]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/page_alloc.c
mm: page allocator: calculate a better estimate of NR_FREE_PAGES when memory is low...
[net-next-2.6.git] / mm / page_alloc.c
... / ...
CommitLineData
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/jiffies.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
25#include <linux/kernel.h>
26#include <linux/kmemcheck.h>
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
32#include <linux/oom.h>
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
38#include <linux/memory_hotplug.h>
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
41#include <linux/mempolicy.h>
42#include <linux/stop_machine.h>
43#include <linux/sort.h>
44#include <linux/pfn.h>
45#include <linux/backing-dev.h>
46#include <linux/fault-inject.h>
47#include <linux/page-isolation.h>
48#include <linux/page_cgroup.h>
49#include <linux/debugobjects.h>
50#include <linux/kmemleak.h>
51#include <linux/memory.h>
52#include <linux/compaction.h>
53#include <trace/events/kmem.h>
54#include <linux/ftrace_event.h>
55
56#include <asm/tlbflush.h>
57#include <asm/div64.h>
58#include "internal.h"
59
60#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61DEFINE_PER_CPU(int, numa_node);
62EXPORT_PER_CPU_SYMBOL(numa_node);
63#endif
64
65#ifdef CONFIG_HAVE_MEMORYLESS_NODES
66/*
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
71 */
72DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
73EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74#endif
75
76/*
77 * Array of node states.
78 */
79nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 [N_POSSIBLE] = NODE_MASK_ALL,
81 [N_ONLINE] = { { [0] = 1UL } },
82#ifndef CONFIG_NUMA
83 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
84#ifdef CONFIG_HIGHMEM
85 [N_HIGH_MEMORY] = { { [0] = 1UL } },
86#endif
87 [N_CPU] = { { [0] = 1UL } },
88#endif /* NUMA */
89};
90EXPORT_SYMBOL(node_states);
91
92unsigned long totalram_pages __read_mostly;
93unsigned long totalreserve_pages __read_mostly;
94int percpu_pagelist_fraction;
95gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
96
97#ifdef CONFIG_PM_SLEEP
98/*
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
105 */
106void set_gfp_allowed_mask(gfp_t mask)
107{
108 WARN_ON(!mutex_is_locked(&pm_mutex));
109 gfp_allowed_mask = mask;
110}
111
112gfp_t clear_gfp_allowed_mask(gfp_t mask)
113{
114 gfp_t ret = gfp_allowed_mask;
115
116 WARN_ON(!mutex_is_locked(&pm_mutex));
117 gfp_allowed_mask &= ~mask;
118 return ret;
119}
120#endif /* CONFIG_PM_SLEEP */
121
122#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123int pageblock_order __read_mostly;
124#endif
125
126static void __free_pages_ok(struct page *page, unsigned int order);
127
128/*
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
135 *
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
138 */
139int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140#ifdef CONFIG_ZONE_DMA
141 256,
142#endif
143#ifdef CONFIG_ZONE_DMA32
144 256,
145#endif
146#ifdef CONFIG_HIGHMEM
147 32,
148#endif
149 32,
150};
151
152EXPORT_SYMBOL(totalram_pages);
153
154static char * const zone_names[MAX_NR_ZONES] = {
155#ifdef CONFIG_ZONE_DMA
156 "DMA",
157#endif
158#ifdef CONFIG_ZONE_DMA32
159 "DMA32",
160#endif
161 "Normal",
162#ifdef CONFIG_HIGHMEM
163 "HighMem",
164#endif
165 "Movable",
166};
167
168int min_free_kbytes = 1024;
169
170static unsigned long __meminitdata nr_kernel_pages;
171static unsigned long __meminitdata nr_all_pages;
172static unsigned long __meminitdata dma_reserve;
173
174#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
175 /*
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
181 */
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185 #else
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189 #else
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
192 #endif
193 #endif
194
195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196 static int __meminitdata nr_nodemap_entries;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __initdata required_kernelcore;
200 static unsigned long __initdata required_movablecore;
201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
202
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204 int movable_zone;
205 EXPORT_SYMBOL(movable_zone);
206#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
207
208#if MAX_NUMNODES > 1
209int nr_node_ids __read_mostly = MAX_NUMNODES;
210int nr_online_nodes __read_mostly = 1;
211EXPORT_SYMBOL(nr_node_ids);
212EXPORT_SYMBOL(nr_online_nodes);
213#endif
214
215int page_group_by_mobility_disabled __read_mostly;
216
217static void set_pageblock_migratetype(struct page *page, int migratetype)
218{
219
220 if (unlikely(page_group_by_mobility_disabled))
221 migratetype = MIGRATE_UNMOVABLE;
222
223 set_pageblock_flags_group(page, (unsigned long)migratetype,
224 PB_migrate, PB_migrate_end);
225}
226
227bool oom_killer_disabled __read_mostly;
228
229#ifdef CONFIG_DEBUG_VM
230static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
231{
232 int ret = 0;
233 unsigned seq;
234 unsigned long pfn = page_to_pfn(page);
235
236 do {
237 seq = zone_span_seqbegin(zone);
238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 ret = 1;
240 else if (pfn < zone->zone_start_pfn)
241 ret = 1;
242 } while (zone_span_seqretry(zone, seq));
243
244 return ret;
245}
246
247static int page_is_consistent(struct zone *zone, struct page *page)
248{
249 if (!pfn_valid_within(page_to_pfn(page)))
250 return 0;
251 if (zone != page_zone(page))
252 return 0;
253
254 return 1;
255}
256/*
257 * Temporary debugging check for pages not lying within a given zone.
258 */
259static int bad_range(struct zone *zone, struct page *page)
260{
261 if (page_outside_zone_boundaries(zone, page))
262 return 1;
263 if (!page_is_consistent(zone, page))
264 return 1;
265
266 return 0;
267}
268#else
269static inline int bad_range(struct zone *zone, struct page *page)
270{
271 return 0;
272}
273#endif
274
275static void bad_page(struct page *page)
276{
277 static unsigned long resume;
278 static unsigned long nr_shown;
279 static unsigned long nr_unshown;
280
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page)) {
283 __ClearPageBuddy(page);
284 return;
285 }
286
287 /*
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
290 */
291 if (nr_shown == 60) {
292 if (time_before(jiffies, resume)) {
293 nr_unshown++;
294 goto out;
295 }
296 if (nr_unshown) {
297 printk(KERN_ALERT
298 "BUG: Bad page state: %lu messages suppressed\n",
299 nr_unshown);
300 nr_unshown = 0;
301 }
302 nr_shown = 0;
303 }
304 if (nr_shown++ == 0)
305 resume = jiffies + 60 * HZ;
306
307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
308 current->comm, page_to_pfn(page));
309 dump_page(page);
310
311 dump_stack();
312out:
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page);
315 add_taint(TAINT_BAD_PAGE);
316}
317
318/*
319 * Higher-order pages are called "compound pages". They are structured thusly:
320 *
321 * The first PAGE_SIZE page is called the "head page".
322 *
323 * The remaining PAGE_SIZE pages are called "tail pages".
324 *
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
327 *
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
331 */
332
333static void free_compound_page(struct page *page)
334{
335 __free_pages_ok(page, compound_order(page));
336}
337
338void prep_compound_page(struct page *page, unsigned long order)
339{
340 int i;
341 int nr_pages = 1 << order;
342
343 set_compound_page_dtor(page, free_compound_page);
344 set_compound_order(page, order);
345 __SetPageHead(page);
346 for (i = 1; i < nr_pages; i++) {
347 struct page *p = page + i;
348
349 __SetPageTail(p);
350 p->first_page = page;
351 }
352}
353
354static int destroy_compound_page(struct page *page, unsigned long order)
355{
356 int i;
357 int nr_pages = 1 << order;
358 int bad = 0;
359
360 if (unlikely(compound_order(page) != order) ||
361 unlikely(!PageHead(page))) {
362 bad_page(page);
363 bad++;
364 }
365
366 __ClearPageHead(page);
367
368 for (i = 1; i < nr_pages; i++) {
369 struct page *p = page + i;
370
371 if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 bad_page(page);
373 bad++;
374 }
375 __ClearPageTail(p);
376 }
377
378 return bad;
379}
380
381static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
382{
383 int i;
384
385 /*
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
388 */
389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 for (i = 0; i < (1 << order); i++)
391 clear_highpage(page + i);
392}
393
394static inline void set_page_order(struct page *page, int order)
395{
396 set_page_private(page, order);
397 __SetPageBuddy(page);
398}
399
400static inline void rmv_page_order(struct page *page)
401{
402 __ClearPageBuddy(page);
403 set_page_private(page, 0);
404}
405
406/*
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
409 *
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
412 * B2 = B1 ^ (1 << O)
413 * For example, if the starting buddy (buddy2) is #8 its order
414 * 1 buddy is #10:
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
416 *
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
419 * P = B & ~(1 << O)
420 *
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
422 */
423static inline struct page *
424__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
425{
426 unsigned long buddy_idx = page_idx ^ (1 << order);
427
428 return page + (buddy_idx - page_idx);
429}
430
431static inline unsigned long
432__find_combined_index(unsigned long page_idx, unsigned int order)
433{
434 return (page_idx & ~(1 << order));
435}
436
437/*
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
444 *
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
447 *
448 * For recording page's order, we use page_private(page).
449 */
450static inline int page_is_buddy(struct page *page, struct page *buddy,
451 int order)
452{
453 if (!pfn_valid_within(page_to_pfn(buddy)))
454 return 0;
455
456 if (page_zone_id(page) != page_zone_id(buddy))
457 return 0;
458
459 if (PageBuddy(buddy) && page_order(buddy) == order) {
460 VM_BUG_ON(page_count(buddy) != 0);
461 return 1;
462 }
463 return 0;
464}
465
466/*
467 * Freeing function for a buddy system allocator.
468 *
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
486 *
487 * -- wli
488 */
489
490static inline void __free_one_page(struct page *page,
491 struct zone *zone, unsigned int order,
492 int migratetype)
493{
494 unsigned long page_idx;
495 unsigned long combined_idx;
496 struct page *buddy;
497
498 if (unlikely(PageCompound(page)))
499 if (unlikely(destroy_compound_page(page, order)))
500 return;
501
502 VM_BUG_ON(migratetype == -1);
503
504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505
506 VM_BUG_ON(page_idx & ((1 << order) - 1));
507 VM_BUG_ON(bad_range(zone, page));
508
509 while (order < MAX_ORDER-1) {
510 buddy = __page_find_buddy(page, page_idx, order);
511 if (!page_is_buddy(page, buddy, order))
512 break;
513
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy->lru);
516 zone->free_area[order].nr_free--;
517 rmv_page_order(buddy);
518 combined_idx = __find_combined_index(page_idx, order);
519 page = page + (combined_idx - page_idx);
520 page_idx = combined_idx;
521 order++;
522 }
523 set_page_order(page, order);
524
525 /*
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
532 */
533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 struct page *higher_page, *higher_buddy;
535 combined_idx = __find_combined_index(page_idx, order);
536 higher_page = page + combined_idx - page_idx;
537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 list_add_tail(&page->lru,
540 &zone->free_area[order].free_list[migratetype]);
541 goto out;
542 }
543 }
544
545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546out:
547 zone->free_area[order].nr_free++;
548}
549
550/*
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
554 */
555static inline void free_page_mlock(struct page *page)
556{
557 __dec_zone_page_state(page, NR_MLOCK);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED);
559}
560
561static inline int free_pages_check(struct page *page)
562{
563 if (unlikely(page_mapcount(page) |
564 (page->mapping != NULL) |
565 (atomic_read(&page->_count) != 0) |
566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 bad_page(page);
568 return 1;
569 }
570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 return 0;
573}
574
575/*
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
579 *
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
582 *
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
585 */
586static void free_pcppages_bulk(struct zone *zone, int count,
587 struct per_cpu_pages *pcp)
588{
589 int migratetype = 0;
590 int batch_free = 0;
591 int to_free = count;
592
593 spin_lock(&zone->lock);
594 zone->all_unreclaimable = 0;
595 zone->pages_scanned = 0;
596
597 while (to_free) {
598 struct page *page;
599 struct list_head *list;
600
601 /*
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
606 * lists
607 */
608 do {
609 batch_free++;
610 if (++migratetype == MIGRATE_PCPTYPES)
611 migratetype = 0;
612 list = &pcp->lists[migratetype];
613 } while (list_empty(list));
614
615 do {
616 page = list_entry(list->prev, struct page, lru);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page->lru);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page, zone, 0, page_private(page));
621 trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 } while (--to_free && --batch_free && !list_empty(list));
623 }
624 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
625 spin_unlock(&zone->lock);
626}
627
628static void free_one_page(struct zone *zone, struct page *page, int order,
629 int migratetype)
630{
631 spin_lock(&zone->lock);
632 zone->all_unreclaimable = 0;
633 zone->pages_scanned = 0;
634
635 __free_one_page(page, zone, order, migratetype);
636 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
637 spin_unlock(&zone->lock);
638}
639
640static bool free_pages_prepare(struct page *page, unsigned int order)
641{
642 int i;
643 int bad = 0;
644
645 trace_mm_page_free_direct(page, order);
646 kmemcheck_free_shadow(page, order);
647
648 for (i = 0; i < (1 << order); i++) {
649 struct page *pg = page + i;
650
651 if (PageAnon(pg))
652 pg->mapping = NULL;
653 bad += free_pages_check(pg);
654 }
655 if (bad)
656 return false;
657
658 if (!PageHighMem(page)) {
659 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
660 debug_check_no_obj_freed(page_address(page),
661 PAGE_SIZE << order);
662 }
663 arch_free_page(page, order);
664 kernel_map_pages(page, 1 << order, 0);
665
666 return true;
667}
668
669static void __free_pages_ok(struct page *page, unsigned int order)
670{
671 unsigned long flags;
672 int wasMlocked = __TestClearPageMlocked(page);
673
674 if (!free_pages_prepare(page, order))
675 return;
676
677 local_irq_save(flags);
678 if (unlikely(wasMlocked))
679 free_page_mlock(page);
680 __count_vm_events(PGFREE, 1 << order);
681 free_one_page(page_zone(page), page, order,
682 get_pageblock_migratetype(page));
683 local_irq_restore(flags);
684}
685
686/*
687 * permit the bootmem allocator to evade page validation on high-order frees
688 */
689void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
690{
691 if (order == 0) {
692 __ClearPageReserved(page);
693 set_page_count(page, 0);
694 set_page_refcounted(page);
695 __free_page(page);
696 } else {
697 int loop;
698
699 prefetchw(page);
700 for (loop = 0; loop < BITS_PER_LONG; loop++) {
701 struct page *p = &page[loop];
702
703 if (loop + 1 < BITS_PER_LONG)
704 prefetchw(p + 1);
705 __ClearPageReserved(p);
706 set_page_count(p, 0);
707 }
708
709 set_page_refcounted(page);
710 __free_pages(page, order);
711 }
712}
713
714
715/*
716 * The order of subdivision here is critical for the IO subsystem.
717 * Please do not alter this order without good reasons and regression
718 * testing. Specifically, as large blocks of memory are subdivided,
719 * the order in which smaller blocks are delivered depends on the order
720 * they're subdivided in this function. This is the primary factor
721 * influencing the order in which pages are delivered to the IO
722 * subsystem according to empirical testing, and this is also justified
723 * by considering the behavior of a buddy system containing a single
724 * large block of memory acted on by a series of small allocations.
725 * This behavior is a critical factor in sglist merging's success.
726 *
727 * -- wli
728 */
729static inline void expand(struct zone *zone, struct page *page,
730 int low, int high, struct free_area *area,
731 int migratetype)
732{
733 unsigned long size = 1 << high;
734
735 while (high > low) {
736 area--;
737 high--;
738 size >>= 1;
739 VM_BUG_ON(bad_range(zone, &page[size]));
740 list_add(&page[size].lru, &area->free_list[migratetype]);
741 area->nr_free++;
742 set_page_order(&page[size], high);
743 }
744}
745
746/*
747 * This page is about to be returned from the page allocator
748 */
749static inline int check_new_page(struct page *page)
750{
751 if (unlikely(page_mapcount(page) |
752 (page->mapping != NULL) |
753 (atomic_read(&page->_count) != 0) |
754 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
755 bad_page(page);
756 return 1;
757 }
758 return 0;
759}
760
761static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
762{
763 int i;
764
765 for (i = 0; i < (1 << order); i++) {
766 struct page *p = page + i;
767 if (unlikely(check_new_page(p)))
768 return 1;
769 }
770
771 set_page_private(page, 0);
772 set_page_refcounted(page);
773
774 arch_alloc_page(page, order);
775 kernel_map_pages(page, 1 << order, 1);
776
777 if (gfp_flags & __GFP_ZERO)
778 prep_zero_page(page, order, gfp_flags);
779
780 if (order && (gfp_flags & __GFP_COMP))
781 prep_compound_page(page, order);
782
783 return 0;
784}
785
786/*
787 * Go through the free lists for the given migratetype and remove
788 * the smallest available page from the freelists
789 */
790static inline
791struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
792 int migratetype)
793{
794 unsigned int current_order;
795 struct free_area * area;
796 struct page *page;
797
798 /* Find a page of the appropriate size in the preferred list */
799 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
800 area = &(zone->free_area[current_order]);
801 if (list_empty(&area->free_list[migratetype]))
802 continue;
803
804 page = list_entry(area->free_list[migratetype].next,
805 struct page, lru);
806 list_del(&page->lru);
807 rmv_page_order(page);
808 area->nr_free--;
809 expand(zone, page, order, current_order, area, migratetype);
810 return page;
811 }
812
813 return NULL;
814}
815
816
817/*
818 * This array describes the order lists are fallen back to when
819 * the free lists for the desirable migrate type are depleted
820 */
821static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
822 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
825 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
826};
827
828/*
829 * Move the free pages in a range to the free lists of the requested type.
830 * Note that start_page and end_pages are not aligned on a pageblock
831 * boundary. If alignment is required, use move_freepages_block()
832 */
833static int move_freepages(struct zone *zone,
834 struct page *start_page, struct page *end_page,
835 int migratetype)
836{
837 struct page *page;
838 unsigned long order;
839 int pages_moved = 0;
840
841#ifndef CONFIG_HOLES_IN_ZONE
842 /*
843 * page_zone is not safe to call in this context when
844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
845 * anyway as we check zone boundaries in move_freepages_block().
