]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
usbnet: remove noisy and hardly useful printk
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/slab.h>
84#include <linux/sched.h>
85#include <linux/mutex.h>
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
95#include <linux/ethtool.h>
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
98#include <net/net_namespace.h>
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <net/xfrm.h>
108#include <linux/highmem.h>
109#include <linux/init.h>
110#include <linux/kmod.h>
111#include <linux/module.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
115#include <net/wext.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <linux/ipv6.h>
127#include <linux/in.h>
128#include <linux/jhash.h>
129#include <linux/random.h>
130#include <trace/events/napi.h>
131#include <linux/pci.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172static DEFINE_SPINLOCK(ptype_lock);
173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174static struct list_head ptype_all __read_mostly; /* Taps */
175
176/*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195DEFINE_RWLOCK(dev_base_lock);
196EXPORT_SYMBOL(dev_base_lock);
197
198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202}
203
204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205{
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207}
208
209static inline void rps_lock(struct softnet_data *sd)
210{
211#ifdef CONFIG_RPS
212 spin_lock(&sd->input_pkt_queue.lock);
213#endif
214}
215
216static inline void rps_unlock(struct softnet_data *sd)
217{
218#ifdef CONFIG_RPS
219 spin_unlock(&sd->input_pkt_queue.lock);
220#endif
221}
222
223/* Device list insertion */
224static int list_netdevice(struct net_device *dev)
225{
226 struct net *net = dev_net(dev);
227
228 ASSERT_RTNL();
229
230 write_lock_bh(&dev_base_lock);
231 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 hlist_add_head_rcu(&dev->index_hlist,
234 dev_index_hash(net, dev->ifindex));
235 write_unlock_bh(&dev_base_lock);
236 return 0;
237}
238
239/* Device list removal
240 * caller must respect a RCU grace period before freeing/reusing dev
241 */
242static void unlist_netdevice(struct net_device *dev)
243{
244 ASSERT_RTNL();
245
246 /* Unlink dev from the device chain */
247 write_lock_bh(&dev_base_lock);
248 list_del_rcu(&dev->dev_list);
249 hlist_del_rcu(&dev->name_hlist);
250 hlist_del_rcu(&dev->index_hlist);
251 write_unlock_bh(&dev_base_lock);
252}
253
254/*
255 * Our notifier list
256 */
257
258static RAW_NOTIFIER_HEAD(netdev_chain);
259
260/*
261 * Device drivers call our routines to queue packets here. We empty the
262 * queue in the local softnet handler.
263 */
264
265DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266EXPORT_PER_CPU_SYMBOL(softnet_data);
267
268#ifdef CONFIG_LOCKDEP
269/*
270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271 * according to dev->type
272 */
273static const unsigned short netdev_lock_type[] =
274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 ARPHRD_VOID, ARPHRD_NONE};
290
291static const char *const netdev_lock_name[] =
292 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 "_xmit_VOID", "_xmit_NONE"};
308
309static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311
312static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313{
314 int i;
315
316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 if (netdev_lock_type[i] == dev_type)
318 return i;
319 /* the last key is used by default */
320 return ARRAY_SIZE(netdev_lock_type) - 1;
321}
322
323static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 unsigned short dev_type)
325{
326 int i;
327
328 i = netdev_lock_pos(dev_type);
329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 netdev_lock_name[i]);
331}
332
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334{
335 int i;
336
337 i = netdev_lock_pos(dev->type);
338 lockdep_set_class_and_name(&dev->addr_list_lock,
339 &netdev_addr_lock_key[i],
340 netdev_lock_name[i]);
341}
342#else
343static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 unsigned short dev_type)
345{
346}
347static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348{
349}
350#endif
351
352/*******************************************************************************
353
354 Protocol management and registration routines
355
356*******************************************************************************/
357
358/*
359 * Add a protocol ID to the list. Now that the input handler is
360 * smarter we can dispense with all the messy stuff that used to be
361 * here.
362 *
363 * BEWARE!!! Protocol handlers, mangling input packets,
364 * MUST BE last in hash buckets and checking protocol handlers
365 * MUST start from promiscuous ptype_all chain in net_bh.
366 * It is true now, do not change it.
367 * Explanation follows: if protocol handler, mangling packet, will
368 * be the first on list, it is not able to sense, that packet
369 * is cloned and should be copied-on-write, so that it will
370 * change it and subsequent readers will get broken packet.
371 * --ANK (980803)
372 */
373
374/**
375 * dev_add_pack - add packet handler
376 * @pt: packet type declaration
377 *
378 * Add a protocol handler to the networking stack. The passed &packet_type
379 * is linked into kernel lists and may not be freed until it has been
380 * removed from the kernel lists.
381 *
382 * This call does not sleep therefore it can not
383 * guarantee all CPU's that are in middle of receiving packets
384 * will see the new packet type (until the next received packet).
385 */
386
387void dev_add_pack(struct packet_type *pt)
388{
389 int hash;
390
391 spin_lock_bh(&ptype_lock);
392 if (pt->type == htons(ETH_P_ALL))
393 list_add_rcu(&pt->list, &ptype_all);
394 else {
395 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 list_add_rcu(&pt->list, &ptype_base[hash]);
397 }
398 spin_unlock_bh(&ptype_lock);
399}
400EXPORT_SYMBOL(dev_add_pack);
401
402/**
403 * __dev_remove_pack - remove packet handler
404 * @pt: packet type declaration
405 *
406 * Remove a protocol handler that was previously added to the kernel
407 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
408 * from the kernel lists and can be freed or reused once this function
409 * returns.
410 *
411 * The packet type might still be in use by receivers
412 * and must not be freed until after all the CPU's have gone
413 * through a quiescent state.
414 */
415void __dev_remove_pack(struct packet_type *pt)
416{
417 struct list_head *head;
418 struct packet_type *pt1;
419
420 spin_lock_bh(&ptype_lock);
421
422 if (pt->type == htons(ETH_P_ALL))
423 head = &ptype_all;
424 else
425 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
426
427 list_for_each_entry(pt1, head, list) {
428 if (pt == pt1) {
429 list_del_rcu(&pt->list);
430 goto out;
431 }
432 }
433
434 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
435out:
436 spin_unlock_bh(&ptype_lock);
437}
438EXPORT_SYMBOL(__dev_remove_pack);
439
440/**
441 * dev_remove_pack - remove packet handler
442 * @pt: packet type declaration
443 *
444 * Remove a protocol handler that was previously added to the kernel
445 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
446 * from the kernel lists and can be freed or reused once this function
447 * returns.
448 *
449 * This call sleeps to guarantee that no CPU is looking at the packet
450 * type after return.
451 */
452void dev_remove_pack(struct packet_type *pt)
453{
454 __dev_remove_pack(pt);
455
456 synchronize_net();
457}
458EXPORT_SYMBOL(dev_remove_pack);
459
460/******************************************************************************
461
462 Device Boot-time Settings Routines
463
464*******************************************************************************/
465
466/* Boot time configuration table */
467static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
468
469/**
470 * netdev_boot_setup_add - add new setup entry
471 * @name: name of the device
472 * @map: configured settings for the device
473 *
474 * Adds new setup entry to the dev_boot_setup list. The function
475 * returns 0 on error and 1 on success. This is a generic routine to
476 * all netdevices.
477 */
478static int netdev_boot_setup_add(char *name, struct ifmap *map)
479{
480 struct netdev_boot_setup *s;
481 int i;
482
483 s = dev_boot_setup;
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
486 memset(s[i].name, 0, sizeof(s[i].name));
487 strlcpy(s[i].name, name, IFNAMSIZ);
488 memcpy(&s[i].map, map, sizeof(s[i].map));
489 break;
490 }
491 }
492
493 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
494}
495
496/**
497 * netdev_boot_setup_check - check boot time settings
498 * @dev: the netdevice
499 *
500 * Check boot time settings for the device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found, 1 if they are.
504 */
505int netdev_boot_setup_check(struct net_device *dev)
506{
507 struct netdev_boot_setup *s = dev_boot_setup;
508 int i;
509
510 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
511 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
512 !strcmp(dev->name, s[i].name)) {
513 dev->irq = s[i].map.irq;
514 dev->base_addr = s[i].map.base_addr;
515 dev->mem_start = s[i].map.mem_start;
516 dev->mem_end = s[i].map.mem_end;
517 return 1;
518 }
519 }
520 return 0;
521}
522EXPORT_SYMBOL(netdev_boot_setup_check);
523
524
525/**
526 * netdev_boot_base - get address from boot time settings
527 * @prefix: prefix for network device
528 * @unit: id for network device
529 *
530 * Check boot time settings for the base address of device.
531 * The found settings are set for the device to be used
532 * later in the device probing.
533 * Returns 0 if no settings found.
534 */
535unsigned long netdev_boot_base(const char *prefix, int unit)
536{
537 const struct netdev_boot_setup *s = dev_boot_setup;
538 char name[IFNAMSIZ];
539 int i;
540
541 sprintf(name, "%s%d", prefix, unit);
542
543 /*
544 * If device already registered then return base of 1
545 * to indicate not to probe for this interface
546 */
547 if (__dev_get_by_name(&init_net, name))
548 return 1;
549
550 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
551 if (!strcmp(name, s[i].name))
552 return s[i].map.base_addr;
553 return 0;
554}
555
556/*
557 * Saves at boot time configured settings for any netdevice.
558 */
559int __init netdev_boot_setup(char *str)
560{
561 int ints[5];
562 struct ifmap map;
563
564 str = get_options(str, ARRAY_SIZE(ints), ints);
565 if (!str || !*str)
566 return 0;
567
568 /* Save settings */
569 memset(&map, 0, sizeof(map));
570 if (ints[0] > 0)
571 map.irq = ints[1];
572 if (ints[0] > 1)
573 map.base_addr = ints[2];
574 if (ints[0] > 2)
575 map.mem_start = ints[3];
576 if (ints[0] > 3)
577 map.mem_end = ints[4];
578
579 /* Add new entry to the list */
580 return netdev_boot_setup_add(str, &map);
581}
582
583__setup("netdev=", netdev_boot_setup);
584
585/*******************************************************************************
586
587 Device Interface Subroutines
588
589*******************************************************************************/
590
591/**
592 * __dev_get_by_name - find a device by its name
593 * @net: the applicable net namespace
594 * @name: name to find
595 *
596 * Find an interface by name. Must be called under RTNL semaphore
597 * or @dev_base_lock. If the name is found a pointer to the device
598 * is returned. If the name is not found then %NULL is returned. The
599 * reference counters are not incremented so the caller must be
600 * careful with locks.
601 */
602
603struct net_device *__dev_get_by_name(struct net *net, const char *name)
604{
605 struct hlist_node *p;
606 struct net_device *dev;
607 struct hlist_head *head = dev_name_hash(net, name);
608
609 hlist_for_each_entry(dev, p, head, name_hlist)
610 if (!strncmp(dev->name, name, IFNAMSIZ))
611 return dev;
612
613 return NULL;
614}
615EXPORT_SYMBOL(__dev_get_by_name);
616
617/**
618 * dev_get_by_name_rcu - find a device by its name
619 * @net: the applicable net namespace
620 * @name: name to find
621 *
622 * Find an interface by name.
623 * If the name is found a pointer to the device is returned.
624 * If the name is not found then %NULL is returned.
625 * The reference counters are not incremented so the caller must be
626 * careful with locks. The caller must hold RCU lock.
627 */
628
629struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
630{
631 struct hlist_node *p;
632 struct net_device *dev;
633 struct hlist_head *head = dev_name_hash(net, name);
634
635 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
636 if (!strncmp(dev->name, name, IFNAMSIZ))
637 return dev;
638
639 return NULL;
640}
641EXPORT_SYMBOL(dev_get_by_name_rcu);
642
643/**
644 * dev_get_by_name - find a device by its name
645 * @net: the applicable net namespace
646 * @name: name to find
647 *
648 * Find an interface by name. This can be called from any
649 * context and does its own locking. The returned handle has
650 * the usage count incremented and the caller must use dev_put() to
651 * release it when it is no longer needed. %NULL is returned if no
652 * matching device is found.
653 */
654
655struct net_device *dev_get_by_name(struct net *net, const char *name)
656{
657 struct net_device *dev;
658
659 rcu_read_lock();
660 dev = dev_get_by_name_rcu(net, name);
661 if (dev)
662 dev_hold(dev);
663 rcu_read_unlock();
664 return dev;
665}
666EXPORT_SYMBOL(dev_get_by_name);
667
668/**
669 * __dev_get_by_index - find a device by its ifindex
670 * @net: the applicable net namespace
671 * @ifindex: index of device
672 *
673 * Search for an interface by index. Returns %NULL if the device
674 * is not found or a pointer to the device. The device has not
675 * had its reference counter increased so the caller must be careful
676 * about locking. The caller must hold either the RTNL semaphore
677 * or @dev_base_lock.
678 */
679
680struct net_device *__dev_get_by_index(struct net *net, int ifindex)
681{
682 struct hlist_node *p;
683 struct net_device *dev;
684 struct hlist_head *head = dev_index_hash(net, ifindex);
685
686 hlist_for_each_entry(dev, p, head, index_hlist)
687 if (dev->ifindex == ifindex)
688 return dev;
689
690 return NULL;
691}
692EXPORT_SYMBOL(__dev_get_by_index);
693
694/**
695 * dev_get_by_index_rcu - find a device by its ifindex
696 * @net: the applicable net namespace
697 * @ifindex: index of device
698 *
699 * Search for an interface by index. Returns %NULL if the device
700 * is not found or a pointer to the device. The device has not
701 * had its reference counter increased so the caller must be careful
702 * about locking. The caller must hold RCU lock.
703 */
704
705struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
706{
707 struct hlist_node *p;
708 struct net_device *dev;
709 struct hlist_head *head = dev_index_hash(net, ifindex);
710
711 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
712 if (dev->ifindex == ifindex)
713 return dev;
714
715 return NULL;
716}
717EXPORT_SYMBOL(dev_get_by_index_rcu);
718
719
720/**
721 * dev_get_by_index - find a device by its ifindex
722 * @net: the applicable net namespace
723 * @ifindex: index of device
724 *
725 * Search for an interface by index. Returns NULL if the device
726 * is not found or a pointer to the device. The device returned has
727 * had a reference added and the pointer is safe until the user calls
728 * dev_put to indicate they have finished with it.
729 */
730
731struct net_device *dev_get_by_index(struct net *net, int ifindex)
732{
733 struct net_device *dev;
734
735 rcu_read_lock();
736 dev = dev_get_by_index_rcu(net, ifindex);
737 if (dev)
738 dev_hold(dev);
739 rcu_read_unlock();
740 return dev;
741}
742EXPORT_SYMBOL(dev_get_by_index);
743
744/**
745 * dev_getbyhwaddr - find a device by its hardware address
746 * @net: the applicable net namespace
747 * @type: media type of device
748 * @ha: hardware address
749 *
750 * Search for an interface by MAC address. Returns NULL if the device
751 * is not found or a pointer to the device. The caller must hold the
752 * rtnl semaphore. The returned device has not had its ref count increased
753 * and the caller must therefore be careful about locking
754 *
755 * BUGS:
756 * If the API was consistent this would be __dev_get_by_hwaddr
757 */
758
759struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
760{
761 struct net_device *dev;
762
763 ASSERT_RTNL();
764
765 for_each_netdev(net, dev)
766 if (dev->type == type &&
767 !memcmp(dev->dev_addr, ha, dev->addr_len))
768 return dev;
769
770 return NULL;
771}
772EXPORT_SYMBOL(dev_getbyhwaddr);
773
774struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775{
776 struct net_device *dev;
777
778 ASSERT_RTNL();
779 for_each_netdev(net, dev)
780 if (dev->type == type)
781 return dev;
782
783 return NULL;
784}
785EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786
787struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788{
789 struct net_device *dev, *ret = NULL;
790
791 rcu_read_lock();
792 for_each_netdev_rcu(net, dev)
793 if (dev->type == type) {
794 dev_hold(dev);
795 ret = dev;
796 break;
797 }
798 rcu_read_unlock();
799 return ret;
800}
801EXPORT_SYMBOL(dev_getfirstbyhwtype);
802
803/**
804 * dev_get_by_flags_rcu - find any device with given flags
805 * @net: the applicable net namespace
806 * @if_flags: IFF_* values
807 * @mask: bitmask of bits in if_flags to check
808 *
809 * Search for any interface with the given flags. Returns NULL if a device
810 * is not found or a pointer to the device. Must be called inside
811 * rcu_read_lock(), and result refcount is unchanged.
812 */
813
814struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 unsigned short mask)
816{
817 struct net_device *dev, *ret;
818
819 ret = NULL;
820 for_each_netdev_rcu(net, dev) {
821 if (((dev->flags ^ if_flags) & mask) == 0) {
822 ret = dev;
823 break;
824 }
825 }
826 return ret;
827}
828EXPORT_SYMBOL(dev_get_by_flags_rcu);
829
830/**
831 * dev_valid_name - check if name is okay for network device
832 * @name: name string
833 *
834 * Network device names need to be valid file names to
835 * to allow sysfs to work. We also disallow any kind of
836 * whitespace.
837 */
838int dev_valid_name(const char *name)
839{
840 if (*name == '\0')
841 return 0;
842 if (strlen(name) >= IFNAMSIZ)
843 return 0;
844 if (!strcmp(name, ".") || !strcmp(name, ".."))
845 return 0;
846
847 while (*name) {
848 if (*name == '/' || isspace(*name))
849 return 0;
850 name++;
851 }
852 return 1;
853}
854EXPORT_SYMBOL(dev_valid_name);
855
856/**
857 * __dev_alloc_name - allocate a name for a device
858 * @net: network namespace to allocate the device name in
859 * @name: name format string
860 * @buf: scratch buffer and result name string
861 *
862 * Passed a format string - eg "lt%d" it will try and find a suitable
863 * id. It scans list of devices to build up a free map, then chooses
864 * the first empty slot. The caller must hold the dev_base or rtnl lock
865 * while allocating the name and adding the device in order to avoid
866 * duplicates.
867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868 * Returns the number of the unit assigned or a negative errno code.
869 */
870
871static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872{
873 int i = 0;
874 const char *p;
875 const int max_netdevices = 8*PAGE_SIZE;
876 unsigned long *inuse;
877 struct net_device *d;
878
879 p = strnchr(name, IFNAMSIZ-1, '%');
880 if (p) {
881 /*
882 * Verify the string as this thing may have come from
883 * the user. There must be either one "%d" and no other "%"
884 * characters.
885 */
886 if (p[1] != 'd' || strchr(p + 2, '%'))
887 return -EINVAL;
888
889 /* Use one page as a bit array of possible slots */
890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 if (!inuse)
892 return -ENOMEM;
893
894 for_each_netdev(net, d) {
895 if (!sscanf(d->name, name, &i))
896 continue;
897 if (i < 0 || i >= max_netdevices)
898 continue;
899
900 /* avoid cases where sscanf is not exact inverse of printf */
901 snprintf(buf, IFNAMSIZ, name, i);
902 if (!strncmp(buf, d->name, IFNAMSIZ))
903 set_bit(i, inuse);
904 }
905
906 i = find_first_zero_bit(inuse, max_netdevices);
907 free_page((unsigned long) inuse);
908 }
909
910 if (buf != name)
911 snprintf(buf, IFNAMSIZ, name, i);
912 if (!__dev_get_by_name(net, buf))
913 return i;
914
915 /* It is possible to run out of possible slots
916 * when the name is long and there isn't enough space left
917 * for the digits, or if all bits are used.
918 */
919 return -ENFILE;
920}
921
922/**
923 * dev_alloc_name - allocate a name for a device
924 * @dev: device
925 * @name: name format string
926 *
927 * Passed a format string - eg "lt%d" it will try and find a suitable
928 * id. It scans list of devices to build up a free map, then chooses
929 * the first empty slot. The caller must hold the dev_base or rtnl lock
930 * while allocating the name and adding the device in order to avoid
931 * duplicates.
932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933 * Returns the number of the unit assigned or a negative errno code.
934 */
935
936int dev_alloc_name(struct net_device *dev, const char *name)
937{
938 char buf[IFNAMSIZ];
939 struct net *net;
940 int ret;
941
942 BUG_ON(!dev_net(dev));
943 net = dev_net(dev);
944 ret = __dev_alloc_name(net, name, buf);
945 if (ret >= 0)
946 strlcpy(dev->name, buf, IFNAMSIZ);
947 return ret;
948}
949EXPORT_SYMBOL(dev_alloc_name);
950
951static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952{
953 struct net *net;
954
955 BUG_ON(!dev_net(dev));
956 net = dev_net(dev);
957
958 if (!dev_valid_name(name))
959 return -EINVAL;
960
961 if (fmt && strchr(name, '%'))
962 return dev_alloc_name(dev, name);
963 else if (__dev_get_by_name(net, name))
964 return -EEXIST;
965 else if (dev->name != name)
966 strlcpy(dev->name, name, IFNAMSIZ);
967
968 return 0;
969}
970
971/**
972 * dev_change_name - change name of a device
973 * @dev: device
974 * @newname: name (or format string) must be at least IFNAMSIZ
975 *
976 * Change name of a device, can pass format strings "eth%d".
977 * for wildcarding.
