]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - mm/mlock.c
mm: make the mlock() stack guard page checks stricter
[net-next-2.6.git] / mm / mlock.c
... / ...
CommitLineData
1/*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8#include <linux/capability.h>
9#include <linux/mman.h>
10#include <linux/mm.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13#include <linux/pagemap.h>
14#include <linux/mempolicy.h>
15#include <linux/syscalls.h>
16#include <linux/sched.h>
17#include <linux/module.h>
18#include <linux/rmap.h>
19#include <linux/mmzone.h>
20#include <linux/hugetlb.h>
21
22#include "internal.h"
23
24int can_do_mlock(void)
25{
26 if (capable(CAP_IPC_LOCK))
27 return 1;
28 if (rlimit(RLIMIT_MEMLOCK) != 0)
29 return 1;
30 return 0;
31}
32EXPORT_SYMBOL(can_do_mlock);
33
34/*
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
37 * statistics.
38 *
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
43 *
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
48 * (see mm/rmap.c).
49 */
50
51/*
52 * LRU accounting for clear_page_mlock()
53 */
54void __clear_page_mlock(struct page *page)
55{
56 VM_BUG_ON(!PageLocked(page));
57
58 if (!page->mapping) { /* truncated ? */
59 return;
60 }
61
62 dec_zone_page_state(page, NR_MLOCK);
63 count_vm_event(UNEVICTABLE_PGCLEARED);
64 if (!isolate_lru_page(page)) {
65 putback_lru_page(page);
66 } else {
67 /*
68 * We lost the race. the page already moved to evictable list.
69 */
70 if (PageUnevictable(page))
71 count_vm_event(UNEVICTABLE_PGSTRANDED);
72 }
73}
74
75/*
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
78 */
79void mlock_vma_page(struct page *page)
80{
81 BUG_ON(!PageLocked(page));
82
83 if (!TestSetPageMlocked(page)) {
84 inc_zone_page_state(page, NR_MLOCK);
85 count_vm_event(UNEVICTABLE_PGMLOCKED);
86 if (!isolate_lru_page(page))
87 putback_lru_page(page);
88 }
89}
90
91/**
92 * munlock_vma_page - munlock a vma page
93 * @page - page to be unlocked
94 *
95 * called from munlock()/munmap() path with page supposedly on the LRU.
96 * When we munlock a page, because the vma where we found the page is being
97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
98 * page locked so that we can leave it on the unevictable lru list and not
99 * bother vmscan with it. However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU. If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance. If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
105 */
106void munlock_vma_page(struct page *page)
107{
108 BUG_ON(!PageLocked(page));
109
110 if (TestClearPageMlocked(page)) {
111 dec_zone_page_state(page, NR_MLOCK);
112 if (!isolate_lru_page(page)) {
113 int ret = try_to_munlock(page);
114 /*
115 * did try_to_unlock() succeed or punt?
116 */
117 if (ret != SWAP_MLOCK)
118 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
119
120 putback_lru_page(page);
121 } else {
122 /*
123 * Some other task has removed the page from the LRU.
124 * putback_lru_page() will take care of removing the
125 * page from the unevictable list, if necessary.
126 * vmscan [page_referenced()] will move the page back
127 * to the unevictable list if some other vma has it
128 * mlocked.
129 */
130 if (PageUnevictable(page))
131 count_vm_event(UNEVICTABLE_PGSTRANDED);
132 else
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134 }
135 }
136}
137
138/* Is the vma a continuation of the stack vma above it? */
139static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
140{
141 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
142}
143
144static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
145{
146 return (vma->vm_flags & VM_GROWSDOWN) &&
147 (vma->vm_start == addr) &&
148 !vma_stack_continue(vma->vm_prev, addr);
149}
150
151/**
152 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
153 * @vma: target vma
154 * @start: start address
155 * @end: end address
156 *
157 * This takes care of making the pages present too.
158 *
159 * return 0 on success, negative error code on error.
160 *
161 * vma->vm_mm->mmap_sem must be held for at least read.
