]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - lib/swiotlb.c
stmmac: add init/exit callback in plat_stmmacenet_data struct
[net-next-2.6.git] / lib / swiotlb.c
... / ...
CommitLineData
1/*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20#include <linux/cache.h>
21#include <linux/dma-mapping.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/spinlock.h>
25#include <linux/string.h>
26#include <linux/swiotlb.h>
27#include <linux/pfn.h>
28#include <linux/types.h>
29#include <linux/ctype.h>
30#include <linux/highmem.h>
31#include <linux/gfp.h>
32
33#include <asm/io.h>
34#include <asm/dma.h>
35#include <asm/scatterlist.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
39#include <linux/iommu-helper.h>
40
41#define OFFSET(val,align) ((unsigned long) \
42 ( (val) & ( (align) - 1)))
43
44#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
45
46/*
47 * Minimum IO TLB size to bother booting with. Systems with mainly
48 * 64bit capable cards will only lightly use the swiotlb. If we can't
49 * allocate a contiguous 1MB, we're probably in trouble anyway.
50 */
51#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
52
53int swiotlb_force;
54
55/*
56 * Used to do a quick range check in swiotlb_tbl_unmap_single and
57 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
58 * API.
59 */
60static char *io_tlb_start, *io_tlb_end;
61
62/*
63 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
64 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
65 */
66static unsigned long io_tlb_nslabs;
67
68/*
69 * When the IOMMU overflows we return a fallback buffer. This sets the size.
70 */
71static unsigned long io_tlb_overflow = 32*1024;
72
73static void *io_tlb_overflow_buffer;
74
75/*
76 * This is a free list describing the number of free entries available from
77 * each index
78 */
79static unsigned int *io_tlb_list;
80static unsigned int io_tlb_index;
81
82/*
83 * We need to save away the original address corresponding to a mapped entry
84 * for the sync operations.
85 */
86static phys_addr_t *io_tlb_orig_addr;
87
88/*
89 * Protect the above data structures in the map and unmap calls
90 */
91static DEFINE_SPINLOCK(io_tlb_lock);
92
93static int late_alloc;
94
95static int __init
96setup_io_tlb_npages(char *str)
97{
98 if (isdigit(*str)) {
99 io_tlb_nslabs = simple_strtoul(str, &str, 0);
100 /* avoid tail segment of size < IO_TLB_SEGSIZE */
101 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
102 }
103 if (*str == ',')
104 ++str;
105 if (!strcmp(str, "force"))
106 swiotlb_force = 1;
107
108 return 1;
109}
110__setup("swiotlb=", setup_io_tlb_npages);
111/* make io_tlb_overflow tunable too? */
112
113/* Note that this doesn't work with highmem page */
114static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
115 volatile void *address)
116{
117 return phys_to_dma(hwdev, virt_to_phys(address));
118}
119
120void swiotlb_print_info(void)
121{
122 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
123 phys_addr_t pstart, pend;
124
125 pstart = virt_to_phys(io_tlb_start);
126 pend = virt_to_phys(io_tlb_end);
127
128 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
129 bytes >> 20, io_tlb_start, io_tlb_end);
130 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
131 (unsigned long long)pstart,
132 (unsigned long long)pend);
133}
134
135void __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
136{
137 unsigned long i, bytes;
138
139 bytes = nslabs << IO_TLB_SHIFT;
140
141 io_tlb_nslabs = nslabs;
142 io_tlb_start = tlb;
143 io_tlb_end = io_tlb_start + bytes;
144
145 /*
146 * Allocate and initialize the free list array. This array is used
147 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
148 * between io_tlb_start and io_tlb_end.
149 */
150 io_tlb_list = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
151 for (i = 0; i < io_tlb_nslabs; i++)
152 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
153 io_tlb_index = 0;
154 io_tlb_orig_addr = alloc_bootmem_pages(PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
155
156 /*
157 * Get the overflow emergency buffer
158 */
159 io_tlb_overflow_buffer = alloc_bootmem_low_pages(PAGE_ALIGN(io_tlb_overflow));
160 if (!io_tlb_overflow_buffer)
161 panic("Cannot allocate SWIOTLB overflow buffer!\n");
162 if (verbose)
163 swiotlb_print_info();
164}
165
166/*
167 * Statically reserve bounce buffer space and initialize bounce buffer data
168 * structures for the software IO TLB used to implement the DMA API.
