET_DMA
1270 */
1271 net_dmaengine_put();
1272
1273 return 0;
1274}
1275
1276/**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285int dev_close(struct net_device *dev)
1286{
1287 if (!(dev->flags & IFF_UP))
1288 return 0;
1289
1290 __dev_close(dev);
1291
1292 /*
1293 * Tell people we are down
1294 */
1295 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1296 call_netdevice_notifiers(NETDEV_DOWN, dev);
1297
1298 return 0;
1299}
1300EXPORT_SYMBOL(dev_close);
1301
1302
1303/**
1304 * dev_disable_lro - disable Large Receive Offload on a device
1305 * @dev: device
1306 *
1307 * Disable Large Receive Offload (LRO) on a net device. Must be
1308 * called under RTNL. This is needed if received packets may be
1309 * forwarded to another interface.
1310 */
1311void dev_disable_lro(struct net_device *dev)
1312{
1313 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1314 dev->ethtool_ops->set_flags) {
1315 u32 flags = dev->ethtool_ops->get_flags(dev);
1316 if (flags & ETH_FLAG_LRO) {
1317 flags &= ~ETH_FLAG_LRO;
1318 dev->ethtool_ops->set_flags(dev, flags);
1319 }
1320 }
1321 WARN_ON(dev->features & NETIF_F_LRO);
1322}
1323EXPORT_SYMBOL(dev_disable_lro);
1324
1325
1326static int dev_boot_phase = 1;
1327
1328/*
1329 * Device change register/unregister. These are not inline or static
1330 * as we export them to the world.
1331 */
1332
1333/**
1334 * register_netdevice_notifier - register a network notifier block
1335 * @nb: notifier
1336 *
1337 * Register a notifier to be called when network device events occur.
1338 * The notifier passed is linked into the kernel structures and must
1339 * not be reused until it has been unregistered. A negative errno code
1340 * is returned on a failure.
1341 *
1342 * When registered all registration and up events are replayed
1343 * to the new notifier to allow device to have a race free
1344 * view of the network device list.
1345 */
1346
1347int register_netdevice_notifier(struct notifier_block *nb)
1348{
1349 struct net_device *dev;
1350 struct net_device *last;
1351 struct net *net;
1352 int err;
1353
1354 rtnl_lock();
1355 err = raw_notifier_chain_register(&netdev_chain, nb);
1356 if (err)
1357 goto unlock;
1358 if (dev_boot_phase)
1359 goto unlock;
1360 for_each_net(net) {
1361 for_each_netdev(net, dev) {
1362 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1363 err = notifier_to_errno(err);
1364 if (err)
1365 goto rollback;
1366
1367 if (!(dev->flags & IFF_UP))
1368 continue;
1369
1370 nb->notifier_call(nb, NETDEV_UP, dev);
1371 }
1372 }
1373
1374unlock:
1375 rtnl_unlock();
1376 return err;
1377
1378rollback:
1379 last = dev;
1380 for_each_net(net) {
1381 for_each_netdev(net, dev) {
1382 if (dev == last)
1383 break;
1384
1385 if (dev->flags & IFF_UP) {
1386 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1387 nb->notifier_call(nb, NETDEV_DOWN, dev);
1388 }
1389 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1390 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1391 }
1392 }
1393
1394 raw_notifier_chain_unregister(&netdev_chain, nb);
1395 goto unlock;
1396}
1397EXPORT_SYMBOL(register_netdevice_notifier);
1398
1399/**
1400 * unregister_netdevice_notifier - unregister a network notifier block
1401 * @nb: notifier
1402 *
1403 * Unregister a notifier previously registered by
1404 * register_netdevice_notifier(). The notifier is unlinked into the
1405 * kernel structures and may then be reused. A negative errno code
1406 * is returned on a failure.
1407 */
1408
1409int unregister_netdevice_notifier(struct notifier_block *nb)
1410{
1411 int err;
1412
1413 rtnl_lock();
1414 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1415 rtnl_unlock();
1416 return err;
1417}
1418EXPORT_SYMBOL(unregister_netdevice_notifier);
1419
1420/**
1421 * call_netdevice_notifiers - call all network notifier blocks
1422 * @val: value passed unmodified to notifier function
1423 * @dev: net_device pointer passed unmodified to notifier function
1424 *
1425 * Call all network notifier blocks. Parameters and return value
1426 * are as for raw_notifier_call_chain().
1427 */
1428
1429int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1430{
1431 ASSERT_RTNL();
1432 return raw_notifier_call_chain(&netdev_chain, val, dev);
1433}
1434
1435/* When > 0 there are consumers of rx skb time stamps */
1436static atomic_t netstamp_needed = ATOMIC_INIT(0);
1437
1438void net_enable_timestamp(void)
1439{
1440 atomic_inc(&netstamp_needed);
1441}
1442EXPORT_SYMBOL(net_enable_timestamp);
1443
1444void net_disable_timestamp(void)
1445{
1446 atomic_dec(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_disable_timestamp);
1449
1450static inline void net_timestamp_set(struct sk_buff *skb)
1451{
1452 if (atomic_read(&netstamp_needed))
1453 __net_timestamp(skb);
1454 else
1455 skb->tstamp.tv64 = 0;
1456}
1457
1458static inline void net_timestamp_check(struct sk_buff *skb)
1459{
1460 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1461 __net_timestamp(skb);
1462}
1463
1464/**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped, but freed)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483{
1484 skb_orphan(skb);
1485 nf_reset(skb);
1486
1487 if (!(dev->flags & IFF_UP) ||
1488 (skb->len > (dev->mtu + dev->hard_header_len))) {
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1491 }
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497}
1498EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500/*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506{
1507 struct packet_type *ptype;
1508
1509#ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512#else
1513 net_timestamp_set(skb);
1514#endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550}
1551
1552/*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */
1556void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557{
1558 unsigned int real_num = dev->real_num_tx_queues;
1559
1560 if (unlikely(txq > dev->num_tx_queues))
1561 ;
1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq);
1567 }
1568}
1569EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1570
1571static inline void __netif_reschedule(struct Qdisc *q)
1572{
1573 struct softnet_data *sd;
1574 unsigned long flags;
1575
1576 local_irq_save(flags);
1577 sd = &__get_cpu_var(softnet_data);
1578 q->next_sched = NULL;
1579 *sd->output_queue_tailp = q;
1580 sd->output_queue_tailp = &q->next_sched;
1581 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1582 local_irq_restore(flags);
1583}
1584
1585void __netif_schedule(struct Qdisc *q)
1586{
1587 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1588 __netif_reschedule(q);
1589}
1590EXPORT_SYMBOL(__netif_schedule);
1591
1592void dev_kfree_skb_irq(struct sk_buff *skb)
1593{
1594 if (atomic_dec_and_test(&skb->users)) {
1595 struct softnet_data *sd;
1596 unsigned long flags;
1597
1598 local_irq_save(flags);
1599 sd = &__get_cpu_var(softnet_data);
1600 skb->next = sd->completion_queue;
1601 sd->completion_queue = skb;
1602 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1603 local_irq_restore(flags);
1604 }
1605}
1606EXPORT_SYMBOL(dev_kfree_skb_irq);
1607
1608void dev_kfree_skb_any(struct sk_buff *skb)
1609{
1610 if (in_irq() || irqs_disabled())
1611 dev_kfree_skb_irq(skb);
1612 else
1613 dev_kfree_skb(skb);
1614}
1615EXPORT_SYMBOL(dev_kfree_skb_any);
1616
1617
1618/**
1619 * netif_device_detach - mark device as removed
1620 * @dev: network device
1621 *
1622 * Mark device as removed from system and therefore no longer available.
1623 */
1624void netif_device_detach(struct net_device *dev)
1625{
1626 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 netif_running(dev)) {
1628 netif_tx_stop_all_queues(dev);
1629 }
1630}
1631EXPORT_SYMBOL(netif_device_detach);
1632
1633/**
1634 * netif_device_attach - mark device as attached
1635 * @dev: network device
1636 *
1637 * Mark device as attached from system and restart if needed.
1638 */
1639void netif_device_attach(struct net_device *dev)
1640{
1641 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1642 netif_running(dev)) {
1643 netif_tx_wake_all_queues(dev);
1644 __netdev_watchdog_up(dev);
1645 }
1646}
1647EXPORT_SYMBOL(netif_device_attach);
1648
1649static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1650{
1651 return ((features & NETIF_F_GEN_CSUM) ||
1652 ((features & NETIF_F_IP_CSUM) &&
1653 protocol == htons(ETH_P_IP)) ||
1654 ((features & NETIF_F_IPV6_CSUM) &&
1655 protocol == htons(ETH_P_IPV6)) ||
1656 ((features & NETIF_F_FCOE_CRC) &&
1657 protocol == htons(ETH_P_FCOE)));
1658}
1659
1660static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1661{
1662 if (can_checksum_protocol(dev->features, skb->protocol))
1663 return true;
1664
1665 if (skb->protocol == htons(ETH_P_8021Q)) {
1666 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1667 if (can_checksum_protocol(dev->features & dev->vlan_features,
1668 veh->h_vlan_encapsulated_proto))
1669 return true;
1670 }
1671
1672 return false;
1673}
1674
1675/**
1676 * skb_dev_set -- assign a new device to a buffer
1677 * @skb: buffer for the new device
1678 * @dev: network device
1679 *
1680 * If an skb is owned by a device already, we have to reset
1681 * all data private to the namespace a device belongs to
1682 * before assigning it a new device.
1683 */
1684#ifdef CONFIG_NET_NS
1685void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1686{
1687 skb_dst_drop(skb);
1688 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1689 secpath_reset(skb);
1690 nf_reset(skb);
1691 skb_init_secmark(skb);
1692 skb->mark = 0;
1693 skb->priority = 0;
1694 skb->nf_trace = 0;
1695 skb->ipvs_property = 0;
1696#ifdef CONFIG_NET_SCHED
1697 skb->tc_index = 0;
1698#endif
1699 }
1700 skb->dev = dev;
1701}
1702EXPORT_SYMBOL(skb_set_dev);
1703#endif /* CONFIG_NET_NS */
1704
1705/*
1706 * Invalidate hardware checksum when packet is to be mangled, and
1707 * complete checksum manually on outgoing path.
1708 */
1709int skb_checksum_help(struct sk_buff *skb)
1710{
1711 __wsum csum;
1712 int ret = 0, offset;
1713
1714 if (skb->ip_summed == CHECKSUM_COMPLETE)
1715 goto out_set_summed;
1716
1717 if (unlikely(skb_shinfo(skb)->gso_size)) {
1718 /* Let GSO fix up the checksum. */
1719 goto out_set_summed;
1720 }
1721
1722 offset = skb->csum_start - skb_headroom(skb);
1723 BUG_ON(offset >= skb_headlen(skb));
1724 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1725
1726 offset += skb->csum_offset;
1727 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1728
1729 if (skb_cloned(skb) &&
1730 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1731 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1732 if (ret)
1733 goto out;
1734 }
1735
1736 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1737out_set_summed:
1738 skb->ip_summed = CHECKSUM_NONE;
1739out:
1740 return ret;
1741}
1742EXPORT_SYMBOL(skb_checksum_help);
1743
1744/**
1745 * skb_gso_segment - Perform segmentation on skb.
1746 * @skb: buffer to segment
1747 * @features: features for the output path (see dev->features)
1748 *
1749 * This function segments the given skb and returns a list of segments.
1750 *
1751 * It may return NULL if the skb requires no segmentation. This is
1752 * only possible when GSO is used for verifying header integrity.
1753 */
1754struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1755{
1756 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1757 struct packet_type *ptype;
1758 __be16 type = skb->protocol;
1759 int err;
1760
1761 skb_reset_mac_header(skb);
1762 skb->mac_len = skb->network_header - skb->mac_header;
1763 __skb_pull(skb, skb->mac_len);
1764
1765 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1766 struct net_device *dev = skb->dev;
1767 struct ethtool_drvinfo info = {};
1768
1769 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1770 dev->ethtool_ops->get_drvinfo(dev, &info);
1771
1772 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1773 "ip_summed=%d",
1774 info.driver, dev ? dev->features : 0L,
1775 skb->sk ? skb->sk->sk_route_caps : 0L,
1776 skb->len, skb->data_len, skb->ip_summed);
1777
1778 if (skb_header_cloned(skb) &&
1779 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1780 return ERR_PTR(err);
1781 }
1782
1783 rcu_read_lock();
1784 list_for_each_entry_rcu(ptype,
1785 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1786 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1787 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1788 err = ptype->gso_send_check(skb);
1789 segs = ERR_PTR(err);
1790 if (err || skb_gso_ok(skb, features))
1791 break;
1792 __skb_push(skb, (skb->data -
1793 skb_network_header(skb)));
1794 }
1795 segs = ptype->gso_segment(skb, features);
1796 break;
1797 }
1798 }
1799 rcu_read_unlock();
1800
1801 __skb_push(skb, skb->data - skb_mac_header(skb));
1802
1803 return segs;
1804}
1805EXPORT_SYMBOL(skb_gso_segment);
1806
1807/* Take action when hardware reception checksum errors are detected. */
1808#ifdef CONFIG_BUG
1809void netdev_rx_csum_fault(struct net_device *dev)
1810{
1811 if (net_ratelimit()) {
1812 printk(KERN_ERR "%s: hw csum failure.\n",
1813 dev ? dev->name : "<unknown>");
1814 dump_stack();
1815 }
1816}
1817EXPORT_SYMBOL(netdev_rx_csum_fault);
1818#endif
1819
1820/* Actually, we should eliminate this check as soon as we know, that:
1821 * 1. IOMMU is present and allows to map all the memory.
1822 * 2. No high memory really exists on this machine.
1823 */
1824
1825static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1826{
1827#ifdef CONFIG_HIGHMEM
1828 int i;
1829 if (!(dev->features & NETIF_F_HIGHDMA)) {
1830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1831 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1832 return 1;
1833 }
1834
1835 if (PCI_DMA_BUS_IS_PHYS) {
1836 struct device *pdev = dev->dev.parent;
1837
1838 if (!pdev)
1839 return 0;
1840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1841 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1842 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1843 return 1;
1844 }
1845 }
1846#endif
1847 return 0;
1848}
1849
1850struct dev_gso_cb {
1851 void (*destructor)(struct sk_buff *skb);
1852};
1853
1854#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1855
1856static void dev_gso_skb_destructor(struct sk_buff *skb)
1857{
1858 struct dev_gso_cb *cb;
1859
1860 do {
1861 struct sk_buff *nskb = skb->next;
1862
1863 skb->next = nskb->next;
1864 nskb->next = NULL;
1865 kfree_skb(nskb);
1866 } while (skb->next);
1867
1868 cb = DEV_GSO_CB(skb);
1869 if (cb->destructor)
1870 cb->destructor(skb);
1871}
1872
1873/**
1874 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1875 * @skb: buffer to segment
1876 *
1877 * This function segments the given skb and stores the list of segments
1878 * in skb->next.
1879 */
1880static int dev_gso_segment(struct sk_buff *skb)
1881{
1882 struct net_device *dev = skb->dev;
1883 struct sk_buff *segs;
1884 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1885 NETIF_F_SG : 0);
1886
1887 segs = skb_gso_segment(skb, features);
1888
1889 /* Verifying header integrity only. */
1890 if (!segs)
1891 return 0;
1892
1893 if (IS_ERR(segs))
1894 return PTR_ERR(segs);
1895
1896 skb->next = segs;
1897 DEV_GSO_CB(skb)->destructor = skb->destructor;
1898 skb->destructor = dev_gso_skb_destructor;
1899
1900 return 0;
1901}
1902
1903/*
1904 * Try to orphan skb early, right before transmission by the device.
1905 * We cannot orphan skb if tx timestamp is requested or the sk-reference
1906 * is needed on driver level for other reasons, e.g. see net/can/raw.c
1907 */
1908static inline void skb_orphan_try(struct sk_buff *skb)
1909{
1910 struct sock *sk = skb->sk;
1911
1912 if (sk && !skb_shinfo(skb)->tx_flags) {
1913 /* skb_tx_hash() wont be able to get sk.
1914 * We copy sk_hash into skb->rxhash
1915 */
1916 if (!skb->rxhash)
1917 skb->rxhash = sk->sk_hash;
1918 skb_orphan(skb);
1919 }
1920}
1921
1922/*
1923 * Returns true if either:
1924 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1925 * 2. skb is fragmented and the device does not support SG, or if
1926 * at least one of fragments is in highmem and device does not
1927 * support DMA from it.
1928 */
1929static inline int skb_needs_linearize(struct sk_buff *skb,
1930 struct net_device *dev)
1931{
1932 return skb_is_nonlinear(skb) &&
1933 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1934 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1935 illegal_highdma(dev, skb))));
1936}
1937
1938int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1939 struct netdev_queue *txq)
1940{
1941 const struct net_device_ops *ops = dev->netdev_ops;
1942 int rc = NETDEV_TX_OK;
1943
1944 if (likely(!skb->next)) {
1945 if (!list_empty(&ptype_all))
1946 dev_queue_xmit_nit(skb, dev);
1947
1948 /*
1949 * If device doesnt need skb->dst, release it right now while
1950 * its hot in this cpu cache
1951 */
1952 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1953 skb_dst_drop(skb);
1954
1955 skb_orphan_try(skb);
1956
1957 if (netif_needs_gso(dev, skb)) {
1958 if (unlikely(dev_gso_segment(skb)))
1959 goto out_kfree_skb;
1960 if (skb->next)
1961 goto gso;
1962 } else {
1963 if (skb_needs_linearize(skb, dev) &&
1964 __skb_linearize(skb))
1965 goto out_kfree_skb;
1966
1967 /* If packet is not checksummed and device does not
1968 * support checksumming for this protocol, complete
1969 * checksumming here.