978 */
979int dev_change_name(struct net_device *dev, const char *newname)
980{
981 char oldname[IFNAMSIZ];
982 int err = 0;
983 int ret;
984 struct net *net;
985
986 ASSERT_RTNL();
987 BUG_ON(!dev_net(dev));
988
989 net = dev_net(dev);
990 if (dev->flags & IFF_UP)
991 return -EBUSY;
992
993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 return 0;
995
996 memcpy(oldname, dev->name, IFNAMSIZ);
997
998 err = dev_get_valid_name(dev, newname, 1);
999 if (err < 0)
1000 return err;
1001
1002rollback:
1003 ret = device_rename(&dev->dev, dev->name);
1004 if (ret) {
1005 memcpy(dev->name, oldname, IFNAMSIZ);
1006 return ret;
1007 }
1008
1009 write_lock_bh(&dev_base_lock);
1010 hlist_del(&dev->name_hlist);
1011 write_unlock_bh(&dev_base_lock);
1012
1013 synchronize_rcu();
1014
1015 write_lock_bh(&dev_base_lock);
1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 write_unlock_bh(&dev_base_lock);
1018
1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 ret = notifier_to_errno(ret);
1021
1022 if (ret) {
1023 /* err >= 0 after dev_alloc_name() or stores the first errno */
1024 if (err >= 0) {
1025 err = ret;
1026 memcpy(dev->name, oldname, IFNAMSIZ);
1027 goto rollback;
1028 } else {
1029 printk(KERN_ERR
1030 "%s: name change rollback failed: %d.\n",
1031 dev->name, ret);
1032 }
1033 }
1034
1035 return err;
1036}
1037
1038/**
1039 * dev_set_alias - change ifalias of a device
1040 * @dev: device
1041 * @alias: name up to IFALIASZ
1042 * @len: limit of bytes to copy from info
1043 *
1044 * Set ifalias for a device,
1045 */
1046int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047{
1048 ASSERT_RTNL();
1049
1050 if (len >= IFALIASZ)
1051 return -EINVAL;
1052
1053 if (!len) {
1054 if (dev->ifalias) {
1055 kfree(dev->ifalias);
1056 dev->ifalias = NULL;
1057 }
1058 return 0;
1059 }
1060
1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 if (!dev->ifalias)
1063 return -ENOMEM;
1064
1065 strlcpy(dev->ifalias, alias, len+1);
1066 return len;
1067}
1068
1069
1070/**
1071 * netdev_features_change - device changes features
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed features.
1075 */
1076void netdev_features_change(struct net_device *dev)
1077{
1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079}
1080EXPORT_SYMBOL(netdev_features_change);
1081
1082/**
1083 * netdev_state_change - device changes state
1084 * @dev: device to cause notification
1085 *
1086 * Called to indicate a device has changed state. This function calls
1087 * the notifier chains for netdev_chain and sends a NEWLINK message
1088 * to the routing socket.
1089 */
1090void netdev_state_change(struct net_device *dev)
1091{
1092 if (dev->flags & IFF_UP) {
1093 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 }
1096}
1097EXPORT_SYMBOL(netdev_state_change);
1098
1099int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100{
1101 return call_netdevice_notifiers(event, dev);
1102}
1103EXPORT_SYMBOL(netdev_bonding_change);
1104
1105/**
1106 * dev_load - load a network module
1107 * @net: the applicable net namespace
1108 * @name: name of interface
1109 *
1110 * If a network interface is not present and the process has suitable
1111 * privileges this function loads the module. If module loading is not
1112 * available in this kernel then it becomes a nop.
1113 */
1114
1115void dev_load(struct net *net, const char *name)
1116{
1117 struct net_device *dev;
1118
1119 rcu_read_lock();
1120 dev = dev_get_by_name_rcu(net, name);
1121 rcu_read_unlock();
1122
1123 if (!dev && capable(CAP_NET_ADMIN))
1124 request_module("%s", name);
1125}
1126EXPORT_SYMBOL(dev_load);
1127
1128static int __dev_open(struct net_device *dev)
1129{
1130 const struct net_device_ops *ops = dev->netdev_ops;
1131 int ret;
1132
1133 ASSERT_RTNL();
1134
1135 /*
1136 * Is it even present?
1137 */
1138 if (!netif_device_present(dev))
1139 return -ENODEV;
1140
1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1142 ret = notifier_to_errno(ret);
1143 if (ret)
1144 return ret;
1145
1146 /*
1147 * Call device private open method
1148 */
1149 set_bit(__LINK_STATE_START, &dev->state);
1150
1151 if (ops->ndo_validate_addr)
1152 ret = ops->ndo_validate_addr(dev);
1153
1154 if (!ret && ops->ndo_open)
1155 ret = ops->ndo_open(dev);
1156
1157 /*
1158 * If it went open OK then:
1159 */
1160
1161 if (ret)
1162 clear_bit(__LINK_STATE_START, &dev->state);
1163 else {
1164 /*
1165 * Set the flags.
1166 */
1167 dev->flags |= IFF_UP;
1168
1169 /*
1170 * Enable NET_DMA
1171 */
1172 net_dmaengine_get();
1173
1174 /*
1175 * Initialize multicasting status
1176 */
1177 dev_set_rx_mode(dev);
1178
1179 /*
1180 * Wakeup transmit queue engine
1181 */
1182 dev_activate(dev);
1183 }
1184
1185 return ret;
1186}
1187
1188/**
1189 * dev_open - prepare an interface for use.
1190 * @dev: device to open
1191 *
1192 * Takes a device from down to up state. The device's private open
1193 * function is invoked and then the multicast lists are loaded. Finally
1194 * the device is moved into the up state and a %NETDEV_UP message is
1195 * sent to the netdev notifier chain.
1196 *
1197 * Calling this function on an active interface is a nop. On a failure
1198 * a negative errno code is returned.
1199 */
1200int dev_open(struct net_device *dev)
1201{
1202 int ret;
1203
1204 /*
1205 * Is it already up?
1206 */
1207 if (dev->flags & IFF_UP)
1208 return 0;
1209
1210 /*
1211 * Open device
1212 */
1213 ret = __dev_open(dev);
1214 if (ret < 0)
1215 return ret;
1216
1217 /*
1218 * ... and announce new interface.
1219 */
1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1221 call_netdevice_notifiers(NETDEV_UP, dev);
1222
1223 return ret;
1224}
1225EXPORT_SYMBOL(dev_open);
1226
1227static int __dev_close(struct net_device *dev)
1228{
1229 const struct net_device_ops *ops = dev->netdev_ops;
1230
1231 ASSERT_RTNL();
1232 might_sleep();
1233
1234 /*
1235 * Tell people we are going down, so that they can
1236 * prepare to death, when device is still operating.
1237 */
1238 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1239
1240 clear_bit(__LINK_STATE_START, &dev->state);
1241
1242 /* Synchronize to scheduled poll. We cannot touch poll list,
1243 * it can be even on different cpu. So just clear netif_running().
1244 *
1245 * dev->stop() will invoke napi_disable() on all of it's
1246 * napi_struct instances on this device.
1247 */
1248 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1249
1250 dev_deactivate(dev);
1251
1252 /*
1253 * Call the device specific close. This cannot fail.
1254 * Only if device is UP
1255 *
1256 * We allow it to be called even after a DETACH hot-plug
1257 * event.
1258 */
1259 if (ops->ndo_stop)
1260 ops->ndo_stop(dev);
1261
1262 /*
1263 * Device is now down.
1264 */
1265
1266 dev->flags &= ~IFF_UP;
1267
1268 /*
1269 * Shutdown NET_DMA
1270 */
1271 net_dmaengine_put();
1272
1273 return 0;
1274}
1275
1276/**
1277 * dev_close - shutdown an interface.
1278 * @dev: device to shutdown
1279 *
1280 * This function moves an active device into down state. A
1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283 * chain.
1284 */
1285int dev_close(struct net_device *dev)
1286{
1287 if (!(dev->flags & IFF_UP))
1288 return 0;
1289
1290 __dev_close(dev);
1291
1292 /*
1293 * Tell people we are down
1294 */
1295 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1296 call_netdevice_notifiers(NETDEV_DOWN, dev);
1297
1298 return 0;
1299}
1300EXPORT_SYMBOL(dev_close);
1301
1302
1303/**
1304 * dev_disable_lro - disable Large Receive Offload on a device
1305 * @dev: device
1306 *
1307 * Disable Large Receive Offload (LRO) on a net device. Must be
1308 * called under RTNL. This is needed if received packets may be
1309 * forwarded to another interface.
1310 */
1311void dev_disable_lro(struct net_device *dev)
1312{
1313 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1314 dev->ethtool_ops->set_flags) {
1315 u32 flags = dev->ethtool_ops->get_flags(dev);
1316 if (flags & ETH_FLAG_LRO) {
1317 flags &= ~ETH_FLAG_LRO;
1318 dev->ethtool_ops->set_flags(dev, flags);
1319 }
1320 }
1321 WARN_ON(dev->features & NETIF_F_LRO);
1322}
1323EXPORT_SYMBOL(dev_disable_lro);
1324
1325
1326static int dev_boot_phase = 1;
1327
1328/*
1329 * Device change register/unregister. These are not inline or static
1330 * as we export them to the world.
1331 */
1332
1333/**
1334 * register_netdevice_notifier - register a network notifier block
1335 * @nb: notifier
1336 *
1337 * Register a notifier to be called when network device events occur.
1338 * The notifier passed is linked into the kernel structures and must
1339 * not be reused until it has been unregistered. A negative errno code
1340 * is returned on a failure.
1341 *
1342 * When registered all registration and up events are replayed
1343 * to the new notifier to allow device to have a race free
1344 * view of the network device list.
1345 */
1346
1347int register_netdevice_notifier(struct notifier_block *nb)
1348{
1349 struct net_device *dev;
1350 struct net_device *last;
1351 struct net *net;
1352 int err;
1353
1354 rtnl_lock();
1355 err = raw_notifier_chain_register(&netdev_chain, nb);
1356 if (err)
1357 goto unlock;
1358 if (dev_boot_phase)
1359 goto unlock;
1360 for_each_net(net) {
1361 for_each_netdev(net, dev) {
1362 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1363 err = notifier_to_errno(err);
1364 if (err)
1365 goto rollback;
1366
1367 if (!(dev->flags & IFF_UP))
1368 continue;
1369
1370 nb->notifier_call(nb, NETDEV_UP, dev);
1371 }
1372 }
1373
1374unlock:
1375 rtnl_unlock();
1376 return err;
1377
1378rollback:
1379 last = dev;
1380 for_each_net(net) {
1381 for_each_netdev(net, dev) {
1382 if (dev == last)
1383 break;
1384
1385 if (dev->flags & IFF_UP) {
1386 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1387 nb->notifier_call(nb, NETDEV_DOWN, dev);
1388 }
1389 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1390 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1391 }
1392 }
1393
1394 raw_notifier_chain_unregister(&netdev_chain, nb);
1395 goto unlock;
1396}
1397EXPORT_SYMBOL(register_netdevice_notifier);
1398
1399/**
1400 * unregister_netdevice_notifier - unregister a network notifier block
1401 * @nb: notifier
1402 *
1403 * Unregister a notifier previously registered by
1404 * register_netdevice_notifier(). The notifier is unlinked into the
1405 * kernel structures and may then be reused. A negative errno code
1406 * is returned on a failure.
1407 */
1408
1409int unregister_netdevice_notifier(struct notifier_block *nb)
1410{
1411 int err;
1412
1413 rtnl_lock();
1414 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1415 rtnl_unlock();
1416 return err;
1417}
1418EXPORT_SYMBOL(unregister_netdevice_notifier);
1419
1420/**
1421 * call_netdevice_notifiers - call all network notifier blocks
1422 * @val: value passed unmodified to notifier function
1423 * @dev: net_device pointer passed unmodified to notifier function
1424 *
1425 * Call all network notifier blocks. Parameters and return value
1426 * are as for raw_notifier_call_chain().
1427 */
1428
1429int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1430{
1431 ASSERT_RTNL();
1432 return raw_notifier_call_chain(&netdev_chain, val, dev);
1433}
1434
1435/* When > 0 there are consumers of rx skb time stamps */
1436static atomic_t netstamp_needed = ATOMIC_INIT(0);
1437
1438void net_enable_timestamp(void)
1439{
1440 atomic_inc(&netstamp_needed);
1441}
1442EXPORT_SYMBOL(net_enable_timestamp);
1443
1444void net_disable_timestamp(void)
1445{
1446 atomic_dec(&netstamp_needed);
1447}
1448EXPORT_SYMBOL(net_disable_timestamp);
1449
1450static inline void net_timestamp_set(struct sk_buff *skb)
1451{
1452 if (atomic_read(&netstamp_needed))
1453 __net_timestamp(skb);
1454 else
1455 skb->tstamp.tv64 = 0;
1456}
1457
1458static inline void net_timestamp_check(struct sk_buff *skb)
1459{
1460 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1461 __net_timestamp(skb);
1462}
1463
1464/**
1465 * dev_forward_skb - loopback an skb to another netif
1466 *
1467 * @dev: destination network device
1468 * @skb: buffer to forward
1469 *
1470 * return values:
1471 * NET_RX_SUCCESS (no congestion)
1472 * NET_RX_DROP (packet was dropped, but freed)
1473 *
1474 * dev_forward_skb can be used for injecting an skb from the
1475 * start_xmit function of one device into the receive queue
1476 * of another device.
1477 *
1478 * The receiving device may be in another namespace, so
1479 * we have to clear all information in the skb that could
1480 * impact namespace isolation.
1481 */
1482int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1483{
1484 skb_orphan(skb);
1485 nf_reset(skb);
1486
1487 if (!(dev->flags & IFF_UP) ||
1488 (skb->len > (dev->mtu + dev->hard_header_len))) {
1489 kfree_skb(skb);
1490 return NET_RX_DROP;
1491 }
1492 skb_set_dev(skb, dev);
1493 skb->tstamp.tv64 = 0;
1494 skb->pkt_type = PACKET_HOST;
1495 skb->protocol = eth_type_trans(skb, dev);
1496 return netif_rx(skb);
1497}
1498EXPORT_SYMBOL_GPL(dev_forward_skb);
1499
1500/*
1501 * Support routine. Sends outgoing frames to any network
1502 * taps currently in use.
1503 */
1504
1505static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1506{
1507 struct packet_type *ptype;
1508
1509#ifdef CONFIG_NET_CLS_ACT
1510 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1511 net_timestamp_set(skb);
1512#else
1513 net_timestamp_set(skb);
1514#endif
1515
1516 rcu_read_lock();
1517 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1518 /* Never send packets back to the socket
1519 * they originated from - MvS (miquels@drinkel.ow.org)
1520 */
1521 if ((ptype->dev == dev || !ptype->dev) &&
1522 (ptype->af_packet_priv == NULL ||
1523 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1524 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1525 if (!skb2)
1526 break;
1527
1528 /* skb->nh should be correctly
1529 set by sender, so that the second statement is
1530 just protection against buggy protocols.
1531 */
1532 skb_reset_mac_header(skb2);
1533
1534 if (skb_network_header(skb2) < skb2->data ||
1535 skb2->network_header > skb2->tail) {
1536 if (net_ratelimit())
1537 printk(KERN_CRIT "protocol %04x is "
1538 "buggy, dev %s\n",
1539 ntohs(skb2->protocol),
1540 dev->name);
1541 skb_reset_network_header(skb2);
1542 }
1543
1544 skb2->transport_header = skb2->network_header;
1545 skb2->pkt_type = PACKET_OUTGOING;
1546 ptype->func(skb2, skb->dev, ptype, skb->dev);
1547 }
1548 }
1549 rcu_read_unlock();
1550}
1551
1552/*
1553 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1554 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1555 */
1556void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1557{
1558 unsigned int real_num = dev->real_num_tx_queues;
1559
1560 if (unlikely(txq > dev->num_tx_queues))
1561 ;
1562 else if (txq > real_num)
1563 dev->real_num_tx_queues = txq;
1564 else if (txq < real_num) {
1565 dev->real_num_tx_queues = txq;
1566 qdisc_reset_all_tx_gt(dev, txq);
1567 }
1568}
1569EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1570
1571static inline void __netif_reschedule(struct Qdisc *q)
1572{
1573 struct softnet_data *sd;
1574 unsigned long flags;
1575
1576 local_irq_save(flags);
1577 sd = &__get_cpu_var(softnet_data);
1578 q->next_sched = NULL;
1579 *sd->output_queue_tailp = q;
1580 sd->output_queue_tailp = &q->next_sched;
1581 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1582 local_irq_restore(flags);
1583}
1584
1585void __netif_schedule(struct Qdisc *q)
1586{
1587 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1588 __netif_reschedule(q);
1589}
1590EXPORT_SYMBOL(__netif_schedule);
1591
1592void dev_kfree_skb_irq(struct sk_buff *skb)
1593{
1594 if (atomic_dec_and_test(&skb->users)) {
1595 struct softnet_data *sd;
1596 unsigned long flags;
1597
1598 local_irq_save(flags);
1599 sd = &__get_cpu_var(softnet_data);
1600 skb->next = sd->completion_queue;
1601 sd->completion_queue = skb;
1602 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1603 local_irq_restore(flags);
1604 }
1605}
1606EXPORT_SYMBOL(dev_kfree_skb_irq);
1607
1608void dev_kfree_skb_any(struct sk_buff *skb)
1609{
1610 if (in_irq() || irqs_disabled())
1611 dev_kfree_skb_irq(skb);
1612 else
1613 dev_kfree_skb(skb);
1614}
1615EXPORT_SYMBOL(dev_kfree_skb_any);
1616
1617
1618/**
1619 * netif_device_detach - mark device as removed
1620 * @dev: network device
1621 *
1622 * Mark device as removed from system and therefore no longer available.
1623 */
1624void netif_device_detach(struct net_device *dev)
1625{
1626 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1627 netif_running(dev)) {
1628 netif_tx_stop_all_queues(dev);
1629 }
1630}
1631EXPORT_SYMBOL(netif_device_detach);
1632
1633/**
1634 * netif_device_attach - mark device as attached
1635 * @dev: network device
1636 *
1637 * Mark device as attached from system and restart if needed.
1638 */
1639void netif_device_attach(struct net_device *dev)
1640{
1641 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1642 netif_running(dev)) {
1643 netif_tx_wake_all_queues(dev);
1644 __netdev_watchdog_up(dev);
1645 }
1646}
1647EXPORT_SYMBOL(netif_device_attach);
1648
1649static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1650{
1651 return ((features & NETIF_F_GEN_CSUM) ||
1652 ((features & NETIF_F_IP_CSUM) &&
1653 protocol == htons(ETH_P_IP)) ||
1654 ((features & NETIF_F_IPV6_CSUM) &&
1655 protocol == htons(ETH_P_IPV6)) ||
1656 ((features & NETIF_F_FCOE_CRC) &&
1657 protocol == htons(ETH_P_FCOE)));
1658}
1659
1660static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1661{
1662 if (can_checksum_protocol(dev->features, skb->protocol))
1663 return true;
1664
1665 if (skb->protocol == htons(ETH_P_8021Q)) {
1666 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1667 if (can_checksum_protocol(dev->features & dev->vlan_features,
1668 veh->h_vlan_encapsulated_proto))
1669 return true;
1670 }
1671
1672 return false;
1673}
1674
1675/**
1676 * skb_dev_set -- assign a new device to a buffer
1677 * @skb: buffer for the new device
1678 * @dev: network device
1679 *
1680 * If an skb is owned by a device already, we have to reset
1681 * all data private to the namespace a device belongs to
1682 * before assigning it a new device.
1683 */
1684#ifdef CONFIG_NET_NS
1685void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1686{
1687 skb_dst_drop(skb);
1688 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1689 secpath_reset(skb);
1690 nf_reset(skb);
1691 skb_init_secmark(skb);
1692 skb->mark = 0;
1693 skb->priority = 0;
1694 skb->nf_trace = 0;
1695 skb->ipvs_property = 0;
1696#ifdef CONFIG_NET_SCHED
1697 skb->tc_index = 0;
1698#endif
1699 }
1700 skb->dev = dev;
1701}
1702EXPORT_SYMBOL(skb_set_dev);
1703#endif /* CONFIG_NET_NS */
1704
1705/*
1706 * Invalidate hardware checksum when packet is to be mangled, and
1707 * complete checksum manually on outgoing path.
1708 */
1709int skb_checksum_help(struct sk_buff *skb)
1710{
1711 __wsum csum;
1712 int ret = 0, offset;
1713
1714 if (skb->ip_summed == CHECKSUM_COMPLETE)
1715 goto out_set_summed;
1716
1717 if (unlikely(skb_shinfo(skb)->gso_size)) {
1718 /* Let GSO fix up the checksum. */
1719 goto out_set_summed;
1720 }
1721
1722 offset = skb->csum_start - skb_headroom(skb);
1723 BUG_ON(offset >= skb_headlen(skb));
1724 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1725
1726 offset += skb->csum_offset;
1727 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1728
1729 if (skb_cloned(skb) &&
1730 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1731 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1732 if (ret)
1733 goto out;
1734 }
1735
1736 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1737out_set_summed:
1738 skb->ip_summed = CHECKSUM_NONE;
1739out:
1740 return ret;
1741}
1742EXPORT_SYMBOL(skb_checksum_help);
1743
1744/**
1745 * skb_gso_segment - Perform segmentation on skb.
1746 * @skb: buffer to segment
1747 * @features: features for the output path (see dev->features)
1748 *
1749 * This function segments the given skb and returns a list of segments.
1750 *
1751 * It may return NULL if the skb requires no segmentation. This is
1752 * only possible when GSO is used for verifying header integrity.