169 */
170void __init
171swiotlb_init_with_default_size(size_t default_size, int verbose)
172{
173 unsigned long bytes;
174
175 if (!io_tlb_nslabs) {
176 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
177 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
178 }
179
180 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
181
182 /*
183 * Get IO TLB memory from the low pages
184 */
185 io_tlb_start = alloc_bootmem_low_pages(PAGE_ALIGN(bytes));
186 if (!io_tlb_start)
187 panic("Cannot allocate SWIOTLB buffer");
188
189 swiotlb_init_with_tbl(io_tlb_start, io_tlb_nslabs, verbose);
190}
191
192void __init
193swiotlb_init(int verbose)
194{
195 swiotlb_init_with_default_size(64 * (1<<20), verbose); /* default to 64MB */
196}
197
198/*
199 * Systems with larger DMA zones (those that don't support ISA) can
200 * initialize the swiotlb later using the slab allocator if needed.
201 * This should be just like above, but with some error catching.
202 */
203int
204swiotlb_late_init_with_default_size(size_t default_size)
205{
206 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
207 unsigned int order;
208
209 if (!io_tlb_nslabs) {
210 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
211 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
212 }
213
214 /*
215 * Get IO TLB memory from the low pages
216 */
217 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
218 io_tlb_nslabs = SLABS_PER_PAGE << order;
219 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
220
221 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
222 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
223 order);
224 if (io_tlb_start)
225 break;
226 order--;
227 }
228
229 if (!io_tlb_start)
230 goto cleanup1;
231
232 if (order != get_order(bytes)) {
233 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
234 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
235 io_tlb_nslabs = SLABS_PER_PAGE << order;
236 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
237 }
238 io_tlb_end = io_tlb_start + bytes;
239 memset(io_tlb_start, 0, bytes);
240
241 /*
242 * Allocate and initialize the free list array. This array is used
243 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 * between io_tlb_start and io_tlb_end.
245 */
246 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
247 get_order(io_tlb_nslabs * sizeof(int)));
248 if (!io_tlb_list)
249 goto cleanup2;
250
251 for (i = 0; i < io_tlb_nslabs; i++)
252 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
253 io_tlb_index = 0;
254
255 io_tlb_orig_addr = (phys_addr_t *)
256 __get_free_pages(GFP_KERNEL,
257 get_order(io_tlb_nslabs *
258 sizeof(phys_addr_t)));
259 if (!io_tlb_orig_addr)
260 goto cleanup3;
261
262 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
263
264 /*
265 * Get the overflow emergency buffer
266 */
267 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
268 get_order(io_tlb_overflow));
269 if (!io_tlb_overflow_buffer)
270 goto cleanup4;
271
272 swiotlb_print_info();
273
274 late_alloc = 1;
275
276 return 0;
277
278cleanup4:
279 free_pages((unsigned long)io_tlb_orig_addr,
280 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
281 io_tlb_orig_addr = NULL;
282cleanup3:
283 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
284 sizeof(int)));
285 io_tlb_list = NULL;
286cleanup2:
287 io_tlb_end = NULL;
288 free_pages((unsigned long)io_tlb_start, order);
289 io_tlb_start = NULL;
290cleanup1:
291 io_tlb_nslabs = req_nslabs;
292 return -ENOMEM;
293}
294
295void __init swiotlb_free(void)
296{
297 if (!io_tlb_overflow_buffer)
298 return;
299
300 if (late_alloc) {
301 free_pages((unsigned long)io_tlb_overflow_buffer,
302 get_order(io_tlb_overflow));
303 free_pages((unsigned long)io_tlb_orig_addr,
304 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
305 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
306 sizeof(int)));
307 free_pages((unsigned long)io_tlb_start,
308 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
309 } else {
310 free_bootmem_late(__pa(io_tlb_overflow_buffer),
311 PAGE_ALIGN(io_tlb_overflow));
