]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/cgroup.c
infiniband: remove dev_base_lock use
[net-next-2.6.git] / kernel / cgroup.c
... / ...
CommitLineData
1/*
2 * Generic process-grouping system.
3 *
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
6 *
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
10 *
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
15 *
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
18 *
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
23 *
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
27 */
28
29#include <linux/cgroup.h>
30#include <linux/ctype.h>
31#include <linux/errno.h>
32#include <linux/fs.h>
33#include <linux/kernel.h>
34#include <linux/list.h>
35#include <linux/mm.h>
36#include <linux/mutex.h>
37#include <linux/mount.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/rcupdate.h>
41#include <linux/sched.h>
42#include <linux/backing-dev.h>
43#include <linux/seq_file.h>
44#include <linux/slab.h>
45#include <linux/magic.h>
46#include <linux/spinlock.h>
47#include <linux/string.h>
48#include <linux/sort.h>
49#include <linux/kmod.h>
50#include <linux/module.h>
51#include <linux/delayacct.h>
52#include <linux/cgroupstats.h>
53#include <linux/hash.h>
54#include <linux/namei.h>
55#include <linux/pid_namespace.h>
56#include <linux/idr.h>
57#include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58#include <linux/eventfd.h>
59#include <linux/poll.h>
60
61#include <asm/atomic.h>
62
63static DEFINE_MUTEX(cgroup_mutex);
64
65/*
66 * Generate an array of cgroup subsystem pointers. At boot time, this is
67 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
68 * registered after that. The mutable section of this array is protected by
69 * cgroup_mutex.
70 */
71#define SUBSYS(_x) &_x ## _subsys,
72static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
73#include <linux/cgroup_subsys.h>
74};
75
76#define MAX_CGROUP_ROOT_NAMELEN 64
77
78/*
79 * A cgroupfs_root represents the root of a cgroup hierarchy,
80 * and may be associated with a superblock to form an active
81 * hierarchy
82 */
83struct cgroupfs_root {
84 struct super_block *sb;
85
86 /*
87 * The bitmask of subsystems intended to be attached to this
88 * hierarchy
89 */
90 unsigned long subsys_bits;
91
92 /* Unique id for this hierarchy. */
93 int hierarchy_id;
94
95 /* The bitmask of subsystems currently attached to this hierarchy */
96 unsigned long actual_subsys_bits;
97
98 /* A list running through the attached subsystems */
99 struct list_head subsys_list;
100
101 /* The root cgroup for this hierarchy */
102 struct cgroup top_cgroup;
103
104 /* Tracks how many cgroups are currently defined in hierarchy.*/
105 int number_of_cgroups;
106
107 /* A list running through the active hierarchies */
108 struct list_head root_list;
109
110 /* Hierarchy-specific flags */
111 unsigned long flags;
112
113 /* The path to use for release notifications. */
114 char release_agent_path[PATH_MAX];
115
116 /* The name for this hierarchy - may be empty */
117 char name[MAX_CGROUP_ROOT_NAMELEN];
118};
119
120/*
121 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
122 * subsystems that are otherwise unattached - it never has more than a
123 * single cgroup, and all tasks are part of that cgroup.
124 */
125static struct cgroupfs_root rootnode;
126
127/*
128 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
129 * cgroup_subsys->use_id != 0.
130 */
131#define CSS_ID_MAX (65535)
132struct css_id {
133 /*
134 * The css to which this ID points. This pointer is set to valid value
135 * after cgroup is populated. If cgroup is removed, this will be NULL.
136 * This pointer is expected to be RCU-safe because destroy()
137 * is called after synchronize_rcu(). But for safe use, css_is_removed()
138 * css_tryget() should be used for avoiding race.
139 */
140 struct cgroup_subsys_state __rcu *css;
141 /*
142 * ID of this css.
143 */
144 unsigned short id;
145 /*
146 * Depth in hierarchy which this ID belongs to.
147 */
148 unsigned short depth;
149 /*
150 * ID is freed by RCU. (and lookup routine is RCU safe.)
151 */
152 struct rcu_head rcu_head;
153 /*
154 * Hierarchy of CSS ID belongs to.
155 */
156 unsigned short stack[0]; /* Array of Length (depth+1) */
157};
158
159/*
160 * cgroup_event represents events which userspace want to recieve.
161 */
162struct cgroup_event {
163 /*
164 * Cgroup which the event belongs to.
165 */
166 struct cgroup *cgrp;
167 /*
168 * Control file which the event associated.
169 */
170 struct cftype *cft;
171 /*
172 * eventfd to signal userspace about the event.
173 */
174 struct eventfd_ctx *eventfd;
175 /*
176 * Each of these stored in a list by the cgroup.
177 */
178 struct list_head list;
179 /*
180 * All fields below needed to unregister event when
181 * userspace closes eventfd.
182 */
183 poll_table pt;
184 wait_queue_head_t *wqh;
185 wait_queue_t wait;
186 struct work_struct remove;
187};
188
189/* The list of hierarchy roots */
190
191static LIST_HEAD(roots);
192static int root_count;
193
194static DEFINE_IDA(hierarchy_ida);
195static int next_hierarchy_id;
196static DEFINE_SPINLOCK(hierarchy_id_lock);
197
198/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
199#define dummytop (&rootnode.top_cgroup)
200
201/* This flag indicates whether tasks in the fork and exit paths should
202 * check for fork/exit handlers to call. This avoids us having to do
203 * extra work in the fork/exit path if none of the subsystems need to
204 * be called.
205 */
206static int need_forkexit_callback __read_mostly;
207
208#ifdef CONFIG_PROVE_LOCKING
209int cgroup_lock_is_held(void)
210{
211 return lockdep_is_held(&cgroup_mutex);
212}
213#else /* #ifdef CONFIG_PROVE_LOCKING */
214int cgroup_lock_is_held(void)
215{
216 return mutex_is_locked(&cgroup_mutex);
217}
218#endif /* #else #ifdef CONFIG_PROVE_LOCKING */
219
220EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
221
222/* convenient tests for these bits */
223inline int cgroup_is_removed(const struct cgroup *cgrp)
224{
225 return test_bit(CGRP_REMOVED, &cgrp->flags);
226}
227
228/* bits in struct cgroupfs_root flags field */
229enum {
230 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
231};
232
233static int cgroup_is_releasable(const struct cgroup *cgrp)
234{
235 const int bits =
236 (1 << CGRP_RELEASABLE) |
237 (1 << CGRP_NOTIFY_ON_RELEASE);
238 return (cgrp->flags & bits) == bits;
239}
240
241static int notify_on_release(const struct cgroup *cgrp)
242{
243 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
244}
245
246static int clone_children(const struct cgroup *cgrp)
247{
248 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
249}
250
251/*
252 * for_each_subsys() allows you to iterate on each subsystem attached to
253 * an active hierarchy
254 */
255#define for_each_subsys(_root, _ss) \
256list_for_each_entry(_ss, &_root->subsys_list, sibling)
257
258/* for_each_active_root() allows you to iterate across the active hierarchies */
259#define for_each_active_root(_root) \
260list_for_each_entry(_root, &roots, root_list)
261
262/* the list of cgroups eligible for automatic release. Protected by
263 * release_list_lock */
264static LIST_HEAD(release_list);
265static DEFINE_SPINLOCK(release_list_lock);
266static void cgroup_release_agent(struct work_struct *work);
267static DECLARE_WORK(release_agent_work, cgroup_release_agent);
268static void check_for_release(struct cgroup *cgrp);
269
270/* Link structure for associating css_set objects with cgroups */
271struct cg_cgroup_link {
272 /*
273 * List running through cg_cgroup_links associated with a
274 * cgroup, anchored on cgroup->css_sets
275 */
276 struct list_head cgrp_link_list;
277 struct cgroup *cgrp;
278 /*
279 * List running through cg_cgroup_links pointing at a
280 * single css_set object, anchored on css_set->cg_links
281 */
282 struct list_head cg_link_list;
283 struct css_set *cg;
284};
285
286/* The default css_set - used by init and its children prior to any
287 * hierarchies being mounted. It contains a pointer to the root state
288 * for each subsystem. Also used to anchor the list of css_sets. Not
289 * reference-counted, to improve performance when child cgroups
290 * haven't been created.
291 */
292
293static struct css_set init_css_set;
294static struct cg_cgroup_link init_css_set_link;
295
296static int cgroup_init_idr(struct cgroup_subsys *ss,
297 struct cgroup_subsys_state *css);
298
299/* css_set_lock protects the list of css_set objects, and the
300 * chain of tasks off each css_set. Nests outside task->alloc_lock
301 * due to cgroup_iter_start() */
302static DEFINE_RWLOCK(css_set_lock);
303static int css_set_count;
304
305/*
306 * hash table for cgroup groups. This improves the performance to find
307 * an existing css_set. This hash doesn't (currently) take into
308 * account cgroups in empty hierarchies.
309 */
310#define CSS_SET_HASH_BITS 7
311#define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
312static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
313
314static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
315{
316 int i;
317 int index;
318 unsigned long tmp = 0UL;
319
320 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
321 tmp += (unsigned long)css[i];
322 tmp = (tmp >> 16) ^ tmp;
323
324 index = hash_long(tmp, CSS_SET_HASH_BITS);
325
326 return &css_set_table[index];
327}
328
329static void free_css_set_rcu(struct rcu_head *obj)
330{
331 struct css_set *cg = container_of(obj, struct css_set, rcu_head);
332 kfree(cg);
333}
334
335/* We don't maintain the lists running through each css_set to its
336 * task until after the first call to cgroup_iter_start(). This
337 * reduces the fork()/exit() overhead for people who have cgroups
338 * compiled into their kernel but not actually in use */
339static int use_task_css_set_links __read_mostly;
340
341static void __put_css_set(struct css_set *cg, int taskexit)
342{
343 struct cg_cgroup_link *link;
344 struct cg_cgroup_link *saved_link;
345 /*
346 * Ensure that the refcount doesn't hit zero while any readers
347 * can see it. Similar to atomic_dec_and_lock(), but for an
348 * rwlock
349 */
350 if (atomic_add_unless(&cg->refcount, -1, 1))
351 return;
352 write_lock(&css_set_lock);
353 if (!atomic_dec_and_test(&cg->refcount)) {
354 write_unlock(&css_set_lock);
355 return;
356 }
357
358 /* This css_set is dead. unlink it and release cgroup refcounts */
359 hlist_del(&cg->hlist);
360 css_set_count--;
361
362 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
363 cg_link_list) {
364 struct cgroup *cgrp = link->cgrp;
365 list_del(&link->cg_link_list);
366 list_del(&link->cgrp_link_list);
367 if (atomic_dec_and_test(&cgrp->count) &&
368 notify_on_release(cgrp)) {
369 if (taskexit)
370 set_bit(CGRP_RELEASABLE, &cgrp->flags);
371 check_for_release(cgrp);
372 }
373
374 kfree(link);
375 }
376
377 write_unlock(&css_set_lock);
378 call_rcu(&cg->rcu_head, free_css_set_rcu);
379}
380
381/*
382 * refcounted get/put for css_set objects
383 */
384static inline void get_css_set(struct css_set *cg)
385{
386 atomic_inc(&cg->refcount);
387}
388
389static inline void put_css_set(struct css_set *cg)
390{
391 __put_css_set(cg, 0);
392}
393
394static inline void put_css_set_taskexit(struct css_set *cg)
395{
396 __put_css_set(cg, 1);
397}
398
399/*
400 * compare_css_sets - helper function for find_existing_css_set().