846 * Remove at a later date when no bug reports exist related to
847 * grouping pages by mobility
848 */
849 BUG_ON(page_zone(start_page) != page_zone(end_page));
850#endif
851
852 for (page = start_page; page <= end_page;) {
853 /* Make sure we are not inadvertently changing nodes */
854 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
855
856 if (!pfn_valid_within(page_to_pfn(page))) {
857 page++;
858 continue;
859 }
860
861 if (!PageBuddy(page)) {
862 page++;
863 continue;
864 }
865
866 order = page_order(page);
867 list_del(&page->lru);
868 list_add(&page->lru,
869 &zone->free_area[order].free_list[migratetype]);
870 page += 1 << order;
871 pages_moved += 1 << order;
872 }
873
874 return pages_moved;
875}
876
877static int move_freepages_block(struct zone *zone, struct page *page,
878 int migratetype)
879{
880 unsigned long start_pfn, end_pfn;
881 struct page *start_page, *end_page;
882
883 start_pfn = page_to_pfn(page);
884 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
885 start_page = pfn_to_page(start_pfn);
886 end_page = start_page + pageblock_nr_pages - 1;
887 end_pfn = start_pfn + pageblock_nr_pages - 1;
888
889 /* Do not cross zone boundaries */
890 if (start_pfn < zone->zone_start_pfn)
891 start_page = page;
892 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
893 return 0;
894
895 return move_freepages(zone, start_page, end_page, migratetype);
896}
897
898static void change_pageblock_range(struct page *pageblock_page,
899 int start_order, int migratetype)
900{
901 int nr_pageblocks = 1 << (start_order - pageblock_order);
902
903 while (nr_pageblocks--) {
904 set_pageblock_migratetype(pageblock_page, migratetype);
905 pageblock_page += pageblock_nr_pages;
906 }
907}
908
909/* Remove an element from the buddy allocator from the fallback list */
910static inline struct page *
911__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
912{
913 struct free_area * area;
914 int current_order;
915 struct page *page;
916 int migratetype, i;
917
918 /* Find the largest possible block of pages in the other list */
919 for (current_order = MAX_ORDER-1; current_order >= order;
920 --current_order) {
921 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
922 migratetype = fallbacks[start_migratetype][i];
923
924 /* MIGRATE_RESERVE handled later if necessary */
925 if (migratetype == MIGRATE_RESERVE)
926 continue;
927
928 area = &(zone->free_area[current_order]);
929 if (list_empty(&area->free_list[migratetype]))
930 continue;
931
932 page = list_entry(area->free_list[migratetype].next,
933 struct page, lru);
934 area->nr_free--;
935
936 /*
937 * If breaking a large block of pages, move all free
938 * pages to the preferred allocation list. If falling
939 * back for a reclaimable kernel allocation, be more
940 * agressive about taking ownership of free pages
941 */
942 if (unlikely(current_order >= (pageblock_order >> 1)) ||
943 start_migratetype == MIGRATE_RECLAIMABLE ||
944 page_group_by_mobility_disabled) {
945 unsigned long pages;
946 pages = move_freepages_block(zone, page,
947 start_migratetype);
948
949 /* Claim the whole block if over half of it is free */
950 if (pages >= (1 << (pageblock_order-1)) ||
951 page_group_by_mobility_disabled)
952 set_pageblock_migratetype(page,
953 start_migratetype);
954
955 migratetype = start_migratetype;
956 }
957
958 /* Remove the page from the freelists */
959 list_del(&page->lru);
960 rmv_page_order(page);
961
962 /* Take ownership for orders >= pageblock_order */
963 if (current_order >= pageblock_order)
964 change_pageblock_range(page, current_order,
965 start_migratetype);
966
967 expand(zone, page, order, current_order, area, migratetype);
968
969 trace_mm_page_alloc_extfrag(page, order, current_order,
970 start_migratetype, migratetype);
971
972 return page;
973 }
974 }
975
976 return NULL;
977}
978
979/*
980 * Do the hard work of removing an element from the buddy allocator.
981 * Call me with the zone->lock already held.
982 */
983static struct page *__rmqueue(struct zone *zone, unsigned int order,
984 int migratetype)
985{
986 struct page *page;
987
988retry_reserve:
989 page = __rmqueue_smallest(zone, order, migratetype);
990
991 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
992 page = __rmqueue_fallback(zone, order, migratetype);
993
994 /*
995 * Use MIGRATE_RESERVE rather than fail an allocation. goto
996 * is used because __rmqueue_smallest is an inline function
997 * and we want just one call site
998 */
999 if (!page) {
1000 migratetype = MIGRATE_RESERVE;
1001 goto retry_reserve;
1002 }
1003 }
1004
1005 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1006 return page;
1007}
1008
1009/*
1010 * Obtain a specified number of elements from the buddy allocator, all under
1011 * a single hold of the lock, for efficiency. Add them to the supplied list.
1012 * Returns the number of new pages which were placed at *list.
1013 */
1014static int rmqueue_bulk(struct zone *zone, unsigned int order,
1015 unsigned long count, struct list_head *list,
1016 int migratetype, int cold)
1017{
1018 int i;
1019
1020 spin_lock(&zone->lock);
1021 for (i = 0; i < count; ++i) {
1022 struct page *page = __rmqueue(zone, order, migratetype);
1023 if (unlikely(page == NULL))
1024 break;
1025
1026 /*
1027 * Split buddy pages returned by expand() are received here
1028 * in physical page order. The page is added to the callers and
1029 * list and the list head then moves forward. From the callers
1030 * perspective, the linked list is ordered by page number in
1031 * some conditions. This is useful for IO devices that can
1032 * merge IO requests if the physical pages are ordered
1033 * properly.
1034 */
1035 if (likely(cold == 0))
1036 list_add(&page->lru, list);
1037 else
1038 list_add_tail(&page->lru, list);
1039 set_page_private(page, migratetype);
1040 list = &page->lru;
1041 }
1042 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1043 spin_unlock(&zone->lock);
1044 return i;
1045}
1046
1047#ifdef CONFIG_NUMA
1048/*
1049 * Called from the vmstat counter updater to drain pagesets of this
1050 * currently executing processor on remote nodes after they have
1051 * expired.
1052 *
1053 * Note that this function must be called with the thread pinned to
1054 * a single processor.
1055 */
1056void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1057{
1058 unsigned long flags;
1059 int to_drain;
1060
1061 local_irq_save(flags);
1062 if (pcp->count >= pcp->batch)
1063 to_drain = pcp->batch;
1064 else
1065 to_drain = pcp->count;
1066 free_pcppages_bulk(zone, to_drain, pcp);
1067 pcp->count -= to_drain;
1068 local_irq_restore(flags);
1069}
1070#endif
1071
1072/*
1073 * Drain pages of the indicated processor.
1074 *
1075 * The processor must either be the current processor and the
1076 * thread pinned to the current processor or a processor that
1077 * is not online.
1078 */
1079static void drain_pages(unsigned int cpu)
1080{
1081 unsigned long flags;
1082 struct zone *zone;
1083
1084 for_each_populated_zone(zone) {
1085 struct per_cpu_pageset *pset;
1086 struct per_cpu_pages *pcp;
1087
1088 local_irq_save(flags);
1089 pset = per_cpu_ptr(zone->pageset, cpu);
1090
1091 pcp = &pset->pcp;
1092 free_pcppages_bulk(zone, pcp->count, pcp);
1093 pcp->count = 0;
1094 local_irq_restore(flags);
1095 }
1096}
1097
1098/*
1099 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 */
1101void drain_local_pages(void *arg)
1102{
1103 drain_pages(smp_processor_id());
1104}
1105
1106/*
1107 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 */
1109void drain_all_pages(void)
1110{
1111 on_each_cpu(drain_local_pages, NULL, 1);
1112}
1113
1114#ifdef CONFIG_HIBERNATION
1115
1116void mark_free_pages(struct zone *zone)
1117{
1118 unsigned long pfn, max_zone_pfn;
1119 unsigned long flags;
1120 int order, t;
1121 struct list_head *curr;
1122
1123 if (!zone->spanned_pages)
1124 return;
1125
1126 spin_lock_irqsave(&zone->lock, flags);
1127
1128 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1129 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1130 if (pfn_valid(pfn)) {
1131 struct page *page = pfn_to_page(pfn);
1132
1133 if (!swsusp_page_is_forbidden(page))
1134 swsusp_unset_page_free(page);
1135 }
1136
1137 for_each_migratetype_order(order, t) {
1138 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1139 unsigned long i;
1140
1141 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1142 for (i = 0; i < (1UL << order); i++)
1143 swsusp_set_page_free(pfn_to_page(pfn + i));
1144 }
1145 }
1146 spin_unlock_irqrestore(&zone->lock, flags);
1147}
1148#endif /* CONFIG_PM */
1149
1150/*
1151 * Free a 0-order page
1152 * cold == 1 ? free a cold page : free a hot page
1153 */
1154void free_hot_cold_page(struct page *page, int cold)
1155{
1156 struct zone *zone = page_zone(page);
1157 struct per_cpu_pages *pcp;
1158 unsigned long flags;
1159 int migratetype;
1160 int wasMlocked = __TestClearPageMlocked(page);
1161
1162 if (!free_pages_prepare(page, 0))
1163 return;
1164
1165 migratetype = get_pageblock_migratetype(page);
1166 set_page_private(page, migratetype);
1167 local_irq_save(flags);
1168 if (unlikely(wasMlocked))
1169 free_page_mlock(page);
1170 __count_vm_event(PGFREE);
1171
1172 /*
1173 * We only track unmovable, reclaimable and movable on pcp lists.
1174 * Free ISOLATE pages back to the allocator because they are being
1175 * offlined but treat RESERVE as movable pages so we can get those
1176 * areas back if necessary. Otherwise, we may have to free
1177 * excessively into the page allocator
1178 */
1179 if (migratetype >= MIGRATE_PCPTYPES) {
1180 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1181 free_one_page(zone, page, 0, migratetype);
1182 goto out;
1183 }
1184 migratetype = MIGRATE_MOVABLE;
1185 }
1186
1187 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1188 if (cold)
1189 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1190 else
1191 list_add(&page->lru, &pcp->lists[migratetype]);
1192 pcp->count++;
1193 if (pcp->count >= pcp->high) {
1194 free_pcppages_bulk(zone, pcp->batch, pcp);
1195 pcp->count -= pcp->batch;
1196 }
1197
1198out:
1199 local_irq_restore(flags);
1200}
1201
1202/*
1203 * split_page takes a non-compound higher-order page, and splits it into
1204 * n (1<<order) sub-pages: page[0..n]
1205 * Each sub-page must be freed individually.
1206 *
1207 * Note: this is probably too low level an operation for use in drivers.
1208 * Please consult with lkml before using this in your driver.
1209 */
1210void split_page(struct page *page, unsigned int order)
1211{
1212 int i;
1213
1214 VM_BUG_ON(PageCompound(page));
1215 VM_BUG_ON(!page_count(page));
1216
1217#ifdef CONFIG_KMEMCHECK
1218 /*
1219 * Split shadow pages too, because free(page[0]) would
1220 * otherwise free the whole shadow.
1221 */
1222 if (kmemcheck_page_is_tracked(page))
1223 split_page(virt_to_page(page[0].shadow), order);
1224#endif
1225
1226 for (i = 1; i < (1 << order); i++)
1227 set_page_refcounted(page + i);
1228}
1229
1230/*
1231 * Similar to split_page except the page is already free. As this is only
1232 * being used for migration, the migratetype of the block also changes.
1233 * As this is called with interrupts disabled, the caller is responsible
1234 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1235 * are enabled.
1236 *
1237 * Note: this is probably too low level an operation for use in drivers.
1238 * Please consult with lkml before using this in your driver.
1239 */
1240int split_free_page(struct page *page)
1241{
1242 unsigned int order;
1243 unsigned long watermark;
1244 struct zone *zone;
1245
1246 BUG_ON(!PageBuddy(page));
1247
1248 zone = page_zone(page);
1249 order = page_order(page);
1250
1251 /* Obey watermarks as if the page was being allocated */
1252 watermark = low_wmark_pages(zone) + (1 << order);
1253 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1254 return 0;
1255
1256 /* Remove page from free list */
1257 list_del(&page->lru);
1258 zone->free_area[order].nr_free--;
1259 rmv_page_order(page);
1260 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1261
1262 /* Split into individual pages */
1263 set_page_refcounted(page);
1264 split_page(page, order);
1265
1266 if (order >= pageblock_order - 1) {
1267 struct page *endpage = page + (1 << order) - 1;
1268 for (; page < endpage; page += pageblock_nr_pages)
1269 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1270 }
1271
1272 return 1 << order;
1273}
1274
1275/*
1276 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1277 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1278 * or two.
1279 */
1280static inline
1281struct page *buffered_rmqueue(struct zone *preferred_zone,
1282 struct zone *zone, int order, gfp_t gfp_flags,
1283 int migratetype)
1284{
1285 unsigned long flags;
1286 struct page *page;
1287 int cold = !!(gfp_flags & __GFP_COLD);
1288
1289again:
1290 if (likely(order == 0)) {
1291 struct per_cpu_pages *pcp;
1292 struct list_head *list;
1293
1294 local_irq_save(flags);
1295 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1296 list = &pcp->lists[migratetype];
1297 if (list_empty(list)) {
1298 pcp->count += rmqueue_bulk(zone, 0,
1299 pcp->batch, list,
1300 migratetype, cold);
1301 if (unlikely(list_empty(list)))
1302 goto failed;
1303 }
1304
1305 if (cold)
1306 page = list_entry(list->prev, struct page, lru);
1307 else
1308 page = list_entry(list->next, struct page, lru);
1309
1310 list_del(&page->lru);
1311 pcp->count--;
1312 } else {
1313 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1314 /*
1315 * __GFP_NOFAIL is not to be used in new code.
1316 *
1317 * All __GFP_NOFAIL callers should be fixed so that they
1318 * properly detect and handle allocation failures.
1319 *
1320 * We most definitely don't want callers attempting to
1321 * allocate greater than order-1 page units with
1322 * __GFP_NOFAIL.
1323 */
1324 WARN_ON_ONCE(order > 1);
1325 }
1326 spin_lock_irqsave(&zone->lock, flags);
1327 page = __rmqueue(zone, order, migratetype);
1328 spin_unlock(&zone->lock);
1329 if (!page)
1330 goto failed;
1331 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1332 }
1333
1334 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1335 zone_statistics(preferred_zone, zone);
1336 local_irq_restore(flags);
1337
1338 VM_BUG_ON(bad_range(zone, page));
1339 if (prep_new_page(page, order, gfp_flags))
1340 goto again;
1341 return page;
1342
1343failed:
1344 local_irq_restore(flags);
1345 return NULL;
1346}
1347
1348/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1349#define ALLOC_WMARK_MIN WMARK_MIN
1350#define ALLOC_WMARK_LOW WMARK_LOW
1351#define ALLOC_WMARK_HIGH WMARK_HIGH
1352#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353
1354/* Mask to get the watermark bits */
1355#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356
1357#define ALLOC_HARDER 0x10 /* try to alloc harder */
1358#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1359#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1360
1361#ifdef CONFIG_FAIL_PAGE_ALLOC
1362
1363static struct fail_page_alloc_attr {
1364 struct fault_attr attr;
1365
1366 u32 ignore_gfp_highmem;
1367 u32 ignore_gfp_wait;
1368 u32 min_order;
1369
1370#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371
1372 struct dentry *ignore_gfp_highmem_file;
1373 struct dentry *ignore_gfp_wait_file;
1374 struct dentry *min_order_file;
1375
1376#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377
1378} fail_page_alloc = {
1379 .attr = FAULT_ATTR_INITIALIZER,
1380 .ignore_gfp_wait = 1,
1381 .ignore_gfp_highmem = 1,
1382 .min_order = 1,
1383};
1384
1385static int __init setup_fail_page_alloc(char *str)
1386{
1387 return setup_fault_attr(&fail_page_alloc.attr, str);
1388}
1389__setup("fail_page_alloc=", setup_fail_page_alloc);
1390
1391static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392{
1393 if (order < fail_page_alloc.min_order)
1394 return 0;
1395 if (gfp_mask & __GFP_NOFAIL)
1396 return 0;
1397 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1398 return 0;
1399 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1400 return 0;
1401
1402 return should_fail(&fail_page_alloc.attr, 1 << order);
1403}
1404
1405#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406
1407static int __init fail_page_alloc_debugfs(void)
1408{
1409 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1410 struct dentry *dir;
1411 int err;
1412
1413 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1414 "fail_page_alloc");
1415 if (err)
1416 return err;
1417 dir = fail_page_alloc.attr.dentries.dir;
1418
1419 fail_page_alloc.ignore_gfp_wait_file =
1420 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1421 &fail_page_alloc.ignore_gfp_wait);
1422
1423 fail_page_alloc.ignore_gfp_highmem_file =
1424 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem);
1426 fail_page_alloc.min_order_file =
1427 debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order);
1429
1430 if (!fail_page_alloc.ignore_gfp_wait_file ||
1431 !fail_page_alloc.ignore_gfp_highmem_file ||
1432 !fail_page_alloc.min_order_file) {
1433 err = -ENOMEM;
1434 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1435 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1436 debugfs_remove(fail_page_alloc.min_order_file);
1437 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1438 }
1439
1440 return err;
1441}
1442
1443late_initcall(fail_page_alloc_debugfs);
1444
1445#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446
1447#else /* CONFIG_FAIL_PAGE_ALLOC */
1448
1449static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1450{
1451 return 0;
1452}
1453
1454#endif /* CONFIG_FAIL_PAGE_ALLOC */
1455
1456/*
1457 * Return 1 if free pages are above 'mark'. This takes into account the order
1458 * of the allocation.
1459 */
1460int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1461 int classzone_idx, int alloc_flags)
1462{
1463 /* free_pages my go negative - that's OK */
1464 long min = mark;
1465 long free_pages = zone_nr_free_pages(z) - (1 << order) + 1;
1466 int o;
1467
1468 if (alloc_flags & ALLOC_HIGH)
1469 min -= min / 2;
1470 if (alloc_flags & ALLOC_HARDER)
1471 min -= min / 4;
1472
1473 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1474 return 0;
1475 for (o = 0; o < order; o++) {
1476 /* At the next order, this order's pages become unavailable */
1477 free_pages -= z->free_area[o].nr_free << o;
1478
1479 /* Require fewer higher order pages to be free */
1480 min >>= 1;
1481
1482 if (free_pages <= min)
1483 return 0;
1484 }
1485 return 1;
1486}
1487
1488#ifdef CONFIG_NUMA
1489/*
1490 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1491 * skip over zones that are not allowed by the cpuset, or that have
1492 * been recently (in last second) found to be nearly full. See further
1493 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1494 * that have to skip over a lot of full or unallowed zones.
1495 *
1496 * If the zonelist cache is present in the passed in zonelist, then
1497 * returns a pointer to the allowed node mask (either the current
1498 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1499 *
1500 * If the zonelist cache is not available for this zonelist, does
1501 * nothing and returns NULL.
1502 *
1503 * If the fullzones BITMAP in the zonelist cache is stale (more than
1504 * a second since last zap'd) then we zap it out (clear its bits.)
1505 *
1506 * We hold off even calling zlc_setup, until after we've checked the
1507 * first zone in the zonelist, on the theory that most allocations will
1508 * be satisfied from that first zone, so best to examine that zone as
1509 * quickly as we can.
1510 */
1511static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1512{
1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1514 nodemask_t *allowednodes; /* zonelist_cache approximation */
1515
1516 zlc = zonelist->zlcache_ptr;
1517 if (!zlc)
1518 return NULL;
1519
1520 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1521 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1522 zlc->last_full_zap = jiffies;
1523 }
1524
1525 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1526 &cpuset_current_mems_allowed :
1527 &node_states[N_HIGH_MEMORY];
1528 return allowednodes;
1529}
1530
1531/*
1532 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1533 * if it is worth looking at further for free memory:
1534 * 1) Check that the zone isn't thought to be full (doesn't have its
1535 * bit set in the zonelist_cache fullzones BITMAP).
1536 * 2) Check that the zones node (obtained from the zonelist_cache
1537 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1538 * Return true (non-zero) if zone is worth looking at further, or
1539 * else return false (zero) if it is not.
1540 *
1541 * This check -ignores- the distinction between various watermarks,
1542 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1543 * found to be full for any variation of these watermarks, it will
1544 * be considered full for up to one second by all requests, unless
1545 * we are so low on memory on all allowed nodes that we are forced
1546 * into the second scan of the zonelist.
1547 *
1548 * In the second scan we ignore this zonelist cache and exactly
1549 * apply the watermarks to all zones, even it is slower to do so.
1550 * We are low on memory in the second scan, and should leave no stone
1551 * unturned looking for a free page.
1552 */
1553static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1554 nodemask_t *allowednodes)
1555{
1556 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1557 int i; /* index of *z in zonelist zones */
1558 int n; /* node that zone *z is on */
1559
1560 zlc = zonelist->zlcache_ptr;
1561 if (!zlc)
1562 return 1;
1563
1564 i = z - zonelist->_zonerefs;
1565 n = zlc->z_to_n[i];
1566
1567 /* This zone is worth trying if it is allowed but not full */
1568 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1569}
1570
1571/*
1572 * Given 'z' scanning a zonelist, set the corresponding bit in
1573 * zlc->fullzones, so that subsequent attempts to allocate a page
1574 * from that zone don't waste time re-examining it.
1575 */
1576static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1577{
1578 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1579 int i; /* index of *z in zonelist zones */
1580
1581 zlc = zonelist->zlcache_ptr;
1582 if (!zlc)
1583 return;
1584
1585 i = z - zonelist->_zonerefs;
1586
1587 set_bit(i, zlc->fullzones);
1588}
1589
1590#else /* CONFIG_NUMA */
1591
1592static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1593{
1594 return NULL;
1595}
1596
1597static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1598 nodemask_t *allowednodes)
1599{
1600 return 1;
1601}
1602
1603static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1604{
1605}
1606#endif /* CONFIG_NUMA */
1607
1608/*
1609 * get_page_from_freelist goes through the zonelist trying to allocate
1610 * a page.