312 free_bootmem_late(__pa(io_tlb_orig_addr),
313 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
314 free_bootmem_late(__pa(io_tlb_list),
315 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
316 free_bootmem_late(__pa(io_tlb_start),
317 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
318 }
319}
320
321static int is_swiotlb_buffer(phys_addr_t paddr)
322{
323 return paddr >= virt_to_phys(io_tlb_start) &&
324 paddr < virt_to_phys(io_tlb_end);
325}
326
327/*
328 * Bounce: copy the swiotlb buffer back to the original dma location
329 */
330void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
331 enum dma_data_direction dir)
332{
333 unsigned long pfn = PFN_DOWN(phys);
334
335 if (PageHighMem(pfn_to_page(pfn))) {
336 /* The buffer does not have a mapping. Map it in and copy */
337 unsigned int offset = phys & ~PAGE_MASK;
338 char *buffer;
339 unsigned int sz = 0;
340 unsigned long flags;
341
342 while (size) {
343 sz = min_t(size_t, PAGE_SIZE - offset, size);
344
345 local_irq_save(flags);
346 buffer = kmap_atomic(pfn_to_page(pfn),
347 KM_BOUNCE_READ);
348 if (dir == DMA_TO_DEVICE)
349 memcpy(dma_addr, buffer + offset, sz);
350 else
351 memcpy(buffer + offset, dma_addr, sz);
352 kunmap_atomic(buffer, KM_BOUNCE_READ);
353 local_irq_restore(flags);
354
355 size -= sz;
356 pfn++;
357 dma_addr += sz;
358 offset = 0;
359 }
360 } else {
361 if (dir == DMA_TO_DEVICE)
362 memcpy(dma_addr, phys_to_virt(phys), size);
363 else
364 memcpy(phys_to_virt(phys), dma_addr, size);
365 }
366}
367EXPORT_SYMBOL_GPL(swiotlb_bounce);
368
369void *swiotlb_tbl_map_single(struct device *hwdev, dma_addr_t tbl_dma_addr,
370 phys_addr_t phys, size_t size,
371 enum dma_data_direction dir)
372{
373 unsigned long flags;
374 char *dma_addr;
375 unsigned int nslots, stride, index, wrap;
376 int i;
377 unsigned long mask;
378 unsigned long offset_slots;
379 unsigned long max_slots;
380
381 mask = dma_get_seg_boundary(hwdev);
382
383 tbl_dma_addr &= mask;
384
385 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
386
387 /*
388 * Carefully handle integer overflow which can occur when mask == ~0UL.
389 */
390 max_slots = mask + 1
391 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
392 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
393
394 /*
395 * For mappings greater than a page, we limit the stride (and
396 * hence alignment) to a page size.
397 */
398 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
399 if (size > PAGE_SIZE)
400 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
401 else
402 stride = 1;
403
404 BUG_ON(!nslots);
405
406 /*
407 * Find suitable number of IO TLB entries size that will fit this
408 * request and allocate a buffer from that IO TLB pool.
409 */
410 spin_lock_irqsave(&io_tlb_lock, flags);
411 index = ALIGN(io_tlb_index, stride);
412 if (index >= io_tlb_nslabs)
413 index = 0;
414 wrap = index;
415
416 do {
417 while (iommu_is_span_boundary(index, nslots, offset_slots,
418 max_slots)) {
419 index += stride;
420 if (index >= io_tlb_nslabs)
421 index = 0;
422 if (index == wrap)
423 goto not_found;
424 }
425
426 /*
427 * If we find a slot that indicates we have 'nslots' number of
428 * contiguous buffers, we allocate the buffers from that slot
429 * and mark the entries as '0' indicating unavailable.
430 */
431 if (io_tlb_list[index] >= nslots) {
432 int count = 0;
433
434 for (i = index; i < (int) (index + nslots); i++)
435 io_tlb_list[i] = 0;
436 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
437 io_tlb_list[i] = ++count;
438 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
439
440 /*
441 * Update the indices to avoid searching in the next
442 * round.
443 */
444 io_tlb_index = ((index + nslots) < io_tlb_nslabs
445 ? (index + nslots) : 0);
446
447 goto found;
448 }
449 index += stride;
450 if (index >= io_tlb_nslabs)
451 index = 0;
452 } while (index != wrap);
453
454not_found:
455 spin_unlock_irqrestore(&io_tlb_lock, flags);
456 return NULL;
457found:
458 spin_unlock_irqrestore(&io_tlb_lock, flags);
459
460 /*
461 * Save away the mapping from the original address to the DMA address.