1753 */
1754struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1755{
1756 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1757 struct packet_type *ptype;
1758 __be16 type = skb->protocol;
1759 int err;
1760
1761 skb_reset_mac_header(skb);
1762 skb->mac_len = skb->network_header - skb->mac_header;
1763 __skb_pull(skb, skb->mac_len);
1764
1765 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1766 struct net_device *dev = skb->dev;
1767 struct ethtool_drvinfo info = {};
1768
1769 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1770 dev->ethtool_ops->get_drvinfo(dev, &info);
1771
1772 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1773 "ip_summed=%d",
1774 info.driver, dev ? dev->features : 0L,
1775 skb->sk ? skb->sk->sk_route_caps : 0L,
1776 skb->len, skb->data_len, skb->ip_summed);
1777
1778 if (skb_header_cloned(skb) &&
1779 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1780 return ERR_PTR(err);
1781 }
1782
1783 rcu_read_lock();
1784 list_for_each_entry_rcu(ptype,
1785 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1786 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1787 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1788 err = ptype->gso_send_check(skb);
1789 segs = ERR_PTR(err);
1790 if (err || skb_gso_ok(skb, features))
1791 break;
1792 __skb_push(skb, (skb->data -
1793 skb_network_header(skb)));
1794 }
1795 segs = ptype->gso_segment(skb, features);
1796 break;
1797 }
1798 }
1799 rcu_read_unlock();
1800
1801 __skb_push(skb, skb->data - skb_mac_header(skb));
1802
1803 return segs;
1804}
1805EXPORT_SYMBOL(skb_gso_segment);
1806
1807/* Take action when hardware reception checksum errors are detected. */
1808#ifdef CONFIG_BUG
1809void netdev_rx_csum_fault(struct net_device *dev)
1810{
1811 if (net_ratelimit()) {
1812 printk(KERN_ERR "%s: hw csum failure.\n",
1813 dev ? dev->name : "<unknown>");
1814 dump_stack();
1815 }
1816}
1817EXPORT_SYMBOL(netdev_rx_csum_fault);
1818#endif
1819
1820/* Actually, we should eliminate this check as soon as we know, that:
1821 * 1. IOMMU is present and allows to map all the memory.
1822 * 2. No high memory really exists on this machine.
1823 */
1824
1825static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1826{
1827#ifdef CONFIG_HIGHMEM
1828 int i;
1829 if (!(dev->features & NETIF_F_HIGHDMA)) {
1830 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1831 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1832 return 1;
1833 }
1834
1835 if (PCI_DMA_BUS_IS_PHYS) {
1836 struct device *pdev = dev->dev.parent;
1837
1838 if (!pdev)
1839 return 0;
1840 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1841 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1842 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1843 return 1;
1844 }
1845 }
1846#endif
1847 return 0;
1848}
1849
1850struct dev_gso_cb {
1851 void (*destructor)(struct sk_buff *skb);
1852};
1853
1854#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1855
1856static void dev_gso_skb_destructor(struct sk_buff *skb)
1857{
1858 struct dev_gso_cb *cb;
1859
1860 do {
1861 struct sk_buff *nskb = skb->next;
1862
1863 skb->next = nskb->next;
1864 nskb->next = NULL;
1865 kfree_skb(nskb);
1866 } while (skb->next);
1867
1868 cb = DEV_GSO_CB(skb);
1869 if (cb->destructor)
1870 cb->destructor(skb);
1871}
1872
1873/**
1874 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1875 * @skb: buffer to segment
1876 *
1877 * This function segments the given skb and stores the list of segments
1878 * in skb->next.
1879 */
1880static int dev_gso_segment(struct sk_buff *skb)
1881{
1882 struct net_device *dev = skb->dev;
1883 struct sk_buff *segs;
1884 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1885 NETIF_F_SG : 0);
1886
1887 segs = skb_gso_segment(skb, features);
1888
1889 /* Verifying header integrity only. */
1890 if (!segs)
1891 return 0;
1892
1893 if (IS_ERR(segs))
1894 return PTR_ERR(segs);
1895
1896 skb->next = segs;
1897 DEV_GSO_CB(skb)->destructor = skb->destructor;
1898 skb->destructor = dev_gso_skb_destructor;
1899
1900 return 0;
1901}
1902
1903/*
1904 * Try to orphan skb early, right before transmission by the device.
1905 * We cannot orphan skb if tx timestamp is requested, since
1906 * drivers need to call skb_tstamp_tx() to send the timestamp.
1907 */
1908static inline void skb_orphan_try(struct sk_buff *skb)
1909{
1910 struct sock *sk = skb->sk;
1911
1912 if (sk && !skb_tx(skb)->flags) {
1913 /* skb_tx_hash() wont be able to get sk.
1914 * We copy sk_hash into skb->rxhash
1915 */
1916 if (!skb->rxhash)
1917 skb->rxhash = sk->sk_hash;
1918 skb_orphan(skb);
1919 }
1920}
1921
1922/*
1923 * Returns true if either:
1924 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
1925 * 2. skb is fragmented and the device does not support SG, or if
1926 * at least one of fragments is in highmem and device does not
1927 * support DMA from it.
1928 */
1929static inline int skb_needs_linearize(struct sk_buff *skb,
1930 struct net_device *dev)
1931{
1932 return skb_is_nonlinear(skb) &&
1933 ((skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1934 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1935 illegal_highdma(dev, skb))));
1936}
1937
1938int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1939 struct netdev_queue *txq)
1940{
1941 const struct net_device_ops *ops = dev->netdev_ops;
1942 int rc = NETDEV_TX_OK;
1943
1944 if (likely(!skb->next)) {
1945 if (!list_empty(&ptype_all))
1946 dev_queue_xmit_nit(skb, dev);
1947
1948 /*
1949 * If device doesnt need skb->dst, release it right now while
1950 * its hot in this cpu cache
1951 */
1952 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1953 skb_dst_drop(skb);
1954
1955 skb_orphan_try(skb);
1956
1957 if (netif_needs_gso(dev, skb)) {
1958 if (unlikely(dev_gso_segment(skb)))
1959 goto out_kfree_skb;
1960 if (skb->next)
1961 goto gso;
1962 } else {
1963 if (skb_needs_linearize(skb, dev) &&
1964 __skb_linearize(skb))
1965 goto out_kfree_skb;
1966
1967 /* If packet is not checksummed and device does not
1968 * support checksumming for this protocol, complete
1969 * checksumming here.
1970 */
1971 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1972 skb_set_transport_header(skb, skb->csum_start -
1973 skb_headroom(skb));
1974 if (!dev_can_checksum(dev, skb) &&
1975 skb_checksum_help(skb))
1976 goto out_kfree_skb;
1977 }
1978 }
1979
1980 rc = ops->ndo_start_xmit(skb, dev);
1981 if (rc == NETDEV_TX_OK)
1982 txq_trans_update(txq);
1983 return rc;
1984 }
1985
1986gso:
1987 do {
1988 struct sk_buff *nskb = skb->next;
1989
1990 skb->next = nskb->next;
1991 nskb->next = NULL;
1992
1993 /*
1994 * If device doesnt need nskb->dst, release it right now while
1995 * its hot in this cpu cache
1996 */
1997 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1998 skb_dst_drop(nskb);
1999
2000 rc = ops->ndo_start_xmit(nskb, dev);
2001 if (unlikely(rc != NETDEV_TX_OK)) {
2002 if (rc & ~NETDEV_TX_MASK)
2003 goto out_kfree_gso_skb;
2004 nskb->next = skb->next;
2005 skb->next = nskb;
2006 return rc;
2007 }
2008 txq_trans_update(txq);
2009 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2010 return NETDEV_TX_BUSY;
2011 } while (skb->next);
2012
2013out_kfree_gso_skb:
2014 if (likely(skb->next == NULL))
2015 skb->destructor = DEV_GSO_CB(skb)->destructor;
2016out_kfree_skb:
2017 kfree_skb(skb);
2018 return rc;
2019}
2020
2021static u32 hashrnd __read_mostly;
2022
2023u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2024{
2025 u32 hash;
2026
2027 if (skb_rx_queue_recorded(skb)) {
2028 hash = skb_get_rx_queue(skb);
2029 while (unlikely(hash >= dev->real_num_tx_queues))
2030 hash -= dev->real_num_tx_queues;
2031 return hash;
2032 }
2033
2034 if (skb->sk && skb->sk->sk_hash)
2035 hash = skb->sk->sk_hash;
2036 else
2037 hash = (__force u16) skb->protocol ^ skb->rxhash;
2038 hash = jhash_1word(hash, hashrnd);
2039
2040 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2041}
2042EXPORT_SYMBOL(skb_tx_hash);
2043
2044static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2045{
2046 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2047 if (net_ratelimit()) {
2048 pr_warning("%s selects TX queue %d, but "
2049 "real number of TX queues is %d\n",
2050 dev->name, queue_index, dev->real_num_tx_queues);
2051 }
2052 return 0;
2053 }
2054 return queue_index;
2055}
2056
2057static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2058 struct sk_buff *skb)
2059{
2060 int queue_index;
2061 struct sock *sk = skb->sk;
2062
2063 queue_index = sk_tx_queue_get(sk);
2064 if (queue_index < 0) {
2065 const struct net_device_ops *ops = dev->netdev_ops;
2066
2067 if (ops->ndo_select_queue) {
2068 queue_index = ops->ndo_select_queue(dev, skb);
2069 queue_index = dev_cap_txqueue(dev, queue_index);
2070 } else {
2071 queue_index = 0;
2072 if (dev->real_num_tx_queues > 1)
2073 queue_index = skb_tx_hash(dev, skb);
2074
2075 if (sk) {
2076 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2077
2078 if (dst && skb_dst(skb) == dst)
2079 sk_tx_queue_set(sk, queue_index);
2080 }
2081 }
2082 }
2083
2084 skb_set_queue_mapping(skb, queue_index);
2085 return netdev_get_tx_queue(dev, queue_index);
2086}
2087
2088static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2089 struct net_device *dev,
2090 struct netdev_queue *txq)
2091{
2092 spinlock_t *root_lock = qdisc_lock(q);
2093 bool contended = qdisc_is_running(q);
2094 int rc;
2095
2096 /*
2097 * Heuristic to force contended enqueues to serialize on a
2098 * separate lock before trying to get qdisc main lock.
2099 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2100 * and dequeue packets faster.
2101 */
2102 if (unlikely(contended))
2103 spin_lock(&q->busylock);
2104
2105 spin_lock(root_lock);
2106 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2107 kfree_skb(skb);
2108 rc = NET_XMIT_DROP;
2109 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2110 qdisc_run_begin(q)) {
2111 /*
2112 * This is a work-conserving queue; there are no old skbs
2113 * waiting to be sent out; and the qdisc is not running -
2114 * xmit the skb directly.
2115 */
2116 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2117 skb_dst_force(skb);
2118 __qdisc_update_bstats(q, skb->len);
2119 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2120 if (unlikely(contended)) {
2121 spin_unlock(&q->busylock);
2122 contended = false;
2123 }
2124 __qdisc_run(q);
2125 } else
2126 qdisc_run_end(q);
2127
2128 rc = NET_XMIT_SUCCESS;
2129 } else {
2130 skb_dst_force(skb);
2131 rc = qdisc_enqueue_root(skb, q);
2132 if (qdisc_run_begin(q)) {
2133 if (unlikely(contended)) {
2134 spin_unlock(&q->busylock);
2135 contended = false;
2136 }
2137 __qdisc_run(q);
2138 }
2139 }
2140 spin_unlock(root_lock);
2141 if (unlikely(contended))
2142 spin_unlock(&q->busylock);
2143 return rc;
2144}
2145
2146/**
2147 * dev_queue_xmit - transmit a buffer
2148 * @skb: buffer to transmit
2149 *
2150 * Queue a buffer for transmission to a network device. The caller must
2151 * have set the device and priority and built the buffer before calling
2152 * this function. The function can be called from an interrupt.
2153 *
2154 * A negative errno code is returned on a failure. A success does not
2155 * guarantee the frame will be transmitted as it may be dropped due
2156 * to congestion or traffic shaping.
2157 *
2158 * -----------------------------------------------------------------------------------
2159 * I notice this method can also return errors from the queue disciplines,
2160 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2161 * be positive.
2162 *
2163 * Regardless of the return value, the skb is consumed, so it is currently
2164 * difficult to retry a send to this method. (You can bump the ref count
2165 * before sending to hold a reference for retry if you are careful.)
2166 *
2167 * When calling this method, interrupts MUST be enabled. This is because
2168 * the BH enable code must have IRQs enabled so that it will not deadlock.
2169 * --BLG
2170 */
2171int dev_queue_xmit(struct sk_buff *skb)
2172{
2173 struct net_device *dev = skb->dev;
2174 struct netdev_queue *txq;
2175 struct Qdisc *q;
2176 int rc = -ENOMEM;
2177
2178 /* Disable soft irqs for various locks below. Also
2179 * stops preemption for RCU.
2180 */
2181 rcu_read_lock_bh();
2182
2183 txq = dev_pick_tx(dev, skb);
2184 q = rcu_dereference_bh(txq->qdisc);
2185
2186#ifdef CONFIG_NET_CLS_ACT
2187 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2188#endif
2189 if (q->enqueue) {
2190 rc = __dev_xmit_skb(skb, q, dev, txq);
2191 goto out;
2192 }
2193
2194 /* The device has no queue. Common case for software devices:
2195 loopback, all the sorts of tunnels...
2196
2197 Really, it is unlikely that netif_tx_lock protection is necessary
2198 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2199 counters.)
2200 However, it is possible, that they rely on protection
2201 made by us here.
2202
2203 Check this and shot the lock. It is not prone from deadlocks.
2204 Either shot noqueue qdisc, it is even simpler 8)
2205 */
2206 if (dev->flags & IFF_UP) {
2207 int cpu = smp_processor_id(); /* ok because BHs are off */
2208
2209 if (txq->xmit_lock_owner != cpu) {
2210
2211 HARD_TX_LOCK(dev, txq, cpu);
2212
2213 if (!netif_tx_queue_stopped(txq)) {
2214 rc = dev_hard_start_xmit(skb, dev, txq);
2215 if (dev_xmit_complete(rc)) {
2216 HARD_TX_UNLOCK(dev, txq);
2217 goto out;
2218 }
2219 }
2220 HARD_TX_UNLOCK(dev, txq);
2221 if (net_ratelimit())
2222 printk(KERN_CRIT "Virtual device %s asks to "
2223 "queue packet!\n", dev->name);
2224 } else {
2225 /* Recursion is detected! It is possible,
2226 * unfortunately */
2227 if (net_ratelimit())
2228 printk(KERN_CRIT "Dead loop on virtual device "
2229 "%s, fix it urgently!\n", dev->name);
2230 }
2231 }
2232
2233 rc = -ENETDOWN;
2234 rcu_read_unlock_bh();
2235
2236 kfree_skb(skb);
2237 return rc;
2238out:
2239 rcu_read_unlock_bh();
2240 return rc;
2241}
2242EXPORT_SYMBOL(dev_queue_xmit);
2243
2244
2245/*=======================================================================
2246 Receiver routines
2247 =======================================================================*/
2248
2249int netdev_max_backlog __read_mostly = 1000;
2250int netdev_tstamp_prequeue __read_mostly = 1;
2251int netdev_budget __read_mostly = 300;
2252int weight_p __read_mostly = 64; /* old backlog weight */
2253
2254/* Called with irq disabled */
2255static inline void ____napi_schedule(struct softnet_data *sd,
2256 struct napi_struct *napi)
2257{
2258 list_add_tail(&napi->poll_list, &sd->poll_list);
2259 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2260}
2261
2262#ifdef CONFIG_RPS
2263
2264/* One global table that all flow-based protocols share. */
2265struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2266EXPORT_SYMBOL(rps_sock_flow_table);
2267
2268/*
2269 * get_rps_cpu is called from netif_receive_skb and returns the target
2270 * CPU from the RPS map of the receiving queue for a given skb.
2271 * rcu_read_lock must be held on entry.
2272 */
2273static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2274 struct rps_dev_flow **rflowp)
2275{
2276 struct ipv6hdr *ip6;
2277 struct iphdr *ip;
2278 struct netdev_rx_queue *rxqueue;
2279 struct rps_map *map;
2280 struct rps_dev_flow_table *flow_table;
2281 struct rps_sock_flow_table *sock_flow_table;
2282 int cpu = -1;
2283 u8 ip_proto;
2284 u16 tcpu;
2285 u32 addr1, addr2, ihl;
2286 union {
2287 u32 v32;
2288 u16 v16[2];
2289 } ports;
2290
2291 if (skb_rx_queue_recorded(skb)) {
2292 u16 index = skb_get_rx_queue(skb);
2293 if (unlikely(index >= dev->num_rx_queues)) {
2294 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2295 "on queue %u, but number of RX queues is %u\n",
2296 dev->name, index, dev->num_rx_queues);
2297 goto done;
2298 }
2299 rxqueue = dev->_rx + index;
2300 } else
2301 rxqueue = dev->_rx;
2302
2303 if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2304 goto done;
2305
2306 if (skb->rxhash)
2307 goto got_hash; /* Skip hash computation on packet header */
2308
2309 switch (skb->protocol) {
2310 case __constant_htons(ETH_P_IP):
2311 if (!pskb_may_pull(skb, sizeof(*ip)))
2312 goto done;
2313
2314 ip = (struct iphdr *) skb->data;
2315 ip_proto = ip->protocol;
2316 addr1 = (__force u32) ip->saddr;
2317 addr2 = (__force u32) ip->daddr;
2318 ihl = ip->ihl;
2319 break;
2320 case __constant_htons(ETH_P_IPV6):
2321 if (!pskb_may_pull(skb, sizeof(*ip6)))
2322 goto done;
2323
2324 ip6 = (struct ipv6hdr *) skb->data;
2325 ip_proto = ip6->nexthdr;
2326 addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2327 addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2328 ihl = (40 >> 2);
2329 break;
2330 default:
2331 goto done;
2332 }
2333 switch (ip_proto) {
2334 case IPPROTO_TCP:
2335 case IPPROTO_UDP:
2336 case IPPROTO_DCCP:
2337 case IPPROTO_ESP:
2338 case IPPROTO_AH:
2339 case IPPROTO_SCTP:
2340 case IPPROTO_UDPLITE:
2341 if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2342 ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2343 if (ports.v16[1] < ports.v16[0])
2344 swap(ports.v16[0], ports.v16[1]);
2345 break;
2346 }
2347 default:
2348 ports.v32 = 0;
2349 break;
2350 }
2351
2352 /* get a consistent hash (same value on both flow directions) */
2353 if (addr2 < addr1)
2354 swap(addr1, addr2);
2355 skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2356 if (!skb->rxhash)
2357 skb->rxhash = 1;
2358
2359got_hash:
2360 flow_table = rcu_dereference(rxqueue->rps_flow_table);
2361 sock_flow_table = rcu_dereference(rps_sock_flow_table);
2362 if (flow_table && sock_flow_table) {
2363 u16 next_cpu;
2364 struct rps_dev_flow *rflow;
2365
2366 rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2367 tcpu = rflow->cpu;
2368
2369 next_cpu = sock_flow_table->ents[skb->rxhash &
2370 sock_flow_table->mask];
2371
2372 /*
2373 * If the desired CPU (where last recvmsg was done) is
2374 * different from current CPU (one in the rx-queue flow
2375 * table entry), switch if one of the following holds:
2376 * - Current CPU is unset (equal to RPS_NO_CPU).
2377 * - Current CPU is offline.
2378 * - The current CPU's queue tail has advanced beyond the
2379 * last packet that was enqueued using this table entry.
2380 * This guarantees that all previous packets for the flow
2381 * have been dequeued, thus preserving in order delivery.
2382 */
2383 if (unlikely(tcpu != next_cpu) &&
2384 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2385 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2386 rflow->last_qtail)) >= 0)) {
2387 tcpu = rflow->cpu = next_cpu;
2388 if (tcpu != RPS_NO_CPU)
2389 rflow->last_qtail = per_cpu(softnet_data,
2390 tcpu).input_queue_head;
2391 }
2392 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2393 *rflowp = rflow;
2394 cpu = tcpu;
2395 goto done;
2396 }
2397 }
2398
2399 map = rcu_dereference(rxqueue->rps_map);
2400 if (map) {
2401 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2402
2403 if (cpu_online(tcpu)) {
2404 cpu = tcpu;
2405 goto done;
2406 }
2407 }
2408
2409done:
2410 return cpu;
2411}
2412
2413/* Called from hardirq (IPI) context */
2414static void rps_trigger_softirq(void *data)
2415{
2416 struct softnet_data *sd = data;
2417
2418 ____napi_schedule(sd, &sd->backlog);
2419 sd->received_rps++;
2420}
2421
2422#endif /* CONFIG_RPS */
2423
2424/*
2425 * Check if this softnet_data structure is another cpu one
2426 * If yes, queue it to our IPI list and return 1
2427 * If no, return 0
2428 */
2429static int rps_ipi_queued(struct softnet_data *sd)
2430{
2431#ifdef CONFIG_RPS
2432 struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2433
2434 if (sd != mysd) {
2435 sd->rps_ipi_next = mysd->rps_ipi_list;
2436 mysd->rps_ipi_list = sd;
2437
2438 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2439 return 1;
2440 }
2441#endif /* CONFIG_RPS */
2442 return 0;
2443}
2444
2445/*
2446 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2447 * queue (may be a remote CPU queue).