1611 */
1612static struct page *
1613get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1614 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1615 struct zone *preferred_zone, int migratetype)
1616{
1617 struct zoneref *z;
1618 struct page *page = NULL;
1619 int classzone_idx;
1620 struct zone *zone;
1621 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1622 int zlc_active = 0; /* set if using zonelist_cache */
1623 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1624
1625 classzone_idx = zone_idx(preferred_zone);
1626zonelist_scan:
1627 /*
1628 * Scan zonelist, looking for a zone with enough free.
1629 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1630 */
1631 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1632 high_zoneidx, nodemask) {
1633 if (NUMA_BUILD && zlc_active &&
1634 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1635 continue;
1636 if ((alloc_flags & ALLOC_CPUSET) &&
1637 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1638 goto try_next_zone;
1639
1640 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1641 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1642 unsigned long mark;
1643 int ret;
1644
1645 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1646 if (zone_watermark_ok(zone, order, mark,
1647 classzone_idx, alloc_flags))
1648 goto try_this_zone;
1649
1650 if (zone_reclaim_mode == 0)
1651 goto this_zone_full;
1652
1653 ret = zone_reclaim(zone, gfp_mask, order);
1654 switch (ret) {
1655 case ZONE_RECLAIM_NOSCAN:
1656 /* did not scan */
1657 goto try_next_zone;
1658 case ZONE_RECLAIM_FULL:
1659 /* scanned but unreclaimable */
1660 goto this_zone_full;
1661 default:
1662 /* did we reclaim enough */
1663 if (!zone_watermark_ok(zone, order, mark,
1664 classzone_idx, alloc_flags))
1665 goto this_zone_full;
1666 }
1667 }
1668
1669try_this_zone:
1670 page = buffered_rmqueue(preferred_zone, zone, order,
1671 gfp_mask, migratetype);
1672 if (page)
1673 break;
1674this_zone_full:
1675 if (NUMA_BUILD)
1676 zlc_mark_zone_full(zonelist, z);
1677try_next_zone:
1678 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1679 /*
1680 * we do zlc_setup after the first zone is tried but only
1681 * if there are multiple nodes make it worthwhile
1682 */
1683 allowednodes = zlc_setup(zonelist, alloc_flags);
1684 zlc_active = 1;
1685 did_zlc_setup = 1;
1686 }
1687 }
1688
1689 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1690 /* Disable zlc cache for second zonelist scan */
1691 zlc_active = 0;
1692 goto zonelist_scan;
1693 }
1694 return page;
1695}
1696
1697static inline int
1698should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1699 unsigned long pages_reclaimed)
1700{
1701 /* Do not loop if specifically requested */
1702 if (gfp_mask & __GFP_NORETRY)
1703 return 0;
1704
1705 /*
1706 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1707 * means __GFP_NOFAIL, but that may not be true in other
1708 * implementations.
1709 */
1710 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1711 return 1;
1712
1713 /*
1714 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1715 * specified, then we retry until we no longer reclaim any pages
1716 * (above), or we've reclaimed an order of pages at least as
1717 * large as the allocation's order. In both cases, if the
1718 * allocation still fails, we stop retrying.
1719 */
1720 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1721 return 1;
1722
1723 /*
1724 * Don't let big-order allocations loop unless the caller
1725 * explicitly requests that.
1726 */
1727 if (gfp_mask & __GFP_NOFAIL)
1728 return 1;
1729
1730 return 0;
1731}
1732
1733static inline struct page *
1734__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1735 struct zonelist *zonelist, enum zone_type high_zoneidx,
1736 nodemask_t *nodemask, struct zone *preferred_zone,
1737 int migratetype)
1738{
1739 struct page *page;
1740
1741 /* Acquire the OOM killer lock for the zones in zonelist */
1742 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1743 schedule_timeout_uninterruptible(1);
1744 return NULL;
1745 }
1746
1747 /*
1748 * Go through the zonelist yet one more time, keep very high watermark
1749 * here, this is only to catch a parallel oom killing, we must fail if
1750 * we're still under heavy pressure.
1751 */
1752 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1753 order, zonelist, high_zoneidx,
1754 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1755 preferred_zone, migratetype);
1756 if (page)
1757 goto out;
1758
1759 if (!(gfp_mask & __GFP_NOFAIL)) {
1760 /* The OOM killer will not help higher order allocs */
1761 if (order > PAGE_ALLOC_COSTLY_ORDER)
1762 goto out;
1763 /* The OOM killer does not needlessly kill tasks for lowmem */
1764 if (high_zoneidx < ZONE_NORMAL)
1765 goto out;
1766 /*
1767 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1768 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1769 * The caller should handle page allocation failure by itself if
1770 * it specifies __GFP_THISNODE.
1771 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1772 */
1773 if (gfp_mask & __GFP_THISNODE)
1774 goto out;
1775 }
1776 /* Exhausted what can be done so it's blamo time */
1777 out_of_memory(zonelist, gfp_mask, order, nodemask);
1778
1779out:
1780 clear_zonelist_oom(zonelist, gfp_mask);
1781 return page;
1782}
1783
1784#ifdef CONFIG_COMPACTION
1785/* Try memory compaction for high-order allocations before reclaim */
1786static struct page *
1787__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1788 struct zonelist *zonelist, enum zone_type high_zoneidx,
1789 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1790 int migratetype, unsigned long *did_some_progress)
1791{
1792 struct page *page;
1793
1794 if (!order || compaction_deferred(preferred_zone))
1795 return NULL;
1796
1797 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1798 nodemask);
1799 if (*did_some_progress != COMPACT_SKIPPED) {
1800
1801 /* Page migration frees to the PCP lists but we want merging */
1802 drain_pages(get_cpu());
1803 put_cpu();
1804
1805 page = get_page_from_freelist(gfp_mask, nodemask,
1806 order, zonelist, high_zoneidx,
1807 alloc_flags, preferred_zone,
1808 migratetype);
1809 if (page) {
1810 preferred_zone->compact_considered = 0;
1811 preferred_zone->compact_defer_shift = 0;
1812 count_vm_event(COMPACTSUCCESS);
1813 return page;
1814 }
1815
1816 /*
1817 * It's bad if compaction run occurs and fails.
1818 * The most likely reason is that pages exist,
1819 * but not enough to satisfy watermarks.
1820 */
1821 count_vm_event(COMPACTFAIL);
1822 defer_compaction(preferred_zone);
1823
1824 cond_resched();
1825 }
1826
1827 return NULL;
1828}
1829#else
1830static inline struct page *
1831__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1832 struct zonelist *zonelist, enum zone_type high_zoneidx,
1833 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1834 int migratetype, unsigned long *did_some_progress)
1835{
1836 return NULL;
1837}
1838#endif /* CONFIG_COMPACTION */
1839
1840/* The really slow allocator path where we enter direct reclaim */
1841static inline struct page *
1842__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1843 struct zonelist *zonelist, enum zone_type high_zoneidx,
1844 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1845 int migratetype, unsigned long *did_some_progress)
1846{
1847 struct page *page = NULL;
1848 struct reclaim_state reclaim_state;
1849 struct task_struct *p = current;
1850
1851 cond_resched();
1852
1853 /* We now go into synchronous reclaim */
1854 cpuset_memory_pressure_bump();
1855 p->flags |= PF_MEMALLOC;
1856 lockdep_set_current_reclaim_state(gfp_mask);
1857 reclaim_state.reclaimed_slab = 0;
1858 p->reclaim_state = &reclaim_state;
1859
1860 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1861
1862 p->reclaim_state = NULL;
1863 lockdep_clear_current_reclaim_state();
1864 p->flags &= ~PF_MEMALLOC;
1865
1866 cond_resched();
1867
1868 if (order != 0)
1869 drain_all_pages();
1870
1871 if (likely(*did_some_progress))
1872 page = get_page_from_freelist(gfp_mask, nodemask, order,
1873 zonelist, high_zoneidx,
1874 alloc_flags, preferred_zone,
1875 migratetype);
1876 return page;
1877}
1878
1879/*
1880 * This is called in the allocator slow-path if the allocation request is of
1881 * sufficient urgency to ignore watermarks and take other desperate measures
1882 */
1883static inline struct page *
1884__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1885 struct zonelist *zonelist, enum zone_type high_zoneidx,
1886 nodemask_t *nodemask, struct zone *preferred_zone,
1887 int migratetype)
1888{
1889 struct page *page;
1890
1891 do {
1892 page = get_page_from_freelist(gfp_mask, nodemask, order,
1893 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1894 preferred_zone, migratetype);
1895
1896 if (!page && gfp_mask & __GFP_NOFAIL)
1897 congestion_wait(BLK_RW_ASYNC, HZ/50);
1898 } while (!page && (gfp_mask & __GFP_NOFAIL));
1899
1900 return page;
1901}
1902
1903static inline
1904void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1905 enum zone_type high_zoneidx)
1906{
1907 struct zoneref *z;
1908 struct zone *zone;
1909
1910 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1911 wakeup_kswapd(zone, order);
1912}
1913
1914static inline int
1915gfp_to_alloc_flags(gfp_t gfp_mask)
1916{
1917 struct task_struct *p = current;
1918 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1919 const gfp_t wait = gfp_mask & __GFP_WAIT;
1920
1921 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1922 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1923
1924 /*
1925 * The caller may dip into page reserves a bit more if the caller
1926 * cannot run direct reclaim, or if the caller has realtime scheduling
1927 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1928 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1929 */
1930 alloc_flags |= (gfp_mask & __GFP_HIGH);
1931
1932 if (!wait) {
1933 alloc_flags |= ALLOC_HARDER;
1934 /*
1935 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1936 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1937 */
1938 alloc_flags &= ~ALLOC_CPUSET;
1939 } else if (unlikely(rt_task(p)) && !in_interrupt())
1940 alloc_flags |= ALLOC_HARDER;
1941
1942 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1943 if (!in_interrupt() &&
1944 ((p->flags & PF_MEMALLOC) ||
1945 unlikely(test_thread_flag(TIF_MEMDIE))))
1946 alloc_flags |= ALLOC_NO_WATERMARKS;
1947 }
1948
1949 return alloc_flags;
1950}
1951
1952static inline struct page *
1953__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1954 struct zonelist *zonelist, enum zone_type high_zoneidx,
1955 nodemask_t *nodemask, struct zone *preferred_zone,
1956 int migratetype)
1957{
1958 const gfp_t wait = gfp_mask & __GFP_WAIT;
1959 struct page *page = NULL;
1960 int alloc_flags;
1961 unsigned long pages_reclaimed = 0;
1962 unsigned long did_some_progress;
1963 struct task_struct *p = current;
1964
1965 /*
1966 * In the slowpath, we sanity check order to avoid ever trying to
1967 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1968 * be using allocators in order of preference for an area that is
1969 * too large.
1970 */
1971 if (order >= MAX_ORDER) {
1972 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1973 return NULL;
1974 }
1975
1976 /*
1977 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1978 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1979 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1980 * using a larger set of nodes after it has established that the
1981 * allowed per node queues are empty and that nodes are
1982 * over allocated.
1983 */
1984 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1985 goto nopage;
1986
1987restart:
1988 wake_all_kswapd(order, zonelist, high_zoneidx);
1989
1990 /*
1991 * OK, we're below the kswapd watermark and have kicked background
1992 * reclaim. Now things get more complex, so set up alloc_flags according
1993 * to how we want to proceed.
1994 */
1995 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1996
1997 /* This is the last chance, in general, before the goto nopage. */
1998 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1999 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2000 preferred_zone, migratetype);
2001 if (page)
2002 goto got_pg;
2003
2004rebalance:
2005 /* Allocate without watermarks if the context allows */
2006 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2007 page = __alloc_pages_high_priority(gfp_mask, order,
2008 zonelist, high_zoneidx, nodemask,
2009 preferred_zone, migratetype);
2010 if (page)
2011 goto got_pg;
2012 }
2013
2014 /* Atomic allocations - we can't balance anything */
2015 if (!wait)
2016 goto nopage;
2017
2018 /* Avoid recursion of direct reclaim */
2019 if (p->flags & PF_MEMALLOC)
2020 goto nopage;
2021
2022 /* Avoid allocations with no watermarks from looping endlessly */
2023 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2024 goto nopage;
2025
2026 /* Try direct compaction */
2027 page = __alloc_pages_direct_compact(gfp_mask, order,
2028 zonelist, high_zoneidx,
2029 nodemask,
2030 alloc_flags, preferred_zone,
2031 migratetype, &did_some_progress);
2032 if (page)
2033 goto got_pg;
2034
2035 /* Try direct reclaim and then allocating */
2036 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2037 zonelist, high_zoneidx,
2038 nodemask,
2039 alloc_flags, preferred_zone,
2040 migratetype, &did_some_progress);
2041 if (page)
2042 goto got_pg;
2043
2044 /*
2045 * If we failed to make any progress reclaiming, then we are
2046 * running out of options and have to consider going OOM
2047 */
2048 if (!did_some_progress) {
2049 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2050 if (oom_killer_disabled)
2051 goto nopage;
2052 page = __alloc_pages_may_oom(gfp_mask, order,
2053 zonelist, high_zoneidx,
2054 nodemask, preferred_zone,
2055 migratetype);
2056 if (page)
2057 goto got_pg;
2058
2059 if (!(gfp_mask & __GFP_NOFAIL)) {
2060 /*
2061 * The oom killer is not called for high-order
2062 * allocations that may fail, so if no progress
2063 * is being made, there are no other options and
2064 * retrying is unlikely to help.
2065 */
2066 if (order > PAGE_ALLOC_COSTLY_ORDER)
2067 goto nopage;
2068 /*
2069 * The oom killer is not called for lowmem
2070 * allocations to prevent needlessly killing
2071 * innocent tasks.
2072 */
2073 if (high_zoneidx < ZONE_NORMAL)
2074 goto nopage;
2075 }
2076
2077 goto restart;
2078 }
2079 }
2080
2081 /* Check if we should retry the allocation */
2082 pages_reclaimed += did_some_progress;
2083 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2084 /* Wait for some write requests to complete then retry */
2085 congestion_wait(BLK_RW_ASYNC, HZ/50);
2086 goto rebalance;
2087 }
2088
2089nopage:
2090 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2091 printk(KERN_WARNING "%s: page allocation failure."
2092 " order:%d, mode:0x%x\n",
2093 p->comm, order, gfp_mask);
2094 dump_stack();
2095 show_mem();
2096 }
2097 return page;
2098got_pg:
2099 if (kmemcheck_enabled)
2100 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2101 return page;
2102
2103}
2104
2105/*
2106 * This is the 'heart' of the zoned buddy allocator.
2107 */
2108struct page *
2109__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2110 struct zonelist *zonelist, nodemask_t *nodemask)
2111{
2112 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2113 struct zone *preferred_zone;
2114 struct page *page;
2115 int migratetype = allocflags_to_migratetype(gfp_mask);
2116
2117 gfp_mask &= gfp_allowed_mask;
2118
2119 lockdep_trace_alloc(gfp_mask);
2120
2121 might_sleep_if(gfp_mask & __GFP_WAIT);
2122
2123 if (should_fail_alloc_page(gfp_mask, order))
2124 return NULL;
2125
2126 /*
2127 * Check the zones suitable for the gfp_mask contain at least one
2128 * valid zone. It's possible to have an empty zonelist as a result
2129 * of GFP_THISNODE and a memoryless node
2130 */
2131 if (unlikely(!zonelist->_zonerefs->zone))
2132 return NULL;
2133
2134 get_mems_allowed();
2135 /* The preferred zone is used for statistics later */
2136 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2137 if (!preferred_zone) {
2138 put_mems_allowed();
2139 return NULL;
2140 }
2141
2142 /* First allocation attempt */
2143 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2144 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2145 preferred_zone, migratetype);
2146 if (unlikely(!page))
2147 page = __alloc_pages_slowpath(gfp_mask, order,
2148 zonelist, high_zoneidx, nodemask,
2149 preferred_zone, migratetype);
2150 put_mems_allowed();
2151
2152 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2153 return page;
2154}
2155EXPORT_SYMBOL(__alloc_pages_nodemask);
2156
2157/*
2158 * Common helper functions.
2159 */
2160unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2161{
2162 struct page *page;
2163
2164 /*
2165 * __get_free_pages() returns a 32-bit address, which cannot represent
2166 * a highmem page
2167 */
2168 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2169
2170 page = alloc_pages(gfp_mask, order);
2171 if (!page)
2172 return 0;
2173 return (unsigned long) page_address(page);
2174}
2175EXPORT_SYMBOL(__get_free_pages);
2176
2177unsigned long get_zeroed_page(gfp_t gfp_mask)
2178{
2179 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2180}
2181EXPORT_SYMBOL(get_zeroed_page);
2182
2183void __pagevec_free(struct pagevec *pvec)
2184{
2185 int i = pagevec_count(pvec);
2186
2187 while (--i >= 0) {
2188 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2189 free_hot_cold_page(pvec->pages[i], pvec->cold);
2190 }
2191}
2192
2193void __free_pages(struct page *page, unsigned int order)
2194{
2195 if (put_page_testzero(page)) {
2196 if (order == 0)
2197 free_hot_cold_page(page, 0);
2198 else
2199 __free_pages_ok(page, order);
2200 }
2201}
2202
2203EXPORT_SYMBOL(__free_pages);
2204
2205void free_pages(unsigned long addr, unsigned int order)
2206{
2207 if (addr != 0) {
2208 VM_BUG_ON(!virt_addr_valid((void *)addr));
2209 __free_pages(virt_to_page((void *)addr), order);
2210 }
2211}
2212
2213EXPORT_SYMBOL(free_pages);
2214
2215/**
2216 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2217 * @size: the number of bytes to allocate
2218 * @gfp_mask: GFP flags for the allocation
2219 *
2220 * This function is similar to alloc_pages(), except that it allocates the
2221 * minimum number of pages to satisfy the request. alloc_pages() can only
2222 * allocate memory in power-of-two pages.
2223 *
2224 * This function is also limited by MAX_ORDER.
2225 *
2226 * Memory allocated by this function must be released by free_pages_exact().
2227 */
2228void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2229{
2230 unsigned int order = get_order(size);
2231 unsigned long addr;
2232
2233 addr = __get_free_pages(gfp_mask, order);
2234 if (addr) {
2235 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2236 unsigned long used = addr + PAGE_ALIGN(size);
2237
2238 split_page(virt_to_page((void *)addr), order);
2239 while (used < alloc_end) {
2240 free_page(used);
2241 used += PAGE_SIZE;
2242 }
2243 }
2244
2245 return (void *)addr;
2246}
2247EXPORT_SYMBOL(alloc_pages_exact);
2248
2249/**
2250 * free_pages_exact - release memory allocated via alloc_pages_exact()
2251 * @virt: the value returned by alloc_pages_exact.
2252 * @size: size of allocation, same value as passed to alloc_pages_exact().
2253 *
2254 * Release the memory allocated by a previous call to alloc_pages_exact.
2255 */
2256void free_pages_exact(void *virt, size_t size)
2257{
2258 unsigned long addr = (unsigned long)virt;
2259 unsigned long end = addr + PAGE_ALIGN(size);
2260
2261 while (addr < end) {
2262 free_page(addr);
2263 addr += PAGE_SIZE;
2264 }
2265}
2266EXPORT_SYMBOL(free_pages_exact);
2267
2268static unsigned int nr_free_zone_pages(int offset)
2269{
2270 struct zoneref *z;
2271 struct zone *zone;
2272
2273 /* Just pick one node, since fallback list is circular */
2274 unsigned int sum = 0;
2275
2276 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2277
2278 for_each_zone_zonelist(zone, z, zonelist, offset) {
2279 unsigned long size = zone->present_pages;
2280 unsigned long high = high_wmark_pages(zone);
2281 if (size > high)
2282 sum += size - high;
2283 }
2284
2285 return sum;
2286}
2287
2288/*
2289 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2290 */
2291unsigned int nr_free_buffer_pages(void)
2292{
2293 return nr_free_zone_pages(gfp_zone(GFP_USER));
2294}
2295EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2296
2297/*
2298 * Amount of free RAM allocatable within all zones
2299 */
2300unsigned int nr_free_pagecache_pages(void)
2301{
2302 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2303}
2304
2305static inline void show_node(struct zone *zone)
2306{
2307 if (NUMA_BUILD)
2308 printk("Node %d ", zone_to_nid(zone));
2309}
2310
2311void si_meminfo(struct sysinfo *val)
2312{
2313 val->totalram = totalram_pages;
2314 val->sharedram = 0;
2315 val->freeram = global_page_state(NR_FREE_PAGES);
2316 val->bufferram = nr_blockdev_pages();
2317 val->totalhigh = totalhigh_pages;
2318 val->freehigh = nr_free_highpages();
2319 val->mem_unit = PAGE_SIZE;
2320}
2321
2322EXPORT_SYMBOL(si_meminfo);
2323
2324#ifdef CONFIG_NUMA
2325void si_meminfo_node(struct sysinfo *val, int nid)
2326{
2327 pg_data_t *pgdat = NODE_DATA(nid);
2328
2329 val->totalram = pgdat->node_present_pages;
2330 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2331#ifdef CONFIG_HIGHMEM
2332 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2333 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2334 NR_FREE_PAGES);
2335#else
2336 val->totalhigh = 0;
2337 val->freehigh = 0;
2338#endif
2339 val->mem_unit = PAGE_SIZE;
2340}
2341#endif
2342
2343#define K(x) ((x) << (PAGE_SHIFT-10))
2344
2345/*
2346 * Show free area list (used inside shift_scroll-lock stuff)
2347 * We also calculate the percentage fragmentation. We do this by counting the
2348 * memory on each free list with the exception of the first item on the list.