462 * This is needed when we sync the memory. Then we sync the buffer if
463 * needed.
464 */
465 for (i = 0; i < nslots; i++)
466 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
467 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
468 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
469
470 return dma_addr;
471}
472EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
473
474/*
475 * Allocates bounce buffer and returns its kernel virtual address.
476 */
477
478static void *
479map_single(struct device *hwdev, phys_addr_t phys, size_t size,
480 enum dma_data_direction dir)
481{
482 dma_addr_t start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start);
483
484 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size, dir);
485}
486
487/*
488 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
489 */
490void
491swiotlb_tbl_unmap_single(struct device *hwdev, char *dma_addr, size_t size,
492 enum dma_data_direction dir)
493{
494 unsigned long flags;
495 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
496 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
497 phys_addr_t phys = io_tlb_orig_addr[index];
498
499 /*
500 * First, sync the memory before unmapping the entry
501 */
502 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
503 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
504
505 /*
506 * Return the buffer to the free list by setting the corresponding
507 * entries to indicate the number of contiguous entries available.
508 * While returning the entries to the free list, we merge the entries
509 * with slots below and above the pool being returned.
510 */
511 spin_lock_irqsave(&io_tlb_lock, flags);
512 {
513 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
514 io_tlb_list[index + nslots] : 0);
515 /*
516 * Step 1: return the slots to the free list, merging the
517 * slots with superceeding slots
518 */
519 for (i = index + nslots - 1; i >= index; i--)
520 io_tlb_list[i] = ++count;
521 /*
522 * Step 2: merge the returned slots with the preceding slots,
523 * if available (non zero)
524 */
525 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
526 io_tlb_list[i] = ++count;
527 }
528 spin_unlock_irqrestore(&io_tlb_lock, flags);
529}
530EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
531
532void
533swiotlb_tbl_sync_single(struct device *hwdev, char *dma_addr, size_t size,
534 enum dma_data_direction dir,
535 enum dma_sync_target target)
536{
537 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
538 phys_addr_t phys = io_tlb_orig_addr[index];
539
540 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
541
542 switch (target) {
543 case SYNC_FOR_CPU:
544 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
545 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
546 else
547 BUG_ON(dir != DMA_TO_DEVICE);
548 break;
549 case SYNC_FOR_DEVICE:
550 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
551 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
552 else
553 BUG_ON(dir != DMA_FROM_DEVICE);
554 break;
555 default:
556 BUG();
557 }
558}
559EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
560
561void *
562swiotlb_alloc_coherent(struct device *hwdev, size_t size,
563 dma_addr_t *dma_handle, gfp_t flags)
564{
565 dma_addr_t dev_addr;
566 void *ret;
567 int order = get_order(size);
568 u64 dma_mask = DMA_BIT_MASK(32);
569
570 if (hwdev && hwdev->coherent_dma_mask)
571 dma_mask = hwdev->coherent_dma_mask;
572
573 ret = (void *)__get_free_pages(flags, order);
574 if (ret && swiotlb_virt_to_bus(hwdev, ret) + size - 1 > dma_mask) {
575 /*
576 * The allocated memory isn't reachable by the device.
577 */
578 free_pages((unsigned long) ret, order);
579 ret = NULL;
580 }
581 if (!ret) {
582 /*
583 * We are either out of memory or the device can't DMA to
584 * GFP_DMA memory; fall back on map_single(), which
585 * will grab memory from the lowest available address range.
586 */
587 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
588 if (!ret)
589 return NULL;
590 }
591
592 memset(ret, 0, size);
593 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
594
595 /* Confirm address can be DMA'd by device */
596 if (dev_addr + size - 1 > dma_mask) {
597 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
598 (unsigned long long)dma_mask,
599 (unsigned long long)dev_addr);
600
601 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
602 swiotlb_tbl_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
603 return NULL;
604 }
605 *dma_handle = dev_addr;
606 return ret;
607}
608EXPORT_SYMBOL(swiotlb_alloc_coherent);
609
610void
611swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
612 dma_addr_t dev_addr)
613{
614 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
615
616 WARN_ON(irqs_disabled());
617 if (!is_swiotlb_buffer(paddr))
618 free_pages((unsigned long)vaddr, get_order(size));
619 else
620 /* DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single */
621 swiotlb_tbl_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
622}
623EXPORT_SYMBOL(swiotlb_free_coherent);
624
625static void
626swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
627 int do_panic)
628{
629 /*
630 * Ran out of IOMMU space for this operation. This is very bad.
