]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - net/core/dev.c
rps: Receive Packet Steering
[net-next-2.6.git] / net / core / dev.c
... / ...
CommitLineData
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
78#include <linux/capability.h>
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/hash.h>
83#include <linux/sched.h>
84#include <linux/mutex.h>
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
94#include <linux/ethtool.h>
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <linux/if_bridge.h>
104#include <linux/if_macvlan.h>
105#include <net/dst.h>
106#include <net/pkt_sched.h>
107#include <net/checksum.h>
108#include <net/xfrm.h>
109#include <linux/highmem.h>
110#include <linux/init.h>
111#include <linux/kmod.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/wext.h>
117#include <net/iw_handler.h>
118#include <asm/current.h>
119#include <linux/audit.h>
120#include <linux/dmaengine.h>
121#include <linux/err.h>
122#include <linux/ctype.h>
123#include <linux/if_arp.h>
124#include <linux/if_vlan.h>
125#include <linux/ip.h>
126#include <net/ip.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132
133#include "net-sysfs.h"
134
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
152 * the average user (w/out VLANs) will not be adversely affected.
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
172static DEFINE_SPINLOCK(ptype_lock);
173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174static struct list_head ptype_all __read_mostly; /* Taps */
175
176/*
177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178 * semaphore.
179 *
180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
183 * dev_base_head list, and hold dev_base_lock for writing when they do the
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
195DEFINE_RWLOCK(dev_base_lock);
196EXPORT_SYMBOL(dev_base_lock);
197
198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202}
203
204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205{
206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207}
208
209/* Device list insertion */
210static int list_netdevice(struct net_device *dev)
211{
212 struct net *net = dev_net(dev);
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223}
224
225/* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
228static void unlist_netdevice(struct net_device *dev)
229{
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
234 list_del_rcu(&dev->dev_list);
235 hlist_del_rcu(&dev->name_hlist);
236 hlist_del_rcu(&dev->index_hlist);
237 write_unlock_bh(&dev_base_lock);
238}
239
240/*
241 * Our notifier list
242 */
243
244static RAW_NOTIFIER_HEAD(netdev_chain);
245
246/*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
250
251DEFINE_PER_CPU(struct softnet_data, softnet_data);
252EXPORT_PER_CPU_SYMBOL(softnet_data);
253
254#ifdef CONFIG_LOCKDEP
255/*
256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
257 * according to dev->type
258 */
259static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
275 ARPHRD_VOID, ARPHRD_NONE};
276
277static const char *const netdev_lock_name[] =
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
293 "_xmit_VOID", "_xmit_NONE"};
294
295static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
296static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
297
298static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299{
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307}
308
309static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
311{
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317}
318
319static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320{
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327}
328#else
329static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331{
332}
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334{
335}
336#endif
337
338/*******************************************************************************
339
340 Protocol management and registration routines
341
342*******************************************************************************/
343
344/*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360/**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
368 * This call does not sleep therefore it can not
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373void dev_add_pack(struct packet_type *pt)
374{
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
378 if (pt->type == htons(ETH_P_ALL))
379 list_add_rcu(&pt->list, &ptype_all);
380 else {
381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385}
386EXPORT_SYMBOL(dev_add_pack);
387
388/**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
395 * returns.
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401void __dev_remove_pack(struct packet_type *pt)
402{
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
408 if (pt->type == htons(ETH_P_ALL))
409 head = &ptype_all;
410 else
411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421out:
422 spin_unlock_bh(&ptype_lock);
423}
424EXPORT_SYMBOL(__dev_remove_pack);
425
426/**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438void dev_remove_pack(struct packet_type *pt)
439{
440 __dev_remove_pack(pt);
441
442 synchronize_net();
443}
444EXPORT_SYMBOL(dev_remove_pack);
445
446/******************************************************************************
447
448 Device Boot-time Settings Routines
449
450*******************************************************************************/
451
452/* Boot time configuration table */
453static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455/**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464static int netdev_boot_setup_add(char *name, struct ifmap *map)
465{
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
473 strlcpy(s[i].name, name, IFNAMSIZ);
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480}
481
482/**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491int netdev_boot_setup_check(struct net_device *dev)
492{
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
498 !strcmp(dev->name, s[i].name)) {
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507}
508EXPORT_SYMBOL(netdev_boot_setup_check);
509
510
511/**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521unsigned long netdev_boot_base(const char *prefix, int unit)
522{
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
533 if (__dev_get_by_name(&init_net, name))
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540}
541
542/*
543 * Saves at boot time configured settings for any netdevice.
544 */
545int __init netdev_boot_setup(char *str)
546{
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567}
568
569__setup("netdev=", netdev_boot_setup);
570
571/*******************************************************************************
572
573 Device Interface Subroutines
574
575*******************************************************************************/
576
577/**
578 * __dev_get_by_name - find a device by its name
579 * @net: the applicable net namespace
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
589struct net_device *__dev_get_by_name(struct net *net, const char *name)
590{
591 struct hlist_node *p;
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
594
595 hlist_for_each_entry(dev, p, head, name_hlist)
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
598
599 return NULL;
600}
601EXPORT_SYMBOL(__dev_get_by_name);
602
603/**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616{
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626}
627EXPORT_SYMBOL(dev_get_by_name_rcu);
628
629/**
630 * dev_get_by_name - find a device by its name
631 * @net: the applicable net namespace
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
641struct net_device *dev_get_by_name(struct net *net, const char *name)
642{
643 struct net_device *dev;
644
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
647 if (dev)
648 dev_hold(dev);
649 rcu_read_unlock();
650 return dev;
651}
652EXPORT_SYMBOL(dev_get_by_name);
653
654/**
655 * __dev_get_by_index - find a device by its ifindex
656 * @net: the applicable net namespace
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
666struct net_device *__dev_get_by_index(struct net *net, int ifindex)
667{
668 struct hlist_node *p;
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
671
672 hlist_for_each_entry(dev, p, head, index_hlist)
673 if (dev->ifindex == ifindex)
674 return dev;
675
676 return NULL;
677}
678EXPORT_SYMBOL(__dev_get_by_index);
679
680/**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692{
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702}
703EXPORT_SYMBOL(dev_get_by_index_rcu);
704
705
706/**
707 * dev_get_by_index - find a device by its ifindex
708 * @net: the applicable net namespace
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
717struct net_device *dev_get_by_index(struct net *net, int ifindex)
718{
719 struct net_device *dev;
720
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
723 if (dev)
724 dev_hold(dev);
725 rcu_read_unlock();
726 return dev;
727}
728EXPORT_SYMBOL(dev_get_by_index);
729
730/**
731 * dev_getbyhwaddr - find a device by its hardware address
732 * @net: the applicable net namespace
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
745struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
746{
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
751 for_each_netdev(net, dev)
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
754 return dev;
755
756 return NULL;
757}
758EXPORT_SYMBOL(dev_getbyhwaddr);
759
760struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
761{
762 struct net_device *dev;
763
764 ASSERT_RTNL();
765 for_each_netdev(net, dev)
766 if (dev->type == type)
767 return dev;
768
769 return NULL;
770}
771EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
773struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
774{
775 struct net_device *dev;
776
777 rtnl_lock();
778 dev = __dev_getfirstbyhwtype(net, type);
779 if (dev)
780 dev_hold(dev);
781 rtnl_unlock();
782 return dev;
783}
784EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786/**
787 * dev_get_by_flags - find any device with given flags
788 * @net: the applicable net namespace
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
793 * is not found or a pointer to the device. The device returned has
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
798struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
800{
801 struct net_device *dev, *ret;
802
803 ret = NULL;
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
808 ret = dev;
809 break;
810 }
811 }
812 rcu_read_unlock();
813 return ret;
814}
815EXPORT_SYMBOL(dev_get_by_flags);
816
817/**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
824 */
825int dev_valid_name(const char *name)
826{
827 if (*name == '\0')
828 return 0;
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
840}
841EXPORT_SYMBOL(dev_valid_name);
842
843/**
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
846 * @name: name format string
847 * @buf: scratch buffer and result name string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858static int __dev_alloc_name(struct net *net, const char *name, char *buf)
859{
860 int i = 0;
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
863 unsigned long *inuse;
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
878 if (!inuse)
879 return -ENOMEM;
880
881 for_each_netdev(net, d) {
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
888 snprintf(buf, IFNAMSIZ, name, i);
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
899 if (!__dev_get_by_name(net, buf))
900 return i;
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907}
908
909/**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923int dev_alloc_name(struct net_device *dev, const char *name)
924{
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935}
936EXPORT_SYMBOL(dev_alloc_name);
937
938static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940{
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952}
953
954/**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
962int dev_change_name(struct net_device *dev, const char *newname)
963{
964 char oldname[IFNAMSIZ];
965 int err = 0;
966 int ret;
967 struct net *net;
968
969 ASSERT_RTNL();
970 BUG_ON(!dev_net(dev));
971
972 net = dev_net(dev);
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
984
985rollback:
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
989 if (net_eq(net, &init_net)) {
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
995 }
996
997 write_lock_bh(&dev_base_lock);
998 hlist_del(&dev->name_hlist);
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1005 write_unlock_bh(&dev_base_lock);
1006
1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
1020 }
1021 }
1022
1023 return err;
1024}
1025
1026/**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
1030 * @len: limit of bytes to copy from info
1031 *
1032 * Set ifalias for a device,
1033 */
1034int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035{
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055}
1056
1057
1058/**
1059 * netdev_features_change - device changes features
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064void netdev_features_change(struct net_device *dev)
1065{
1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1067}
1068EXPORT_SYMBOL(netdev_features_change);
1069
1070/**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078void netdev_state_change(struct net_device *dev)
1079{
1080 if (dev->flags & IFF_UP) {
1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084}
1085EXPORT_SYMBOL(netdev_state_change);
1086
1087void netdev_bonding_change(struct net_device *dev, unsigned long event)
1088{
1089 call_netdevice_notifiers(event, dev);
1090}
1091EXPORT_SYMBOL(netdev_bonding_change);
1092
1093/**
1094 * dev_load - load a network module
1095 * @net: the applicable net namespace
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
1103void dev_load(struct net *net, const char *name)
1104{
1105 struct net_device *dev;
1106
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1110
1111 if (!dev && capable(CAP_NET_ADMIN))
1112 request_module("%s", name);
1113}
1114EXPORT_SYMBOL(dev_load);
1115
1116static int __dev_open(struct net_device *dev)
1117{
1118 const struct net_device_ops *ops = dev->netdev_ops;
1119 int ret;
1120
1121 ASSERT_RTNL();
1122
1123 /*
1124 * Is it even present?
1125 */
1126 if (!netif_device_present(dev))
1127 return -ENODEV;
1128
1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1130 ret = notifier_to_errno(ret);
1131 if (ret)
1132 return ret;
1133
1134 /*
1135 * Call device private open method
1136 */
1137 set_bit(__LINK_STATE_START, &dev->state);
1138
1139 if (ops->ndo_validate_addr)
1140 ret = ops->ndo_validate_addr(dev);
1141
1142 if (!ret && ops->ndo_open)
1143 ret = ops->ndo_open(dev);
1144
1145 /*
1146 * If it went open OK then:
1147 */
1148
1149 if (ret)
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151 else {
1152 /*
1153 * Set the flags.
1154 */
1155 dev->flags |= IFF_UP;
1156
1157 /*
1158 * Enable NET_DMA
1159 */
1160 net_dmaengine_get();
1161
1162 /*
1163 * Initialize multicasting status
1164 */
1165 dev_set_rx_mode(dev);
1166
1167 /*
1168 * Wakeup transmit queue engine
1169 */
1170 dev_activate(dev);
1171 }
1172
1173 return ret;
1174}
1175
1176/**
1177 * dev_open - prepare an interface for use.
1178 * @dev: device to open
1179 *
1180 * Takes a device from down to up state. The device's private open
1181 * function is invoked and then the multicast lists are loaded. Finally
1182 * the device is moved into the up state and a %NETDEV_UP message is
1183 * sent to the netdev notifier chain.
1184 *
1185 * Calling this function on an active interface is a nop. On a failure
1186 * a negative errno code is returned.
1187 */
1188int dev_open(struct net_device *dev)
1189{
1190 int ret;
1191
1192 /*
1193 * Is it already up?
1194 */
1195 if (dev->flags & IFF_UP)
1196 return 0;
1197
1198 /*
1199 * Open device
1200 */
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1204
1205 /*
1206 * ... and announce new interface.
1207 */
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1210
1211 return ret;
1212}
1213EXPORT_SYMBOL(dev_open);
1214
1215static int __dev_close(struct net_device *dev)
1216{
1217 const struct net_device_ops *ops = dev->netdev_ops;
1218
1219 ASSERT_RTNL();
1220 might_sleep();
1221
1222 /*
1223 * Tell people we are going down, so that they can
1224 * prepare to death, when device is still operating.
1225 */
1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1227
1228 clear_bit(__LINK_STATE_START, &dev->state);
1229
1230 /* Synchronize to scheduled poll. We cannot touch poll list,
1231 * it can be even on different cpu. So just clear netif_running().
1232 *
1233 * dev->stop() will invoke napi_disable() on all of it's
1234 * napi_struct instances on this device.
1235 */
1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1237
1238 dev_deactivate(dev);
1239
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1249
1250 /*
1251 * Device is now down.
1252 */
1253
1254 dev->flags &= ~IFF_UP;
1255
1256 /*
1257 * Shutdown NET_DMA
1258 */
1259 net_dmaengine_put();
1260
1261 return 0;
1262}
1263
1264/**
1265 * dev_close - shutdown an interface.
1266 * @dev: device to shutdown
1267 *
1268 * This function moves an active device into down state. A
1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1271 * chain.
1272 */
1273int dev_close(struct net_device *dev)
1274{
1275 if (!(dev->flags & IFF_UP))
1276 return 0;
1277
1278 __dev_close(dev);
1279
1280 /*
1281 * Tell people we are down
1282 */
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1284 call_netdevice_notifiers(NETDEV_DOWN, dev);
1285
1286 return 0;
1287}
1288EXPORT_SYMBOL(dev_close);
1289
1290
1291/**
1292 * dev_disable_lro - disable Large Receive Offload on a device
1293 * @dev: device
1294 *
1295 * Disable Large Receive Offload (LRO) on a net device. Must be
1296 * called under RTNL. This is needed if received packets may be
1297 * forwarded to another interface.
1298 */
1299void dev_disable_lro(struct net_device *dev)
1300{
1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1302 dev->ethtool_ops->set_flags) {
1303 u32 flags = dev->ethtool_ops->get_flags(dev);
1304 if (flags & ETH_FLAG_LRO) {
1305 flags &= ~ETH_FLAG_LRO;
1306 dev->ethtool_ops->set_flags(dev, flags);
1307 }
1308 }
1309 WARN_ON(dev->features & NETIF_F_LRO);
1310}
1311EXPORT_SYMBOL(dev_disable_lro);
1312
1313
1314static int dev_boot_phase = 1;
1315
1316/*
1317 * Device change register/unregister. These are not inline or static
1318 * as we export them to the world.
1319 */
1320
1321/**
1322 * register_netdevice_notifier - register a network notifier block
1323 * @nb: notifier
1324 *
1325 * Register a notifier to be called when network device events occur.
1326 * The notifier passed is linked into the kernel structures and must
1327 * not be reused until it has been unregistered. A negative errno code
1328 * is returned on a failure.
1329 *
1330 * When registered all registration and up events are replayed
1331 * to the new notifier to allow device to have a race free
1332 * view of the network device list.
1333 */
1334
1335int register_netdevice_notifier(struct notifier_block *nb)
1336{
1337 struct net_device *dev;
1338 struct net_device *last;
1339 struct net *net;
1340 int err;
1341
1342 rtnl_lock();
1343 err = raw_notifier_chain_register(&netdev_chain, nb);
1344 if (err)
1345 goto unlock;
1346 if (dev_boot_phase)
1347 goto unlock;
1348 for_each_net(net) {
1349 for_each_netdev(net, dev) {
1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1351 err = notifier_to_errno(err);
1352 if (err)
1353 goto rollback;
1354
1355 if (!(dev->flags & IFF_UP))
1356 continue;
1357
1358 nb->notifier_call(nb, NETDEV_UP, dev);
1359 }
1360 }
1361
1362unlock:
1363 rtnl_unlock();
1364 return err;
1365
1366rollback:
1367 last = dev;
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 if (dev == last)
1371 break;
1372
1373 if (dev->flags & IFF_UP) {
1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1375 nb->notifier_call(nb, NETDEV_DOWN, dev);
1376 }
1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1379 }
1380 }
1381
1382 raw_notifier_chain_unregister(&netdev_chain, nb);
1383 goto unlock;
1384}
1385EXPORT_SYMBOL(register_netdevice_notifier);
1386
1387/**
1388 * unregister_netdevice_notifier - unregister a network notifier block
1389 * @nb: notifier
1390 *
1391 * Unregister a notifier previously registered by
1392 * register_netdevice_notifier(). The notifier is unlinked into the
1393 * kernel structures and may then be reused. A negative errno code
1394 * is returned on a failure.
1395 */
1396
1397int unregister_netdevice_notifier(struct notifier_block *nb)
1398{
1399 int err;
1400
1401 rtnl_lock();
1402 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1403 rtnl_unlock();
1404 return err;
1405}
1406EXPORT_SYMBOL(unregister_netdevice_notifier);
1407
1408/**
1409 * call_netdevice_notifiers - call all network notifier blocks
1410 * @val: value passed unmodified to notifier function
1411 * @dev: net_device pointer passed unmodified to notifier function
1412 *
1413 * Call all network notifier blocks. Parameters and return value
1414 * are as for raw_notifier_call_chain().
1415 */
1416
1417int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1418{
1419 return raw_notifier_call_chain(&netdev_chain, val, dev);
1420}
1421
1422/* When > 0 there are consumers of rx skb time stamps */
1423static atomic_t netstamp_needed = ATOMIC_INIT(0);
1424
1425void net_enable_timestamp(void)
1426{
1427 atomic_inc(&netstamp_needed);
1428}
1429EXPORT_SYMBOL(net_enable_timestamp);
1430
1431void net_disable_timestamp(void)
1432{
1433 atomic_dec(&netstamp_needed);
1434}
1435EXPORT_SYMBOL(net_disable_timestamp);
1436
1437static inline void net_timestamp(struct sk_buff *skb)
1438{
1439 if (atomic_read(&netstamp_needed))
1440 __net_timestamp(skb);
1441 else
1442 skb->tstamp.tv64 = 0;
1443}
1444
1445/**
1446 * dev_forward_skb - loopback an skb to another netif
1447 *
1448 * @dev: destination network device
1449 * @skb: buffer to forward
1450 *
1451 * return values:
1452 * NET_RX_SUCCESS (no congestion)
1453 * NET_RX_DROP (packet was dropped)
1454 *
1455 * dev_forward_skb can be used for injecting an skb from the
1456 * start_xmit function of one device into the receive queue
1457 * of another device.
1458 *
1459 * The receiving device may be in another namespace, so
1460 * we have to clear all information in the skb that could
1461 * impact namespace isolation.