401 * @cg: candidate css_set being tested
402 * @old_cg: existing css_set for a task
403 * @new_cgrp: cgroup that's being entered by the task
404 * @template: desired set of css pointers in css_set (pre-calculated)
405 *
406 * Returns true if "cg" matches "old_cg" except for the hierarchy
407 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
408 */
409static bool compare_css_sets(struct css_set *cg,
410 struct css_set *old_cg,
411 struct cgroup *new_cgrp,
412 struct cgroup_subsys_state *template[])
413{
414 struct list_head *l1, *l2;
415
416 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
417 /* Not all subsystems matched */
418 return false;
419 }
420
421 /*
422 * Compare cgroup pointers in order to distinguish between
423 * different cgroups in heirarchies with no subsystems. We
424 * could get by with just this check alone (and skip the
425 * memcmp above) but on most setups the memcmp check will
426 * avoid the need for this more expensive check on almost all
427 * candidates.
428 */
429
430 l1 = &cg->cg_links;
431 l2 = &old_cg->cg_links;
432 while (1) {
433 struct cg_cgroup_link *cgl1, *cgl2;
434 struct cgroup *cg1, *cg2;
435
436 l1 = l1->next;
437 l2 = l2->next;
438 /* See if we reached the end - both lists are equal length. */
439 if (l1 == &cg->cg_links) {
440 BUG_ON(l2 != &old_cg->cg_links);
441 break;
442 } else {
443 BUG_ON(l2 == &old_cg->cg_links);
444 }
445 /* Locate the cgroups associated with these links. */
446 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
447 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
448 cg1 = cgl1->cgrp;
449 cg2 = cgl2->cgrp;
450 /* Hierarchies should be linked in the same order. */
451 BUG_ON(cg1->root != cg2->root);
452
453 /*
454 * If this hierarchy is the hierarchy of the cgroup
455 * that's changing, then we need to check that this
456 * css_set points to the new cgroup; if it's any other
457 * hierarchy, then this css_set should point to the
458 * same cgroup as the old css_set.
459 */
460 if (cg1->root == new_cgrp->root) {
461 if (cg1 != new_cgrp)
462 return false;
463 } else {
464 if (cg1 != cg2)
465 return false;
466 }
467 }
468 return true;
469}
470
471/*
472 * find_existing_css_set() is a helper for
473 * find_css_set(), and checks to see whether an existing
474 * css_set is suitable.
475 *
476 * oldcg: the cgroup group that we're using before the cgroup
477 * transition
478 *
479 * cgrp: the cgroup that we're moving into
480 *
481 * template: location in which to build the desired set of subsystem
482 * state objects for the new cgroup group
483 */
484static struct css_set *find_existing_css_set(
485 struct css_set *oldcg,
486 struct cgroup *cgrp,
487 struct cgroup_subsys_state *template[])
488{
489 int i;
490 struct cgroupfs_root *root = cgrp->root;
491 struct hlist_head *hhead;
492 struct hlist_node *node;
493 struct css_set *cg;
494
495 /*
496 * Build the set of subsystem state objects that we want to see in the
497 * new css_set. while subsystems can change globally, the entries here
498 * won't change, so no need for locking.
499 */
500 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
501 if (root->subsys_bits & (1UL << i)) {
502 /* Subsystem is in this hierarchy. So we want
503 * the subsystem state from the new
504 * cgroup */
505 template[i] = cgrp->subsys[i];
506 } else {
507 /* Subsystem is not in this hierarchy, so we
508 * don't want to change the subsystem state */
509 template[i] = oldcg->subsys[i];
510 }
511 }
512
513 hhead = css_set_hash(template);
514 hlist_for_each_entry(cg, node, hhead, hlist) {
515 if (!compare_css_sets(cg, oldcg, cgrp, template))
516 continue;
517
518 /* This css_set matches what we need */
519 return cg;
520 }
521
522 /* No existing cgroup group matched */
523 return NULL;
524}
525
526static void free_cg_links(struct list_head *tmp)
527{
528 struct cg_cgroup_link *link;
529 struct cg_cgroup_link *saved_link;
530
531 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
532 list_del(&link->cgrp_link_list);
533 kfree(link);
534 }
535}
536
537/*
538 * allocate_cg_links() allocates "count" cg_cgroup_link structures
539 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
540 * success or a negative error
541 */
542static int allocate_cg_links(int count, struct list_head *tmp)
543{
544 struct cg_cgroup_link *link;
545 int i;
546 INIT_LIST_HEAD(tmp);
547 for (i = 0; i < count; i++) {
548 link = kmalloc(sizeof(*link), GFP_KERNEL);
549 if (!link) {
550 free_cg_links(tmp);
551 return -ENOMEM;
552 }
553 list_add(&link->cgrp_link_list, tmp);
554 }
555 return 0;
556}
557
558/**
559 * link_css_set - a helper function to link a css_set to a cgroup
560 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
561 * @cg: the css_set to be linked
562 * @cgrp: the destination cgroup
563 */
564static void link_css_set(struct list_head *tmp_cg_links,
565 struct css_set *cg, struct cgroup *cgrp)
566{
567 struct cg_cgroup_link *link;
568
569 BUG_ON(list_empty(tmp_cg_links));
570 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
571 cgrp_link_list);
572 link->cg = cg;
573 link->cgrp = cgrp;
574 atomic_inc(&cgrp->count);
575 list_move(&link->cgrp_link_list, &cgrp->css_sets);
576 /*
577 * Always add links to the tail of the list so that the list
578 * is sorted by order of hierarchy creation
579 */
580 list_add_tail(&link->cg_link_list, &cg->cg_links);
581}
582
583/*
584 * find_css_set() takes an existing cgroup group and a
585 * cgroup object, and returns a css_set object that's
586 * equivalent to the old group, but with the given cgroup
587 * substituted into the appropriate hierarchy. Must be called with
588 * cgroup_mutex held
589 */
590static struct css_set *find_css_set(
591 struct css_set *oldcg, struct cgroup *cgrp)
592{
593 struct css_set *res;
594 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
595
596 struct list_head tmp_cg_links;
597
598 struct hlist_head *hhead;
599 struct cg_cgroup_link *link;
600
601 /* First see if we already have a cgroup group that matches
602 * the desired set */
603 read_lock(&css_set_lock);
604 res = find_existing_css_set(oldcg, cgrp, template);
605 if (res)
606 get_css_set(res);
607 read_unlock(&css_set_lock);
608
609 if (res)
610 return res;
611
612 res = kmalloc(sizeof(*res), GFP_KERNEL);
613 if (!res)
614 return NULL;
615
616 /* Allocate all the cg_cgroup_link objects that we'll need */
617 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
618 kfree(res);
619 return NULL;
620 }
621
622 atomic_set(&res->refcount, 1);
623 INIT_LIST_HEAD(&res->cg_links);
624 INIT_LIST_HEAD(&res->tasks);
625 INIT_HLIST_NODE(&res->hlist);
626
627 /* Copy the set of subsystem state objects generated in
628 * find_existing_css_set() */
629 memcpy(res->subsys, template, sizeof(res->subsys));
630
631 write_lock(&css_set_lock);
632 /* Add reference counts and links from the new css_set. */
633 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
634 struct cgroup *c = link->cgrp;
635 if (c->root == cgrp->root)
636 c = cgrp;
637 link_css_set(&tmp_cg_links, res, c);
638 }
639
640 BUG_ON(!list_empty(&tmp_cg_links));
641
642 css_set_count++;
643
644 /* Add this cgroup group to the hash table */
645 hhead = css_set_hash(res->subsys);
646 hlist_add_head(&res->hlist, hhead);
647
648 write_unlock(&css_set_lock);
649
650 return res;
651}
652
653/*
654 * Return the cgroup for "task" from the given hierarchy. Must be
655 * called with cgroup_mutex held.
656 */
657static struct cgroup *task_cgroup_from_root(struct task_struct *task,
658 struct cgroupfs_root *root)
659{
660 struct css_set *css;
661 struct cgroup *res = NULL;
662
663 BUG_ON(!mutex_is_locked(&cgroup_mutex));
664 read_lock(&css_set_lock);
665 /*
666 * No need to lock the task - since we hold cgroup_mutex the
667 * task can't change groups, so the only thing that can happen
668 * is that it exits and its css is set back to init_css_set.
669 */
670 css = task->cgroups;
671 if (css == &init_css_set) {
672 res = &root->top_cgroup;
673 } else {
674 struct cg_cgroup_link *link;
675 list_for_each_entry(link, &css->cg_links, cg_link_list) {
676 struct cgroup *c = link->cgrp;
677 if (c->root == root) {
678 res = c;
679 break;
680 }
681 }
682 }
683 read_unlock(&css_set_lock);
684 BUG_ON(!res);
685 return res;
686}
687
688/*
689 * There is one global cgroup mutex. We also require taking
690 * task_lock() when dereferencing a task's cgroup subsys pointers.
691 * See "The task_lock() exception", at the end of this comment.
692 *
693 * A task must hold cgroup_mutex to modify cgroups.
694 *
695 * Any task can increment and decrement the count field without lock.
696 * So in general, code holding cgroup_mutex can't rely on the count
697 * field not changing. However, if the count goes to zero, then only
698 * cgroup_attach_task() can increment it again. Because a count of zero
699 * means that no tasks are currently attached, therefore there is no
700 * way a task attached to that cgroup can fork (the other way to
701 * increment the count). So code holding cgroup_mutex can safely
702 * assume that if the count is zero, it will stay zero. Similarly, if
703 * a task holds cgroup_mutex on a cgroup with zero count, it
704 * knows that the cgroup won't be removed, as cgroup_rmdir()
705 * needs that mutex.
706 *
707 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
708 * (usually) take cgroup_mutex. These are the two most performance
709 * critical pieces of code here. The exception occurs on cgroup_exit(),
710 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
711 * is taken, and if the cgroup count is zero, a usermode call made
712 * to the release agent with the name of the cgroup (path relative to
713 * the root of cgroup file system) as the argument.
714 *
715 * A cgroup can only be deleted if both its 'count' of using tasks
716 * is zero, and its list of 'children' cgroups is empty. Since all
717 * tasks in the system use _some_ cgroup, and since there is always at
718 * least one task in the system (init, pid == 1), therefore, top_cgroup
719 * always has either children cgroups and/or using tasks. So we don't
720 * need a special hack to ensure that top_cgroup cannot be deleted.
721 *
722 * The task_lock() exception
723 *
724 * The need for this exception arises from the action of
725 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
726 * another. It does so using cgroup_mutex, however there are
727 * several performance critical places that need to reference
728 * task->cgroup without the expense of grabbing a system global
729 * mutex. Therefore except as noted below, when dereferencing or, as
730 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
731 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
732 * the task_struct routinely used for such matters.
733 *
734 * P.S. One more locking exception. RCU is used to guard the
735 * update of a tasks cgroup pointer by cgroup_attach_task()
736 */
737
738/**
739 * cgroup_lock - lock out any changes to cgroup structures
740 *
741 */
742void cgroup_lock(void)
743{
744 mutex_lock(&cgroup_mutex);
745}
746EXPORT_SYMBOL_GPL(cgroup_lock);
747
748/**
749 * cgroup_unlock - release lock on cgroup changes
750 *
751 * Undo the lock taken in a previous cgroup_lock() call.
752 */
753void cgroup_unlock(void)
754{
755 mutex_unlock(&cgroup_mutex);
756}
757EXPORT_SYMBOL_GPL(cgroup_unlock);
758
759/*
760 * A couple of forward declarations required, due to cyclic reference loop:
761 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
762 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
763 * -> cgroup_mkdir.