1970 */
1971 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1972 skb_set_transport_header(skb, skb->csum_start -
1973 skb_headroom(skb));
1974 if (!dev_can_checksum(dev, skb) &&
1975 skb_checksum_help(skb))
1976 goto out_kfree_skb;
1977 }
1978 }
1979
1980 rc = ops->ndo_start_xmit(skb, dev);
1981 if (rc == NETDEV_TX_OK)
1982 txq_trans_update(txq);
1983 return rc;
1984 }
1985
1986gso:
1987 do {
1988 struct sk_buff *nskb = skb->next;
1989
1990 skb->next = nskb->next;
1991 nskb->next = NULL;
1992
1993 /*
1994 * If device doesnt need nskb->dst, release it right now while
1995 * its hot in this cpu cache
1996 */
1997 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1998 skb_dst_drop(nskb);
1999
2000 rc = ops->ndo_start_xmit(nskb, dev);
2001 if (unlikely(rc != NETDEV_TX_OK)) {
2002 if (rc & ~NETDEV_TX_MASK)
2003 goto out_kfree_gso_skb;
2004 nskb->next = skb->next;
2005 skb->next = nskb;
2006 return rc;
2007 }
2008 txq_trans_update(txq);
2009 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2010 return NETDEV_TX_BUSY;
2011 } while (skb->next);
2012
2013out_kfree_gso_skb:
2014 if (likely(skb->next == NULL))
2015 skb->destructor = DEV_GSO_CB(skb)->destructor;
2016out_kfree_skb:
2017 kfree_skb(skb);
2018 return rc;
2019}
2020
2021static u32 hashrnd __read_mostly;
2022
2023u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2024{
2025 u32 hash;
2026
2027 if (skb_rx_queue_recorded(skb)) {
2028 hash = skb_get_rx_queue(skb);
2029 while (unlikely(hash >= dev->real_num_tx_queues))
2030 hash -= dev->real_num_tx_queues;
2031 return hash;
2032 }
2033
2034 if (skb->sk && skb->sk->sk_hash)
2035 hash = skb->sk->sk_hash;
2036 else
2037 hash = (__force u16) skb->protocol ^ skb->rxhash;
2038 hash = jhash_1word(hash, hashrnd);
2039
2040 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2041}
2042EXPORT_SYMBOL(skb_tx_hash);
2043
2044static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2045{
2046 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2047 if (net_ratelimit()) {
2048 pr_warning("%s selects TX queue %d, but "
2049 "real number of TX queues is %d\n",
2050 dev->name, queue_index, dev->real_num_tx_queues);
2051 }
2052 return 0;
2053 }
2054 return queue_index;
2055}
2056
2057static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2058 struct sk_buff *skb)
2059{
2060 int queue_index;
2061 struct sock *sk = skb->sk;
2062
2063 queue_index = sk_tx_queue_get(sk);
2064 if (queue_index < 0) {
2065 const struct net_device_ops *ops = dev->netdev_ops;
2066
2067 if (ops->ndo_select_queue) {
2068 queue_index = ops->ndo_select_queue(dev, skb);
2069 queue_index = dev_cap_txqueue(dev, queue_index);
2070 } else {
2071 queue_index = 0;
2072 if (dev->real_num_tx_queues > 1)
2073 queue_index = skb_tx_hash(dev, skb);
2074
2075 if (sk) {
2076 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2077
2078 if (dst && skb_dst(skb) == dst)
2079 sk_tx_queue_set(sk, queue_index);
2080 }
2081 }
2082 }
2083
2084 skb_set_queue_mapping(skb, queue_index);
2085 return netdev_get_tx_queue(dev, queue_index);
2086}
2087
2088static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2089 struct net_device *dev,
2090 struct netdev_queue *txq)
2091{
2092 spinlock_t *root_lock = qdisc_lock(q);
2093 bool contended = qdisc_is_running(q);
2094 int rc;
2095
2096 /*
2097 * Heuristic to force contended enqueues to serialize on a
2098 * separate lock before trying to get qdisc main lock.
2099 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2100 * and dequeue packets faster.
2101 */
2102 if (unlikely(contended))
2103 spin_lock(&q->busylock);
2104
2105 spin_lock(root_lock);
2106 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2107 kfree_skb(skb);
2108 rc = NET_XMIT_DROP;
2109 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2110 qdisc_run_begin(q)) {
2111 /*
2112 * This is a work-conserving queue; there are no old skbs
2113 * waiting to be sent out; and the qdisc is not running -
2114 * xmit the skb directly.
2115 */
2116 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2117 skb_dst_force(skb);
2118 __qdisc_update_bstats(q, skb->len);
2119 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2120 if (unlikely(contended)) {
2121 spin_unlock(&q->busylock);
2122 contended = false;
2123 }
2124 __qdisc_run(q);
2125 } else
2126 qdisc_run_end(q);
2127
2128 rc = NET_XMIT_SUCCESS;
2129 } else {
2130 skb_dst_force(skb);
2131 rc = qdisc_enqueue_root(skb, q);
2132 if (qdisc_run_begin(q)) {
2133 if (unlikely(contended)) {
2134 spin_unlock(&q->busylock);
2135 contended = false;
2136 }
2137 __qdisc_run(q);
2138 }
2139 }
2140 spin_unlock(root_lock);
2141 if (unlikely(contended))
2142 spin_unlock(&q->busylock);
2143 return rc;
2144}
2145
2146/**
2147 * dev_queue_xmit - transmit a buffer
2148 * @skb: buffer to transmit
2149 *
2150 * Queue a buffer for transmission to a network device. The caller must
2151 * have set the device and priority and built the buffer before calling
2152 * this function. The function can be called from an interrupt.
2153 *
2154 * A negative errno code is returned on a failure. A success does not
2155 * guarantee the frame will be transmitted as it may be dropped due
2156 * to congestion or traffic shaping.
2157 *
2158 * -----------------------------------------------------------------------------------
2159 * I notice this method can also return errors from the queue disciplines,
2160 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2161 * be positive.
2162 *
2163 * Regardless of the return value, the skb is consumed, so it is currently
2164 * difficult to retry a send to this method. (You can bump the ref count
2165 * before sending to hold a reference for retry if you are careful.)
2166 *
2167 * When calling this method, interrupts MUST be enabled. This is because
2168 * the BH enable code must have IRQs enabled so that it will not deadlock.
2169 * --BLG
2170 */
2171int dev_queue_xmit(struct sk_buff *skb)
2172{
2173 struct net_device *dev = skb->dev;
2174 struct netdev_queue *txq;
2175 struct Qdisc *q;
2176 int rc = -ENOMEM;
2177
2178 /* Disable soft irqs for various locks below. Also
2179 * stops preemption for RCU.
2180 */
2181 rcu_read_lock_bh();
2182
2183 txq = dev_pick_tx(dev, skb);
2184 q = rcu_dereference_bh(txq->qdisc);
2185
2186#ifdef CONFIG_NET_CLS_ACT
2187 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2188#endif
2189 if (q->enqueue) {
2190 rc = __dev_xmit_skb(skb, q, dev, txq);
2191 goto out;
2192 }
2193
2194 /* The device has no queue. Common case for software devices:
2195 loopback, all the sorts of tunnels...
2196
2197 Really, it is unlikely that netif_tx_lock protection is necessary
2198 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2199 counters.)
2200 However, it is possible, that they rely on protection
2201 made by us here.
2202
2203 Check this and shot the lock. It is not prone from deadlocks.
2204 Either shot noqueue qdisc, it is even simpler 8)
2205 */
2206 if (dev->flags & IFF_UP) {
2207 int cpu = smp_processor_id(); /* ok because BHs are off */
2208
2209 if (txq->xmit_lock_owner != cpu) {
2210
2211 HARD_TX_LOCK(dev, txq, cpu);
2212
2213 if (!netif_tx_queue_stopped(txq)) {
2214 rc = dev_hard_start_xmit(skb, dev, txq);
2215 if (dev_xmit_complete(rc)) {
2216 HARD_TX_UNLOCK(dev, txq);
2217 goto out;
2218 }
2219 }
2220 HARD_TX_UNLOCK(dev, txq);
2221 if (net_ratelimit())
2222 printk(KERN_CRIT "Virtual device %s asks to "
2223 "queue packet!\n", dev->name);
2224 } else {
2225 /* Recursion is detected! It is possible,
2226 * unfortunately */
2227 if (net_ratelimit())
2228 printk(KERN_CRIT "Dead loop on virtual device "
2229 "%s, fix it urgently!\n", dev->name);
2230 }
2231 }
2232
2233 rc = -ENETDOWN;
2234 rcu_read_unlock_bh();
2235
2236 kfree_skb(skb);
2237 return rc;
2238out:
2239 rcu_read_unlock_bh();
2240 return rc;
2241}
2242EXPORT_SYMBOL(dev_queue_xmit);
2243
2244
2245/*=======================================================================
2246 Receiver routines
2247 =======================================================================*/
2248
2249int netdev_max_backlog __read_mostly = 1000;
2250int netdev_tstamp_prequeue __read_mostly = 1;
2251int netdev_budget __read_mostly = 300;
2252int weight_p __read_mostly = 64; /* old backlog weight */
2253
2254/* Called with irq disabled */
2255static inline void ____napi_schedule(struct softnet_data *sd,
2256 struct napi_struct *napi)
2257{
2258 list_add_tail(&napi->poll_list, &sd->poll_list);
2259 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2260}
2261
2262/*
2263 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2264 * and src/dst port numbers. Returns a non-zero hash number on success
2265 * and 0 on failure.
2266 */
2267__u32 __skb_get_rxhash(struct sk_buff *skb)
2268{
2269 int nhoff, hash = 0;
2270 struct ipv6hdr *ip6;
2271 struct iphdr *ip;
2272 u8 ip_proto;
2273 u32 addr1, addr2, ihl;
2274 union {
2275 u32 v32;
2276 u16 v16[2];
2277 } ports;
2278
2279 nhoff = skb_network_offset(skb);
2280
2281 switch (skb->protocol) {
2282 case __constant_htons(ETH_P_IP):
2283 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2284 goto done;
2285
2286 ip = (struct iphdr *) skb->data + nhoff;
2287 ip_proto = ip->protocol;
2288 addr1 = (__force u32) ip->saddr;
2289 addr2 = (__force u32) ip->daddr;
2290 ihl = ip->ihl;
2291 break;
2292 case __constant_htons(ETH_P_IPV6):
2293 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2294 goto done;
2295
2296 ip6 = (struct ipv6hdr *) skb->data + nhoff;
2297 ip_proto = ip6->nexthdr;
2298 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2299 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2300 ihl = (40 >> 2);
2301 break;
2302 default:
2303 goto done;
2304 }
2305
2306 switch (ip_proto) {
2307 case IPPROTO_TCP:
2308 case IPPROTO_UDP:
2309 case IPPROTO_DCCP:
2310 case IPPROTO_ESP:
2311 case IPPROTO_AH:
2312 case IPPROTO_SCTP:
2313 case IPPROTO_UDPLITE:
2314 if (pskb_may_pull(skb, (ihl * 4) + 4 + nhoff)) {
2315 ports.v32 = * (__force u32 *) (skb->data + nhoff +
2316 (ihl * 4));
2317 if (ports.v16[1] < ports.v16[0])
2318 swap(ports.v16[0], ports.v16[1]);
2319 break;
2320 }
2321 default:
2322 ports.v32 = 0;
2323 break;
2324 }
2325
2326 /* get a consistent hash (same value on both flow directions) */
2327 if (addr2 < addr1)
2328 swap(addr1, addr2);
2329
2330 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2331 if (!hash)
2332 hash = 1;
2333
2334done:
2335 return hash;
2336}
2337EXPORT_SYMBOL(__skb_get_rxhash);
2338
2339#ifdef CONFIG_RPS
2340
2341/* One global table that all flow-based protocols share. */
2342struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2343EXPORT_SYMBOL(rps_sock_flow_table);
2344
2345/*
2346 * get_rps_cpu is called from netif_receive_skb and returns the target
2347 * CPU from the RPS map of the receiving queue for a given skb.
2348 * rcu_read_lock must be held on entry.
2349 */
2350static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2351 struct rps_dev_flow **rflowp)
2352{
2353 struct netdev_rx_queue *rxqueue;
2354 struct rps_map *map;
2355 struct rps_dev_flow_table *flow_table;
2356 struct rps_sock_flow_table *sock_flow_table;
2357 int cpu = -1;
2358 u16 tcpu;
2359
2360 if (skb_rx_queue_recorded(skb)) {
2361 u16 index = skb_get_rx_queue(skb);
2362 if (unlikely(index >= dev->num_rx_queues)) {
2363 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2364 "on queue %u, but number of RX queues is %u\n",
2365 dev->name, index, dev->num_rx_queues);
2366 goto done;
2367 }
2368 rxqueue = dev->_rx + index;
2369 } else
2370 rxqueue = dev->_rx;
2371
2372 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2373 goto done;
2374
2375 skb_reset_network_header(skb);
2376 if (!skb_get_rxhash(skb))
2377 goto done;
2378
2379 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2380 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2381 if (flow_table && sock_flow_table) {
2382 u16 next_cpu;
2383 struct rps_dev_flow *rflow;
2384
2385 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2386 tcpu = rflow->cpu;
2387
2388 next_cpu = sock_flow_table->ents[skb->rxhash &
2389 sock_flow_table->mask];
2390
2391 /*
2392 * If the desired CPU (where last recvmsg was done) is
2393 * different from current CPU (one in the rx-queue flow
2394 * table entry), switch if one of the following holds:
2395 * - Current CPU is unset (equal to RPS_NO_CPU).
2396 * - Current CPU is offline.
2397 * - The current CPU's queue tail has advanced beyond the
2398 * last packet that was enqueued using this table entry.
2399 * This guarantees that all previous packets for the flow
2400 * have been dequeued, thus preserving in order delivery.
2401 */
2402 if (unlikely(tcpu != next_cpu) &&
2403 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2404 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2405 rflow->last_qtail)) >= 0)) {
2406 tcpu = rflow->cpu = next_cpu;
2407 if (tcpu != RPS_NO_CPU)
2408 rflow->last_qtail = per_cpu(softnet_data,
2409 tcpu).input_queue_head;
2410 }
2411 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2412 *rflowp = rflow;
2413 cpu = tcpu;
2414 goto done;
2415 }
2416 }
2417
2418 map = rcu_dereference(rxqueue->rps_map);
2419 if (map) {
2420 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2421
2422 if (cpu_online(tcpu)) {
2423 cpu = tcpu;
2424 goto done;
2425 }
2426 }
2427
2428done:
2429 return cpu;
2430}
2431
2432/* Called from hardirq (IPI) context */
2433static void rps_trigger_softirq(void *data)
2434{
2435 struct softnet_data *sd = data;
2436
2437 ____napi_schedule(sd, &sd->backlog);
2438 sd->received_rps++;
2439}
2440
2441#endif /* CONFIG_RPS */
2442
2443/*
2444 * Check if this softnet_data structure is another cpu one
2445 * If yes, queue it to our IPI list and return 1
2446 * If no, return 0
2447 */
2448static int rps_ipi_queued(struct softnet_data *sd)
2449{
2450#ifdef CONFIG_RPS
2451 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2452
2453 if (sd != mysd) {
2454 sd->rps_ipi_next = mysd->rps_ipi_list;
2455 mysd->rps_ipi_list = sd;
2456
2457 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2458 return 1;
2459 }
2460#endif /* CONFIG_RPS */
2461 return 0;
2462}
2463
2464/*
2465 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2466 * queue (may be a remote CPU queue).
2467 */
2468static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2469 unsigned int *qtail)
2470{
2471 struct softnet_data *sd;
2472 unsigned long flags;
2473
2474 sd = &per_cpu(softnet_data, cpu);
2475
2476 local_irq_save(flags);
2477
2478 rps_lock(sd);
2479 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2480 if (skb_queue_len(&sd->input_pkt_queue)) {
2481enqueue:
2482 __skb_queue_tail(&sd->input_pkt_queue, skb);
2483 input_queue_tail_incr_save(sd, qtail);
2484 rps_unlock(sd);
2485 local_irq_restore(flags);
2486 return NET_RX_SUCCESS;
2487 }
2488
2489 /* Schedule NAPI for backlog device
2490 * We can use non atomic operation since we own the queue lock
2491 */
2492 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2493 if (!rps_ipi_queued(sd))
2494 ____napi_schedule(sd, &sd->backlog);
2495 }
2496 goto enqueue;
2497 }
2498
2499 sd->dropped++;
2500 rps_unlock(sd);
2501
2502 local_irq_restore(flags);
2503
2504 kfree_skb(skb);
2505 return NET_RX_DROP;
2506}
2507
2508/**
2509 * netif_rx - post buffer to the network code
2510 * @skb: buffer to post
2511 *
2512 * This function receives a packet from a device driver and queues it for
2513 * the upper (protocol) levels to process. It always succeeds. The buffer
2514 * may be dropped during processing for congestion control or by the
2515 * protocol layers.