2448 */
2449static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2450 unsigned int *qtail)
2451{
2452 struct softnet_data *sd;
2453 unsigned long flags;
2454
2455 sd = &per_cpu(softnet_data, cpu);
2456
2457 local_irq_save(flags);
2458
2459 rps_lock(sd);
2460 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2461 if (skb_queue_len(&sd->input_pkt_queue)) {
2462enqueue:
2463 __skb_queue_tail(&sd->input_pkt_queue, skb);
2464 input_queue_tail_incr_save(sd, qtail);
2465 rps_unlock(sd);
2466 local_irq_restore(flags);
2467 return NET_RX_SUCCESS;
2468 }
2469
2470 /* Schedule NAPI for backlog device
2471 * We can use non atomic operation since we own the queue lock
2472 */
2473 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2474 if (!rps_ipi_queued(sd))
2475 ____napi_schedule(sd, &sd->backlog);
2476 }
2477 goto enqueue;
2478 }
2479
2480 sd->dropped++;
2481 rps_unlock(sd);
2482
2483 local_irq_restore(flags);
2484
2485 kfree_skb(skb);
2486 return NET_RX_DROP;
2487}
2488
2489/**
2490 * netif_rx - post buffer to the network code
2491 * @skb: buffer to post
2492 *
2493 * This function receives a packet from a device driver and queues it for
2494 * the upper (protocol) levels to process. It always succeeds. The buffer
2495 * may be dropped during processing for congestion control or by the
2496 * protocol layers.
2497 *
2498 * return values:
2499 * NET_RX_SUCCESS (no congestion)
2500 * NET_RX_DROP (packet was dropped)
2501 *
2502 */
2503
2504int netif_rx(struct sk_buff *skb)
2505{
2506 int ret;
2507
2508 /* if netpoll wants it, pretend we never saw it */
2509 if (netpoll_rx(skb))
2510 return NET_RX_DROP;
2511
2512 if (netdev_tstamp_prequeue)
2513 net_timestamp_check(skb);
2514
2515#ifdef CONFIG_RPS
2516 {
2517 struct rps_dev_flow voidflow, *rflow = &voidflow;
2518 int cpu;
2519
2520 rcu_read_lock();
2521
2522 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2523 if (cpu < 0)
2524 cpu = smp_processor_id();
2525
2526 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2527
2528 rcu_read_unlock();
2529 }
2530#else
2531 {
2532 unsigned int qtail;
2533 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2534 put_cpu();
2535 }
2536#endif
2537 return ret;
2538}
2539EXPORT_SYMBOL(netif_rx);
2540
2541int netif_rx_ni(struct sk_buff *skb)
2542{
2543 int err;
2544
2545 preempt_disable();
2546 err = netif_rx(skb);
2547 if (local_softirq_pending())
2548 do_softirq();
2549 preempt_enable();
2550
2551 return err;
2552}
2553EXPORT_SYMBOL(netif_rx_ni);
2554
2555static void net_tx_action(struct softirq_action *h)
2556{
2557 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2558
2559 if (sd->completion_queue) {
2560 struct sk_buff *clist;
2561
2562 local_irq_disable();
2563 clist = sd->completion_queue;
2564 sd->completion_queue = NULL;
2565 local_irq_enable();
2566
2567 while (clist) {
2568 struct sk_buff *skb = clist;
2569 clist = clist->next;
2570
2571 WARN_ON(atomic_read(&skb->users));
2572 __kfree_skb(skb);
2573 }
2574 }
2575
2576 if (sd->output_queue) {
2577 struct Qdisc *head;
2578
2579 local_irq_disable();
2580 head = sd->output_queue;
2581 sd->output_queue = NULL;
2582 sd->output_queue_tailp = &sd->output_queue;
2583 local_irq_enable();
2584
2585 while (head) {
2586 struct Qdisc *q = head;
2587 spinlock_t *root_lock;
2588
2589 head = head->next_sched;
2590
2591 root_lock = qdisc_lock(q);
2592 if (spin_trylock(root_lock)) {
2593 smp_mb__before_clear_bit();
2594 clear_bit(__QDISC_STATE_SCHED,
2595 &q->state);
2596 qdisc_run(q);
2597 spin_unlock(root_lock);
2598 } else {
2599 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2600 &q->state)) {
2601 __netif_reschedule(q);
2602 } else {
2603 smp_mb__before_clear_bit();
2604 clear_bit(__QDISC_STATE_SCHED,
2605 &q->state);
2606 }
2607 }
2608 }
2609 }
2610}
2611
2612static inline int deliver_skb(struct sk_buff *skb,
2613 struct packet_type *pt_prev,
2614 struct net_device *orig_dev)
2615{
2616 atomic_inc(&skb->users);
2617 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2618}
2619
2620#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2621 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2622/* This hook is defined here for ATM LANE */
2623int (*br_fdb_test_addr_hook)(struct net_device *dev,
2624 unsigned char *addr) __read_mostly;
2625EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2626#endif
2627
2628#ifdef CONFIG_NET_CLS_ACT
2629/* TODO: Maybe we should just force sch_ingress to be compiled in
2630 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2631 * a compare and 2 stores extra right now if we dont have it on
2632 * but have CONFIG_NET_CLS_ACT
2633 * NOTE: This doesnt stop any functionality; if you dont have
2634 * the ingress scheduler, you just cant add policies on ingress.
2635 *
2636 */
2637static int ing_filter(struct sk_buff *skb)
2638{
2639 struct net_device *dev = skb->dev;
2640 u32 ttl = G_TC_RTTL(skb->tc_verd);
2641 struct netdev_queue *rxq;
2642 int result = TC_ACT_OK;
2643 struct Qdisc *q;
2644
2645 if (unlikely(MAX_RED_LOOP < ttl++)) {
2646 if (net_ratelimit())
2647 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2648 skb->skb_iif, dev->ifindex);
2649 return TC_ACT_SHOT;
2650 }
2651
2652 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2653 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2654
2655 rxq = &dev->rx_queue;
2656
2657 q = rxq->qdisc;
2658 if (q != &noop_qdisc) {
2659 spin_lock(qdisc_lock(q));
2660 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2661 result = qdisc_enqueue_root(skb, q);
2662 spin_unlock(qdisc_lock(q));
2663 }
2664
2665 return result;
2666}
2667
2668static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2669 struct packet_type **pt_prev,
2670 int *ret, struct net_device *orig_dev)
2671{
2672 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2673 goto out;
2674
2675 if (*pt_prev) {
2676 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2677 *pt_prev = NULL;
2678 }
2679
2680 switch (ing_filter(skb)) {
2681 case TC_ACT_SHOT:
2682 case TC_ACT_STOLEN:
2683 kfree_skb(skb);
2684 return NULL;
2685 }
2686
2687out:
2688 skb->tc_verd = 0;
2689 return skb;
2690}
2691#endif
2692
2693/*
2694 * netif_nit_deliver - deliver received packets to network taps
2695 * @skb: buffer
2696 *
2697 * This function is used to deliver incoming packets to network
2698 * taps. It should be used when the normal netif_receive_skb path
2699 * is bypassed, for example because of VLAN acceleration.
2700 */
2701void netif_nit_deliver(struct sk_buff *skb)
2702{
2703 struct packet_type *ptype;
2704
2705 if (list_empty(&ptype_all))
2706 return;
2707
2708 skb_reset_network_header(skb);
2709 skb_reset_transport_header(skb);
2710 skb->mac_len = skb->network_header - skb->mac_header;
2711
2712 rcu_read_lock();
2713 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2714 if (!ptype->dev || ptype->dev == skb->dev)
2715 deliver_skb(skb, ptype, skb->dev);
2716 }
2717 rcu_read_unlock();
2718}
2719
2720/**
2721 * netdev_rx_handler_register - register receive handler
2722 * @dev: device to register a handler for
2723 * @rx_handler: receive handler to register
2724 * @rx_handler_data: data pointer that is used by rx handler
2725 *
2726 * Register a receive hander for a device. This handler will then be
2727 * called from __netif_receive_skb. A negative errno code is returned
2728 * on a failure.
2729 *
2730 * The caller must hold the rtnl_mutex.
2731 */
2732int netdev_rx_handler_register(struct net_device *dev,
2733 rx_handler_func_t *rx_handler,
2734 void *rx_handler_data)
2735{
2736 ASSERT_RTNL();
2737
2738 if (dev->rx_handler)
2739 return -EBUSY;
2740
2741 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2742 rcu_assign_pointer(dev->rx_handler, rx_handler);
2743
2744 return 0;
2745}
2746EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2747
2748/**
2749 * netdev_rx_handler_unregister - unregister receive handler
2750 * @dev: device to unregister a handler from
2751 *
2752 * Unregister a receive hander from a device.
2753 *
2754 * The caller must hold the rtnl_mutex.
2755 */
2756void netdev_rx_handler_unregister(struct net_device *dev)
2757{
2758
2759 ASSERT_RTNL();
2760 rcu_assign_pointer(dev->rx_handler, NULL);
2761 rcu_assign_pointer(dev->rx_handler_data, NULL);
2762}
2763EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2764
2765static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2766 struct net_device *master)
2767{
2768 if (skb->pkt_type == PACKET_HOST) {
2769 u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2770
2771 memcpy(dest, master->dev_addr, ETH_ALEN);
2772 }
2773}
2774
2775/* On bonding slaves other than the currently active slave, suppress
2776 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2777 * ARP on active-backup slaves with arp_validate enabled.
2778 */
2779int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2780{
2781 struct net_device *dev = skb->dev;
2782
2783 if (master->priv_flags & IFF_MASTER_ARPMON)
2784 dev->last_rx = jiffies;
2785
2786 if ((master->priv_flags & IFF_MASTER_ALB) &&
2787 (master->priv_flags & IFF_BRIDGE_PORT)) {
2788 /* Do address unmangle. The local destination address
2789 * will be always the one master has. Provides the right
2790 * functionality in a bridge.
2791 */
2792 skb_bond_set_mac_by_master(skb, master);
2793 }
2794
2795 if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2796 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2797 skb->protocol == __cpu_to_be16(ETH_P_ARP))
2798 return 0;
2799
2800 if (master->priv_flags & IFF_MASTER_ALB) {
2801 if (skb->pkt_type != PACKET_BROADCAST &&
2802 skb->pkt_type != PACKET_MULTICAST)
2803 return 0;
2804 }
2805 if (master->priv_flags & IFF_MASTER_8023AD &&
2806 skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2807 return 0;
2808
2809 return 1;
2810 }
2811 return 0;
2812}
2813EXPORT_SYMBOL(__skb_bond_should_drop);
2814
2815static int __netif_receive_skb(struct sk_buff *skb)
2816{
2817 struct packet_type *ptype, *pt_prev;
2818 rx_handler_func_t *rx_handler;
2819 struct net_device *orig_dev;
2820 struct net_device *master;
2821 struct net_device *null_or_orig;
2822 struct net_device *orig_or_bond;
2823 int ret = NET_RX_DROP;
2824 __be16 type;
2825
2826 if (!netdev_tstamp_prequeue)
2827 net_timestamp_check(skb);
2828
2829 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2830 return NET_RX_SUCCESS;
2831
2832 /* if we've gotten here through NAPI, check netpoll */
2833 if (netpoll_receive_skb(skb))
2834 return NET_RX_DROP;
2835
2836 if (!skb->skb_iif)
2837 skb->skb_iif = skb->dev->ifindex;
2838
2839 /*
2840 * bonding note: skbs received on inactive slaves should only
2841 * be delivered to pkt handlers that are exact matches. Also
2842 * the deliver_no_wcard flag will be set. If packet handlers
2843 * are sensitive to duplicate packets these skbs will need to
2844 * be dropped at the handler. The vlan accel path may have
2845 * already set the deliver_no_wcard flag.
2846 */
2847 null_or_orig = NULL;
2848 orig_dev = skb->dev;
2849 master = ACCESS_ONCE(orig_dev->master);
2850 if (skb->deliver_no_wcard)
2851 null_or_orig = orig_dev;
2852 else if (master) {
2853 if (skb_bond_should_drop(skb, master)) {
2854 skb->deliver_no_wcard = 1;
2855 null_or_orig = orig_dev; /* deliver only exact match */
2856 } else
2857 skb->dev = master;
2858 }
2859
2860 __this_cpu_inc(softnet_data.processed);
2861 skb_reset_network_header(skb);
2862 skb_reset_transport_header(skb);
2863 skb->mac_len = skb->network_header - skb->mac_header;
2864
2865 pt_prev = NULL;
2866
2867 rcu_read_lock();
2868
2869#ifdef CONFIG_NET_CLS_ACT
2870 if (skb->tc_verd & TC_NCLS) {
2871 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2872 goto ncls;
2873 }
2874#endif
2875
2876 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2877 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2878 ptype->dev == orig_dev) {
2879 if (pt_prev)
2880 ret = deliver_skb(skb, pt_prev, orig_dev);
2881 pt_prev = ptype;
2882 }
2883 }
2884
2885#ifdef CONFIG_NET_CLS_ACT
2886 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2887 if (!skb)
2888 goto out;
2889ncls:
2890#endif
2891
2892 /* Handle special case of bridge or macvlan */
2893 rx_handler = rcu_dereference(skb->dev->rx_handler);
2894 if (rx_handler) {
2895 if (pt_prev) {
2896 ret = deliver_skb(skb, pt_prev, orig_dev);
2897 pt_prev = NULL;
2898 }
2899 skb = rx_handler(skb);
2900 if (!skb)
2901 goto out;
2902 }
2903
2904 /*
2905 * Make sure frames received on VLAN interfaces stacked on
2906 * bonding interfaces still make their way to any base bonding
2907 * device that may have registered for a specific ptype. The
2908 * handler may have to adjust skb->dev and orig_dev.
2909 */
2910 orig_or_bond = orig_dev;
2911 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2912 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2913 orig_or_bond = vlan_dev_real_dev(skb->dev);
2914 }
2915
2916 type = skb->protocol;
2917 list_for_each_entry_rcu(ptype,
2918 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2919 if (ptype->type == type && (ptype->dev == null_or_orig ||
2920 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2921 ptype->dev == orig_or_bond)) {
2922 if (pt_prev)
2923 ret = deliver_skb(skb, pt_prev, orig_dev);
2924 pt_prev = ptype;
2925 }
2926 }
2927
2928 if (pt_prev) {
2929 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2930 } else {
2931 kfree_skb(skb);
2932 /* Jamal, now you will not able to escape explaining
2933 * me how you were going to use this. :-)
2934 */
2935 ret = NET_RX_DROP;
2936 }
2937
2938out:
2939 rcu_read_unlock();
2940 return ret;
2941}
2942
2943/**
2944 * netif_receive_skb - process receive buffer from network
2945 * @skb: buffer to process
2946 *
2947 * netif_receive_skb() is the main receive data processing function.
2948 * It always succeeds. The buffer may be dropped during processing
2949 * for congestion control or by the protocol layers.
2950 *
2951 * This function may only be called from softirq context and interrupts
2952 * should be enabled.
2953 *
2954 * Return values (usually ignored):
2955 * NET_RX_SUCCESS: no congestion
2956 * NET_RX_DROP: packet was dropped
2957 */
2958int netif_receive_skb(struct sk_buff *skb)
2959{
2960 if (netdev_tstamp_prequeue)
2961 net_timestamp_check(skb);
2962
2963 if (skb_defer_rx_timestamp(skb))
2964 return NET_RX_SUCCESS;
2965
2966#ifdef CONFIG_RPS
2967 {
2968 struct rps_dev_flow voidflow, *rflow = &voidflow;
2969 int cpu, ret;
2970
2971 rcu_read_lock();
2972
2973 cpu = get_rps_cpu(skb->dev, skb, &rflow);
2974
2975 if (cpu >= 0) {
2976 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2977 rcu_read_unlock();
2978 } else {
2979 rcu_read_unlock();
2980 ret = __netif_receive_skb(skb);
2981 }
2982
2983 return ret;
2984 }
2985#else
2986 return __netif_receive_skb(skb);
2987#endif
2988}
2989EXPORT_SYMBOL(netif_receive_skb);
2990
2991/* Network device is going away, flush any packets still pending
2992 * Called with irqs disabled.
2993 */
2994static void flush_backlog(void *arg)
2995{
2996 struct net_device *dev = arg;
2997 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2998 struct sk_buff *skb, *tmp;
2999
3000 rps_lock(sd);
3001 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3002 if (skb->dev == dev) {
3003 __skb_unlink(skb, &sd->input_pkt_queue);
3004 kfree_skb(skb);
3005 input_queue_head_incr(sd);
3006 }
3007 }
3008 rps_unlock(sd);
3009
3010 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3011 if (skb->dev == dev) {
3012 __skb_unlink(skb, &sd->process_queue);
3013 kfree_skb(skb);
3014 input_queue_head_incr(sd);
3015 }
3016 }
3017}
3018
3019static int napi_gro_complete(struct sk_buff *skb)
3020{
3021 struct packet_type *ptype;
3022 __be16 type = skb->protocol;
3023 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3024 int err = -ENOENT;
3025
3026 if (NAPI_GRO_CB(skb)->count == 1) {
3027 skb_shinfo(skb)->gso_size = 0;
3028 goto out;
3029 }
3030
3031 rcu_read_lock();
3032 list_for_each_entry_rcu(ptype, head, list) {
3033 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3034 continue;
3035
3036 err = ptype->gro_complete(skb);
3037 break;
3038 }
3039 rcu_read_unlock();
3040
3041 if (err) {
3042 WARN_ON(&ptype->list == head);
3043 kfree_skb(skb);
3044 return NET_RX_SUCCESS;
3045 }
3046
3047out:
3048 return netif_receive_skb(skb);
3049}
3050
3051static void napi_gro_flush(struct napi_struct *napi)
3052{
3053 struct sk_buff *skb, *next;
3054
3055 for (skb = napi->gro_list; skb; skb = next) {
3056 next = skb->next;
3057 skb->next = NULL;
3058 napi_gro_complete(skb);
3059 }
3060
3061 napi->gro_count = 0;
3062 napi->gro_list = NULL;
3063}
3064
3065enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3066{
3067 struct sk_buff **pp = NULL;
3068 struct packet_type *ptype;
3069 __be16 type = skb->protocol;
3070 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3071 int same_flow;
3072 int mac_len;
3073 enum gro_result ret;
3074
3075 if (!(skb->dev->features & NETIF_F_GRO))
3076 goto normal;
3077
3078 if (skb_is_gso(skb) || skb_has_frags(skb))
3079 goto normal;
3080
3081 rcu_read_lock();
3082 list_for_each_entry_rcu(ptype, head, list) {
3083 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3084 continue;
3085
3086 skb_set_network_header(skb, skb_gro_offset(skb));
3087 mac_len = skb->network_header - skb->mac_header;
3088 skb->mac_len = mac_len;
3089 NAPI_GRO_CB(skb)->same_flow = 0;
3090 NAPI_GRO_CB(skb)->flush = 0;
3091 NAPI_GRO_CB(skb)->free = 0;
3092
3093 pp = ptype->gro_receive(&napi->gro_list, skb);
3094 break;
3095 }
3096 rcu_read_unlock();
3097
3098 if (&ptype->list == head)
3099 goto normal;
3100
3101 same_flow = NAPI_GRO_CB(skb)->same_flow;
3102 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3103
3104 if (pp) {
3105 struct sk_buff *nskb = *pp;
3106
3107 *pp = nskb->next;
3108 nskb->next = NULL;
3109 napi_gro_complete(nskb);
3110 napi->gro_count--;
3111 }
3112
3113 if (same_flow)
3114 goto ok;
3115
3116 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3117 goto normal;
3118
3119 napi->gro_count++;
3120 NAPI_GRO_CB(skb)->count = 1;
3121 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3122 skb->next = napi->gro_list;
3123 napi->gro_list = skb;
3124 ret = GRO_HELD;
3125
3126pull:
3127 if (skb_headlen(skb) < skb_gro_offset(skb)) {
3128 int grow = skb_gro_offset(skb) - skb_headlen(skb);
3129
3130 BUG_ON(skb->end - skb->tail < grow);
3131
3132 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3133
3134 skb->tail += grow;
3135 skb->data_len -= grow;
3136
3137 skb_shinfo(skb)->frags[0].page_offset += grow;
3138 skb_shinfo(skb)->frags[0].size -= grow;
3139
3140 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3141 put_page(skb_shinfo(skb)->frags[0].page);
3142 memmove(skb_shinfo(skb)->frags,
3143 skb_shinfo(skb)->frags + 1,
3144 --skb_shinfo(skb)->nr_frags);
3145 }
3146 }
3147
3148ok:
3149 return ret;
3150
3151normal:
3152 ret = GRO_NORMAL;
3153 goto pull;
3154}
3155EXPORT_SYMBOL(dev_gro_receive);
3156
3157static gro_result_t
3158__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3159{
3160 struct sk_buff *p;
3161
3162 if (netpoll_rx_on(skb))
3163 return GRO_NORMAL;
3164
3165 for (p = napi->gro_list; p; p = p->next) {
3166 NAPI_GRO_CB(p)->same_flow =
3167 (p->dev == skb->dev) &&
3168 !compare_ether_header(skb_mac_header(p),
3169 skb_gro_mac_header(skb));
3170 NAPI_GRO_CB(p)->flush = 0;
3171 }
3172
3173 return dev_gro_receive(napi, skb);
3174}
3175
3176gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3177{
3178 switch (ret) {
3179 case GRO_NORMAL:
3180 if (netif_receive_skb(skb))
3181 ret = GRO_DROP;
3182 break;
3183
3184 case GRO_DROP:
3185 case GRO_MERGED_FREE:
3186 kfree_skb(skb);
3187 break;
3188
3189 case GRO_HELD:
3190 case GRO_MERGED:
3191 break;
3192 }
3193
3194 return ret;
3195}
3196EXPORT_SYMBOL(napi_skb_finish);
3197
3198void skb_gro_reset_offset(struct sk_buff *skb)
3199{
3200 NAPI_GRO_CB(skb)->data_offset = 0;
3201 NAPI_GRO_CB(skb)->frag0 = NULL;
3202 NAPI_GRO_CB(skb)->frag0_len = 0;
3203
3204 if (skb->mac_header == skb->tail &&
3205 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3206 NAPI_GRO_CB(skb)->frag0 =
3207 page_address(skb_shinfo(skb)->frags[0].page) +
3208 skb_shinfo(skb)->frags[0].page_offset;
3209 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3210 }
3211}
3212EXPORT_SYMBOL(skb_gro_reset_offset);
3213
3214gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3215{
3216 skb_gro_reset_offset(skb);
3217
3218 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3219}
3220EXPORT_SYMBOL(napi_gro_receive);
3221
3222void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3223{
3224 __skb_pull(skb, skb_headlen(skb));
3225 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3226
3227 napi->skb = skb;
3228}
3229EXPORT_SYMBOL(napi_reuse_skb);
3230
3231struct sk_buff *napi_get_frags(struct napi_struct *napi)
3232{
3233 struct sk_buff *skb = napi->skb;
3234
3235 if (!skb) {
3236 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3237 if (skb)
3238 napi->skb = skb;
3239 }
3240 return skb;
3241}
3242EXPORT_SYMBOL(napi_get_frags);
3243
3244gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3245 gro_result_t ret)
3246{
3247 switch (ret) {
3248 case GRO_NORMAL:
3249 case GRO_HELD:
3250 skb->protocol = eth_type_trans(skb, skb->dev);
3251
3252 if (ret == GRO_HELD)
3253 skb_gro_pull(skb, -ETH_HLEN);
3254 else if (netif_receive_skb(skb))
3255 ret = GRO_DROP;
3256 break;
3257
3258 case GRO_DROP:
3259 case GRO_MERGED_FREE:
3260 napi_reuse_skb(napi, skb);
3261 break;
3262
3263 case GRO_MERGED:
3264 break;
3265 }
3266
3267 return ret;
3268}
3269EXPORT_SYMBOL(napi_frags_finish);
3270
3271struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3272{
3273 struct sk_buff *skb = napi->skb;
3274 struct ethhdr *eth;
3275 unsigned int hlen;
3276 unsigned int off;
3277
3278 napi->skb = NULL;
3279
3280 skb_reset_mac_header(skb);
3281 skb_gro_reset_offset(skb);
3282
3283 off = skb_gro_offset(skb);
3284 hlen = off + sizeof(*eth);
3285 eth = skb_gro_header_fast(skb, off);
3286 if (skb_gro_header_hard(skb, hlen)) {
3287 eth = skb_gro_header_slow(skb, hlen, off);
3288 if (unlikely(!eth)) {
3289 napi_reuse_skb(napi, skb);
3290 skb = NULL;
3291 goto out;
3292 }
3293 }
3294
3295 skb_gro_pull(skb, sizeof(*eth));
3296
3297 /*
3298 * This works because the only protocols we care about don't require
3299 * special handling. We'll fix it up properly at the end.