764 */
765
766static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
767static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
768static int cgroup_populate_dir(struct cgroup *cgrp);
769static const struct inode_operations cgroup_dir_inode_operations;
770static const struct file_operations proc_cgroupstats_operations;
771
772static struct backing_dev_info cgroup_backing_dev_info = {
773 .name = "cgroup",
774 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
775};
776
777static int alloc_css_id(struct cgroup_subsys *ss,
778 struct cgroup *parent, struct cgroup *child);
779
780static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
781{
782 struct inode *inode = new_inode(sb);
783
784 if (inode) {
785 inode->i_ino = get_next_ino();
786 inode->i_mode = mode;
787 inode->i_uid = current_fsuid();
788 inode->i_gid = current_fsgid();
789 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
790 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
791 }
792 return inode;
793}
794
795/*
796 * Call subsys's pre_destroy handler.
797 * This is called before css refcnt check.
798 */
799static int cgroup_call_pre_destroy(struct cgroup *cgrp)
800{
801 struct cgroup_subsys *ss;
802 int ret = 0;
803
804 for_each_subsys(cgrp->root, ss)
805 if (ss->pre_destroy) {
806 ret = ss->pre_destroy(ss, cgrp);
807 if (ret)
808 break;
809 }
810
811 return ret;
812}
813
814static void free_cgroup_rcu(struct rcu_head *obj)
815{
816 struct cgroup *cgrp = container_of(obj, struct cgroup, rcu_head);
817
818 kfree(cgrp);
819}
820
821static void cgroup_diput(struct dentry *dentry, struct inode *inode)
822{
823 /* is dentry a directory ? if so, kfree() associated cgroup */
824 if (S_ISDIR(inode->i_mode)) {
825 struct cgroup *cgrp = dentry->d_fsdata;
826 struct cgroup_subsys *ss;
827 BUG_ON(!(cgroup_is_removed(cgrp)));
828 /* It's possible for external users to be holding css
829 * reference counts on a cgroup; css_put() needs to
830 * be able to access the cgroup after decrementing
831 * the reference count in order to know if it needs to
832 * queue the cgroup to be handled by the release
833 * agent */
834 synchronize_rcu();
835
836 mutex_lock(&cgroup_mutex);
837 /*
838 * Release the subsystem state objects.
839 */
840 for_each_subsys(cgrp->root, ss)
841 ss->destroy(ss, cgrp);
842
843 cgrp->root->number_of_cgroups--;
844 mutex_unlock(&cgroup_mutex);
845
846 /*
847 * Drop the active superblock reference that we took when we
848 * created the cgroup
849 */
850 deactivate_super(cgrp->root->sb);
851
852 /*
853 * if we're getting rid of the cgroup, refcount should ensure
854 * that there are no pidlists left.
855 */
856 BUG_ON(!list_empty(&cgrp->pidlists));
857
858 call_rcu(&cgrp->rcu_head, free_cgroup_rcu);
859 }
860 iput(inode);
861}
862
863static void remove_dir(struct dentry *d)
864{
865 struct dentry *parent = dget(d->d_parent);
866
867 d_delete(d);
868 simple_rmdir(parent->d_inode, d);
869 dput(parent);
870}
871
872static void cgroup_clear_directory(struct dentry *dentry)
873{
874 struct list_head *node;
875
876 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
877 spin_lock(&dcache_lock);
878 node = dentry->d_subdirs.next;
879 while (node != &dentry->d_subdirs) {
880 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
881 list_del_init(node);
882 if (d->d_inode) {
883 /* This should never be called on a cgroup
884 * directory with child cgroups */
885 BUG_ON(d->d_inode->i_mode & S_IFDIR);
886 d = dget_locked(d);
887 spin_unlock(&dcache_lock);
888 d_delete(d);
889 simple_unlink(dentry->d_inode, d);
890 dput(d);
891 spin_lock(&dcache_lock);
892 }
893 node = dentry->d_subdirs.next;
894 }
895 spin_unlock(&dcache_lock);
896}
897
898/*
899 * NOTE : the dentry must have been dget()'ed
900 */
901static void cgroup_d_remove_dir(struct dentry *dentry)
902{
903 cgroup_clear_directory(dentry);
904
905 spin_lock(&dcache_lock);
906 list_del_init(&dentry->d_u.d_child);
907 spin_unlock(&dcache_lock);
908 remove_dir(dentry);
909}
910
911/*
912 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
913 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
914 * reference to css->refcnt. In general, this refcnt is expected to goes down
915 * to zero, soon.
916 *
917 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
918 */
919DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
920
921static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
922{
923 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
924 wake_up_all(&cgroup_rmdir_waitq);
925}
926
927void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
928{
929 css_get(css);
930}
931
932void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
933{
934 cgroup_wakeup_rmdir_waiter(css->cgroup);
935 css_put(css);
936}
937
938/*
939 * Call with cgroup_mutex held. Drops reference counts on modules, including
940 * any duplicate ones that parse_cgroupfs_options took. If this function
941 * returns an error, no reference counts are touched.
942 */
943static int rebind_subsystems(struct cgroupfs_root *root,
944 unsigned long final_bits)
945{
946 unsigned long added_bits, removed_bits;
947 struct cgroup *cgrp = &root->top_cgroup;
948 int i;
949
950 BUG_ON(!mutex_is_locked(&cgroup_mutex));
951
952 removed_bits = root->actual_subsys_bits & ~final_bits;
953 added_bits = final_bits & ~root->actual_subsys_bits;
954 /* Check that any added subsystems are currently free */
955 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
956 unsigned long bit = 1UL << i;
957 struct cgroup_subsys *ss = subsys[i];
958 if (!(bit & added_bits))
959 continue;
960 /*
961 * Nobody should tell us to do a subsys that doesn't exist:
962 * parse_cgroupfs_options should catch that case and refcounts
963 * ensure that subsystems won't disappear once selected.
964 */
965 BUG_ON(ss == NULL);
966 if (ss->root != &rootnode) {
967 /* Subsystem isn't free */
968 return -EBUSY;
969 }
970 }
971
972 /* Currently we don't handle adding/removing subsystems when
973 * any child cgroups exist. This is theoretically supportable
974 * but involves complex error handling, so it's being left until
975 * later */
976 if (root->number_of_cgroups > 1)
977 return -EBUSY;
978
979 /* Process each subsystem */
980 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
981 struct cgroup_subsys *ss = subsys[i];
982 unsigned long bit = 1UL << i;
983 if (bit & added_bits) {
984 /* We're binding this subsystem to this hierarchy */
985 BUG_ON(ss == NULL);
986 BUG_ON(cgrp->subsys[i]);
987 BUG_ON(!dummytop->subsys[i]);
988 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
989 mutex_lock(&ss->hierarchy_mutex);
990 cgrp->subsys[i] = dummytop->subsys[i];
991 cgrp->subsys[i]->cgroup = cgrp;
992 list_move(&ss->sibling, &root->subsys_list);
993 ss->root = root;
994 if (ss->bind)
995 ss->bind(ss, cgrp);
996 mutex_unlock(&ss->hierarchy_mutex);
997 /* refcount was already taken, and we're keeping it */
998 } else if (bit & removed_bits) {
999 /* We're removing this subsystem */
1000 BUG_ON(ss == NULL);
1001 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1002 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1003 mutex_lock(&ss->hierarchy_mutex);
1004 if (ss->bind)
1005 ss->bind(ss, dummytop);
1006 dummytop->subsys[i]->cgroup = dummytop;
1007 cgrp->subsys[i] = NULL;
1008 subsys[i]->root = &rootnode;
1009 list_move(&ss->sibling, &rootnode.subsys_list);
1010 mutex_unlock(&ss->hierarchy_mutex);
1011 /* subsystem is now free - drop reference on module */
1012 module_put(ss->module);
1013 } else if (bit & final_bits) {
1014 /* Subsystem state should already exist */
1015 BUG_ON(ss == NULL);
1016 BUG_ON(!cgrp->subsys[i]);
1017 /*
1018 * a refcount was taken, but we already had one, so
1019 * drop the extra reference.
1020 */
1021 module_put(ss->module);
1022#ifdef CONFIG_MODULE_UNLOAD
1023 BUG_ON(ss->module && !module_refcount(ss->module));
1024#endif
1025 } else {
1026 /* Subsystem state shouldn't exist */
1027 BUG_ON(cgrp->subsys[i]);
1028 }
1029 }
1030 root->subsys_bits = root->actual_subsys_bits = final_bits;
1031 synchronize_rcu();
1032
1033 return 0;
1034}
1035
1036static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1037{
1038 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1039 struct cgroup_subsys *ss;
1040
1041 mutex_lock(&cgroup_mutex);
1042 for_each_subsys(root, ss)
1043 seq_printf(seq, ",%s", ss->name);
1044 if (test_bit(ROOT_NOPREFIX, &root->flags))
1045 seq_puts(seq, ",noprefix");
1046 if (strlen(root->release_agent_path))
1047 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1048 if (clone_children(&root->top_cgroup))
1049 seq_puts(seq, ",clone_children");
1050 if (strlen(root->name))
1051 seq_printf(seq, ",name=%s", root->name);
1052 mutex_unlock(&cgroup_mutex);
1053 return 0;
1054}
1055
1056struct cgroup_sb_opts {
1057 unsigned long subsys_bits;
1058 unsigned long flags;
1059 char *release_agent;
1060 bool clone_children;
1061 char *name;
1062 /* User explicitly requested empty subsystem */
1063 bool none;
1064
1065 struct cgroupfs_root *new_root;
1066
1067};
1068
1069/*
1070 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1071 * with cgroup_mutex held to protect the subsys[] array. This function takes
1072 * refcounts on subsystems to be used, unless it returns error, in which case
1073 * no refcounts are taken.
1074 */
1075static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1076{
1077 char *token, *o = data;
1078 bool all_ss = false, one_ss = false;
1079 unsigned long mask = (unsigned long)-1;
1080 int i;
1081 bool module_pin_failed = false;
1082
1083 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1084
1085#ifdef CONFIG_CPUSETS
1086 mask = ~(1UL << cpuset_subsys_id);
1087#endif
1088
1089 memset(opts, 0, sizeof(*opts));
1090
1091 while ((token = strsep(&o, ",")) != NULL) {
1092 if (!*token)
1093 return -EINVAL;
1094 if (!strcmp(token, "none")) {
1095 /* Explicitly have no subsystems */
1096 opts->none = true;
1097 continue;
1098 }
1099 if (!strcmp(token, "all")) {
1100 /* Mutually exclusive option 'all' + subsystem name */
1101 if (one_ss)
1102 return -EINVAL;
1103 all_ss = true;
1104 continue;
1105 }
1106 if (!strcmp(token, "noprefix")) {
1107 set_bit(ROOT_NOPREFIX, &opts->flags);
1108 continue;
1109 }
1110 if (!strcmp(token, "clone_children")) {
1111 opts->clone_children = true;
1112 continue;
1113 }
1114 if (!strncmp(token, "release_agent=", 14)) {
1115 /* Specifying two release agents is forbidden */
1116 if (opts->release_agent)
1117 return -EINVAL;
1118 opts->release_agent =
1119 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1120 if (!opts->release_agent)
1121 return -ENOMEM;
1122 continue;
1123 }
1124 if (!strncmp(token, "name=", 5)) {
1125 const char *name = token + 5;
1126 /* Can't specify an empty name */
1127 if (!strlen(name))
1128 return -EINVAL;
1129 /* Must match [\w.-]+ */
1130 for (i = 0; i < strlen(name); i++) {
1131 char c = name[i];
1132 if (isalnum(c))
1133 continue;
1134 if ((c == '.') || (c == '-') || (c == '_'))
1135 continue;
1136 return -EINVAL;
1137 }
1138 /* Specifying two names is forbidden */
1139 if (opts->name)
1140 return -EINVAL;
1141 opts->name = kstrndup(name,
1142 MAX_CGROUP_ROOT_NAMELEN - 1,
1143 GFP_KERNEL);
1144 if (!opts->name)
1145 return -ENOMEM;
1146
1147 continue;
1148 }
1149
1150 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1151 struct cgroup_subsys *ss = subsys[i];
1152 if (ss == NULL)
1153 continue;
1154 if (strcmp(token, ss->name))
1155 continue;
1156 if (ss->disabled)
1157 continue;
1158
1159 /* Mutually exclusive option 'all' + subsystem name */
1160 if (all_ss)
1161 return -EINVAL;
1162 set_bit(i, &opts->subsys_bits);
1163 one_ss = true;
1164
1165 break;
1166 }
1167 if (i == CGROUP_SUBSYS_COUNT)
1168 return -ENOENT;
1169 }
1170
1171 /*
1172 * If the 'all' option was specified select all the subsystems,
1173 * otherwise 'all, 'none' and a subsystem name options were not
1174 * specified, let's default to 'all'
1175 */
1176 if (all_ss || (!all_ss && !one_ss && !opts->none)) {
1177 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1178 struct cgroup_subsys *ss = subsys[i];
1179 if (ss == NULL)
1180 continue;
1181 if (ss->disabled)
1182 continue;
1183 set_bit(i, &opts->subsys_bits);
1184 }
1185 }
1186
1187 /* Consistency checks */
1188
1189 /*
1190 * Option noprefix was introduced just for backward compatibility
1191 * with the old cpuset, so we allow noprefix only if mounting just
1192 * the cpuset subsystem.