2516 *
2517 * return values:
2518 * NET_RX_SUCCESS (no congestion)
2519 * NET_RX_DROP (packet was dropped)
2520 *
2521 */
2522
2523int netif_rx(struct sk_buff *skb)
2524{
2525 int ret;
2526
2527 /* if netpoll wants it, pretend we never saw it */
2528 if (netpoll_rx(skb))
2529 return NET_RX_DROP;
2530
2531 if (netdev_tstamp_prequeue)
2532 net_timestamp_check(skb);
2533
2534#ifdef CONFIG_RPS
2535 {
2536 struct rps_dev_flow voidflow, *rflow = &voidflow;
2537 int cpu;
2538
2539 preempt_disable();
2540 rcu_read_lock();
2541
2542 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2543 if (cpu < 0)
2544 cpu = smp_processor_id();
2545
2546 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2547
2548 rcu_read_unlock();
2549 preempt_enable();
2550 }
2551#else
2552 {
2553 unsigned int qtail;
2554 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2555 put_cpu();
2556 }
2557#endif
2558 return ret;
2559}
2560EXPORT_SYMBOL(netif_rx);
2561
2562int netif_rx_ni(struct sk_buff *skb)
2563{
2564 int err;
2565
2566 preempt_disable();
2567 err = netif_rx(skb);
2568 if (local_softirq_pending())
2569 do_softirq();
2570 preempt_enable();
2571
2572 return err;
2573}
2574EXPORT_SYMBOL(netif_rx_ni);
2575
2576static void net_tx_action(struct softirq_action *h)
2577{
2578 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2579
2580 if (sd->completion_queue) {
2581 struct sk_buff *clist;
2582
2583 local_irq_disable();
2584 clist = sd->completion_queue;
2585 sd->completion_queue = NULL;
2586 local_irq_enable();
2587
2588 while (clist) {
2589 struct sk_buff *skb = clist;
2590 clist = clist->next;
2591
2592 WARN_ON(atomic_read(&skb->users));
2593 __kfree_skb(skb);
2594 }
2595 }
2596
2597 if (sd->output_queue) {
2598 struct Qdisc *head;
2599
2600 local_irq_disable();
2601 head = sd->output_queue;
2602 sd->output_queue = NULL;
2603 sd->output_queue_tailp = &sd->output_queue;
2604 local_irq_enable();
2605
2606 while (head) {
2607 struct Qdisc *q = head;
2608 spinlock_t *root_lock;
2609
2610 head = head->next_sched;
2611
2612 root_lock = qdisc_lock(q);
2613 if (spin_trylock(root_lock)) {
2614 smp_mb__before_clear_bit();
2615 clear_bit(__QDISC_STATE_SCHED,
2616 &q->state);
2617 qdisc_run(q);
2618 spin_unlock(root_lock);
2619 } else {
2620 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2621 &q->state)) {
2622 __netif_reschedule(q);
2623 } else {
2624 smp_mb__before_clear_bit();
2625 clear_bit(__QDISC_STATE_SCHED,
2626 &q->state);
2627 }
2628 }
2629 }
2630 }
2631}
2632
2633static inline int deliver_skb(struct sk_buff *skb,
2634 struct packet_type *pt_prev,
2635 struct net_device *orig_dev)
2636{
2637 atomic_inc(&skb->users);
2638 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2639}
2640
2641#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2642 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2643/* This hook is defined here for ATM LANE */
2644int (*br_fdb_test_addr_hook)(struct net_device *dev,
2645 unsigned char *addr) __read_mostly;
2646EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2647#endif
2648
2649#ifdef CONFIG_NET_CLS_ACT
2650/* TODO: Maybe we should just force sch_ingress to be compiled in
2651 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2652 * a compare and 2 stores extra right now if we dont have it on
2653 * but have CONFIG_NET_CLS_ACT
2654 * NOTE: This doesnt stop any functionality; if you dont have
2655 * the ingress scheduler, you just cant add policies on ingress.
2656 *
2657 */
2658static int ing_filter(struct sk_buff *skb)
2659{
2660 struct net_device *dev = skb->dev;
2661 u32 ttl = G_TC_RTTL(skb->tc_verd);
2662 struct netdev_queue *rxq;
2663 int result = TC_ACT_OK;
2664 struct Qdisc *q;
2665
2666 if (unlikely(MAX_RED_LOOP < ttl++)) {
2667 if (net_ratelimit())
2668 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2669 skb->skb_iif, dev->ifindex);
2670 return TC_ACT_SHOT;
2671 }
2672
2673 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2674 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2675
2676 rxq = &dev->rx_queue;
2677
2678 q = rxq->qdisc;
2679 if (q != &noop_qdisc) {
2680 spin_lock(qdisc_lock(q));
2681 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2682 result = qdisc_enqueue_root(skb, q);
2683 spin_unlock(qdisc_lock(q));
2684 }
2685
2686 return result;
2687}
2688
2689static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2690 struct packet_type **pt_prev,
2691 int *ret, struct net_device *orig_dev)
2692{
2693 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2694 goto out;
2695
2696 if (*pt_prev) {
2697 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2698 *pt_prev = NULL;
2699 }
2700
2701 switch (ing_filter(skb)) {
2702 case TC_ACT_SHOT:
2703 case TC_ACT_STOLEN:
2704 kfree_skb(skb);
2705 return NULL;
2706 }
2707
2708out:
2709 skb->tc_verd = 0;
2710 return skb;
2711}
2712#endif
2713
2714/*
2715 * netif_nit_deliver - deliver received packets to network taps
2716 * @skb: buffer
2717 *
2718 * This function is used to deliver incoming packets to network
2719 * taps. It should be used when the normal netif_receive_skb path
2720 * is bypassed, for example because of VLAN acceleration.
2721 */
2722void netif_nit_deliver(struct sk_buff *skb)
2723{
2724 struct packet_type *ptype;
2725
2726 if (list_empty(&ptype_all))
2727 return;
2728
2729 skb_reset_network_header(skb);
2730 skb_reset_transport_header(skb);
2731 skb->mac_len = skb->network_header - skb->mac_header;
2732
2733 rcu_read_lock();
2734 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2735 if (!ptype->dev || ptype->dev == skb->dev)
2736 deliver_skb(skb, ptype, skb->dev);
2737 }
2738 rcu_read_unlock();
2739}
2740
2741/**
2742 * netdev_rx_handler_register - register receive handler
2743 * @dev: device to register a handler for
2744 * @rx_handler: receive handler to register
2745 * @rx_handler_data: data pointer that is used by rx handler
2746 *
2747 * Register a receive hander for a device. This handler will then be
2748 * called from __netif_receive_skb. A negative errno code is returned
2749 * on a failure.
2750 *
2751 * The caller must hold the rtnl_mutex.
2752 */
2753int netdev_rx_handler_register(struct net_device *dev,
2754 rx_handler_func_t *rx_handler,
2755 void *rx_handler_data)
2756{
2757 ASSERT_RTNL();
2758
2759 if (dev->rx_handler)
2760 return -EBUSY;
2761
2762 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2763 rcu_assign_pointer(dev->rx_handler, rx_handler);
2764
2765 return 0;
2766}
2767EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2768
2769/**
2770 * netdev_rx_handler_unregister - unregister receive handler
2771 * @dev: device to unregister a handler from
2772 *
2773 * Unregister a receive hander from a device.
2774 *
2775 * The caller must hold the rtnl_mutex.
2776 */
2777void netdev_rx_handler_unregister(struct net_device *dev)
2778{
2779
2780 ASSERT_RTNL();
2781 rcu_assign_pointer(dev->rx_handler, NULL);
2782 rcu_assign_pointer(dev->rx_handler_data, NULL);
2783}
2784EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2785
2786static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2787 struct net_device *master)
2788{
2789 if (skb->pkt_type == PACKET_HOST) {
2790 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2791
2792 memcpy(dest, master->dev_addr, ETH_ALEN);
2793 }
2794}
2795
2796/* On bonding slaves other than the currently active slave, suppress
2797 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2798 * ARP on active-backup slaves with arp_validate enabled.
2799 */
2800int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2801{
2802 struct net_device *dev = skb->dev;
2803
2804 if (master->priv_flags & IFF_MASTER_ARPMON)
2805 dev->last_rx = jiffies;
2806
2807 if ((master->priv_flags & IFF_MASTER_ALB) &&
2808 (master->priv_flags & IFF_BRIDGE_PORT)) {
2809 /* Do address unmangle. The local destination address
2810 * will be always the one master has. Provides the right
2811 * functionality in a bridge.
2812 */
2813 skb_bond_set_mac_by_master(skb, master);
2814 }
2815
2816 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2817 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2818 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2819 return 0;
2820
2821 if (master->priv_flags & IFF_MASTER_ALB) {
2822 if (skb->pkt_type != PACKET_BROADCAST &&
2823 skb->pkt_type != PACKET_MULTICAST)
2824 return 0;
2825 }
2826 if (master->priv_flags & IFF_MASTER_8023AD &&
2827 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2828 return 0;
2829
2830 return 1;
2831 }
2832 return 0;
2833}
2834EXPORT_SYMBOL(__skb_bond_should_drop);
2835
2836static int __netif_receive_skb(struct sk_buff *skb)
2837{
2838 struct packet_type *ptype, *pt_prev;
2839 rx_handler_func_t *rx_handler;
2840 struct net_device *orig_dev;
2841 struct net_device *master;
2842 struct net_device *null_or_orig;
2843 struct net_device *orig_or_bond;
2844 int ret = NET_RX_DROP;
2845 __be16 type;
2846
2847 if (!netdev_tstamp_prequeue)
2848 net_timestamp_check(skb);
2849
2850 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2851 return NET_RX_SUCCESS;
2852
2853 /* if we've gotten here through NAPI, check netpoll */
2854 if (netpoll_receive_skb(skb))
2855 return NET_RX_DROP;
2856
2857 if (!skb->skb_iif)
2858 skb->skb_iif = skb->dev->ifindex;
2859
2860 /*
2861 * bonding note: skbs received on inactive slaves should only
2862 * be delivered to pkt handlers that are exact matches. Also
2863 * the deliver_no_wcard flag will be set. If packet handlers
2864 * are sensitive to duplicate packets these skbs will need to
2865 * be dropped at the handler. The vlan accel path may have
2866 * already set the deliver_no_wcard flag.
2867 */
2868 null_or_orig = NULL;
2869 orig_dev = skb->dev;
2870 master = ACCESS_ONCE(orig_dev->master);
2871 if (skb->deliver_no_wcard)
2872 null_or_orig = orig_dev;
2873 else if (master) {
2874 if (skb_bond_should_drop(skb, master)) {
2875 skb->deliver_no_wcard = 1;
2876 null_or_orig = orig_dev; /* deliver only exact match */
2877 } else
2878 skb->dev = master;
2879 }
2880
2881 __this_cpu_inc(softnet_data.processed);
2882 skb_reset_network_header(skb);
2883 skb_reset_transport_header(skb);
2884 skb->mac_len = skb->network_header - skb->mac_header;
2885
2886 pt_prev = NULL;
2887
2888 rcu_read_lock();
2889
2890#ifdef CONFIG_NET_CLS_ACT
2891 if (skb->tc_verd & TC_NCLS) {
2892 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2893 goto ncls;
2894 }
2895#endif
2896
2897 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2898 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2899 ptype->dev == orig_dev) {
2900 if (pt_prev)
2901 ret = deliver_skb(skb, pt_prev, orig_dev);
2902 pt_prev = ptype;
2903 }
2904 }
2905
2906#ifdef CONFIG_NET_CLS_ACT
2907 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2908 if (!skb)
2909 goto out;
2910ncls:
2911#endif
2912
2913 /* Handle special case of bridge or macvlan */
2914 rx_handler = rcu_dereference(skb->dev->rx_handler);
2915 if (rx_handler) {
2916 if (pt_prev) {
2917 ret = deliver_skb(skb, pt_prev, orig_dev);
2918 pt_prev = NULL;
2919 }
2920 skb = rx_handler(skb);
2921 if (!skb)
2922 goto out;
2923 }
2924
2925 /*
2926 * Make sure frames received on VLAN interfaces stacked on
2927 * bonding interfaces still make their way to any base bonding
2928 * device that may have registered for a specific ptype. The
2929 * handler may have to adjust skb->dev and orig_dev.
2930 */
2931 orig_or_bond = orig_dev;
2932 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2933 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2934 orig_or_bond = vlan_dev_real_dev(skb->dev);
2935 }
2936
2937 type = skb->protocol;
2938 list_for_each_entry_rcu(ptype,
2939 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2940 if (ptype->type == type && (ptype->dev == null_or_orig ||
2941 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2942 ptype->dev == orig_or_bond)) {
2943 if (pt_prev)
2944 ret = deliver_skb(skb, pt_prev, orig_dev);
2945 pt_prev = ptype;
2946 }
2947 }
2948
2949 if (pt_prev) {
2950 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2951 } else {
2952 kfree_skb(skb);
2953 /* Jamal, now you will not able to escape explaining
2954 * me how you were going to use this. :-)
2955 */
2956 ret = NET_RX_DROP;
2957 }
2958
2959out:
2960 rcu_read_unlock();
2961 return ret;
2962}
2963
2964/**
2965 * netif_receive_skb - process receive buffer from network
2966 * @skb: buffer to process
2967 *
2968 * netif_receive_skb() is the main receive data processing function.
2969 * It always succeeds. The buffer may be dropped during processing
2970 * for congestion control or by the protocol layers.
2971 *
2972 * This function may only be called from softirq context and interrupts
2973 * should be enabled.
2974 *
2975 * Return values (usually ignored):
2976 * NET_RX_SUCCESS: no congestion
2977 * NET_RX_DROP: packet was dropped
2978 */
2979int netif_receive_skb(struct sk_buff *skb)
2980{
2981 if (netdev_tstamp_prequeue)
2982 net_timestamp_check(skb);
2983
2984 if (skb_defer_rx_timestamp(skb))
2985 return NET_RX_SUCCESS;
2986
2987#ifdef CONFIG_RPS
2988 {
2989 struct rps_dev_flow voidflow, *rflow = &voidflow;
2990 int cpu, ret;
2991
2992 rcu_read_lock();
2993
2994 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2995
2996 if (cpu >= 0) {
2997 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2998 rcu_read_unlock();
2999 } else {
3000 rcu_read_unlock();
3001 ret = __netif_receive_skb(skb);
3002 }
3003
3004 return ret;
3005 }
3006#else
3007 return __netif_receive_skb(skb);
3008#endif
3009}
3010EXPORT_SYMBOL(netif_receive_skb);
3011
3012/* Network device is going away, flush any packets still pending
3013 * Called with irqs disabled.