3300 */
3301 skb->protocol = eth->h_proto;
3302
3303out:
3304 return skb;
3305}
3306EXPORT_SYMBOL(napi_frags_skb);
3307
3308gro_result_t napi_gro_frags(struct napi_struct *napi)
3309{
3310 struct sk_buff *skb = napi_frags_skb(napi);
3311
3312 if (!skb)
3313 return GRO_DROP;
3314
3315 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3316}
3317EXPORT_SYMBOL(napi_gro_frags);
3318
3319/*
3320 * net_rps_action sends any pending IPI's for rps.
3321 * Note: called with local irq disabled, but exits with local irq enabled.
3322 */
3323static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3324{
3325#ifdef CONFIG_RPS
3326 struct softnet_data *remsd = sd->rps_ipi_list;
3327
3328 if (remsd) {
3329 sd->rps_ipi_list = NULL;
3330
3331 local_irq_enable();
3332
3333 /* Send pending IPI's to kick RPS processing on remote cpus. */
3334 while (remsd) {
3335 struct softnet_data *next = remsd->rps_ipi_next;
3336
3337 if (cpu_online(remsd->cpu))
3338 __smp_call_function_single(remsd->cpu,
3339 &remsd->csd, 0);
3340 remsd = next;
3341 }
3342 } else
3343#endif
3344 local_irq_enable();
3345}
3346
3347static int process_backlog(struct napi_struct *napi, int quota)
3348{
3349 int work = 0;
3350 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3351
3352#ifdef CONFIG_RPS
3353 /* Check if we have pending ipi, its better to send them now,
3354 * not waiting net_rx_action() end.
3355 */
3356 if (sd->rps_ipi_list) {
3357 local_irq_disable();
3358 net_rps_action_and_irq_enable(sd);
3359 }
3360#endif
3361 napi->weight = weight_p;
3362 local_irq_disable();
3363 while (work < quota) {
3364 struct sk_buff *skb;
3365 unsigned int qlen;
3366
3367 while ((skb = __skb_dequeue(&sd->process_queue))) {
3368 local_irq_enable();
3369 __netif_receive_skb(skb);
3370 local_irq_disable();
3371 input_queue_head_incr(sd);
3372 if (++work >= quota) {
3373 local_irq_enable();
3374 return work;
3375 }
3376 }
3377
3378 rps_lock(sd);
3379 qlen = skb_queue_len(&sd->input_pkt_queue);
3380 if (qlen)
3381 skb_queue_splice_tail_init(&sd->input_pkt_queue,
3382 &sd->process_queue);
3383
3384 if (qlen < quota - work) {
3385 /*
3386 * Inline a custom version of __napi_complete().
3387 * only current cpu owns and manipulates this napi,
3388 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3389 * we can use a plain write instead of clear_bit(),
3390 * and we dont need an smp_mb() memory barrier.
3391 */
3392 list_del(&napi->poll_list);
3393 napi->state = 0;
3394
3395 quota = work + qlen;
3396 }
3397 rps_unlock(sd);
3398 }
3399 local_irq_enable();
3400
3401 return work;
3402}
3403
3404/**
3405 * __napi_schedule - schedule for receive
3406 * @n: entry to schedule
3407 *
3408 * The entry's receive function will be scheduled to run
3409 */
3410void __napi_schedule(struct napi_struct *n)
3411{
3412 unsigned long flags;
3413
3414 local_irq_save(flags);
3415 ____napi_schedule(&__get_cpu_var(softnet_data), n);
3416 local_irq_restore(flags);
3417}
3418EXPORT_SYMBOL(__napi_schedule);
3419
3420void __napi_complete(struct napi_struct *n)
3421{
3422 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3423 BUG_ON(n->gro_list);
3424
3425 list_del(&n->poll_list);
3426 smp_mb__before_clear_bit();
3427 clear_bit(NAPI_STATE_SCHED, &n->state);
3428}
3429EXPORT_SYMBOL(__napi_complete);
3430
3431void napi_complete(struct napi_struct *n)
3432{
3433 unsigned long flags;
3434
3435 /*
3436 * don't let napi dequeue from the cpu poll list
3437 * just in case its running on a different cpu
3438 */
3439 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3440 return;
3441
3442 napi_gro_flush(n);
3443 local_irq_save(flags);
3444 __napi_complete(n);
3445 local_irq_restore(flags);
3446}
3447EXPORT_SYMBOL(napi_complete);
3448
3449void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3450 int (*poll)(struct napi_struct *, int), int weight)
3451{
3452 INIT_LIST_HEAD(&napi->poll_list);
3453 napi->gro_count = 0;
3454 napi->gro_list = NULL;
3455 napi->skb = NULL;
3456 napi->poll = poll;
3457 napi->weight = weight;
3458 list_add(&napi->dev_list, &dev->napi_list);
3459 napi->dev = dev;
3460#ifdef CONFIG_NETPOLL
3461 spin_lock_init(&napi->poll_lock);
3462 napi->poll_owner = -1;
3463#endif
3464 set_bit(NAPI_STATE_SCHED, &napi->state);
3465}
3466EXPORT_SYMBOL(netif_napi_add);
3467
3468void netif_napi_del(struct napi_struct *napi)
3469{
3470 struct sk_buff *skb, *next;
3471
3472 list_del_init(&napi->dev_list);
3473 napi_free_frags(napi);
3474
3475 for (skb = napi->gro_list; skb; skb = next) {
3476 next = skb->next;
3477 skb->next = NULL;
3478 kfree_skb(skb);
3479 }
3480
3481 napi->gro_list = NULL;
3482 napi->gro_count = 0;
3483}
3484EXPORT_SYMBOL(netif_napi_del);
3485
3486static void net_rx_action(struct softirq_action *h)
3487{
3488 struct softnet_data *sd = &__get_cpu_var(softnet_data);
3489 unsigned long time_limit = jiffies + 2;
3490 int budget = netdev_budget;
3491 void *have;
3492
3493 local_irq_disable();
3494
3495 while (!list_empty(&sd->poll_list)) {
3496 struct napi_struct *n;
3497 int work, weight;
3498
3499 /* If softirq window is exhuasted then punt.
3500 * Allow this to run for 2 jiffies since which will allow
3501 * an average latency of 1.5/HZ.
3502 */
3503 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3504 goto softnet_break;
3505
3506 local_irq_enable();
3507
3508 /* Even though interrupts have been re-enabled, this
3509 * access is safe because interrupts can only add new
3510 * entries to the tail of this list, and only ->poll()
3511 * calls can remove this head entry from the list.
3512 */
3513 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3514
3515 have = netpoll_poll_lock(n);
3516
3517 weight = n->weight;
3518
3519 /* This NAPI_STATE_SCHED test is for avoiding a race
3520 * with netpoll's poll_napi(). Only the entity which
3521 * obtains the lock and sees NAPI_STATE_SCHED set will
3522 * actually make the ->poll() call. Therefore we avoid
3523 * accidently calling ->poll() when NAPI is not scheduled.
3524 */
3525 work = 0;
3526 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3527 work = n->poll(n, weight);
3528 trace_napi_poll(n);
3529 }
3530
3531 WARN_ON_ONCE(work > weight);
3532
3533 budget -= work;
3534
3535 local_irq_disable();
3536
3537 /* Drivers must not modify the NAPI state if they
3538 * consume the entire weight. In such cases this code
3539 * still "owns" the NAPI instance and therefore can
3540 * move the instance around on the list at-will.
3541 */
3542 if (unlikely(work == weight)) {
3543 if (unlikely(napi_disable_pending(n))) {
3544 local_irq_enable();
3545 napi_complete(n);
3546 local_irq_disable();
3547 } else
3548 list_move_tail(&n->poll_list, &sd->poll_list);
3549 }
3550
3551 netpoll_poll_unlock(have);
3552 }
3553out:
3554 net_rps_action_and_irq_enable(sd);
3555
3556#ifdef CONFIG_NET_DMA
3557 /*
3558 * There may not be any more sk_buffs coming right now, so push
3559 * any pending DMA copies to hardware
3560 */
3561 dma_issue_pending_all();
3562#endif
3563
3564 return;
3565
3566softnet_break:
3567 sd->time_squeeze++;
3568 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3569 goto out;
3570}
3571
3572static gifconf_func_t *gifconf_list[NPROTO];
3573
3574/**
3575 * register_gifconf - register a SIOCGIF handler
3576 * @family: Address family
3577 * @gifconf: Function handler
3578 *
3579 * Register protocol dependent address dumping routines. The handler
3580 * that is passed must not be freed or reused until it has been replaced
3581 * by another handler.
3582 */
3583int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3584{
3585 if (family >= NPROTO)
3586 return -EINVAL;
3587 gifconf_list[family] = gifconf;
3588 return 0;
3589}
3590EXPORT_SYMBOL(register_gifconf);
3591
3592
3593/*
3594 * Map an interface index to its name (SIOCGIFNAME)
3595 */
3596
3597/*
3598 * We need this ioctl for efficient implementation of the
3599 * if_indextoname() function required by the IPv6 API. Without
3600 * it, we would have to search all the interfaces to find a
3601 * match. --pb
3602 */
3603
3604static int dev_ifname(struct net *net, struct ifreq __user *arg)
3605{
3606 struct net_device *dev;
3607 struct ifreq ifr;
3608
3609 /*
3610 * Fetch the caller's info block.
3611 */
3612
3613 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3614 return -EFAULT;
3615
3616 rcu_read_lock();
3617 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3618 if (!dev) {
3619 rcu_read_unlock();
3620 return -ENODEV;
3621 }
3622
3623 strcpy(ifr.ifr_name, dev->name);
3624 rcu_read_unlock();
3625
3626 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3627 return -EFAULT;
3628 return 0;
3629}
3630
3631/*
3632 * Perform a SIOCGIFCONF call. This structure will change
3633 * size eventually, and there is nothing I can do about it.
3634 * Thus we will need a 'compatibility mode'.
3635 */
3636
3637static int dev_ifconf(struct net *net, char __user *arg)
3638{
3639 struct ifconf ifc;
3640 struct net_device *dev;
3641 char __user *pos;
3642 int len;
3643 int total;
3644 int i;
3645
3646 /*
3647 * Fetch the caller's info block.
3648 */
3649
3650 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3651 return -EFAULT;
3652
3653 pos = ifc.ifc_buf;
3654 len = ifc.ifc_len;
3655
3656 /*
3657 * Loop over the interfaces, and write an info block for each.
3658 */
3659
3660 total = 0;
3661 for_each_netdev(net, dev) {
3662 for (i = 0; i < NPROTO; i++) {
3663 if (gifconf_list[i]) {
3664 int done;
3665 if (!pos)
3666 done = gifconf_list[i](dev, NULL, 0);
3667 else
3668 done = gifconf_list[i](dev, pos + total,
3669 len - total);
3670 if (done < 0)
3671 return -EFAULT;
3672 total += done;
3673 }
3674 }
3675 }
3676
3677 /*
3678 * All done. Write the updated control block back to the caller.
3679 */
3680 ifc.ifc_len = total;
3681
3682 /*
3683 * Both BSD and Solaris return 0 here, so we do too.
3684 */
3685 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3686}
3687
3688#ifdef CONFIG_PROC_FS
3689/*
3690 * This is invoked by the /proc filesystem handler to display a device
3691 * in detail.
3692 */
3693void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3694 __acquires(RCU)
3695{
3696 struct net *net = seq_file_net(seq);
3697 loff_t off;
3698 struct net_device *dev;
3699
3700 rcu_read_lock();
3701 if (!*pos)
3702 return SEQ_START_TOKEN;
3703
3704 off = 1;
3705 for_each_netdev_rcu(net, dev)
3706 if (off++ == *pos)
3707 return dev;
3708
3709 return NULL;
3710}
3711
3712void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3713{
3714 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3715 first_net_device(seq_file_net(seq)) :
3716 next_net_device((struct net_device *)v);
3717
3718 ++*pos;
3719 return rcu_dereference(dev);
3720}
3721
3722void dev_seq_stop(struct seq_file *seq, void *v)
3723 __releases(RCU)
3724{
3725 rcu_read_unlock();
3726}
3727
3728static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3729{
3730 struct rtnl_link_stats64 temp;
3731 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3732
3733 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3734 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3735 dev->name, stats->rx_bytes, stats->rx_packets,
3736 stats->rx_errors,
3737 stats->rx_dropped + stats->rx_missed_errors,
3738 stats->rx_fifo_errors,
3739 stats->rx_length_errors + stats->rx_over_errors +
3740 stats->rx_crc_errors + stats->rx_frame_errors,
3741 stats->rx_compressed, stats->multicast,
3742 stats->tx_bytes, stats->tx_packets,
3743 stats->tx_errors, stats->tx_dropped,
3744 stats->tx_fifo_errors, stats->collisions,
3745 stats->tx_carrier_errors +
3746 stats->tx_aborted_errors +
3747 stats->tx_window_errors +
3748 stats->tx_heartbeat_errors,
3749 stats->tx_compressed);
3750}
3751
3752/*
3753 * Called from the PROCfs module. This now uses the new arbitrary sized
3754 * /proc/net interface to create /proc/net/dev
3755 */
3756static int dev_seq_show(struct seq_file *seq, void *v)
3757{
3758 if (v == SEQ_START_TOKEN)
3759 seq_puts(seq, "Inter-| Receive "
3760 " | Transmit\n"
3761 " face |bytes packets errs drop fifo frame "
3762 "compressed multicast|bytes packets errs "
3763 "drop fifo colls carrier compressed\n");
3764 else
3765 dev_seq_printf_stats(seq, v);
3766 return 0;
3767}
3768
3769static struct softnet_data *softnet_get_online(loff_t *pos)
3770{
3771 struct softnet_data *sd = NULL;
3772
3773 while (*pos < nr_cpu_ids)
3774 if (cpu_online(*pos)) {
3775 sd = &per_cpu(softnet_data, *pos);
3776 break;
3777 } else
3778 ++*pos;
3779 return sd;
3780}
3781
3782static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3783{
3784 return softnet_get_online(pos);
3785}
3786
3787static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3788{
3789 ++*pos;
3790 return softnet_get_online(pos);
3791}
3792
3793static void softnet_seq_stop(struct seq_file *seq, void *v)
3794{
3795}
3796
3797static int softnet_seq_show(struct seq_file *seq, void *v)
3798{
3799 struct softnet_data *sd = v;
3800
3801 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3802 sd->processed, sd->dropped, sd->time_squeeze, 0,
3803 0, 0, 0, 0, /* was fastroute */
3804 sd->cpu_collision, sd->received_rps);
3805 return 0;
3806}
3807
3808static const struct seq_operations dev_seq_ops = {
3809 .start = dev_seq_start,
3810 .next = dev_seq_next,
3811 .stop = dev_seq_stop,
3812 .show = dev_seq_show,
3813};
3814
3815static int dev_seq_open(struct inode *inode, struct file *file)
3816{
3817 return seq_open_net(inode, file, &dev_seq_ops,
3818 sizeof(struct seq_net_private));
3819}
3820
3821static const struct file_operations dev_seq_fops = {
3822 .owner = THIS_MODULE,
3823 .open = dev_seq_open,
3824 .read = seq_read,
3825 .llseek = seq_lseek,
3826 .release = seq_release_net,
3827};
3828
3829static const struct seq_operations softnet_seq_ops = {
3830 .start = softnet_seq_start,
3831 .next = softnet_seq_next,
3832 .stop = softnet_seq_stop,
3833 .show = softnet_seq_show,
3834};
3835
3836static int softnet_seq_open(struct inode *inode, struct file *file)
3837{
3838 return seq_open(file, &softnet_seq_ops);
3839}
3840
3841static const struct file_operations softnet_seq_fops = {
3842 .owner = THIS_MODULE,
3843 .open = softnet_seq_open,
3844 .read = seq_read,
3845 .llseek = seq_lseek,
3846 .release = seq_release,
3847};
3848
3849static void *ptype_get_idx(loff_t pos)
3850{
3851 struct packet_type *pt = NULL;
3852 loff_t i = 0;
3853 int t;
3854
3855 list_for_each_entry_rcu(pt, &ptype_all, list) {
3856 if (i == pos)
3857 return pt;
3858 ++i;
3859 }
3860
3861 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3862 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3863 if (i == pos)
3864 return pt;
3865 ++i;
3866 }
3867 }
3868 return NULL;
3869}
3870
3871static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3872 __acquires(RCU)
3873{
3874 rcu_read_lock();
3875 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3876}
3877
3878static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3879{
3880 struct packet_type *pt;
3881 struct list_head *nxt;
3882 int hash;
3883
3884 ++*pos;
3885 if (v == SEQ_START_TOKEN)
3886 return ptype_get_idx(0);
3887
3888 pt = v;
3889 nxt = pt->list.next;
3890 if (pt->type == htons(ETH_P_ALL)) {
3891 if (nxt != &ptype_all)
3892 goto found;
3893 hash = 0;
3894 nxt = ptype_base[0].next;
3895 } else
3896 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3897
3898 while (nxt == &ptype_base[hash]) {
3899 if (++hash >= PTYPE_HASH_SIZE)
3900 return NULL;
3901 nxt = ptype_base[hash].next;
3902 }
3903found:
3904 return list_entry(nxt, struct packet_type, list);
3905}
3906
3907static void ptype_seq_stop(struct seq_file *seq, void *v)
3908 __releases(RCU)
3909{
3910 rcu_read_unlock();
3911}
3912
3913static int ptype_seq_show(struct seq_file *seq, void *v)
3914{
3915 struct packet_type *pt = v;
3916
3917 if (v == SEQ_START_TOKEN)
3918 seq_puts(seq, "Type Device Function\n");
3919 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3920 if (pt->type == htons(ETH_P_ALL))
3921 seq_puts(seq, "ALL ");
3922 else
3923 seq_printf(seq, "%04x", ntohs(pt->type));
3924
3925 seq_printf(seq, " %-8s %pF\n",
3926 pt->dev ? pt->dev->name : "", pt->func);
3927 }
3928
3929 return 0;
3930}
3931
3932static const struct seq_operations ptype_seq_ops = {
3933 .start = ptype_seq_start,
3934 .next = ptype_seq_next,
3935 .stop = ptype_seq_stop,
3936 .show = ptype_seq_show,
3937};
3938
3939static int ptype_seq_open(struct inode *inode, struct file *file)
3940{
3941 return seq_open_net(inode, file, &ptype_seq_ops,
3942 sizeof(struct seq_net_private));
3943}
3944
3945static const struct file_operations ptype_seq_fops = {
3946 .owner = THIS_MODULE,
3947 .open = ptype_seq_open,
3948 .read = seq_read,
3949 .llseek = seq_lseek,
3950 .release = seq_release_net,
3951};
3952
3953
3954static int __net_init dev_proc_net_init(struct net *net)
3955{
3956 int rc = -ENOMEM;
3957
3958 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3959 goto out;
3960 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3961 goto out_dev;
3962 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3963 goto out_softnet;
3964
3965 if (wext_proc_init(net))
3966 goto out_ptype;
3967 rc = 0;
3968out:
3969 return rc;
3970out_ptype:
3971 proc_net_remove(net, "ptype");
3972out_softnet:
3973 proc_net_remove(net, "softnet_stat");
3974out_dev:
3975 proc_net_remove(net, "dev");
3976 goto out;
3977}
3978
3979static void __net_exit dev_proc_net_exit(struct net *net)
3980{
3981 wext_proc_exit(net);
3982
3983 proc_net_remove(net, "ptype");
3984 proc_net_remove(net, "softnet_stat");
3985 proc_net_remove(net, "dev");
3986}
3987
3988static struct pernet_operations __net_initdata dev_proc_ops = {
3989 .init = dev_proc_net_init,
3990 .exit = dev_proc_net_exit,
3991};
3992
3993static int __init dev_proc_init(void)
3994{
3995 return register_pernet_subsys(&dev_proc_ops);
3996}
3997#else
3998#define dev_proc_init() 0
3999#endif /* CONFIG_PROC_FS */
4000
4001
4002/**
4003 * netdev_set_master - set up master/slave pair
4004 * @slave: slave device
4005 * @master: new master device
4006 *
4007 * Changes the master device of the slave. Pass %NULL to break the
4008 * bonding. The caller must hold the RTNL semaphore. On a failure
4009 * a negative errno code is returned. On success the reference counts
4010 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4011 * function returns zero.