1193 */
1194 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1195 (opts->subsys_bits & mask))
1196 return -EINVAL;
1197
1198
1199 /* Can't specify "none" and some subsystems */
1200 if (opts->subsys_bits && opts->none)
1201 return -EINVAL;
1202
1203 /*
1204 * We either have to specify by name or by subsystems. (So all
1205 * empty hierarchies must have a name).
1206 */
1207 if (!opts->subsys_bits && !opts->name)
1208 return -EINVAL;
1209
1210 /*
1211 * Grab references on all the modules we'll need, so the subsystems
1212 * don't dance around before rebind_subsystems attaches them. This may
1213 * take duplicate reference counts on a subsystem that's already used,
1214 * but rebind_subsystems handles this case.
1215 */
1216 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1217 unsigned long bit = 1UL << i;
1218
1219 if (!(bit & opts->subsys_bits))
1220 continue;
1221 if (!try_module_get(subsys[i]->module)) {
1222 module_pin_failed = true;
1223 break;
1224 }
1225 }
1226 if (module_pin_failed) {
1227 /*
1228 * oops, one of the modules was going away. this means that we
1229 * raced with a module_delete call, and to the user this is
1230 * essentially a "subsystem doesn't exist" case.
1231 */
1232 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1233 /* drop refcounts only on the ones we took */
1234 unsigned long bit = 1UL << i;
1235
1236 if (!(bit & opts->subsys_bits))
1237 continue;
1238 module_put(subsys[i]->module);
1239 }
1240 return -ENOENT;
1241 }
1242
1243 return 0;
1244}
1245
1246static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1247{
1248 int i;
1249 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1250 unsigned long bit = 1UL << i;
1251
1252 if (!(bit & subsys_bits))
1253 continue;
1254 module_put(subsys[i]->module);
1255 }
1256}
1257
1258static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1259{
1260 int ret = 0;
1261 struct cgroupfs_root *root = sb->s_fs_info;
1262 struct cgroup *cgrp = &root->top_cgroup;
1263 struct cgroup_sb_opts opts;
1264
1265 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1266 mutex_lock(&cgroup_mutex);
1267
1268 /* See what subsystems are wanted */
1269 ret = parse_cgroupfs_options(data, &opts);
1270 if (ret)
1271 goto out_unlock;
1272
1273 /* Don't allow flags or name to change at remount */
1274 if (opts.flags != root->flags ||
1275 (opts.name && strcmp(opts.name, root->name))) {
1276 ret = -EINVAL;
1277 drop_parsed_module_refcounts(opts.subsys_bits);
1278 goto out_unlock;
1279 }
1280
1281 ret = rebind_subsystems(root, opts.subsys_bits);
1282 if (ret) {
1283 drop_parsed_module_refcounts(opts.subsys_bits);
1284 goto out_unlock;
1285 }
1286
1287 /* (re)populate subsystem files */
1288 cgroup_populate_dir(cgrp);
1289
1290 if (opts.release_agent)
1291 strcpy(root->release_agent_path, opts.release_agent);
1292 out_unlock:
1293 kfree(opts.release_agent);
1294 kfree(opts.name);
1295 mutex_unlock(&cgroup_mutex);
1296 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1297 return ret;
1298}
1299
1300static const struct super_operations cgroup_ops = {
1301 .statfs = simple_statfs,
1302 .drop_inode = generic_delete_inode,
1303 .show_options = cgroup_show_options,
1304 .remount_fs = cgroup_remount,
1305};
1306
1307static void init_cgroup_housekeeping(struct cgroup *cgrp)
1308{
1309 INIT_LIST_HEAD(&cgrp->sibling);
1310 INIT_LIST_HEAD(&cgrp->children);
1311 INIT_LIST_HEAD(&cgrp->css_sets);
1312 INIT_LIST_HEAD(&cgrp->release_list);
1313 INIT_LIST_HEAD(&cgrp->pidlists);
1314 mutex_init(&cgrp->pidlist_mutex);
1315 INIT_LIST_HEAD(&cgrp->event_list);
1316 spin_lock_init(&cgrp->event_list_lock);
1317}
1318
1319static void init_cgroup_root(struct cgroupfs_root *root)
1320{
1321 struct cgroup *cgrp = &root->top_cgroup;
1322 INIT_LIST_HEAD(&root->subsys_list);
1323 INIT_LIST_HEAD(&root->root_list);
1324 root->number_of_cgroups = 1;
1325 cgrp->root = root;
1326 cgrp->top_cgroup = cgrp;
1327 init_cgroup_housekeeping(cgrp);
1328}
1329
1330static bool init_root_id(struct cgroupfs_root *root)
1331{
1332 int ret = 0;
1333
1334 do {
1335 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1336 return false;
1337 spin_lock(&hierarchy_id_lock);
1338 /* Try to allocate the next unused ID */
1339 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1340 &root->hierarchy_id);
1341 if (ret == -ENOSPC)
1342 /* Try again starting from 0 */
1343 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1344 if (!ret) {
1345 next_hierarchy_id = root->hierarchy_id + 1;
1346 } else if (ret != -EAGAIN) {
1347 /* Can only get here if the 31-bit IDR is full ... */
1348 BUG_ON(ret);
1349 }
1350 spin_unlock(&hierarchy_id_lock);
1351 } while (ret);
1352 return true;
1353}
1354
1355static int cgroup_test_super(struct super_block *sb, void *data)
1356{
1357 struct cgroup_sb_opts *opts = data;
1358 struct cgroupfs_root *root = sb->s_fs_info;
1359
1360 /* If we asked for a name then it must match */
1361 if (opts->name && strcmp(opts->name, root->name))
1362 return 0;
1363
1364 /*
1365 * If we asked for subsystems (or explicitly for no
1366 * subsystems) then they must match
1367 */
1368 if ((opts->subsys_bits || opts->none)
1369 && (opts->subsys_bits != root->subsys_bits))
1370 return 0;
1371
1372 return 1;
1373}
1374
1375static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1376{
1377 struct cgroupfs_root *root;
1378
1379 if (!opts->subsys_bits && !opts->none)
1380 return NULL;
1381
1382 root = kzalloc(sizeof(*root), GFP_KERNEL);
1383 if (!root)
1384 return ERR_PTR(-ENOMEM);
1385
1386 if (!init_root_id(root)) {
1387 kfree(root);
1388 return ERR_PTR(-ENOMEM);
1389 }
1390 init_cgroup_root(root);
1391
1392 root->subsys_bits = opts->subsys_bits;
1393 root->flags = opts->flags;
1394 if (opts->release_agent)
1395 strcpy(root->release_agent_path, opts->release_agent);
1396 if (opts->name)
1397 strcpy(root->name, opts->name);
1398 if (opts->clone_children)
1399 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1400 return root;
1401}
1402
1403static void cgroup_drop_root(struct cgroupfs_root *root)
1404{
1405 if (!root)
1406 return;
1407
1408 BUG_ON(!root->hierarchy_id);
1409 spin_lock(&hierarchy_id_lock);
1410 ida_remove(&hierarchy_ida, root->hierarchy_id);
1411 spin_unlock(&hierarchy_id_lock);
1412 kfree(root);
1413}
1414
1415static int cgroup_set_super(struct super_block *sb, void *data)
1416{
1417 int ret;
1418 struct cgroup_sb_opts *opts = data;
1419
1420 /* If we don't have a new root, we can't set up a new sb */
1421 if (!opts->new_root)
1422 return -EINVAL;
1423
1424 BUG_ON(!opts->subsys_bits && !opts->none);
1425
1426 ret = set_anon_super(sb, NULL);
1427 if (ret)
1428 return ret;
1429
1430 sb->s_fs_info = opts->new_root;
1431 opts->new_root->sb = sb;
1432
1433 sb->s_blocksize = PAGE_CACHE_SIZE;
1434 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1435 sb->s_magic = CGROUP_SUPER_MAGIC;
1436 sb->s_op = &cgroup_ops;
1437
1438 return 0;
1439}
1440
1441static int cgroup_get_rootdir(struct super_block *sb)
1442{
1443 struct inode *inode =
1444 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1445 struct dentry *dentry;
1446
1447 if (!inode)
1448 return -ENOMEM;
1449
1450 inode->i_fop = &simple_dir_operations;
1451 inode->i_op = &cgroup_dir_inode_operations;
1452 /* directories start off with i_nlink == 2 (for "." entry) */
1453 inc_nlink(inode);
1454 dentry = d_alloc_root(inode);
1455 if (!dentry) {
1456 iput(inode);
1457 return -ENOMEM;
1458 }
1459 sb->s_root = dentry;
1460 return 0;
1461}
1462
1463static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1464 int flags, const char *unused_dev_name,
1465 void *data)
1466{
1467 struct cgroup_sb_opts opts;
1468 struct cgroupfs_root *root;
1469 int ret = 0;
1470 struct super_block *sb;
1471 struct cgroupfs_root *new_root;
1472
1473 /* First find the desired set of subsystems */
1474 mutex_lock(&cgroup_mutex);
1475 ret = parse_cgroupfs_options(data, &opts);
1476 mutex_unlock(&cgroup_mutex);
1477 if (ret)
1478 goto out_err;
1479
1480 /*
1481 * Allocate a new cgroup root. We may not need it if we're
1482 * reusing an existing hierarchy.