2349 */
2350void show_free_areas(void)
2351{
2352 int cpu;
2353 struct zone *zone;
2354
2355 for_each_populated_zone(zone) {
2356 show_node(zone);
2357 printk("%s per-cpu:\n", zone->name);
2358
2359 for_each_online_cpu(cpu) {
2360 struct per_cpu_pageset *pageset;
2361
2362 pageset = per_cpu_ptr(zone->pageset, cpu);
2363
2364 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2365 cpu, pageset->pcp.high,
2366 pageset->pcp.batch, pageset->pcp.count);
2367 }
2368 }
2369
2370 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2371 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2372 " unevictable:%lu"
2373 " dirty:%lu writeback:%lu unstable:%lu\n"
2374 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2375 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2376 global_page_state(NR_ACTIVE_ANON),
2377 global_page_state(NR_INACTIVE_ANON),
2378 global_page_state(NR_ISOLATED_ANON),
2379 global_page_state(NR_ACTIVE_FILE),
2380 global_page_state(NR_INACTIVE_FILE),
2381 global_page_state(NR_ISOLATED_FILE),
2382 global_page_state(NR_UNEVICTABLE),
2383 global_page_state(NR_FILE_DIRTY),
2384 global_page_state(NR_WRITEBACK),
2385 global_page_state(NR_UNSTABLE_NFS),
2386 global_page_state(NR_FREE_PAGES),
2387 global_page_state(NR_SLAB_RECLAIMABLE),
2388 global_page_state(NR_SLAB_UNRECLAIMABLE),
2389 global_page_state(NR_FILE_MAPPED),
2390 global_page_state(NR_SHMEM),
2391 global_page_state(NR_PAGETABLE),
2392 global_page_state(NR_BOUNCE));
2393
2394 for_each_populated_zone(zone) {
2395 int i;
2396
2397 show_node(zone);
2398 printk("%s"
2399 " free:%lukB"
2400 " min:%lukB"
2401 " low:%lukB"
2402 " high:%lukB"
2403 " active_anon:%lukB"
2404 " inactive_anon:%lukB"
2405 " active_file:%lukB"
2406 " inactive_file:%lukB"
2407 " unevictable:%lukB"
2408 " isolated(anon):%lukB"
2409 " isolated(file):%lukB"
2410 " present:%lukB"
2411 " mlocked:%lukB"
2412 " dirty:%lukB"
2413 " writeback:%lukB"
2414 " mapped:%lukB"
2415 " shmem:%lukB"
2416 " slab_reclaimable:%lukB"
2417 " slab_unreclaimable:%lukB"
2418 " kernel_stack:%lukB"
2419 " pagetables:%lukB"
2420 " unstable:%lukB"
2421 " bounce:%lukB"
2422 " writeback_tmp:%lukB"
2423 " pages_scanned:%lu"
2424 " all_unreclaimable? %s"
2425 "\n",
2426 zone->name,
2427 K(zone_nr_free_pages(zone)),
2428 K(min_wmark_pages(zone)),
2429 K(low_wmark_pages(zone)),
2430 K(high_wmark_pages(zone)),
2431 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2432 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2433 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2434 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2435 K(zone_page_state(zone, NR_UNEVICTABLE)),
2436 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2437 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2438 K(zone->present_pages),
2439 K(zone_page_state(zone, NR_MLOCK)),
2440 K(zone_page_state(zone, NR_FILE_DIRTY)),
2441 K(zone_page_state(zone, NR_WRITEBACK)),
2442 K(zone_page_state(zone, NR_FILE_MAPPED)),
2443 K(zone_page_state(zone, NR_SHMEM)),
2444 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2445 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2446 zone_page_state(zone, NR_KERNEL_STACK) *
2447 THREAD_SIZE / 1024,
2448 K(zone_page_state(zone, NR_PAGETABLE)),
2449 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2450 K(zone_page_state(zone, NR_BOUNCE)),
2451 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2452 zone->pages_scanned,
2453 (zone->all_unreclaimable ? "yes" : "no")
2454 );
2455 printk("lowmem_reserve[]:");
2456 for (i = 0; i < MAX_NR_ZONES; i++)
2457 printk(" %lu", zone->lowmem_reserve[i]);
2458 printk("\n");
2459 }
2460
2461 for_each_populated_zone(zone) {
2462 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2463
2464 show_node(zone);
2465 printk("%s: ", zone->name);
2466
2467 spin_lock_irqsave(&zone->lock, flags);
2468 for (order = 0; order < MAX_ORDER; order++) {
2469 nr[order] = zone->free_area[order].nr_free;
2470 total += nr[order] << order;
2471 }
2472 spin_unlock_irqrestore(&zone->lock, flags);
2473 for (order = 0; order < MAX_ORDER; order++)
2474 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2475 printk("= %lukB\n", K(total));
2476 }
2477
2478 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2479
2480 show_swap_cache_info();
2481}
2482
2483static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2484{
2485 zoneref->zone = zone;
2486 zoneref->zone_idx = zone_idx(zone);
2487}
2488
2489/*
2490 * Builds allocation fallback zone lists.
2491 *
2492 * Add all populated zones of a node to the zonelist.
2493 */
2494static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2495 int nr_zones, enum zone_type zone_type)
2496{
2497 struct zone *zone;
2498
2499 BUG_ON(zone_type >= MAX_NR_ZONES);
2500 zone_type++;
2501
2502 do {
2503 zone_type--;
2504 zone = pgdat->node_zones + zone_type;
2505 if (populated_zone(zone)) {
2506 zoneref_set_zone(zone,
2507 &zonelist->_zonerefs[nr_zones++]);
2508 check_highest_zone(zone_type);
2509 }
2510
2511 } while (zone_type);
2512 return nr_zones;
2513}
2514
2515
2516/*
2517 * zonelist_order:
2518 * 0 = automatic detection of better ordering.
2519 * 1 = order by ([node] distance, -zonetype)
2520 * 2 = order by (-zonetype, [node] distance)
2521 *
2522 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2523 * the same zonelist. So only NUMA can configure this param.
2524 */
2525#define ZONELIST_ORDER_DEFAULT 0
2526#define ZONELIST_ORDER_NODE 1
2527#define ZONELIST_ORDER_ZONE 2
2528
2529/* zonelist order in the kernel.
2530 * set_zonelist_order() will set this to NODE or ZONE.
2531 */
2532static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2533static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2534
2535
2536#ifdef CONFIG_NUMA
2537/* The value user specified ....changed by config */
2538static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2539/* string for sysctl */
2540#define NUMA_ZONELIST_ORDER_LEN 16
2541char numa_zonelist_order[16] = "default";
2542
2543/*
2544 * interface for configure zonelist ordering.
2545 * command line option "numa_zonelist_order"
2546 * = "[dD]efault - default, automatic configuration.
2547 * = "[nN]ode - order by node locality, then by zone within node
2548 * = "[zZ]one - order by zone, then by locality within zone
2549 */
2550
2551static int __parse_numa_zonelist_order(char *s)
2552{
2553 if (*s == 'd' || *s == 'D') {
2554 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2555 } else if (*s == 'n' || *s == 'N') {
2556 user_zonelist_order = ZONELIST_ORDER_NODE;
2557 } else if (*s == 'z' || *s == 'Z') {
2558 user_zonelist_order = ZONELIST_ORDER_ZONE;
2559 } else {
2560 printk(KERN_WARNING
2561 "Ignoring invalid numa_zonelist_order value: "
2562 "%s\n", s);
2563 return -EINVAL;
2564 }
2565 return 0;
2566}
2567
2568static __init int setup_numa_zonelist_order(char *s)
2569{
2570 if (s)
2571 return __parse_numa_zonelist_order(s);
2572 return 0;
2573}
2574early_param("numa_zonelist_order", setup_numa_zonelist_order);
2575
2576/*
2577 * sysctl handler for numa_zonelist_order
2578 */
2579int numa_zonelist_order_handler(ctl_table *table, int write,
2580 void __user *buffer, size_t *length,
2581 loff_t *ppos)
2582{
2583 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2584 int ret;
2585 static DEFINE_MUTEX(zl_order_mutex);
2586
2587 mutex_lock(&zl_order_mutex);
2588 if (write)
2589 strcpy(saved_string, (char*)table->data);
2590 ret = proc_dostring(table, write, buffer, length, ppos);
2591 if (ret)
2592 goto out;
2593 if (write) {
2594 int oldval = user_zonelist_order;
2595 if (__parse_numa_zonelist_order((char*)table->data)) {
2596 /*
2597 * bogus value. restore saved string
2598 */
2599 strncpy((char*)table->data, saved_string,
2600 NUMA_ZONELIST_ORDER_LEN);
2601 user_zonelist_order = oldval;
2602 } else if (oldval != user_zonelist_order) {
2603 mutex_lock(&zonelists_mutex);
2604 build_all_zonelists(NULL);
2605 mutex_unlock(&zonelists_mutex);
2606 }
2607 }
2608out:
2609 mutex_unlock(&zl_order_mutex);
2610 return ret;
2611}
2612
2613
2614#define MAX_NODE_LOAD (nr_online_nodes)
2615static int node_load[MAX_NUMNODES];
2616
2617/**
2618 * find_next_best_node - find the next node that should appear in a given node's fallback list
2619 * @node: node whose fallback list we're appending
2620 * @used_node_mask: nodemask_t of already used nodes
2621 *
2622 * We use a number of factors to determine which is the next node that should
2623 * appear on a given node's fallback list. The node should not have appeared
2624 * already in @node's fallback list, and it should be the next closest node
2625 * according to the distance array (which contains arbitrary distance values
2626 * from each node to each node in the system), and should also prefer nodes
2627 * with no CPUs, since presumably they'll have very little allocation pressure
2628 * on them otherwise.
2629 * It returns -1 if no node is found.
2630 */
2631static int find_next_best_node(int node, nodemask_t *used_node_mask)
2632{
2633 int n, val;
2634 int min_val = INT_MAX;
2635 int best_node = -1;
2636 const struct cpumask *tmp = cpumask_of_node(0);
2637
2638 /* Use the local node if we haven't already */
2639 if (!node_isset(node, *used_node_mask)) {
2640 node_set(node, *used_node_mask);
2641 return node;
2642 }
2643
2644 for_each_node_state(n, N_HIGH_MEMORY) {
2645
2646 /* Don't want a node to appear more than once */
2647 if (node_isset(n, *used_node_mask))
2648 continue;
2649
2650 /* Use the distance array to find the distance */
2651 val = node_distance(node, n);
2652
2653 /* Penalize nodes under us ("prefer the next node") */
2654 val += (n < node);
2655
2656 /* Give preference to headless and unused nodes */
2657 tmp = cpumask_of_node(n);
2658 if (!cpumask_empty(tmp))
2659 val += PENALTY_FOR_NODE_WITH_CPUS;
2660
2661 /* Slight preference for less loaded node */
2662 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2663 val += node_load[n];
2664
2665 if (val < min_val) {
2666 min_val = val;
2667 best_node = n;
2668 }
2669 }
2670
2671 if (best_node >= 0)
2672 node_set(best_node, *used_node_mask);
2673
2674 return best_node;
2675}
2676
2677
2678/*
2679 * Build zonelists ordered by node and zones within node.
2680 * This results in maximum locality--normal zone overflows into local
2681 * DMA zone, if any--but risks exhausting DMA zone.
2682 */
2683static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2684{
2685 int j;
2686 struct zonelist *zonelist;
2687
2688 zonelist = &pgdat->node_zonelists[0];
2689 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2690 ;
2691 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2692 MAX_NR_ZONES - 1);
2693 zonelist->_zonerefs[j].zone = NULL;
2694 zonelist->_zonerefs[j].zone_idx = 0;
2695}
2696
2697/*
2698 * Build gfp_thisnode zonelists
2699 */
2700static void build_thisnode_zonelists(pg_data_t *pgdat)
2701{
2702 int j;
2703 struct zonelist *zonelist;
2704
2705 zonelist = &pgdat->node_zonelists[1];
2706 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2707 zonelist->_zonerefs[j].zone = NULL;
2708 zonelist->_zonerefs[j].zone_idx = 0;
2709}
2710
2711/*
2712 * Build zonelists ordered by zone and nodes within zones.
2713 * This results in conserving DMA zone[s] until all Normal memory is
2714 * exhausted, but results in overflowing to remote node while memory
2715 * may still exist in local DMA zone.
2716 */
2717static int node_order[MAX_NUMNODES];
2718
2719static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2720{
2721 int pos, j, node;
2722 int zone_type; /* needs to be signed */
2723 struct zone *z;
2724 struct zonelist *zonelist;
2725
2726 zonelist = &pgdat->node_zonelists[0];
2727 pos = 0;
2728 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2729 for (j = 0; j < nr_nodes; j++) {
2730 node = node_order[j];
2731 z = &NODE_DATA(node)->node_zones[zone_type];
2732 if (populated_zone(z)) {
2733 zoneref_set_zone(z,
2734 &zonelist->_zonerefs[pos++]);
2735 check_highest_zone(zone_type);
2736 }
2737 }
2738 }
2739 zonelist->_zonerefs[pos].zone = NULL;
2740 zonelist->_zonerefs[pos].zone_idx = 0;
2741}
2742
2743static int default_zonelist_order(void)
2744{
2745 int nid, zone_type;
2746 unsigned long low_kmem_size,total_size;
2747 struct zone *z;
2748 int average_size;
2749 /*
2750 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2751 * If they are really small and used heavily, the system can fall
2752 * into OOM very easily.
2753 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2754 */
2755 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2756 low_kmem_size = 0;
2757 total_size = 0;
2758 for_each_online_node(nid) {
2759 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2760 z = &NODE_DATA(nid)->node_zones[zone_type];
2761 if (populated_zone(z)) {
2762 if (zone_type < ZONE_NORMAL)
2763 low_kmem_size += z->present_pages;
2764 total_size += z->present_pages;
2765 } else if (zone_type == ZONE_NORMAL) {
2766 /*
2767 * If any node has only lowmem, then node order
2768 * is preferred to allow kernel allocations
2769 * locally; otherwise, they can easily infringe
2770 * on other nodes when there is an abundance of
2771 * lowmem available to allocate from.
2772 */
2773 return ZONELIST_ORDER_NODE;
2774 }
2775 }
2776 }
2777 if (!low_kmem_size || /* there are no DMA area. */
2778 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2779 return ZONELIST_ORDER_NODE;
2780 /*
2781 * look into each node's config.
2782 * If there is a node whose DMA/DMA32 memory is very big area on
2783 * local memory, NODE_ORDER may be suitable.
2784 */
2785 average_size = total_size /
2786 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2787 for_each_online_node(nid) {
2788 low_kmem_size = 0;
2789 total_size = 0;
2790 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2791 z = &NODE_DATA(nid)->node_zones[zone_type];
2792 if (populated_zone(z)) {
2793 if (zone_type < ZONE_NORMAL)
2794 low_kmem_size += z->present_pages;
2795 total_size += z->present_pages;
2796 }
2797 }
2798 if (low_kmem_size &&
2799 total_size > average_size && /* ignore small node */
2800 low_kmem_size > total_size * 70/100)
2801 return ZONELIST_ORDER_NODE;
2802 }
2803 return ZONELIST_ORDER_ZONE;
2804}
2805
2806static void set_zonelist_order(void)
2807{
2808 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2809 current_zonelist_order = default_zonelist_order();
2810 else
2811 current_zonelist_order = user_zonelist_order;
2812}
2813
2814static void build_zonelists(pg_data_t *pgdat)
2815{
2816 int j, node, load;
2817 enum zone_type i;
2818 nodemask_t used_mask;
2819 int local_node, prev_node;
2820 struct zonelist *zonelist;
2821 int order = current_zonelist_order;
2822
2823 /* initialize zonelists */
2824 for (i = 0; i < MAX_ZONELISTS; i++) {
2825 zonelist = pgdat->node_zonelists + i;
2826 zonelist->_zonerefs[0].zone = NULL;
2827 zonelist->_zonerefs[0].zone_idx = 0;
2828 }
2829
2830 /* NUMA-aware ordering of nodes */
2831 local_node = pgdat->node_id;
2832 load = nr_online_nodes;
2833 prev_node = local_node;
2834 nodes_clear(used_mask);
2835
2836 memset(node_order, 0, sizeof(node_order));
2837 j = 0;
2838
2839 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2840 int distance = node_distance(local_node, node);
2841
2842 /*
2843 * If another node is sufficiently far away then it is better
2844 * to reclaim pages in a zone before going off node.
2845 */
2846 if (distance > RECLAIM_DISTANCE)
2847 zone_reclaim_mode = 1;
2848
2849 /*
2850 * We don't want to pressure a particular node.
2851 * So adding penalty to the first node in same
2852 * distance group to make it round-robin.
2853 */
2854 if (distance != node_distance(local_node, prev_node))
2855 node_load[node] = load;
2856
2857 prev_node = node;
2858 load--;
2859 if (order == ZONELIST_ORDER_NODE)
2860 build_zonelists_in_node_order(pgdat, node);
2861 else
2862 node_order[j++] = node; /* remember order */
2863 }
2864
2865 if (order == ZONELIST_ORDER_ZONE) {
2866 /* calculate node order -- i.e., DMA last! */
2867 build_zonelists_in_zone_order(pgdat, j);
2868 }
2869
2870 build_thisnode_zonelists(pgdat);
2871}
2872
2873/* Construct the zonelist performance cache - see further mmzone.h */
2874static void build_zonelist_cache(pg_data_t *pgdat)
2875{
2876 struct zonelist *zonelist;
2877 struct zonelist_cache *zlc;
2878 struct zoneref *z;
2879
2880 zonelist = &pgdat->node_zonelists[0];
2881 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2882 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2883 for (z = zonelist->_zonerefs; z->zone; z++)
2884 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2885}
2886
2887#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2888/*
2889 * Return node id of node used for "local" allocations.
2890 * I.e., first node id of first zone in arg node's generic zonelist.
2891 * Used for initializing percpu 'numa_mem', which is used primarily
2892 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2893 */
2894int local_memory_node(int node)
2895{
2896 struct zone *zone;
2897
2898 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2899 gfp_zone(GFP_KERNEL),
2900 NULL,
2901 &zone);
2902 return zone->node;
2903}
2904#endif
2905
2906#else /* CONFIG_NUMA */
2907
2908static void set_zonelist_order(void)
2909{
2910 current_zonelist_order = ZONELIST_ORDER_ZONE;
2911}
2912
2913static void build_zonelists(pg_data_t *pgdat)
2914{
2915 int node, local_node;
2916 enum zone_type j;
2917 struct zonelist *zonelist;
2918
2919 local_node = pgdat->node_id;
2920
2921 zonelist = &pgdat->node_zonelists[0];
2922 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2923
2924 /*
2925 * Now we build the zonelist so that it contains the zones
2926 * of all the other nodes.