1462 */
1463int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1464{
1465 skb_orphan(skb);
1466
1467 if (!(dev->flags & IFF_UP))
1468 return NET_RX_DROP;
1469
1470 if (skb->len > (dev->mtu + dev->hard_header_len))
1471 return NET_RX_DROP;
1472
1473 skb_set_dev(skb, dev);
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
1477 return netif_rx(skb);
1478}
1479EXPORT_SYMBOL_GPL(dev_forward_skb);
1480
1481/*
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1484 */
1485
1486static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1487{
1488 struct packet_type *ptype;
1489
1490#ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493#else
1494 net_timestamp(skb);
1495#endif
1496
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1501 */
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1506 if (!skb2)
1507 break;
1508
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1512 */
1513 skb_reset_mac_header(skb2);
1514
1515 if (skb_network_header(skb2) < skb2->data ||
1516 skb2->network_header > skb2->tail) {
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
1521 skb_reset_network_header(skb2);
1522 }
1523
1524 skb2->transport_header = skb2->network_header;
1525 skb2->pkt_type = PACKET_OUTGOING;
1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1527 }
1528 }
1529 rcu_read_unlock();
1530}
1531
1532
1533static inline void __netif_reschedule(struct Qdisc *q)
1534{
1535 struct softnet_data *sd;
1536 unsigned long flags;
1537
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1544}
1545
1546void __netif_schedule(struct Qdisc *q)
1547{
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
1550}
1551EXPORT_SYMBOL(__netif_schedule);
1552
1553void dev_kfree_skb_irq(struct sk_buff *skb)
1554{
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
1558
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
1566}
1567EXPORT_SYMBOL(dev_kfree_skb_irq);
1568
1569void dev_kfree_skb_any(struct sk_buff *skb)
1570{
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1575}
1576EXPORT_SYMBOL(dev_kfree_skb_any);
1577
1578
1579/**
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1582 *
1583 * Mark device as removed from system and therefore no longer available.
1584 */
1585void netif_device_detach(struct net_device *dev)
1586{
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
1589 netif_tx_stop_all_queues(dev);
1590 }
1591}
1592EXPORT_SYMBOL(netif_device_detach);
1593
1594/**
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1597 *
1598 * Mark device as attached from system and restart if needed.
1599 */
1600void netif_device_attach(struct net_device *dev)
1601{
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
1604 netif_tx_wake_all_queues(dev);
1605 __netdev_watchdog_up(dev);
1606 }
1607}
1608EXPORT_SYMBOL(netif_device_attach);
1609
1610static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1611{
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
1619}
1620
1621static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1622{
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1625
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1631 }
1632
1633 return false;
1634}
1635
1636/**
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1640 *
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1644 */
1645#ifdef CONFIG_NET_NS
1646void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1647{
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657#ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659#endif
1660 }
1661 skb->dev = dev;
1662}
1663EXPORT_SYMBOL(skb_set_dev);
1664#endif /* CONFIG_NET_NS */
1665
1666/*
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1669 */
1670int skb_checksum_help(struct sk_buff *skb)
1671{
1672 __wsum csum;
1673 int ret = 0, offset;
1674
1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
1676 goto out_set_summed;
1677
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1681 }
1682
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1686
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1689
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1695 }
1696
1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
1698out_set_summed:
1699 skb->ip_summed = CHECKSUM_NONE;
1700out:
1701 return ret;
1702}
1703EXPORT_SYMBOL(skb_checksum_help);
1704
1705/**
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
1708 * @features: features for the output path (see dev->features)
1709 *
1710 * This function segments the given skb and returns a list of segments.
1711 *
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
1714 */
1715struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1716{
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
1719 __be16 type = skb->protocol;
1720 int err;
1721
1722 skb_reset_mac_header(skb);
1723 skb->mac_len = skb->network_header - skb->mac_header;
1724 __skb_pull(skb, skb->mac_len);
1725
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1729
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1732
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1738
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1742 }
1743
1744 rcu_read_lock();
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
1755 }
1756 segs = ptype->gso_segment(skb, features);
1757 break;
1758 }
1759 }
1760 rcu_read_unlock();
1761
1762 __skb_push(skb, skb->data - skb_mac_header(skb));
1763
1764 return segs;
1765}
1766EXPORT_SYMBOL(skb_gso_segment);
1767
1768/* Take action when hardware reception checksum errors are detected. */
1769#ifdef CONFIG_BUG
1770void netdev_rx_csum_fault(struct net_device *dev)
1771{
1772 if (net_ratelimit()) {
1773 printk(KERN_ERR "%s: hw csum failure.\n",
1774 dev ? dev->name : "<unknown>");
1775 dump_stack();
1776 }
1777}
1778EXPORT_SYMBOL(netdev_rx_csum_fault);
1779#endif
1780
1781/* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1784 */
1785
1786static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1787{
1788#ifdef CONFIG_HIGHMEM
1789 int i;
1790
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1793
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1797
1798#endif
1799 return 0;
1800}
1801
1802struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1804};
1805
1806#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1807
1808static void dev_gso_skb_destructor(struct sk_buff *skb)
1809{
1810 struct dev_gso_cb *cb;
1811
1812 do {
1813 struct sk_buff *nskb = skb->next;
1814
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1819
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1823}
1824
1825/**
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1828 *
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1831 */
1832static int dev_gso_segment(struct sk_buff *skb)
1833{
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1838
1839 segs = skb_gso_segment(skb, features);
1840
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
1844
1845 if (IS_ERR(segs))
1846 return PTR_ERR(segs);
1847
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1851
1852 return 0;
1853}
1854
1855int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
1857{
1858 const struct net_device_ops *ops = dev->netdev_ops;
1859 int rc = NETDEV_TX_OK;
1860
1861 if (likely(!skb->next)) {
1862 if (!list_empty(&ptype_all))
1863 dev_queue_xmit_nit(skb, dev);
1864
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1870 }
1871
1872 /*
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1875 */
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1878
1879 rc = ops->ndo_start_xmit(skb, dev);
1880 if (rc == NETDEV_TX_OK)
1881 txq_trans_update(txq);
1882 /*
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1888 *
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1895 */
1896 return rc;
1897 }
1898
1899gso:
1900 do {
1901 struct sk_buff *nskb = skb->next;
1902
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
1905
1906 /*
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1912
1913 rc = ops->ndo_start_xmit(nskb, dev);
1914 if (unlikely(rc != NETDEV_TX_OK)) {
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
1917 nskb->next = skb->next;
1918 skb->next = nskb;
1919 return rc;
1920 }
1921 txq_trans_update(txq);
1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1923 return NETDEV_TX_BUSY;
1924 } while (skb->next);
1925
1926out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
1929out_kfree_skb:
1930 kfree_skb(skb);
1931 return rc;
1932}
1933
1934static u32 hashrnd __read_mostly;
1935
1936u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1937{
1938 u32 hash;
1939
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
1942 while (unlikely(hash >= dev->real_num_tx_queues))
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1945 }
1946
1947 if (skb->sk && skb->sk->sk_hash)
1948 hash = skb->sk->sk_hash;
1949 else
1950 hash = skb->protocol;
1951
1952 hash = jhash_1word(hash, hashrnd);
1953
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1955}
1956EXPORT_SYMBOL(skb_tx_hash);
1957
1958static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1959{
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
1962 netdev_warn(dev, "selects TX queue %d, but "
1963 "real number of TX queues is %d\n",
1964 queue_index, dev->real_num_tx_queues);
1965 }
1966 return 0;
1967 }
1968 return queue_index;
1969}
1970
1971static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1972 struct sk_buff *skb)
1973{
1974 u16 queue_index;
1975 struct sock *sk = skb->sk;
1976
1977 if (sk_tx_queue_recorded(sk)) {
1978 queue_index = sk_tx_queue_get(sk);
1979 } else {
1980 const struct net_device_ops *ops = dev->netdev_ops;
1981
1982 if (ops->ndo_select_queue) {
1983 queue_index = ops->ndo_select_queue(dev, skb);
1984 queue_index = dev_cap_txqueue(dev, queue_index);
1985 } else {
1986 queue_index = 0;
1987 if (dev->real_num_tx_queues > 1)
1988 queue_index = skb_tx_hash(dev, skb);
1989
1990 if (sk && sk->sk_dst_cache)
1991 sk_tx_queue_set(sk, queue_index);
1992 }
1993 }
1994
1995 skb_set_queue_mapping(skb, queue_index);
1996 return netdev_get_tx_queue(dev, queue_index);
1997}
1998
1999static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2000 struct net_device *dev,
2001 struct netdev_queue *txq)
2002{
2003 spinlock_t *root_lock = qdisc_lock(q);
2004 int rc;
2005
2006 spin_lock(root_lock);
2007 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2008 kfree_skb(skb);
2009 rc = NET_XMIT_DROP;
2010 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2011 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2012 /*
2013 * This is a work-conserving queue; there are no old skbs
2014 * waiting to be sent out; and the qdisc is not running -
2015 * xmit the skb directly.
2016 */
2017 __qdisc_update_bstats(q, skb->len);
2018 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2019 __qdisc_run(q);
2020 else
2021 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2022
2023 rc = NET_XMIT_SUCCESS;
2024 } else {
2025 rc = qdisc_enqueue_root(skb, q);
2026 qdisc_run(q);
2027 }
2028 spin_unlock(root_lock);
2029
2030 return rc;
2031}
2032
2033/*
2034 * Returns true if either:
2035 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2036 * 2. skb is fragmented and the device does not support SG, or if
2037 * at least one of fragments is in highmem and device does not
2038 * support DMA from it.
2039 */
2040static inline int skb_needs_linearize(struct sk_buff *skb,
2041 struct net_device *dev)
2042{
2043 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2044 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2045 illegal_highdma(dev, skb)));
2046}
2047
2048/**
2049 * dev_queue_xmit - transmit a buffer
2050 * @skb: buffer to transmit
2051 *
2052 * Queue a buffer for transmission to a network device. The caller must
2053 * have set the device and priority and built the buffer before calling
2054 * this function. The function can be called from an interrupt.
2055 *
2056 * A negative errno code is returned on a failure. A success does not
2057 * guarantee the frame will be transmitted as it may be dropped due
2058 * to congestion or traffic shaping.
2059 *
2060 * -----------------------------------------------------------------------------------
2061 * I notice this method can also return errors from the queue disciplines,
2062 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2063 * be positive.
2064 *
2065 * Regardless of the return value, the skb is consumed, so it is currently
2066 * difficult to retry a send to this method. (You can bump the ref count
2067 * before sending to hold a reference for retry if you are careful.)
2068 *
2069 * When calling this method, interrupts MUST be enabled. This is because
2070 * the BH enable code must have IRQs enabled so that it will not deadlock.
2071 * --BLG
2072 */
2073int dev_queue_xmit(struct sk_buff *skb)
2074{
2075 struct net_device *dev = skb->dev;
2076 struct netdev_queue *txq;
2077 struct Qdisc *q;
2078 int rc = -ENOMEM;
2079
2080 /* GSO will handle the following emulations directly. */
2081 if (netif_needs_gso(dev, skb))
2082 goto gso;
2083
2084 /* Convert a paged skb to linear, if required */
2085 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2086 goto out_kfree_skb;
2087
2088 /* If packet is not checksummed and device does not support
2089 * checksumming for this protocol, complete checksumming here.
2090 */
2091 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2092 skb_set_transport_header(skb, skb->csum_start -
2093 skb_headroom(skb));
2094 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2095 goto out_kfree_skb;
2096 }
2097
2098gso:
2099 /* Disable soft irqs for various locks below. Also
2100 * stops preemption for RCU.
2101 */
2102 rcu_read_lock_bh();
2103
2104 txq = dev_pick_tx(dev, skb);
2105 q = rcu_dereference_bh(txq->qdisc);
2106
2107#ifdef CONFIG_NET_CLS_ACT
2108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2109#endif
2110 if (q->enqueue) {
2111 rc = __dev_xmit_skb(skb, q, dev, txq);
2112 goto out;
2113 }
2114
2115 /* The device has no queue. Common case for software devices:
2116 loopback, all the sorts of tunnels...
2117
2118 Really, it is unlikely that netif_tx_lock protection is necessary
2119 here. (f.e. loopback and IP tunnels are clean ignoring statistics
2120 counters.)
2121 However, it is possible, that they rely on protection
2122 made by us here.
2123
2124 Check this and shot the lock. It is not prone from deadlocks.
2125 Either shot noqueue qdisc, it is even simpler 8)
2126 */
2127 if (dev->flags & IFF_UP) {
2128 int cpu = smp_processor_id(); /* ok because BHs are off */
2129
2130 if (txq->xmit_lock_owner != cpu) {
2131
2132 HARD_TX_LOCK(dev, txq, cpu);
2133
2134 if (!netif_tx_queue_stopped(txq)) {
2135 rc = dev_hard_start_xmit(skb, dev, txq);
2136 if (dev_xmit_complete(rc)) {
2137 HARD_TX_UNLOCK(dev, txq);
2138 goto out;
2139 }
2140 }
2141 HARD_TX_UNLOCK(dev, txq);
2142 if (net_ratelimit())
2143 printk(KERN_CRIT "Virtual device %s asks to "
2144 "queue packet!\n", dev->name);
2145 } else {
2146 /* Recursion is detected! It is possible,
2147 * unfortunately */
2148 if (net_ratelimit())
2149 printk(KERN_CRIT "Dead loop on virtual device "
2150 "%s, fix it urgently!\n", dev->name);
2151 }
2152 }
2153
2154 rc = -ENETDOWN;
2155 rcu_read_unlock_bh();
2156
2157out_kfree_skb:
2158 kfree_skb(skb);
2159 return rc;
2160out:
2161 rcu_read_unlock_bh();
2162 return rc;
2163}
2164EXPORT_SYMBOL(dev_queue_xmit);
2165
2166
2167/*=======================================================================
2168 Receiver routines
2169 =======================================================================*/
2170
2171int netdev_max_backlog __read_mostly = 1000;
2172int netdev_budget __read_mostly = 300;
2173int weight_p __read_mostly = 64; /* old backlog weight */
2174
2175DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2176
2177/*
2178 * get_rps_cpu is called from netif_receive_skb and returns the target
2179 * CPU from the RPS map of the receiving queue for a given skb.
2180 */
2181static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2182{
2183 struct ipv6hdr *ip6;
2184 struct iphdr *ip;
2185 struct netdev_rx_queue *rxqueue;
2186 struct rps_map *map;
2187 int cpu = -1;
2188 u8 ip_proto;
2189 u32 addr1, addr2, ports, ihl;
2190
2191 rcu_read_lock();
2192
2193 if (skb_rx_queue_recorded(skb)) {
2194 u16 index = skb_get_rx_queue(skb);
2195 if (unlikely(index >= dev->num_rx_queues)) {
2196 if (net_ratelimit()) {
2197 netdev_warn(dev, "received packet on queue "
2198 "%u, but number of RX queues is %u\n",
2199 index, dev->num_rx_queues);
2200 }
2201 goto done;
2202 }
2203 rxqueue = dev->_rx + index;
2204 } else
2205 rxqueue = dev->_rx;
2206
2207 if (!rxqueue->rps_map)
2208 goto done;
2209
2210 if (skb->rxhash)
2211 goto got_hash; /* Skip hash computation on packet header */
2212
2213 switch (skb->protocol) {
2214 case __constant_htons(ETH_P_IP):
2215 if (!pskb_may_pull(skb, sizeof(*ip)))
2216 goto done;
2217
2218 ip = (struct iphdr *) skb->data;
2219 ip_proto = ip->protocol;
2220 addr1 = ip->saddr;
2221 addr2 = ip->daddr;
2222 ihl = ip->ihl;
2223 break;
2224 case __constant_htons(ETH_P_IPV6):
2225 if (!pskb_may_pull(skb, sizeof(*ip6)))
2226 goto done;
2227
2228 ip6 = (struct ipv6hdr *) skb->data;
2229 ip_proto = ip6->nexthdr;
2230 addr1 = ip6->saddr.s6_addr32[3];
2231 addr2 = ip6->daddr.s6_addr32[3];
2232 ihl = (40 >> 2);
2233 break;
2234 default:
2235 goto done;
2236 }
2237 ports = 0;
2238 switch (ip_proto) {
2239 case IPPROTO_TCP:
2240 case IPPROTO_UDP:
2241 case IPPROTO_DCCP:
2242 case IPPROTO_ESP:
2243 case IPPROTO_AH:
2244 case IPPROTO_SCTP:
2245 case IPPROTO_UDPLITE:
2246 if (pskb_may_pull(skb, (ihl * 4) + 4))
2247 ports = *((u32 *) (skb->data + (ihl * 4)));
2248 break;
2249
2250 default:
2251 break;
2252 }
2253
2254 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2255 if (!skb->rxhash)
2256 skb->rxhash = 1;
2257
2258got_hash:
2259 map = rcu_dereference(rxqueue->rps_map);
2260 if (map) {
2261 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2262
2263 if (cpu_online(tcpu)) {
2264 cpu = tcpu;
2265 goto done;
2266 }
2267 }
2268
2269done:
2270 rcu_read_unlock();
2271 return cpu;
2272}
2273
2274/*
2275 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2276 * to be sent to kick remote softirq processing. There are two masks since
2277 * the sending of IPIs must be done with interrupts enabled. The select field
2278 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2279 * select is flipped before net_rps_action is called while still under lock,
2280 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2281 * it without conflicting with enqueue_backlog operation.
2282 */
2283struct rps_remote_softirq_cpus {
2284 cpumask_t mask[2];
2285 int select;
2286};
2287static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2288
2289/* Called from hardirq (IPI) context */
2290static void trigger_softirq(void *data)
2291{
2292 struct softnet_data *queue = data;
2293 __napi_schedule(&queue->backlog);
2294 __get_cpu_var(netdev_rx_stat).received_rps++;
2295}
2296
2297/*
2298 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2299 * queue (may be a remote CPU queue).
2300 */
2301static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2302{
2303 struct softnet_data *queue;
2304 unsigned long flags;
2305
2306 queue = &per_cpu(softnet_data, cpu);
2307
2308 local_irq_save(flags);
2309 __get_cpu_var(netdev_rx_stat).total++;
2310
2311 spin_lock(&queue->input_pkt_queue.lock);
2312 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2313 if (queue->input_pkt_queue.qlen) {
2314enqueue:
2315 __skb_queue_tail(&queue->input_pkt_queue, skb);
2316 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2317 flags);
2318 return NET_RX_SUCCESS;
2319 }
2320
2321 /* Schedule NAPI for backlog device */
2322 if (napi_schedule_prep(&queue->backlog)) {
2323 if (cpu != smp_processor_id()) {
2324 struct rps_remote_softirq_cpus *rcpus =
2325 &__get_cpu_var(rps_remote_softirq_cpus);
2326
2327 cpu_set(cpu, rcpus->mask[rcpus->select]);
2328 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2329 } else
2330 __napi_schedule(&queue->backlog);
2331 }
2332 goto enqueue;
2333 }
2334
2335 spin_unlock(&queue->input_pkt_queue.lock);
2336
2337 __get_cpu_var(netdev_rx_stat).dropped++;
2338 local_irq_restore(flags);
2339
2340 kfree_skb(skb);
2341 return NET_RX_DROP;
2342}
2343
2344/**
2345 * netif_rx - post buffer to the network code
2346 * @skb: buffer to post
2347 *
2348 * This function receives a packet from a device driver and queues it for
2349 * the upper (protocol) levels to process. It always succeeds. The buffer
2350 * may be dropped during processing for congestion control or by the
2351 * protocol layers.