1483 */
1484 new_root = cgroup_root_from_opts(&opts);
1485 if (IS_ERR(new_root)) {
1486 ret = PTR_ERR(new_root);
1487 goto drop_modules;
1488 }
1489 opts.new_root = new_root;
1490
1491 /* Locate an existing or new sb for this hierarchy */
1492 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1493 if (IS_ERR(sb)) {
1494 ret = PTR_ERR(sb);
1495 cgroup_drop_root(opts.new_root);
1496 goto drop_modules;
1497 }
1498
1499 root = sb->s_fs_info;
1500 BUG_ON(!root);
1501 if (root == opts.new_root) {
1502 /* We used the new root structure, so this is a new hierarchy */
1503 struct list_head tmp_cg_links;
1504 struct cgroup *root_cgrp = &root->top_cgroup;
1505 struct inode *inode;
1506 struct cgroupfs_root *existing_root;
1507 int i;
1508
1509 BUG_ON(sb->s_root != NULL);
1510
1511 ret = cgroup_get_rootdir(sb);
1512 if (ret)
1513 goto drop_new_super;
1514 inode = sb->s_root->d_inode;
1515
1516 mutex_lock(&inode->i_mutex);
1517 mutex_lock(&cgroup_mutex);
1518
1519 if (strlen(root->name)) {
1520 /* Check for name clashes with existing mounts */
1521 for_each_active_root(existing_root) {
1522 if (!strcmp(existing_root->name, root->name)) {
1523 ret = -EBUSY;
1524 mutex_unlock(&cgroup_mutex);
1525 mutex_unlock(&inode->i_mutex);
1526 goto drop_new_super;
1527 }
1528 }
1529 }
1530
1531 /*
1532 * We're accessing css_set_count without locking
1533 * css_set_lock here, but that's OK - it can only be
1534 * increased by someone holding cgroup_lock, and
1535 * that's us. The worst that can happen is that we
1536 * have some link structures left over
1537 */
1538 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1539 if (ret) {
1540 mutex_unlock(&cgroup_mutex);
1541 mutex_unlock(&inode->i_mutex);
1542 goto drop_new_super;
1543 }
1544
1545 ret = rebind_subsystems(root, root->subsys_bits);
1546 if (ret == -EBUSY) {
1547 mutex_unlock(&cgroup_mutex);
1548 mutex_unlock(&inode->i_mutex);
1549 free_cg_links(&tmp_cg_links);
1550 goto drop_new_super;
1551 }
1552 /*
1553 * There must be no failure case after here, since rebinding
1554 * takes care of subsystems' refcounts, which are explicitly
1555 * dropped in the failure exit path.
1556 */
1557
1558 /* EBUSY should be the only error here */
1559 BUG_ON(ret);
1560
1561 list_add(&root->root_list, &roots);
1562 root_count++;
1563
1564 sb->s_root->d_fsdata = root_cgrp;
1565 root->top_cgroup.dentry = sb->s_root;
1566
1567 /* Link the top cgroup in this hierarchy into all
1568 * the css_set objects */
1569 write_lock(&css_set_lock);
1570 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1571 struct hlist_head *hhead = &css_set_table[i];
1572 struct hlist_node *node;
1573 struct css_set *cg;
1574
1575 hlist_for_each_entry(cg, node, hhead, hlist)
1576 link_css_set(&tmp_cg_links, cg, root_cgrp);
1577 }
1578 write_unlock(&css_set_lock);
1579
1580 free_cg_links(&tmp_cg_links);
1581
1582 BUG_ON(!list_empty(&root_cgrp->sibling));
1583 BUG_ON(!list_empty(&root_cgrp->children));
1584 BUG_ON(root->number_of_cgroups != 1);
1585
1586 cgroup_populate_dir(root_cgrp);
1587 mutex_unlock(&cgroup_mutex);
1588 mutex_unlock(&inode->i_mutex);
1589 } else {
1590 /*
1591 * We re-used an existing hierarchy - the new root (if
1592 * any) is not needed
1593 */
1594 cgroup_drop_root(opts.new_root);
1595 /* no subsys rebinding, so refcounts don't change */
1596 drop_parsed_module_refcounts(opts.subsys_bits);
1597 }
1598
1599 kfree(opts.release_agent);
1600 kfree(opts.name);
1601 return dget(sb->s_root);
1602
1603 drop_new_super:
1604 deactivate_locked_super(sb);
1605 drop_modules:
1606 drop_parsed_module_refcounts(opts.subsys_bits);
1607 out_err:
1608 kfree(opts.release_agent);
1609 kfree(opts.name);
1610 return ERR_PTR(ret);
1611}
1612
1613static void cgroup_kill_sb(struct super_block *sb) {
1614 struct cgroupfs_root *root = sb->s_fs_info;
1615 struct cgroup *cgrp = &root->top_cgroup;
1616 int ret;
1617 struct cg_cgroup_link *link;
1618 struct cg_cgroup_link *saved_link;
1619
1620 BUG_ON(!root);
1621
1622 BUG_ON(root->number_of_cgroups != 1);
1623 BUG_ON(!list_empty(&cgrp->children));
1624 BUG_ON(!list_empty(&cgrp->sibling));
1625
1626 mutex_lock(&cgroup_mutex);
1627
1628 /* Rebind all subsystems back to the default hierarchy */
1629 ret = rebind_subsystems(root, 0);
1630 /* Shouldn't be able to fail ... */
1631 BUG_ON(ret);
1632
1633 /*
1634 * Release all the links from css_sets to this hierarchy's
1635 * root cgroup
1636 */
1637 write_lock(&css_set_lock);
1638
1639 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1640 cgrp_link_list) {
1641 list_del(&link->cg_link_list);
1642 list_del(&link->cgrp_link_list);
1643 kfree(link);
1644 }
1645 write_unlock(&css_set_lock);
1646
1647 if (!list_empty(&root->root_list)) {
1648 list_del(&root->root_list);
1649 root_count--;
1650 }
1651
1652 mutex_unlock(&cgroup_mutex);
1653
1654 kill_litter_super(sb);
1655 cgroup_drop_root(root);
1656}
1657
1658static struct file_system_type cgroup_fs_type = {
1659 .name = "cgroup",
1660 .mount = cgroup_mount,
1661 .kill_sb = cgroup_kill_sb,
1662};
1663
1664static struct kobject *cgroup_kobj;
1665
1666static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1667{
1668 return dentry->d_fsdata;
1669}
1670
1671static inline struct cftype *__d_cft(struct dentry *dentry)
1672{
1673 return dentry->d_fsdata;
1674}
1675
1676/**
1677 * cgroup_path - generate the path of a cgroup
1678 * @cgrp: the cgroup in question
1679 * @buf: the buffer to write the path into
1680 * @buflen: the length of the buffer
1681 *
1682 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1683 * reference. Writes path of cgroup into buf. Returns 0 on success,
1684 * -errno on error.
1685 */
1686int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1687{
1688 char *start;
1689 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1690 rcu_read_lock_held() ||
1691 cgroup_lock_is_held());
1692
1693 if (!dentry || cgrp == dummytop) {
1694 /*
1695 * Inactive subsystems have no dentry for their root
1696 * cgroup
1697 */
1698 strcpy(buf, "/");
1699 return 0;
1700 }
1701
1702 start = buf + buflen;
1703
1704 *--start = '\0';
1705 for (;;) {
1706 int len = dentry->d_name.len;
1707
1708 if ((start -= len) < buf)
1709 return -ENAMETOOLONG;
1710 memcpy(start, dentry->d_name.name, len);
1711 cgrp = cgrp->parent;
1712 if (!cgrp)
1713 break;
1714
1715 dentry = rcu_dereference_check(cgrp->dentry,
1716 rcu_read_lock_held() ||
1717 cgroup_lock_is_held());
1718 if (!cgrp->parent)
1719 continue;
1720 if (--start < buf)
1721 return -ENAMETOOLONG;
1722 *start = '/';
1723 }
1724 memmove(buf, start, buf + buflen - start);
1725 return 0;
1726}
1727EXPORT_SYMBOL_GPL(cgroup_path);
1728
1729/**
1730 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1731 * @cgrp: the cgroup the task is attaching to
1732 * @tsk: the task to be attached
1733 *
1734 * Call holding cgroup_mutex. May take task_lock of
1735 * the task 'tsk' during call.
1736 */
1737int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1738{
1739 int retval = 0;
1740 struct cgroup_subsys *ss, *failed_ss = NULL;
1741 struct cgroup *oldcgrp;
1742 struct css_set *cg;
1743 struct css_set *newcg;
1744 struct cgroupfs_root *root = cgrp->root;
1745
1746 /* Nothing to do if the task is already in that cgroup */
1747 oldcgrp = task_cgroup_from_root(tsk, root);
1748 if (cgrp == oldcgrp)
1749 return 0;
1750
1751 for_each_subsys(root, ss) {
1752 if (ss->can_attach) {
1753 retval = ss->can_attach(ss, cgrp, tsk, false);
1754 if (retval) {
1755 /*
1756 * Remember on which subsystem the can_attach()
1757 * failed, so that we only call cancel_attach()
1758 * against the subsystems whose can_attach()
1759 * succeeded. (See below)
1760 */
1761 failed_ss = ss;
1762 goto out;
1763 }
1764 }
1765 }
1766
1767 task_lock(tsk);
1768 cg = tsk->cgroups;
1769 get_css_set(cg);
1770 task_unlock(tsk);
1771 /*
1772 * Locate or allocate a new css_set for this task,
1773 * based on its final set of cgroups
1774 */
1775 newcg = find_css_set(cg, cgrp);
1776 put_css_set(cg);
1777 if (!newcg) {
1778 retval = -ENOMEM;
1779 goto out;
1780 }
1781
1782 task_lock(tsk);
1783 if (tsk->flags & PF_EXITING) {
1784 task_unlock(tsk);
1785 put_css_set(newcg);
1786 retval = -ESRCH;
1787 goto out;
1788 }
1789 rcu_assign_pointer(tsk->cgroups, newcg);
1790 task_unlock(tsk);
1791
1792 /* Update the css_set linked lists if we're using them */
1793 write_lock(&css_set_lock);
1794 if (!list_empty(&tsk->cg_list)) {
1795 list_del(&tsk->cg_list);
1796 list_add(&tsk->cg_list, &newcg->tasks);
1797 }
1798 write_unlock(&css_set_lock);
1799
1800 for_each_subsys(root, ss) {
1801 if (ss->attach)
1802 ss->attach(ss, cgrp, oldcgrp, tsk, false);
1803 }
1804 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1805 synchronize_rcu();
1806 put_css_set(cg);
1807
1808 /*
1809 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1810 * is no longer empty.
1811 */
1812 cgroup_wakeup_rmdir_waiter(cgrp);
1813out:
1814 if (retval) {
1815 for_each_subsys(root, ss) {
1816 if (ss == failed_ss)
1817 /*
1818 * This subsystem was the one that failed the
1819 * can_attach() check earlier, so we don't need
1820 * to call cancel_attach() against it or any
1821 * remaining subsystems.
1822 */
1823 break;
1824 if (ss->cancel_attach)
1825 ss->cancel_attach(ss, cgrp, tsk, false);
1826 }
1827 }
1828 return retval;
1829}
1830
1831/**
1832 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1833 * @from: attach to all cgroups of a given task
1834 * @tsk: the task to be attached
1835 */
1836int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1837{
1838 struct cgroupfs_root *root;
1839 int retval = 0;
1840
1841 cgroup_lock();
1842 for_each_active_root(root) {
1843 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1844
1845 retval = cgroup_attach_task(from_cg, tsk);
1846 if (retval)
1847 break;
1848 }
1849 cgroup_unlock();
1850
1851 return retval;
1852}
1853EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1854
1855/*
1856 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1857 * held. May take task_lock of task
1858 */
1859static int attach_task_by_pid(struct cgroup *cgrp, u64 pid)
1860{
1861 struct task_struct *tsk;
1862 const struct cred *cred = current_cred(), *tcred;
1863 int ret;
1864
1865 if (pid) {
1866 rcu_read_lock();
1867 tsk = find_task_by_vpid(pid);
1868 if (!tsk || tsk->flags & PF_EXITING) {
1869 rcu_read_unlock();
1870 return -ESRCH;
1871 }
1872
1873 tcred = __task_cred(tsk);
1874 if (cred->euid &&
1875 cred->euid != tcred->uid &&
1876 cred->euid != tcred->suid) {
1877 rcu_read_unlock();
1878 return -EACCES;
1879 }
1880 get_task_struct(tsk);
1881 rcu_read_unlock();
1882 } else {
1883 tsk = current;
1884 get_task_struct(tsk);
1885 }
1886
1887 ret = cgroup_attach_task(cgrp, tsk);
1888 put_task_struct(tsk);
1889 return ret;
1890}
1891
1892static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
1893{
1894 int ret;
1895 if (!cgroup_lock_live_group(cgrp))
1896 return -ENODEV;
1897 ret = attach_task_by_pid(cgrp, pid);
1898 cgroup_unlock();
1899 return ret;
1900}
1901
1902/**
1903 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1904 * @cgrp: the cgroup to be checked for liveness
1905 *
1906 * On success, returns true; the lock should be later released with
1907 * cgroup_unlock(). On failure returns false with no lock held.