4012 */
4013int netdev_set_master(struct net_device *slave, struct net_device *master)
4014{
4015 struct net_device *old = slave->master;
4016
4017 ASSERT_RTNL();
4018
4019 if (master) {
4020 if (old)
4021 return -EBUSY;
4022 dev_hold(master);
4023 }
4024
4025 slave->master = master;
4026
4027 if (old) {
4028 synchronize_net();
4029 dev_put(old);
4030 }
4031 if (master)
4032 slave->flags |= IFF_SLAVE;
4033 else
4034 slave->flags &= ~IFF_SLAVE;
4035
4036 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4037 return 0;
4038}
4039EXPORT_SYMBOL(netdev_set_master);
4040
4041static void dev_change_rx_flags(struct net_device *dev, int flags)
4042{
4043 const struct net_device_ops *ops = dev->netdev_ops;
4044
4045 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4046 ops->ndo_change_rx_flags(dev, flags);
4047}
4048
4049static int __dev_set_promiscuity(struct net_device *dev, int inc)
4050{
4051 unsigned short old_flags = dev->flags;
4052 uid_t uid;
4053 gid_t gid;
4054
4055 ASSERT_RTNL();
4056
4057 dev->flags |= IFF_PROMISC;
4058 dev->promiscuity += inc;
4059 if (dev->promiscuity == 0) {
4060 /*
4061 * Avoid overflow.
4062 * If inc causes overflow, untouch promisc and return error.
4063 */
4064 if (inc < 0)
4065 dev->flags &= ~IFF_PROMISC;
4066 else {
4067 dev->promiscuity -= inc;
4068 printk(KERN_WARNING "%s: promiscuity touches roof, "
4069 "set promiscuity failed, promiscuity feature "
4070 "of device might be broken.\n", dev->name);
4071 return -EOVERFLOW;
4072 }
4073 }
4074 if (dev->flags != old_flags) {
4075 printk(KERN_INFO "device %s %s promiscuous mode\n",
4076 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4077 "left");
4078 if (audit_enabled) {
4079 current_uid_gid(&uid, &gid);
4080 audit_log(current->audit_context, GFP_ATOMIC,
4081 AUDIT_ANOM_PROMISCUOUS,
4082 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4083 dev->name, (dev->flags & IFF_PROMISC),
4084 (old_flags & IFF_PROMISC),
4085 audit_get_loginuid(current),
4086 uid, gid,
4087 audit_get_sessionid(current));
4088 }
4089
4090 dev_change_rx_flags(dev, IFF_PROMISC);
4091 }
4092 return 0;
4093}
4094
4095/**
4096 * dev_set_promiscuity - update promiscuity count on a device
4097 * @dev: device
4098 * @inc: modifier
4099 *
4100 * Add or remove promiscuity from a device. While the count in the device
4101 * remains above zero the interface remains promiscuous. Once it hits zero
4102 * the device reverts back to normal filtering operation. A negative inc
4103 * value is used to drop promiscuity on the device.
4104 * Return 0 if successful or a negative errno code on error.
4105 */
4106int dev_set_promiscuity(struct net_device *dev, int inc)
4107{
4108 unsigned short old_flags = dev->flags;
4109 int err;
4110
4111 err = __dev_set_promiscuity(dev, inc);
4112 if (err < 0)
4113 return err;
4114 if (dev->flags != old_flags)
4115 dev_set_rx_mode(dev);
4116 return err;
4117}
4118EXPORT_SYMBOL(dev_set_promiscuity);
4119
4120/**
4121 * dev_set_allmulti - update allmulti count on a device
4122 * @dev: device
4123 * @inc: modifier
4124 *
4125 * Add or remove reception of all multicast frames to a device. While the
4126 * count in the device remains above zero the interface remains listening
4127 * to all interfaces. Once it hits zero the device reverts back to normal
4128 * filtering operation. A negative @inc value is used to drop the counter
4129 * when releasing a resource needing all multicasts.
4130 * Return 0 if successful or a negative errno code on error.
4131 */
4132
4133int dev_set_allmulti(struct net_device *dev, int inc)
4134{
4135 unsigned short old_flags = dev->flags;
4136
4137 ASSERT_RTNL();
4138
4139 dev->flags |= IFF_ALLMULTI;
4140 dev->allmulti += inc;
4141 if (dev->allmulti == 0) {
4142 /*
4143 * Avoid overflow.
4144 * If inc causes overflow, untouch allmulti and return error.
4145 */
4146 if (inc < 0)
4147 dev->flags &= ~IFF_ALLMULTI;
4148 else {
4149 dev->allmulti -= inc;
4150 printk(KERN_WARNING "%s: allmulti touches roof, "
4151 "set allmulti failed, allmulti feature of "
4152 "device might be broken.\n", dev->name);
4153 return -EOVERFLOW;
4154 }
4155 }
4156 if (dev->flags ^ old_flags) {
4157 dev_change_rx_flags(dev, IFF_ALLMULTI);
4158 dev_set_rx_mode(dev);
4159 }
4160 return 0;
4161}
4162EXPORT_SYMBOL(dev_set_allmulti);
4163
4164/*
4165 * Upload unicast and multicast address lists to device and
4166 * configure RX filtering. When the device doesn't support unicast
4167 * filtering it is put in promiscuous mode while unicast addresses
4168 * are present.
4169 */
4170void __dev_set_rx_mode(struct net_device *dev)
4171{
4172 const struct net_device_ops *ops = dev->netdev_ops;
4173
4174 /* dev_open will call this function so the list will stay sane. */
4175 if (!(dev->flags&IFF_UP))
4176 return;
4177
4178 if (!netif_device_present(dev))
4179 return;
4180
4181 if (ops->ndo_set_rx_mode)
4182 ops->ndo_set_rx_mode(dev);
4183 else {
4184 /* Unicast addresses changes may only happen under the rtnl,
4185 * therefore calling __dev_set_promiscuity here is safe.
4186 */
4187 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4188 __dev_set_promiscuity(dev, 1);
4189 dev->uc_promisc = 1;
4190 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4191 __dev_set_promiscuity(dev, -1);
4192 dev->uc_promisc = 0;
4193 }
4194
4195 if (ops->ndo_set_multicast_list)
4196 ops->ndo_set_multicast_list(dev);
4197 }
4198}
4199
4200void dev_set_rx_mode(struct net_device *dev)
4201{
4202 netif_addr_lock_bh(dev);
4203 __dev_set_rx_mode(dev);
4204 netif_addr_unlock_bh(dev);
4205}
4206
4207/**
4208 * dev_get_flags - get flags reported to userspace
4209 * @dev: device
4210 *
4211 * Get the combination of flag bits exported through APIs to userspace.
4212 */
4213unsigned dev_get_flags(const struct net_device *dev)
4214{
4215 unsigned flags;
4216
4217 flags = (dev->flags & ~(IFF_PROMISC |
4218 IFF_ALLMULTI |
4219 IFF_RUNNING |
4220 IFF_LOWER_UP |
4221 IFF_DORMANT)) |
4222 (dev->gflags & (IFF_PROMISC |
4223 IFF_ALLMULTI));
4224
4225 if (netif_running(dev)) {
4226 if (netif_oper_up(dev))
4227 flags |= IFF_RUNNING;
4228 if (netif_carrier_ok(dev))
4229 flags |= IFF_LOWER_UP;
4230 if (netif_dormant(dev))
4231 flags |= IFF_DORMANT;
4232 }
4233
4234 return flags;
4235}
4236EXPORT_SYMBOL(dev_get_flags);
4237
4238int __dev_change_flags(struct net_device *dev, unsigned int flags)
4239{
4240 int old_flags = dev->flags;
4241 int ret;
4242
4243 ASSERT_RTNL();
4244
4245 /*
4246 * Set the flags on our device.
4247 */
4248
4249 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4250 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4251 IFF_AUTOMEDIA)) |
4252 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4253 IFF_ALLMULTI));
4254
4255 /*
4256 * Load in the correct multicast list now the flags have changed.
4257 */
4258
4259 if ((old_flags ^ flags) & IFF_MULTICAST)
4260 dev_change_rx_flags(dev, IFF_MULTICAST);
4261
4262 dev_set_rx_mode(dev);
4263
4264 /*
4265 * Have we downed the interface. We handle IFF_UP ourselves
4266 * according to user attempts to set it, rather than blindly
4267 * setting it.
4268 */
4269
4270 ret = 0;
4271 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4272 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4273
4274 if (!ret)
4275 dev_set_rx_mode(dev);
4276 }
4277
4278 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4279 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4280
4281 dev->gflags ^= IFF_PROMISC;
4282 dev_set_promiscuity(dev, inc);
4283 }
4284
4285 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4286 is important. Some (broken) drivers set IFF_PROMISC, when
4287 IFF_ALLMULTI is requested not asking us and not reporting.
4288 */
4289 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4290 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4291
4292 dev->gflags ^= IFF_ALLMULTI;
4293 dev_set_allmulti(dev, inc);
4294 }
4295
4296 return ret;
4297}
4298
4299void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4300{
4301 unsigned int changes = dev->flags ^ old_flags;
4302
4303 if (changes & IFF_UP) {
4304 if (dev->flags & IFF_UP)
4305 call_netdevice_notifiers(NETDEV_UP, dev);
4306 else
4307 call_netdevice_notifiers(NETDEV_DOWN, dev);
4308 }
4309
4310 if (dev->flags & IFF_UP &&
4311 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4312 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4313}
4314
4315/**
4316 * dev_change_flags - change device settings
4317 * @dev: device
4318 * @flags: device state flags
4319 *
4320 * Change settings on device based state flags. The flags are
4321 * in the userspace exported format.
4322 */
4323int dev_change_flags(struct net_device *dev, unsigned flags)
4324{
4325 int ret, changes;
4326 int old_flags = dev->flags;
4327
4328 ret = __dev_change_flags(dev, flags);
4329 if (ret < 0)
4330 return ret;
4331
4332 changes = old_flags ^ dev->flags;
4333 if (changes)
4334 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4335
4336 __dev_notify_flags(dev, old_flags);
4337 return ret;
4338}
4339EXPORT_SYMBOL(dev_change_flags);
4340
4341/**
4342 * dev_set_mtu - Change maximum transfer unit
4343 * @dev: device
4344 * @new_mtu: new transfer unit
4345 *
4346 * Change the maximum transfer size of the network device.
4347 */
4348int dev_set_mtu(struct net_device *dev, int new_mtu)
4349{
4350 const struct net_device_ops *ops = dev->netdev_ops;
4351 int err;
4352
4353 if (new_mtu == dev->mtu)
4354 return 0;
4355
4356 /* MTU must be positive. */
4357 if (new_mtu < 0)
4358 return -EINVAL;
4359
4360 if (!netif_device_present(dev))
4361 return -ENODEV;
4362
4363 err = 0;
4364 if (ops->ndo_change_mtu)
4365 err = ops->ndo_change_mtu(dev, new_mtu);
4366 else
4367 dev->mtu = new_mtu;
4368
4369 if (!err && dev->flags & IFF_UP)
4370 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4371 return err;
4372}
4373EXPORT_SYMBOL(dev_set_mtu);
4374
4375/**
4376 * dev_set_mac_address - Change Media Access Control Address
4377 * @dev: device
4378 * @sa: new address
4379 *
4380 * Change the hardware (MAC) address of the device
4381 */
4382int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4383{
4384 const struct net_device_ops *ops = dev->netdev_ops;
4385 int err;
4386
4387 if (!ops->ndo_set_mac_address)
4388 return -EOPNOTSUPP;
4389 if (sa->sa_family != dev->type)
4390 return -EINVAL;
4391 if (!netif_device_present(dev))
4392 return -ENODEV;
4393 err = ops->ndo_set_mac_address(dev, sa);
4394 if (!err)
4395 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4396 return err;
4397}
4398EXPORT_SYMBOL(dev_set_mac_address);
4399
4400/*
4401 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4402 */
4403static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4404{
4405 int err;
4406 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4407
4408 if (!dev)
4409 return -ENODEV;
4410
4411 switch (cmd) {
4412 case SIOCGIFFLAGS: /* Get interface flags */
4413 ifr->ifr_flags = (short) dev_get_flags(dev);
4414 return 0;
4415
4416 case SIOCGIFMETRIC: /* Get the metric on the interface
4417 (currently unused) */
4418 ifr->ifr_metric = 0;
4419 return 0;
4420
4421 case SIOCGIFMTU: /* Get the MTU of a device */
4422 ifr->ifr_mtu = dev->mtu;
4423 return 0;
4424
4425 case SIOCGIFHWADDR:
4426 if (!dev->addr_len)
4427 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4428 else
4429 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4430 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4431 ifr->ifr_hwaddr.sa_family = dev->type;
4432 return 0;
4433
4434 case SIOCGIFSLAVE:
4435 err = -EINVAL;
4436 break;
4437
4438 case SIOCGIFMAP:
4439 ifr->ifr_map.mem_start = dev->mem_start;
4440 ifr->ifr_map.mem_end = dev->mem_end;
4441 ifr->ifr_map.base_addr = dev->base_addr;
4442 ifr->ifr_map.irq = dev->irq;
4443 ifr->ifr_map.dma = dev->dma;
4444 ifr->ifr_map.port = dev->if_port;
4445 return 0;
4446
4447 case SIOCGIFINDEX:
4448 ifr->ifr_ifindex = dev->ifindex;
4449 return 0;
4450
4451 case SIOCGIFTXQLEN:
4452 ifr->ifr_qlen = dev->tx_queue_len;
4453 return 0;
4454
4455 default:
4456 /* dev_ioctl() should ensure this case
4457 * is never reached
4458 */
4459 WARN_ON(1);
4460 err = -EINVAL;
4461 break;
4462
4463 }
4464 return err;
4465}
4466
4467/*
4468 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4469 */
4470static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4471{
4472 int err;
4473 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4474 const struct net_device_ops *ops;
4475
4476 if (!dev)
4477 return -ENODEV;
4478
4479 ops = dev->netdev_ops;
4480
4481 switch (cmd) {
4482 case SIOCSIFFLAGS: /* Set interface flags */
4483 return dev_change_flags(dev, ifr->ifr_flags);
4484
4485 case SIOCSIFMETRIC: /* Set the metric on the interface
4486 (currently unused) */
4487 return -EOPNOTSUPP;
4488
4489 case SIOCSIFMTU: /* Set the MTU of a device */
4490 return dev_set_mtu(dev, ifr->ifr_mtu);
4491
4492 case SIOCSIFHWADDR:
4493 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4494
4495 case SIOCSIFHWBROADCAST:
4496 if (ifr->ifr_hwaddr.sa_family != dev->type)
4497 return -EINVAL;
4498 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4499 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4500 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4501 return 0;
4502
4503 case SIOCSIFMAP:
4504 if (ops->ndo_set_config) {
4505 if (!netif_device_present(dev))
4506 return -ENODEV;
4507 return ops->ndo_set_config(dev, &ifr->ifr_map);
4508 }
4509 return -EOPNOTSUPP;
4510
4511 case SIOCADDMULTI:
4512 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4513 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4514 return -EINVAL;
4515 if (!netif_device_present(dev))
4516 return -ENODEV;
4517 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4518
4519 case SIOCDELMULTI:
4520 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4521 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4522 return -EINVAL;
4523 if (!netif_device_present(dev))
4524 return -ENODEV;
4525 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4526
4527 case SIOCSIFTXQLEN:
4528 if (ifr->ifr_qlen < 0)
4529 return -EINVAL;
4530 dev->tx_queue_len = ifr->ifr_qlen;
4531 return 0;
4532
4533 case SIOCSIFNAME:
4534 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4535 return dev_change_name(dev, ifr->ifr_newname);
4536
4537 /*
4538 * Unknown or private ioctl
4539 */
4540 default:
4541 if ((cmd >= SIOCDEVPRIVATE &&
4542 cmd <= SIOCDEVPRIVATE + 15) ||
4543 cmd == SIOCBONDENSLAVE ||
4544 cmd == SIOCBONDRELEASE ||
4545 cmd == SIOCBONDSETHWADDR ||
4546 cmd == SIOCBONDSLAVEINFOQUERY ||
4547 cmd == SIOCBONDINFOQUERY ||
4548 cmd == SIOCBONDCHANGEACTIVE ||
4549 cmd == SIOCGMIIPHY ||
4550 cmd == SIOCGMIIREG ||
4551 cmd == SIOCSMIIREG ||
4552 cmd == SIOCBRADDIF ||
4553 cmd == SIOCBRDELIF ||
4554 cmd == SIOCSHWTSTAMP ||
4555 cmd == SIOCWANDEV) {
4556 err = -EOPNOTSUPP;
4557 if (ops->ndo_do_ioctl) {
4558 if (netif_device_present(dev))
4559 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4560 else
4561 err = -ENODEV;
4562 }
4563 } else
4564 err = -EINVAL;
4565
4566 }
4567 return err;
4568}
4569
4570/*
4571 * This function handles all "interface"-type I/O control requests. The actual
4572 * 'doing' part of this is dev_ifsioc above.
4573 */
4574
4575/**
4576 * dev_ioctl - network device ioctl
4577 * @net: the applicable net namespace
4578 * @cmd: command to issue
4579 * @arg: pointer to a struct ifreq in user space
4580 *
4581 * Issue ioctl functions to devices. This is normally called by the
4582 * user space syscall interfaces but can sometimes be useful for
4583 * other purposes. The return value is the return from the syscall if
4584 * positive or a negative errno code on error.
4585 */
4586
4587int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4588{
4589 struct ifreq ifr;
4590 int ret;
4591 char *colon;
4592
4593 /* One special case: SIOCGIFCONF takes ifconf argument
4594 and requires shared lock, because it sleeps writing
4595 to user space.
4596 */
4597
4598 if (cmd == SIOCGIFCONF) {
4599 rtnl_lock();
4600 ret = dev_ifconf(net, (char __user *) arg);
4601 rtnl_unlock();
4602 return ret;
4603 }
4604 if (cmd == SIOCGIFNAME)
4605 return dev_ifname(net, (struct ifreq __user *)arg);
4606
4607 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4608 return -EFAULT;
4609
4610 ifr.ifr_name[IFNAMSIZ-1] = 0;
4611
4612 colon = strchr(ifr.ifr_name, ':');
4613 if (colon)
4614 *colon = 0;
4615
4616 /*
4617 * See which interface the caller is talking about.
4618 */
4619
4620 switch (cmd) {
4621 /*
4622 * These ioctl calls:
4623 * - can be done by all.
4624 * - atomic and do not require locking.
4625 * - return a value
4626 */
4627 case SIOCGIFFLAGS:
4628 case SIOCGIFMETRIC:
4629 case SIOCGIFMTU:
4630 case SIOCGIFHWADDR:
4631 case SIOCGIFSLAVE:
4632 case SIOCGIFMAP:
4633 case SIOCGIFINDEX:
4634 case SIOCGIFTXQLEN:
4635 dev_load(net, ifr.ifr_name);
4636 rcu_read_lock();
4637 ret = dev_ifsioc_locked(net, &ifr, cmd);
4638 rcu_read_unlock();
4639 if (!ret) {
4640 if (colon)
4641 *colon = ':';
4642 if (copy_to_user(arg, &ifr,
4643 sizeof(struct ifreq)))
4644 ret = -EFAULT;
4645 }
4646 return ret;
4647
4648 case SIOCETHTOOL:
4649 dev_load(net, ifr.ifr_name);
4650 rtnl_lock();
4651 ret = dev_ethtool(net, &ifr);
4652 rtnl_unlock();
4653 if (!ret) {
4654 if (colon)
4655 *colon = ':';
4656 if (copy_to_user(arg, &ifr,
4657 sizeof(struct ifreq)))
4658 ret = -EFAULT;
4659 }
4660 return ret;
4661
4662 /*
4663 * These ioctl calls:
4664 * - require superuser power.