2927 * We don't want to pressure a particular node, so when
2928 * building the zones for node N, we make sure that the
2929 * zones coming right after the local ones are those from
2930 * node N+1 (modulo N)
2931 */
2932 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2933 if (!node_online(node))
2934 continue;
2935 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2936 MAX_NR_ZONES - 1);
2937 }
2938 for (node = 0; node < local_node; node++) {
2939 if (!node_online(node))
2940 continue;
2941 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2942 MAX_NR_ZONES - 1);
2943 }
2944
2945 zonelist->_zonerefs[j].zone = NULL;
2946 zonelist->_zonerefs[j].zone_idx = 0;
2947}
2948
2949/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2950static void build_zonelist_cache(pg_data_t *pgdat)
2951{
2952 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2953}
2954
2955#endif /* CONFIG_NUMA */
2956
2957/*
2958 * Boot pageset table. One per cpu which is going to be used for all
2959 * zones and all nodes. The parameters will be set in such a way
2960 * that an item put on a list will immediately be handed over to
2961 * the buddy list. This is safe since pageset manipulation is done
2962 * with interrupts disabled.
2963 *
2964 * The boot_pagesets must be kept even after bootup is complete for
2965 * unused processors and/or zones. They do play a role for bootstrapping
2966 * hotplugged processors.
2967 *
2968 * zoneinfo_show() and maybe other functions do
2969 * not check if the processor is online before following the pageset pointer.
2970 * Other parts of the kernel may not check if the zone is available.
2971 */
2972static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2973static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2974static void setup_zone_pageset(struct zone *zone);
2975
2976/*
2977 * Global mutex to protect against size modification of zonelists
2978 * as well as to serialize pageset setup for the new populated zone.
2979 */
2980DEFINE_MUTEX(zonelists_mutex);
2981
2982/* return values int ....just for stop_machine() */
2983static __init_refok int __build_all_zonelists(void *data)
2984{
2985 int nid;
2986 int cpu;
2987
2988#ifdef CONFIG_NUMA
2989 memset(node_load, 0, sizeof(node_load));
2990#endif
2991 for_each_online_node(nid) {
2992 pg_data_t *pgdat = NODE_DATA(nid);
2993
2994 build_zonelists(pgdat);
2995 build_zonelist_cache(pgdat);
2996 }
2997
2998#ifdef CONFIG_MEMORY_HOTPLUG
2999 /* Setup real pagesets for the new zone */
3000 if (data) {
3001 struct zone *zone = data;
3002 setup_zone_pageset(zone);
3003 }
3004#endif
3005
3006 /*
3007 * Initialize the boot_pagesets that are going to be used
3008 * for bootstrapping processors. The real pagesets for
3009 * each zone will be allocated later when the per cpu
3010 * allocator is available.
3011 *
3012 * boot_pagesets are used also for bootstrapping offline
3013 * cpus if the system is already booted because the pagesets
3014 * are needed to initialize allocators on a specific cpu too.
3015 * F.e. the percpu allocator needs the page allocator which
3016 * needs the percpu allocator in order to allocate its pagesets
3017 * (a chicken-egg dilemma).
3018 */
3019 for_each_possible_cpu(cpu) {
3020 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3021
3022#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3023 /*
3024 * We now know the "local memory node" for each node--
3025 * i.e., the node of the first zone in the generic zonelist.
3026 * Set up numa_mem percpu variable for on-line cpus. During
3027 * boot, only the boot cpu should be on-line; we'll init the
3028 * secondary cpus' numa_mem as they come on-line. During
3029 * node/memory hotplug, we'll fixup all on-line cpus.
3030 */
3031 if (cpu_online(cpu))
3032 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3033#endif
3034 }
3035
3036 return 0;
3037}
3038
3039/*
3040 * Called with zonelists_mutex held always
3041 * unless system_state == SYSTEM_BOOTING.
3042 */
3043void build_all_zonelists(void *data)
3044{
3045 set_zonelist_order();
3046
3047 if (system_state == SYSTEM_BOOTING) {
3048 __build_all_zonelists(NULL);
3049 mminit_verify_zonelist();
3050 cpuset_init_current_mems_allowed();
3051 } else {
3052 /* we have to stop all cpus to guarantee there is no user
3053 of zonelist */
3054 stop_machine(__build_all_zonelists, data, NULL);
3055 /* cpuset refresh routine should be here */
3056 }
3057 vm_total_pages = nr_free_pagecache_pages();
3058 /*
3059 * Disable grouping by mobility if the number of pages in the
3060 * system is too low to allow the mechanism to work. It would be
3061 * more accurate, but expensive to check per-zone. This check is
3062 * made on memory-hotadd so a system can start with mobility
3063 * disabled and enable it later
3064 */
3065 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3066 page_group_by_mobility_disabled = 1;
3067 else
3068 page_group_by_mobility_disabled = 0;
3069
3070 printk("Built %i zonelists in %s order, mobility grouping %s. "
3071 "Total pages: %ld\n",
3072 nr_online_nodes,
3073 zonelist_order_name[current_zonelist_order],
3074 page_group_by_mobility_disabled ? "off" : "on",
3075 vm_total_pages);
3076#ifdef CONFIG_NUMA
3077 printk("Policy zone: %s\n", zone_names[policy_zone]);
3078#endif
3079}
3080
3081/*
3082 * Helper functions to size the waitqueue hash table.
3083 * Essentially these want to choose hash table sizes sufficiently
3084 * large so that collisions trying to wait on pages are rare.
3085 * But in fact, the number of active page waitqueues on typical
3086 * systems is ridiculously low, less than 200. So this is even
3087 * conservative, even though it seems large.
3088 *
3089 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3090 * waitqueues, i.e. the size of the waitq table given the number of pages.
3091 */
3092#define PAGES_PER_WAITQUEUE 256
3093
3094#ifndef CONFIG_MEMORY_HOTPLUG
3095static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3096{
3097 unsigned long size = 1;
3098
3099 pages /= PAGES_PER_WAITQUEUE;
3100
3101 while (size < pages)
3102 size <<= 1;
3103
3104 /*
3105 * Once we have dozens or even hundreds of threads sleeping
3106 * on IO we've got bigger problems than wait queue collision.
3107 * Limit the size of the wait table to a reasonable size.
3108 */
3109 size = min(size, 4096UL);
3110
3111 return max(size, 4UL);
3112}
3113#else
3114/*
3115 * A zone's size might be changed by hot-add, so it is not possible to determine
3116 * a suitable size for its wait_table. So we use the maximum size now.
3117 *
3118 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3119 *
3120 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3121 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3122 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3123 *
3124 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3125 * or more by the traditional way. (See above). It equals:
3126 *
3127 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3128 * ia64(16K page size) : = ( 8G + 4M)byte.
3129 * powerpc (64K page size) : = (32G +16M)byte.
3130 */
3131static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3132{
3133 return 4096UL;
3134}
3135#endif
3136
3137/*
3138 * This is an integer logarithm so that shifts can be used later
3139 * to extract the more random high bits from the multiplicative
3140 * hash function before the remainder is taken.
3141 */
3142static inline unsigned long wait_table_bits(unsigned long size)
3143{
3144 return ffz(~size);
3145}
3146
3147#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3148
3149/*
3150 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3151 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3152 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3153 * higher will lead to a bigger reserve which will get freed as contiguous
3154 * blocks as reclaim kicks in
3155 */
3156static void setup_zone_migrate_reserve(struct zone *zone)
3157{
3158 unsigned long start_pfn, pfn, end_pfn;
3159 struct page *page;
3160 unsigned long block_migratetype;
3161 int reserve;
3162
3163 /* Get the start pfn, end pfn and the number of blocks to reserve */
3164 start_pfn = zone->zone_start_pfn;
3165 end_pfn = start_pfn + zone->spanned_pages;
3166 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3167 pageblock_order;
3168
3169 /*
3170 * Reserve blocks are generally in place to help high-order atomic
3171 * allocations that are short-lived. A min_free_kbytes value that
3172 * would result in more than 2 reserve blocks for atomic allocations
3173 * is assumed to be in place to help anti-fragmentation for the
3174 * future allocation of hugepages at runtime.
3175 */
3176 reserve = min(2, reserve);
3177
3178 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3179 if (!pfn_valid(pfn))
3180 continue;
3181 page = pfn_to_page(pfn);
3182
3183 /* Watch out for overlapping nodes */
3184 if (page_to_nid(page) != zone_to_nid(zone))
3185 continue;
3186
3187 /* Blocks with reserved pages will never free, skip them. */
3188 if (PageReserved(page))
3189 continue;
3190
3191 block_migratetype = get_pageblock_migratetype(page);
3192
3193 /* If this block is reserved, account for it */
3194 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3195 reserve--;
3196 continue;
3197 }
3198
3199 /* Suitable for reserving if this block is movable */
3200 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3201 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3202 move_freepages_block(zone, page, MIGRATE_RESERVE);
3203 reserve--;
3204 continue;
3205 }
3206
3207 /*
3208 * If the reserve is met and this is a previous reserved block,
3209 * take it back
3210 */
3211 if (block_migratetype == MIGRATE_RESERVE) {
3212 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3213 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3214 }
3215 }
3216}
3217
3218/*
3219 * Initially all pages are reserved - free ones are freed
3220 * up by free_all_bootmem() once the early boot process is
3221 * done. Non-atomic initialization, single-pass.
3222 */
3223void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3224 unsigned long start_pfn, enum memmap_context context)
3225{
3226 struct page *page;
3227 unsigned long end_pfn = start_pfn + size;
3228 unsigned long pfn;
3229 struct zone *z;
3230
3231 if (highest_memmap_pfn < end_pfn - 1)
3232 highest_memmap_pfn = end_pfn - 1;
3233
3234 z = &NODE_DATA(nid)->node_zones[zone];
3235 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3236 /*
3237 * There can be holes in boot-time mem_map[]s
3238 * handed to this function. They do not
3239 * exist on hotplugged memory.
3240 */
3241 if (context == MEMMAP_EARLY) {
3242 if (!early_pfn_valid(pfn))
3243 continue;
3244 if (!early_pfn_in_nid(pfn, nid))
3245 continue;
3246 }
3247 page = pfn_to_page(pfn);
3248 set_page_links(page, zone, nid, pfn);
3249 mminit_verify_page_links(page, zone, nid, pfn);
3250 init_page_count(page);
3251 reset_page_mapcount(page);
3252 SetPageReserved(page);
3253 /*
3254 * Mark the block movable so that blocks are reserved for
3255 * movable at startup. This will force kernel allocations
3256 * to reserve their blocks rather than leaking throughout
3257 * the address space during boot when many long-lived
3258 * kernel allocations are made. Later some blocks near
3259 * the start are marked MIGRATE_RESERVE by
3260 * setup_zone_migrate_reserve()
3261 *
3262 * bitmap is created for zone's valid pfn range. but memmap
3263 * can be created for invalid pages (for alignment)
3264 * check here not to call set_pageblock_migratetype() against
3265 * pfn out of zone.
3266 */
3267 if ((z->zone_start_pfn <= pfn)
3268 && (pfn < z->zone_start_pfn + z->spanned_pages)
3269 && !(pfn & (pageblock_nr_pages - 1)))
3270 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3271
3272 INIT_LIST_HEAD(&page->lru);
3273#ifdef WANT_PAGE_VIRTUAL
3274 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3275 if (!is_highmem_idx(zone))
3276 set_page_address(page, __va(pfn << PAGE_SHIFT));
3277#endif
3278 }
3279}
3280
3281static void __meminit zone_init_free_lists(struct zone *zone)
3282{
3283 int order, t;
3284 for_each_migratetype_order(order, t) {
3285 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3286 zone->free_area[order].nr_free = 0;
3287 }
3288}
3289
3290#ifndef __HAVE_ARCH_MEMMAP_INIT
3291#define memmap_init(size, nid, zone, start_pfn) \
3292 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3293#endif
3294
3295static int zone_batchsize(struct zone *zone)
3296{
3297#ifdef CONFIG_MMU
3298 int batch;
3299
3300 /*
3301 * The per-cpu-pages pools are set to around 1000th of the
3302 * size of the zone. But no more than 1/2 of a meg.
3303 *
3304 * OK, so we don't know how big the cache is. So guess.
3305 */
3306 batch = zone->present_pages / 1024;
3307 if (batch * PAGE_SIZE > 512 * 1024)
3308 batch = (512 * 1024) / PAGE_SIZE;
3309 batch /= 4; /* We effectively *= 4 below */
3310 if (batch < 1)
3311 batch = 1;
3312
3313 /*
3314 * Clamp the batch to a 2^n - 1 value. Having a power
3315 * of 2 value was found to be more likely to have
3316 * suboptimal cache aliasing properties in some cases.
3317 *
3318 * For example if 2 tasks are alternately allocating
3319 * batches of pages, one task can end up with a lot
3320 * of pages of one half of the possible page colors
3321 * and the other with pages of the other colors.
3322 */
3323 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3324
3325 return batch;
3326
3327#else
3328 /* The deferral and batching of frees should be suppressed under NOMMU
3329 * conditions.
3330 *
3331 * The problem is that NOMMU needs to be able to allocate large chunks
3332 * of contiguous memory as there's no hardware page translation to
3333 * assemble apparent contiguous memory from discontiguous pages.
3334 *
3335 * Queueing large contiguous runs of pages for batching, however,
3336 * causes the pages to actually be freed in smaller chunks. As there
3337 * can be a significant delay between the individual batches being
3338 * recycled, this leads to the once large chunks of space being
3339 * fragmented and becoming unavailable for high-order allocations.
3340 */
3341 return 0;
3342#endif
3343}
3344
3345static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3346{
3347 struct per_cpu_pages *pcp;
3348 int migratetype;
3349
3350 memset(p, 0, sizeof(*p));
3351
3352 pcp = &p->pcp;
3353 pcp->count = 0;
3354 pcp->high = 6 * batch;
3355 pcp->batch = max(1UL, 1 * batch);
3356 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3357 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3358}
3359
3360/*
3361 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3362 * to the value high for the pageset p.
3363 */
3364
3365static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3366 unsigned long high)
3367{
3368 struct per_cpu_pages *pcp;
3369
3370 pcp = &p->pcp;
3371 pcp->high = high;
3372 pcp->batch = max(1UL, high/4);
3373 if ((high/4) > (PAGE_SHIFT * 8))
3374 pcp->batch = PAGE_SHIFT * 8;
3375}
3376
3377static __meminit void setup_zone_pageset(struct zone *zone)
3378{
3379 int cpu;
3380
3381 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3382
3383 for_each_possible_cpu(cpu) {
3384 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3385
3386 setup_pageset(pcp, zone_batchsize(zone));
3387
3388 if (percpu_pagelist_fraction)
3389 setup_pagelist_highmark(pcp,
3390 (zone->present_pages /
3391 percpu_pagelist_fraction));
3392 }
3393}
3394
3395/*
3396 * Allocate per cpu pagesets and initialize them.
3397 * Before this call only boot pagesets were available.
3398 */
3399void __init setup_per_cpu_pageset(void)
3400{
3401 struct zone *zone;
3402
3403 for_each_populated_zone(zone)
3404 setup_zone_pageset(zone);
3405}
3406
3407static noinline __init_refok
3408int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3409{
3410 int i;
3411 struct pglist_data *pgdat = zone->zone_pgdat;
3412 size_t alloc_size;
3413
3414 /*
3415 * The per-page waitqueue mechanism uses hashed waitqueues
3416 * per zone.
3417 */
3418 zone->wait_table_hash_nr_entries =
3419 wait_table_hash_nr_entries(zone_size_pages);
3420 zone->wait_table_bits =
3421 wait_table_bits(zone->wait_table_hash_nr_entries);
3422 alloc_size = zone->wait_table_hash_nr_entries
3423 * sizeof(wait_queue_head_t);
3424
3425 if (!slab_is_available()) {
3426 zone->wait_table = (wait_queue_head_t *)
3427 alloc_bootmem_node(pgdat, alloc_size);
3428 } else {
3429 /*
3430 * This case means that a zone whose size was 0 gets new memory
3431 * via memory hot-add.
3432 * But it may be the case that a new node was hot-added. In
3433 * this case vmalloc() will not be able to use this new node's
3434 * memory - this wait_table must be initialized to use this new
3435 * node itself as well.
3436 * To use this new node's memory, further consideration will be
3437 * necessary.
3438 */
3439 zone->wait_table = vmalloc(alloc_size);
3440 }
3441 if (!zone->wait_table)
3442 return -ENOMEM;
3443
3444 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3445 init_waitqueue_head(zone->wait_table + i);
3446
3447 return 0;
3448}
3449
3450static int __zone_pcp_update(void *data)
3451{
3452 struct zone *zone = data;
3453 int cpu;
3454 unsigned long batch = zone_batchsize(zone), flags;
3455
3456 for_each_possible_cpu(cpu) {
3457 struct per_cpu_pageset *pset;
3458 struct per_cpu_pages *pcp;
3459
3460 pset = per_cpu_ptr(zone->pageset, cpu);
3461 pcp = &pset->pcp;
3462
3463 local_irq_save(flags);
3464 free_pcppages_bulk(zone, pcp->count, pcp);
3465 setup_pageset(pset, batch);
3466 local_irq_restore(flags);
3467 }
3468 return 0;
3469}
3470
3471void zone_pcp_update(struct zone *zone)
3472{
3473 stop_machine(__zone_pcp_update, zone, NULL);
3474}
3475
3476static __meminit void zone_pcp_init(struct zone *zone)
3477{
3478 /*
3479 * per cpu subsystem is not up at this point. The following code
3480 * relies on the ability of the linker to provide the
3481 * offset of a (static) per cpu variable into the per cpu area.
3482 */
3483 zone->pageset = &boot_pageset;
3484
3485 if (zone->present_pages)
3486 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3487 zone->name, zone->present_pages,
3488 zone_batchsize(zone));
3489}
3490
3491__meminit int init_currently_empty_zone(struct zone *zone,
3492 unsigned long zone_start_pfn,
3493 unsigned long size,
3494 enum memmap_context context)
3495{
3496 struct pglist_data *pgdat = zone->zone_pgdat;
3497 int ret;
3498 ret = zone_wait_table_init(zone, size);
3499 if (ret)
3500 return ret;
3501 pgdat->nr_zones = zone_idx(zone) + 1;
3502
3503 zone->zone_start_pfn = zone_start_pfn;
3504
3505 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3506 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3507 pgdat->node_id,
3508 (unsigned long)zone_idx(zone),
3509 zone_start_pfn, (zone_start_pfn + size));
3510
3511 zone_init_free_lists(zone);
3512
3513 return 0;
3514}
3515
3516#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3517/*
3518 * Basic iterator support. Return the first range of PFNs for a node
3519 * Note: nid == MAX_NUMNODES returns first region regardless of node
3520 */
3521static int __meminit first_active_region_index_in_nid(int nid)
3522{
3523 int i;
3524
3525 for (i = 0; i < nr_nodemap_entries; i++)
3526 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3527 return i;
3528
3529 return -1;
3530}
3531
3532/*
3533 * Basic iterator support. Return the next active range of PFNs for a node
3534 * Note: nid == MAX_NUMNODES returns next region regardless of node
3535 */
3536static int __meminit next_active_region_index_in_nid(int index, int nid)
3537{
3538 for (index = index + 1; index < nr_nodemap_entries; index++)
3539 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3540 return index;
3541
3542 return -1;
3543}
3544
3545#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3546/*
3547 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3548 * Architectures may implement their own version but if add_active_range()
3549 * was used and there are no special requirements, this is a convenient
3550 * alternative
3551 */
3552int __meminit __early_pfn_to_nid(unsigned long pfn)
3553{
3554 int i;
3555
3556 for (i = 0; i < nr_nodemap_entries; i++) {
3557 unsigned long start_pfn = early_node_map[i].start_pfn;
3558 unsigned long end_pfn = early_node_map[i].end_pfn;
3559
3560 if (start_pfn <= pfn && pfn < end_pfn)
3561 return early_node_map[i].nid;
3562 }
3563 /* This is a memory hole */
3564 return -1;
3565}
3566#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3567
3568int __meminit early_pfn_to_nid(unsigned long pfn)
3569{
3570 int nid;
3571
3572 nid = __early_pfn_to_nid(pfn);
3573 if (nid >= 0)
3574 return nid;
3575 /* just returns 0 */
3576 return 0;
3577}
3578
3579#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3580bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3581{
3582 int nid;
3583
3584 nid = __early_pfn_to_nid(pfn);
3585 if (nid >= 0 && nid != node)
3586 return false;
3587 return true;
3588}
3589#endif
3590
3591/* Basic iterator support to walk early_node_map[] */
3592#define for_each_active_range_index_in_nid(i, nid) \
3593 for (i = first_active_region_index_in_nid(nid); i != -1; \
3594 i = next_active_region_index_in_nid(i, nid))
3595
3596/**
3597 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3598 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3599 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3600 *
3601 * If an architecture guarantees that all ranges registered with
3602 * add_active_ranges() contain no holes and may be freed, this
3603 * this function may be used instead of calling free_bootmem() manually.