1908 */
1909bool cgroup_lock_live_group(struct cgroup *cgrp)
1910{
1911 mutex_lock(&cgroup_mutex);
1912 if (cgroup_is_removed(cgrp)) {
1913 mutex_unlock(&cgroup_mutex);
1914 return false;
1915 }
1916 return true;
1917}
1918EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
1919
1920static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
1921 const char *buffer)
1922{
1923 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
1924 if (strlen(buffer) >= PATH_MAX)
1925 return -EINVAL;
1926 if (!cgroup_lock_live_group(cgrp))
1927 return -ENODEV;
1928 strcpy(cgrp->root->release_agent_path, buffer);
1929 cgroup_unlock();
1930 return 0;
1931}
1932
1933static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
1934 struct seq_file *seq)
1935{
1936 if (!cgroup_lock_live_group(cgrp))
1937 return -ENODEV;
1938 seq_puts(seq, cgrp->root->release_agent_path);
1939 seq_putc(seq, '\n');
1940 cgroup_unlock();
1941 return 0;
1942}
1943
1944/* A buffer size big enough for numbers or short strings */
1945#define CGROUP_LOCAL_BUFFER_SIZE 64
1946
1947static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
1948 struct file *file,
1949 const char __user *userbuf,
1950 size_t nbytes, loff_t *unused_ppos)
1951{
1952 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
1953 int retval = 0;
1954 char *end;
1955
1956 if (!nbytes)
1957 return -EINVAL;
1958 if (nbytes >= sizeof(buffer))
1959 return -E2BIG;
1960 if (copy_from_user(buffer, userbuf, nbytes))
1961 return -EFAULT;
1962
1963 buffer[nbytes] = 0; /* nul-terminate */
1964 if (cft->write_u64) {
1965 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
1966 if (*end)
1967 return -EINVAL;
1968 retval = cft->write_u64(cgrp, cft, val);
1969 } else {
1970 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
1971 if (*end)
1972 return -EINVAL;
1973 retval = cft->write_s64(cgrp, cft, val);
1974 }
1975 if (!retval)
1976 retval = nbytes;
1977 return retval;
1978}
1979
1980static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
1981 struct file *file,
1982 const char __user *userbuf,
1983 size_t nbytes, loff_t *unused_ppos)
1984{
1985 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
1986 int retval = 0;
1987 size_t max_bytes = cft->max_write_len;
1988 char *buffer = local_buffer;
1989
1990 if (!max_bytes)
1991 max_bytes = sizeof(local_buffer) - 1;
1992 if (nbytes >= max_bytes)
1993 return -E2BIG;
1994 /* Allocate a dynamic buffer if we need one */
1995 if (nbytes >= sizeof(local_buffer)) {
1996 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1997 if (buffer == NULL)
1998 return -ENOMEM;
1999 }
2000 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2001 retval = -EFAULT;
2002 goto out;
2003 }
2004
2005 buffer[nbytes] = 0; /* nul-terminate */
2006 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2007 if (!retval)
2008 retval = nbytes;
2009out:
2010 if (buffer != local_buffer)
2011 kfree(buffer);
2012 return retval;
2013}
2014
2015static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2016 size_t nbytes, loff_t *ppos)
2017{
2018 struct cftype *cft = __d_cft(file->f_dentry);
2019 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2020
2021 if (cgroup_is_removed(cgrp))
2022 return -ENODEV;
2023 if (cft->write)
2024 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2025 if (cft->write_u64 || cft->write_s64)
2026 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2027 if (cft->write_string)
2028 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2029 if (cft->trigger) {
2030 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2031 return ret ? ret : nbytes;
2032 }
2033 return -EINVAL;
2034}
2035
2036static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2037 struct file *file,
2038 char __user *buf, size_t nbytes,
2039 loff_t *ppos)
2040{
2041 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2042 u64 val = cft->read_u64(cgrp, cft);
2043 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2044
2045 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2046}
2047
2048static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2049 struct file *file,
2050 char __user *buf, size_t nbytes,
2051 loff_t *ppos)
2052{
2053 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2054 s64 val = cft->read_s64(cgrp, cft);
2055 int len = sprintf(tmp, "%lld\n", (long long) val);
2056
2057 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2058}
2059
2060static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2061 size_t nbytes, loff_t *ppos)
2062{
2063 struct cftype *cft = __d_cft(file->f_dentry);
2064 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2065
2066 if (cgroup_is_removed(cgrp))
2067 return -ENODEV;
2068
2069 if (cft->read)
2070 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2071 if (cft->read_u64)
2072 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2073 if (cft->read_s64)
2074 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2075 return -EINVAL;
2076}
2077
2078/*
2079 * seqfile ops/methods for returning structured data. Currently just
2080 * supports string->u64 maps, but can be extended in future.
2081 */
2082
2083struct cgroup_seqfile_state {
2084 struct cftype *cft;
2085 struct cgroup *cgroup;
2086};
2087
2088static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2089{
2090 struct seq_file *sf = cb->state;
2091 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2092}
2093
2094static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2095{
2096 struct cgroup_seqfile_state *state = m->private;
2097 struct cftype *cft = state->cft;
2098 if (cft->read_map) {
2099 struct cgroup_map_cb cb = {
2100 .fill = cgroup_map_add,
2101 .state = m,
2102 };
2103 return cft->read_map(state->cgroup, cft, &cb);
2104 }
2105 return cft->read_seq_string(state->cgroup, cft, m);
2106}
2107
2108static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2109{
2110 struct seq_file *seq = file->private_data;
2111 kfree(seq->private);
2112 return single_release(inode, file);
2113}
2114
2115static const struct file_operations cgroup_seqfile_operations = {
2116 .read = seq_read,
2117 .write = cgroup_file_write,
2118 .llseek = seq_lseek,
2119 .release = cgroup_seqfile_release,
2120};
2121
2122static int cgroup_file_open(struct inode *inode, struct file *file)
2123{
2124 int err;
2125 struct cftype *cft;
2126
2127 err = generic_file_open(inode, file);
2128 if (err)
2129 return err;
2130 cft = __d_cft(file->f_dentry);
2131
2132 if (cft->read_map || cft->read_seq_string) {
2133 struct cgroup_seqfile_state *state =
2134 kzalloc(sizeof(*state), GFP_USER);
2135 if (!state)
2136 return -ENOMEM;
2137 state->cft = cft;
2138 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2139 file->f_op = &cgroup_seqfile_operations;
2140 err = single_open(file, cgroup_seqfile_show, state);
2141 if (err < 0)
2142 kfree(state);
2143 } else if (cft->open)
2144 err = cft->open(inode, file);
2145 else
2146 err = 0;
2147
2148 return err;
2149}
2150
2151static int cgroup_file_release(struct inode *inode, struct file *file)
2152{
2153 struct cftype *cft = __d_cft(file->f_dentry);
2154 if (cft->release)
2155 return cft->release(inode, file);
2156 return 0;
2157}
2158
2159/*
2160 * cgroup_rename - Only allow simple rename of directories in place.
2161 */
2162static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2163 struct inode *new_dir, struct dentry *new_dentry)
2164{
2165 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2166 return -ENOTDIR;
2167 if (new_dentry->d_inode)
2168 return -EEXIST;
2169 if (old_dir != new_dir)
2170 return -EIO;
2171 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2172}
2173
2174static const struct file_operations cgroup_file_operations = {
2175 .read = cgroup_file_read,
2176 .write = cgroup_file_write,
2177 .llseek = generic_file_llseek,
2178 .open = cgroup_file_open,
2179 .release = cgroup_file_release,
2180};
2181
2182static const struct inode_operations cgroup_dir_inode_operations = {
2183 .lookup = simple_lookup,
2184 .mkdir = cgroup_mkdir,
2185 .rmdir = cgroup_rmdir,
2186 .rename = cgroup_rename,
2187};
2188
2189/*
2190 * Check if a file is a control file
2191 */
2192static inline struct cftype *__file_cft(struct file *file)
2193{
2194 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2195 return ERR_PTR(-EINVAL);
2196 return __d_cft(file->f_dentry);
2197}
2198
2199static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2200 struct super_block *sb)
2201{
2202 static const struct dentry_operations cgroup_dops = {
2203 .d_iput = cgroup_diput,
2204 };
2205
2206 struct inode *inode;
2207
2208 if (!dentry)
2209 return -ENOENT;
2210 if (dentry->d_inode)
2211 return -EEXIST;
2212
2213 inode = cgroup_new_inode(mode, sb);
2214 if (!inode)
2215 return -ENOMEM;
2216
2217 if (S_ISDIR(mode)) {
2218 inode->i_op = &cgroup_dir_inode_operations;
2219 inode->i_fop = &simple_dir_operations;
2220
2221 /* start off with i_nlink == 2 (for "." entry) */
2222 inc_nlink(inode);
2223
2224 /* start with the directory inode held, so that we can
2225 * populate it without racing with another mkdir */
2226 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2227 } else if (S_ISREG(mode)) {
2228 inode->i_size = 0;
2229 inode->i_fop = &cgroup_file_operations;
2230 }
2231 dentry->d_op = &cgroup_dops;
2232 d_instantiate(dentry, inode);
2233 dget(dentry); /* Extra count - pin the dentry in core */
2234 return 0;
2235}
2236
2237/*
2238 * cgroup_create_dir - create a directory for an object.
2239 * @cgrp: the cgroup we create the directory for. It must have a valid
2240 * ->parent field. And we are going to fill its ->dentry field.
2241 * @dentry: dentry of the new cgroup
2242 * @mode: mode to set on new directory.