4665 * - require strict serialization.
4666 * - return a value
4667 */
4668 case SIOCGMIIPHY:
4669 case SIOCGMIIREG:
4670 case SIOCSIFNAME:
4671 if (!capable(CAP_NET_ADMIN))
4672 return -EPERM;
4673 dev_load(net, ifr.ifr_name);
4674 rtnl_lock();
4675 ret = dev_ifsioc(net, &ifr, cmd);
4676 rtnl_unlock();
4677 if (!ret) {
4678 if (colon)
4679 *colon = ':';
4680 if (copy_to_user(arg, &ifr,
4681 sizeof(struct ifreq)))
4682 ret = -EFAULT;
4683 }
4684 return ret;
4685
4686 /*
4687 * These ioctl calls:
4688 * - require superuser power.
4689 * - require strict serialization.
4690 * - do not return a value
4691 */
4692 case SIOCSIFFLAGS:
4693 case SIOCSIFMETRIC:
4694 case SIOCSIFMTU:
4695 case SIOCSIFMAP:
4696 case SIOCSIFHWADDR:
4697 case SIOCSIFSLAVE:
4698 case SIOCADDMULTI:
4699 case SIOCDELMULTI:
4700 case SIOCSIFHWBROADCAST:
4701 case SIOCSIFTXQLEN:
4702 case SIOCSMIIREG:
4703 case SIOCBONDENSLAVE:
4704 case SIOCBONDRELEASE:
4705 case SIOCBONDSETHWADDR:
4706 case SIOCBONDCHANGEACTIVE:
4707 case SIOCBRADDIF:
4708 case SIOCBRDELIF:
4709 case SIOCSHWTSTAMP:
4710 if (!capable(CAP_NET_ADMIN))
4711 return -EPERM;
4712 /* fall through */
4713 case SIOCBONDSLAVEINFOQUERY:
4714 case SIOCBONDINFOQUERY:
4715 dev_load(net, ifr.ifr_name);
4716 rtnl_lock();
4717 ret = dev_ifsioc(net, &ifr, cmd);
4718 rtnl_unlock();
4719 return ret;
4720
4721 case SIOCGIFMEM:
4722 /* Get the per device memory space. We can add this but
4723 * currently do not support it */
4724 case SIOCSIFMEM:
4725 /* Set the per device memory buffer space.
4726 * Not applicable in our case */
4727 case SIOCSIFLINK:
4728 return -EINVAL;
4729
4730 /*
4731 * Unknown or private ioctl.
4732 */
4733 default:
4734 if (cmd == SIOCWANDEV ||
4735 (cmd >= SIOCDEVPRIVATE &&
4736 cmd <= SIOCDEVPRIVATE + 15)) {
4737 dev_load(net, ifr.ifr_name);
4738 rtnl_lock();
4739 ret = dev_ifsioc(net, &ifr, cmd);
4740 rtnl_unlock();
4741 if (!ret && copy_to_user(arg, &ifr,
4742 sizeof(struct ifreq)))
4743 ret = -EFAULT;
4744 return ret;
4745 }
4746 /* Take care of Wireless Extensions */
4747 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4748 return wext_handle_ioctl(net, &ifr, cmd, arg);
4749 return -EINVAL;
4750 }
4751}
4752
4753
4754/**
4755 * dev_new_index - allocate an ifindex
4756 * @net: the applicable net namespace
4757 *
4758 * Returns a suitable unique value for a new device interface
4759 * number. The caller must hold the rtnl semaphore or the
4760 * dev_base_lock to be sure it remains unique.
4761 */
4762static int dev_new_index(struct net *net)
4763{
4764 static int ifindex;
4765 for (;;) {
4766 if (++ifindex <= 0)
4767 ifindex = 1;
4768 if (!__dev_get_by_index(net, ifindex))
4769 return ifindex;
4770 }
4771}
4772
4773/* Delayed registration/unregisteration */
4774static LIST_HEAD(net_todo_list);
4775
4776static void net_set_todo(struct net_device *dev)
4777{
4778 list_add_tail(&dev->todo_list, &net_todo_list);
4779}
4780
4781static void rollback_registered_many(struct list_head *head)
4782{
4783 struct net_device *dev, *tmp;
4784
4785 BUG_ON(dev_boot_phase);
4786 ASSERT_RTNL();
4787
4788 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4789 /* Some devices call without registering
4790 * for initialization unwind. Remove those
4791 * devices and proceed with the remaining.
4792 */
4793 if (dev->reg_state == NETREG_UNINITIALIZED) {
4794 pr_debug("unregister_netdevice: device %s/%p never "
4795 "was registered\n", dev->name, dev);
4796
4797 WARN_ON(1);
4798 list_del(&dev->unreg_list);
4799 continue;
4800 }
4801
4802 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4803
4804 /* If device is running, close it first. */
4805 dev_close(dev);
4806
4807 /* And unlink it from device chain. */
4808 unlist_netdevice(dev);
4809
4810 dev->reg_state = NETREG_UNREGISTERING;
4811 }
4812
4813 synchronize_net();
4814
4815 list_for_each_entry(dev, head, unreg_list) {
4816 /* Shutdown queueing discipline. */
4817 dev_shutdown(dev);
4818
4819
4820 /* Notify protocols, that we are about to destroy
4821 this device. They should clean all the things.
4822 */
4823 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4824
4825 if (!dev->rtnl_link_ops ||
4826 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4827 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4828
4829 /*
4830 * Flush the unicast and multicast chains
4831 */
4832 dev_uc_flush(dev);
4833 dev_mc_flush(dev);
4834
4835 if (dev->netdev_ops->ndo_uninit)
4836 dev->netdev_ops->ndo_uninit(dev);
4837
4838 /* Notifier chain MUST detach us from master device. */
4839 WARN_ON(dev->master);
4840
4841 /* Remove entries from kobject tree */
4842 netdev_unregister_kobject(dev);
4843 }
4844
4845 /* Process any work delayed until the end of the batch */
4846 dev = list_first_entry(head, struct net_device, unreg_list);
4847 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4848
4849 synchronize_net();
4850
4851 list_for_each_entry(dev, head, unreg_list)
4852 dev_put(dev);
4853}
4854
4855static void rollback_registered(struct net_device *dev)
4856{
4857 LIST_HEAD(single);
4858
4859 list_add(&dev->unreg_list, &single);
4860 rollback_registered_many(&single);
4861}
4862
4863static void __netdev_init_queue_locks_one(struct net_device *dev,
4864 struct netdev_queue *dev_queue,
4865 void *_unused)
4866{
4867 spin_lock_init(&dev_queue->_xmit_lock);
4868 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4869 dev_queue->xmit_lock_owner = -1;
4870}
4871
4872static void netdev_init_queue_locks(struct net_device *dev)
4873{
4874 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4875 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4876}
4877
4878unsigned long netdev_fix_features(unsigned long features, const char *name)
4879{
4880 /* Fix illegal SG+CSUM combinations. */
4881 if ((features & NETIF_F_SG) &&
4882 !(features & NETIF_F_ALL_CSUM)) {
4883 if (name)
4884 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4885 "checksum feature.\n", name);
4886 features &= ~NETIF_F_SG;
4887 }
4888
4889 /* TSO requires that SG is present as well. */
4890 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4891 if (name)
4892 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4893 "SG feature.\n", name);
4894 features &= ~NETIF_F_TSO;
4895 }
4896
4897 if (features & NETIF_F_UFO) {
4898 if (!(features & NETIF_F_GEN_CSUM)) {
4899 if (name)
4900 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4901 "since no NETIF_F_HW_CSUM feature.\n",
4902 name);
4903 features &= ~NETIF_F_UFO;
4904 }
4905
4906 if (!(features & NETIF_F_SG)) {
4907 if (name)
4908 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4909 "since no NETIF_F_SG feature.\n", name);
4910 features &= ~NETIF_F_UFO;
4911 }
4912 }
4913
4914 return features;
4915}
4916EXPORT_SYMBOL(netdev_fix_features);
4917
4918/**
4919 * netif_stacked_transfer_operstate - transfer operstate
4920 * @rootdev: the root or lower level device to transfer state from
4921 * @dev: the device to transfer operstate to
4922 *
4923 * Transfer operational state from root to device. This is normally
4924 * called when a stacking relationship exists between the root
4925 * device and the device(a leaf device).
4926 */
4927void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4928 struct net_device *dev)
4929{
4930 if (rootdev->operstate == IF_OPER_DORMANT)
4931 netif_dormant_on(dev);
4932 else
4933 netif_dormant_off(dev);
4934
4935 if (netif_carrier_ok(rootdev)) {
4936 if (!netif_carrier_ok(dev))
4937 netif_carrier_on(dev);
4938 } else {
4939 if (netif_carrier_ok(dev))
4940 netif_carrier_off(dev);
4941 }
4942}
4943EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4944
4945/**
4946 * register_netdevice - register a network device
4947 * @dev: device to register
4948 *
4949 * Take a completed network device structure and add it to the kernel
4950 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4951 * chain. 0 is returned on success. A negative errno code is returned
4952 * on a failure to set up the device, or if the name is a duplicate.
4953 *
4954 * Callers must hold the rtnl semaphore. You may want
4955 * register_netdev() instead of this.
4956 *
4957 * BUGS:
4958 * The locking appears insufficient to guarantee two parallel registers
4959 * will not get the same name.
4960 */
4961
4962int register_netdevice(struct net_device *dev)
4963{
4964 int ret;
4965 struct net *net = dev_net(dev);
4966
4967 BUG_ON(dev_boot_phase);
4968 ASSERT_RTNL();
4969
4970 might_sleep();
4971
4972 /* When net_device's are persistent, this will be fatal. */
4973 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4974 BUG_ON(!net);
4975
4976 spin_lock_init(&dev->addr_list_lock);
4977 netdev_set_addr_lockdep_class(dev);
4978 netdev_init_queue_locks(dev);
4979
4980 dev->iflink = -1;
4981
4982#ifdef CONFIG_RPS
4983 if (!dev->num_rx_queues) {
4984 /*
4985 * Allocate a single RX queue if driver never called
4986 * alloc_netdev_mq
4987 */
4988
4989 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4990 if (!dev->_rx) {
4991 ret = -ENOMEM;
4992 goto out;
4993 }
4994
4995 dev->_rx->first = dev->_rx;
4996 atomic_set(&dev->_rx->count, 1);
4997 dev->num_rx_queues = 1;
4998 }
4999#endif
5000 /* Init, if this function is available */
5001 if (dev->netdev_ops->ndo_init) {
5002 ret = dev->netdev_ops->ndo_init(dev);
5003 if (ret) {
5004 if (ret > 0)
5005 ret = -EIO;
5006 goto out;
5007 }
5008 }
5009
5010 ret = dev_get_valid_name(dev, dev->name, 0);
5011 if (ret)
5012 goto err_uninit;
5013
5014 dev->ifindex = dev_new_index(net);
5015 if (dev->iflink == -1)
5016 dev->iflink = dev->ifindex;
5017
5018 /* Fix illegal checksum combinations */
5019 if ((dev->features & NETIF_F_HW_CSUM) &&
5020 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5021 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5022 dev->name);
5023 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5024 }
5025
5026 if ((dev->features & NETIF_F_NO_CSUM) &&
5027 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5028 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5029 dev->name);
5030 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5031 }
5032
5033 dev->features = netdev_fix_features(dev->features, dev->name);
5034
5035 /* Enable software GSO if SG is supported. */
5036 if (dev->features & NETIF_F_SG)
5037 dev->features |= NETIF_F_GSO;
5038
5039 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5040 ret = notifier_to_errno(ret);
5041 if (ret)
5042 goto err_uninit;
5043
5044 ret = netdev_register_kobject(dev);
5045 if (ret)
5046 goto err_uninit;
5047 dev->reg_state = NETREG_REGISTERED;
5048
5049 /*
5050 * Default initial state at registry is that the
5051 * device is present.
5052 */
5053
5054 set_bit(__LINK_STATE_PRESENT, &dev->state);
5055
5056 dev_init_scheduler(dev);
5057 dev_hold(dev);
5058 list_netdevice(dev);
5059
5060 /* Notify protocols, that a new device appeared. */
5061 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5062 ret = notifier_to_errno(ret);
5063 if (ret) {
5064 rollback_registered(dev);
5065 dev->reg_state = NETREG_UNREGISTERED;
5066 }
5067 /*
5068 * Prevent userspace races by waiting until the network
5069 * device is fully setup before sending notifications.
5070 */
5071 if (!dev->rtnl_link_ops ||
5072 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5073 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5074
5075out:
5076 return ret;
5077
5078err_uninit:
5079 if (dev->netdev_ops->ndo_uninit)
5080 dev->netdev_ops->ndo_uninit(dev);
5081 goto out;
5082}
5083EXPORT_SYMBOL(register_netdevice);
5084
5085/**
5086 * init_dummy_netdev - init a dummy network device for NAPI
5087 * @dev: device to init
5088 *
5089 * This takes a network device structure and initialize the minimum
5090 * amount of fields so it can be used to schedule NAPI polls without
5091 * registering a full blown interface. This is to be used by drivers
5092 * that need to tie several hardware interfaces to a single NAPI
5093 * poll scheduler due to HW limitations.
5094 */
5095int init_dummy_netdev(struct net_device *dev)
5096{
5097 /* Clear everything. Note we don't initialize spinlocks
5098 * are they aren't supposed to be taken by any of the
5099 * NAPI code and this dummy netdev is supposed to be
5100 * only ever used for NAPI polls
5101 */
5102 memset(dev, 0, sizeof(struct net_device));
5103
5104 /* make sure we BUG if trying to hit standard
5105 * register/unregister code path
5106 */
5107 dev->reg_state = NETREG_DUMMY;
5108
5109 /* initialize the ref count */
5110 atomic_set(&dev->refcnt, 1);
5111
5112 /* NAPI wants this */
5113 INIT_LIST_HEAD(&dev->napi_list);
5114
5115 /* a dummy interface is started by default */
5116 set_bit(__LINK_STATE_PRESENT, &dev->state);
5117 set_bit(__LINK_STATE_START, &dev->state);
5118
5119 return 0;
5120}
5121EXPORT_SYMBOL_GPL(init_dummy_netdev);
5122
5123
5124/**
5125 * register_netdev - register a network device
5126 * @dev: device to register
5127 *
5128 * Take a completed network device structure and add it to the kernel
5129 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5130 * chain. 0 is returned on success. A negative errno code is returned
5131 * on a failure to set up the device, or if the name is a duplicate.
5132 *
5133 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5134 * and expands the device name if you passed a format string to
5135 * alloc_netdev.
5136 */
5137int register_netdev(struct net_device *dev)
5138{
5139 int err;
5140
5141 rtnl_lock();
5142
5143 /*
5144 * If the name is a format string the caller wants us to do a
5145 * name allocation.
5146 */
5147 if (strchr(dev->name, '%')) {
5148 err = dev_alloc_name(dev, dev->name);
5149 if (err < 0)
5150 goto out;
5151 }
5152
5153 err = register_netdevice(dev);
5154out:
5155 rtnl_unlock();
5156 return err;
5157}
5158EXPORT_SYMBOL(register_netdev);
5159
5160/*
5161 * netdev_wait_allrefs - wait until all references are gone.
5162 *
5163 * This is called when unregistering network devices.
5164 *
5165 * Any protocol or device that holds a reference should register
5166 * for netdevice notification, and cleanup and put back the
5167 * reference if they receive an UNREGISTER event.
5168 * We can get stuck here if buggy protocols don't correctly
5169 * call dev_put.
5170 */
5171static void netdev_wait_allrefs(struct net_device *dev)
5172{
5173 unsigned long rebroadcast_time, warning_time;
5174
5175 linkwatch_forget_dev(dev);
5176
5177 rebroadcast_time = warning_time = jiffies;
5178 while (atomic_read(&dev->refcnt) != 0) {
5179 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5180 rtnl_lock();
5181
5182 /* Rebroadcast unregister notification */
5183 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5184 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5185 * should have already handle it the first time */
5186
5187 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5188 &dev->state)) {
5189 /* We must not have linkwatch events
5190 * pending on unregister. If this
5191 * happens, we simply run the queue
5192 * unscheduled, resulting in a noop
5193 * for this device.
5194 */
5195 linkwatch_run_queue();
5196 }
5197
5198 __rtnl_unlock();
5199
5200 rebroadcast_time = jiffies;
5201 }
5202
5203 msleep(250);
5204
5205 if (time_after(jiffies, warning_time + 10 * HZ)) {
5206 printk(KERN_EMERG "unregister_netdevice: "
5207 "waiting for %s to become free. Usage "
5208 "count = %d\n",
5209 dev->name, atomic_read(&dev->refcnt));
5210 warning_time = jiffies;
5211 }
5212 }
5213}
5214
5215/* The sequence is:
5216 *
5217 * rtnl_lock();
5218 * ...
5219 * register_netdevice(x1);
5220 * register_netdevice(x2);
5221 * ...
5222 * unregister_netdevice(y1);
5223 * unregister_netdevice(y2);
5224 * ...
5225 * rtnl_unlock();
5226 * free_netdev(y1);
5227 * free_netdev(y2);
5228 *
5229 * We are invoked by rtnl_unlock().
5230 * This allows us to deal with problems:
5231 * 1) We can delete sysfs objects which invoke hotplug
5232 * without deadlocking with linkwatch via keventd.
5233 * 2) Since we run with the RTNL semaphore not held, we can sleep
5234 * safely in order to wait for the netdev refcnt to drop to zero.
5235 *
5236 * We must not return until all unregister events added during
5237 * the interval the lock was held have been completed.
5238 */
5239void netdev_run_todo(void)
5240{
5241 struct list_head list;
5242
5243 /* Snapshot list, allow later requests */
5244 list_replace_init(&net_todo_list, &list);
5245
5246 __rtnl_unlock();
5247
5248 while (!list_empty(&list)) {
5249 struct net_device *dev
5250 = list_first_entry(&list, struct net_device, todo_list);
5251 list_del(&dev->todo_list);
5252
5253 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5254 printk(KERN_ERR "network todo '%s' but state %d\n",
5255 dev->name, dev->reg_state);
5256 dump_stack();
5257 continue;
5258 }
5259
5260 dev->reg_state = NETREG_UNREGISTERED;
5261
5262 on_each_cpu(flush_backlog, dev, 1);
5263
5264 netdev_wait_allrefs(dev);
5265
5266 /* paranoia */
5267 BUG_ON(atomic_read(&dev->refcnt));
5268 WARN_ON(dev->ip_ptr);
5269 WARN_ON(dev->ip6_ptr);
5270 WARN_ON(dev->dn_ptr);
5271
5272 if (dev->destructor)
5273 dev->destructor(dev);
5274
5275 /* Free network device */
5276 kobject_put(&dev->dev.kobj);
5277 }
5278}
5279
5280/**
5281 * dev_txq_stats_fold - fold tx_queues stats
5282 * @dev: device to get statistics from
5283 * @stats: struct rtnl_link_stats64 to hold results
5284 */
5285void dev_txq_stats_fold(const struct net_device *dev,
5286 struct rtnl_link_stats64 *stats)
5287{
5288 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5289 unsigned int i;
5290 struct netdev_queue *txq;
5291
5292 for (i = 0; i < dev->num_tx_queues; i++) {
5293 txq = netdev_get_tx_queue(dev, i);
5294 spin_lock_bh(&txq->_xmit_lock);
5295 tx_bytes += txq->tx_bytes;
5296 tx_packets += txq->tx_packets;
5297 tx_dropped += txq->tx_dropped;
5298 spin_unlock_bh(&txq->_xmit_lock);
5299 }
5300 if (tx_bytes || tx_packets || tx_dropped) {
5301 stats->tx_bytes = tx_bytes;
5302 stats->tx_packets = tx_packets;
5303 stats->tx_dropped = tx_dropped;
5304 }
5305}
5306EXPORT_SYMBOL(dev_txq_stats_fold);
5307
5308/* Convert net_device_stats to rtnl_link_stats64. They have the same
5309 * fields in the same order, with only the type differing.
5310 */
5311static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5312 const struct net_device_stats *netdev_stats)
5313{
5314#if BITS_PER_LONG == 64
5315 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5316 memcpy(stats64, netdev_stats, sizeof(*stats64));
5317#else
5318 size_t i, n = sizeof(*stats64) / sizeof(u64);
5319 const unsigned long *src = (const unsigned long *)netdev_stats;
5320 u64 *dst = (u64 *)stats64;
5321
5322 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5323 sizeof(*stats64) / sizeof(u64));
5324 for (i = 0; i < n; i++)
5325 dst[i] = src[i];
5326#endif
5327}
5328
5329/**
5330 * dev_get_stats - get network device statistics
5331 * @dev: device to get statistics from
5332 * @storage: place to store stats
5333 *
5334 * Get network statistics from device. Return @storage.
5335 * The device driver may provide its own method by setting
5336 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5337 * otherwise the internal statistics structure is used.