2352 *
2353 * return values:
2354 * NET_RX_SUCCESS (no congestion)
2355 * NET_RX_DROP (packet was dropped)
2356 *
2357 */
2358
2359int netif_rx(struct sk_buff *skb)
2360{
2361 int cpu;
2362
2363 /* if netpoll wants it, pretend we never saw it */
2364 if (netpoll_rx(skb))
2365 return NET_RX_DROP;
2366
2367 if (!skb->tstamp.tv64)
2368 net_timestamp(skb);
2369
2370 cpu = get_rps_cpu(skb->dev, skb);
2371 if (cpu < 0)
2372 cpu = smp_processor_id();
2373
2374 return enqueue_to_backlog(skb, cpu);
2375}
2376EXPORT_SYMBOL(netif_rx);
2377
2378int netif_rx_ni(struct sk_buff *skb)
2379{
2380 int err;
2381
2382 preempt_disable();
2383 err = netif_rx(skb);
2384 if (local_softirq_pending())
2385 do_softirq();
2386 preempt_enable();
2387
2388 return err;
2389}
2390EXPORT_SYMBOL(netif_rx_ni);
2391
2392static void net_tx_action(struct softirq_action *h)
2393{
2394 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2395
2396 if (sd->completion_queue) {
2397 struct sk_buff *clist;
2398
2399 local_irq_disable();
2400 clist = sd->completion_queue;
2401 sd->completion_queue = NULL;
2402 local_irq_enable();
2403
2404 while (clist) {
2405 struct sk_buff *skb = clist;
2406 clist = clist->next;
2407
2408 WARN_ON(atomic_read(&skb->users));
2409 __kfree_skb(skb);
2410 }
2411 }
2412
2413 if (sd->output_queue) {
2414 struct Qdisc *head;
2415
2416 local_irq_disable();
2417 head = sd->output_queue;
2418 sd->output_queue = NULL;
2419 local_irq_enable();
2420
2421 while (head) {
2422 struct Qdisc *q = head;
2423 spinlock_t *root_lock;
2424
2425 head = head->next_sched;
2426
2427 root_lock = qdisc_lock(q);
2428 if (spin_trylock(root_lock)) {
2429 smp_mb__before_clear_bit();
2430 clear_bit(__QDISC_STATE_SCHED,
2431 &q->state);
2432 qdisc_run(q);
2433 spin_unlock(root_lock);
2434 } else {
2435 if (!test_bit(__QDISC_STATE_DEACTIVATED,
2436 &q->state)) {
2437 __netif_reschedule(q);
2438 } else {
2439 smp_mb__before_clear_bit();
2440 clear_bit(__QDISC_STATE_SCHED,
2441 &q->state);
2442 }
2443 }
2444 }
2445 }
2446}
2447
2448static inline int deliver_skb(struct sk_buff *skb,
2449 struct packet_type *pt_prev,
2450 struct net_device *orig_dev)
2451{
2452 atomic_inc(&skb->users);
2453 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2454}
2455
2456#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2457
2458#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2459/* This hook is defined here for ATM LANE */
2460int (*br_fdb_test_addr_hook)(struct net_device *dev,
2461 unsigned char *addr) __read_mostly;
2462EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2463#endif
2464
2465/*
2466 * If bridge module is loaded call bridging hook.
2467 * returns NULL if packet was consumed.
2468 */
2469struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2470 struct sk_buff *skb) __read_mostly;
2471EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2472
2473static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2474 struct packet_type **pt_prev, int *ret,
2475 struct net_device *orig_dev)
2476{
2477 struct net_bridge_port *port;
2478
2479 if (skb->pkt_type == PACKET_LOOPBACK ||
2480 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2481 return skb;
2482
2483 if (*pt_prev) {
2484 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2485 *pt_prev = NULL;
2486 }
2487
2488 return br_handle_frame_hook(port, skb);
2489}
2490#else
2491#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
2492#endif
2493
2494#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2495struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2496EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2497
2498static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2499 struct packet_type **pt_prev,
2500 int *ret,
2501 struct net_device *orig_dev)
2502{
2503 if (skb->dev->macvlan_port == NULL)
2504 return skb;
2505
2506 if (*pt_prev) {
2507 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2508 *pt_prev = NULL;
2509 }
2510 return macvlan_handle_frame_hook(skb);
2511}
2512#else
2513#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2514#endif
2515
2516#ifdef CONFIG_NET_CLS_ACT
2517/* TODO: Maybe we should just force sch_ingress to be compiled in
2518 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2519 * a compare and 2 stores extra right now if we dont have it on
2520 * but have CONFIG_NET_CLS_ACT
2521 * NOTE: This doesnt stop any functionality; if you dont have
2522 * the ingress scheduler, you just cant add policies on ingress.
2523 *
2524 */
2525static int ing_filter(struct sk_buff *skb)
2526{
2527 struct net_device *dev = skb->dev;
2528 u32 ttl = G_TC_RTTL(skb->tc_verd);
2529 struct netdev_queue *rxq;
2530 int result = TC_ACT_OK;
2531 struct Qdisc *q;
2532
2533 if (MAX_RED_LOOP < ttl++) {
2534 printk(KERN_WARNING
2535 "Redir loop detected Dropping packet (%d->%d)\n",
2536 skb->skb_iif, dev->ifindex);
2537 return TC_ACT_SHOT;
2538 }
2539
2540 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2541 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2542
2543 rxq = &dev->rx_queue;
2544
2545 q = rxq->qdisc;
2546 if (q != &noop_qdisc) {
2547 spin_lock(qdisc_lock(q));
2548 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2549 result = qdisc_enqueue_root(skb, q);
2550 spin_unlock(qdisc_lock(q));
2551 }
2552
2553 return result;
2554}
2555
2556static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2557 struct packet_type **pt_prev,
2558 int *ret, struct net_device *orig_dev)
2559{
2560 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2561 goto out;
2562
2563 if (*pt_prev) {
2564 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2565 *pt_prev = NULL;
2566 } else {
2567 /* Huh? Why does turning on AF_PACKET affect this? */
2568 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2569 }
2570
2571 switch (ing_filter(skb)) {
2572 case TC_ACT_SHOT:
2573 case TC_ACT_STOLEN:
2574 kfree_skb(skb);
2575 return NULL;
2576 }
2577
2578out:
2579 skb->tc_verd = 0;
2580 return skb;
2581}
2582#endif
2583
2584/*
2585 * netif_nit_deliver - deliver received packets to network taps
2586 * @skb: buffer
2587 *
2588 * This function is used to deliver incoming packets to network
2589 * taps. It should be used when the normal netif_receive_skb path
2590 * is bypassed, for example because of VLAN acceleration.
2591 */
2592void netif_nit_deliver(struct sk_buff *skb)
2593{
2594 struct packet_type *ptype;
2595
2596 if (list_empty(&ptype_all))
2597 return;
2598
2599 skb_reset_network_header(skb);
2600 skb_reset_transport_header(skb);
2601 skb->mac_len = skb->network_header - skb->mac_header;
2602
2603 rcu_read_lock();
2604 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2605 if (!ptype->dev || ptype->dev == skb->dev)
2606 deliver_skb(skb, ptype, skb->dev);
2607 }
2608 rcu_read_unlock();
2609}
2610
2611int __netif_receive_skb(struct sk_buff *skb)
2612{
2613 struct packet_type *ptype, *pt_prev;
2614 struct net_device *orig_dev;
2615 struct net_device *null_or_orig;
2616 struct net_device *null_or_bond;
2617 int ret = NET_RX_DROP;
2618 __be16 type;
2619
2620 if (!skb->tstamp.tv64)
2621 net_timestamp(skb);
2622
2623 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2624 return NET_RX_SUCCESS;
2625
2626 /* if we've gotten here through NAPI, check netpoll */
2627 if (netpoll_receive_skb(skb))
2628 return NET_RX_DROP;
2629
2630 if (!skb->skb_iif)
2631 skb->skb_iif = skb->dev->ifindex;
2632
2633 null_or_orig = NULL;
2634 orig_dev = skb->dev;
2635 if (orig_dev->master) {
2636 if (skb_bond_should_drop(skb))
2637 null_or_orig = orig_dev; /* deliver only exact match */
2638 else
2639 skb->dev = orig_dev->master;
2640 }
2641
2642 __get_cpu_var(netdev_rx_stat).total++;
2643
2644 skb_reset_network_header(skb);
2645 skb_reset_transport_header(skb);
2646 skb->mac_len = skb->network_header - skb->mac_header;
2647
2648 pt_prev = NULL;
2649
2650 rcu_read_lock();
2651
2652#ifdef CONFIG_NET_CLS_ACT
2653 if (skb->tc_verd & TC_NCLS) {
2654 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2655 goto ncls;
2656 }
2657#endif
2658
2659 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2660 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2661 ptype->dev == orig_dev) {
2662 if (pt_prev)
2663 ret = deliver_skb(skb, pt_prev, orig_dev);
2664 pt_prev = ptype;
2665 }
2666 }
2667
2668#ifdef CONFIG_NET_CLS_ACT
2669 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2670 if (!skb)
2671 goto out;
2672ncls:
2673#endif
2674
2675 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2676 if (!skb)
2677 goto out;
2678 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2679 if (!skb)
2680 goto out;
2681
2682 /*
2683 * Make sure frames received on VLAN interfaces stacked on
2684 * bonding interfaces still make their way to any base bonding
2685 * device that may have registered for a specific ptype. The
2686 * handler may have to adjust skb->dev and orig_dev.
2687 */
2688 null_or_bond = NULL;
2689 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2690 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2691 null_or_bond = vlan_dev_real_dev(skb->dev);
2692 }
2693
2694 type = skb->protocol;
2695 list_for_each_entry_rcu(ptype,
2696 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2697 if (ptype->type == type && (ptype->dev == null_or_orig ||
2698 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2699 ptype->dev == null_or_bond)) {
2700 if (pt_prev)
2701 ret = deliver_skb(skb, pt_prev, orig_dev);
2702 pt_prev = ptype;
2703 }
2704 }
2705
2706 if (pt_prev) {
2707 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2708 } else {
2709 kfree_skb(skb);
2710 /* Jamal, now you will not able to escape explaining
2711 * me how you were going to use this. :-)
2712 */
2713 ret = NET_RX_DROP;
2714 }
2715
2716out:
2717 rcu_read_unlock();
2718 return ret;
2719}
2720
2721/**
2722 * netif_receive_skb - process receive buffer from network
2723 * @skb: buffer to process
2724 *
2725 * netif_receive_skb() is the main receive data processing function.
2726 * It always succeeds. The buffer may be dropped during processing
2727 * for congestion control or by the protocol layers.
2728 *
2729 * This function may only be called from softirq context and interrupts
2730 * should be enabled.
2731 *
2732 * Return values (usually ignored):
2733 * NET_RX_SUCCESS: no congestion
2734 * NET_RX_DROP: packet was dropped
2735 */
2736int netif_receive_skb(struct sk_buff *skb)
2737{
2738 int cpu;
2739
2740 cpu = get_rps_cpu(skb->dev, skb);
2741
2742 if (cpu < 0)
2743 return __netif_receive_skb(skb);
2744 else
2745 return enqueue_to_backlog(skb, cpu);
2746}
2747EXPORT_SYMBOL(netif_receive_skb);
2748
2749/* Network device is going away, flush any packets still pending */
2750static void flush_backlog(void *arg)
2751{
2752 struct net_device *dev = arg;
2753 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2754 struct sk_buff *skb, *tmp;
2755
2756 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2757 if (skb->dev == dev) {
2758 __skb_unlink(skb, &queue->input_pkt_queue);
2759 kfree_skb(skb);
2760 }
2761}
2762
2763static int napi_gro_complete(struct sk_buff *skb)
2764{
2765 struct packet_type *ptype;
2766 __be16 type = skb->protocol;
2767 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2768 int err = -ENOENT;
2769
2770 if (NAPI_GRO_CB(skb)->count == 1) {
2771 skb_shinfo(skb)->gso_size = 0;
2772 goto out;
2773 }
2774
2775 rcu_read_lock();
2776 list_for_each_entry_rcu(ptype, head, list) {
2777 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2778 continue;
2779
2780 err = ptype->gro_complete(skb);
2781 break;
2782 }
2783 rcu_read_unlock();
2784
2785 if (err) {
2786 WARN_ON(&ptype->list == head);
2787 kfree_skb(skb);
2788 return NET_RX_SUCCESS;
2789 }
2790
2791out:
2792 return netif_receive_skb(skb);
2793}
2794
2795static void napi_gro_flush(struct napi_struct *napi)
2796{
2797 struct sk_buff *skb, *next;
2798
2799 for (skb = napi->gro_list; skb; skb = next) {
2800 next = skb->next;
2801 skb->next = NULL;
2802 napi_gro_complete(skb);
2803 }
2804
2805 napi->gro_count = 0;
2806 napi->gro_list = NULL;
2807}
2808
2809enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2810{
2811 struct sk_buff **pp = NULL;
2812 struct packet_type *ptype;
2813 __be16 type = skb->protocol;
2814 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2815 int same_flow;
2816 int mac_len;
2817 enum gro_result ret;
2818
2819 if (!(skb->dev->features & NETIF_F_GRO))
2820 goto normal;
2821
2822 if (skb_is_gso(skb) || skb_has_frags(skb))
2823 goto normal;
2824
2825 rcu_read_lock();
2826 list_for_each_entry_rcu(ptype, head, list) {
2827 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2828 continue;
2829
2830 skb_set_network_header(skb, skb_gro_offset(skb));
2831 mac_len = skb->network_header - skb->mac_header;
2832 skb->mac_len = mac_len;
2833 NAPI_GRO_CB(skb)->same_flow = 0;
2834 NAPI_GRO_CB(skb)->flush = 0;
2835 NAPI_GRO_CB(skb)->free = 0;
2836
2837 pp = ptype->gro_receive(&napi->gro_list, skb);
2838 break;
2839 }
2840 rcu_read_unlock();
2841
2842 if (&ptype->list == head)
2843 goto normal;
2844
2845 same_flow = NAPI_GRO_CB(skb)->same_flow;
2846 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
2847
2848 if (pp) {
2849 struct sk_buff *nskb = *pp;
2850
2851 *pp = nskb->next;
2852 nskb->next = NULL;
2853 napi_gro_complete(nskb);
2854 napi->gro_count--;
2855 }
2856
2857 if (same_flow)
2858 goto ok;
2859
2860 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
2861 goto normal;
2862
2863 napi->gro_count++;
2864 NAPI_GRO_CB(skb)->count = 1;
2865 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
2866 skb->next = napi->gro_list;
2867 napi->gro_list = skb;
2868 ret = GRO_HELD;
2869
2870pull:
2871 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2872 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2873
2874 BUG_ON(skb->end - skb->tail < grow);
2875
2876 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2877
2878 skb->tail += grow;
2879 skb->data_len -= grow;
2880
2881 skb_shinfo(skb)->frags[0].page_offset += grow;
2882 skb_shinfo(skb)->frags[0].size -= grow;
2883
2884 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2885 put_page(skb_shinfo(skb)->frags[0].page);
2886 memmove(skb_shinfo(skb)->frags,
2887 skb_shinfo(skb)->frags + 1,
2888 --skb_shinfo(skb)->nr_frags);
2889 }
2890 }
2891
2892ok:
2893 return ret;
2894
2895normal:
2896 ret = GRO_NORMAL;
2897 goto pull;
2898}
2899EXPORT_SYMBOL(dev_gro_receive);
2900
2901static gro_result_t
2902__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2903{
2904 struct sk_buff *p;
2905
2906 if (netpoll_rx_on(skb))
2907 return GRO_NORMAL;
2908
2909 for (p = napi->gro_list; p; p = p->next) {
2910 NAPI_GRO_CB(p)->same_flow =
2911 (p->dev == skb->dev) &&
2912 !compare_ether_header(skb_mac_header(p),
2913 skb_gro_mac_header(skb));
2914 NAPI_GRO_CB(p)->flush = 0;
2915 }
2916
2917 return dev_gro_receive(napi, skb);
2918}
2919
2920gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
2921{
2922 switch (ret) {
2923 case GRO_NORMAL:
2924 if (netif_receive_skb(skb))
2925 ret = GRO_DROP;
2926 break;
2927
2928 case GRO_DROP:
2929 case GRO_MERGED_FREE:
2930 kfree_skb(skb);
2931 break;
2932
2933 case GRO_HELD:
2934 case GRO_MERGED:
2935 break;
2936 }
2937
2938 return ret;
2939}
2940EXPORT_SYMBOL(napi_skb_finish);
2941
2942void skb_gro_reset_offset(struct sk_buff *skb)
2943{
2944 NAPI_GRO_CB(skb)->data_offset = 0;
2945 NAPI_GRO_CB(skb)->frag0 = NULL;
2946 NAPI_GRO_CB(skb)->frag0_len = 0;
2947
2948 if (skb->mac_header == skb->tail &&
2949 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
2950 NAPI_GRO_CB(skb)->frag0 =
2951 page_address(skb_shinfo(skb)->frags[0].page) +
2952 skb_shinfo(skb)->frags[0].page_offset;
2953 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2954 }
2955}
2956EXPORT_SYMBOL(skb_gro_reset_offset);
2957
2958gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2959{
2960 skb_gro_reset_offset(skb);
2961
2962 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
2963}
2964EXPORT_SYMBOL(napi_gro_receive);
2965
2966void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2967{
2968 __skb_pull(skb, skb_headlen(skb));
2969 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2970
2971 napi->skb = skb;
2972}
2973EXPORT_SYMBOL(napi_reuse_skb);
2974
2975struct sk_buff *napi_get_frags(struct napi_struct *napi)
2976{
2977 struct sk_buff *skb = napi->skb;
2978
2979 if (!skb) {
2980 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2981 if (skb)
2982 napi->skb = skb;
2983 }
2984 return skb;
2985}
2986EXPORT_SYMBOL(napi_get_frags);
2987
2988gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2989 gro_result_t ret)
2990{
2991 switch (ret) {
2992 case GRO_NORMAL:
2993 case GRO_HELD:
2994 skb->protocol = eth_type_trans(skb, skb->dev);
2995
2996 if (ret == GRO_HELD)
2997 skb_gro_pull(skb, -ETH_HLEN);
2998 else if (netif_receive_skb(skb))
2999 ret = GRO_DROP;
3000 break;
3001
3002 case GRO_DROP:
3003 case GRO_MERGED_FREE:
3004 napi_reuse_skb(napi, skb);
3005 break;
3006
3007 case GRO_MERGED:
3008 break;
3009 }
3010
3011 return ret;
3012}
3013EXPORT_SYMBOL(napi_frags_finish);
3014
3015struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3016{
3017 struct sk_buff *skb = napi->skb;
3018 struct ethhdr *eth;
3019 unsigned int hlen;
3020 unsigned int off;
3021
3022 napi->skb = NULL;
3023
3024 skb_reset_mac_header(skb);
3025 skb_gro_reset_offset(skb);
3026
3027 off = skb_gro_offset(skb);
3028 hlen = off + sizeof(*eth);
3029 eth = skb_gro_header_fast(skb, off);
3030 if (skb_gro_header_hard(skb, hlen)) {
3031 eth = skb_gro_header_slow(skb, hlen, off);
3032 if (unlikely(!eth)) {
3033 napi_reuse_skb(napi, skb);
3034 skb = NULL;
3035 goto out;
3036 }
3037 }
3038
3039 skb_gro_pull(skb, sizeof(*eth));
3040
3041 /*
3042 * This works because the only protocols we care about don't require
3043 * special handling. We'll fix it up properly at the end.