3014 */
3015static void flush_backlog(void *arg)
3016{
3017 struct net_device *dev = arg;
3018 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3019 struct sk_buff *skb, *tmp;
3020
3021 rps_lock(sd);
3022 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3023 if (skb->dev == dev) {
3024 __skb_unlink(skb, &sd->input_pkt_queue);
3025 kfree_skb(skb);
3026 input_queue_head_incr(sd);
3027 }
3028 }
3029 rps_unlock(sd);
3030
3031 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3032 if (skb->dev == dev) {
3033 __skb_unlink(skb, &sd->process_queue);
3034 kfree_skb(skb);
3035 input_queue_head_incr(sd);
3036 }
3037 }
3038}
3039
3040static int napi_gro_complete(struct sk_buff *skb)
3041{
3042 struct packet_type *ptype;
3043 __be16 type = skb->protocol;
3044 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3045 int err = -ENOENT;
3046
3047 if (NAPI_GRO_CB(skb)->count == 1) {
3048 skb_shinfo(skb)->gso_size = 0;
3049 goto out;
3050 }
3051
3052 rcu_read_lock();
3053 list_for_each_entry_rcu(ptype, head, list) {
3054 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3055 continue;
3056
3057 err = ptype->gro_complete(skb);
3058 break;
3059 }
3060 rcu_read_unlock();
3061
3062 if (err) {
3063 WARN_ON(&ptype->list == head);
3064 kfree_skb(skb);
3065 return NET_RX_SUCCESS;
3066 }
3067
3068out:
3069 return netif_receive_skb(skb);
3070}
3071
3072static void napi_gro_flush(struct napi_struct *napi)
3073{
3074 struct sk_buff *skb, *next;
3075
3076 for (skb = napi->gro_list; skb; skb = next) {
3077 next = skb->next;
3078 skb->next = NULL;
3079 napi_gro_complete(skb);
3080 }
3081
3082 napi->gro_count = 0;
3083 napi->gro_list = NULL;
3084}
3085
3086enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3087{
3088 struct sk_buff **pp = NULL;
3089 struct packet_type *ptype;
3090 __be16 type = skb->protocol;
3091 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3092 int same_flow;
3093 int mac_len;
3094 enum gro_result ret;
3095
3096 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3097 goto normal;
3098
3099 if (skb_is_gso(skb) || skb_has_frags(skb))
3100 goto normal;
3101
3102 rcu_read_lock();
3103 list_for_each_entry_rcu(ptype, head, list) {
3104 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3105 continue;
3106
3107 skb_set_network_header(skb, skb_gro_offset(skb));
3108 mac_len = skb->network_header - skb->mac_header;
3109 skb->mac_len = mac_len;
3110 NAPI_GRO_CB(skb)->same_flow = 0;
3111 NAPI_GRO_CB(skb)->flush = 0;
3112 NAPI_GRO_CB(skb)->free = 0;
3113
3114 pp = ptype->gro_receive(&napi->gro_list, skb);
3115 break;
3116 }
3117 rcu_read_unlock();
3118
3119 if (&ptype->list == head)
3120 goto normal;
3121
3122 same_flow = NAPI_GRO_CB(skb)->same_flow;
3123 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3124
3125 if (pp) {
3126 struct sk_buff *nskb = *pp;
3127
3128 *pp = nskb->next;
3129 nskb->next = NULL;
3130 napi_gro_complete(nskb);
3131 napi->gro_count--;
3132 }
3133
3134 if (same_flow)
3135 goto ok;
3136
3137 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3138 goto normal;
3139
3140 napi->gro_count++;
3141 NAPI_GRO_CB(skb)->count = 1;
3142 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3143 skb->next = napi->gro_list;
3144 napi->gro_list = skb;
3145 ret = GRO_HELD;
3146
3147pull:
3148 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3149 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3150
3151 BUG_ON(skb->end - skb->tail < grow);
3152
3153 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3154
3155 skb->tail += grow;
3156 skb->data_len -= grow;
3157
3158 skb_shinfo(skb)->frags[0].page_offset += grow;
3159 skb_shinfo(skb)->frags[0].size -= grow;
3160
3161 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3162 put_page(skb_shinfo(skb)->frags[0].page);
3163 memmove(skb_shinfo(skb)->frags,
3164 skb_shinfo(skb)->frags + 1,
3165 --skb_shinfo(skb)->nr_frags);
3166 }
3167 }
3168
3169ok:
3170 return ret;
3171
3172normal:
3173 ret = GRO_NORMAL;
3174 goto pull;
3175}
3176EXPORT_SYMBOL(dev_gro_receive);
3177
3178static gro_result_t
3179__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3180{
3181 struct sk_buff *p;
3182
3183 for (p = napi->gro_list; p; p = p->next) {
3184 NAPI_GRO_CB(p)->same_flow =
3185 (p->dev == skb->dev) &&
3186 !compare_ether_header(skb_mac_header(p),
3187 skb_gro_mac_header(skb));
3188 NAPI_GRO_CB(p)->flush = 0;
3189 }
3190
3191 return dev_gro_receive(napi, skb);
3192}
3193
3194gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3195{
3196 switch (ret) {
3197 case GRO_NORMAL:
3198 if (netif_receive_skb(skb))
3199 ret = GRO_DROP;
3200 break;
3201
3202 case GRO_DROP:
3203 case GRO_MERGED_FREE:
3204 kfree_skb(skb);
3205 break;
3206
3207 case GRO_HELD:
3208 case GRO_MERGED:
3209 break;
3210 }
3211
3212 return ret;
3213}
3214EXPORT_SYMBOL(napi_skb_finish);
3215
3216void skb_gro_reset_offset(struct sk_buff *skb)
3217{
3218 NAPI_GRO_CB(skb)->data_offset = 0;
3219 NAPI_GRO_CB(skb)->frag0 = NULL;
3220 NAPI_GRO_CB(skb)->frag0_len = 0;
3221
3222 if (skb->mac_header == skb->tail &&
3223 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3224 NAPI_GRO_CB(skb)->frag0 =
3225 page_address(skb_shinfo(skb)->frags[0].page) +
3226 skb_shinfo(skb)->frags[0].page_offset;
3227 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3228 }
3229}
3230EXPORT_SYMBOL(skb_gro_reset_offset);
3231
3232gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3233{
3234 skb_gro_reset_offset(skb);
3235
3236 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3237}
3238EXPORT_SYMBOL(napi_gro_receive);
3239
3240void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3241{
3242 __skb_pull(skb, skb_headlen(skb));
3243 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3244
3245 napi->skb = skb;
3246}
3247EXPORT_SYMBOL(napi_reuse_skb);
3248
3249struct sk_buff *napi_get_frags(struct napi_struct *napi)
3250{
3251 struct sk_buff *skb = napi->skb;
3252
3253 if (!skb) {
3254 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3255 if (skb)
3256 napi->skb = skb;
3257 }
3258 return skb;
3259}
3260EXPORT_SYMBOL(napi_get_frags);
3261
3262gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3263 gro_result_t ret)
3264{
3265 switch (ret) {
3266 case GRO_NORMAL:
3267 case GRO_HELD:
3268 skb->protocol = eth_type_trans(skb, skb->dev);
3269
3270 if (ret == GRO_HELD)
3271 skb_gro_pull(skb, -ETH_HLEN);
3272 else if (netif_receive_skb(skb))
3273 ret = GRO_DROP;
3274 break;
3275
3276 case GRO_DROP:
3277 case GRO_MERGED_FREE:
3278 napi_reuse_skb(napi, skb);
3279 break;
3280
3281 case GRO_MERGED:
3282 break;
3283 }
3284
3285 return ret;
3286}
3287EXPORT_SYMBOL(napi_frags_finish);
3288
3289struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3290{
3291 struct sk_buff *skb = napi->skb;
3292 struct ethhdr *eth;
3293 unsigned int hlen;
3294 unsigned int off;
3295
3296 napi->skb = NULL;
3297
3298 skb_reset_mac_header(skb);
3299 skb_gro_reset_offset(skb);
3300
3301 off = skb_gro_offset(skb);
3302 hlen = off + sizeof(*eth);
3303 eth = skb_gro_header_fast(skb, off);
3304 if (skb_gro_header_hard(skb, hlen)) {
3305 eth = skb_gro_header_slow(skb, hlen, off);
3306 if (unlikely(!eth)) {
3307 napi_reuse_skb(napi, skb);
3308 skb = NULL;
3309 goto out;
3310 }
3311 }
3312
3313 skb_gro_pull(skb, sizeof(*eth));
3314
3315 /*
3316 * This works because the only protocols we care about don't require
3317 * special handling. We'll fix it up properly at the end.
3318 */
3319 skb->protocol = eth->h_proto;
3320
3321out:
3322 return skb;
3323}
3324EXPORT_SYMBOL(napi_frags_skb);
3325
3326gro_result_t napi_gro_frags(struct napi_struct *napi)
3327{
3328 struct sk_buff *skb = napi_frags_skb(napi);
3329
3330 if (!skb)
3331 return GRO_DROP;
3332
3333 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3334}
3335EXPORT_SYMBOL(napi_gro_frags);
3336
3337/*
3338 * net_rps_action sends any pending IPI's for rps.
3339 * Note: called with local irq disabled, but exits with local irq enabled.
3340 */
3341static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3342{
3343#ifdef CONFIG_RPS
3344 struct softnet_data *remsd = sd->rps_ipi_list;
3345
3346 if (remsd) {
3347 sd->rps_ipi_list = NULL;
3348
3349 local_irq_enable();
3350
3351 /* Send pending IPI's to kick RPS processing on remote cpus. */
3352 while (remsd) {
3353 struct softnet_data *next = remsd->rps_ipi_next;
3354
3355 if (cpu_online(remsd->cpu))
3356 __smp_call_function_single(remsd->cpu,
3357 &remsd->csd, 0);
3358 remsd = next;
3359 }
3360 } else
3361#endif
3362 local_irq_enable();
3363}
3364
3365static int process_backlog(struct napi_struct *napi, int quota)
3366{
3367 int work = 0;
3368 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3369
3370#ifdef CONFIG_RPS
3371 /* Check if we have pending ipi, its better to send them now,
3372 * not waiting net_rx_action() end.
3373 */
3374 if (sd->rps_ipi_list) {
3375 local_irq_disable();
3376 net_rps_action_and_irq_enable(sd);
3377 }
3378#endif
3379 napi->weight = weight_p;
3380 local_irq_disable();
3381 while (work < quota) {
3382 struct sk_buff *skb;
3383 unsigned int qlen;
3384
3385 while ((skb = __skb_dequeue(&sd->process_queue))) {
3386 local_irq_enable();
3387 __netif_receive_skb(skb);
3388 local_irq_disable();
3389 input_queue_head_incr(sd);
3390 if (++work >= quota) {
3391 local_irq_enable();
3392 return work;
3393 }
3394 }
3395
3396 rps_lock(sd);
3397 qlen = skb_queue_len(&sd->input_pkt_queue);
3398 if (qlen)
3399 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3400 &sd->process_queue);
3401
3402 if (qlen < quota - work) {
3403 /*
3404 * Inline a custom version of __napi_complete().
3405 * only current cpu owns and manipulates this napi,
3406 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3407 * we can use a plain write instead of clear_bit(),
3408 * and we dont need an smp_mb() memory barrier.
3409 */
3410 list_del(&napi->poll_list);
3411 napi->state = 0;
3412
3413 quota = work + qlen;
3414 }
3415 rps_unlock(sd);
3416 }
3417 local_irq_enable();
3418
3419 return work;
3420}
3421
3422/**
3423 * __napi_schedule - schedule for receive
3424 * @n: entry to schedule
3425 *
3426 * The entry's receive function will be scheduled to run
3427 */
3428void __napi_schedule(struct napi_struct *n)
3429{
3430 unsigned long flags;
3431
3432 local_irq_save(flags);
3433 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3434 local_irq_restore(flags);
3435}
3436EXPORT_SYMBOL(__napi_schedule);
3437
3438void __napi_complete(struct napi_struct *n)
3439{
3440 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3441 BUG_ON(n->gro_list);
3442
3443 list_del(&n->poll_list);
3444 smp_mb__before_clear_bit();
3445 clear_bit(NAPI_STATE_SCHED, &n->state);
3446}
3447EXPORT_SYMBOL(__napi_complete);
3448
3449void napi_complete(struct napi_struct *n)
3450{
3451 unsigned long flags;
3452
3453 /*
3454 * don't let napi dequeue from the cpu poll list
3455 * just in case its running on a different cpu
3456 */
3457 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3458 return;
3459
3460 napi_gro_flush(n);
3461 local_irq_save(flags);
3462 __napi_complete(n);
3463 local_irq_restore(flags);
3464}
3465EXPORT_SYMBOL(napi_complete);
3466
3467void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3468 int (*poll)(struct napi_struct *, int), int weight)
3469{
3470 INIT_LIST_HEAD(&napi->poll_list);
3471 napi->gro_count = 0;
3472 napi->gro_list = NULL;
3473 napi->skb = NULL;
3474 napi->poll = poll;
3475 napi->weight = weight;
3476 list_add(&napi->dev_list, &dev->napi_list);
3477 napi->dev = dev;
3478#ifdef CONFIG_NETPOLL
3479 spin_lock_init(&napi->poll_lock);
3480 napi->poll_owner = -1;
3481#endif
3482 set_bit(NAPI_STATE_SCHED, &napi->state);
3483}
3484EXPORT_SYMBOL(netif_napi_add);
3485
3486void netif_napi_del(struct napi_struct *napi)
3487{
3488 struct sk_buff *skb, *next;
3489
3490 list_del_init(&napi->dev_list);
3491 napi_free_frags(napi);
3492
3493 for (skb = napi->gro_list; skb; skb = next) {
3494 next = skb->next;
3495 skb->next = NULL;
3496 kfree_skb(skb);
3497 }
3498
3499 napi->gro_list = NULL;
3500 napi->gro_count = 0;
3501}
3502EXPORT_SYMBOL(netif_napi_del);
3503
3504static void net_rx_action(struct softirq_action *h)
3505{
3506 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3507 unsigned long time_limit = jiffies + 2;
3508 int budget = netdev_budget;
3509 void *have;
3510
3511 local_irq_disable();
3512
3513 while (!list_empty(&sd->poll_list)) {
3514 struct napi_struct *n;
3515 int work, weight;
3516
3517 /* If softirq window is exhuasted then punt.
3518 * Allow this to run for 2 jiffies since which will allow
3519 * an average latency of 1.5/HZ.
3520 */
3521 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3522 goto softnet_break;
3523
3524 local_irq_enable();
3525
3526 /* Even though interrupts have been re-enabled, this
3527 * access is safe because interrupts can only add new
3528 * entries to the tail of this list, and only ->poll()
3529 * calls can remove this head entry from the list.
3530 */
3531 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3532
3533 have = netpoll_poll_lock(n);
3534
3535 weight = n->weight;
3536
3537 /* This NAPI_STATE_SCHED test is for avoiding a race
3538 * with netpoll's poll_napi(). Only the entity which
3539 * obtains the lock and sees NAPI_STATE_SCHED set will
3540 * actually make the ->poll() call. Therefore we avoid
3541 * accidently calling ->poll() when NAPI is not scheduled.
3542 */
3543 work = 0;
3544 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3545 work = n->poll(n, weight);
3546 trace_napi_poll(n);
3547 }
3548
3549 WARN_ON_ONCE(work > weight);
3550
3551 budget -= work;
3552
3553 local_irq_disable();
3554
3555 /* Drivers must not modify the NAPI state if they
3556 * consume the entire weight. In such cases this code
3557 * still "owns" the NAPI instance and therefore can
3558 * move the instance around on the list at-will.
3559 */
3560 if (unlikely(work == weight)) {
3561 if (unlikely(napi_disable_pending(n))) {
3562 local_irq_enable();
3563 napi_complete(n);
3564 local_irq_disable();
3565 } else
3566 list_move_tail(&n->poll_list, &sd->poll_list);
3567 }
3568
3569 netpoll_poll_unlock(have);
3570 }
3571out:
3572 net_rps_action_and_irq_enable(sd);
3573
3574#ifdef CONFIG_NET_DMA
3575 /*
3576 * There may not be any more sk_buffs coming right now, so push
3577 * any pending DMA copies to hardware
3578 */
3579 dma_issue_pending_all();
3580#endif
3581
3582 return;
3583
3584softnet_break:
3585 sd->time_squeeze++;
3586 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3587 goto out;
3588}
3589
3590static gifconf_func_t *gifconf_list[NPROTO];
3591
3592/**
3593 * register_gifconf - register a SIOCGIF handler
3594 * @family: Address family
3595 * @gifconf: Function handler
3596 *
3597 * Register protocol dependent address dumping routines. The handler
3598 * that is passed must not be freed or reused until it has been replaced
3599 * by another handler.
3600 */
3601int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3602{
3603 if (family >= NPROTO)
3604 return -EINVAL;
3605 gifconf_list[family] = gifconf;
3606 return 0;
3607}
3608EXPORT_SYMBOL(register_gifconf);
3609
3610
3611/*
3612 * Map an interface index to its name (SIOCGIFNAME)
3613 */
3614
3615/*
3616 * We need this ioctl for efficient implementation of the
3617 * if_indextoname() function required by the IPv6 API. Without
3618 * it, we would have to search all the interfaces to find a
3619 * match. --pb
3620 */
3621
3622static int dev_ifname(struct net *net, struct ifreq __user *arg)
3623{
3624 struct net_device *dev;
3625 struct ifreq ifr;
3626
3627 /*
3628 * Fetch the caller's info block.
3629 */
3630
3631 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3632 return -EFAULT;
3633
3634 rcu_read_lock();
3635 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3636 if (!dev) {
3637 rcu_read_unlock();
3638 return -ENODEV;
3639 }
3640
3641 strcpy(ifr.ifr_name, dev->name);
3642 rcu_read_unlock();
3643
3644 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3645 return -EFAULT;
3646 return 0;
3647}
3648
3649/*
3650 * Perform a SIOCGIFCONF call. This structure will change
3651 * size eventually, and there is nothing I can do about it.
3652 * Thus we will need a 'compatibility mode'.
3653 */
3654
3655static int dev_ifconf(struct net *net, char __user *arg)
3656{
3657 struct ifconf ifc;
3658 struct net_device *dev;
3659 char __user *pos;
3660 int len;
3661 int total;
3662 int i;
3663
3664 /*
3665 * Fetch the caller's info block.
3666 */
3667
3668 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3669 return -EFAULT;
3670
3671 pos = ifc.ifc_buf;
3672 len = ifc.ifc_len;
3673
3674 /*
3675 * Loop over the interfaces, and write an info block for each.
3676 */
3677
3678 total = 0;
3679 for_each_netdev(net, dev) {
3680 for (i = 0; i < NPROTO; i++) {
3681 if (gifconf_list[i]) {
3682 int done;
3683 if (!pos)
3684 done = gifconf_list[i](dev, NULL, 0);
3685 else
3686 done = gifconf_list[i](dev, pos + total,
3687 len - total);
3688 if (done < 0)
3689 return -EFAULT;
3690 total += done;
3691 }
3692 }
3693 }
3694
3695 /*
3696 * All done. Write the updated control block back to the caller.
3697 */
3698 ifc.ifc_len = total;
3699
3700 /*
3701 * Both BSD and Solaris return 0 here, so we do too.
3702 */
3703 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3704}
3705
3706#ifdef CONFIG_PROC_FS
3707/*
3708 * This is invoked by the /proc filesystem handler to display a device
3709 * in detail.