5338 */
5339struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5340 struct rtnl_link_stats64 *storage)
5341{
5342 const struct net_device_ops *ops = dev->netdev_ops;
5343
5344 if (ops->ndo_get_stats64) {
5345 memset(storage, 0, sizeof(*storage));
5346 return ops->ndo_get_stats64(dev, storage);
5347 }
5348 if (ops->ndo_get_stats) {
5349 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5350 return storage;
5351 }
5352 netdev_stats_to_stats64(storage, &dev->stats);
5353 dev_txq_stats_fold(dev, storage);
5354 return storage;
5355}
5356EXPORT_SYMBOL(dev_get_stats);
5357
5358static void netdev_init_one_queue(struct net_device *dev,
5359 struct netdev_queue *queue,
5360 void *_unused)
5361{
5362 queue->dev = dev;
5363}
5364
5365static void netdev_init_queues(struct net_device *dev)
5366{
5367 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5368 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5369 spin_lock_init(&dev->tx_global_lock);
5370}
5371
5372/**
5373 * alloc_netdev_mq - allocate network device
5374 * @sizeof_priv: size of private data to allocate space for
5375 * @name: device name format string
5376 * @setup: callback to initialize device
5377 * @queue_count: the number of subqueues to allocate
5378 *
5379 * Allocates a struct net_device with private data area for driver use
5380 * and performs basic initialization. Also allocates subquue structs
5381 * for each queue on the device at the end of the netdevice.
5382 */
5383struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5384 void (*setup)(struct net_device *), unsigned int queue_count)
5385{
5386 struct netdev_queue *tx;
5387 struct net_device *dev;
5388 size_t alloc_size;
5389 struct net_device *p;
5390#ifdef CONFIG_RPS
5391 struct netdev_rx_queue *rx;
5392 int i;
5393#endif
5394
5395 BUG_ON(strlen(name) >= sizeof(dev->name));
5396
5397 alloc_size = sizeof(struct net_device);
5398 if (sizeof_priv) {
5399 /* ensure 32-byte alignment of private area */
5400 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5401 alloc_size += sizeof_priv;
5402 }
5403 /* ensure 32-byte alignment of whole construct */
5404 alloc_size += NETDEV_ALIGN - 1;
5405
5406 p = kzalloc(alloc_size, GFP_KERNEL);
5407 if (!p) {
5408 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5409 return NULL;
5410 }
5411
5412 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5413 if (!tx) {
5414 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5415 "tx qdiscs.\n");
5416 goto free_p;
5417 }
5418
5419#ifdef CONFIG_RPS
5420 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5421 if (!rx) {
5422 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5423 "rx queues.\n");
5424 goto free_tx;
5425 }
5426
5427 atomic_set(&rx->count, queue_count);
5428
5429 /*
5430 * Set a pointer to first element in the array which holds the
5431 * reference count.
5432 */
5433 for (i = 0; i < queue_count; i++)
5434 rx[i].first = rx;
5435#endif
5436
5437 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5438 dev->padded = (char *)dev - (char *)p;
5439
5440 if (dev_addr_init(dev))
5441 goto free_rx;
5442
5443 dev_mc_init(dev);
5444 dev_uc_init(dev);
5445
5446 dev_net_set(dev, &init_net);
5447
5448 dev->_tx = tx;
5449 dev->num_tx_queues = queue_count;
5450 dev->real_num_tx_queues = queue_count;
5451
5452#ifdef CONFIG_RPS
5453 dev->_rx = rx;
5454 dev->num_rx_queues = queue_count;
5455#endif
5456
5457 dev->gso_max_size = GSO_MAX_SIZE;
5458
5459 netdev_init_queues(dev);
5460
5461 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5462 dev->ethtool_ntuple_list.count = 0;
5463 INIT_LIST_HEAD(&dev->napi_list);
5464 INIT_LIST_HEAD(&dev->unreg_list);
5465 INIT_LIST_HEAD(&dev->link_watch_list);
5466 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5467 setup(dev);
5468 strcpy(dev->name, name);
5469 return dev;
5470
5471free_rx:
5472#ifdef CONFIG_RPS
5473 kfree(rx);
5474free_tx:
5475#endif
5476 kfree(tx);
5477free_p:
5478 kfree(p);
5479 return NULL;
5480}
5481EXPORT_SYMBOL(alloc_netdev_mq);
5482
5483/**
5484 * free_netdev - free network device
5485 * @dev: device
5486 *
5487 * This function does the last stage of destroying an allocated device
5488 * interface. The reference to the device object is released.
5489 * If this is the last reference then it will be freed.
5490 */
5491void free_netdev(struct net_device *dev)
5492{
5493 struct napi_struct *p, *n;
5494
5495 release_net(dev_net(dev));
5496
5497 kfree(dev->_tx);
5498
5499 /* Flush device addresses */
5500 dev_addr_flush(dev);
5501
5502 /* Clear ethtool n-tuple list */
5503 ethtool_ntuple_flush(dev);
5504
5505 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5506 netif_napi_del(p);
5507
5508 /* Compatibility with error handling in drivers */
5509 if (dev->reg_state == NETREG_UNINITIALIZED) {
5510 kfree((char *)dev - dev->padded);
5511 return;
5512 }
5513
5514 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5515 dev->reg_state = NETREG_RELEASED;
5516
5517 /* will free via device release */
5518 put_device(&dev->dev);
5519}
5520EXPORT_SYMBOL(free_netdev);
5521
5522/**
5523 * synchronize_net - Synchronize with packet receive processing
5524 *
5525 * Wait for packets currently being received to be done.
5526 * Does not block later packets from starting.
5527 */
5528void synchronize_net(void)
5529{
5530 might_sleep();
5531 synchronize_rcu();
5532}
5533EXPORT_SYMBOL(synchronize_net);
5534
5535/**
5536 * unregister_netdevice_queue - remove device from the kernel
5537 * @dev: device
5538 * @head: list
5539 *
5540 * This function shuts down a device interface and removes it
5541 * from the kernel tables.
5542 * If head not NULL, device is queued to be unregistered later.
5543 *
5544 * Callers must hold the rtnl semaphore. You may want
5545 * unregister_netdev() instead of this.
5546 */
5547
5548void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5549{
5550 ASSERT_RTNL();
5551
5552 if (head) {
5553 list_move_tail(&dev->unreg_list, head);
5554 } else {
5555 rollback_registered(dev);
5556 /* Finish processing unregister after unlock */
5557 net_set_todo(dev);
5558 }
5559}
5560EXPORT_SYMBOL(unregister_netdevice_queue);
5561
5562/**
5563 * unregister_netdevice_many - unregister many devices
5564 * @head: list of devices
5565 */
5566void unregister_netdevice_many(struct list_head *head)
5567{
5568 struct net_device *dev;
5569
5570 if (!list_empty(head)) {
5571 rollback_registered_many(head);
5572 list_for_each_entry(dev, head, unreg_list)
5573 net_set_todo(dev);
5574 }
5575}
5576EXPORT_SYMBOL(unregister_netdevice_many);
5577
5578/**
5579 * unregister_netdev - remove device from the kernel
5580 * @dev: device
5581 *
5582 * This function shuts down a device interface and removes it
5583 * from the kernel tables.
5584 *
5585 * This is just a wrapper for unregister_netdevice that takes
5586 * the rtnl semaphore. In general you want to use this and not
5587 * unregister_netdevice.
5588 */
5589void unregister_netdev(struct net_device *dev)
5590{
5591 rtnl_lock();
5592 unregister_netdevice(dev);
5593 rtnl_unlock();
5594}
5595EXPORT_SYMBOL(unregister_netdev);
5596
5597/**
5598 * dev_change_net_namespace - move device to different nethost namespace
5599 * @dev: device
5600 * @net: network namespace
5601 * @pat: If not NULL name pattern to try if the current device name
5602 * is already taken in the destination network namespace.
5603 *
5604 * This function shuts down a device interface and moves it
5605 * to a new network namespace. On success 0 is returned, on
5606 * a failure a netagive errno code is returned.
5607 *
5608 * Callers must hold the rtnl semaphore.
5609 */
5610
5611int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5612{
5613 int err;
5614
5615 ASSERT_RTNL();
5616
5617 /* Don't allow namespace local devices to be moved. */
5618 err = -EINVAL;
5619 if (dev->features & NETIF_F_NETNS_LOCAL)
5620 goto out;
5621
5622 /* Ensure the device has been registrered */
5623 err = -EINVAL;
5624 if (dev->reg_state != NETREG_REGISTERED)
5625 goto out;
5626
5627 /* Get out if there is nothing todo */
5628 err = 0;
5629 if (net_eq(dev_net(dev), net))
5630 goto out;
5631
5632 /* Pick the destination device name, and ensure
5633 * we can use it in the destination network namespace.
5634 */
5635 err = -EEXIST;
5636 if (__dev_get_by_name(net, dev->name)) {
5637 /* We get here if we can't use the current device name */
5638 if (!pat)
5639 goto out;
5640 if (dev_get_valid_name(dev, pat, 1))
5641 goto out;
5642 }
5643
5644 /*
5645 * And now a mini version of register_netdevice unregister_netdevice.
5646 */
5647
5648 /* If device is running close it first. */
5649 dev_close(dev);
5650
5651 /* And unlink it from device chain */
5652 err = -ENODEV;
5653 unlist_netdevice(dev);
5654
5655 synchronize_net();
5656
5657 /* Shutdown queueing discipline. */
5658 dev_shutdown(dev);
5659
5660 /* Notify protocols, that we are about to destroy
5661 this device. They should clean all the things.
5662 */
5663 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5664 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5665
5666 /*
5667 * Flush the unicast and multicast chains
5668 */
5669 dev_uc_flush(dev);
5670 dev_mc_flush(dev);
5671
5672 /* Actually switch the network namespace */
5673 dev_net_set(dev, net);
5674
5675 /* If there is an ifindex conflict assign a new one */
5676 if (__dev_get_by_index(net, dev->ifindex)) {
5677 int iflink = (dev->iflink == dev->ifindex);
5678 dev->ifindex = dev_new_index(net);
5679 if (iflink)
5680 dev->iflink = dev->ifindex;
5681 }
5682
5683 /* Fixup kobjects */
5684 err = device_rename(&dev->dev, dev->name);
5685 WARN_ON(err);
5686
5687 /* Add the device back in the hashes */
5688 list_netdevice(dev);
5689
5690 /* Notify protocols, that a new device appeared. */
5691 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5692
5693 /*
5694 * Prevent userspace races by waiting until the network
5695 * device is fully setup before sending notifications.
5696 */
5697 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5698
5699 synchronize_net();
5700 err = 0;
5701out:
5702 return err;
5703}
5704EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5705
5706static int dev_cpu_callback(struct notifier_block *nfb,
5707 unsigned long action,
5708 void *ocpu)
5709{
5710 struct sk_buff **list_skb;
5711 struct sk_buff *skb;
5712 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5713 struct softnet_data *sd, *oldsd;
5714
5715 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5716 return NOTIFY_OK;
5717
5718 local_irq_disable();
5719 cpu = smp_processor_id();
5720 sd = &per_cpu(softnet_data, cpu);
5721 oldsd = &per_cpu(softnet_data, oldcpu);
5722
5723 /* Find end of our completion_queue. */
5724 list_skb = &sd->completion_queue;
5725 while (*list_skb)
5726 list_skb = &(*list_skb)->next;
5727 /* Append completion queue from offline CPU. */
5728 *list_skb = oldsd->completion_queue;
5729 oldsd->completion_queue = NULL;
5730
5731 /* Append output queue from offline CPU. */
5732 if (oldsd->output_queue) {
5733 *sd->output_queue_tailp = oldsd->output_queue;
5734 sd->output_queue_tailp = oldsd->output_queue_tailp;
5735 oldsd->output_queue = NULL;
5736 oldsd->output_queue_tailp = &oldsd->output_queue;
5737 }
5738
5739 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5740 local_irq_enable();
5741
5742 /* Process offline CPU's input_pkt_queue */
5743 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5744 netif_rx(skb);
5745 input_queue_head_incr(oldsd);
5746 }
5747 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5748 netif_rx(skb);
5749 input_queue_head_incr(oldsd);
5750 }
5751
5752 return NOTIFY_OK;
5753}
5754
5755
5756/**
5757 * netdev_increment_features - increment feature set by one
5758 * @all: current feature set
5759 * @one: new feature set
5760 * @mask: mask feature set
5761 *
5762 * Computes a new feature set after adding a device with feature set
5763 * @one to the master device with current feature set @all. Will not
5764 * enable anything that is off in @mask. Returns the new feature set.
5765 */
5766unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5767 unsigned long mask)
5768{
5769 /* If device needs checksumming, downgrade to it. */
5770 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5771 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5772 else if (mask & NETIF_F_ALL_CSUM) {
5773 /* If one device supports v4/v6 checksumming, set for all. */
5774 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5775 !(all & NETIF_F_GEN_CSUM)) {
5776 all &= ~NETIF_F_ALL_CSUM;
5777 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5778 }
5779
5780 /* If one device supports hw checksumming, set for all. */
5781 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5782 all &= ~NETIF_F_ALL_CSUM;
5783 all |= NETIF_F_HW_CSUM;
5784 }
5785 }
5786
5787 one |= NETIF_F_ALL_CSUM;
5788
5789 one |= all & NETIF_F_ONE_FOR_ALL;
5790 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5791 all |= one & mask & NETIF_F_ONE_FOR_ALL;
5792
5793 return all;
5794}
5795EXPORT_SYMBOL(netdev_increment_features);
5796
5797static struct hlist_head *netdev_create_hash(void)
5798{
5799 int i;
5800 struct hlist_head *hash;
5801
5802 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5803 if (hash != NULL)
5804 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5805 INIT_HLIST_HEAD(&hash[i]);
5806
5807 return hash;
5808}
5809
5810/* Initialize per network namespace state */
5811static int __net_init netdev_init(struct net *net)
5812{
5813 INIT_LIST_HEAD(&net->dev_base_head);
5814
5815 net->dev_name_head = netdev_create_hash();
5816 if (net->dev_name_head == NULL)
5817 goto err_name;
5818
5819 net->dev_index_head = netdev_create_hash();
5820 if (net->dev_index_head == NULL)
5821 goto err_idx;
5822
5823 return 0;
5824
5825err_idx:
5826 kfree(net->dev_name_head);
5827err_name:
5828 return -ENOMEM;
5829}
5830
5831/**
5832 * netdev_drivername - network driver for the device
5833 * @dev: network device
5834 * @buffer: buffer for resulting name
5835 * @len: size of buffer
5836 *
5837 * Determine network driver for device.
5838 */
5839char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5840{
5841 const struct device_driver *driver;
5842 const struct device *parent;
5843
5844 if (len <= 0 || !buffer)
5845 return buffer;
5846 buffer[0] = 0;
5847
5848 parent = dev->dev.parent;
5849
5850 if (!parent)
5851 return buffer;
5852
5853 driver = parent->driver;
5854 if (driver && driver->name)
5855 strlcpy(buffer, driver->name, len);
5856 return buffer;
5857}
5858
5859static int __netdev_printk(const char *level, const struct net_device *dev,
5860 struct va_format *vaf)
5861{
5862 int r;
5863
5864 if (dev && dev->dev.parent)
5865 r = dev_printk(level, dev->dev.parent, "%s: %pV",
5866 netdev_name(dev), vaf);
5867 else if (dev)
5868 r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5869 else
5870 r = printk("%s(NULL net_device): %pV", level, vaf);
5871
5872 return r;
5873}
5874
5875int netdev_printk(const char *level, const struct net_device *dev,
5876 const char *format, ...)
5877{
5878 struct va_format vaf;
5879 va_list args;
5880 int r;
5881
5882 va_start(args, format);
5883
5884 vaf.fmt = format;
5885 vaf.va = &args;
5886
5887 r = __netdev_printk(level, dev, &vaf);
5888 va_end(args);
5889
5890 return r;
5891}
5892EXPORT_SYMBOL(netdev_printk);
5893
5894#define define_netdev_printk_level(func, level) \
5895int func(const struct net_device *dev, const char *fmt, ...) \
5896{ \
5897 int r; \
5898 struct va_format vaf; \
5899 va_list args; \
5900 \
5901 va_start(args, fmt); \
5902 \
5903 vaf.fmt = fmt; \
5904 vaf.va = &args; \
5905 \
5906 r = __netdev_printk(level, dev, &vaf); \
5907 va_end(args); \
5908 \
5909 return r; \
5910} \
5911EXPORT_SYMBOL(func);
5912
5913define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5914define_netdev_printk_level(netdev_alert, KERN_ALERT);
5915define_netdev_printk_level(netdev_crit, KERN_CRIT);
5916define_netdev_printk_level(netdev_err, KERN_ERR);
5917define_netdev_printk_level(netdev_warn, KERN_WARNING);
5918define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5919define_netdev_printk_level(netdev_info, KERN_INFO);
5920
5921static void __net_exit netdev_exit(struct net *net)
5922{
5923 kfree(net->dev_name_head);
5924 kfree(net->dev_index_head);
5925}
5926
5927static struct pernet_operations __net_initdata netdev_net_ops = {
5928 .init = netdev_init,
5929 .exit = netdev_exit,
5930};
5931
5932static void __net_exit default_device_exit(struct net *net)
5933{
5934 struct net_device *dev, *aux;
5935 /*
5936 * Push all migratable network devices back to the
5937 * initial network namespace
5938 */
5939 rtnl_lock();
5940 for_each_netdev_safe(net, dev, aux) {
5941 int err;
5942 char fb_name[IFNAMSIZ];
5943
5944 /* Ignore unmoveable devices (i.e. loopback) */
5945 if (dev->features & NETIF_F_NETNS_LOCAL)
5946 continue;
5947
5948 /* Leave virtual devices for the generic cleanup */
5949 if (dev->rtnl_link_ops)
5950 continue;
5951
5952 /* Push remaing network devices to init_net */
5953 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5954 err = dev_change_net_namespace(dev, &init_net, fb_name);
5955 if (err) {
5956 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5957 __func__, dev->name, err);
5958 BUG();
5959 }
5960 }
5961 rtnl_unlock();
5962}
5963
5964static void __net_exit default_device_exit_batch(struct list_head *net_list)
5965{
5966 /* At exit all network devices most be removed from a network
5967 * namespace. Do this in the reverse order of registeration.
5968 * Do this across as many network namespaces as possible to
5969 * improve batching efficiency.
5970 */
5971 struct net_device *dev;
5972 struct net *net;
5973 LIST_HEAD(dev_kill_list);
5974
5975 rtnl_lock();
5976 list_for_each_entry(net, net_list, exit_list) {
5977 for_each_netdev_reverse(net, dev) {
5978 if (dev->rtnl_link_ops)
5979 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5980 else
5981 unregister_netdevice_queue(dev, &dev_kill_list);
5982 }
5983 }
5984 unregister_netdevice_many(&dev_kill_list);
5985 rtnl_unlock();
5986}
5987
5988static struct pernet_operations __net_initdata default_device_ops = {
5989 .exit = default_device_exit,
5990 .exit_batch = default_device_exit_batch,
5991};
5992
5993/*
5994 * Initialize the DEV module. At boot time this walks the device list and
5995 * unhooks any devices that fail to initialise (normally hardware not
5996 * present) and leaves us with a valid list of present and active devices.
5997 *
5998 */
5999
6000/*
6001 * This is called single threaded during boot, so no need
6002 * to take the rtnl semaphore.
6003 */
6004static int __init net_dev_init(void)
6005{
6006 int i, rc = -ENOMEM;
6007
6008 BUG_ON(!dev_boot_phase);
6009
6010 if (dev_proc_init())
6011 goto out;
6012
6013 if (netdev_kobject_init())
6014 goto out;
6015
6016 INIT_LIST_HEAD(&ptype_all);
6017 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6018 INIT_LIST_HEAD(&ptype_base[i]);
6019
6020 if (register_pernet_subsys(&netdev_net_ops))
6021 goto out;
6022
6023 /*
6024 * Initialise the packet receive queues.
6025 */
6026
6027 for_each_possible_cpu(i) {
6028 struct softnet_data *sd = &per_cpu(softnet_data, i);
6029
6030 memset(sd, 0, sizeof(*sd));
6031 skb_queue_head_init(&sd->input_pkt_queue);
6032 skb_queue_head_init(&sd->process_queue);
6033 sd->completion_queue = NULL;
6034 INIT_LIST_HEAD(&sd->poll_list);
6035 sd->output_queue = NULL;
6036 sd->output_queue_tailp = &sd->output_queue;
6037#ifdef CONFIG_RPS
6038 sd->csd.func = rps_trigger_softirq;
6039 sd->csd.info = sd;
6040 sd->csd.flags = 0;
6041 sd->cpu = i;
6042#endif
6043
6044 sd->backlog.poll = process_backlog;
6045 sd->backlog.weight = weight_p;
6046 sd->backlog.gro_list = NULL;
6047 sd->backlog.gro_count = 0;
6048 }
6049
6050 dev_boot_phase = 0;
6051
6052 /* The loopback device is special if any other network devices
6053 * is present in a network namespace the loopback device must
6054 * be present. Since we now dynamically allocate and free the
6055 * loopback device ensure this invariant is maintained by
6056 * keeping the loopback device as the first device on the
6057 * list of network devices. Ensuring the loopback devices
6058 * is the first device that appears and the last network device
6059 * that disappears.
6060 */
6061 if (register_pernet_device(&loopback_net_ops))
6062 goto out;
6063
6064 if (register_pernet_device(&default_device_ops))
6065 goto out;
6066
6067 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6068 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6069
6070 hotcpu_notifier(dev_cpu_callback, 0);
6071 dst_init();
6072 dev_mcast_init();
6073 rc = 0;
6074out:
6075 return rc;
6076}
6077
6078subsys_initcall(net_dev_init);
6079
6080static int __init initialize_hashrnd(void)
6081{
6082 get_random_bytes(&hashrnd, sizeof(hashrnd));
6083 return 0;
6084}
6085
6086late_initcall_sync(initialize_hashrnd);
6087