3604 */
3605void __init free_bootmem_with_active_regions(int nid,
3606 unsigned long max_low_pfn)
3607{
3608 int i;
3609
3610 for_each_active_range_index_in_nid(i, nid) {
3611 unsigned long size_pages = 0;
3612 unsigned long end_pfn = early_node_map[i].end_pfn;
3613
3614 if (early_node_map[i].start_pfn >= max_low_pfn)
3615 continue;
3616
3617 if (end_pfn > max_low_pfn)
3618 end_pfn = max_low_pfn;
3619
3620 size_pages = end_pfn - early_node_map[i].start_pfn;
3621 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3622 PFN_PHYS(early_node_map[i].start_pfn),
3623 size_pages << PAGE_SHIFT);
3624 }
3625}
3626
3627int __init add_from_early_node_map(struct range *range, int az,
3628 int nr_range, int nid)
3629{
3630 int i;
3631 u64 start, end;
3632
3633 /* need to go over early_node_map to find out good range for node */
3634 for_each_active_range_index_in_nid(i, nid) {
3635 start = early_node_map[i].start_pfn;
3636 end = early_node_map[i].end_pfn;
3637 nr_range = add_range(range, az, nr_range, start, end);
3638 }
3639 return nr_range;
3640}
3641
3642#ifdef CONFIG_NO_BOOTMEM
3643void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3644 u64 goal, u64 limit)
3645{
3646 int i;
3647 void *ptr;
3648
3649 if (limit > get_max_mapped())
3650 limit = get_max_mapped();
3651
3652 /* need to go over early_node_map to find out good range for node */
3653 for_each_active_range_index_in_nid(i, nid) {
3654 u64 addr;
3655 u64 ei_start, ei_last;
3656
3657 ei_last = early_node_map[i].end_pfn;
3658 ei_last <<= PAGE_SHIFT;
3659 ei_start = early_node_map[i].start_pfn;
3660 ei_start <<= PAGE_SHIFT;
3661 addr = find_early_area(ei_start, ei_last,
3662 goal, limit, size, align);
3663
3664 if (addr == -1ULL)
3665 continue;
3666
3667#if 0
3668 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3669 nid,
3670 ei_start, ei_last, goal, limit, size,
3671 align, addr);
3672#endif
3673
3674 ptr = phys_to_virt(addr);
3675 memset(ptr, 0, size);
3676 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3677 /*
3678 * The min_count is set to 0 so that bootmem allocated blocks
3679 * are never reported as leaks.
3680 */
3681 kmemleak_alloc(ptr, size, 0, 0);
3682 return ptr;
3683 }
3684
3685 return NULL;
3686}
3687#endif
3688
3689
3690void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3691{
3692 int i;
3693 int ret;
3694
3695 for_each_active_range_index_in_nid(i, nid) {
3696 ret = work_fn(early_node_map[i].start_pfn,
3697 early_node_map[i].end_pfn, data);
3698 if (ret)
3699 break;
3700 }
3701}
3702/**
3703 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3704 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3705 *
3706 * If an architecture guarantees that all ranges registered with
3707 * add_active_ranges() contain no holes and may be freed, this
3708 * function may be used instead of calling memory_present() manually.
3709 */
3710void __init sparse_memory_present_with_active_regions(int nid)
3711{
3712 int i;
3713
3714 for_each_active_range_index_in_nid(i, nid)
3715 memory_present(early_node_map[i].nid,
3716 early_node_map[i].start_pfn,
3717 early_node_map[i].end_pfn);
3718}
3719
3720/**
3721 * get_pfn_range_for_nid - Return the start and end page frames for a node
3722 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3723 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3724 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3725 *
3726 * It returns the start and end page frame of a node based on information
3727 * provided by an arch calling add_active_range(). If called for a node
3728 * with no available memory, a warning is printed and the start and end
3729 * PFNs will be 0.
3730 */
3731void __meminit get_pfn_range_for_nid(unsigned int nid,
3732 unsigned long *start_pfn, unsigned long *end_pfn)
3733{
3734 int i;
3735 *start_pfn = -1UL;
3736 *end_pfn = 0;
3737
3738 for_each_active_range_index_in_nid(i, nid) {
3739 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3740 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3741 }
3742
3743 if (*start_pfn == -1UL)
3744 *start_pfn = 0;
3745}
3746
3747/*
3748 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3749 * assumption is made that zones within a node are ordered in monotonic
3750 * increasing memory addresses so that the "highest" populated zone is used
3751 */
3752static void __init find_usable_zone_for_movable(void)
3753{
3754 int zone_index;
3755 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3756 if (zone_index == ZONE_MOVABLE)
3757 continue;
3758
3759 if (arch_zone_highest_possible_pfn[zone_index] >
3760 arch_zone_lowest_possible_pfn[zone_index])
3761 break;
3762 }
3763
3764 VM_BUG_ON(zone_index == -1);
3765 movable_zone = zone_index;
3766}
3767
3768/*
3769 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3770 * because it is sized independant of architecture. Unlike the other zones,
3771 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3772 * in each node depending on the size of each node and how evenly kernelcore
3773 * is distributed. This helper function adjusts the zone ranges
3774 * provided by the architecture for a given node by using the end of the
3775 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3776 * zones within a node are in order of monotonic increases memory addresses
3777 */
3778static void __meminit adjust_zone_range_for_zone_movable(int nid,
3779 unsigned long zone_type,
3780 unsigned long node_start_pfn,
3781 unsigned long node_end_pfn,
3782 unsigned long *zone_start_pfn,
3783 unsigned long *zone_end_pfn)
3784{
3785 /* Only adjust if ZONE_MOVABLE is on this node */
3786 if (zone_movable_pfn[nid]) {
3787 /* Size ZONE_MOVABLE */
3788 if (zone_type == ZONE_MOVABLE) {
3789 *zone_start_pfn = zone_movable_pfn[nid];
3790 *zone_end_pfn = min(node_end_pfn,
3791 arch_zone_highest_possible_pfn[movable_zone]);
3792
3793 /* Adjust for ZONE_MOVABLE starting within this range */
3794 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3795 *zone_end_pfn > zone_movable_pfn[nid]) {
3796 *zone_end_pfn = zone_movable_pfn[nid];
3797
3798 /* Check if this whole range is within ZONE_MOVABLE */
3799 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3800 *zone_start_pfn = *zone_end_pfn;
3801 }
3802}
3803
3804/*
3805 * Return the number of pages a zone spans in a node, including holes
3806 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3807 */
3808static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3809 unsigned long zone_type,
3810 unsigned long *ignored)
3811{
3812 unsigned long node_start_pfn, node_end_pfn;
3813 unsigned long zone_start_pfn, zone_end_pfn;
3814
3815 /* Get the start and end of the node and zone */
3816 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3817 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3818 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3819 adjust_zone_range_for_zone_movable(nid, zone_type,
3820 node_start_pfn, node_end_pfn,
3821 &zone_start_pfn, &zone_end_pfn);
3822
3823 /* Check that this node has pages within the zone's required range */
3824 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3825 return 0;
3826
3827 /* Move the zone boundaries inside the node if necessary */
3828 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3829 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3830
3831 /* Return the spanned pages */
3832 return zone_end_pfn - zone_start_pfn;
3833}
3834
3835/*
3836 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3837 * then all holes in the requested range will be accounted for.
3838 */
3839unsigned long __meminit __absent_pages_in_range(int nid,
3840 unsigned long range_start_pfn,
3841 unsigned long range_end_pfn)
3842{
3843 int i = 0;
3844 unsigned long prev_end_pfn = 0, hole_pages = 0;
3845 unsigned long start_pfn;
3846
3847 /* Find the end_pfn of the first active range of pfns in the node */
3848 i = first_active_region_index_in_nid(nid);
3849 if (i == -1)
3850 return 0;
3851
3852 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3853
3854 /* Account for ranges before physical memory on this node */
3855 if (early_node_map[i].start_pfn > range_start_pfn)
3856 hole_pages = prev_end_pfn - range_start_pfn;
3857
3858 /* Find all holes for the zone within the node */
3859 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3860
3861 /* No need to continue if prev_end_pfn is outside the zone */
3862 if (prev_end_pfn >= range_end_pfn)
3863 break;
3864
3865 /* Make sure the end of the zone is not within the hole */
3866 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3867 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3868
3869 /* Update the hole size cound and move on */
3870 if (start_pfn > range_start_pfn) {
3871 BUG_ON(prev_end_pfn > start_pfn);
3872 hole_pages += start_pfn - prev_end_pfn;
3873 }
3874 prev_end_pfn = early_node_map[i].end_pfn;
3875 }
3876
3877 /* Account for ranges past physical memory on this node */
3878 if (range_end_pfn > prev_end_pfn)
3879 hole_pages += range_end_pfn -
3880 max(range_start_pfn, prev_end_pfn);
3881
3882 return hole_pages;
3883}
3884
3885/**
3886 * absent_pages_in_range - Return number of page frames in holes within a range
3887 * @start_pfn: The start PFN to start searching for holes
3888 * @end_pfn: The end PFN to stop searching for holes
3889 *
3890 * It returns the number of pages frames in memory holes within a range.
3891 */
3892unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3893 unsigned long end_pfn)
3894{
3895 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3896}
3897
3898/* Return the number of page frames in holes in a zone on a node */
3899static unsigned long __meminit zone_absent_pages_in_node(int nid,
3900 unsigned long zone_type,
3901 unsigned long *ignored)
3902{
3903 unsigned long node_start_pfn, node_end_pfn;
3904 unsigned long zone_start_pfn, zone_end_pfn;
3905
3906 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3907 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3908 node_start_pfn);
3909 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3910 node_end_pfn);
3911
3912 adjust_zone_range_for_zone_movable(nid, zone_type,
3913 node_start_pfn, node_end_pfn,
3914 &zone_start_pfn, &zone_end_pfn);
3915 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3916}
3917
3918#else
3919static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3920 unsigned long zone_type,
3921 unsigned long *zones_size)
3922{
3923 return zones_size[zone_type];
3924}
3925
3926static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3927 unsigned long zone_type,
3928 unsigned long *zholes_size)
3929{
3930 if (!zholes_size)
3931 return 0;
3932
3933 return zholes_size[zone_type];
3934}
3935
3936#endif
3937
3938static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3939 unsigned long *zones_size, unsigned long *zholes_size)
3940{
3941 unsigned long realtotalpages, totalpages = 0;
3942 enum zone_type i;
3943
3944 for (i = 0; i < MAX_NR_ZONES; i++)
3945 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3946 zones_size);
3947 pgdat->node_spanned_pages = totalpages;
3948
3949 realtotalpages = totalpages;
3950 for (i = 0; i < MAX_NR_ZONES; i++)
3951 realtotalpages -=
3952 zone_absent_pages_in_node(pgdat->node_id, i,
3953 zholes_size);
3954 pgdat->node_present_pages = realtotalpages;
3955 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3956 realtotalpages);
3957}
3958
3959#ifndef CONFIG_SPARSEMEM
3960/*
3961 * Calculate the size of the zone->blockflags rounded to an unsigned long
3962 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3963 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3964 * round what is now in bits to nearest long in bits, then return it in
3965 * bytes.
3966 */
3967static unsigned long __init usemap_size(unsigned long zonesize)
3968{
3969 unsigned long usemapsize;
3970
3971 usemapsize = roundup(zonesize, pageblock_nr_pages);
3972 usemapsize = usemapsize >> pageblock_order;
3973 usemapsize *= NR_PAGEBLOCK_BITS;
3974 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3975
3976 return usemapsize / 8;
3977}
3978
3979static void __init setup_usemap(struct pglist_data *pgdat,
3980 struct zone *zone, unsigned long zonesize)
3981{
3982 unsigned long usemapsize = usemap_size(zonesize);
3983 zone->pageblock_flags = NULL;
3984 if (usemapsize)
3985 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3986}
3987#else
3988static void inline setup_usemap(struct pglist_data *pgdat,
3989 struct zone *zone, unsigned long zonesize) {}
3990#endif /* CONFIG_SPARSEMEM */
3991
3992#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3993
3994/* Return a sensible default order for the pageblock size. */
3995static inline int pageblock_default_order(void)
3996{
3997 if (HPAGE_SHIFT > PAGE_SHIFT)
3998 return HUGETLB_PAGE_ORDER;
3999
4000 return MAX_ORDER-1;
4001}
4002
4003/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4004static inline void __init set_pageblock_order(unsigned int order)
4005{
4006 /* Check that pageblock_nr_pages has not already been setup */
4007 if (pageblock_order)
4008 return;
4009
4010 /*
4011 * Assume the largest contiguous order of interest is a huge page.
4012 * This value may be variable depending on boot parameters on IA64
4013 */
4014 pageblock_order = order;
4015}
4016#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4017
4018/*
4019 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4020 * and pageblock_default_order() are unused as pageblock_order is set
4021 * at compile-time. See include/linux/pageblock-flags.h for the values of
4022 * pageblock_order based on the kernel config
4023 */
4024static inline int pageblock_default_order(unsigned int order)
4025{
4026 return MAX_ORDER-1;
4027}
4028#define set_pageblock_order(x) do {} while (0)
4029
4030#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4031
4032/*
4033 * Set up the zone data structures:
4034 * - mark all pages reserved
4035 * - mark all memory queues empty
4036 * - clear the memory bitmaps
4037 */
4038static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4039 unsigned long *zones_size, unsigned long *zholes_size)
4040{
4041 enum zone_type j;
4042 int nid = pgdat->node_id;
4043 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4044 int ret;
4045
4046 pgdat_resize_init(pgdat);
4047 pgdat->nr_zones = 0;
4048 init_waitqueue_head(&pgdat->kswapd_wait);
4049 pgdat->kswapd_max_order = 0;
4050 pgdat_page_cgroup_init(pgdat);
4051
4052 for (j = 0; j < MAX_NR_ZONES; j++) {
4053 struct zone *zone = pgdat->node_zones + j;
4054 unsigned long size, realsize, memmap_pages;
4055 enum lru_list l;
4056
4057 size = zone_spanned_pages_in_node(nid, j, zones_size);
4058 realsize = size - zone_absent_pages_in_node(nid, j,
4059 zholes_size);
4060
4061 /*
4062 * Adjust realsize so that it accounts for how much memory
4063 * is used by this zone for memmap. This affects the watermark
4064 * and per-cpu initialisations
4065 */
4066 memmap_pages =
4067 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4068 if (realsize >= memmap_pages) {
4069 realsize -= memmap_pages;
4070 if (memmap_pages)
4071 printk(KERN_DEBUG
4072 " %s zone: %lu pages used for memmap\n",
4073 zone_names[j], memmap_pages);
4074 } else
4075 printk(KERN_WARNING
4076 " %s zone: %lu pages exceeds realsize %lu\n",
4077 zone_names[j], memmap_pages, realsize);
4078
4079 /* Account for reserved pages */
4080 if (j == 0 && realsize > dma_reserve) {
4081 realsize -= dma_reserve;
4082 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4083 zone_names[0], dma_reserve);
4084 }
4085
4086 if (!is_highmem_idx(j))
4087 nr_kernel_pages += realsize;
4088 nr_all_pages += realsize;
4089
4090 zone->spanned_pages = size;
4091 zone->present_pages = realsize;
4092#ifdef CONFIG_NUMA
4093 zone->node = nid;
4094 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4095 / 100;
4096 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4097#endif
4098 zone->name = zone_names[j];
4099 spin_lock_init(&zone->lock);
4100 spin_lock_init(&zone->lru_lock);
4101 zone_seqlock_init(zone);
4102 zone->zone_pgdat = pgdat;
4103
4104 zone_pcp_init(zone);
4105 for_each_lru(l) {
4106 INIT_LIST_HEAD(&zone->lru[l].list);
4107 zone->reclaim_stat.nr_saved_scan[l] = 0;
4108 }
4109 zone->reclaim_stat.recent_rotated[0] = 0;
4110 zone->reclaim_stat.recent_rotated[1] = 0;
4111 zone->reclaim_stat.recent_scanned[0] = 0;
4112 zone->reclaim_stat.recent_scanned[1] = 0;
4113 zap_zone_vm_stats(zone);
4114 zone->flags = 0;
4115 if (!size)
4116 continue;
4117
4118 set_pageblock_order(pageblock_default_order());
4119 setup_usemap(pgdat, zone, size);
4120 ret = init_currently_empty_zone(zone, zone_start_pfn,
4121 size, MEMMAP_EARLY);
4122 BUG_ON(ret);
4123 memmap_init(size, nid, j, zone_start_pfn);
4124 zone_start_pfn += size;
4125 }
4126}
4127
4128static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4129{
4130 /* Skip empty nodes */
4131 if (!pgdat->node_spanned_pages)
4132 return;
4133
4134#ifdef CONFIG_FLAT_NODE_MEM_MAP
4135 /* ia64 gets its own node_mem_map, before this, without bootmem */
4136 if (!pgdat->node_mem_map) {
4137 unsigned long size, start, end;
4138 struct page *map;
4139
4140 /*
4141 * The zone's endpoints aren't required to be MAX_ORDER
4142 * aligned but the node_mem_map endpoints must be in order
4143 * for the buddy allocator to function correctly.
4144 */
4145 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4146 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4147 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4148 size = (end - start) * sizeof(struct page);
4149 map = alloc_remap(pgdat->node_id, size);
4150 if (!map)
4151 map = alloc_bootmem_node(pgdat, size);
4152 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4153 }
4154#ifndef CONFIG_NEED_MULTIPLE_NODES
4155 /*
4156 * With no DISCONTIG, the global mem_map is just set as node 0's
4157 */
4158 if (pgdat == NODE_DATA(0)) {
4159 mem_map = NODE_DATA(0)->node_mem_map;
4160#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4161 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4162 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4164 }
4165#endif
4166#endif /* CONFIG_FLAT_NODE_MEM_MAP */
4167}
4168
4169void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4170 unsigned long node_start_pfn, unsigned long *zholes_size)
4171{
4172 pg_data_t *pgdat = NODE_DATA(nid);
4173
4174 pgdat->node_id = nid;
4175 pgdat->node_start_pfn = node_start_pfn;
4176 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4177
4178 alloc_node_mem_map(pgdat);
4179#ifdef CONFIG_FLAT_NODE_MEM_MAP
4180 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4181 nid, (unsigned long)pgdat,
4182 (unsigned long)pgdat->node_mem_map);
4183#endif
4184
4185 free_area_init_core(pgdat, zones_size, zholes_size);
4186}
4187
4188#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4189
4190#if MAX_NUMNODES > 1
4191/*
4192 * Figure out the number of possible node ids.
4193 */
4194static void __init setup_nr_node_ids(void)
4195{
4196 unsigned int node;
4197 unsigned int highest = 0;
4198
4199 for_each_node_mask(node, node_possible_map)
4200 highest = node;
4201 nr_node_ids = highest + 1;
4202}
4203#else
4204static inline void setup_nr_node_ids(void)
4205{
4206}
4207#endif
4208
4209/**
4210 * add_active_range - Register a range of PFNs backed by physical memory
4211 * @nid: The node ID the range resides on
4212 * @start_pfn: The start PFN of the available physical memory
4213 * @end_pfn: The end PFN of the available physical memory
4214 *
4215 * These ranges are stored in an early_node_map[] and later used by
4216 * free_area_init_nodes() to calculate zone sizes and holes. If the
4217 * range spans a memory hole, it is up to the architecture to ensure
4218 * the memory is not freed by the bootmem allocator. If possible
4219 * the range being registered will be merged with existing ranges.