162 */
163static long __mlock_vma_pages_range(struct vm_area_struct *vma,
164 unsigned long start, unsigned long end)
165{
166 struct mm_struct *mm = vma->vm_mm;
167 unsigned long addr = start;
168 struct page *pages[16]; /* 16 gives a reasonable batch */
169 int nr_pages = (end - start) / PAGE_SIZE;
170 int ret = 0;
171 int gup_flags;
172
173 VM_BUG_ON(start & ~PAGE_MASK);
174 VM_BUG_ON(end & ~PAGE_MASK);
175 VM_BUG_ON(start < vma->vm_start);
176 VM_BUG_ON(end > vma->vm_end);
177 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
178
179 gup_flags = FOLL_TOUCH | FOLL_GET;
180 if (vma->vm_flags & VM_WRITE)
181 gup_flags |= FOLL_WRITE;
182
183 /* We don't try to access the guard page of a stack vma */
184 if (stack_guard_page(vma, start)) {
185 addr += PAGE_SIZE;
186 nr_pages--;
187 }
188
189 while (nr_pages > 0) {
190 int i;
191
192 cond_resched();
193
194 /*
195 * get_user_pages makes pages present if we are
196 * setting mlock. and this extra reference count will
197 * disable migration of this page. However, page may
198 * still be truncated out from under us.
199 */
200 ret = __get_user_pages(current, mm, addr,
201 min_t(int, nr_pages, ARRAY_SIZE(pages)),
202 gup_flags, pages, NULL);
203 /*
204 * This can happen for, e.g., VM_NONLINEAR regions before
205 * a page has been allocated and mapped at a given offset,
206 * or for addresses that map beyond end of a file.
207 * We'll mlock the pages if/when they get faulted in.
208 */
209 if (ret < 0)
210 break;
211
212 lru_add_drain(); /* push cached pages to LRU */
213
214 for (i = 0; i < ret; i++) {
215 struct page *page = pages[i];
216
217 if (page->mapping) {
218 /*
219 * That preliminary check is mainly to avoid
220 * the pointless overhead of lock_page on the
221 * ZERO_PAGE: which might bounce very badly if
222 * there is contention. However, we're still
223 * dirtying its cacheline with get/put_page:
224 * we'll add another __get_user_pages flag to
225 * avoid it if that case turns out to matter.
226 */
227 lock_page(page);
228 /*
229 * Because we lock page here and migration is
230 * blocked by the elevated reference, we need
231 * only check for file-cache page truncation.
232 */
233 if (page->mapping)
234 mlock_vma_page(page);
235 unlock_page(page);
236 }
237 put_page(page); /* ref from get_user_pages() */
238 }
239
240 addr += ret * PAGE_SIZE;
241 nr_pages -= ret;
242 ret = 0;
243 }
244
245 return ret; /* 0 or negative error code */
246}
247
248/*
249 * convert get_user_pages() return value to posix mlock() error
250 */
251static int __mlock_posix_error_return(long retval)
252{
253 if (retval == -EFAULT)
254 retval = -ENOMEM;
255 else if (retval == -ENOMEM)
256 retval = -EAGAIN;
257 return retval;
258}
259
260/**
261 * mlock_vma_pages_range() - mlock pages in specified vma range.
262 * @vma - the vma containing the specfied address range
263 * @start - starting address in @vma to mlock
264 * @end - end address [+1] in @vma to mlock
265 *
266 * For mmap()/mremap()/expansion of mlocked vma.
267 *
268 * return 0 on success for "normal" vmas.
269 *
270 * return number of pages [> 0] to be removed from locked_vm on success
271 * of "special" vmas.
272 */
273long mlock_vma_pages_range(struct vm_area_struct *vma,
274 unsigned long start, unsigned long end)
275{
276 int nr_pages = (end - start) / PAGE_SIZE;
277 BUG_ON(!(vma->vm_flags & VM_LOCKED));
278
279 /*
280 * filter unlockable vmas
281 */
282 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
283 goto no_mlock;
284
285 if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
286 is_vm_hugetlb_page(vma) ||
287 vma == get_gate_vma(current))) {
288
289 __mlock_vma_pages_range(vma, start, end);
290
291 /* Hide errors from mmap() and other callers */
292 return 0;
293 }
294
295 /*
296 * User mapped kernel pages or huge pages:
297 * make these pages present to populate the ptes, but
298 * fall thru' to reset VM_LOCKED--no need to unlock, and
299 * return nr_pages so these don't get counted against task's
300 * locked limit. huge pages are already counted against
301 * locked vm limit.
302 */
303 make_pages_present(start, end);
304
305no_mlock:
306 vma->vm_flags &= ~VM_LOCKED; /* and don't come back! */
307 return nr_pages; /* error or pages NOT mlocked */
308}
309
310/*
311 * munlock_vma_pages_range() - munlock all pages in the vma range.'