3044 */
3045 skb->protocol = eth->h_proto;
3046
3047out:
3048 return skb;
3049}
3050EXPORT_SYMBOL(napi_frags_skb);
3051
3052gro_result_t napi_gro_frags(struct napi_struct *napi)
3053{
3054 struct sk_buff *skb = napi_frags_skb(napi);
3055
3056 if (!skb)
3057 return GRO_DROP;
3058
3059 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3060}
3061EXPORT_SYMBOL(napi_gro_frags);
3062
3063static int process_backlog(struct napi_struct *napi, int quota)
3064{
3065 int work = 0;
3066 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3067 unsigned long start_time = jiffies;
3068
3069 napi->weight = weight_p;
3070 do {
3071 struct sk_buff *skb;
3072
3073 spin_lock_irq(&queue->input_pkt_queue.lock);
3074 skb = __skb_dequeue(&queue->input_pkt_queue);
3075 if (!skb) {
3076 __napi_complete(napi);
3077 spin_unlock_irq(&queue->input_pkt_queue.lock);
3078 break;
3079 }
3080 spin_unlock_irq(&queue->input_pkt_queue.lock);
3081
3082 __netif_receive_skb(skb);
3083 } while (++work < quota && jiffies == start_time);
3084
3085 return work;
3086}
3087
3088/**
3089 * __napi_schedule - schedule for receive
3090 * @n: entry to schedule
3091 *
3092 * The entry's receive function will be scheduled to run
3093 */
3094void __napi_schedule(struct napi_struct *n)
3095{
3096 unsigned long flags;
3097
3098 local_irq_save(flags);
3099 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3100 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3101 local_irq_restore(flags);
3102}
3103EXPORT_SYMBOL(__napi_schedule);
3104
3105void __napi_complete(struct napi_struct *n)
3106{
3107 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3108 BUG_ON(n->gro_list);
3109
3110 list_del(&n->poll_list);
3111 smp_mb__before_clear_bit();
3112 clear_bit(NAPI_STATE_SCHED, &n->state);
3113}
3114EXPORT_SYMBOL(__napi_complete);
3115
3116void napi_complete(struct napi_struct *n)
3117{
3118 unsigned long flags;
3119
3120 /*
3121 * don't let napi dequeue from the cpu poll list
3122 * just in case its running on a different cpu
3123 */
3124 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3125 return;
3126
3127 napi_gro_flush(n);
3128 local_irq_save(flags);
3129 __napi_complete(n);
3130 local_irq_restore(flags);
3131}
3132EXPORT_SYMBOL(napi_complete);
3133
3134void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3135 int (*poll)(struct napi_struct *, int), int weight)
3136{
3137 INIT_LIST_HEAD(&napi->poll_list);
3138 napi->gro_count = 0;
3139 napi->gro_list = NULL;
3140 napi->skb = NULL;
3141 napi->poll = poll;
3142 napi->weight = weight;
3143 list_add(&napi->dev_list, &dev->napi_list);
3144 napi->dev = dev;
3145#ifdef CONFIG_NETPOLL
3146 spin_lock_init(&napi->poll_lock);
3147 napi->poll_owner = -1;
3148#endif
3149 set_bit(NAPI_STATE_SCHED, &napi->state);
3150}
3151EXPORT_SYMBOL(netif_napi_add);
3152
3153void netif_napi_del(struct napi_struct *napi)
3154{
3155 struct sk_buff *skb, *next;
3156
3157 list_del_init(&napi->dev_list);
3158 napi_free_frags(napi);
3159
3160 for (skb = napi->gro_list; skb; skb = next) {
3161 next = skb->next;
3162 skb->next = NULL;
3163 kfree_skb(skb);
3164 }
3165
3166 napi->gro_list = NULL;
3167 napi->gro_count = 0;
3168}
3169EXPORT_SYMBOL(netif_napi_del);
3170
3171/*
3172 * net_rps_action sends any pending IPI's for rps. This is only called from
3173 * softirq and interrupts must be enabled.
3174 */
3175static void net_rps_action(cpumask_t *mask)
3176{
3177 int cpu;
3178
3179 /* Send pending IPI's to kick RPS processing on remote cpus. */
3180 for_each_cpu_mask_nr(cpu, *mask) {
3181 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3182 if (cpu_online(cpu))
3183 __smp_call_function_single(cpu, &queue->csd, 0);
3184 }
3185 cpus_clear(*mask);
3186}
3187
3188static void net_rx_action(struct softirq_action *h)
3189{
3190 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
3191 unsigned long time_limit = jiffies + 2;
3192 int budget = netdev_budget;
3193 void *have;
3194 int select;
3195 struct rps_remote_softirq_cpus *rcpus;
3196
3197 local_irq_disable();
3198
3199 while (!list_empty(list)) {
3200 struct napi_struct *n;
3201 int work, weight;
3202
3203 /* If softirq window is exhuasted then punt.
3204 * Allow this to run for 2 jiffies since which will allow
3205 * an average latency of 1.5/HZ.
3206 */
3207 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3208 goto softnet_break;
3209
3210 local_irq_enable();
3211
3212 /* Even though interrupts have been re-enabled, this
3213 * access is safe because interrupts can only add new
3214 * entries to the tail of this list, and only ->poll()
3215 * calls can remove this head entry from the list.
3216 */
3217 n = list_first_entry(list, struct napi_struct, poll_list);
3218
3219 have = netpoll_poll_lock(n);
3220
3221 weight = n->weight;
3222
3223 /* This NAPI_STATE_SCHED test is for avoiding a race
3224 * with netpoll's poll_napi(). Only the entity which
3225 * obtains the lock and sees NAPI_STATE_SCHED set will
3226 * actually make the ->poll() call. Therefore we avoid
3227 * accidently calling ->poll() when NAPI is not scheduled.
3228 */
3229 work = 0;
3230 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3231 work = n->poll(n, weight);
3232 trace_napi_poll(n);
3233 }
3234
3235 WARN_ON_ONCE(work > weight);
3236
3237 budget -= work;
3238
3239 local_irq_disable();
3240
3241 /* Drivers must not modify the NAPI state if they
3242 * consume the entire weight. In such cases this code
3243 * still "owns" the NAPI instance and therefore can
3244 * move the instance around on the list at-will.
3245 */
3246 if (unlikely(work == weight)) {
3247 if (unlikely(napi_disable_pending(n))) {
3248 local_irq_enable();
3249 napi_complete(n);
3250 local_irq_disable();
3251 } else
3252 list_move_tail(&n->poll_list, list);
3253 }
3254
3255 netpoll_poll_unlock(have);
3256 }
3257out:
3258 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3259 select = rcpus->select;
3260 rcpus->select ^= 1;
3261
3262 local_irq_enable();
3263
3264 net_rps_action(&rcpus->mask[select]);
3265
3266#ifdef CONFIG_NET_DMA
3267 /*
3268 * There may not be any more sk_buffs coming right now, so push
3269 * any pending DMA copies to hardware
3270 */
3271 dma_issue_pending_all();
3272#endif
3273
3274 return;
3275
3276softnet_break:
3277 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3278 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3279 goto out;
3280}
3281
3282static gifconf_func_t *gifconf_list[NPROTO];
3283
3284/**
3285 * register_gifconf - register a SIOCGIF handler
3286 * @family: Address family
3287 * @gifconf: Function handler
3288 *
3289 * Register protocol dependent address dumping routines. The handler
3290 * that is passed must not be freed or reused until it has been replaced
3291 * by another handler.
3292 */
3293int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3294{
3295 if (family >= NPROTO)
3296 return -EINVAL;
3297 gifconf_list[family] = gifconf;
3298 return 0;
3299}
3300EXPORT_SYMBOL(register_gifconf);
3301
3302
3303/*
3304 * Map an interface index to its name (SIOCGIFNAME)
3305 */
3306
3307/*
3308 * We need this ioctl for efficient implementation of the
3309 * if_indextoname() function required by the IPv6 API. Without
3310 * it, we would have to search all the interfaces to find a
3311 * match. --pb
3312 */
3313
3314static int dev_ifname(struct net *net, struct ifreq __user *arg)
3315{
3316 struct net_device *dev;
3317 struct ifreq ifr;
3318
3319 /*
3320 * Fetch the caller's info block.
3321 */
3322
3323 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3324 return -EFAULT;
3325
3326 rcu_read_lock();
3327 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3328 if (!dev) {
3329 rcu_read_unlock();
3330 return -ENODEV;
3331 }
3332
3333 strcpy(ifr.ifr_name, dev->name);
3334 rcu_read_unlock();
3335
3336 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3337 return -EFAULT;
3338 return 0;
3339}
3340
3341/*
3342 * Perform a SIOCGIFCONF call. This structure will change
3343 * size eventually, and there is nothing I can do about it.
3344 * Thus we will need a 'compatibility mode'.
3345 */
3346
3347static int dev_ifconf(struct net *net, char __user *arg)
3348{
3349 struct ifconf ifc;
3350 struct net_device *dev;
3351 char __user *pos;
3352 int len;
3353 int total;
3354 int i;
3355
3356 /*
3357 * Fetch the caller's info block.
3358 */
3359
3360 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3361 return -EFAULT;
3362
3363 pos = ifc.ifc_buf;
3364 len = ifc.ifc_len;
3365
3366 /*
3367 * Loop over the interfaces, and write an info block for each.
3368 */
3369
3370 total = 0;
3371 for_each_netdev(net, dev) {
3372 for (i = 0; i < NPROTO; i++) {
3373 if (gifconf_list[i]) {
3374 int done;
3375 if (!pos)
3376 done = gifconf_list[i](dev, NULL, 0);
3377 else
3378 done = gifconf_list[i](dev, pos + total,
3379 len - total);
3380 if (done < 0)
3381 return -EFAULT;
3382 total += done;
3383 }
3384 }
3385 }
3386
3387 /*
3388 * All done. Write the updated control block back to the caller.
3389 */
3390 ifc.ifc_len = total;
3391
3392 /*
3393 * Both BSD and Solaris return 0 here, so we do too.
3394 */
3395 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3396}
3397
3398#ifdef CONFIG_PROC_FS
3399/*
3400 * This is invoked by the /proc filesystem handler to display a device
3401 * in detail.
3402 */
3403void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3404 __acquires(RCU)
3405{
3406 struct net *net = seq_file_net(seq);
3407 loff_t off;
3408 struct net_device *dev;
3409
3410 rcu_read_lock();
3411 if (!*pos)
3412 return SEQ_START_TOKEN;
3413
3414 off = 1;
3415 for_each_netdev_rcu(net, dev)
3416 if (off++ == *pos)
3417 return dev;
3418
3419 return NULL;
3420}
3421
3422void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3423{
3424 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3425 first_net_device(seq_file_net(seq)) :
3426 next_net_device((struct net_device *)v);
3427
3428 ++*pos;
3429 return rcu_dereference(dev);
3430}
3431
3432void dev_seq_stop(struct seq_file *seq, void *v)
3433 __releases(RCU)
3434{
3435 rcu_read_unlock();
3436}
3437
3438static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3439{
3440 const struct net_device_stats *stats = dev_get_stats(dev);
3441
3442 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3443 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3444 dev->name, stats->rx_bytes, stats->rx_packets,
3445 stats->rx_errors,
3446 stats->rx_dropped + stats->rx_missed_errors,
3447 stats->rx_fifo_errors,
3448 stats->rx_length_errors + stats->rx_over_errors +
3449 stats->rx_crc_errors + stats->rx_frame_errors,
3450 stats->rx_compressed, stats->multicast,
3451 stats->tx_bytes, stats->tx_packets,
3452 stats->tx_errors, stats->tx_dropped,
3453 stats->tx_fifo_errors, stats->collisions,
3454 stats->tx_carrier_errors +
3455 stats->tx_aborted_errors +
3456 stats->tx_window_errors +
3457 stats->tx_heartbeat_errors,
3458 stats->tx_compressed);
3459}
3460
3461/*
3462 * Called from the PROCfs module. This now uses the new arbitrary sized
3463 * /proc/net interface to create /proc/net/dev
3464 */
3465static int dev_seq_show(struct seq_file *seq, void *v)
3466{
3467 if (v == SEQ_START_TOKEN)
3468 seq_puts(seq, "Inter-| Receive "
3469 " | Transmit\n"
3470 " face |bytes packets errs drop fifo frame "
3471 "compressed multicast|bytes packets errs "
3472 "drop fifo colls carrier compressed\n");
3473 else
3474 dev_seq_printf_stats(seq, v);
3475 return 0;
3476}
3477
3478static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3479{
3480 struct netif_rx_stats *rc = NULL;
3481
3482 while (*pos < nr_cpu_ids)
3483 if (cpu_online(*pos)) {
3484 rc = &per_cpu(netdev_rx_stat, *pos);
3485 break;
3486 } else
3487 ++*pos;
3488 return rc;
3489}
3490
3491static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3492{
3493 return softnet_get_online(pos);
3494}
3495
3496static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3497{
3498 ++*pos;
3499 return softnet_get_online(pos);
3500}
3501
3502static void softnet_seq_stop(struct seq_file *seq, void *v)
3503{
3504}
3505
3506static int softnet_seq_show(struct seq_file *seq, void *v)
3507{
3508 struct netif_rx_stats *s = v;
3509
3510 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3511 s->total, s->dropped, s->time_squeeze, 0,
3512 0, 0, 0, 0, /* was fastroute */
3513 s->cpu_collision, s->received_rps);
3514 return 0;
3515}
3516
3517static const struct seq_operations dev_seq_ops = {
3518 .start = dev_seq_start,
3519 .next = dev_seq_next,
3520 .stop = dev_seq_stop,
3521 .show = dev_seq_show,
3522};
3523
3524static int dev_seq_open(struct inode *inode, struct file *file)
3525{
3526 return seq_open_net(inode, file, &dev_seq_ops,
3527 sizeof(struct seq_net_private));
3528}
3529
3530static const struct file_operations dev_seq_fops = {
3531 .owner = THIS_MODULE,
3532 .open = dev_seq_open,
3533 .read = seq_read,
3534 .llseek = seq_lseek,
3535 .release = seq_release_net,
3536};
3537
3538static const struct seq_operations softnet_seq_ops = {
3539 .start = softnet_seq_start,
3540 .next = softnet_seq_next,
3541 .stop = softnet_seq_stop,
3542 .show = softnet_seq_show,
3543};
3544
3545static int softnet_seq_open(struct inode *inode, struct file *file)
3546{
3547 return seq_open(file, &softnet_seq_ops);
3548}
3549
3550static const struct file_operations softnet_seq_fops = {
3551 .owner = THIS_MODULE,
3552 .open = softnet_seq_open,
3553 .read = seq_read,
3554 .llseek = seq_lseek,
3555 .release = seq_release,
3556};
3557
3558static void *ptype_get_idx(loff_t pos)
3559{
3560 struct packet_type *pt = NULL;
3561 loff_t i = 0;
3562 int t;
3563
3564 list_for_each_entry_rcu(pt, &ptype_all, list) {
3565 if (i == pos)
3566 return pt;
3567 ++i;
3568 }
3569
3570 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3571 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3572 if (i == pos)
3573 return pt;
3574 ++i;
3575 }
3576 }
3577 return NULL;
3578}
3579
3580static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3581 __acquires(RCU)
3582{
3583 rcu_read_lock();
3584 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3585}
3586
3587static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3588{
3589 struct packet_type *pt;
3590 struct list_head *nxt;
3591 int hash;
3592
3593 ++*pos;
3594 if (v == SEQ_START_TOKEN)
3595 return ptype_get_idx(0);
3596
3597 pt = v;
3598 nxt = pt->list.next;
3599 if (pt->type == htons(ETH_P_ALL)) {
3600 if (nxt != &ptype_all)
3601 goto found;
3602 hash = 0;
3603 nxt = ptype_base[0].next;
3604 } else
3605 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3606
3607 while (nxt == &ptype_base[hash]) {
3608 if (++hash >= PTYPE_HASH_SIZE)
3609 return NULL;
3610 nxt = ptype_base[hash].next;
3611 }
3612found:
3613 return list_entry(nxt, struct packet_type, list);
3614}
3615
3616static void ptype_seq_stop(struct seq_file *seq, void *v)
3617 __releases(RCU)
3618{
3619 rcu_read_unlock();
3620}
3621
3622static int ptype_seq_show(struct seq_file *seq, void *v)
3623{
3624 struct packet_type *pt = v;
3625
3626 if (v == SEQ_START_TOKEN)
3627 seq_puts(seq, "Type Device Function\n");
3628 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3629 if (pt->type == htons(ETH_P_ALL))
3630 seq_puts(seq, "ALL ");
3631 else
3632 seq_printf(seq, "%04x", ntohs(pt->type));
3633
3634 seq_printf(seq, " %-8s %pF\n",
3635 pt->dev ? pt->dev->name : "", pt->func);
3636 }
3637
3638 return 0;
3639}
3640
3641static const struct seq_operations ptype_seq_ops = {
3642 .start = ptype_seq_start,
3643 .next = ptype_seq_next,
3644 .stop = ptype_seq_stop,
3645 .show = ptype_seq_show,
3646};
3647
3648static int ptype_seq_open(struct inode *inode, struct file *file)
3649{
3650 return seq_open_net(inode, file, &ptype_seq_ops,
3651 sizeof(struct seq_net_private));
3652}
3653
3654static const struct file_operations ptype_seq_fops = {
3655 .owner = THIS_MODULE,
3656 .open = ptype_seq_open,
3657 .read = seq_read,
3658 .llseek = seq_lseek,
3659 .release = seq_release_net,
3660};
3661
3662
3663static int __net_init dev_proc_net_init(struct net *net)
3664{
3665 int rc = -ENOMEM;
3666
3667 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3668 goto out;
3669 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3670 goto out_dev;
3671 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3672 goto out_softnet;
3673
3674 if (wext_proc_init(net))
3675 goto out_ptype;
3676 rc = 0;
3677out:
3678 return rc;
3679out_ptype:
3680 proc_net_remove(net, "ptype");
3681out_softnet:
3682 proc_net_remove(net, "softnet_stat");
3683out_dev:
3684 proc_net_remove(net, "dev");
3685 goto out;
3686}
3687
3688static void __net_exit dev_proc_net_exit(struct net *net)
3689{
3690 wext_proc_exit(net);
3691
3692 proc_net_remove(net, "ptype");
3693 proc_net_remove(net, "softnet_stat");
3694 proc_net_remove(net, "dev");
3695}
3696
3697static struct pernet_operations __net_initdata dev_proc_ops = {
3698 .init = dev_proc_net_init,
3699 .exit = dev_proc_net_exit,
3700};
3701
3702static int __init dev_proc_init(void)
3703{
3704 return register_pernet_subsys(&dev_proc_ops);
3705}
3706#else
3707#define dev_proc_init() 0
3708#endif /* CONFIG_PROC_FS */
3709
3710
3711/**
3712 * netdev_set_master - set up master/slave pair
3713 * @slave: slave device
3714 * @master: new master device
3715 *
3716 * Changes the master device of the slave. Pass %NULL to break the
3717 * bonding. The caller must hold the RTNL semaphore. On a failure
3718 * a negative errno code is returned. On success the reference counts
3719 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3720 * function returns zero.