3710 */
3711void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3712 __acquires(RCU)
3713{
3714 struct net *net = seq_file_net(seq);
3715 loff_t off;
3716 struct net_device *dev;
3717
3718 rcu_read_lock();
3719 if (!*pos)
3720 return SEQ_START_TOKEN;
3721
3722 off = 1;
3723 for_each_netdev_rcu(net, dev)
3724 if (off++ == *pos)
3725 return dev;
3726
3727 return NULL;
3728}
3729
3730void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3731{
3732 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3733 first_net_device(seq_file_net(seq)) :
3734 next_net_device((struct net_device *)v);
3735
3736 ++*pos;
3737 return rcu_dereference(dev);
3738}
3739
3740void dev_seq_stop(struct seq_file *seq, void *v)
3741 __releases(RCU)
3742{
3743 rcu_read_unlock();
3744}
3745
3746static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3747{
3748 struct rtnl_link_stats64 temp;
3749 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3750
3751 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3752 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3753 dev->name, stats->rx_bytes, stats->rx_packets,
3754 stats->rx_errors,
3755 stats->rx_dropped + stats->rx_missed_errors,
3756 stats->rx_fifo_errors,
3757 stats->rx_length_errors + stats->rx_over_errors +
3758 stats->rx_crc_errors + stats->rx_frame_errors,
3759 stats->rx_compressed, stats->multicast,
3760 stats->tx_bytes, stats->tx_packets,
3761 stats->tx_errors, stats->tx_dropped,
3762 stats->tx_fifo_errors, stats->collisions,
3763 stats->tx_carrier_errors +
3764 stats->tx_aborted_errors +
3765 stats->tx_window_errors +
3766 stats->tx_heartbeat_errors,
3767 stats->tx_compressed);
3768}
3769
3770/*
3771 * Called from the PROCfs module. This now uses the new arbitrary sized
3772 * /proc/net interface to create /proc/net/dev
3773 */
3774static int dev_seq_show(struct seq_file *seq, void *v)
3775{
3776 if (v == SEQ_START_TOKEN)
3777 seq_puts(seq, "Inter-| Receive "
3778 " | Transmit\n"
3779 " face |bytes packets errs drop fifo frame "
3780 "compressed multicast|bytes packets errs "
3781 "drop fifo colls carrier compressed\n");
3782 else
3783 dev_seq_printf_stats(seq, v);
3784 return 0;
3785}
3786
3787static struct softnet_data *softnet_get_online(loff_t *pos)
3788{
3789 struct softnet_data *sd = NULL;
3790
3791 while (*pos < nr_cpu_ids)
3792 if (cpu_online(*pos)) {
3793 sd = &per_cpu(softnet_data, *pos);
3794 break;
3795 } else
3796 ++*pos;
3797 return sd;
3798}
3799
3800static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3801{
3802 return softnet_get_online(pos);
3803}
3804
3805static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3806{
3807 ++*pos;
3808 return softnet_get_online(pos);
3809}
3810
3811static void softnet_seq_stop(struct seq_file *seq, void *v)
3812{
3813}
3814
3815static int softnet_seq_show(struct seq_file *seq, void *v)
3816{
3817 struct softnet_data *sd = v;
3818
3819 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3820 sd->processed, sd->dropped, sd->time_squeeze, 0,
3821 0, 0, 0, 0, /* was fastroute */
3822 sd->cpu_collision, sd->received_rps);
3823 return 0;
3824}
3825
3826static const struct seq_operations dev_seq_ops = {
3827 .start = dev_seq_start,
3828 .next = dev_seq_next,
3829 .stop = dev_seq_stop,
3830 .show = dev_seq_show,
3831};
3832
3833static int dev_seq_open(struct inode *inode, struct file *file)
3834{
3835 return seq_open_net(inode, file, &dev_seq_ops,
3836 sizeof(struct seq_net_private));
3837}
3838
3839static const struct file_operations dev_seq_fops = {
3840 .owner = THIS_MODULE,
3841 .open = dev_seq_open,
3842 .read = seq_read,
3843 .llseek = seq_lseek,
3844 .release = seq_release_net,
3845};
3846
3847static const struct seq_operations softnet_seq_ops = {
3848 .start = softnet_seq_start,
3849 .next = softnet_seq_next,
3850 .stop = softnet_seq_stop,
3851 .show = softnet_seq_show,
3852};
3853
3854static int softnet_seq_open(struct inode *inode, struct file *file)
3855{
3856 return seq_open(file, &softnet_seq_ops);
3857}
3858
3859static const struct file_operations softnet_seq_fops = {
3860 .owner = THIS_MODULE,
3861 .open = softnet_seq_open,
3862 .read = seq_read,
3863 .llseek = seq_lseek,
3864 .release = seq_release,
3865};
3866
3867static void *ptype_get_idx(loff_t pos)
3868{
3869 struct packet_type *pt = NULL;
3870 loff_t i = 0;
3871 int t;
3872
3873 list_for_each_entry_rcu(pt, &ptype_all, list) {
3874 if (i == pos)
3875 return pt;
3876 ++i;
3877 }
3878
3879 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3880 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3881 if (i == pos)
3882 return pt;
3883 ++i;
3884 }
3885 }
3886 return NULL;
3887}
3888
3889static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3890 __acquires(RCU)
3891{
3892 rcu_read_lock();
3893 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3894}
3895
3896static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3897{
3898 struct packet_type *pt;
3899 struct list_head *nxt;
3900 int hash;
3901
3902 ++*pos;
3903 if (v == SEQ_START_TOKEN)
3904 return ptype_get_idx(0);
3905
3906 pt = v;
3907 nxt = pt->list.next;
3908 if (pt->type == htons(ETH_P_ALL)) {
3909 if (nxt != &ptype_all)
3910 goto found;
3911 hash = 0;
3912 nxt = ptype_base[0].next;
3913 } else
3914 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3915
3916 while (nxt == &ptype_base[hash]) {
3917 if (++hash >= PTYPE_HASH_SIZE)
3918 return NULL;
3919 nxt = ptype_base[hash].next;
3920 }
3921found:
3922 return list_entry(nxt, struct packet_type, list);
3923}
3924
3925static void ptype_seq_stop(struct seq_file *seq, void *v)
3926 __releases(RCU)
3927{
3928 rcu_read_unlock();
3929}
3930
3931static int ptype_seq_show(struct seq_file *seq, void *v)
3932{
3933 struct packet_type *pt = v;
3934
3935 if (v == SEQ_START_TOKEN)
3936 seq_puts(seq, "Type Device Function\n");
3937 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3938 if (pt->type == htons(ETH_P_ALL))
3939 seq_puts(seq, "ALL ");
3940 else
3941 seq_printf(seq, "%04x", ntohs(pt->type));
3942
3943 seq_printf(seq, " %-8s %pF\n",
3944 pt->dev ? pt->dev->name : "", pt->func);
3945 }
3946
3947 return 0;
3948}
3949
3950static const struct seq_operations ptype_seq_ops = {
3951 .start = ptype_seq_start,
3952 .next = ptype_seq_next,
3953 .stop = ptype_seq_stop,
3954 .show = ptype_seq_show,
3955};
3956
3957static int ptype_seq_open(struct inode *inode, struct file *file)
3958{
3959 return seq_open_net(inode, file, &ptype_seq_ops,
3960 sizeof(struct seq_net_private));
3961}
3962
3963static const struct file_operations ptype_seq_fops = {
3964 .owner = THIS_MODULE,
3965 .open = ptype_seq_open,
3966 .read = seq_read,
3967 .llseek = seq_lseek,
3968 .release = seq_release_net,
3969};
3970
3971
3972static int __net_init dev_proc_net_init(struct net *net)
3973{
3974 int rc = -ENOMEM;
3975
3976 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3977 goto out;
3978 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3979 goto out_dev;
3980 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3981 goto out_softnet;
3982
3983 if (wext_proc_init(net))
3984 goto out_ptype;
3985 rc = 0;
3986out:
3987 return rc;
3988out_ptype:
3989 proc_net_remove(net, "ptype");
3990out_softnet:
3991 proc_net_remove(net, "softnet_stat");
3992out_dev:
3993 proc_net_remove(net, "dev");
3994 goto out;
3995}
3996
3997static void __net_exit dev_proc_net_exit(struct net *net)
3998{
3999 wext_proc_exit(net);
4000
4001 proc_net_remove(net, "ptype");
4002 proc_net_remove(net, "softnet_stat");
4003 proc_net_remove(net, "dev");
4004}
4005
4006static struct pernet_operations __net_initdata dev_proc_ops = {
4007 .init = dev_proc_net_init,
4008 .exit = dev_proc_net_exit,
4009};
4010
4011static int __init dev_proc_init(void)
4012{
4013 return register_pernet_subsys(&dev_proc_ops);
4014}
4015#else
4016#define dev_proc_init() 0
4017#endif /* CONFIG_PROC_FS */
4018
4019
4020/**
4021 * netdev_set_master - set up master/slave pair
4022 * @slave: slave device
4023 * @master: new master device
4024 *
4025 * Changes the master device of the slave. Pass %NULL to break the
4026 * bonding. The caller must hold the RTNL semaphore. On a failure
4027 * a negative errno code is returned. On success the reference counts
4028 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4029 * function returns zero.
4030 */
4031int netdev_set_master(struct net_device *slave, struct net_device *master)
4032{
4033 struct net_device *old = slave->master;
4034
4035 ASSERT_RTNL();
4036
4037 if (master) {
4038 if (old)
4039 return -EBUSY;
4040 dev_hold(master);
4041 }
4042
4043 slave->master = master;
4044
4045 if (old) {
4046 synchronize_net();
4047 dev_put(old);
4048 }
4049 if (master)
4050 slave->flags |= IFF_SLAVE;
4051 else
4052 slave->flags &= ~IFF_SLAVE;
4053
4054 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4055 return 0;
4056}
4057EXPORT_SYMBOL(netdev_set_master);
4058
4059static void dev_change_rx_flags(struct net_device *dev, int flags)
4060{
4061 const struct net_device_ops *ops = dev->netdev_ops;
4062
4063 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4064 ops->ndo_change_rx_flags(dev, flags);
4065}
4066
4067static int __dev_set_promiscuity(struct net_device *dev, int inc)
4068{
4069 unsigned short old_flags = dev->flags;
4070 uid_t uid;
4071 gid_t gid;
4072
4073 ASSERT_RTNL();
4074
4075 dev->flags |= IFF_PROMISC;
4076 dev->promiscuity += inc;
4077 if (dev->promiscuity == 0) {
4078 /*
4079 * Avoid overflow.
4080 * If inc causes overflow, untouch promisc and return error.
4081 */
4082 if (inc < 0)
4083 dev->flags &= ~IFF_PROMISC;
4084 else {
4085 dev->promiscuity -= inc;
4086 printk(KERN_WARNING "%s: promiscuity touches roof, "
4087 "set promiscuity failed, promiscuity feature "
4088 "of device might be broken.\n", dev->name);
4089 return -EOVERFLOW;
4090 }
4091 }
4092 if (dev->flags != old_flags) {
4093 printk(KERN_INFO "device %s %s promiscuous mode\n",
4094 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4095 "left");
4096 if (audit_enabled) {
4097 current_uid_gid(&uid, &gid);
4098 audit_log(current->audit_context, GFP_ATOMIC,
4099 AUDIT_ANOM_PROMISCUOUS,
4100 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4101 dev->name, (dev->flags & IFF_PROMISC),
4102 (old_flags & IFF_PROMISC),
4103 audit_get_loginuid(current),
4104 uid, gid,
4105 audit_get_sessionid(current));
4106 }
4107
4108 dev_change_rx_flags(dev, IFF_PROMISC);
4109 }
4110 return 0;
4111}
4112
4113/**
4114 * dev_set_promiscuity - update promiscuity count on a device
4115 * @dev: device
4116 * @inc: modifier
4117 *
4118 * Add or remove promiscuity from a device. While the count in the device
4119 * remains above zero the interface remains promiscuous. Once it hits zero
4120 * the device reverts back to normal filtering operation. A negative inc
4121 * value is used to drop promiscuity on the device.
4122 * Return 0 if successful or a negative errno code on error.
4123 */
4124int dev_set_promiscuity(struct net_device *dev, int inc)
4125{
4126 unsigned short old_flags = dev->flags;
4127 int err;
4128
4129 err = __dev_set_promiscuity(dev, inc);
4130 if (err < 0)
4131 return err;
4132 if (dev->flags != old_flags)
4133 dev_set_rx_mode(dev);
4134 return err;
4135}
4136EXPORT_SYMBOL(dev_set_promiscuity);
4137
4138/**
4139 * dev_set_allmulti - update allmulti count on a device
4140 * @dev: device
4141 * @inc: modifier
4142 *
4143 * Add or remove reception of all multicast frames to a device. While the
4144 * count in the device remains above zero the interface remains listening
4145 * to all interfaces. Once it hits zero the device reverts back to normal
4146 * filtering operation. A negative @inc value is used to drop the counter
4147 * when releasing a resource needing all multicasts.
4148 * Return 0 if successful or a negative errno code on error.
4149 */
4150
4151int dev_set_allmulti(struct net_device *dev, int inc)
4152{
4153 unsigned short old_flags = dev->flags;
4154
4155 ASSERT_RTNL();
4156
4157 dev->flags |= IFF_ALLMULTI;
4158 dev->allmulti += inc;
4159 if (dev->allmulti == 0) {
4160 /*
4161 * Avoid overflow.
4162 * If inc causes overflow, untouch allmulti and return error.
4163 */
4164 if (inc < 0)
4165 dev->flags &= ~IFF_ALLMULTI;
4166 else {
4167 dev->allmulti -= inc;
4168 printk(KERN_WARNING "%s: allmulti touches roof, "
4169 "set allmulti failed, allmulti feature of "
4170 "device might be broken.\n", dev->name);
4171 return -EOVERFLOW;
4172 }
4173 }
4174 if (dev->flags ^ old_flags) {
4175 dev_change_rx_flags(dev, IFF_ALLMULTI);
4176 dev_set_rx_mode(dev);
4177 }
4178 return 0;
4179}
4180EXPORT_SYMBOL(dev_set_allmulti);
4181
4182/*
4183 * Upload unicast and multicast address lists to device and
4184 * configure RX filtering. When the device doesn't support unicast
4185 * filtering it is put in promiscuous mode while unicast addresses
4186 * are present.
4187 */
4188void __dev_set_rx_mode(struct net_device *dev)
4189{
4190 const struct net_device_ops *ops = dev->netdev_ops;
4191
4192 /* dev_open will call this function so the list will stay sane. */
4193 if (!(dev->flags&IFF_UP))
4194 return;
4195
4196 if (!netif_device_present(dev))
4197 return;
4198
4199 if (ops->ndo_set_rx_mode)
4200 ops->ndo_set_rx_mode(dev);
4201 else {
4202 /* Unicast addresses changes may only happen under the rtnl,
4203 * therefore calling __dev_set_promiscuity here is safe.
4204 */
4205 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4206 __dev_set_promiscuity(dev, 1);
4207 dev->uc_promisc = 1;
4208 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4209 __dev_set_promiscuity(dev, -1);
4210 dev->uc_promisc = 0;
4211 }
4212
4213 if (ops->ndo_set_multicast_list)
4214 ops->ndo_set_multicast_list(dev);
4215 }
4216}
4217
4218void dev_set_rx_mode(struct net_device *dev)
4219{
4220 netif_addr_lock_bh(dev);
4221 __dev_set_rx_mode(dev);
4222 netif_addr_unlock_bh(dev);
4223}
4224
4225/**
4226 * dev_get_flags - get flags reported to userspace
4227 * @dev: device
4228 *
4229 * Get the combination of flag bits exported through APIs to userspace.
4230 */
4231unsigned dev_get_flags(const struct net_device *dev)
4232{
4233 unsigned flags;
4234
4235 flags = (dev->flags & ~(IFF_PROMISC |
4236 IFF_ALLMULTI |
4237 IFF_RUNNING |
4238 IFF_LOWER_UP |
4239 IFF_DORMANT)) |
4240 (dev->gflags & (IFF_PROMISC |
4241 IFF_ALLMULTI));
4242
4243 if (netif_running(dev)) {
4244 if (netif_oper_up(dev))
4245 flags |= IFF_RUNNING;
4246 if (netif_carrier_ok(dev))
4247 flags |= IFF_LOWER_UP;
4248 if (netif_dormant(dev))
4249 flags |= IFF_DORMANT;
4250 }
4251
4252 return flags;
4253}
4254EXPORT_SYMBOL(dev_get_flags);
4255
4256int __dev_change_flags(struct net_device *dev, unsigned int flags)
4257{
4258 int old_flags = dev->flags;
4259 int ret;
4260
4261 ASSERT_RTNL();
4262
4263 /*
4264 * Set the flags on our device.
4265 */
4266
4267 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4268 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4269 IFF_AUTOMEDIA)) |
4270 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4271 IFF_ALLMULTI));
4272
4273 /*
4274 * Load in the correct multicast list now the flags have changed.
4275 */
4276
4277 if ((old_flags ^ flags) & IFF_MULTICAST)
4278 dev_change_rx_flags(dev, IFF_MULTICAST);
4279
4280 dev_set_rx_mode(dev);
4281
4282 /*
4283 * Have we downed the interface. We handle IFF_UP ourselves
4284 * according to user attempts to set it, rather than blindly
4285 * setting it.
4286 */
4287
4288 ret = 0;
4289 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4290 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4291
4292 if (!ret)
4293 dev_set_rx_mode(dev);
4294 }
4295
4296 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4297 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4298
4299 dev->gflags ^= IFF_PROMISC;
4300 dev_set_promiscuity(dev, inc);
4301 }
4302
4303 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4304 is important. Some (broken) drivers set IFF_PROMISC, when
4305 IFF_ALLMULTI is requested not asking us and not reporting.
4306 */
4307 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4308 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4309
4310 dev->gflags ^= IFF_ALLMULTI;
4311 dev_set_allmulti(dev, inc);
4312 }
4313
4314 return ret;
4315}
4316
4317void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4318{
4319 unsigned int changes = dev->flags ^ old_flags;
4320
4321 if (changes & IFF_UP) {
4322 if (dev->flags & IFF_UP)
4323 call_netdevice_notifiers(NETDEV_UP, dev);
4324 else
4325 call_netdevice_notifiers(NETDEV_DOWN, dev);
4326 }
4327
4328 if (dev->flags & IFF_UP &&
4329 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4330 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4331}
4332
4333/**
4334 * dev_change_flags - change device settings
4335 * @dev: device
4336 * @flags: device state flags
4337 *
4338 * Change settings on device based state flags. The flags are
4339 * in the userspace exported format.
4340 */
4341int dev_change_flags(struct net_device *dev, unsigned flags)
4342{
4343 int ret, changes;
4344 int old_flags = dev->flags;
4345
4346 ret = __dev_change_flags(dev, flags);
4347 if (ret < 0)
4348 return ret;
4349
4350 changes = old_flags ^ dev->flags;
4351 if (changes)
4352 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4353
4354 __dev_notify_flags(dev, old_flags);
4355 return ret;
4356}
4357EXPORT_SYMBOL(dev_change_flags);
4358
4359/**
4360 * dev_set_mtu - Change maximum transfer unit
4361 * @dev: device
4362 * @new_mtu: new transfer unit
4363 *
4364 * Change the maximum transfer size of the network device.