2243 */
2244static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2245 mode_t mode)
2246{
2247 struct dentry *parent;
2248 int error = 0;
2249
2250 parent = cgrp->parent->dentry;
2251 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2252 if (!error) {
2253 dentry->d_fsdata = cgrp;
2254 inc_nlink(parent->d_inode);
2255 rcu_assign_pointer(cgrp->dentry, dentry);
2256 dget(dentry);
2257 }
2258 dput(dentry);
2259
2260 return error;
2261}
2262
2263/**
2264 * cgroup_file_mode - deduce file mode of a control file
2265 * @cft: the control file in question
2266 *
2267 * returns cft->mode if ->mode is not 0
2268 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2269 * returns S_IRUGO if it has only a read handler
2270 * returns S_IWUSR if it has only a write hander
2271 */
2272static mode_t cgroup_file_mode(const struct cftype *cft)
2273{
2274 mode_t mode = 0;
2275
2276 if (cft->mode)
2277 return cft->mode;
2278
2279 if (cft->read || cft->read_u64 || cft->read_s64 ||
2280 cft->read_map || cft->read_seq_string)
2281 mode |= S_IRUGO;
2282
2283 if (cft->write || cft->write_u64 || cft->write_s64 ||
2284 cft->write_string || cft->trigger)
2285 mode |= S_IWUSR;
2286
2287 return mode;
2288}
2289
2290int cgroup_add_file(struct cgroup *cgrp,
2291 struct cgroup_subsys *subsys,
2292 const struct cftype *cft)
2293{
2294 struct dentry *dir = cgrp->dentry;
2295 struct dentry *dentry;
2296 int error;
2297 mode_t mode;
2298
2299 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2300 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2301 strcpy(name, subsys->name);
2302 strcat(name, ".");
2303 }
2304 strcat(name, cft->name);
2305 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2306 dentry = lookup_one_len(name, dir, strlen(name));
2307 if (!IS_ERR(dentry)) {
2308 mode = cgroup_file_mode(cft);
2309 error = cgroup_create_file(dentry, mode | S_IFREG,
2310 cgrp->root->sb);
2311 if (!error)
2312 dentry->d_fsdata = (void *)cft;
2313 dput(dentry);
2314 } else
2315 error = PTR_ERR(dentry);
2316 return error;
2317}
2318EXPORT_SYMBOL_GPL(cgroup_add_file);
2319
2320int cgroup_add_files(struct cgroup *cgrp,
2321 struct cgroup_subsys *subsys,
2322 const struct cftype cft[],
2323 int count)
2324{
2325 int i, err;
2326 for (i = 0; i < count; i++) {
2327 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2328 if (err)
2329 return err;
2330 }
2331 return 0;
2332}
2333EXPORT_SYMBOL_GPL(cgroup_add_files);
2334
2335/**
2336 * cgroup_task_count - count the number of tasks in a cgroup.
2337 * @cgrp: the cgroup in question
2338 *
2339 * Return the number of tasks in the cgroup.
2340 */
2341int cgroup_task_count(const struct cgroup *cgrp)
2342{
2343 int count = 0;
2344 struct cg_cgroup_link *link;
2345
2346 read_lock(&css_set_lock);
2347 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2348 count += atomic_read(&link->cg->refcount);
2349 }
2350 read_unlock(&css_set_lock);
2351 return count;
2352}
2353
2354/*
2355 * Advance a list_head iterator. The iterator should be positioned at
2356 * the start of a css_set
2357 */
2358static void cgroup_advance_iter(struct cgroup *cgrp,
2359 struct cgroup_iter *it)
2360{
2361 struct list_head *l = it->cg_link;
2362 struct cg_cgroup_link *link;
2363 struct css_set *cg;
2364
2365 /* Advance to the next non-empty css_set */
2366 do {
2367 l = l->next;
2368 if (l == &cgrp->css_sets) {
2369 it->cg_link = NULL;
2370 return;
2371 }
2372 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2373 cg = link->cg;
2374 } while (list_empty(&cg->tasks));
2375 it->cg_link = l;
2376 it->task = cg->tasks.next;
2377}
2378
2379/*
2380 * To reduce the fork() overhead for systems that are not actually
2381 * using their cgroups capability, we don't maintain the lists running
2382 * through each css_set to its tasks until we see the list actually
2383 * used - in other words after the first call to cgroup_iter_start().
2384 *
2385 * The tasklist_lock is not held here, as do_each_thread() and
2386 * while_each_thread() are protected by RCU.
2387 */
2388static void cgroup_enable_task_cg_lists(void)
2389{
2390 struct task_struct *p, *g;
2391 write_lock(&css_set_lock);
2392 use_task_css_set_links = 1;
2393 do_each_thread(g, p) {
2394 task_lock(p);
2395 /*
2396 * We should check if the process is exiting, otherwise
2397 * it will race with cgroup_exit() in that the list
2398 * entry won't be deleted though the process has exited.
2399 */
2400 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2401 list_add(&p->cg_list, &p->cgroups->tasks);
2402 task_unlock(p);
2403 } while_each_thread(g, p);
2404 write_unlock(&css_set_lock);
2405}
2406
2407void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2408{
2409 /*
2410 * The first time anyone tries to iterate across a cgroup,
2411 * we need to enable the list linking each css_set to its
2412 * tasks, and fix up all existing tasks.
2413 */
2414 if (!use_task_css_set_links)
2415 cgroup_enable_task_cg_lists();
2416
2417 read_lock(&css_set_lock);
2418 it->cg_link = &cgrp->css_sets;
2419 cgroup_advance_iter(cgrp, it);
2420}
2421
2422struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2423 struct cgroup_iter *it)
2424{
2425 struct task_struct *res;
2426 struct list_head *l = it->task;
2427 struct cg_cgroup_link *link;
2428
2429 /* If the iterator cg is NULL, we have no tasks */
2430 if (!it->cg_link)
2431 return NULL;
2432 res = list_entry(l, struct task_struct, cg_list);
2433 /* Advance iterator to find next entry */
2434 l = l->next;
2435 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2436 if (l == &link->cg->tasks) {
2437 /* We reached the end of this task list - move on to
2438 * the next cg_cgroup_link */
2439 cgroup_advance_iter(cgrp, it);
2440 } else {
2441 it->task = l;
2442 }
2443 return res;
2444}
2445
2446void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2447{
2448 read_unlock(&css_set_lock);
2449}
2450
2451static inline int started_after_time(struct task_struct *t1,
2452 struct timespec *time,
2453 struct task_struct *t2)
2454{
2455 int start_diff = timespec_compare(&t1->start_time, time);
2456 if (start_diff > 0) {
2457 return 1;
2458 } else if (start_diff < 0) {
2459 return 0;
2460 } else {
2461 /*
2462 * Arbitrarily, if two processes started at the same
2463 * time, we'll say that the lower pointer value
2464 * started first. Note that t2 may have exited by now
2465 * so this may not be a valid pointer any longer, but
2466 * that's fine - it still serves to distinguish
2467 * between two tasks started (effectively) simultaneously.
2468 */
2469 return t1 > t2;
2470 }
2471}
2472
2473/*
2474 * This function is a callback from heap_insert() and is used to order
2475 * the heap.
2476 * In this case we order the heap in descending task start time.
2477 */
2478static inline int started_after(void *p1, void *p2)
2479{
2480 struct task_struct *t1 = p1;
2481 struct task_struct *t2 = p2;
2482 return started_after_time(t1, &t2->start_time, t2);
2483}
2484
2485/**
2486 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2487 * @scan: struct cgroup_scanner containing arguments for the scan
2488 *
2489 * Arguments include pointers to callback functions test_task() and
2490 * process_task().
2491 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2492 * and if it returns true, call process_task() for it also.
2493 * The test_task pointer may be NULL, meaning always true (select all tasks).
2494 * Effectively duplicates cgroup_iter_{start,next,end}()
2495 * but does not lock css_set_lock for the call to process_task().
2496 * The struct cgroup_scanner may be embedded in any structure of the caller's
2497 * creation.
2498 * It is guaranteed that process_task() will act on every task that
2499 * is a member of the cgroup for the duration of this call. This
2500 * function may or may not call process_task() for tasks that exit
2501 * or move to a different cgroup during the call, or are forked or
2502 * move into the cgroup during the call.
2503 *
2504 * Note that test_task() may be called with locks held, and may in some
2505 * situations be called multiple times for the same task, so it should
2506 * be cheap.
2507 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2508 * pre-allocated and will be used for heap operations (and its "gt" member will
2509 * be overwritten), else a temporary heap will be used (allocation of which
2510 * may cause this function to fail).
2511 */
2512int cgroup_scan_tasks(struct cgroup_scanner *scan)
2513{
2514 int retval, i;
2515 struct cgroup_iter it;
2516 struct task_struct *p, *dropped;
2517 /* Never dereference latest_task, since it's not refcounted */
2518 struct task_struct *latest_task = NULL;
2519 struct ptr_heap tmp_heap;
2520 struct ptr_heap *heap;
2521 struct timespec latest_time = { 0, 0 };
2522
2523 if (scan->heap) {
2524 /* The caller supplied our heap and pre-allocated its memory */
2525 heap = scan->heap;
2526 heap->gt = &started_after;
2527 } else {
2528 /* We need to allocate our own heap memory */
2529 heap = &tmp_heap;
2530 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2531 if (retval)
2532 /* cannot allocate the heap */
2533 return retval;
2534 }
2535
2536 again:
2537 /*
2538 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2539 * to determine which are of interest, and using the scanner's
2540 * "process_task" callback to process any of them that need an update.
2541 * Since we don't want to hold any locks during the task updates,
2542 * gather tasks to be processed in a heap structure.
2543 * The heap is sorted by descending task start time.
2544 * If the statically-sized heap fills up, we overflow tasks that
2545 * started later, and in future iterations only consider tasks that
2546 * started after the latest task in the previous pass. This
2547 * guarantees forward progress and that we don't miss any tasks.
2548 */
2549 heap->size = 0;
2550 cgroup_iter_start(scan->cg, &it);
2551 while ((p = cgroup_iter_next(scan->cg, &it))) {
2552 /*
2553 * Only affect tasks that qualify per the caller's callback,
2554 * if he provided one
2555 */
2556 if (scan->test_task && !scan->test_task(p, scan))
2557 continue;
2558 /*
2559 * Only process tasks that started after the last task
2560 * we processed
2561 */
2562 if (!started_after_time(p, &latest_time, latest_task))
2563 continue;
2564 dropped = heap_insert(heap, p);
2565 if (dropped == NULL) {
2566 /*
2567 * The new task was inserted; the heap wasn't
2568 * previously full
2569 */
2570 get_task_struct(p);
2571 } else if (dropped != p) {
2572 /*
2573 * The new task was inserted, and pushed out a
2574 * different task
2575 */
2576 get_task_struct(p);
2577 put_task_struct(dropped);
2578 }
2579 /*
2580 * Else the new task was newer than anything already in
2581 * the heap and wasn't inserted
2582 */
2583 }
2584 cgroup_iter_end(scan->cg, &it);
2585
2586 if (heap->size) {
2587 for (i = 0; i < heap->size; i++) {
2588 struct task_struct *q = heap->ptrs[i];
2589 if (i == 0) {
2590 latest_time = q->start_time;
2591 latest_task = q;
2592 }
2593 /* Process the task per the caller's callback */
2594 scan->process_task(q, scan);
2595 put_task_struct(q);
2596 }
2597 /*
2598 * If we had to process any tasks at all, scan again
2599 * in case some of them were in the middle of forking
2600 * children that didn't get processed.
2601 * Not the most efficient way to do it, but it avoids
2602 * having to take callback_mutex in the fork path
2603 */
2604 goto again;
2605 }
2606 if (heap == &tmp_heap)
2607 heap_free(&tmp_heap);
2608 return 0;
2609}
2610
2611/*
2612 * Stuff for reading the 'tasks'/'procs' files.
2613 *
2614 * Reading this file can return large amounts of data if a cgroup has
2615 * *lots* of attached tasks. So it may need several calls to read(),
2616 * but we cannot guarantee that the information we produce is correct
2617 * unless we produce it entirely atomically.