631 * Unfortunately the drivers cannot handle this operation properly.
632 * unless they check for dma_mapping_error (most don't)
633 * When the mapping is small enough return a static buffer to limit
634 * the damage, or panic when the transfer is too big.
635 */
636 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
637 "device %s\n", size, dev ? dev_name(dev) : "?");
638
639 if (size <= io_tlb_overflow || !do_panic)
640 return;
641
642 if (dir == DMA_BIDIRECTIONAL)
643 panic("DMA: Random memory could be DMA accessed\n");
644 if (dir == DMA_FROM_DEVICE)
645 panic("DMA: Random memory could be DMA written\n");
646 if (dir == DMA_TO_DEVICE)
647 panic("DMA: Random memory could be DMA read\n");
648}
649
650/*
651 * Map a single buffer of the indicated size for DMA in streaming mode. The
652 * physical address to use is returned.
653 *
654 * Once the device is given the dma address, the device owns this memory until
655 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
656 */
657dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
658 unsigned long offset, size_t size,
659 enum dma_data_direction dir,
660 struct dma_attrs *attrs)
661{
662 phys_addr_t phys = page_to_phys(page) + offset;
663 dma_addr_t dev_addr = phys_to_dma(dev, phys);
664 void *map;
665
666 BUG_ON(dir == DMA_NONE);
667 /*
668 * If the address happens to be in the device's DMA window,
669 * we can safely return the device addr and not worry about bounce
670 * buffering it.
671 */
672 if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
673 return dev_addr;
674
675 /*
676 * Oh well, have to allocate and map a bounce buffer.
677 */
678 map = map_single(dev, phys, size, dir);
679 if (!map) {
680 swiotlb_full(dev, size, dir, 1);
681 map = io_tlb_overflow_buffer;
682 }
683
684 dev_addr = swiotlb_virt_to_bus(dev, map);
685
686 /*
687 * Ensure that the address returned is DMA'ble
688 */
689 if (!dma_capable(dev, dev_addr, size))
690 panic("map_single: bounce buffer is not DMA'ble");
691
692 return dev_addr;
693}
694EXPORT_SYMBOL_GPL(swiotlb_map_page);
695
696/*
697 * Unmap a single streaming mode DMA translation. The dma_addr and size must
698 * match what was provided for in a previous swiotlb_map_page call. All
699 * other usages are undefined.
700 *
701 * After this call, reads by the cpu to the buffer are guaranteed to see
702 * whatever the device wrote there.
703 */
704static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
705 size_t size, enum dma_data_direction dir)
706{
707 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
708
709 BUG_ON(dir == DMA_NONE);
710
711 if (is_swiotlb_buffer(paddr)) {
712 swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
713 return;
714 }
715
716 if (dir != DMA_FROM_DEVICE)
717 return;
718
719 /*
720 * phys_to_virt doesn't work with hihgmem page but we could
721 * call dma_mark_clean() with hihgmem page here. However, we
722 * are fine since dma_mark_clean() is null on POWERPC. We can
723 * make dma_mark_clean() take a physical address if necessary.
724 */
725 dma_mark_clean(phys_to_virt(paddr), size);
726}
727
728void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
729 size_t size, enum dma_data_direction dir,
730 struct dma_attrs *attrs)
731{
732 unmap_single(hwdev, dev_addr, size, dir);
733}
734EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
735
736/*
737 * Make physical memory consistent for a single streaming mode DMA translation
738 * after a transfer.