4220 */
4221void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4222 unsigned long end_pfn)
4223{
4224 int i;
4225
4226 mminit_dprintk(MMINIT_TRACE, "memory_register",
4227 "Entering add_active_range(%d, %#lx, %#lx) "
4228 "%d entries of %d used\n",
4229 nid, start_pfn, end_pfn,
4230 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4231
4232 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4233
4234 /* Merge with existing active regions if possible */
4235 for (i = 0; i < nr_nodemap_entries; i++) {
4236 if (early_node_map[i].nid != nid)
4237 continue;
4238
4239 /* Skip if an existing region covers this new one */
4240 if (start_pfn >= early_node_map[i].start_pfn &&
4241 end_pfn <= early_node_map[i].end_pfn)
4242 return;
4243
4244 /* Merge forward if suitable */
4245 if (start_pfn <= early_node_map[i].end_pfn &&
4246 end_pfn > early_node_map[i].end_pfn) {
4247 early_node_map[i].end_pfn = end_pfn;
4248 return;
4249 }
4250
4251 /* Merge backward if suitable */
4252 if (start_pfn < early_node_map[i].start_pfn &&
4253 end_pfn >= early_node_map[i].start_pfn) {
4254 early_node_map[i].start_pfn = start_pfn;
4255 return;
4256 }
4257 }
4258
4259 /* Check that early_node_map is large enough */
4260 if (i >= MAX_ACTIVE_REGIONS) {
4261 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4262 MAX_ACTIVE_REGIONS);
4263 return;
4264 }
4265
4266 early_node_map[i].nid = nid;
4267 early_node_map[i].start_pfn = start_pfn;
4268 early_node_map[i].end_pfn = end_pfn;
4269 nr_nodemap_entries = i + 1;
4270}
4271
4272/**
4273 * remove_active_range - Shrink an existing registered range of PFNs
4274 * @nid: The node id the range is on that should be shrunk
4275 * @start_pfn: The new PFN of the range
4276 * @end_pfn: The new PFN of the range
4277 *
4278 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4279 * The map is kept near the end physical page range that has already been
4280 * registered. This function allows an arch to shrink an existing registered
4281 * range.
4282 */
4283void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4284 unsigned long end_pfn)
4285{
4286 int i, j;
4287 int removed = 0;
4288
4289 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4290 nid, start_pfn, end_pfn);
4291
4292 /* Find the old active region end and shrink */
4293 for_each_active_range_index_in_nid(i, nid) {
4294 if (early_node_map[i].start_pfn >= start_pfn &&
4295 early_node_map[i].end_pfn <= end_pfn) {
4296 /* clear it */
4297 early_node_map[i].start_pfn = 0;
4298 early_node_map[i].end_pfn = 0;
4299 removed = 1;
4300 continue;
4301 }
4302 if (early_node_map[i].start_pfn < start_pfn &&
4303 early_node_map[i].end_pfn > start_pfn) {
4304 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4305 early_node_map[i].end_pfn = start_pfn;
4306 if (temp_end_pfn > end_pfn)
4307 add_active_range(nid, end_pfn, temp_end_pfn);
4308 continue;
4309 }
4310 if (early_node_map[i].start_pfn >= start_pfn &&
4311 early_node_map[i].end_pfn > end_pfn &&
4312 early_node_map[i].start_pfn < end_pfn) {
4313 early_node_map[i].start_pfn = end_pfn;
4314 continue;
4315 }
4316 }
4317
4318 if (!removed)
4319 return;
4320
4321 /* remove the blank ones */
4322 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4323 if (early_node_map[i].nid != nid)
4324 continue;
4325 if (early_node_map[i].end_pfn)
4326 continue;
4327 /* we found it, get rid of it */
4328 for (j = i; j < nr_nodemap_entries - 1; j++)
4329 memcpy(&early_node_map[j], &early_node_map[j+1],
4330 sizeof(early_node_map[j]));
4331 j = nr_nodemap_entries - 1;
4332 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4333 nr_nodemap_entries--;
4334 }
4335}
4336
4337/**
4338 * remove_all_active_ranges - Remove all currently registered regions
4339 *
4340 * During discovery, it may be found that a table like SRAT is invalid
4341 * and an alternative discovery method must be used. This function removes
4342 * all currently registered regions.
4343 */
4344void __init remove_all_active_ranges(void)
4345{
4346 memset(early_node_map, 0, sizeof(early_node_map));
4347 nr_nodemap_entries = 0;
4348}
4349
4350/* Compare two active node_active_regions */
4351static int __init cmp_node_active_region(const void *a, const void *b)
4352{
4353 struct node_active_region *arange = (struct node_active_region *)a;
4354 struct node_active_region *brange = (struct node_active_region *)b;
4355
4356 /* Done this way to avoid overflows */
4357 if (arange->start_pfn > brange->start_pfn)
4358 return 1;
4359 if (arange->start_pfn < brange->start_pfn)
4360 return -1;
4361
4362 return 0;
4363}
4364
4365/* sort the node_map by start_pfn */
4366void __init sort_node_map(void)
4367{
4368 sort(early_node_map, (size_t)nr_nodemap_entries,
4369 sizeof(struct node_active_region),
4370 cmp_node_active_region, NULL);
4371}
4372
4373/* Find the lowest pfn for a node */
4374static unsigned long __init find_min_pfn_for_node(int nid)
4375{
4376 int i;
4377 unsigned long min_pfn = ULONG_MAX;
4378
4379 /* Assuming a sorted map, the first range found has the starting pfn */
4380 for_each_active_range_index_in_nid(i, nid)
4381 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4382
4383 if (min_pfn == ULONG_MAX) {
4384 printk(KERN_WARNING
4385 "Could not find start_pfn for node %d\n", nid);
4386 return 0;
4387 }
4388
4389 return min_pfn;
4390}
4391
4392/**
4393 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4394 *
4395 * It returns the minimum PFN based on information provided via
4396 * add_active_range().
4397 */
4398unsigned long __init find_min_pfn_with_active_regions(void)
4399{
4400 return find_min_pfn_for_node(MAX_NUMNODES);
4401}
4402
4403/*
4404 * early_calculate_totalpages()
4405 * Sum pages in active regions for movable zone.
4406 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4407 */
4408static unsigned long __init early_calculate_totalpages(void)
4409{
4410 int i;
4411 unsigned long totalpages = 0;
4412
4413 for (i = 0; i < nr_nodemap_entries; i++) {
4414 unsigned long pages = early_node_map[i].end_pfn -
4415 early_node_map[i].start_pfn;
4416 totalpages += pages;
4417 if (pages)
4418 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4419 }
4420 return totalpages;
4421}
4422
4423/*
4424 * Find the PFN the Movable zone begins in each node. Kernel memory
4425 * is spread evenly between nodes as long as the nodes have enough
4426 * memory. When they don't, some nodes will have more kernelcore than
4427 * others
4428 */
4429static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4430{
4431 int i, nid;
4432 unsigned long usable_startpfn;
4433 unsigned long kernelcore_node, kernelcore_remaining;
4434 /* save the state before borrow the nodemask */
4435 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4436 unsigned long totalpages = early_calculate_totalpages();
4437 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4438
4439 /*
4440 * If movablecore was specified, calculate what size of
4441 * kernelcore that corresponds so that memory usable for
4442 * any allocation type is evenly spread. If both kernelcore
4443 * and movablecore are specified, then the value of kernelcore
4444 * will be used for required_kernelcore if it's greater than
4445 * what movablecore would have allowed.
4446 */
4447 if (required_movablecore) {
4448 unsigned long corepages;
4449
4450 /*
4451 * Round-up so that ZONE_MOVABLE is at least as large as what
4452 * was requested by the user
4453 */
4454 required_movablecore =
4455 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4456 corepages = totalpages - required_movablecore;
4457
4458 required_kernelcore = max(required_kernelcore, corepages);
4459 }
4460
4461 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4462 if (!required_kernelcore)
4463 goto out;
4464
4465 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4466 find_usable_zone_for_movable();
4467 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4468
4469restart:
4470 /* Spread kernelcore memory as evenly as possible throughout nodes */
4471 kernelcore_node = required_kernelcore / usable_nodes;
4472 for_each_node_state(nid, N_HIGH_MEMORY) {
4473 /*
4474 * Recalculate kernelcore_node if the division per node
4475 * now exceeds what is necessary to satisfy the requested
4476 * amount of memory for the kernel
4477 */
4478 if (required_kernelcore < kernelcore_node)
4479 kernelcore_node = required_kernelcore / usable_nodes;
4480
4481 /*
4482 * As the map is walked, we track how much memory is usable
4483 * by the kernel using kernelcore_remaining. When it is
4484 * 0, the rest of the node is usable by ZONE_MOVABLE
4485 */
4486 kernelcore_remaining = kernelcore_node;
4487
4488 /* Go through each range of PFNs within this node */
4489 for_each_active_range_index_in_nid(i, nid) {
4490 unsigned long start_pfn, end_pfn;
4491 unsigned long size_pages;
4492
4493 start_pfn = max(early_node_map[i].start_pfn,
4494 zone_movable_pfn[nid]);
4495 end_pfn = early_node_map[i].end_pfn;
4496 if (start_pfn >= end_pfn)
4497 continue;
4498
4499 /* Account for what is only usable for kernelcore */
4500 if (start_pfn < usable_startpfn) {
4501 unsigned long kernel_pages;
4502 kernel_pages = min(end_pfn, usable_startpfn)
4503 - start_pfn;
4504
4505 kernelcore_remaining -= min(kernel_pages,
4506 kernelcore_remaining);
4507 required_kernelcore -= min(kernel_pages,
4508 required_kernelcore);
4509
4510 /* Continue if range is now fully accounted */
4511 if (end_pfn <= usable_startpfn) {
4512
4513 /*
4514 * Push zone_movable_pfn to the end so
4515 * that if we have to rebalance
4516 * kernelcore across nodes, we will
4517 * not double account here
4518 */
4519 zone_movable_pfn[nid] = end_pfn;
4520 continue;
4521 }
4522 start_pfn = usable_startpfn;
4523 }
4524
4525 /*
4526 * The usable PFN range for ZONE_MOVABLE is from
4527 * start_pfn->end_pfn. Calculate size_pages as the
4528 * number of pages used as kernelcore
4529 */
4530 size_pages = end_pfn - start_pfn;
4531 if (size_pages > kernelcore_remaining)
4532 size_pages = kernelcore_remaining;
4533 zone_movable_pfn[nid] = start_pfn + size_pages;
4534
4535 /*
4536 * Some kernelcore has been met, update counts and
4537 * break if the kernelcore for this node has been
4538 * satisified
4539 */
4540 required_kernelcore -= min(required_kernelcore,
4541 size_pages);
4542 kernelcore_remaining -= size_pages;
4543 if (!kernelcore_remaining)
4544 break;
4545 }
4546 }
4547
4548 /*
4549 * If there is still required_kernelcore, we do another pass with one
4550 * less node in the count. This will push zone_movable_pfn[nid] further
4551 * along on the nodes that still have memory until kernelcore is
4552 * satisified
4553 */
4554 usable_nodes--;
4555 if (usable_nodes && required_kernelcore > usable_nodes)
4556 goto restart;
4557
4558 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4559 for (nid = 0; nid < MAX_NUMNODES; nid++)
4560 zone_movable_pfn[nid] =
4561 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4562
4563out:
4564 /* restore the node_state */
4565 node_states[N_HIGH_MEMORY] = saved_node_state;
4566}
4567
4568/* Any regular memory on that node ? */
4569static void check_for_regular_memory(pg_data_t *pgdat)
4570{
4571#ifdef CONFIG_HIGHMEM
4572 enum zone_type zone_type;
4573
4574 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4575 struct zone *zone = &pgdat->node_zones[zone_type];
4576 if (zone->present_pages)
4577 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4578 }
4579#endif
4580}
4581
4582/**
4583 * free_area_init_nodes - Initialise all pg_data_t and zone data
4584 * @max_zone_pfn: an array of max PFNs for each zone
4585 *
4586 * This will call free_area_init_node() for each active node in the system.
4587 * Using the page ranges provided by add_active_range(), the size of each
4588 * zone in each node and their holes is calculated. If the maximum PFN
4589 * between two adjacent zones match, it is assumed that the zone is empty.
4590 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4591 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4592 * starts where the previous one ended. For example, ZONE_DMA32 starts
4593 * at arch_max_dma_pfn.
4594 */
4595void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4596{
4597 unsigned long nid;
4598 int i;
4599
4600 /* Sort early_node_map as initialisation assumes it is sorted */
4601 sort_node_map();
4602
4603 /* Record where the zone boundaries are */
4604 memset(arch_zone_lowest_possible_pfn, 0,
4605 sizeof(arch_zone_lowest_possible_pfn));
4606 memset(arch_zone_highest_possible_pfn, 0,
4607 sizeof(arch_zone_highest_possible_pfn));
4608 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4609 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4610 for (i = 1; i < MAX_NR_ZONES; i++) {
4611 if (i == ZONE_MOVABLE)
4612 continue;
4613 arch_zone_lowest_possible_pfn[i] =
4614 arch_zone_highest_possible_pfn[i-1];
4615 arch_zone_highest_possible_pfn[i] =
4616 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4617 }
4618 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4619 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4620
4621 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4622 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4623 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4624
4625 /* Print out the zone ranges */
4626 printk("Zone PFN ranges:\n");
4627 for (i = 0; i < MAX_NR_ZONES; i++) {
4628 if (i == ZONE_MOVABLE)
4629 continue;
4630 printk(" %-8s ", zone_names[i]);
4631 if (arch_zone_lowest_possible_pfn[i] ==
4632 arch_zone_highest_possible_pfn[i])
4633 printk("empty\n");
4634 else
4635 printk("%0#10lx -> %0#10lx\n",
4636 arch_zone_lowest_possible_pfn[i],
4637 arch_zone_highest_possible_pfn[i]);
4638 }
4639
4640 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4641 printk("Movable zone start PFN for each node\n");
4642 for (i = 0; i < MAX_NUMNODES; i++) {
4643 if (zone_movable_pfn[i])
4644 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4645 }
4646
4647 /* Print out the early_node_map[] */
4648 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4649 for (i = 0; i < nr_nodemap_entries; i++)
4650 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4651 early_node_map[i].start_pfn,
4652 early_node_map[i].end_pfn);
4653
4654 /* Initialise every node */
4655 mminit_verify_pageflags_layout();
4656 setup_nr_node_ids();
4657 for_each_online_node(nid) {
4658 pg_data_t *pgdat = NODE_DATA(nid);
4659 free_area_init_node(nid, NULL,
4660 find_min_pfn_for_node(nid), NULL);
4661
4662 /* Any memory on that node */
4663 if (pgdat->node_present_pages)
4664 node_set_state(nid, N_HIGH_MEMORY);
4665 check_for_regular_memory(pgdat);
4666 }
4667}
4668
4669static int __init cmdline_parse_core(char *p, unsigned long *core)
4670{
4671 unsigned long long coremem;
4672 if (!p)
4673 return -EINVAL;
4674
4675 coremem = memparse(p, &p);
4676 *core = coremem >> PAGE_SHIFT;
4677
4678 /* Paranoid check that UL is enough for the coremem value */
4679 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4680
4681 return 0;
4682}
4683
4684/*
4685 * kernelcore=size sets the amount of memory for use for allocations that
4686 * cannot be reclaimed or migrated.
4687 */
4688static int __init cmdline_parse_kernelcore(char *p)
4689{
4690 return cmdline_parse_core(p, &required_kernelcore);
4691}
4692
4693/*
4694 * movablecore=size sets the amount of memory for use for allocations that
4695 * can be reclaimed or migrated.
4696 */
4697static int __init cmdline_parse_movablecore(char *p)
4698{
4699 return cmdline_parse_core(p, &required_movablecore);
4700}
4701
4702early_param("kernelcore", cmdline_parse_kernelcore);
4703early_param("movablecore", cmdline_parse_movablecore);
4704
4705#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4706
4707/**
4708 * set_dma_reserve - set the specified number of pages reserved in the first zone
4709 * @new_dma_reserve: The number of pages to mark reserved
4710 *
4711 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4712 * In the DMA zone, a significant percentage may be consumed by kernel image
4713 * and other unfreeable allocations which can skew the watermarks badly. This
4714 * function may optionally be used to account for unfreeable pages in the
4715 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4716 * smaller per-cpu batchsize.
4717 */
4718void __init set_dma_reserve(unsigned long new_dma_reserve)
4719{
4720 dma_reserve = new_dma_reserve;
4721}
4722
4723#ifndef CONFIG_NEED_MULTIPLE_NODES
4724struct pglist_data __refdata contig_page_data = {
4725#ifndef CONFIG_NO_BOOTMEM
4726 .bdata = &bootmem_node_data[0]
4727#endif
4728 };
4729EXPORT_SYMBOL(contig_page_data);
4730#endif
4731
4732void __init free_area_init(unsigned long *zones_size)
4733{
4734 free_area_init_node(0, zones_size,
4735 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4736}
4737
4738static int page_alloc_cpu_notify(struct notifier_block *self,
4739 unsigned long action, void *hcpu)
4740{
4741 int cpu = (unsigned long)hcpu;
4742
4743 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4744 drain_pages(cpu);
4745
4746 /*
4747 * Spill the event counters of the dead processor
4748 * into the current processors event counters.
4749 * This artificially elevates the count of the current
4750 * processor.
4751 */
4752 vm_events_fold_cpu(cpu);
4753
4754 /*
4755 * Zero the differential counters of the dead processor
4756 * so that the vm statistics are consistent.
4757 *
4758 * This is only okay since the processor is dead and cannot
4759 * race with what we are doing.
4760 */
4761 refresh_cpu_vm_stats(cpu);
4762 }
4763 return NOTIFY_OK;
4764}
4765
4766void __init page_alloc_init(void)
4767{
4768 hotcpu_notifier(page_alloc_cpu_notify, 0);
4769}
4770
4771/*
4772 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4773 * or min_free_kbytes changes.
4774 */
4775static void calculate_totalreserve_pages(void)
4776{
4777 struct pglist_data *pgdat;
4778 unsigned long reserve_pages = 0;
4779 enum zone_type i, j;
4780
4781 for_each_online_pgdat(pgdat) {
4782 for (i = 0; i < MAX_NR_ZONES; i++) {
4783 struct zone *zone = pgdat->node_zones + i;
4784 unsigned long max = 0;
4785
4786 /* Find valid and maximum lowmem_reserve in the zone */
4787 for (j = i; j < MAX_NR_ZONES; j++) {
4788 if (zone->lowmem_reserve[j] > max)
4789 max = zone->lowmem_reserve[j];
4790 }
4791
4792 /* we treat the high watermark as reserved pages. */
4793 max += high_wmark_pages(zone);
4794
4795 if (max > zone->present_pages)
4796 max = zone->present_pages;
4797 reserve_pages += max;
4798 }
4799 }
4800 totalreserve_pages = reserve_pages;
4801}
4802
4803/*
4804 * setup_per_zone_lowmem_reserve - called whenever
4805 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4806 * has a correct pages reserved value, so an adequate number of
4807 * pages are left in the zone after a successful __alloc_pages().
4808 */
4809static void setup_per_zone_lowmem_reserve(void)
4810{
4811 struct pglist_data *pgdat;
4812 enum zone_type j, idx;
4813
4814 for_each_online_pgdat(pgdat) {
4815 for (j = 0; j < MAX_NR_ZONES; j++) {
4816 struct zone *zone = pgdat->node_zones + j;
4817 unsigned long present_pages = zone->present_pages;
4818
4819 zone->lowmem_reserve[j] = 0;
4820
4821 idx = j;
4822 while (idx) {
4823 struct zone *lower_zone;
4824
4825 idx--;
4826
4827 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4828 sysctl_lowmem_reserve_ratio[idx] = 1;
4829
4830 lower_zone = pgdat->node_zones + idx;
4831 lower_zone->lowmem_reserve[j] = present_pages /
4832 sysctl_lowmem_reserve_ratio[idx];
4833 present_pages += lower_zone->present_pages;
4834 }
4835 }
4836 }
4837
4838 /* update totalreserve_pages */
4839 calculate_totalreserve_pages();
4840}
4841
4842/**
4843 * setup_per_zone_wmarks - called when min_free_kbytes changes
4844 * or when memory is hot-{added|removed}
4845 *
4846 * Ensures that the watermark[min,low,high] values for each zone are set
4847 * correctly with respect to min_free_kbytes.