3721 */
3722int netdev_set_master(struct net_device *slave, struct net_device *master)
3723{
3724 struct net_device *old = slave->master;
3725
3726 ASSERT_RTNL();
3727
3728 if (master) {
3729 if (old)
3730 return -EBUSY;
3731 dev_hold(master);
3732 }
3733
3734 slave->master = master;
3735
3736 synchronize_net();
3737
3738 if (old)
3739 dev_put(old);
3740
3741 if (master)
3742 slave->flags |= IFF_SLAVE;
3743 else
3744 slave->flags &= ~IFF_SLAVE;
3745
3746 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3747 return 0;
3748}
3749EXPORT_SYMBOL(netdev_set_master);
3750
3751static void dev_change_rx_flags(struct net_device *dev, int flags)
3752{
3753 const struct net_device_ops *ops = dev->netdev_ops;
3754
3755 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3756 ops->ndo_change_rx_flags(dev, flags);
3757}
3758
3759static int __dev_set_promiscuity(struct net_device *dev, int inc)
3760{
3761 unsigned short old_flags = dev->flags;
3762 uid_t uid;
3763 gid_t gid;
3764
3765 ASSERT_RTNL();
3766
3767 dev->flags |= IFF_PROMISC;
3768 dev->promiscuity += inc;
3769 if (dev->promiscuity == 0) {
3770 /*
3771 * Avoid overflow.
3772 * If inc causes overflow, untouch promisc and return error.
3773 */
3774 if (inc < 0)
3775 dev->flags &= ~IFF_PROMISC;
3776 else {
3777 dev->promiscuity -= inc;
3778 printk(KERN_WARNING "%s: promiscuity touches roof, "
3779 "set promiscuity failed, promiscuity feature "
3780 "of device might be broken.\n", dev->name);
3781 return -EOVERFLOW;
3782 }
3783 }
3784 if (dev->flags != old_flags) {
3785 printk(KERN_INFO "device %s %s promiscuous mode\n",
3786 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3787 "left");
3788 if (audit_enabled) {
3789 current_uid_gid(&uid, &gid);
3790 audit_log(current->audit_context, GFP_ATOMIC,
3791 AUDIT_ANOM_PROMISCUOUS,
3792 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3793 dev->name, (dev->flags & IFF_PROMISC),
3794 (old_flags & IFF_PROMISC),
3795 audit_get_loginuid(current),
3796 uid, gid,
3797 audit_get_sessionid(current));
3798 }
3799
3800 dev_change_rx_flags(dev, IFF_PROMISC);
3801 }
3802 return 0;
3803}
3804
3805/**
3806 * dev_set_promiscuity - update promiscuity count on a device
3807 * @dev: device
3808 * @inc: modifier
3809 *
3810 * Add or remove promiscuity from a device. While the count in the device
3811 * remains above zero the interface remains promiscuous. Once it hits zero
3812 * the device reverts back to normal filtering operation. A negative inc
3813 * value is used to drop promiscuity on the device.
3814 * Return 0 if successful or a negative errno code on error.
3815 */
3816int dev_set_promiscuity(struct net_device *dev, int inc)
3817{
3818 unsigned short old_flags = dev->flags;
3819 int err;
3820
3821 err = __dev_set_promiscuity(dev, inc);
3822 if (err < 0)
3823 return err;
3824 if (dev->flags != old_flags)
3825 dev_set_rx_mode(dev);
3826 return err;
3827}
3828EXPORT_SYMBOL(dev_set_promiscuity);
3829
3830/**
3831 * dev_set_allmulti - update allmulti count on a device
3832 * @dev: device
3833 * @inc: modifier
3834 *
3835 * Add or remove reception of all multicast frames to a device. While the
3836 * count in the device remains above zero the interface remains listening
3837 * to all interfaces. Once it hits zero the device reverts back to normal
3838 * filtering operation. A negative @inc value is used to drop the counter
3839 * when releasing a resource needing all multicasts.
3840 * Return 0 if successful or a negative errno code on error.
3841 */
3842
3843int dev_set_allmulti(struct net_device *dev, int inc)
3844{
3845 unsigned short old_flags = dev->flags;
3846
3847 ASSERT_RTNL();
3848
3849 dev->flags |= IFF_ALLMULTI;
3850 dev->allmulti += inc;
3851 if (dev->allmulti == 0) {
3852 /*
3853 * Avoid overflow.
3854 * If inc causes overflow, untouch allmulti and return error.
3855 */
3856 if (inc < 0)
3857 dev->flags &= ~IFF_ALLMULTI;
3858 else {
3859 dev->allmulti -= inc;
3860 printk(KERN_WARNING "%s: allmulti touches roof, "
3861 "set allmulti failed, allmulti feature of "
3862 "device might be broken.\n", dev->name);
3863 return -EOVERFLOW;
3864 }
3865 }
3866 if (dev->flags ^ old_flags) {
3867 dev_change_rx_flags(dev, IFF_ALLMULTI);
3868 dev_set_rx_mode(dev);
3869 }
3870 return 0;
3871}
3872EXPORT_SYMBOL(dev_set_allmulti);
3873
3874/*
3875 * Upload unicast and multicast address lists to device and
3876 * configure RX filtering. When the device doesn't support unicast
3877 * filtering it is put in promiscuous mode while unicast addresses
3878 * are present.
3879 */
3880void __dev_set_rx_mode(struct net_device *dev)
3881{
3882 const struct net_device_ops *ops = dev->netdev_ops;
3883
3884 /* dev_open will call this function so the list will stay sane. */
3885 if (!(dev->flags&IFF_UP))
3886 return;
3887
3888 if (!netif_device_present(dev))
3889 return;
3890
3891 if (ops->ndo_set_rx_mode)
3892 ops->ndo_set_rx_mode(dev);
3893 else {
3894 /* Unicast addresses changes may only happen under the rtnl,
3895 * therefore calling __dev_set_promiscuity here is safe.
3896 */
3897 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
3898 __dev_set_promiscuity(dev, 1);
3899 dev->uc_promisc = 1;
3900 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
3901 __dev_set_promiscuity(dev, -1);
3902 dev->uc_promisc = 0;
3903 }
3904
3905 if (ops->ndo_set_multicast_list)
3906 ops->ndo_set_multicast_list(dev);
3907 }
3908}
3909
3910void dev_set_rx_mode(struct net_device *dev)
3911{
3912 netif_addr_lock_bh(dev);
3913 __dev_set_rx_mode(dev);
3914 netif_addr_unlock_bh(dev);
3915}
3916
3917/* hw addresses list handling functions */
3918
3919static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3920 int addr_len, unsigned char addr_type)
3921{
3922 struct netdev_hw_addr *ha;
3923 int alloc_size;
3924
3925 if (addr_len > MAX_ADDR_LEN)
3926 return -EINVAL;
3927
3928 list_for_each_entry(ha, &list->list, list) {
3929 if (!memcmp(ha->addr, addr, addr_len) &&
3930 ha->type == addr_type) {
3931 ha->refcount++;
3932 return 0;
3933 }
3934 }
3935
3936
3937 alloc_size = sizeof(*ha);
3938 if (alloc_size < L1_CACHE_BYTES)
3939 alloc_size = L1_CACHE_BYTES;
3940 ha = kmalloc(alloc_size, GFP_ATOMIC);
3941 if (!ha)
3942 return -ENOMEM;
3943 memcpy(ha->addr, addr, addr_len);
3944 ha->type = addr_type;
3945 ha->refcount = 1;
3946 ha->synced = false;
3947 list_add_tail_rcu(&ha->list, &list->list);
3948 list->count++;
3949 return 0;
3950}
3951
3952static void ha_rcu_free(struct rcu_head *head)
3953{
3954 struct netdev_hw_addr *ha;
3955
3956 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3957 kfree(ha);
3958}
3959
3960static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3961 int addr_len, unsigned char addr_type)
3962{
3963 struct netdev_hw_addr *ha;
3964
3965 list_for_each_entry(ha, &list->list, list) {
3966 if (!memcmp(ha->addr, addr, addr_len) &&
3967 (ha->type == addr_type || !addr_type)) {
3968 if (--ha->refcount)
3969 return 0;
3970 list_del_rcu(&ha->list);
3971 call_rcu(&ha->rcu_head, ha_rcu_free);
3972 list->count--;
3973 return 0;
3974 }
3975 }
3976 return -ENOENT;
3977}
3978
3979static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3980 struct netdev_hw_addr_list *from_list,
3981 int addr_len,
3982 unsigned char addr_type)
3983{
3984 int err;
3985 struct netdev_hw_addr *ha, *ha2;
3986 unsigned char type;
3987
3988 list_for_each_entry(ha, &from_list->list, list) {
3989 type = addr_type ? addr_type : ha->type;
3990 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3991 if (err)
3992 goto unroll;
3993 }
3994 return 0;
3995
3996unroll:
3997 list_for_each_entry(ha2, &from_list->list, list) {
3998 if (ha2 == ha)
3999 break;
4000 type = addr_type ? addr_type : ha2->type;
4001 __hw_addr_del(to_list, ha2->addr, addr_len, type);
4002 }
4003 return err;
4004}
4005
4006static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4007 struct netdev_hw_addr_list *from_list,
4008 int addr_len,
4009 unsigned char addr_type)
4010{
4011 struct netdev_hw_addr *ha;
4012 unsigned char type;
4013
4014 list_for_each_entry(ha, &from_list->list, list) {
4015 type = addr_type ? addr_type : ha->type;
4016 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
4017 }
4018}
4019
4020static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4021 struct netdev_hw_addr_list *from_list,
4022 int addr_len)
4023{
4024 int err = 0;
4025 struct netdev_hw_addr *ha, *tmp;
4026
4027 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4028 if (!ha->synced) {
4029 err = __hw_addr_add(to_list, ha->addr,
4030 addr_len, ha->type);
4031 if (err)
4032 break;
4033 ha->synced = true;
4034 ha->refcount++;
4035 } else if (ha->refcount == 1) {
4036 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4037 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
4038 }
4039 }
4040 return err;
4041}
4042
4043static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4044 struct netdev_hw_addr_list *from_list,
4045 int addr_len)
4046{
4047 struct netdev_hw_addr *ha, *tmp;
4048
4049 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
4050 if (ha->synced) {
4051 __hw_addr_del(to_list, ha->addr,
4052 addr_len, ha->type);
4053 ha->synced = false;
4054 __hw_addr_del(from_list, ha->addr,
4055 addr_len, ha->type);
4056 }
4057 }
4058}
4059
4060static void __hw_addr_flush(struct netdev_hw_addr_list *list)
4061{
4062 struct netdev_hw_addr *ha, *tmp;
4063
4064 list_for_each_entry_safe(ha, tmp, &list->list, list) {
4065 list_del_rcu(&ha->list);
4066 call_rcu(&ha->rcu_head, ha_rcu_free);
4067 }
4068 list->count = 0;
4069}
4070
4071static void __hw_addr_init(struct netdev_hw_addr_list *list)
4072{
4073 INIT_LIST_HEAD(&list->list);
4074 list->count = 0;
4075}
4076
4077/* Device addresses handling functions */
4078
4079static void dev_addr_flush(struct net_device *dev)
4080{
4081 /* rtnl_mutex must be held here */
4082
4083 __hw_addr_flush(&dev->dev_addrs);
4084 dev->dev_addr = NULL;
4085}
4086
4087static int dev_addr_init(struct net_device *dev)
4088{
4089 unsigned char addr[MAX_ADDR_LEN];
4090 struct netdev_hw_addr *ha;
4091 int err;
4092
4093 /* rtnl_mutex must be held here */
4094
4095 __hw_addr_init(&dev->dev_addrs);
4096 memset(addr, 0, sizeof(addr));
4097 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
4098 NETDEV_HW_ADDR_T_LAN);
4099 if (!err) {
4100 /*
4101 * Get the first (previously created) address from the list
4102 * and set dev_addr pointer to this location.
4103 */
4104 ha = list_first_entry(&dev->dev_addrs.list,
4105 struct netdev_hw_addr, list);
4106 dev->dev_addr = ha->addr;
4107 }
4108 return err;
4109}
4110
4111/**
4112 * dev_addr_add - Add a device address
4113 * @dev: device
4114 * @addr: address to add
4115 * @addr_type: address type
4116 *
4117 * Add a device address to the device or increase the reference count if
4118 * it already exists.
4119 *
4120 * The caller must hold the rtnl_mutex.
4121 */
4122int dev_addr_add(struct net_device *dev, unsigned char *addr,
4123 unsigned char addr_type)
4124{
4125 int err;
4126
4127 ASSERT_RTNL();
4128
4129 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
4130 if (!err)
4131 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4132 return err;
4133}
4134EXPORT_SYMBOL(dev_addr_add);
4135
4136/**
4137 * dev_addr_del - Release a device address.
4138 * @dev: device
4139 * @addr: address to delete
4140 * @addr_type: address type
4141 *
4142 * Release reference to a device address and remove it from the device
4143 * if the reference count drops to zero.
4144 *
4145 * The caller must hold the rtnl_mutex.
4146 */
4147int dev_addr_del(struct net_device *dev, unsigned char *addr,
4148 unsigned char addr_type)
4149{
4150 int err;
4151 struct netdev_hw_addr *ha;
4152
4153 ASSERT_RTNL();
4154
4155 /*
4156 * We can not remove the first address from the list because
4157 * dev->dev_addr points to that.
4158 */
4159 ha = list_first_entry(&dev->dev_addrs.list,
4160 struct netdev_hw_addr, list);
4161 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4162 return -ENOENT;
4163
4164 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
4165 addr_type);
4166 if (!err)
4167 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4168 return err;
4169}
4170EXPORT_SYMBOL(dev_addr_del);
4171
4172/**
4173 * dev_addr_add_multiple - Add device addresses from another device
4174 * @to_dev: device to which addresses will be added
4175 * @from_dev: device from which addresses will be added
4176 * @addr_type: address type - 0 means type will be used from from_dev
4177 *
4178 * Add device addresses of the one device to another.
4179 **
4180 * The caller must hold the rtnl_mutex.
4181 */
4182int dev_addr_add_multiple(struct net_device *to_dev,
4183 struct net_device *from_dev,
4184 unsigned char addr_type)
4185{
4186 int err;
4187
4188 ASSERT_RTNL();
4189
4190 if (from_dev->addr_len != to_dev->addr_len)
4191 return -EINVAL;
4192 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4193 to_dev->addr_len, addr_type);
4194 if (!err)
4195 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4196 return err;
4197}
4198EXPORT_SYMBOL(dev_addr_add_multiple);
4199
4200/**
4201 * dev_addr_del_multiple - Delete device addresses by another device
4202 * @to_dev: device where the addresses will be deleted
4203 * @from_dev: device by which addresses the addresses will be deleted
4204 * @addr_type: address type - 0 means type will used from from_dev
4205 *
4206 * Deletes addresses in to device by the list of addresses in from device.
4207 *
4208 * The caller must hold the rtnl_mutex.
4209 */
4210int dev_addr_del_multiple(struct net_device *to_dev,
4211 struct net_device *from_dev,
4212 unsigned char addr_type)
4213{
4214 ASSERT_RTNL();
4215
4216 if (from_dev->addr_len != to_dev->addr_len)
4217 return -EINVAL;
4218 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
4219 to_dev->addr_len, addr_type);
4220 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4221 return 0;
4222}
4223EXPORT_SYMBOL(dev_addr_del_multiple);
4224
4225/* multicast addresses handling functions */
4226
4227int __dev_addr_delete(struct dev_addr_list **list, int *count,
4228 void *addr, int alen, int glbl)
4229{
4230 struct dev_addr_list *da;
4231
4232 for (; (da = *list) != NULL; list = &da->next) {
4233 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4234 alen == da->da_addrlen) {
4235 if (glbl) {
4236 int old_glbl = da->da_gusers;
4237 da->da_gusers = 0;
4238 if (old_glbl == 0)
4239 break;
4240 }
4241 if (--da->da_users)
4242 return 0;
4243
4244 *list = da->next;
4245 kfree(da);
4246 (*count)--;
4247 return 0;
4248 }
4249 }
4250 return -ENOENT;
4251}
4252
4253int __dev_addr_add(struct dev_addr_list **list, int *count,
4254 void *addr, int alen, int glbl)
4255{
4256 struct dev_addr_list *da;
4257
4258 for (da = *list; da != NULL; da = da->next) {
4259 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4260 da->da_addrlen == alen) {
4261 if (glbl) {
4262 int old_glbl = da->da_gusers;
4263 da->da_gusers = 1;
4264 if (old_glbl)
4265 return 0;
4266 }
4267 da->da_users++;
4268 return 0;
4269 }
4270 }
4271
4272 da = kzalloc(sizeof(*da), GFP_ATOMIC);
4273 if (da == NULL)
4274 return -ENOMEM;
4275 memcpy(da->da_addr, addr, alen);
4276 da->da_addrlen = alen;
4277 da->da_users = 1;
4278 da->da_gusers = glbl ? 1 : 0;
4279 da->next = *list;
4280 *list = da;
4281 (*count)++;
4282 return 0;
4283}
4284
4285/**
4286 * dev_unicast_delete - Release secondary unicast address.
4287 * @dev: device
4288 * @addr: address to delete
4289 *
4290 * Release reference to a secondary unicast address and remove it
4291 * from the device if the reference count drops to zero.
4292 *
4293 * The caller must hold the rtnl_mutex.
4294 */
4295int dev_unicast_delete(struct net_device *dev, void *addr)
4296{
4297 int err;
4298
4299 ASSERT_RTNL();
4300
4301 netif_addr_lock_bh(dev);
4302 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4303 NETDEV_HW_ADDR_T_UNICAST);
4304 if (!err)
4305 __dev_set_rx_mode(dev);
4306 netif_addr_unlock_bh(dev);
4307 return err;
4308}
4309EXPORT_SYMBOL(dev_unicast_delete);
4310
4311/**
4312 * dev_unicast_add - add a secondary unicast address
4313 * @dev: device
4314 * @addr: address to add
4315 *
4316 * Add a secondary unicast address to the device or increase
4317 * the reference count if it already exists.
4318 *
4319 * The caller must hold the rtnl_mutex.