4365 */
4366int dev_set_mtu(struct net_device *dev, int new_mtu)
4367{
4368 const struct net_device_ops *ops = dev->netdev_ops;
4369 int err;
4370
4371 if (new_mtu == dev->mtu)
4372 return 0;
4373
4374 /* MTU must be positive. */
4375 if (new_mtu < 0)
4376 return -EINVAL;
4377
4378 if (!netif_device_present(dev))
4379 return -ENODEV;
4380
4381 err = 0;
4382 if (ops->ndo_change_mtu)
4383 err = ops->ndo_change_mtu(dev, new_mtu);
4384 else
4385 dev->mtu = new_mtu;
4386
4387 if (!err && dev->flags & IFF_UP)
4388 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4389 return err;
4390}
4391EXPORT_SYMBOL(dev_set_mtu);
4392
4393/**
4394 * dev_set_mac_address - Change Media Access Control Address
4395 * @dev: device
4396 * @sa: new address
4397 *
4398 * Change the hardware (MAC) address of the device
4399 */
4400int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4401{
4402 const struct net_device_ops *ops = dev->netdev_ops;
4403 int err;
4404
4405 if (!ops->ndo_set_mac_address)
4406 return -EOPNOTSUPP;
4407 if (sa->sa_family != dev->type)
4408 return -EINVAL;
4409 if (!netif_device_present(dev))
4410 return -ENODEV;
4411 err = ops->ndo_set_mac_address(dev, sa);
4412 if (!err)
4413 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4414 return err;
4415}
4416EXPORT_SYMBOL(dev_set_mac_address);
4417
4418/*
4419 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4420 */
4421static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4422{
4423 int err;
4424 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4425
4426 if (!dev)
4427 return -ENODEV;
4428
4429 switch (cmd) {
4430 case SIOCGIFFLAGS: /* Get interface flags */
4431 ifr->ifr_flags = (short) dev_get_flags(dev);
4432 return 0;
4433
4434 case SIOCGIFMETRIC: /* Get the metric on the interface
4435 (currently unused) */
4436 ifr->ifr_metric = 0;
4437 return 0;
4438
4439 case SIOCGIFMTU: /* Get the MTU of a device */
4440 ifr->ifr_mtu = dev->mtu;
4441 return 0;
4442
4443 case SIOCGIFHWADDR:
4444 if (!dev->addr_len)
4445 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4446 else
4447 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4448 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4449 ifr->ifr_hwaddr.sa_family = dev->type;
4450 return 0;
4451
4452 case SIOCGIFSLAVE:
4453 err = -EINVAL;
4454 break;
4455
4456 case SIOCGIFMAP:
4457 ifr->ifr_map.mem_start = dev->mem_start;
4458 ifr->ifr_map.mem_end = dev->mem_end;
4459 ifr->ifr_map.base_addr = dev->base_addr;
4460 ifr->ifr_map.irq = dev->irq;
4461 ifr->ifr_map.dma = dev->dma;
4462 ifr->ifr_map.port = dev->if_port;
4463 return 0;
4464
4465 case SIOCGIFINDEX:
4466 ifr->ifr_ifindex = dev->ifindex;
4467 return 0;
4468
4469 case SIOCGIFTXQLEN:
4470 ifr->ifr_qlen = dev->tx_queue_len;
4471 return 0;
4472
4473 default:
4474 /* dev_ioctl() should ensure this case
4475 * is never reached
4476 */
4477 WARN_ON(1);
4478 err = -EINVAL;
4479 break;
4480
4481 }
4482 return err;
4483}
4484
4485/*
4486 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4487 */
4488static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4489{
4490 int err;
4491 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4492 const struct net_device_ops *ops;
4493
4494 if (!dev)
4495 return -ENODEV;
4496
4497 ops = dev->netdev_ops;
4498
4499 switch (cmd) {
4500 case SIOCSIFFLAGS: /* Set interface flags */
4501 return dev_change_flags(dev, ifr->ifr_flags);
4502
4503 case SIOCSIFMETRIC: /* Set the metric on the interface
4504 (currently unused) */
4505 return -EOPNOTSUPP;
4506
4507 case SIOCSIFMTU: /* Set the MTU of a device */
4508 return dev_set_mtu(dev, ifr->ifr_mtu);
4509
4510 case SIOCSIFHWADDR:
4511 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4512
4513 case SIOCSIFHWBROADCAST:
4514 if (ifr->ifr_hwaddr.sa_family != dev->type)
4515 return -EINVAL;
4516 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4517 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4518 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4519 return 0;
4520
4521 case SIOCSIFMAP:
4522 if (ops->ndo_set_config) {
4523 if (!netif_device_present(dev))
4524 return -ENODEV;
4525 return ops->ndo_set_config(dev, &ifr->ifr_map);
4526 }
4527 return -EOPNOTSUPP;
4528
4529 case SIOCADDMULTI:
4530 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4531 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4532 return -EINVAL;
4533 if (!netif_device_present(dev))
4534 return -ENODEV;
4535 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4536
4537 case SIOCDELMULTI:
4538 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4539 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4540 return -EINVAL;
4541 if (!netif_device_present(dev))
4542 return -ENODEV;
4543 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4544
4545 case SIOCSIFTXQLEN:
4546 if (ifr->ifr_qlen < 0)
4547 return -EINVAL;
4548 dev->tx_queue_len = ifr->ifr_qlen;
4549 return 0;
4550
4551 case SIOCSIFNAME:
4552 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4553 return dev_change_name(dev, ifr->ifr_newname);
4554
4555 /*
4556 * Unknown or private ioctl
4557 */
4558 default:
4559 if ((cmd >= SIOCDEVPRIVATE &&
4560 cmd <= SIOCDEVPRIVATE + 15) ||
4561 cmd == SIOCBONDENSLAVE ||
4562 cmd == SIOCBONDRELEASE ||
4563 cmd == SIOCBONDSETHWADDR ||
4564 cmd == SIOCBONDSLAVEINFOQUERY ||
4565 cmd == SIOCBONDINFOQUERY ||
4566 cmd == SIOCBONDCHANGEACTIVE ||
4567 cmd == SIOCGMIIPHY ||
4568 cmd == SIOCGMIIREG ||
4569 cmd == SIOCSMIIREG ||
4570 cmd == SIOCBRADDIF ||
4571 cmd == SIOCBRDELIF ||
4572 cmd == SIOCSHWTSTAMP ||
4573 cmd == SIOCWANDEV) {
4574 err = -EOPNOTSUPP;
4575 if (ops->ndo_do_ioctl) {
4576 if (netif_device_present(dev))
4577 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4578 else
4579 err = -ENODEV;
4580 }
4581 } else
4582 err = -EINVAL;
4583
4584 }
4585 return err;
4586}
4587
4588/*
4589 * This function handles all "interface"-type I/O control requests. The actual
4590 * 'doing' part of this is dev_ifsioc above.
4591 */
4592
4593/**
4594 * dev_ioctl - network device ioctl
4595 * @net: the applicable net namespace
4596 * @cmd: command to issue
4597 * @arg: pointer to a struct ifreq in user space
4598 *
4599 * Issue ioctl functions to devices. This is normally called by the
4600 * user space syscall interfaces but can sometimes be useful for
4601 * other purposes. The return value is the return from the syscall if
4602 * positive or a negative errno code on error.
4603 */
4604
4605int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4606{
4607 struct ifreq ifr;
4608 int ret;
4609 char *colon;
4610
4611 /* One special case: SIOCGIFCONF takes ifconf argument
4612 and requires shared lock, because it sleeps writing
4613 to user space.
4614 */
4615
4616 if (cmd == SIOCGIFCONF) {
4617 rtnl_lock();
4618 ret = dev_ifconf(net, (char __user *) arg);
4619 rtnl_unlock();
4620 return ret;
4621 }
4622 if (cmd == SIOCGIFNAME)
4623 return dev_ifname(net, (struct ifreq __user *)arg);
4624
4625 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4626 return -EFAULT;
4627
4628 ifr.ifr_name[IFNAMSIZ-1] = 0;
4629
4630 colon = strchr(ifr.ifr_name, ':');
4631 if (colon)
4632 *colon = 0;
4633
4634 /*
4635 * See which interface the caller is talking about.
4636 */
4637
4638 switch (cmd) {
4639 /*
4640 * These ioctl calls:
4641 * - can be done by all.
4642 * - atomic and do not require locking.
4643 * - return a value
4644 */
4645 case SIOCGIFFLAGS:
4646 case SIOCGIFMETRIC:
4647 case SIOCGIFMTU:
4648 case SIOCGIFHWADDR:
4649 case SIOCGIFSLAVE:
4650 case SIOCGIFMAP:
4651 case SIOCGIFINDEX:
4652 case SIOCGIFTXQLEN:
4653 dev_load(net, ifr.ifr_name);
4654 rcu_read_lock();
4655 ret = dev_ifsioc_locked(net, &ifr, cmd);
4656 rcu_read_unlock();
4657 if (!ret) {
4658 if (colon)
4659 *colon = ':';
4660 if (copy_to_user(arg, &ifr,
4661 sizeof(struct ifreq)))
4662 ret = -EFAULT;
4663 }
4664 return ret;
4665
4666 case SIOCETHTOOL:
4667 dev_load(net, ifr.ifr_name);
4668 rtnl_lock();
4669 ret = dev_ethtool(net, &ifr);
4670 rtnl_unlock();
4671 if (!ret) {
4672 if (colon)
4673 *colon = ':';
4674 if (copy_to_user(arg, &ifr,
4675 sizeof(struct ifreq)))
4676 ret = -EFAULT;
4677 }
4678 return ret;
4679
4680 /*
4681 * These ioctl calls:
4682 * - require superuser power.
4683 * - require strict serialization.
4684 * - return a value
4685 */
4686 case SIOCGMIIPHY:
4687 case SIOCGMIIREG:
4688 case SIOCSIFNAME:
4689 if (!capable(CAP_NET_ADMIN))
4690 return -EPERM;
4691 dev_load(net, ifr.ifr_name);
4692 rtnl_lock();
4693 ret = dev_ifsioc(net, &ifr, cmd);
4694 rtnl_unlock();
4695 if (!ret) {
4696 if (colon)
4697 *colon = ':';
4698 if (copy_to_user(arg, &ifr,
4699 sizeof(struct ifreq)))
4700 ret = -EFAULT;
4701 }
4702 return ret;
4703
4704 /*
4705 * These ioctl calls:
4706 * - require superuser power.
4707 * - require strict serialization.
4708 * - do not return a value
4709 */
4710 case SIOCSIFFLAGS:
4711 case SIOCSIFMETRIC:
4712 case SIOCSIFMTU:
4713 case SIOCSIFMAP:
4714 case SIOCSIFHWADDR:
4715 case SIOCSIFSLAVE:
4716 case SIOCADDMULTI:
4717 case SIOCDELMULTI:
4718 case SIOCSIFHWBROADCAST:
4719 case SIOCSIFTXQLEN:
4720 case SIOCSMIIREG:
4721 case SIOCBONDENSLAVE:
4722 case SIOCBONDRELEASE:
4723 case SIOCBONDSETHWADDR:
4724 case SIOCBONDCHANGEACTIVE:
4725 case SIOCBRADDIF:
4726 case SIOCBRDELIF:
4727 case SIOCSHWTSTAMP:
4728 if (!capable(CAP_NET_ADMIN))
4729 return -EPERM;
4730 /* fall through */
4731 case SIOCBONDSLAVEINFOQUERY:
4732 case SIOCBONDINFOQUERY:
4733 dev_load(net, ifr.ifr_name);
4734 rtnl_lock();
4735 ret = dev_ifsioc(net, &ifr, cmd);
4736 rtnl_unlock();
4737 return ret;
4738
4739 case SIOCGIFMEM:
4740 /* Get the per device memory space. We can add this but
4741 * currently do not support it */
4742 case SIOCSIFMEM:
4743 /* Set the per device memory buffer space.
4744 * Not applicable in our case */
4745 case SIOCSIFLINK:
4746 return -EINVAL;
4747
4748 /*
4749 * Unknown or private ioctl.
4750 */
4751 default:
4752 if (cmd == SIOCWANDEV ||
4753 (cmd >= SIOCDEVPRIVATE &&
4754 cmd <= SIOCDEVPRIVATE + 15)) {
4755 dev_load(net, ifr.ifr_name);
4756 rtnl_lock();
4757 ret = dev_ifsioc(net, &ifr, cmd);
4758 rtnl_unlock();
4759 if (!ret && copy_to_user(arg, &ifr,
4760 sizeof(struct ifreq)))
4761 ret = -EFAULT;
4762 return ret;
4763 }
4764 /* Take care of Wireless Extensions */
4765 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4766 return wext_handle_ioctl(net, &ifr, cmd, arg);
4767 return -EINVAL;
4768 }
4769}
4770
4771
4772/**
4773 * dev_new_index - allocate an ifindex
4774 * @net: the applicable net namespace
4775 *
4776 * Returns a suitable unique value for a new device interface
4777 * number. The caller must hold the rtnl semaphore or the
4778 * dev_base_lock to be sure it remains unique.
4779 */
4780static int dev_new_index(struct net *net)
4781{
4782 static int ifindex;
4783 for (;;) {
4784 if (++ifindex <= 0)
4785 ifindex = 1;
4786 if (!__dev_get_by_index(net, ifindex))
4787 return ifindex;
4788 }
4789}
4790
4791/* Delayed registration/unregisteration */
4792static LIST_HEAD(net_todo_list);
4793
4794static void net_set_todo(struct net_device *dev)
4795{
4796 list_add_tail(&dev->todo_list, &net_todo_list);
4797}
4798
4799static void rollback_registered_many(struct list_head *head)
4800{
4801 struct net_device *dev, *tmp;
4802
4803 BUG_ON(dev_boot_phase);
4804 ASSERT_RTNL();
4805
4806 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4807 /* Some devices call without registering
4808 * for initialization unwind. Remove those
4809 * devices and proceed with the remaining.
4810 */
4811 if (dev->reg_state == NETREG_UNINITIALIZED) {
4812 pr_debug("unregister_netdevice: device %s/%p never "
4813 "was registered\n", dev->name, dev);
4814
4815 WARN_ON(1);
4816 list_del(&dev->unreg_list);
4817 continue;
4818 }
4819
4820 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4821
4822 /* If device is running, close it first. */
4823 dev_close(dev);
4824
4825 /* And unlink it from device chain. */
4826 unlist_netdevice(dev);
4827
4828 dev->reg_state = NETREG_UNREGISTERING;
4829 }
4830
4831 synchronize_net();
4832
4833 list_for_each_entry(dev, head, unreg_list) {
4834 /* Shutdown queueing discipline. */
4835 dev_shutdown(dev);
4836
4837
4838 /* Notify protocols, that we are about to destroy
4839 this device. They should clean all the things.
4840 */
4841 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4842
4843 if (!dev->rtnl_link_ops ||
4844 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4845 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4846
4847 /*
4848 * Flush the unicast and multicast chains
4849 */
4850 dev_uc_flush(dev);
4851 dev_mc_flush(dev);
4852
4853 if (dev->netdev_ops->ndo_uninit)
4854 dev->netdev_ops->ndo_uninit(dev);
4855
4856 /* Notifier chain MUST detach us from master device. */
4857 WARN_ON(dev->master);
4858
4859 /* Remove entries from kobject tree */
4860 netdev_unregister_kobject(dev);
4861 }
4862
4863 /* Process any work delayed until the end of the batch */
4864 dev = list_first_entry(head, struct net_device, unreg_list);
4865 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4866
4867 synchronize_net();
4868
4869 list_for_each_entry(dev, head, unreg_list)
4870 dev_put(dev);
4871}
4872
4873static void rollback_registered(struct net_device *dev)
4874{
4875 LIST_HEAD(single);
4876
4877 list_add(&dev->unreg_list, &single);
4878 rollback_registered_many(&single);
4879}
4880
4881static void __netdev_init_queue_locks_one(struct net_device *dev,
4882 struct netdev_queue *dev_queue,
4883 void *_unused)
4884{
4885 spin_lock_init(&dev_queue->_xmit_lock);
4886 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4887 dev_queue->xmit_lock_owner = -1;
4888}
4889
4890static void netdev_init_queue_locks(struct net_device *dev)
4891{
4892 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4893 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4894}
4895
4896unsigned long netdev_fix_features(unsigned long features, const char *name)
4897{
4898 /* Fix illegal SG+CSUM combinations. */
4899 if ((features & NETIF_F_SG) &&
4900 !(features & NETIF_F_ALL_CSUM)) {
4901 if (name)
4902 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4903 "checksum feature.\n", name);
4904 features &= ~NETIF_F_SG;
4905 }
4906
4907 /* TSO requires that SG is present as well. */
4908 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4909 if (name)
4910 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4911 "SG feature.\n", name);
4912 features &= ~NETIF_F_TSO;
4913 }
4914
4915 if (features & NETIF_F_UFO) {
4916 if (!(features & NETIF_F_GEN_CSUM)) {
4917 if (name)
4918 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4919 "since no NETIF_F_HW_CSUM feature.\n",
4920 name);
4921 features &= ~NETIF_F_UFO;
4922 }
4923
4924 if (!(features & NETIF_F_SG)) {
4925 if (name)
4926 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4927 "since no NETIF_F_SG feature.\n", name);
4928 features &= ~NETIF_F_UFO;
4929 }
4930 }
4931
4932 return features;
4933}
4934EXPORT_SYMBOL(netdev_fix_features);
4935
4936/**
4937 * netif_stacked_transfer_operstate - transfer operstate
4938 * @rootdev: the root or lower level device to transfer state from
4939 * @dev: the device to transfer operstate to
4940 *
4941 * Transfer operational state from root to device. This is normally
4942 * called when a stacking relationship exists between the root
4943 * device and the device(a leaf device).