4848 */
4849void setup_per_zone_wmarks(void)
4850{
4851 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4852 unsigned long lowmem_pages = 0;
4853 struct zone *zone;
4854 unsigned long flags;
4855
4856 /* Calculate total number of !ZONE_HIGHMEM pages */
4857 for_each_zone(zone) {
4858 if (!is_highmem(zone))
4859 lowmem_pages += zone->present_pages;
4860 }
4861
4862 for_each_zone(zone) {
4863 u64 tmp;
4864
4865 spin_lock_irqsave(&zone->lock, flags);
4866 tmp = (u64)pages_min * zone->present_pages;
4867 do_div(tmp, lowmem_pages);
4868 if (is_highmem(zone)) {
4869 /*
4870 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4871 * need highmem pages, so cap pages_min to a small
4872 * value here.
4873 *
4874 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4875 * deltas controls asynch page reclaim, and so should
4876 * not be capped for highmem.
4877 */
4878 int min_pages;
4879
4880 min_pages = zone->present_pages / 1024;
4881 if (min_pages < SWAP_CLUSTER_MAX)
4882 min_pages = SWAP_CLUSTER_MAX;
4883 if (min_pages > 128)
4884 min_pages = 128;
4885 zone->watermark[WMARK_MIN] = min_pages;
4886 } else {
4887 /*
4888 * If it's a lowmem zone, reserve a number of pages
4889 * proportionate to the zone's size.
4890 */
4891 zone->watermark[WMARK_MIN] = tmp;
4892 }
4893
4894 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4895 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4896 setup_zone_migrate_reserve(zone);
4897 spin_unlock_irqrestore(&zone->lock, flags);
4898 }
4899
4900 /* update totalreserve_pages */
4901 calculate_totalreserve_pages();
4902}
4903
4904/*
4905 * The inactive anon list should be small enough that the VM never has to
4906 * do too much work, but large enough that each inactive page has a chance
4907 * to be referenced again before it is swapped out.
4908 *
4909 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4910 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4911 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4912 * the anonymous pages are kept on the inactive list.
4913 *
4914 * total target max
4915 * memory ratio inactive anon
4916 * -------------------------------------
4917 * 10MB 1 5MB
4918 * 100MB 1 50MB
4919 * 1GB 3 250MB
4920 * 10GB 10 0.9GB
4921 * 100GB 31 3GB
4922 * 1TB 101 10GB
4923 * 10TB 320 32GB
4924 */
4925void calculate_zone_inactive_ratio(struct zone *zone)
4926{
4927 unsigned int gb, ratio;
4928
4929 /* Zone size in gigabytes */
4930 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4931 if (gb)
4932 ratio = int_sqrt(10 * gb);
4933 else
4934 ratio = 1;
4935
4936 zone->inactive_ratio = ratio;
4937}
4938
4939static void __init setup_per_zone_inactive_ratio(void)
4940{
4941 struct zone *zone;
4942
4943 for_each_zone(zone)
4944 calculate_zone_inactive_ratio(zone);
4945}
4946
4947/*
4948 * Initialise min_free_kbytes.
4949 *
4950 * For small machines we want it small (128k min). For large machines
4951 * we want it large (64MB max). But it is not linear, because network
4952 * bandwidth does not increase linearly with machine size. We use
4953 *
4954 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4955 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4956 *
4957 * which yields
4958 *
4959 * 16MB: 512k
4960 * 32MB: 724k
4961 * 64MB: 1024k
4962 * 128MB: 1448k
4963 * 256MB: 2048k
4964 * 512MB: 2896k
4965 * 1024MB: 4096k
4966 * 2048MB: 5792k
4967 * 4096MB: 8192k
4968 * 8192MB: 11584k
4969 * 16384MB: 16384k
4970 */
4971static int __init init_per_zone_wmark_min(void)
4972{
4973 unsigned long lowmem_kbytes;
4974
4975 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4976
4977 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4978 if (min_free_kbytes < 128)
4979 min_free_kbytes = 128;
4980 if (min_free_kbytes > 65536)
4981 min_free_kbytes = 65536;
4982 setup_per_zone_wmarks();
4983 setup_per_zone_lowmem_reserve();
4984 setup_per_zone_inactive_ratio();
4985 return 0;
4986}
4987module_init(init_per_zone_wmark_min)
4988
4989/*
4990 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4991 * that we can call two helper functions whenever min_free_kbytes
4992 * changes.
4993 */
4994int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4995 void __user *buffer, size_t *length, loff_t *ppos)
4996{
4997 proc_dointvec(table, write, buffer, length, ppos);
4998 if (write)
4999 setup_per_zone_wmarks();
5000 return 0;
5001}
5002
5003#ifdef CONFIG_NUMA
5004int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5005 void __user *buffer, size_t *length, loff_t *ppos)
5006{
5007 struct zone *zone;
5008 int rc;
5009
5010 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5011 if (rc)
5012 return rc;
5013
5014 for_each_zone(zone)
5015 zone->min_unmapped_pages = (zone->present_pages *
5016 sysctl_min_unmapped_ratio) / 100;
5017 return 0;
5018}
5019
5020int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5021 void __user *buffer, size_t *length, loff_t *ppos)
5022{
5023 struct zone *zone;
5024 int rc;
5025
5026 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5027 if (rc)
5028 return rc;
5029
5030 for_each_zone(zone)
5031 zone->min_slab_pages = (zone->present_pages *
5032 sysctl_min_slab_ratio) / 100;
5033 return 0;
5034}
5035#endif
5036
5037/*
5038 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5039 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5040 * whenever sysctl_lowmem_reserve_ratio changes.
5041 *
5042 * The reserve ratio obviously has absolutely no relation with the
5043 * minimum watermarks. The lowmem reserve ratio can only make sense
5044 * if in function of the boot time zone sizes.
5045 */
5046int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5047 void __user *buffer, size_t *length, loff_t *ppos)
5048{
5049 proc_dointvec_minmax(table, write, buffer, length, ppos);
5050 setup_per_zone_lowmem_reserve();
5051 return 0;
5052}
5053
5054/*
5055 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5056 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5057 * can have before it gets flushed back to buddy allocator.
5058 */
5059
5060int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5061 void __user *buffer, size_t *length, loff_t *ppos)
5062{
5063 struct zone *zone;
5064 unsigned int cpu;
5065 int ret;
5066
5067 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5068 if (!write || (ret == -EINVAL))
5069 return ret;
5070 for_each_populated_zone(zone) {
5071 for_each_possible_cpu(cpu) {
5072 unsigned long high;
5073 high = zone->present_pages / percpu_pagelist_fraction;
5074 setup_pagelist_highmark(
5075 per_cpu_ptr(zone->pageset, cpu), high);
5076 }
5077 }
5078 return 0;
5079}
5080
5081int hashdist = HASHDIST_DEFAULT;
5082
5083#ifdef CONFIG_NUMA
5084static int __init set_hashdist(char *str)
5085{
5086 if (!str)
5087 return 0;
5088 hashdist = simple_strtoul(str, &str, 0);
5089 return 1;
5090}
5091__setup("hashdist=", set_hashdist);
5092#endif
5093
5094/*
5095 * allocate a large system hash table from bootmem
5096 * - it is assumed that the hash table must contain an exact power-of-2
5097 * quantity of entries
5098 * - limit is the number of hash buckets, not the total allocation size
5099 */
5100void *__init alloc_large_system_hash(const char *tablename,
5101 unsigned long bucketsize,
5102 unsigned long numentries,
5103 int scale,
5104 int flags,
5105 unsigned int *_hash_shift,
5106 unsigned int *_hash_mask,
5107 unsigned long limit)
5108{
5109 unsigned long long max = limit;
5110 unsigned long log2qty, size;
5111 void *table = NULL;
5112
5113 /* allow the kernel cmdline to have a say */
5114 if (!numentries) {
5115 /* round applicable memory size up to nearest megabyte */
5116 numentries = nr_kernel_pages;
5117 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5118 numentries >>= 20 - PAGE_SHIFT;
5119 numentries <<= 20 - PAGE_SHIFT;
5120
5121 /* limit to 1 bucket per 2^scale bytes of low memory */
5122 if (scale > PAGE_SHIFT)
5123 numentries >>= (scale - PAGE_SHIFT);
5124 else
5125 numentries <<= (PAGE_SHIFT - scale);
5126
5127 /* Make sure we've got at least a 0-order allocation.. */
5128 if (unlikely(flags & HASH_SMALL)) {
5129 /* Makes no sense without HASH_EARLY */
5130 WARN_ON(!(flags & HASH_EARLY));
5131 if (!(numentries >> *_hash_shift)) {
5132 numentries = 1UL << *_hash_shift;
5133 BUG_ON(!numentries);
5134 }
5135 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5136 numentries = PAGE_SIZE / bucketsize;
5137 }
5138 numentries = roundup_pow_of_two(numentries);
5139
5140 /* limit allocation size to 1/16 total memory by default */
5141 if (max == 0) {
5142 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5143 do_div(max, bucketsize);
5144 }
5145
5146 if (numentries > max)
5147 numentries = max;
5148
5149 log2qty = ilog2(numentries);
5150
5151 do {
5152 size = bucketsize << log2qty;
5153 if (flags & HASH_EARLY)
5154 table = alloc_bootmem_nopanic(size);
5155 else if (hashdist)
5156 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5157 else {
5158 /*
5159 * If bucketsize is not a power-of-two, we may free
5160 * some pages at the end of hash table which
5161 * alloc_pages_exact() automatically does
5162 */
5163 if (get_order(size) < MAX_ORDER) {
5164 table = alloc_pages_exact(size, GFP_ATOMIC);
5165 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5166 }
5167 }
5168 } while (!table && size > PAGE_SIZE && --log2qty);
5169
5170 if (!table)
5171 panic("Failed to allocate %s hash table\n", tablename);
5172
5173 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5174 tablename,
5175 (1U << log2qty),
5176 ilog2(size) - PAGE_SHIFT,
5177 size);
5178
5179 if (_hash_shift)
5180 *_hash_shift = log2qty;
5181 if (_hash_mask)
5182 *_hash_mask = (1 << log2qty) - 1;
5183
5184 return table;
5185}
5186
5187/* Return a pointer to the bitmap storing bits affecting a block of pages */
5188static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5189 unsigned long pfn)
5190{
5191#ifdef CONFIG_SPARSEMEM
5192 return __pfn_to_section(pfn)->pageblock_flags;
5193#else
5194 return zone->pageblock_flags;
5195#endif /* CONFIG_SPARSEMEM */
5196}
5197
5198static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5199{
5200#ifdef CONFIG_SPARSEMEM
5201 pfn &= (PAGES_PER_SECTION-1);
5202 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5203#else
5204 pfn = pfn - zone->zone_start_pfn;
5205 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5206#endif /* CONFIG_SPARSEMEM */
5207}
5208
5209/**
5210 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5211 * @page: The page within the block of interest
5212 * @start_bitidx: The first bit of interest to retrieve
5213 * @end_bitidx: The last bit of interest
5214 * returns pageblock_bits flags
5215 */
5216unsigned long get_pageblock_flags_group(struct page *page,
5217 int start_bitidx, int end_bitidx)
5218{
5219 struct zone *zone;
5220 unsigned long *bitmap;
5221 unsigned long pfn, bitidx;
5222 unsigned long flags = 0;
5223 unsigned long value = 1;
5224
5225 zone = page_zone(page);
5226 pfn = page_to_pfn(page);
5227 bitmap = get_pageblock_bitmap(zone, pfn);
5228 bitidx = pfn_to_bitidx(zone, pfn);
5229
5230 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5231 if (test_bit(bitidx + start_bitidx, bitmap))
5232 flags |= value;
5233
5234 return flags;
5235}
5236
5237/**
5238 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5239 * @page: The page within the block of interest
5240 * @start_bitidx: The first bit of interest
5241 * @end_bitidx: The last bit of interest
5242 * @flags: The flags to set
5243 */
5244void set_pageblock_flags_group(struct page *page, unsigned long flags,
5245 int start_bitidx, int end_bitidx)
5246{
5247 struct zone *zone;
5248 unsigned long *bitmap;
5249 unsigned long pfn, bitidx;
5250 unsigned long value = 1;
5251
5252 zone = page_zone(page);
5253 pfn = page_to_pfn(page);
5254 bitmap = get_pageblock_bitmap(zone, pfn);
5255 bitidx = pfn_to_bitidx(zone, pfn);
5256 VM_BUG_ON(pfn < zone->zone_start_pfn);
5257 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5258
5259 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5260 if (flags & value)
5261 __set_bit(bitidx + start_bitidx, bitmap);
5262 else
5263 __clear_bit(bitidx + start_bitidx, bitmap);
5264}
5265
5266/*
5267 * This is designed as sub function...plz see page_isolation.c also.
5268 * set/clear page block's type to be ISOLATE.
5269 * page allocater never alloc memory from ISOLATE block.
5270 */
5271
5272int set_migratetype_isolate(struct page *page)
5273{
5274 struct zone *zone;
5275 struct page *curr_page;
5276 unsigned long flags, pfn, iter;
5277 unsigned long immobile = 0;
5278 struct memory_isolate_notify arg;
5279 int notifier_ret;
5280 int ret = -EBUSY;
5281 int zone_idx;
5282
5283 zone = page_zone(page);
5284 zone_idx = zone_idx(zone);
5285
5286 spin_lock_irqsave(&zone->lock, flags);
5287 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5288 zone_idx == ZONE_MOVABLE) {
5289 ret = 0;
5290 goto out;
5291 }
5292
5293 pfn = page_to_pfn(page);
5294 arg.start_pfn = pfn;
5295 arg.nr_pages = pageblock_nr_pages;
5296 arg.pages_found = 0;
5297
5298 /*
5299 * It may be possible to isolate a pageblock even if the
5300 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5301 * notifier chain is used by balloon drivers to return the
5302 * number of pages in a range that are held by the balloon
5303 * driver to shrink memory. If all the pages are accounted for
5304 * by balloons, are free, or on the LRU, isolation can continue.
5305 * Later, for example, when memory hotplug notifier runs, these
5306 * pages reported as "can be isolated" should be isolated(freed)
5307 * by the balloon driver through the memory notifier chain.
5308 */
5309 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5310 notifier_ret = notifier_to_errno(notifier_ret);
5311 if (notifier_ret || !arg.pages_found)
5312 goto out;
5313
5314 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5315 if (!pfn_valid_within(pfn))
5316 continue;
5317
5318 curr_page = pfn_to_page(iter);
5319 if (!page_count(curr_page) || PageLRU(curr_page))
5320 continue;
5321
5322 immobile++;
5323 }
5324
5325 if (arg.pages_found == immobile)
5326 ret = 0;
5327
5328out:
5329 if (!ret) {
5330 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5331 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5332 }
5333
5334 spin_unlock_irqrestore(&zone->lock, flags);
5335 if (!ret)
5336 drain_all_pages();
5337 return ret;
5338}
5339
5340void unset_migratetype_isolate(struct page *page)
5341{
5342 struct zone *zone;
5343 unsigned long flags;
5344 zone = page_zone(page);
5345 spin_lock_irqsave(&zone->lock, flags);
5346 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5347 goto out;
5348 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5349 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5350out:
5351 spin_unlock_irqrestore(&zone->lock, flags);
5352}
5353
5354#ifdef CONFIG_MEMORY_HOTREMOVE
5355/*
5356 * All pages in the range must be isolated before calling this.
5357 */
5358void
5359__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5360{
5361 struct page *page;
5362 struct zone *zone;
5363 int order, i;
5364 unsigned long pfn;
5365 unsigned long flags;
5366 /* find the first valid pfn */
5367 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5368 if (pfn_valid(pfn))
5369 break;
5370 if (pfn == end_pfn)
5371 return;
5372 zone = page_zone(pfn_to_page(pfn));
5373 spin_lock_irqsave(&zone->lock, flags);
5374 pfn = start_pfn;
5375 while (pfn < end_pfn) {
5376 if (!pfn_valid(pfn)) {
5377 pfn++;
5378 continue;
5379 }
5380 page = pfn_to_page(pfn);
5381 BUG_ON(page_count(page));
5382 BUG_ON(!PageBuddy(page));
5383 order = page_order(page);
5384#ifdef CONFIG_DEBUG_VM
5385 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5386 pfn, 1 << order, end_pfn);
5387#endif
5388 list_del(&page->lru);
5389 rmv_page_order(page);
5390 zone->free_area[order].nr_free--;
5391 __mod_zone_page_state(zone, NR_FREE_PAGES,
5392 - (1UL << order));
5393 for (i = 0; i < (1 << order); i++)
5394 SetPageReserved((page+i));
5395 pfn += (1 << order);
5396 }
5397 spin_unlock_irqrestore(&zone->lock, flags);
5398}
5399#endif
5400
5401#ifdef CONFIG_MEMORY_FAILURE
5402bool is_free_buddy_page(struct page *page)
5403{
5404 struct zone *zone = page_zone(page);
5405 unsigned long pfn = page_to_pfn(page);
5406 unsigned long flags;
5407 int order;
5408
5409 spin_lock_irqsave(&zone->lock, flags);
5410 for (order = 0; order < MAX_ORDER; order++) {
5411 struct page *page_head = page - (pfn & ((1 << order) - 1));
5412
5413 if (PageBuddy(page_head) && page_order(page_head) >= order)
5414 break;
5415 }
5416 spin_unlock_irqrestore(&zone->lock, flags);
5417
5418 return order < MAX_ORDER;
5419}
5420#endif
5421
5422static struct trace_print_flags pageflag_names[] = {
5423 {1UL << PG_locked, "locked" },
5424 {1UL << PG_error, "error" },
5425 {1UL << PG_referenced, "referenced" },
5426 {1UL << PG_uptodate, "uptodate" },
5427 {1UL << PG_dirty, "dirty" },
5428 {1UL << PG_lru, "lru" },
5429 {1UL << PG_active, "active" },
5430 {1UL << PG_slab, "slab" },
5431 {1UL << PG_owner_priv_1, "owner_priv_1" },
5432 {1UL << PG_arch_1, "arch_1" },
5433 {1UL << PG_reserved, "reserved" },
5434 {1UL << PG_private, "private" },
5435 {1UL << PG_private_2, "private_2" },
5436 {1UL << PG_writeback, "writeback" },
5437#ifdef CONFIG_PAGEFLAGS_EXTENDED
5438 {1UL << PG_head, "head" },
5439 {1UL << PG_tail, "tail" },
5440#else
5441 {1UL << PG_compound, "compound" },
5442#endif
5443 {1UL << PG_swapcache, "swapcache" },
5444 {1UL << PG_mappedtodisk, "mappedtodisk" },
5445 {1UL << PG_reclaim, "reclaim" },
5446 {1UL << PG_buddy, "buddy" },
5447 {1UL << PG_swapbacked, "swapbacked" },
5448 {1UL << PG_unevictable, "unevictable" },
5449#ifdef CONFIG_MMU
5450 {1UL << PG_mlocked, "mlocked" },
5451#endif
5452#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5453 {1UL << PG_uncached, "uncached" },
5454#endif
5455#ifdef CONFIG_MEMORY_FAILURE
5456 {1UL << PG_hwpoison, "hwpoison" },
5457#endif
5458 {-1UL, NULL },
5459};
5460
5461static void dump_page_flags(unsigned long flags)
5462{
5463 const char *delim = "";
5464 unsigned long mask;
5465 int i;
5466
5467 printk(KERN_ALERT "page flags: %#lx(", flags);
5468
5469 /* remove zone id */
5470 flags &= (1UL << NR_PAGEFLAGS) - 1;
5471
5472 for (i = 0; pageflag_names[i].name && flags; i++) {
5473
5474 mask = pageflag_names[i].mask;
5475 if ((flags & mask) != mask)
5476 continue;
5477
5478 flags &= ~mask;
5479 printk("%s%s", delim, pageflag_names[i].name);
5480 delim = "|";
5481 }
5482
5483 /* check for left over flags */
5484 if (flags)
5485 printk("%s%#lx", delim, flags);
5486
5487 printk(")\n");
5488}
5489
5490void dump_page(struct page *page)
5491{
5492 printk(KERN_ALERT
5493 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5494 page, page_count(page), page_mapcount(page),
5495 page->mapping, page->index);
5496 dump_page_flags(page->flags);
5497}