4320 */
4321int dev_unicast_add(struct net_device *dev, void *addr)
4322{
4323 int err;
4324
4325 ASSERT_RTNL();
4326
4327 netif_addr_lock_bh(dev);
4328 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4329 NETDEV_HW_ADDR_T_UNICAST);
4330 if (!err)
4331 __dev_set_rx_mode(dev);
4332 netif_addr_unlock_bh(dev);
4333 return err;
4334}
4335EXPORT_SYMBOL(dev_unicast_add);
4336
4337int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4338 struct dev_addr_list **from, int *from_count)
4339{
4340 struct dev_addr_list *da, *next;
4341 int err = 0;
4342
4343 da = *from;
4344 while (da != NULL) {
4345 next = da->next;
4346 if (!da->da_synced) {
4347 err = __dev_addr_add(to, to_count,
4348 da->da_addr, da->da_addrlen, 0);
4349 if (err < 0)
4350 break;
4351 da->da_synced = 1;
4352 da->da_users++;
4353 } else if (da->da_users == 1) {
4354 __dev_addr_delete(to, to_count,
4355 da->da_addr, da->da_addrlen, 0);
4356 __dev_addr_delete(from, from_count,
4357 da->da_addr, da->da_addrlen, 0);
4358 }
4359 da = next;
4360 }
4361 return err;
4362}
4363EXPORT_SYMBOL_GPL(__dev_addr_sync);
4364
4365void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4366 struct dev_addr_list **from, int *from_count)
4367{
4368 struct dev_addr_list *da, *next;
4369
4370 da = *from;
4371 while (da != NULL) {
4372 next = da->next;
4373 if (da->da_synced) {
4374 __dev_addr_delete(to, to_count,
4375 da->da_addr, da->da_addrlen, 0);
4376 da->da_synced = 0;
4377 __dev_addr_delete(from, from_count,
4378 da->da_addr, da->da_addrlen, 0);
4379 }
4380 da = next;
4381 }
4382}
4383EXPORT_SYMBOL_GPL(__dev_addr_unsync);
4384
4385/**
4386 * dev_unicast_sync - Synchronize device's unicast list to another device
4387 * @to: destination device
4388 * @from: source device
4389 *
4390 * Add newly added addresses to the destination device and release
4391 * addresses that have no users left. The source device must be
4392 * locked by netif_tx_lock_bh.
4393 *
4394 * This function is intended to be called from the dev->set_rx_mode
4395 * function of layered software devices.
4396 */
4397int dev_unicast_sync(struct net_device *to, struct net_device *from)
4398{
4399 int err = 0;
4400
4401 if (to->addr_len != from->addr_len)
4402 return -EINVAL;
4403
4404 netif_addr_lock_bh(to);
4405 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
4406 if (!err)
4407 __dev_set_rx_mode(to);
4408 netif_addr_unlock_bh(to);
4409 return err;
4410}
4411EXPORT_SYMBOL(dev_unicast_sync);
4412
4413/**
4414 * dev_unicast_unsync - Remove synchronized addresses from the destination device
4415 * @to: destination device
4416 * @from: source device
4417 *
4418 * Remove all addresses that were added to the destination device by
4419 * dev_unicast_sync(). This function is intended to be called from the
4420 * dev->stop function of layered software devices.
4421 */
4422void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4423{
4424 if (to->addr_len != from->addr_len)
4425 return;
4426
4427 netif_addr_lock_bh(from);
4428 netif_addr_lock(to);
4429 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
4430 __dev_set_rx_mode(to);
4431 netif_addr_unlock(to);
4432 netif_addr_unlock_bh(from);
4433}
4434EXPORT_SYMBOL(dev_unicast_unsync);
4435
4436static void dev_unicast_flush(struct net_device *dev)
4437{
4438 netif_addr_lock_bh(dev);
4439 __hw_addr_flush(&dev->uc);
4440 netif_addr_unlock_bh(dev);
4441}
4442
4443static void dev_unicast_init(struct net_device *dev)
4444{
4445 __hw_addr_init(&dev->uc);
4446}
4447
4448
4449static void __dev_addr_discard(struct dev_addr_list **list)
4450{
4451 struct dev_addr_list *tmp;
4452
4453 while (*list != NULL) {
4454 tmp = *list;
4455 *list = tmp->next;
4456 if (tmp->da_users > tmp->da_gusers)
4457 printk("__dev_addr_discard: address leakage! "
4458 "da_users=%d\n", tmp->da_users);
4459 kfree(tmp);
4460 }
4461}
4462
4463static void dev_addr_discard(struct net_device *dev)
4464{
4465 netif_addr_lock_bh(dev);
4466
4467 __dev_addr_discard(&dev->mc_list);
4468 netdev_mc_count(dev) = 0;
4469
4470 netif_addr_unlock_bh(dev);
4471}
4472
4473/**
4474 * dev_get_flags - get flags reported to userspace
4475 * @dev: device
4476 *
4477 * Get the combination of flag bits exported through APIs to userspace.
4478 */
4479unsigned dev_get_flags(const struct net_device *dev)
4480{
4481 unsigned flags;
4482
4483 flags = (dev->flags & ~(IFF_PROMISC |
4484 IFF_ALLMULTI |
4485 IFF_RUNNING |
4486 IFF_LOWER_UP |
4487 IFF_DORMANT)) |
4488 (dev->gflags & (IFF_PROMISC |
4489 IFF_ALLMULTI));
4490
4491 if (netif_running(dev)) {
4492 if (netif_oper_up(dev))
4493 flags |= IFF_RUNNING;
4494 if (netif_carrier_ok(dev))
4495 flags |= IFF_LOWER_UP;
4496 if (netif_dormant(dev))
4497 flags |= IFF_DORMANT;
4498 }
4499
4500 return flags;
4501}
4502EXPORT_SYMBOL(dev_get_flags);
4503
4504int __dev_change_flags(struct net_device *dev, unsigned int flags)
4505{
4506 int old_flags = dev->flags;
4507 int ret;
4508
4509 ASSERT_RTNL();
4510
4511 /*
4512 * Set the flags on our device.
4513 */
4514
4515 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4516 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4517 IFF_AUTOMEDIA)) |
4518 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4519 IFF_ALLMULTI));
4520
4521 /*
4522 * Load in the correct multicast list now the flags have changed.
4523 */
4524
4525 if ((old_flags ^ flags) & IFF_MULTICAST)
4526 dev_change_rx_flags(dev, IFF_MULTICAST);
4527
4528 dev_set_rx_mode(dev);
4529
4530 /*
4531 * Have we downed the interface. We handle IFF_UP ourselves
4532 * according to user attempts to set it, rather than blindly
4533 * setting it.
4534 */
4535
4536 ret = 0;
4537 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4538 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4539
4540 if (!ret)
4541 dev_set_rx_mode(dev);
4542 }
4543
4544 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4545 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4546
4547 dev->gflags ^= IFF_PROMISC;
4548 dev_set_promiscuity(dev, inc);
4549 }
4550
4551 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4552 is important. Some (broken) drivers set IFF_PROMISC, when
4553 IFF_ALLMULTI is requested not asking us and not reporting.
4554 */
4555 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4556 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4557
4558 dev->gflags ^= IFF_ALLMULTI;
4559 dev_set_allmulti(dev, inc);
4560 }
4561
4562 return ret;
4563}
4564
4565void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4566{
4567 unsigned int changes = dev->flags ^ old_flags;
4568
4569 if (changes & IFF_UP) {
4570 if (dev->flags & IFF_UP)
4571 call_netdevice_notifiers(NETDEV_UP, dev);
4572 else
4573 call_netdevice_notifiers(NETDEV_DOWN, dev);
4574 }
4575
4576 if (dev->flags & IFF_UP &&
4577 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4578 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4579}
4580
4581/**
4582 * dev_change_flags - change device settings
4583 * @dev: device
4584 * @flags: device state flags
4585 *
4586 * Change settings on device based state flags. The flags are
4587 * in the userspace exported format.
4588 */
4589int dev_change_flags(struct net_device *dev, unsigned flags)
4590{
4591 int ret, changes;
4592 int old_flags = dev->flags;
4593
4594 ret = __dev_change_flags(dev, flags);
4595 if (ret < 0)
4596 return ret;
4597
4598 changes = old_flags ^ dev->flags;
4599 if (changes)
4600 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4601
4602 __dev_notify_flags(dev, old_flags);
4603 return ret;
4604}
4605EXPORT_SYMBOL(dev_change_flags);
4606
4607/**
4608 * dev_set_mtu - Change maximum transfer unit
4609 * @dev: device
4610 * @new_mtu: new transfer unit
4611 *
4612 * Change the maximum transfer size of the network device.
4613 */
4614int dev_set_mtu(struct net_device *dev, int new_mtu)
4615{
4616 const struct net_device_ops *ops = dev->netdev_ops;
4617 int err;
4618
4619 if (new_mtu == dev->mtu)
4620 return 0;
4621
4622 /* MTU must be positive. */
4623 if (new_mtu < 0)
4624 return -EINVAL;
4625
4626 if (!netif_device_present(dev))
4627 return -ENODEV;
4628
4629 err = 0;
4630 if (ops->ndo_change_mtu)
4631 err = ops->ndo_change_mtu(dev, new_mtu);
4632 else
4633 dev->mtu = new_mtu;
4634
4635 if (!err && dev->flags & IFF_UP)
4636 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4637 return err;
4638}
4639EXPORT_SYMBOL(dev_set_mtu);
4640
4641/**
4642 * dev_set_mac_address - Change Media Access Control Address
4643 * @dev: device
4644 * @sa: new address
4645 *
4646 * Change the hardware (MAC) address of the device
4647 */
4648int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4649{
4650 const struct net_device_ops *ops = dev->netdev_ops;
4651 int err;
4652
4653 if (!ops->ndo_set_mac_address)
4654 return -EOPNOTSUPP;
4655 if (sa->sa_family != dev->type)
4656 return -EINVAL;
4657 if (!netif_device_present(dev))
4658 return -ENODEV;
4659 err = ops->ndo_set_mac_address(dev, sa);
4660 if (!err)
4661 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4662 return err;
4663}
4664EXPORT_SYMBOL(dev_set_mac_address);
4665
4666/*
4667 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4668 */
4669static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4670{
4671 int err;
4672 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4673
4674 if (!dev)
4675 return -ENODEV;
4676
4677 switch (cmd) {
4678 case SIOCGIFFLAGS: /* Get interface flags */
4679 ifr->ifr_flags = (short) dev_get_flags(dev);
4680 return 0;
4681
4682 case SIOCGIFMETRIC: /* Get the metric on the interface
4683 (currently unused) */
4684 ifr->ifr_metric = 0;
4685 return 0;
4686
4687 case SIOCGIFMTU: /* Get the MTU of a device */
4688 ifr->ifr_mtu = dev->mtu;
4689 return 0;
4690
4691 case SIOCGIFHWADDR:
4692 if (!dev->addr_len)
4693 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4694 else
4695 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4696 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4697 ifr->ifr_hwaddr.sa_family = dev->type;
4698 return 0;
4699
4700 case SIOCGIFSLAVE:
4701 err = -EINVAL;
4702 break;
4703
4704 case SIOCGIFMAP:
4705 ifr->ifr_map.mem_start = dev->mem_start;
4706 ifr->ifr_map.mem_end = dev->mem_end;
4707 ifr->ifr_map.base_addr = dev->base_addr;
4708 ifr->ifr_map.irq = dev->irq;
4709 ifr->ifr_map.dma = dev->dma;
4710 ifr->ifr_map.port = dev->if_port;
4711 return 0;
4712
4713 case SIOCGIFINDEX:
4714 ifr->ifr_ifindex = dev->ifindex;
4715 return 0;
4716
4717 case SIOCGIFTXQLEN:
4718 ifr->ifr_qlen = dev->tx_queue_len;
4719 return 0;
4720
4721 default:
4722 /* dev_ioctl() should ensure this case
4723 * is never reached
4724 */
4725 WARN_ON(1);
4726 err = -EINVAL;
4727 break;
4728
4729 }
4730 return err;
4731}
4732
4733/*
4734 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4735 */
4736static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4737{
4738 int err;
4739 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4740 const struct net_device_ops *ops;
4741
4742 if (!dev)
4743 return -ENODEV;
4744
4745 ops = dev->netdev_ops;
4746
4747 switch (cmd) {
4748 case SIOCSIFFLAGS: /* Set interface flags */
4749 return dev_change_flags(dev, ifr->ifr_flags);
4750
4751 case SIOCSIFMETRIC: /* Set the metric on the interface
4752 (currently unused) */
4753 return -EOPNOTSUPP;
4754
4755 case SIOCSIFMTU: /* Set the MTU of a device */
4756 return dev_set_mtu(dev, ifr->ifr_mtu);
4757
4758 case SIOCSIFHWADDR:
4759 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4760
4761 case SIOCSIFHWBROADCAST:
4762 if (ifr->ifr_hwaddr.sa_family != dev->type)
4763 return -EINVAL;
4764 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4765 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4766 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4767 return 0;
4768
4769 case SIOCSIFMAP:
4770 if (ops->ndo_set_config) {
4771 if (!netif_device_present(dev))
4772 return -ENODEV;
4773 return ops->ndo_set_config(dev, &ifr->ifr_map);
4774 }
4775 return -EOPNOTSUPP;
4776
4777 case SIOCADDMULTI:
4778 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4779 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4780 return -EINVAL;
4781 if (!netif_device_present(dev))
4782 return -ENODEV;
4783 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4784 dev->addr_len, 1);
4785
4786 case SIOCDELMULTI:
4787 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4788 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4789 return -EINVAL;
4790 if (!netif_device_present(dev))
4791 return -ENODEV;
4792 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4793 dev->addr_len, 1);
4794
4795 case SIOCSIFTXQLEN:
4796 if (ifr->ifr_qlen < 0)
4797 return -EINVAL;
4798 dev->tx_queue_len = ifr->ifr_qlen;
4799 return 0;
4800
4801 case SIOCSIFNAME:
4802 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4803 return dev_change_name(dev, ifr->ifr_newname);
4804
4805 /*
4806 * Unknown or private ioctl
4807 */
4808 default:
4809 if ((cmd >= SIOCDEVPRIVATE &&
4810 cmd <= SIOCDEVPRIVATE + 15) ||
4811 cmd == SIOCBONDENSLAVE ||
4812 cmd == SIOCBONDRELEASE ||
4813 cmd == SIOCBONDSETHWADDR ||
4814 cmd == SIOCBONDSLAVEINFOQUERY ||
4815 cmd == SIOCBONDINFOQUERY ||
4816 cmd == SIOCBONDCHANGEACTIVE ||
4817 cmd == SIOCGMIIPHY ||
4818 cmd == SIOCGMIIREG ||
4819 cmd == SIOCSMIIREG ||
4820 cmd == SIOCBRADDIF ||
4821 cmd == SIOCBRDELIF ||
4822 cmd == SIOCSHWTSTAMP ||
4823 cmd == SIOCWANDEV) {
4824 err = -EOPNOTSUPP;
4825 if (ops->ndo_do_ioctl) {
4826 if (netif_device_present(dev))
4827 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4828 else
4829 err = -ENODEV;
4830 }
4831 } else
4832 err = -EINVAL;
4833
4834 }
4835 return err;
4836}
4837
4838/*
4839 * This function handles all "interface"-type I/O control requests. The actual
4840 * 'doing' part of this is dev_ifsioc above.
4841 */
4842
4843/**
4844 * dev_ioctl - network device ioctl
4845 * @net: the applicable net namespace
4846 * @cmd: command to issue
4847 * @arg: pointer to a struct ifreq in user space
4848 *
4849 * Issue ioctl functions to devices. This is normally called by the
4850 * user space syscall interfaces but can sometimes be useful for
4851 * other purposes. The return value is the return from the syscall if
4852 * positive or a negative errno code on error.
4853 */
4854
4855int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4856{
4857 struct ifreq ifr;
4858 int ret;
4859 char *colon;
4860
4861 /* One special case: SIOCGIFCONF takes ifconf argument
4862 and requires shared lock, because it sleeps writing
4863 to user space.
4864 */
4865
4866 if (cmd == SIOCGIFCONF) {
4867 rtnl_lock();
4868 ret = dev_ifconf(net, (char __user *) arg);
4869 rtnl_unlock();
4870 return ret;
4871 }
4872 if (cmd == SIOCGIFNAME)
4873 return dev_ifname(net, (struct ifreq __user *)arg);
4874
4875 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4876 return -EFAULT;
4877
4878 ifr.ifr_name[IFNAMSIZ-1] = 0;
4879
4880 colon = strchr(ifr.ifr_name, ':');
4881 if (colon)
4882 *colon = 0;
4883
4884 /*
4885 * See which interface the caller is talking about.
4886 */
4887
4888 switch (cmd) {
4889 /*
4890 * These ioctl calls:
4891 * - can be done by all.
4892 * - atomic and do not require locking.
4893 * - return a value
4894 */
4895 case SIOCGIFFLAGS:
4896 case SIOCGIFMETRIC:
4897 case SIOCGIFMTU:
4898 case SIOCGIFHWADDR:
4899 case SIOCGIFSLAVE:
4900 case SIOCGIFMAP:
4901 case SIOCGIFINDEX:
4902 case SIOCGIFTXQLEN:
4903 dev_load(net, ifr.ifr_name);
4904 rcu_read_lock();
4905 ret = dev_ifsioc_locked(net, &ifr, cmd);
4906 rcu_read_unlock();
4907 if (!ret) {
4908 if (colon)
4909 *colon = ':';
4910 if (copy_to_user(arg, &ifr,
4911 sizeof(struct ifreq)))
4912 ret = -EFAULT;
4913 }
4914 return ret;
4915
4916 case SIOCETHTOOL:
4917 dev_load(net, ifr.ifr_name);
4918 rtnl_lock();
4919 ret = dev_ethtool(net, &ifr);
4920 rtnl_unlock();
4921 if (!ret) {
4922 if (colon)
4923 *colon = ':';
4924 if (copy_to_user(arg, &ifr,
4925 sizeof(struct ifreq)))
4926 ret = -EFAULT;
4927 }
4928 return ret;
4929
4930 /*
4931 * These ioctl calls:
4932 * - require superuser power.
4933 * - require strict serialization.
4934 * - return a value
4935 */
4936 case SIOCGMIIPHY:
4937 case SIOCGMIIREG:
4938 case SIOCSIFNAME:
4939 if (!capable(CAP_NET_ADMIN))
4940 return -EPERM;
4941 dev_load(net, ifr.ifr_name);
4942 rtnl_lock();
4943 ret = dev_ifsioc(net, &ifr, cmd);
4944 rtnl_unlock();
4945 if (!ret) {
4946 if (colon)
4947 *colon = ':';
4948 if (copy_to_user(arg, &ifr,
4949 sizeof(struct ifreq)))
4950 ret = -EFAULT;
4951 }
4952 return ret;
4953
4954 /*
4955 * These ioctl calls:
4956 * - require superuser power.
4957 * - require strict serialization.