4944 */
4945void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4946 struct net_device *dev)
4947{
4948 if (rootdev->operstate == IF_OPER_DORMANT)
4949 netif_dormant_on(dev);
4950 else
4951 netif_dormant_off(dev);
4952
4953 if (netif_carrier_ok(rootdev)) {
4954 if (!netif_carrier_ok(dev))
4955 netif_carrier_on(dev);
4956 } else {
4957 if (netif_carrier_ok(dev))
4958 netif_carrier_off(dev);
4959 }
4960}
4961EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4962
4963/**
4964 * register_netdevice - register a network device
4965 * @dev: device to register
4966 *
4967 * Take a completed network device structure and add it to the kernel
4968 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4969 * chain. 0 is returned on success. A negative errno code is returned
4970 * on a failure to set up the device, or if the name is a duplicate.
4971 *
4972 * Callers must hold the rtnl semaphore. You may want
4973 * register_netdev() instead of this.
4974 *
4975 * BUGS:
4976 * The locking appears insufficient to guarantee two parallel registers
4977 * will not get the same name.
4978 */
4979
4980int register_netdevice(struct net_device *dev)
4981{
4982 int ret;
4983 struct net *net = dev_net(dev);
4984
4985 BUG_ON(dev_boot_phase);
4986 ASSERT_RTNL();
4987
4988 might_sleep();
4989
4990 /* When net_device's are persistent, this will be fatal. */
4991 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4992 BUG_ON(!net);
4993
4994 spin_lock_init(&dev->addr_list_lock);
4995 netdev_set_addr_lockdep_class(dev);
4996 netdev_init_queue_locks(dev);
4997
4998 dev->iflink = -1;
4999
5000#ifdef CONFIG_RPS
5001 if (!dev->num_rx_queues) {
5002 /*
5003 * Allocate a single RX queue if driver never called
5004 * alloc_netdev_mq
5005 */
5006
5007 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5008 if (!dev->_rx) {
5009 ret = -ENOMEM;
5010 goto out;
5011 }
5012
5013 dev->_rx->first = dev->_rx;
5014 atomic_set(&dev->_rx->count, 1);
5015 dev->num_rx_queues = 1;
5016 }
5017#endif
5018 /* Init, if this function is available */
5019 if (dev->netdev_ops->ndo_init) {
5020 ret = dev->netdev_ops->ndo_init(dev);
5021 if (ret) {
5022 if (ret > 0)
5023 ret = -EIO;
5024 goto out;
5025 }
5026 }
5027
5028 ret = dev_get_valid_name(dev, dev->name, 0);
5029 if (ret)
5030 goto err_uninit;
5031
5032 dev->ifindex = dev_new_index(net);
5033 if (dev->iflink == -1)
5034 dev->iflink = dev->ifindex;
5035
5036 /* Fix illegal checksum combinations */
5037 if ((dev->features & NETIF_F_HW_CSUM) &&
5038 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5039 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5040 dev->name);
5041 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5042 }
5043
5044 if ((dev->features & NETIF_F_NO_CSUM) &&
5045 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5046 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5047 dev->name);
5048 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5049 }
5050
5051 dev->features = netdev_fix_features(dev->features, dev->name);
5052
5053 /* Enable software GSO if SG is supported. */
5054 if (dev->features & NETIF_F_SG)
5055 dev->features |= NETIF_F_GSO;
5056
5057 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5058 ret = notifier_to_errno(ret);
5059 if (ret)
5060 goto err_uninit;
5061
5062 ret = netdev_register_kobject(dev);
5063 if (ret)
5064 goto err_uninit;
5065 dev->reg_state = NETREG_REGISTERED;
5066
5067 /*
5068 * Default initial state at registry is that the
5069 * device is present.
5070 */
5071
5072 set_bit(__LINK_STATE_PRESENT, &dev->state);
5073
5074 dev_init_scheduler(dev);
5075 dev_hold(dev);
5076 list_netdevice(dev);
5077
5078 /* Notify protocols, that a new device appeared. */
5079 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5080 ret = notifier_to_errno(ret);
5081 if (ret) {
5082 rollback_registered(dev);
5083 dev->reg_state = NETREG_UNREGISTERED;
5084 }
5085 /*
5086 * Prevent userspace races by waiting until the network
5087 * device is fully setup before sending notifications.
5088 */
5089 if (!dev->rtnl_link_ops ||
5090 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5091 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5092
5093out:
5094 return ret;
5095
5096err_uninit:
5097 if (dev->netdev_ops->ndo_uninit)
5098 dev->netdev_ops->ndo_uninit(dev);
5099 goto out;
5100}
5101EXPORT_SYMBOL(register_netdevice);
5102
5103/**
5104 * init_dummy_netdev - init a dummy network device for NAPI
5105 * @dev: device to init
5106 *
5107 * This takes a network device structure and initialize the minimum
5108 * amount of fields so it can be used to schedule NAPI polls without
5109 * registering a full blown interface. This is to be used by drivers
5110 * that need to tie several hardware interfaces to a single NAPI
5111 * poll scheduler due to HW limitations.
5112 */
5113int init_dummy_netdev(struct net_device *dev)
5114{
5115 /* Clear everything. Note we don't initialize spinlocks
5116 * are they aren't supposed to be taken by any of the
5117 * NAPI code and this dummy netdev is supposed to be
5118 * only ever used for NAPI polls
5119 */
5120 memset(dev, 0, sizeof(struct net_device));
5121
5122 /* make sure we BUG if trying to hit standard
5123 * register/unregister code path
5124 */
5125 dev->reg_state = NETREG_DUMMY;
5126
5127 /* initialize the ref count */
5128 atomic_set(&dev->refcnt, 1);
5129
5130 /* NAPI wants this */
5131 INIT_LIST_HEAD(&dev->napi_list);
5132
5133 /* a dummy interface is started by default */
5134 set_bit(__LINK_STATE_PRESENT, &dev->state);
5135 set_bit(__LINK_STATE_START, &dev->state);
5136
5137 return 0;
5138}
5139EXPORT_SYMBOL_GPL(init_dummy_netdev);
5140
5141
5142/**
5143 * register_netdev - register a network device
5144 * @dev: device to register
5145 *
5146 * Take a completed network device structure and add it to the kernel
5147 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5148 * chain. 0 is returned on success. A negative errno code is returned
5149 * on a failure to set up the device, or if the name is a duplicate.
5150 *
5151 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5152 * and expands the device name if you passed a format string to
5153 * alloc_netdev.
5154 */
5155int register_netdev(struct net_device *dev)
5156{
5157 int err;
5158
5159 rtnl_lock();
5160
5161 /*
5162 * If the name is a format string the caller wants us to do a
5163 * name allocation.
5164 */
5165 if (strchr(dev->name, '%')) {
5166 err = dev_alloc_name(dev, dev->name);
5167 if (err < 0)
5168 goto out;
5169 }
5170
5171 err = register_netdevice(dev);
5172out:
5173 rtnl_unlock();
5174 return err;
5175}
5176EXPORT_SYMBOL(register_netdev);
5177
5178/*
5179 * netdev_wait_allrefs - wait until all references are gone.
5180 *
5181 * This is called when unregistering network devices.
5182 *
5183 * Any protocol or device that holds a reference should register
5184 * for netdevice notification, and cleanup and put back the
5185 * reference if they receive an UNREGISTER event.
5186 * We can get stuck here if buggy protocols don't correctly
5187 * call dev_put.
5188 */
5189static void netdev_wait_allrefs(struct net_device *dev)
5190{
5191 unsigned long rebroadcast_time, warning_time;
5192
5193 linkwatch_forget_dev(dev);
5194
5195 rebroadcast_time = warning_time = jiffies;
5196 while (atomic_read(&dev->refcnt) != 0) {
5197 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5198 rtnl_lock();
5199
5200 /* Rebroadcast unregister notification */
5201 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5202 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5203 * should have already handle it the first time */
5204
5205 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5206 &dev->state)) {
5207 /* We must not have linkwatch events
5208 * pending on unregister. If this
5209 * happens, we simply run the queue
5210 * unscheduled, resulting in a noop
5211 * for this device.
5212 */
5213 linkwatch_run_queue();
5214 }
5215
5216 __rtnl_unlock();
5217
5218 rebroadcast_time = jiffies;
5219 }
5220
5221 msleep(250);
5222
5223 if (time_after(jiffies, warning_time + 10 * HZ)) {
5224 printk(KERN_EMERG "unregister_netdevice: "
5225 "waiting for %s to become free. Usage "
5226 "count = %d\n",
5227 dev->name, atomic_read(&dev->refcnt));
5228 warning_time = jiffies;
5229 }
5230 }
5231}
5232
5233/* The sequence is:
5234 *
5235 * rtnl_lock();
5236 * ...
5237 * register_netdevice(x1);
5238 * register_netdevice(x2);
5239 * ...
5240 * unregister_netdevice(y1);
5241 * unregister_netdevice(y2);
5242 * ...
5243 * rtnl_unlock();
5244 * free_netdev(y1);
5245 * free_netdev(y2);
5246 *
5247 * We are invoked by rtnl_unlock().
5248 * This allows us to deal with problems:
5249 * 1) We can delete sysfs objects which invoke hotplug
5250 * without deadlocking with linkwatch via keventd.
5251 * 2) Since we run with the RTNL semaphore not held, we can sleep
5252 * safely in order to wait for the netdev refcnt to drop to zero.
5253 *
5254 * We must not return until all unregister events added during
5255 * the interval the lock was held have been completed.
5256 */
5257void netdev_run_todo(void)
5258{
5259 struct list_head list;
5260
5261 /* Snapshot list, allow later requests */
5262 list_replace_init(&net_todo_list, &list);
5263
5264 __rtnl_unlock();
5265
5266 while (!list_empty(&list)) {
5267 struct net_device *dev
5268 = list_first_entry(&list, struct net_device, todo_list);
5269 list_del(&dev->todo_list);
5270
5271 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5272 printk(KERN_ERR "network todo '%s' but state %d\n",
5273 dev->name, dev->reg_state);
5274 dump_stack();
5275 continue;
5276 }
5277
5278 dev->reg_state = NETREG_UNREGISTERED;
5279
5280 on_each_cpu(flush_backlog, dev, 1);
5281
5282 netdev_wait_allrefs(dev);
5283
5284 /* paranoia */
5285 BUG_ON(atomic_read(&dev->refcnt));
5286 WARN_ON(dev->ip_ptr);
5287 WARN_ON(dev->ip6_ptr);
5288 WARN_ON(dev->dn_ptr);
5289
5290 if (dev->destructor)
5291 dev->destructor(dev);
5292
5293 /* Free network device */
5294 kobject_put(&dev->dev.kobj);
5295 }
5296}
5297
5298/**
5299 * dev_txq_stats_fold - fold tx_queues stats
5300 * @dev: device to get statistics from
5301 * @stats: struct rtnl_link_stats64 to hold results
5302 */
5303void dev_txq_stats_fold(const struct net_device *dev,
5304 struct rtnl_link_stats64 *stats)
5305{
5306 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5307 unsigned int i;
5308 struct netdev_queue *txq;
5309
5310 for (i = 0; i < dev->num_tx_queues; i++) {
5311 txq = netdev_get_tx_queue(dev, i);
5312 spin_lock_bh(&txq->_xmit_lock);
5313 tx_bytes += txq->tx_bytes;
5314 tx_packets += txq->tx_packets;
5315 tx_dropped += txq->tx_dropped;
5316 spin_unlock_bh(&txq->_xmit_lock);
5317 }
5318 if (tx_bytes || tx_packets || tx_dropped) {
5319 stats->tx_bytes = tx_bytes;
5320 stats->tx_packets = tx_packets;
5321 stats->tx_dropped = tx_dropped;
5322 }
5323}
5324EXPORT_SYMBOL(dev_txq_stats_fold);
5325
5326/* Convert net_device_stats to rtnl_link_stats64. They have the same
5327 * fields in the same order, with only the type differing.
5328 */
5329static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5330 const struct net_device_stats *netdev_stats)
5331{
5332#if BITS_PER_LONG == 64
5333 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5334 memcpy(stats64, netdev_stats, sizeof(*stats64));
5335#else
5336 size_t i, n = sizeof(*stats64) / sizeof(u64);
5337 const unsigned long *src = (const unsigned long *)netdev_stats;
5338 u64 *dst = (u64 *)stats64;
5339
5340 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5341 sizeof(*stats64) / sizeof(u64));
5342 for (i = 0; i < n; i++)
5343 dst[i] = src[i];
5344#endif
5345}
5346
5347/**
5348 * dev_get_stats - get network device statistics
5349 * @dev: device to get statistics from
5350 * @storage: place to store stats
5351 *
5352 * Get network statistics from device. Return @storage.
5353 * The device driver may provide its own method by setting
5354 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5355 * otherwise the internal statistics structure is used.
5356 */
5357struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5358 struct rtnl_link_stats64 *storage)
5359{
5360 const struct net_device_ops *ops = dev->netdev_ops;
5361
5362 if (ops->ndo_get_stats64) {
5363 memset(storage, 0, sizeof(*storage));
5364 return ops->ndo_get_stats64(dev, storage);
5365 }
5366 if (ops->ndo_get_stats) {
5367 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5368 return storage;
5369 }
5370 netdev_stats_to_stats64(storage, &dev->stats);
5371 dev_txq_stats_fold(dev, storage);
5372 return storage;
5373}
5374EXPORT_SYMBOL(dev_get_stats);
5375
5376static void netdev_init_one_queue(struct net_device *dev,
5377 struct netdev_queue *queue,
5378 void *_unused)
5379{
5380 queue->dev = dev;
5381}
5382
5383static void netdev_init_queues(struct net_device *dev)
5384{
5385 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5386 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5387 spin_lock_init(&dev->tx_global_lock);
5388}
5389
5390/**
5391 * alloc_netdev_mq - allocate network device
5392 * @sizeof_priv: size of private data to allocate space for
5393 * @name: device name format string
5394 * @setup: callback to initialize device
5395 * @queue_count: the number of subqueues to allocate
5396 *
5397 * Allocates a struct net_device with private data area for driver use
5398 * and performs basic initialization. Also allocates subquue structs
5399 * for each queue on the device at the end of the netdevice.
5400 */
5401struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5402 void (*setup)(struct net_device *), unsigned int queue_count)
5403{
5404 struct netdev_queue *tx;
5405 struct net_device *dev;
5406 size_t alloc_size;
5407 struct net_device *p;
5408#ifdef CONFIG_RPS
5409 struct netdev_rx_queue *rx;
5410 int i;
5411#endif
5412
5413 BUG_ON(strlen(name) >= sizeof(dev->name));
5414
5415 alloc_size = sizeof(struct net_device);
5416 if (sizeof_priv) {
5417 /* ensure 32-byte alignment of private area */
5418 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5419 alloc_size += sizeof_priv;
5420 }
5421 /* ensure 32-byte alignment of whole construct */
5422 alloc_size += NETDEV_ALIGN - 1;
5423
5424 p = kzalloc(alloc_size, GFP_KERNEL);
5425 if (!p) {
5426 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5427 return NULL;
5428 }
5429
5430 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5431 if (!tx) {
5432 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5433 "tx qdiscs.\n");
5434 goto free_p;
5435 }
5436
5437#ifdef CONFIG_RPS
5438 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5439 if (!rx) {
5440 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5441 "rx queues.\n");
5442 goto free_tx;
5443 }
5444
5445 atomic_set(&rx->count, queue_count);
5446
5447 /*
5448 * Set a pointer to first element in the array which holds the
5449 * reference count.
5450 */
5451 for (i = 0; i < queue_count; i++)
5452 rx[i].first = rx;
5453#endif
5454
5455 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5456 dev->padded = (char *)dev - (char *)p;
5457
5458 if (dev_addr_init(dev))
5459 goto free_rx;
5460
5461 dev_mc_init(dev);
5462 dev_uc_init(dev);
5463
5464 dev_net_set(dev, &init_net);
5465
5466 dev->_tx = tx;
5467 dev->num_tx_queues = queue_count;
5468 dev->real_num_tx_queues = queue_count;
5469
5470#ifdef CONFIG_RPS
5471 dev->_rx = rx;
5472 dev->num_rx_queues = queue_count;
5473#endif
5474
5475 dev->gso_max_size = GSO_MAX_SIZE;
5476
5477 netdev_init_queues(dev);
5478
5479 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5480 dev->ethtool_ntuple_list.count = 0;
5481 INIT_LIST_HEAD(&dev->napi_list);
5482 INIT_LIST_HEAD(&dev->unreg_list);
5483 INIT_LIST_HEAD(&dev->link_watch_list);
5484 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5485 setup(dev);
5486 strcpy(dev->name, name);
5487 return dev;
5488
5489free_rx:
5490#ifdef CONFIG_RPS
5491 kfree(rx);
5492free_tx:
5493#endif
5494 kfree(tx);
5495free_p:
5496 kfree(p);
5497 return NULL;
5498}
5499EXPORT_SYMBOL(alloc_netdev_mq);
5500
5501/**
5502 * free_netdev - free network device
5503 * @dev: device
5504 *
5505 * This function does the last stage of destroying an allocated device
5506 * interface. The reference to the device object is released.