312 * @vma - vma containing range to be munlock()ed.
313 * @start - start address in @vma of the range
314 * @end - end of range in @vma.
315 *
316 * For mremap(), munmap() and exit().
317 *
318 * Called with @vma VM_LOCKED.
319 *
320 * Returns with VM_LOCKED cleared. Callers must be prepared to
321 * deal with this.
322 *
323 * We don't save and restore VM_LOCKED here because pages are
324 * still on lru. In unmap path, pages might be scanned by reclaim
325 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
326 * free them. This will result in freeing mlocked pages.
327 */
328void munlock_vma_pages_range(struct vm_area_struct *vma,
329 unsigned long start, unsigned long end)
330{
331 unsigned long addr;
332
333 lru_add_drain();
334 vma->vm_flags &= ~VM_LOCKED;
335
336 for (addr = start; addr < end; addr += PAGE_SIZE) {
337 struct page *page;
338 /*
339 * Although FOLL_DUMP is intended for get_dump_page(),
340 * it just so happens that its special treatment of the
341 * ZERO_PAGE (returning an error instead of doing get_page)
342 * suits munlock very well (and if somehow an abnormal page
343 * has sneaked into the range, we won't oops here: great).
344 */
345 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
346 if (page && !IS_ERR(page)) {
347 lock_page(page);
348 /*
349 * Like in __mlock_vma_pages_range(),
350 * because we lock page here and migration is
351 * blocked by the elevated reference, we need
352 * only check for file-cache page truncation.
353 */
354 if (page->mapping)
355 munlock_vma_page(page);
356 unlock_page(page);
357 put_page(page);
358 }
359 cond_resched();
360 }
361}
362
363/*
364 * mlock_fixup - handle mlock[all]/munlock[all] requests.
365 *
366 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
367 * munlock is a no-op. However, for some special vmas, we go ahead and
368 * populate the ptes via make_pages_present().
369 *
370 * For vmas that pass the filters, merge/split as appropriate.
371 */
372static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
373 unsigned long start, unsigned long end, unsigned int newflags)
374{
375 struct mm_struct *mm = vma->vm_mm;
376 pgoff_t pgoff;
377 int nr_pages;
378 int ret = 0;
379 int lock = newflags & VM_LOCKED;
380
381 if (newflags == vma->vm_flags ||
382 (vma->vm_flags & (VM_IO | VM_PFNMAP)))
383 goto out; /* don't set VM_LOCKED, don't count */
384
385 if ((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
386 is_vm_hugetlb_page(vma) ||
387 vma == get_gate_vma(current)) {
388 if (lock)
389 make_pages_present(start, end);
390 goto out; /* don't set VM_LOCKED, don't count */
391 }
392
393 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
394 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
395 vma->vm_file, pgoff, vma_policy(vma));
396 if (*prev) {
397 vma = *prev;
398 goto success;
399 }
400
401 if (start != vma->vm_start) {
402 ret = split_vma(mm, vma, start, 1);
403 if (ret)
404 goto out;
405 }
406
407 if (end != vma->vm_end) {
408 ret = split_vma(mm, vma, end, 0);
409 if (ret)
410 goto out;
411 }
412
413success:
414 /*
415 * Keep track of amount of locked VM.
416 */
417 nr_pages = (end - start) >> PAGE_SHIFT;
418 if (!lock)
419 nr_pages = -nr_pages;
420 mm->locked_vm += nr_pages;
421
422 /*
423 * vm_flags is protected by the mmap_sem held in write mode.