4958 * - do not return a value
4959 */
4960 case SIOCSIFFLAGS:
4961 case SIOCSIFMETRIC:
4962 case SIOCSIFMTU:
4963 case SIOCSIFMAP:
4964 case SIOCSIFHWADDR:
4965 case SIOCSIFSLAVE:
4966 case SIOCADDMULTI:
4967 case SIOCDELMULTI:
4968 case SIOCSIFHWBROADCAST:
4969 case SIOCSIFTXQLEN:
4970 case SIOCSMIIREG:
4971 case SIOCBONDENSLAVE:
4972 case SIOCBONDRELEASE:
4973 case SIOCBONDSETHWADDR:
4974 case SIOCBONDCHANGEACTIVE:
4975 case SIOCBRADDIF:
4976 case SIOCBRDELIF:
4977 case SIOCSHWTSTAMP:
4978 if (!capable(CAP_NET_ADMIN))
4979 return -EPERM;
4980 /* fall through */
4981 case SIOCBONDSLAVEINFOQUERY:
4982 case SIOCBONDINFOQUERY:
4983 dev_load(net, ifr.ifr_name);
4984 rtnl_lock();
4985 ret = dev_ifsioc(net, &ifr, cmd);
4986 rtnl_unlock();
4987 return ret;
4988
4989 case SIOCGIFMEM:
4990 /* Get the per device memory space. We can add this but
4991 * currently do not support it */
4992 case SIOCSIFMEM:
4993 /* Set the per device memory buffer space.
4994 * Not applicable in our case */
4995 case SIOCSIFLINK:
4996 return -EINVAL;
4997
4998 /*
4999 * Unknown or private ioctl.
5000 */
5001 default:
5002 if (cmd == SIOCWANDEV ||
5003 (cmd >= SIOCDEVPRIVATE &&
5004 cmd <= SIOCDEVPRIVATE + 15)) {
5005 dev_load(net, ifr.ifr_name);
5006 rtnl_lock();
5007 ret = dev_ifsioc(net, &ifr, cmd);
5008 rtnl_unlock();
5009 if (!ret && copy_to_user(arg, &ifr,
5010 sizeof(struct ifreq)))
5011 ret = -EFAULT;
5012 return ret;
5013 }
5014 /* Take care of Wireless Extensions */
5015 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5016 return wext_handle_ioctl(net, &ifr, cmd, arg);
5017 return -EINVAL;
5018 }
5019}
5020
5021
5022/**
5023 * dev_new_index - allocate an ifindex
5024 * @net: the applicable net namespace
5025 *
5026 * Returns a suitable unique value for a new device interface
5027 * number. The caller must hold the rtnl semaphore or the
5028 * dev_base_lock to be sure it remains unique.
5029 */
5030static int dev_new_index(struct net *net)
5031{
5032 static int ifindex;
5033 for (;;) {
5034 if (++ifindex <= 0)
5035 ifindex = 1;
5036 if (!__dev_get_by_index(net, ifindex))
5037 return ifindex;
5038 }
5039}
5040
5041/* Delayed registration/unregisteration */
5042static LIST_HEAD(net_todo_list);
5043
5044static void net_set_todo(struct net_device *dev)
5045{
5046 list_add_tail(&dev->todo_list, &net_todo_list);
5047}
5048
5049static void rollback_registered_many(struct list_head *head)
5050{
5051 struct net_device *dev, *tmp;
5052
5053 BUG_ON(dev_boot_phase);
5054 ASSERT_RTNL();
5055
5056 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5057 /* Some devices call without registering
5058 * for initialization unwind. Remove those
5059 * devices and proceed with the remaining.
5060 */
5061 if (dev->reg_state == NETREG_UNINITIALIZED) {
5062 pr_debug("unregister_netdevice: device %s/%p never "
5063 "was registered\n", dev->name, dev);
5064
5065 WARN_ON(1);
5066 list_del(&dev->unreg_list);
5067 continue;
5068 }
5069
5070 BUG_ON(dev->reg_state != NETREG_REGISTERED);
5071
5072 /* If device is running, close it first. */
5073 dev_close(dev);
5074
5075 /* And unlink it from device chain. */
5076 unlist_netdevice(dev);
5077
5078 dev->reg_state = NETREG_UNREGISTERING;
5079 }
5080
5081 synchronize_net();
5082
5083 list_for_each_entry(dev, head, unreg_list) {
5084 /* Shutdown queueing discipline. */
5085 dev_shutdown(dev);
5086
5087
5088 /* Notify protocols, that we are about to destroy
5089 this device. They should clean all the things.
5090 */
5091 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5092
5093 if (!dev->rtnl_link_ops ||
5094 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5095 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5096
5097 /*
5098 * Flush the unicast and multicast chains
5099 */
5100 dev_unicast_flush(dev);
5101 dev_addr_discard(dev);
5102
5103 if (dev->netdev_ops->ndo_uninit)
5104 dev->netdev_ops->ndo_uninit(dev);
5105
5106 /* Notifier chain MUST detach us from master device. */
5107 WARN_ON(dev->master);
5108
5109 /* Remove entries from kobject tree */
5110 netdev_unregister_kobject(dev);
5111 }
5112
5113 /* Process any work delayed until the end of the batch */
5114 dev = list_first_entry(head, struct net_device, unreg_list);
5115 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5116
5117 synchronize_net();
5118
5119 list_for_each_entry(dev, head, unreg_list)
5120 dev_put(dev);
5121}
5122
5123static void rollback_registered(struct net_device *dev)
5124{
5125 LIST_HEAD(single);
5126
5127 list_add(&dev->unreg_list, &single);
5128 rollback_registered_many(&single);
5129}
5130
5131static void __netdev_init_queue_locks_one(struct net_device *dev,
5132 struct netdev_queue *dev_queue,
5133 void *_unused)
5134{
5135 spin_lock_init(&dev_queue->_xmit_lock);
5136 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
5137 dev_queue->xmit_lock_owner = -1;
5138}
5139
5140static void netdev_init_queue_locks(struct net_device *dev)
5141{
5142 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5143 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
5144}
5145
5146unsigned long netdev_fix_features(unsigned long features, const char *name)
5147{
5148 /* Fix illegal SG+CSUM combinations. */
5149 if ((features & NETIF_F_SG) &&
5150 !(features & NETIF_F_ALL_CSUM)) {
5151 if (name)
5152 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5153 "checksum feature.\n", name);
5154 features &= ~NETIF_F_SG;
5155 }
5156
5157 /* TSO requires that SG is present as well. */
5158 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5159 if (name)
5160 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5161 "SG feature.\n", name);
5162 features &= ~NETIF_F_TSO;
5163 }
5164
5165 if (features & NETIF_F_UFO) {
5166 if (!(features & NETIF_F_GEN_CSUM)) {
5167 if (name)
5168 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5169 "since no NETIF_F_HW_CSUM feature.\n",
5170 name);
5171 features &= ~NETIF_F_UFO;
5172 }
5173
5174 if (!(features & NETIF_F_SG)) {
5175 if (name)
5176 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5177 "since no NETIF_F_SG feature.\n", name);
5178 features &= ~NETIF_F_UFO;
5179 }
5180 }
5181
5182 return features;
5183}
5184EXPORT_SYMBOL(netdev_fix_features);
5185
5186/**
5187 * netif_stacked_transfer_operstate - transfer operstate
5188 * @rootdev: the root or lower level device to transfer state from
5189 * @dev: the device to transfer operstate to
5190 *
5191 * Transfer operational state from root to device. This is normally
5192 * called when a stacking relationship exists between the root
5193 * device and the device(a leaf device).
5194 */
5195void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5196 struct net_device *dev)
5197{
5198 if (rootdev->operstate == IF_OPER_DORMANT)
5199 netif_dormant_on(dev);
5200 else
5201 netif_dormant_off(dev);
5202
5203 if (netif_carrier_ok(rootdev)) {
5204 if (!netif_carrier_ok(dev))
5205 netif_carrier_on(dev);
5206 } else {
5207 if (netif_carrier_ok(dev))
5208 netif_carrier_off(dev);
5209 }
5210}
5211EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5212
5213/**
5214 * register_netdevice - register a network device
5215 * @dev: device to register
5216 *
5217 * Take a completed network device structure and add it to the kernel
5218 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5219 * chain. 0 is returned on success. A negative errno code is returned
5220 * on a failure to set up the device, or if the name is a duplicate.
5221 *
5222 * Callers must hold the rtnl semaphore. You may want
5223 * register_netdev() instead of this.
5224 *
5225 * BUGS:
5226 * The locking appears insufficient to guarantee two parallel registers
5227 * will not get the same name.
5228 */
5229
5230int register_netdevice(struct net_device *dev)
5231{
5232 int ret;
5233 struct net *net = dev_net(dev);
5234
5235 BUG_ON(dev_boot_phase);
5236 ASSERT_RTNL();
5237
5238 might_sleep();
5239
5240 /* When net_device's are persistent, this will be fatal. */
5241 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5242 BUG_ON(!net);
5243
5244 spin_lock_init(&dev->addr_list_lock);
5245 netdev_set_addr_lockdep_class(dev);
5246 netdev_init_queue_locks(dev);
5247
5248 dev->iflink = -1;
5249
5250 if (!dev->num_rx_queues) {
5251 /*
5252 * Allocate a single RX queue if driver never called
5253 * alloc_netdev_mq
5254 */
5255
5256 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5257 if (!dev->_rx) {
5258 ret = -ENOMEM;
5259 goto out;
5260 }
5261
5262 dev->_rx->first = dev->_rx;
5263 atomic_set(&dev->_rx->count, 1);
5264 dev->num_rx_queues = 1;
5265 }
5266
5267 /* Init, if this function is available */
5268 if (dev->netdev_ops->ndo_init) {
5269 ret = dev->netdev_ops->ndo_init(dev);
5270 if (ret) {
5271 if (ret > 0)
5272 ret = -EIO;
5273 goto out;
5274 }
5275 }
5276
5277 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5278 if (ret)
5279 goto err_uninit;
5280
5281 dev->ifindex = dev_new_index(net);
5282 if (dev->iflink == -1)
5283 dev->iflink = dev->ifindex;
5284
5285 /* Fix illegal checksum combinations */
5286 if ((dev->features & NETIF_F_HW_CSUM) &&
5287 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5288 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5289 dev->name);
5290 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5291 }
5292
5293 if ((dev->features & NETIF_F_NO_CSUM) &&
5294 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5295 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5296 dev->name);
5297 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5298 }
5299
5300 dev->features = netdev_fix_features(dev->features, dev->name);
5301
5302 /* Enable software GSO if SG is supported. */
5303 if (dev->features & NETIF_F_SG)
5304 dev->features |= NETIF_F_GSO;
5305
5306 netdev_initialize_kobject(dev);
5307
5308 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5309 ret = notifier_to_errno(ret);
5310 if (ret)
5311 goto err_uninit;
5312
5313 ret = netdev_register_kobject(dev);
5314 if (ret)
5315 goto err_uninit;
5316 dev->reg_state = NETREG_REGISTERED;
5317
5318 /*
5319 * Default initial state at registry is that the
5320 * device is present.
5321 */
5322
5323 set_bit(__LINK_STATE_PRESENT, &dev->state);
5324
5325 dev_init_scheduler(dev);
5326 dev_hold(dev);
5327 list_netdevice(dev);
5328
5329 /* Notify protocols, that a new device appeared. */
5330 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5331 ret = notifier_to_errno(ret);
5332 if (ret) {
5333 rollback_registered(dev);
5334 dev->reg_state = NETREG_UNREGISTERED;
5335 }
5336 /*
5337 * Prevent userspace races by waiting until the network
5338 * device is fully setup before sending notifications.
5339 */
5340 if (!dev->rtnl_link_ops ||
5341 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5342 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5343
5344out:
5345 return ret;
5346
5347err_uninit:
5348 if (dev->netdev_ops->ndo_uninit)
5349 dev->netdev_ops->ndo_uninit(dev);
5350 goto out;
5351}
5352EXPORT_SYMBOL(register_netdevice);
5353
5354/**
5355 * init_dummy_netdev - init a dummy network device for NAPI
5356 * @dev: device to init
5357 *
5358 * This takes a network device structure and initialize the minimum
5359 * amount of fields so it can be used to schedule NAPI polls without
5360 * registering a full blown interface. This is to be used by drivers
5361 * that need to tie several hardware interfaces to a single NAPI
5362 * poll scheduler due to HW limitations.
5363 */
5364int init_dummy_netdev(struct net_device *dev)
5365{
5366 /* Clear everything. Note we don't initialize spinlocks
5367 * are they aren't supposed to be taken by any of the
5368 * NAPI code and this dummy netdev is supposed to be
5369 * only ever used for NAPI polls
5370 */
5371 memset(dev, 0, sizeof(struct net_device));
5372
5373 /* make sure we BUG if trying to hit standard
5374 * register/unregister code path
5375 */
5376 dev->reg_state = NETREG_DUMMY;
5377
5378 /* initialize the ref count */
5379 atomic_set(&dev->refcnt, 1);
5380
5381 /* NAPI wants this */
5382 INIT_LIST_HEAD(&dev->napi_list);
5383
5384 /* a dummy interface is started by default */
5385 set_bit(__LINK_STATE_PRESENT, &dev->state);
5386 set_bit(__LINK_STATE_START, &dev->state);
5387
5388 return 0;
5389}
5390EXPORT_SYMBOL_GPL(init_dummy_netdev);
5391
5392
5393/**
5394 * register_netdev - register a network device
5395 * @dev: device to register
5396 *
5397 * Take a completed network device structure and add it to the kernel
5398 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5399 * chain. 0 is returned on success. A negative errno code is returned
5400 * on a failure to set up the device, or if the name is a duplicate.
5401 *
5402 * This is a wrapper around register_netdevice that takes the rtnl semaphore
5403 * and expands the device name if you passed a format string to
5404 * alloc_netdev.
5405 */
5406int register_netdev(struct net_device *dev)
5407{
5408 int err;
5409
5410 rtnl_lock();
5411
5412 /*
5413 * If the name is a format string the caller wants us to do a
5414 * name allocation.
5415 */
5416 if (strchr(dev->name, '%')) {
5417 err = dev_alloc_name(dev, dev->name);
5418 if (err < 0)
5419 goto out;
5420 }
5421
5422 err = register_netdevice(dev);
5423out:
5424 rtnl_unlock();
5425 return err;
5426}
5427EXPORT_SYMBOL(register_netdev);
5428
5429/*
5430 * netdev_wait_allrefs - wait until all references are gone.
5431 *
5432 * This is called when unregistering network devices.
5433 *
5434 * Any protocol or device that holds a reference should register
5435 * for netdevice notification, and cleanup and put back the
5436 * reference if they receive an UNREGISTER event.
5437 * We can get stuck here if buggy protocols don't correctly
5438 * call dev_put.
5439 */
5440static void netdev_wait_allrefs(struct net_device *dev)
5441{
5442 unsigned long rebroadcast_time, warning_time;
5443
5444 linkwatch_forget_dev(dev);
5445
5446 rebroadcast_time = warning_time = jiffies;
5447 while (atomic_read(&dev->refcnt) != 0) {
5448 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5449 rtnl_lock();
5450
5451 /* Rebroadcast unregister notification */
5452 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5453 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5454 * should have already handle it the first time */
5455
5456 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5457 &dev->state)) {
5458 /* We must not have linkwatch events
5459 * pending on unregister. If this
5460 * happens, we simply run the queue
5461 * unscheduled, resulting in a noop
5462 * for this device.
5463 */
5464 linkwatch_run_queue();
5465 }
5466
5467 __rtnl_unlock();
5468
5469 rebroadcast_time = jiffies;
5470 }
5471
5472 msleep(250);
5473
5474 if (time_after(jiffies, warning_time + 10 * HZ)) {
5475 printk(KERN_EMERG "unregister_netdevice: "
5476 "waiting for %s to become free. Usage "
5477 "count = %d\n",
5478 dev->name, atomic_read(&dev->refcnt));
5479 warning_time = jiffies;
5480 }
5481 }
5482}
5483
5484/* The sequence is:
5485 *
5486 * rtnl_lock();
5487 * ...
5488 * register_netdevice(x1);
5489 * register_netdevice(x2);
5490 * ...
5491 * unregister_netdevice(y1);
5492 * unregister_netdevice(y2);
5493 * ...
5494 * rtnl_unlock();
5495 * free_netdev(y1);
5496 * free_netdev(y2);
5497 *
5498 * We are invoked by rtnl_unlock().
5499 * This allows us to deal with problems:
5500 * 1) We can delete sysfs objects which invoke hotplug
5501 * without deadlocking with linkwatch via keventd.
5502 * 2) Since we run with the RTNL semaphore not held, we can sleep
5503 * safely in order to wait for the netdev refcnt to drop to zero.
5504 *
5505 * We must not return until all unregister events added during
5506 * the interval the lock was held have been completed.
5507 */
5508void netdev_run_todo(void)
5509{
5510 struct list_head list;
5511
5512 /* Snapshot list, allow later requests */
5513 list_replace_init(&net_todo_list, &list);
5514
5515 __rtnl_unlock();
5516
5517 while (!list_empty(&list)) {
5518 struct net_device *dev
5519 = list_first_entry(&list, struct net_device, todo_list);
5520 list_del(&dev->todo_list);
5521
5522 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5523 printk(KERN_ERR "network todo '%s' but state %d\n",
5524 dev->name, dev->reg_state);
5525 dump_stack();
5526 continue;
5527 }
5528
5529 dev->reg_state = NETREG_UNREGISTERED;
5530
5531 on_each_cpu(flush_backlog, dev, 1);
5532
5533 netdev_wait_allrefs(dev);
5534
5535 /* paranoia */
5536 BUG_ON(atomic_read(&dev->refcnt));
5537 WARN_ON(dev->ip_ptr);
5538 WARN_ON(dev->ip6_ptr);
5539 WARN_ON(dev->dn_ptr);
5540
5541 if (dev->destructor)
5542 dev->destructor(dev);
5543
5544 /* Free network device */
5545 kobject_put(&dev->dev.kobj);
5546 }
5547}
5548
5549/**
5550 * dev_txq_stats_fold - fold tx_queues stats
5551 * @dev: device to get statistics from
5552 * @stats: struct net_device_stats to hold results
5553 */
5554void dev_txq_stats_fold(const struct net_device *dev,
5555 struct net_device_stats *stats)
5556{
5557 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5558 unsigned int i;
5559 struct netdev_queue *txq;
5560
5561 for (i = 0; i < dev->num_tx_queues; i++) {
5562 txq = netdev_get_tx_queue(dev, i);
5563 tx_bytes += txq->tx_bytes;
5564 tx_packets += txq->tx_packets;
5565 tx_dropped += txq->tx_dropped;
5566 }
5567 if (tx_bytes || tx_packets || tx_dropped) {
5568 stats->tx_bytes = tx_bytes;
5569 stats->tx_packets = tx_packets;
5570 stats->tx_dropped = tx_dropped;
5571 }
5572}
5573EXPORT_SYMBOL(dev_txq_stats_fold);
5574
5575/**
5576 * dev_get_stats - get network device statistics
5577 * @dev: device to get statistics from
5578 *
5579 * Get network statistics from device. The device driver may provide
5580 * its own method by setting dev->netdev_ops->get_stats; otherwise
5581 * the internal statistics structure is used.