739 *
740 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
741 * using the cpu, yet do not wish to teardown the dma mapping, you must
742 * call this function before doing so. At the next point you give the dma
743 * address back to the card, you must first perform a
744 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
745 */
746static void
747swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
748 size_t size, enum dma_data_direction dir,
749 enum dma_sync_target target)
750{
751 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
752
753 BUG_ON(dir == DMA_NONE);
754
755 if (is_swiotlb_buffer(paddr)) {
756 swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
757 target);
758 return;
759 }
760
761 if (dir != DMA_FROM_DEVICE)
762 return;
763
764 dma_mark_clean(phys_to_virt(paddr), size);
765}
766
767void
768swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
769 size_t size, enum dma_data_direction dir)
770{
771 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
772}
773EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
774
775void
776swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
777 size_t size, enum dma_data_direction dir)
778{
779 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
780}
781EXPORT_SYMBOL(swiotlb_sync_single_for_device);
782
783/*
784 * Map a set of buffers described by scatterlist in streaming mode for DMA.
785 * This is the scatter-gather version of the above swiotlb_map_page
786 * interface. Here the scatter gather list elements are each tagged with the
787 * appropriate dma address and length. They are obtained via
788 * sg_dma_{address,length}(SG).
789 *
790 * NOTE: An implementation may be able to use a smaller number of
791 * DMA address/length pairs than there are SG table elements.
792 * (for example via virtual mapping capabilities)
793 * The routine returns the number of addr/length pairs actually
794 * used, at most nents.
795 *
796 * Device ownership issues as mentioned above for swiotlb_map_page are the
797 * same here.
798 */
799int
800swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
801 enum dma_data_direction dir, struct dma_attrs *attrs)
802{
803 struct scatterlist *sg;
804 int i;
805
806 BUG_ON(dir == DMA_NONE);
807
808 for_each_sg(sgl, sg, nelems, i) {
809 phys_addr_t paddr = sg_phys(sg);
810 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
811
812 if (swiotlb_force ||
813 !dma_capable(hwdev, dev_addr, sg->length)) {
814 void *map = map_single(hwdev, sg_phys(sg),
815 sg->length, dir);
816 if (!map) {
817 /* Don't panic here, we expect map_sg users
818 to do proper error handling. */
819 swiotlb_full(hwdev, sg->length, dir, 0);
820 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
821 attrs);
822 sgl[0].dma_length = 0;
823 return 0;
824 }
825 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
826 } else
827 sg->dma_address = dev_addr;
828 sg->dma_length = sg->length;
829 }
830 return nelems;
831}
832EXPORT_SYMBOL(swiotlb_map_sg_attrs);
833
834int
835swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
836 enum dma_data_direction dir)
837{
838 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
839}
840EXPORT_SYMBOL(swiotlb_map_sg);
841
842/*
843 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
844 * concerning calls here are the same as for swiotlb_unmap_page() above.
845 */
846void
847swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
848 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
849{
850 struct scatterlist *sg;
851 int i;
852
853 BUG_ON(dir == DMA_NONE);
854
855 for_each_sg(sgl, sg, nelems, i)
856 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
857
858}
859EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
860
861void
862swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
863 enum dma_data_direction dir)
864{
865 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
866}
867EXPORT_SYMBOL(swiotlb_unmap_sg);
868
869/*
870 * Make physical memory consistent for a set of streaming mode DMA translations
871 * after a transfer.
872 *
873 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
874 * and usage.
875 */
876static void
877swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
878 int nelems, enum dma_data_direction dir,
879 enum dma_sync_target target)
880{
881 struct scatterlist *sg;
882 int i;
883
884 for_each_sg(sgl, sg, nelems, i)
885 swiotlb_sync_single(hwdev, sg->dma_address,
886 sg->dma_length, dir, target);
887}
888
889void
890swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
891 int nelems, enum dma_data_direction dir)
892{
893 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
894}
895EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
896
897void
898swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
899 int nelems, enum dma_data_direction dir)
900{
901 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
902}
903EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
904
905int
906swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
907{
908 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
909}
910EXPORT_SYMBOL(swiotlb_dma_mapping_error);
911
912/*
913 * Return whether the given device DMA address mask can be supported
914 * properly. For example, if your device can only drive the low 24-bits
915 * during bus mastering, then you would pass 0x00ffffff as the mask to
916 * this function.
917 */
918int
919swiotlb_dma_supported(struct device *hwdev, u64 mask)
920{
921 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
922}
923EXPORT_SYMBOL(swiotlb_dma_supported);