424 * It's okay if try_to_unmap_one unmaps a page just after we
425 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
426 */
427
428 if (lock) {
429 vma->vm_flags = newflags;
430 ret = __mlock_vma_pages_range(vma, start, end);
431 if (ret < 0)
432 ret = __mlock_posix_error_return(ret);
433 } else {
434 munlock_vma_pages_range(vma, start, end);
435 }
436
437out:
438 *prev = vma;
439 return ret;
440}
441
442static int do_mlock(unsigned long start, size_t len, int on)
443{
444 unsigned long nstart, end, tmp;
445 struct vm_area_struct * vma, * prev;
446 int error;
447
448 len = PAGE_ALIGN(len);
449 end = start + len;
450 if (end < start)
451 return -EINVAL;
452 if (end == start)
453 return 0;
454 vma = find_vma_prev(current->mm, start, &prev);
455 if (!vma || vma->vm_start > start)
456 return -ENOMEM;
457
458 if (start > vma->vm_start)
459 prev = vma;
460
461 for (nstart = start ; ; ) {
462 unsigned int newflags;
463
464 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
465
466 newflags = vma->vm_flags | VM_LOCKED;
467 if (!on)
468 newflags &= ~VM_LOCKED;
469
470 tmp = vma->vm_end;
471 if (tmp > end)
472 tmp = end;
473 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
474 if (error)
475 break;
476 nstart = tmp;
477 if (nstart < prev->vm_end)
478 nstart = prev->vm_end;
479 if (nstart >= end)
480 break;
481
482 vma = prev->vm_next;
483 if (!vma || vma->vm_start != nstart) {
484 error = -ENOMEM;
485 break;
486 }
487 }
488 return error;
489}
490
491SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
492{
493 unsigned long locked;
494 unsigned long lock_limit;
495 int error = -ENOMEM;
496
497 if (!can_do_mlock())
498 return -EPERM;
499
500 lru_add_drain_all(); /* flush pagevec */
501
502 down_write(&current->mm->mmap_sem);
503 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
504 start &= PAGE_MASK;
505
506 locked = len >> PAGE_SHIFT;
507 locked += current->mm->locked_vm;
508
509 lock_limit = rlimit(RLIMIT_MEMLOCK);
510 lock_limit >>= PAGE_SHIFT;
511
512 /* check against resource limits */
513 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
514 error = do_mlock(start, len, 1);
515 up_write(&current->mm->mmap_sem);
516 return error;
517}
518
519SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
520{
521 int ret;
522
523 down_write(&current->mm->mmap_sem);
524 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
525 start &= PAGE_MASK;
526 ret = do_mlock(start, len, 0);
527 up_write(&current->mm->mmap_sem);
528 return ret;
529}
530
531static int do_mlockall(int flags)
532{
533 struct vm_area_struct * vma, * prev = NULL;
534 unsigned int def_flags = 0;
535
536 if (flags & MCL_FUTURE)
537 def_flags = VM_LOCKED;
538 current->mm->def_flags = def_flags;
539 if (flags == MCL_FUTURE)
540 goto out;
541
542 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
543 unsigned int newflags;
544
545 newflags = vma->vm_flags | VM_LOCKED;
546 if (!(flags & MCL_CURRENT))
547 newflags &= ~VM_LOCKED;
548
549 /* Ignore errors */
550 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
551 }
552out:
553 return 0;
554}
555
556SYSCALL_DEFINE1(mlockall, int, flags)
557{
558 unsigned long lock_limit;
559 int ret = -EINVAL;
560
561 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
562 goto out;
563
564 ret = -EPERM;
565 if (!can_do_mlock())
566 goto out;
567
568 lru_add_drain_all(); /* flush pagevec */
569
570 down_write(&current->mm->mmap_sem);
571
572 lock_limit = rlimit(RLIMIT_MEMLOCK);
573 lock_limit >>= PAGE_SHIFT;
574
575 ret = -ENOMEM;
576 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
577 capable(CAP_IPC_LOCK))
578 ret = do_mlockall(flags);
579 up_write(&current->mm->mmap_sem);
580out:
581 return ret;
582}
583
584SYSCALL_DEFINE0(munlockall)
585{
586 int ret;
587
588 down_write(&current->mm->mmap_sem);
589 ret = do_mlockall(0);
590 up_write(&current->mm->mmap_sem);
591 return ret;
592}
593
594/*
595 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
596 * shm segments) get accounted against the user_struct instead.
597 */
598static DEFINE_SPINLOCK(shmlock_user_lock);
599
600int user_shm_lock(size_t size, struct user_struct *user)
601{
602 unsigned long lock_limit, locked;
603 int allowed = 0;
604
605 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
606 lock_limit = rlimit(RLIMIT_MEMLOCK);
607 if (lock_limit == RLIM_INFINITY)
608 allowed = 1;
609 lock_limit >>= PAGE_SHIFT;
610 spin_lock(&shmlock_user_lock);
611 if (!allowed &&
612 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
613 goto out;
614 get_uid(user);
615 user->locked_shm += locked;
616 allowed = 1;
617out:
618 spin_unlock(&shmlock_user_lock);
619 return allowed;
620}
621
622void user_shm_unlock(size_t size, struct user_struct *user)
623{
624 spin_lock(&shmlock_user_lock);
625 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
626 spin_unlock(&shmlock_user_lock);
627 free_uid(user);
628}