5582 */
5583const struct net_device_stats *dev_get_stats(struct net_device *dev)
5584{
5585 const struct net_device_ops *ops = dev->netdev_ops;
5586
5587 if (ops->ndo_get_stats)
5588 return ops->ndo_get_stats(dev);
5589
5590 dev_txq_stats_fold(dev, &dev->stats);
5591 return &dev->stats;
5592}
5593EXPORT_SYMBOL(dev_get_stats);
5594
5595static void netdev_init_one_queue(struct net_device *dev,
5596 struct netdev_queue *queue,
5597 void *_unused)
5598{
5599 queue->dev = dev;
5600}
5601
5602static void netdev_init_queues(struct net_device *dev)
5603{
5604 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5605 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5606 spin_lock_init(&dev->tx_global_lock);
5607}
5608
5609/**
5610 * alloc_netdev_mq - allocate network device
5611 * @sizeof_priv: size of private data to allocate space for
5612 * @name: device name format string
5613 * @setup: callback to initialize device
5614 * @queue_count: the number of subqueues to allocate
5615 *
5616 * Allocates a struct net_device with private data area for driver use
5617 * and performs basic initialization. Also allocates subquue structs
5618 * for each queue on the device at the end of the netdevice.
5619 */
5620struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5621 void (*setup)(struct net_device *), unsigned int queue_count)
5622{
5623 struct netdev_queue *tx;
5624 struct netdev_rx_queue *rx;
5625 struct net_device *dev;
5626 size_t alloc_size;
5627 struct net_device *p;
5628 int i;
5629
5630 BUG_ON(strlen(name) >= sizeof(dev->name));
5631
5632 alloc_size = sizeof(struct net_device);
5633 if (sizeof_priv) {
5634 /* ensure 32-byte alignment of private area */
5635 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5636 alloc_size += sizeof_priv;
5637 }
5638 /* ensure 32-byte alignment of whole construct */
5639 alloc_size += NETDEV_ALIGN - 1;
5640
5641 p = kzalloc(alloc_size, GFP_KERNEL);
5642 if (!p) {
5643 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5644 return NULL;
5645 }
5646
5647 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5648 if (!tx) {
5649 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5650 "tx qdiscs.\n");
5651 goto free_p;
5652 }
5653
5654 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5655 if (!rx) {
5656 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5657 "rx queues.\n");
5658 goto free_tx;
5659 }
5660
5661 atomic_set(&rx->count, queue_count);
5662
5663 /*
5664 * Set a pointer to first element in the array which holds the
5665 * reference count.
5666 */
5667 for (i = 0; i < queue_count; i++)
5668 rx[i].first = rx;
5669
5670 dev = PTR_ALIGN(p, NETDEV_ALIGN);
5671 dev->padded = (char *)dev - (char *)p;
5672
5673 if (dev_addr_init(dev))
5674 goto free_rx;
5675
5676 dev_unicast_init(dev);
5677
5678 dev_net_set(dev, &init_net);
5679
5680 dev->_tx = tx;
5681 dev->num_tx_queues = queue_count;
5682 dev->real_num_tx_queues = queue_count;
5683
5684 dev->_rx = rx;
5685 dev->num_rx_queues = queue_count;
5686
5687 dev->gso_max_size = GSO_MAX_SIZE;
5688
5689 netdev_init_queues(dev);
5690
5691 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5692 dev->ethtool_ntuple_list.count = 0;
5693 INIT_LIST_HEAD(&dev->napi_list);
5694 INIT_LIST_HEAD(&dev->unreg_list);
5695 INIT_LIST_HEAD(&dev->link_watch_list);
5696 dev->priv_flags = IFF_XMIT_DST_RELEASE;
5697 setup(dev);
5698 strcpy(dev->name, name);
5699 return dev;
5700
5701free_rx:
5702 kfree(rx);
5703free_tx:
5704 kfree(tx);
5705free_p:
5706 kfree(p);
5707 return NULL;
5708}
5709EXPORT_SYMBOL(alloc_netdev_mq);
5710
5711/**
5712 * free_netdev - free network device
5713 * @dev: device
5714 *
5715 * This function does the last stage of destroying an allocated device
5716 * interface. The reference to the device object is released.
5717 * If this is the last reference then it will be freed.
5718 */
5719void free_netdev(struct net_device *dev)
5720{
5721 struct napi_struct *p, *n;
5722
5723 release_net(dev_net(dev));
5724
5725 kfree(dev->_tx);
5726
5727 /* Flush device addresses */
5728 dev_addr_flush(dev);
5729
5730 /* Clear ethtool n-tuple list */
5731 ethtool_ntuple_flush(dev);
5732
5733 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5734 netif_napi_del(p);
5735
5736 /* Compatibility with error handling in drivers */
5737 if (dev->reg_state == NETREG_UNINITIALIZED) {
5738 kfree((char *)dev - dev->padded);
5739 return;
5740 }
5741
5742 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5743 dev->reg_state = NETREG_RELEASED;
5744
5745 /* will free via device release */
5746 put_device(&dev->dev);
5747}
5748EXPORT_SYMBOL(free_netdev);
5749
5750/**
5751 * synchronize_net - Synchronize with packet receive processing
5752 *
5753 * Wait for packets currently being received to be done.
5754 * Does not block later packets from starting.
5755 */
5756void synchronize_net(void)
5757{
5758 might_sleep();
5759 synchronize_rcu();
5760}
5761EXPORT_SYMBOL(synchronize_net);
5762
5763/**
5764 * unregister_netdevice_queue - remove device from the kernel
5765 * @dev: device
5766 * @head: list
5767 *
5768 * This function shuts down a device interface and removes it
5769 * from the kernel tables.
5770 * If head not NULL, device is queued to be unregistered later.
5771 *
5772 * Callers must hold the rtnl semaphore. You may want
5773 * unregister_netdev() instead of this.
5774 */
5775
5776void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5777{
5778 ASSERT_RTNL();
5779
5780 if (head) {
5781 list_move_tail(&dev->unreg_list, head);
5782 } else {
5783 rollback_registered(dev);
5784 /* Finish processing unregister after unlock */
5785 net_set_todo(dev);
5786 }
5787}
5788EXPORT_SYMBOL(unregister_netdevice_queue);
5789
5790/**
5791 * unregister_netdevice_many - unregister many devices
5792 * @head: list of devices
5793 */
5794void unregister_netdevice_many(struct list_head *head)
5795{
5796 struct net_device *dev;
5797
5798 if (!list_empty(head)) {
5799 rollback_registered_many(head);
5800 list_for_each_entry(dev, head, unreg_list)
5801 net_set_todo(dev);
5802 }
5803}
5804EXPORT_SYMBOL(unregister_netdevice_many);
5805
5806/**
5807 * unregister_netdev - remove device from the kernel
5808 * @dev: device
5809 *
5810 * This function shuts down a device interface and removes it
5811 * from the kernel tables.
5812 *
5813 * This is just a wrapper for unregister_netdevice that takes
5814 * the rtnl semaphore. In general you want to use this and not
5815 * unregister_netdevice.
5816 */
5817void unregister_netdev(struct net_device *dev)
5818{
5819 rtnl_lock();
5820 unregister_netdevice(dev);
5821 rtnl_unlock();
5822}
5823EXPORT_SYMBOL(unregister_netdev);
5824
5825/**
5826 * dev_change_net_namespace - move device to different nethost namespace
5827 * @dev: device
5828 * @net: network namespace
5829 * @pat: If not NULL name pattern to try if the current device name
5830 * is already taken in the destination network namespace.
5831 *
5832 * This function shuts down a device interface and moves it
5833 * to a new network namespace. On success 0 is returned, on
5834 * a failure a netagive errno code is returned.
5835 *
5836 * Callers must hold the rtnl semaphore.
5837 */
5838
5839int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5840{
5841 int err;
5842
5843 ASSERT_RTNL();
5844
5845 /* Don't allow namespace local devices to be moved. */
5846 err = -EINVAL;
5847 if (dev->features & NETIF_F_NETNS_LOCAL)
5848 goto out;
5849
5850#ifdef CONFIG_SYSFS
5851 /* Don't allow real devices to be moved when sysfs
5852 * is enabled.
5853 */
5854 err = -EINVAL;
5855 if (dev->dev.parent)
5856 goto out;
5857#endif
5858
5859 /* Ensure the device has been registrered */
5860 err = -EINVAL;
5861 if (dev->reg_state != NETREG_REGISTERED)
5862 goto out;
5863
5864 /* Get out if there is nothing todo */
5865 err = 0;
5866 if (net_eq(dev_net(dev), net))
5867 goto out;
5868
5869 /* Pick the destination device name, and ensure
5870 * we can use it in the destination network namespace.
5871 */
5872 err = -EEXIST;
5873 if (__dev_get_by_name(net, dev->name)) {
5874 /* We get here if we can't use the current device name */
5875 if (!pat)
5876 goto out;
5877 if (dev_get_valid_name(net, pat, dev->name, 1))
5878 goto out;
5879 }
5880
5881 /*
5882 * And now a mini version of register_netdevice unregister_netdevice.
5883 */
5884
5885 /* If device is running close it first. */
5886 dev_close(dev);
5887
5888 /* And unlink it from device chain */
5889 err = -ENODEV;
5890 unlist_netdevice(dev);
5891
5892 synchronize_net();
5893
5894 /* Shutdown queueing discipline. */
5895 dev_shutdown(dev);
5896
5897 /* Notify protocols, that we are about to destroy
5898 this device. They should clean all the things.
5899 */
5900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5901 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5902
5903 /*
5904 * Flush the unicast and multicast chains
5905 */
5906 dev_unicast_flush(dev);
5907 dev_addr_discard(dev);
5908
5909 netdev_unregister_kobject(dev);
5910
5911 /* Actually switch the network namespace */
5912 dev_net_set(dev, net);
5913
5914 /* If there is an ifindex conflict assign a new one */
5915 if (__dev_get_by_index(net, dev->ifindex)) {
5916 int iflink = (dev->iflink == dev->ifindex);
5917 dev->ifindex = dev_new_index(net);
5918 if (iflink)
5919 dev->iflink = dev->ifindex;
5920 }
5921
5922 /* Fixup kobjects */
5923 err = netdev_register_kobject(dev);
5924 WARN_ON(err);
5925
5926 /* Add the device back in the hashes */
5927 list_netdevice(dev);
5928
5929 /* Notify protocols, that a new device appeared. */
5930 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5931
5932 /*
5933 * Prevent userspace races by waiting until the network
5934 * device is fully setup before sending notifications.
5935 */
5936 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5937
5938 synchronize_net();
5939 err = 0;
5940out:
5941 return err;
5942}
5943EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5944
5945static int dev_cpu_callback(struct notifier_block *nfb,
5946 unsigned long action,
5947 void *ocpu)
5948{
5949 struct sk_buff **list_skb;
5950 struct Qdisc **list_net;
5951 struct sk_buff *skb;
5952 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5953 struct softnet_data *sd, *oldsd;
5954
5955 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5956 return NOTIFY_OK;
5957
5958 local_irq_disable();
5959 cpu = smp_processor_id();
5960 sd = &per_cpu(softnet_data, cpu);
5961 oldsd = &per_cpu(softnet_data, oldcpu);
5962
5963 /* Find end of our completion_queue. */
5964 list_skb = &sd->completion_queue;
5965 while (*list_skb)
5966 list_skb = &(*list_skb)->next;
5967 /* Append completion queue from offline CPU. */
5968 *list_skb = oldsd->completion_queue;
5969 oldsd->completion_queue = NULL;
5970
5971 /* Find end of our output_queue. */
5972 list_net = &sd->output_queue;
5973 while (*list_net)
5974 list_net = &(*list_net)->next_sched;
5975 /* Append output queue from offline CPU. */
5976 *list_net = oldsd->output_queue;
5977 oldsd->output_queue = NULL;
5978
5979 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5980 local_irq_enable();
5981
5982 /* Process offline CPU's input_pkt_queue */
5983 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5984 netif_rx(skb);
5985
5986 return NOTIFY_OK;
5987}
5988
5989
5990/**
5991 * netdev_increment_features - increment feature set by one
5992 * @all: current feature set
5993 * @one: new feature set
5994 * @mask: mask feature set
5995 *
5996 * Computes a new feature set after adding a device with feature set
5997 * @one to the master device with current feature set @all. Will not
5998 * enable anything that is off in @mask. Returns the new feature set.
5999 */
6000unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6001 unsigned long mask)
6002{
6003 /* If device needs checksumming, downgrade to it. */
6004 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6005 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6006 else if (mask & NETIF_F_ALL_CSUM) {
6007 /* If one device supports v4/v6 checksumming, set for all. */
6008 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6009 !(all & NETIF_F_GEN_CSUM)) {
6010 all &= ~NETIF_F_ALL_CSUM;
6011 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6012 }
6013
6014 /* If one device supports hw checksumming, set for all. */
6015 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6016 all &= ~NETIF_F_ALL_CSUM;
6017 all |= NETIF_F_HW_CSUM;
6018 }
6019 }
6020
6021 one |= NETIF_F_ALL_CSUM;
6022
6023 one |= all & NETIF_F_ONE_FOR_ALL;
6024 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6025 all |= one & mask & NETIF_F_ONE_FOR_ALL;
6026
6027 return all;
6028}
6029EXPORT_SYMBOL(netdev_increment_features);
6030
6031static struct hlist_head *netdev_create_hash(void)
6032{
6033 int i;
6034 struct hlist_head *hash;
6035
6036 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6037 if (hash != NULL)
6038 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6039 INIT_HLIST_HEAD(&hash[i]);
6040
6041 return hash;
6042}
6043
6044/* Initialize per network namespace state */
6045static int __net_init netdev_init(struct net *net)
6046{
6047 INIT_LIST_HEAD(&net->dev_base_head);
6048
6049 net->dev_name_head = netdev_create_hash();
6050 if (net->dev_name_head == NULL)
6051 goto err_name;
6052
6053 net->dev_index_head = netdev_create_hash();
6054 if (net->dev_index_head == NULL)
6055 goto err_idx;
6056
6057 return 0;
6058
6059err_idx:
6060 kfree(net->dev_name_head);
6061err_name:
6062 return -ENOMEM;
6063}
6064
6065/**
6066 * netdev_drivername - network driver for the device
6067 * @dev: network device
6068 * @buffer: buffer for resulting name
6069 * @len: size of buffer
6070 *
6071 * Determine network driver for device.
6072 */
6073char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6074{
6075 const struct device_driver *driver;
6076 const struct device *parent;
6077
6078 if (len <= 0 || !buffer)
6079 return buffer;
6080 buffer[0] = 0;
6081
6082 parent = dev->dev.parent;
6083
6084 if (!parent)
6085 return buffer;
6086
6087 driver = parent->driver;
6088 if (driver && driver->name)
6089 strlcpy(buffer, driver->name, len);
6090 return buffer;
6091}
6092
6093static void __net_exit netdev_exit(struct net *net)
6094{
6095 kfree(net->dev_name_head);
6096 kfree(net->dev_index_head);
6097}
6098
6099static struct pernet_operations __net_initdata netdev_net_ops = {
6100 .init = netdev_init,
6101 .exit = netdev_exit,
6102};
6103
6104static void __net_exit default_device_exit(struct net *net)
6105{
6106 struct net_device *dev, *aux;
6107 /*
6108 * Push all migratable network devices back to the
6109 * initial network namespace
6110 */
6111 rtnl_lock();
6112 for_each_netdev_safe(net, dev, aux) {
6113 int err;
6114 char fb_name[IFNAMSIZ];
6115
6116 /* Ignore unmoveable devices (i.e. loopback) */
6117 if (dev->features & NETIF_F_NETNS_LOCAL)
6118 continue;
6119
6120 /* Leave virtual devices for the generic cleanup */
6121 if (dev->rtnl_link_ops)
6122 continue;
6123
6124 /* Push remaing network devices to init_net */
6125 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6126 err = dev_change_net_namespace(dev, &init_net, fb_name);
6127 if (err) {
6128 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6129 __func__, dev->name, err);
6130 BUG();
6131 }
6132 }
6133 rtnl_unlock();
6134}
6135
6136static void __net_exit default_device_exit_batch(struct list_head *net_list)
6137{
6138 /* At exit all network devices most be removed from a network
6139 * namespace. Do this in the reverse order of registeration.
6140 * Do this across as many network namespaces as possible to
6141 * improve batching efficiency.
6142 */
6143 struct net_device *dev;
6144 struct net *net;
6145 LIST_HEAD(dev_kill_list);
6146
6147 rtnl_lock();
6148 list_for_each_entry(net, net_list, exit_list) {
6149 for_each_netdev_reverse(net, dev) {
6150 if (dev->rtnl_link_ops)
6151 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6152 else
6153 unregister_netdevice_queue(dev, &dev_kill_list);
6154 }
6155 }
6156 unregister_netdevice_many(&dev_kill_list);
6157 rtnl_unlock();
6158}
6159
6160static struct pernet_operations __net_initdata default_device_ops = {
6161 .exit = default_device_exit,
6162 .exit_batch = default_device_exit_batch,
6163};
6164
6165/*
6166 * Initialize the DEV module. At boot time this walks the device list and
6167 * unhooks any devices that fail to initialise (normally hardware not
6168 * present) and leaves us with a valid list of present and active devices.
6169 *
6170 */
6171
6172/*
6173 * This is called single threaded during boot, so no need
6174 * to take the rtnl semaphore.
6175 */
6176static int __init net_dev_init(void)
6177{
6178 int i, rc = -ENOMEM;
6179
6180 BUG_ON(!dev_boot_phase);
6181
6182 if (dev_proc_init())
6183 goto out;
6184
6185 if (netdev_kobject_init())
6186 goto out;
6187
6188 INIT_LIST_HEAD(&ptype_all);
6189 for (i = 0; i < PTYPE_HASH_SIZE; i++)
6190 INIT_LIST_HEAD(&ptype_base[i]);
6191
6192 if (register_pernet_subsys(&netdev_net_ops))
6193 goto out;
6194
6195 /*
6196 * Initialise the packet receive queues.
6197 */
6198
6199 for_each_possible_cpu(i) {
6200 struct softnet_data *queue;
6201
6202 queue = &per_cpu(softnet_data, i);
6203 skb_queue_head_init(&queue->input_pkt_queue);
6204 queue->completion_queue = NULL;
6205 INIT_LIST_HEAD(&queue->poll_list);
6206
6207 queue->csd.func = trigger_softirq;
6208 queue->csd.info = queue;
6209 queue->csd.flags = 0;
6210
6211 queue->backlog.poll = process_backlog;
6212 queue->backlog.weight = weight_p;
6213 queue->backlog.gro_list = NULL;
6214 queue->backlog.gro_count = 0;
6215 }
6216
6217 dev_boot_phase = 0;
6218
6219 /* The loopback device is special if any other network devices
6220 * is present in a network namespace the loopback device must
6221 * be present. Since we now dynamically allocate and free the
6222 * loopback device ensure this invariant is maintained by
6223 * keeping the loopback device as the first device on the
6224 * list of network devices. Ensuring the loopback devices
6225 * is the first device that appears and the last network device
6226 * that disappears.
6227 */
6228 if (register_pernet_device(&loopback_net_ops))
6229 goto out;
6230
6231 if (register_pernet_device(&default_device_ops))
6232 goto out;
6233
6234 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6235 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6236
6237 hotcpu_notifier(dev_cpu_callback, 0);
6238 dst_init();
6239 dev_mcast_init();
6240 rc = 0;
6241out:
6242 return rc;
6243}
6244
6245subsys_initcall(net_dev_init);
6246
6247static int __init initialize_hashrnd(void)
6248{
6249 get_random_bytes(&hashrnd, sizeof(hashrnd));
6250 return 0;
6251}
6252
6253late_initcall_sync(initialize_hashrnd);
6254