5507 * If this is the last reference then it will be freed.
5508 */
5509void free_netdev(struct net_device *dev)
5510{
5511 struct napi_struct *p, *n;
5512
5513 release_net(dev_net(dev));
5514
5515 kfree(dev->_tx);
5516
5517 /* Flush device addresses */
5518 dev_addr_flush(dev);
5519
5520 /* Clear ethtool n-tuple list */
5521 ethtool_ntuple_flush(dev);
5522
5523 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5524 netif_napi_del(p);
5525
5526 /* Compatibility with error handling in drivers */
5527 if (dev->reg_state == NETREG_UNINITIALIZED) {
5528 kfree((char *)dev - dev->padded);
5529 return;
5530 }
5531
5532 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5533 dev->reg_state = NETREG_RELEASED;
5534
5535 /* will free via device release */
5536 put_device(&dev->dev);
5537}
5538EXPORT_SYMBOL(free_netdev);
5539
5540/**
5541 * synchronize_net - Synchronize with packet receive processing
5542 *
5543 * Wait for packets currently being received to be done.
5544 * Does not block later packets from starting.
5545 */
5546void synchronize_net(void)
5547{
5548 might_sleep();
5549 synchronize_rcu();
5550}
5551EXPORT_SYMBOL(synchronize_net);
5552
5553/**
5554 * unregister_netdevice_queue - remove device from the kernel
5555 * @dev: device
5556 * @head: list
5557 *
5558 * This function shuts down a device interface and removes it
5559 * from the kernel tables.
5560 * If head not NULL, device is queued to be unregistered later.
5561 *
5562 * Callers must hold the rtnl semaphore. You may want
5563 * unregister_netdev() instead of this.
5564 */
5565
5566void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5567{
5568 ASSERT_RTNL();
5569
5570 if (head) {
5571 list_move_tail(&dev->unreg_list, head);
5572 } else {
5573 rollback_registered(dev);
5574 /* Finish processing unregister after unlock */
5575 net_set_todo(dev);
5576 }
5577}
5578EXPORT_SYMBOL(unregister_netdevice_queue);
5579
5580/**
5581 * unregister_netdevice_many - unregister many devices
5582 * @head: list of devices
5583 */
5584void unregister_netdevice_many(struct list_head *head)
5585{
5586 struct net_device *dev;
5587
5588 if (!list_empty(head)) {
5589 rollback_registered_many(head);
5590 list_for_each_entry(dev, head, unreg_list)
5591 net_set_todo(dev);
5592 }
5593}
5594EXPORT_SYMBOL(unregister_netdevice_many);
5595
5596/**
5597 * unregister_netdev - remove device from the kernel
5598 * @dev: device
5599 *
5600 * This function shuts down a device interface and removes it
5601 * from the kernel tables.
5602 *
5603 * This is just a wrapper for unregister_netdevice that takes
5604 * the rtnl semaphore. In general you want to use this and not
5605 * unregister_netdevice.
5606 */
5607void unregister_netdev(struct net_device *dev)
5608{
5609 rtnl_lock();
5610 unregister_netdevice(dev);
5611 rtnl_unlock();
5612}
5613EXPORT_SYMBOL(unregister_netdev);
5614
5615/**
5616 * dev_change_net_namespace - move device to different nethost namespace
5617 * @dev: device
5618 * @net: network namespace
5619 * @pat: If not NULL name pattern to try if the current device name
5620 * is already taken in the destination network namespace.
5621 *
5622 * This function shuts down a device interface and moves it
5623 * to a new network namespace. On success 0 is returned, on
5624 * a failure a netagive errno code is returned.
5625 *
5626 * Callers must hold the rtnl semaphore.
5627 */
5628
5629int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5630{
5631 int err;
5632
5633 ASSERT_RTNL();
5634
5635 /* Don't allow namespace local devices to be moved. */
5636 err = -EINVAL;
5637 if (dev->features & NETIF_F_NETNS_LOCAL)
5638 goto out;
5639
5640 /* Ensure the device has been registrered */
5641 err = -EINVAL;
5642 if (dev->reg_state != NETREG_REGISTERED)
5643 goto out;
5644
5645 /* Get out if there is nothing todo */
5646 err = 0;
5647 if (net_eq(dev_net(dev), net))
5648 goto out;
5649
5650 /* Pick the destination device name, and ensure
5651 * we can use it in the destination network namespace.
5652 */
5653 err = -EEXIST;
5654 if (__dev_get_by_name(net, dev->name)) {
5655 /* We get here if we can't use the current device name */
5656 if (!pat)
5657 goto out;
5658 if (dev_get_valid_name(dev, pat, 1))
5659 goto out;
5660 }
5661
5662 /*
5663 * And now a mini version of register_netdevice unregister_netdevice.
5664 */
5665
5666 /* If device is running close it first. */
5667 dev_close(dev);
5668
5669 /* And unlink it from device chain */
5670 err = -ENODEV;
5671 unlist_netdevice(dev);
5672
5673 synchronize_net();
5674
5675 /* Shutdown queueing discipline. */
5676 dev_shutdown(dev);
5677
5678 /* Notify protocols, that we are about to destroy
5679 this device. They should clean all the things.
5680 */
5681 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5682 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5683
5684 /*
5685 * Flush the unicast and multicast chains
5686 */
5687 dev_uc_flush(dev);
5688 dev_mc_flush(dev);
5689
5690 /* Actually switch the network namespace */
5691 dev_net_set(dev, net);
5692
5693 /* If there is an ifindex conflict assign a new one */
5694 if (__dev_get_by_index(net, dev->ifindex)) {
5695 int iflink = (dev->iflink == dev->ifindex);
5696 dev->ifindex = dev_new_index(net);
5697 if (iflink)
5698 dev->iflink = dev->ifindex;
5699 }
5700
5701 /* Fixup kobjects */
5702 err = device_rename(&dev->dev, dev->name);
5703 WARN_ON(err);
5704
5705 /* Add the device back in the hashes */
5706 list_netdevice(dev);
5707
5708 /* Notify protocols, that a new device appeared. */
5709 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5710
5711 /*
5712 * Prevent userspace races by waiting until the network
5713 * device is fully setup before sending notifications.
5714 */
5715 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5716
5717 synchronize_net();
5718 err = 0;
5719out:
5720 return err;
5721}
5722EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5723
5724static int dev_cpu_callback(struct notifier_block *nfb,
5725 unsigned long action,
5726 void *ocpu)
5727{
5728 struct sk_buff **list_skb;
5729 struct sk_buff *skb;
5730 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5731 struct softnet_data *sd, *oldsd;
5732
5733 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5734 return NOTIFY_OK;
5735
5736 local_irq_disable();
5737 cpu = smp_processor_id();
5738 sd = &per_cpu(softnet_data, cpu);
5739 oldsd = &per_cpu(softnet_data, oldcpu);
5740
5741 /* Find end of our completion_queue. */
5742 list_skb = &sd->completion_queue;
5743 while (*list_skb)
5744 list_skb = &(*list_skb)->next;
5745 /* Append completion queue from offline CPU. */
5746 *list_skb = oldsd->completion_queue;
5747 oldsd->completion_queue = NULL;
5748
5749 /* Append output queue from offline CPU. */
5750 if (oldsd->output_queue) {
5751 *sd->output_queue_tailp = oldsd->output_queue;
5752 sd->output_queue_tailp = oldsd->output_queue_tailp;
5753 oldsd->output_queue = NULL;
5754 oldsd->output_queue_tailp = &oldsd->output_queue;
5755 }
5756
5757 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5758 local_irq_enable();
5759
5760 /* Process offline CPU's input_pkt_queue */
5761 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5762 netif_rx(skb);
5763 input_queue_head_incr(oldsd);
5764 }
5765 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5766 netif_rx(skb);
5767 input_queue_head_incr(oldsd);
5768 }
5769
5770 return NOTIFY_OK;
5771}
5772
5773
5774/**
5775 * netdev_increment_features - increment feature set by one
5776 * @all: current feature set
5777 * @one: new feature set
5778 * @mask: mask feature set
5779 *
5780 * Computes a new feature set after adding a device with feature set
5781 * @one to the master device with current feature set @all. Will not
5782 * enable anything that is off in @mask. Returns the new feature set.
5783 */
5784unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5785 unsigned long mask)
5786{
5787 /* If device needs checksumming, downgrade to it. */
5788 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5789 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5790 else if (mask & NETIF_F_ALL_CSUM) {
5791 /* If one device supports v4/v6 checksumming, set for all. */
5792 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5793 !(all & NETIF_F_GEN_CSUM)) {
5794 all &= ~NETIF_F_ALL_CSUM;
5795 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5796 }
5797
5798 /* If one device supports hw checksumming, set for all. */
5799 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5800 all &= ~NETIF_F_ALL_CSUM;
5801 all |= NETIF_F_HW_CSUM;
5802 }
5803 }
5804
5805 one |= NETIF_F_ALL_CSUM;
5806
5807 one |= all & NETIF_F_ONE_FOR_ALL;
5808 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5809 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5810
5811 return all;
5812}
5813EXPORT_SYMBOL(netdev_increment_features);
5814
5815static struct hlist_head *netdev_create_hash(void)
5816{
5817 int i;
5818 struct hlist_head *hash;
5819
5820 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5821 if (hash != NULL)
5822 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5823 INIT_HLIST_HEAD(&hash[i]);
5824
5825 return hash;
5826}
5827
5828/* Initialize per network namespace state */
5829static int __net_init netdev_init(struct net *net)
5830{
5831 INIT_LIST_HEAD(&net->dev_base_head);
5832
5833 net->dev_name_head = netdev_create_hash();
5834 if (net->dev_name_head == NULL)
5835 goto err_name;
5836
5837 net->dev_index_head = netdev_create_hash();
5838 if (net->dev_index_head == NULL)
5839 goto err_idx;
5840
5841 return 0;
5842
5843err_idx:
5844 kfree(net->dev_name_head);
5845err_name:
5846 return -ENOMEM;
5847}
5848
5849/**
5850 * netdev_drivername - network driver for the device
5851 * @dev: network device
5852 * @buffer: buffer for resulting name
5853 * @len: size of buffer
5854 *
5855 * Determine network driver for device.
5856 */
5857char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5858{
5859 const struct device_driver *driver;
5860 const struct device *parent;
5861
5862 if (len <= 0 || !buffer)
5863 return buffer;
5864 buffer[0] = 0;
5865
5866 parent = dev->dev.parent;
5867
5868 if (!parent)
5869 return buffer;
5870
5871 driver = parent->driver;
5872 if (driver && driver->name)
5873 strlcpy(buffer, driver->name, len);
5874 return buffer;
5875}
5876
5877static int __netdev_printk(const char *level, const struct net_device *dev,
5878 struct va_format *vaf)
5879{
5880 int r;
5881
5882 if (dev && dev->dev.parent)
5883 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5884 netdev_name(dev), vaf);
5885 else if (dev)
5886 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5887 else
5888 r = printk("%s(NULL net_device): %pV", level, vaf);
5889
5890 return r;
5891}
5892
5893int netdev_printk(const char *level, const struct net_device *dev,
5894 const char *format, ...)
5895{
5896 struct va_format vaf;
5897 va_list args;
5898 int r;
5899
5900 va_start(args, format);
5901
5902 vaf.fmt = format;
5903 vaf.va = &args;
5904
5905 r = __netdev_printk(level, dev, &vaf);
5906 va_end(args);
5907
5908 return r;
5909}
5910EXPORT_SYMBOL(netdev_printk);
5911
5912#define define_netdev_printk_level(func, level) \
5913int func(const struct net_device *dev, const char *fmt, ...) \
5914{ \
5915 int r; \
5916 struct va_format vaf; \
5917 va_list args; \
5918 \
5919 va_start(args, fmt); \
5920 \
5921 vaf.fmt = fmt; \
5922 vaf.va = &args; \
5923 \
5924 r = __netdev_printk(level, dev, &vaf); \
5925 va_end(args); \
5926 \
5927 return r; \
5928} \
5929EXPORT_SYMBOL(func);
5930
5931define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5932define_netdev_printk_level(netdev_alert, KERN_ALERT);
5933define_netdev_printk_level(netdev_crit, KERN_CRIT);
5934define_netdev_printk_level(netdev_err, KERN_ERR);
5935define_netdev_printk_level(netdev_warn, KERN_WARNING);
5936define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5937define_netdev_printk_level(netdev_info, KERN_INFO);
5938
5939static void __net_exit netdev_exit(struct net *net)
5940{
5941 kfree(net->dev_name_head);
5942 kfree(net->dev_index_head);
5943}
5944
5945static struct pernet_operations __net_initdata netdev_net_ops = {
5946 .init = netdev_init,
5947 .exit = netdev_exit,
5948};
5949
5950static void __net_exit default_device_exit(struct net *net)
5951{
5952 struct net_device *dev, *aux;
5953 /*
5954 * Push all migratable network devices back to the
5955 * initial network namespace
5956 */
5957 rtnl_lock();
5958 for_each_netdev_safe(net, dev, aux) {
5959 int err;
5960 char fb_name[IFNAMSIZ];
5961
5962 /* Ignore unmoveable devices (i.e. loopback) */
5963 if (dev->features & NETIF_F_NETNS_LOCAL)
5964 continue;
5965
5966 /* Leave virtual devices for the generic cleanup */
5967 if (dev->rtnl_link_ops)
5968 continue;
5969
5970 /* Push remaing network devices to init_net */
5971 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5972 err = dev_change_net_namespace(dev, &init_net, fb_name);
5973 if (err) {
5974 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5975 __func__, dev->name, err);
5976 BUG();
5977 }
5978 }
5979 rtnl_unlock();
5980}
5981
5982static void __net_exit default_device_exit_batch(struct list_head *net_list)
5983{
5984 /* At exit all network devices most be removed from a network
5985 * namespace. Do this in the reverse order of registeration.
5986 * Do this across as many network namespaces as possible to
5987 * improve batching efficiency.
5988 */
5989 struct net_device *dev;
5990 struct net *net;
5991 LIST_HEAD(dev_kill_list);
5992
5993 rtnl_lock();
5994 list_for_each_entry(net, net_list, exit_list) {
5995 for_each_netdev_reverse(net, dev) {
5996 if (dev->rtnl_link_ops)
5997 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5998 else
5999 unregister_netdevice_queue(dev, &dev_kill_list);
6000 }
6001 }
6002 unregister_netdevice_many(&dev_kill_list);
6003 rtnl_unlock();
6004}
6005
6006static struct pernet_operations __net_initdata default_device_ops = {
6007 .exit = default_device_exit,
6008 .exit_batch = default_device_exit_batch,
6009};
6010
6011/*
6012 * Initialize the DEV module. At boot time this walks the device list and
6013 * unhooks any devices that fail to initialise (normally hardware not
6014 * present) and leaves us with a valid list of present and active devices.
6015 *
6016 */
6017
6018/*
6019 * This is called single threaded during boot, so no need
6020 * to take the rtnl semaphore.
6021 */
6022static int __init net_dev_init(void)
6023{
6024 int i, rc = -ENOMEM;
6025
6026 BUG_ON(!dev_boot_phase);
6027
6028 if (dev_proc_init())
6029 goto out;
6030
6031 if (netdev_kobject_init())
6032 goto out;
6033
6034 INIT_LIST_HEAD(&ptype_all);
6035 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6036 INIT_LIST_HEAD(&ptype_base[i]);
6037
6038 if (register_pernet_subsys(&netdev_net_ops))
6039 goto out;
6040
6041 /*
6042 * Initialise the packet receive queues.
6043 */
6044
6045 for_each_possible_cpu(i) {
6046 struct softnet_data *sd = &per_cpu(softnet_data, i);
6047
6048 memset(sd, 0, sizeof(*sd));
6049 skb_queue_head_init(&sd->input_pkt_queue);
6050 skb_queue_head_init(&sd->process_queue);
6051 sd->completion_queue = NULL;
6052 INIT_LIST_HEAD(&sd->poll_list);
6053 sd->output_queue = NULL;
6054 sd->output_queue_tailp = &sd->output_queue;
6055#ifdef CONFIG_RPS
6056 sd->csd.func = rps_trigger_softirq;
6057 sd->csd.info = sd;
6058 sd->csd.flags = 0;
6059 sd->cpu = i;
6060#endif
6061
6062 sd->backlog.poll = process_backlog;
6063 sd->backlog.weight = weight_p;
6064 sd->backlog.gro_list = NULL;
6065 sd->backlog.gro_count = 0;
6066 }
6067
6068 dev_boot_phase = 0;
6069
6070 /* The loopback device is special if any other network devices
6071 * is present in a network namespace the loopback device must
6072 * be present. Since we now dynamically allocate and free the
6073 * loopback device ensure this invariant is maintained by
6074 * keeping the loopback device as the first device on the
6075 * list of network devices. Ensuring the loopback devices
6076 * is the first device that appears and the last network device
6077 * that disappears.
6078 */
6079 if (register_pernet_device(&loopback_net_ops))
6080 goto out;
6081
6082 if (register_pernet_device(&default_device_ops))
6083 goto out;
6084
6085 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6086 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6087
6088 hotcpu_notifier(dev_cpu_callback, 0);
6089 dst_init();
6090 dev_mcast_init();
6091 rc = 0;
6092out:
6093 return rc;
6094}
6095
6096subsys_initcall(net_dev_init);
6097
6098static int __init initialize_hashrnd(void)
6099{
6100 get_random_bytes(&hashrnd, sizeof(hashrnd));
6101 return 0;
6102}
6103
6104late_initcall_sync(initialize_hashrnd);
6105