2618 *
2619 */
2620
2621/*
2622 * The following two functions "fix" the issue where there are more pids
2623 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2624 * TODO: replace with a kernel-wide solution to this problem
2625 */
2626#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
2627static void *pidlist_allocate(int count)
2628{
2629 if (PIDLIST_TOO_LARGE(count))
2630 return vmalloc(count * sizeof(pid_t));
2631 else
2632 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
2633}
2634static void pidlist_free(void *p)
2635{
2636 if (is_vmalloc_addr(p))
2637 vfree(p);
2638 else
2639 kfree(p);
2640}
2641static void *pidlist_resize(void *p, int newcount)
2642{
2643 void *newlist;
2644 /* note: if new alloc fails, old p will still be valid either way */
2645 if (is_vmalloc_addr(p)) {
2646 newlist = vmalloc(newcount * sizeof(pid_t));
2647 if (!newlist)
2648 return NULL;
2649 memcpy(newlist, p, newcount * sizeof(pid_t));
2650 vfree(p);
2651 } else {
2652 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
2653 }
2654 return newlist;
2655}
2656
2657/*
2658 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
2659 * If the new stripped list is sufficiently smaller and there's enough memory
2660 * to allocate a new buffer, will let go of the unneeded memory. Returns the
2661 * number of unique elements.
2662 */
2663/* is the size difference enough that we should re-allocate the array? */
2664#define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
2665static int pidlist_uniq(pid_t **p, int length)
2666{
2667 int src, dest = 1;
2668 pid_t *list = *p;
2669 pid_t *newlist;
2670
2671 /*
2672 * we presume the 0th element is unique, so i starts at 1. trivial
2673 * edge cases first; no work needs to be done for either
2674 */
2675 if (length == 0 || length == 1)
2676 return length;
2677 /* src and dest walk down the list; dest counts unique elements */
2678 for (src = 1; src < length; src++) {
2679 /* find next unique element */
2680 while (list[src] == list[src-1]) {
2681 src++;
2682 if (src == length)
2683 goto after;
2684 }
2685 /* dest always points to where the next unique element goes */
2686 list[dest] = list[src];
2687 dest++;
2688 }
2689after:
2690 /*
2691 * if the length difference is large enough, we want to allocate a
2692 * smaller buffer to save memory. if this fails due to out of memory,
2693 * we'll just stay with what we've got.
2694 */
2695 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
2696 newlist = pidlist_resize(list, dest);
2697 if (newlist)
2698 *p = newlist;
2699 }
2700 return dest;
2701}
2702
2703static int cmppid(const void *a, const void *b)
2704{
2705 return *(pid_t *)a - *(pid_t *)b;
2706}
2707
2708/*
2709 * find the appropriate pidlist for our purpose (given procs vs tasks)
2710 * returns with the lock on that pidlist already held, and takes care
2711 * of the use count, or returns NULL with no locks held if we're out of
2712 * memory.
2713 */
2714static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
2715 enum cgroup_filetype type)
2716{
2717 struct cgroup_pidlist *l;
2718 /* don't need task_nsproxy() if we're looking at ourself */
2719 struct pid_namespace *ns = current->nsproxy->pid_ns;
2720
2721 /*
2722 * We can't drop the pidlist_mutex before taking the l->mutex in case
2723 * the last ref-holder is trying to remove l from the list at the same
2724 * time. Holding the pidlist_mutex precludes somebody taking whichever
2725 * list we find out from under us - compare release_pid_array().
2726 */
2727 mutex_lock(&cgrp->pidlist_mutex);
2728 list_for_each_entry(l, &cgrp->pidlists, links) {
2729 if (l->key.type == type && l->key.ns == ns) {
2730 /* make sure l doesn't vanish out from under us */
2731 down_write(&l->mutex);
2732 mutex_unlock(&cgrp->pidlist_mutex);
2733 return l;
2734 }
2735 }
2736 /* entry not found; create a new one */
2737 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
2738 if (!l) {
2739 mutex_unlock(&cgrp->pidlist_mutex);
2740 return l;
2741 }
2742 init_rwsem(&l->mutex);
2743 down_write(&l->mutex);
2744 l->key.type = type;
2745 l->key.ns = get_pid_ns(ns);
2746 l->use_count = 0; /* don't increment here */
2747 l->list = NULL;
2748 l->owner = cgrp;
2749 list_add(&l->links, &cgrp->pidlists);
2750 mutex_unlock(&cgrp->pidlist_mutex);
2751 return l;
2752}
2753
2754/*
2755 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
2756 */
2757static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
2758 struct cgroup_pidlist **lp)
2759{
2760 pid_t *array;
2761 int length;
2762 int pid, n = 0; /* used for populating the array */
2763 struct cgroup_iter it;
2764 struct task_struct *tsk;
2765 struct cgroup_pidlist *l;
2766
2767 /*
2768 * If cgroup gets more users after we read count, we won't have
2769 * enough space - tough. This race is indistinguishable to the
2770 * caller from the case that the additional cgroup users didn't
2771 * show up until sometime later on.
2772 */
2773 length = cgroup_task_count(cgrp);
2774 array = pidlist_allocate(length);
2775 if (!array)
2776 return -ENOMEM;
2777 /* now, populate the array */
2778 cgroup_iter_start(cgrp, &it);
2779 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2780 if (unlikely(n == length))
2781 break;
2782 /* get tgid or pid for procs or tasks file respectively */
2783 if (type == CGROUP_FILE_PROCS)
2784 pid = task_tgid_vnr(tsk);
2785 else
2786 pid = task_pid_vnr(tsk);
2787 if (pid > 0) /* make sure to only use valid results */
2788 array[n++] = pid;
2789 }
2790 cgroup_iter_end(cgrp, &it);
2791 length = n;
2792 /* now sort & (if procs) strip out duplicates */
2793 sort(array, length, sizeof(pid_t), cmppid, NULL);
2794 if (type == CGROUP_FILE_PROCS)
2795 length = pidlist_uniq(&array, length);
2796 l = cgroup_pidlist_find(cgrp, type);
2797 if (!l) {
2798 pidlist_free(array);
2799 return -ENOMEM;
2800 }
2801 /* store array, freeing old if necessary - lock already held */
2802 pidlist_free(l->list);
2803 l->list = array;
2804 l->length = length;
2805 l->use_count++;
2806 up_write(&l->mutex);
2807 *lp = l;
2808 return 0;
2809}
2810
2811/**
2812 * cgroupstats_build - build and fill cgroupstats
2813 * @stats: cgroupstats to fill information into
2814 * @dentry: A dentry entry belonging to the cgroup for which stats have
2815 * been requested.
2816 *
2817 * Build and fill cgroupstats so that taskstats can export it to user
2818 * space.
2819 */
2820int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
2821{
2822 int ret = -EINVAL;
2823 struct cgroup *cgrp;
2824 struct cgroup_iter it;
2825 struct task_struct *tsk;
2826
2827 /*
2828 * Validate dentry by checking the superblock operations,
2829 * and make sure it's a directory.
2830 */
2831 if (dentry->d_sb->s_op != &cgroup_ops ||
2832 !S_ISDIR(dentry->d_inode->i_mode))
2833 goto err;
2834
2835 ret = 0;
2836 cgrp = dentry->d_fsdata;
2837
2838 cgroup_iter_start(cgrp, &it);
2839 while ((tsk = cgroup_iter_next(cgrp, &it))) {
2840 switch (tsk->state) {
2841 case TASK_RUNNING:
2842 stats->nr_running++;
2843 break;
2844 case TASK_INTERRUPTIBLE:
2845 stats->nr_sleeping++;
2846 break;
2847 case TASK_UNINTERRUPTIBLE:
2848 stats->nr_uninterruptible++;
2849 break;
2850 case TASK_STOPPED:
2851 stats->nr_stopped++;
2852 break;
2853 default:
2854 if (delayacct_is_task_waiting_on_io(tsk))
2855 stats->nr_io_wait++;
2856 break;
2857 }
2858 }
2859 cgroup_iter_end(cgrp, &it);
2860
2861err:
2862 return ret;
2863}
2864
2865
2866/*
2867 * seq_file methods for the tasks/procs files. The seq_file position is the
2868 * next pid to display; the seq_file iterator is a pointer to the pid
2869 * in the cgroup->l->list array.
2870 */
2871
2872static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
2873{
2874 /*
2875 * Initially we receive a position value that corresponds to
2876 * one more than the last pid shown (or 0 on the first call or
2877 * after a seek to the start). Use a binary-search to find the
2878 * next pid to display, if any
2879 */
2880 struct cgroup_pidlist *l = s->private;
2881 int index = 0, pid = *pos;
2882 int *iter;
2883
2884 down_read(&l->mutex);
2885 if (pid) {
2886 int end = l->length;
2887
2888 while (index < end) {
2889 int mid = (index + end) / 2;
2890 if (l->list[mid] == pid) {
2891 index = mid;
2892 break;
2893 } else if (l->list[mid] <= pid)
2894 index = mid + 1;
2895 else
2896 end = mid;
2897 }
2898 }
2899 /* If we're off the end of the array, we're done */
2900 if (index >= l->length)
2901 return NULL;
2902 /* Update the abstract position to be the actual pid that we found */
2903 iter = l->list + index;
2904 *pos = *iter;
2905 return iter;
2906}
2907
2908static void cgroup_pidlist_stop(struct seq_file *s, void *v)
2909{
2910 struct cgroup_pidlist *l = s->private;
2911 up_read(&l->mutex);
2912}
2913
2914static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
2915{
2916 struct cgroup_pidlist *l = s->private;
2917 pid_t *p = v;
2918 pid_t *end = l->list + l->length;
2919 /*
2920 * Advance to the next pid in the array. If this goes off the
2921 * end, we're done
2922 */
2923 p++;
2924 if (p >= end) {
2925 return NULL;
2926 } else {
2927 *pos = *p;
2928 return p;
2929 }
2930}
2931
2932static int cgroup_pidlist_show(struct seq_file *s, void *v)
2933{
2934 return seq_printf(s, "%d\n", *(int *)v);
2935}
2936
2937/*
2938 * seq_operations functions for iterating on pidlists through seq_file -
2939 * independent of whether it's tasks or procs
2940 */
2941static const struct seq_operations cgroup_pidlist_seq_operations = {
2942 .start = cgroup_pidlist_start,
2943 .stop = cgroup_pidlist_stop,
2944 .next = cgroup_pidlist_next,
2945 .show = cgroup_pidlist_show,
2946};
2947
2948static void cgroup_release_pid_array(struct cgroup_pidlist *l)
2949{
2950 /*
2951 * the case where we're the last user of this particular pidlist will
2952 * have us remove it from the cgroup's list, which entails taking the
2953 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
2954 * pidlist_mutex, we have to take pidlist_mutex first.
2955 */
2956 mutex_lock(&l->owner->pidlist_mutex);
2957 down_write(&l->mutex);
2958 BUG_ON(!l->use_count);
2959 if (!--l->use_count) {
2960 /* we're the last user if refcount is 0; remove and free */
2961 list_del(&l->links);
2962 mutex_unlock(&l->owner->pidlist_mutex);
2963 pidlist_free(l->list);
2964 put_pid_ns(l->key.ns);
2965 up_write(&l->mutex);
2966 kfree(l);
2967 return;
2968 }
2969 mutex_unlock(&l->owner->pidlist_mutex);
2970 up_write(&l->mutex);
2971}
2972
2973static int cgroup_pidlist_release(struct inode *inode, struct file *file)
2974{
2975 struct cgroup_pidlist *l;
2976 if (!(file->f_mode & FMODE_READ))
2977 return 0;
2978 /*
2979 * the seq_file will only be initialized if the file was opened for
2980 * reading; hence we check if it's not null only in that case.
2981 */
2982 l = ((struct seq_file *)file->private_data)->private;
2983 cgroup_release_pid_array(l);
2984 return seq_release(inode, file);
2985}
2986
2987static const struct file_operations cgroup_pidlist_operations = {
2988 .read = seq_read,
2989 .llseek = seq_lseek,
2990 .write = cgroup_file_write,
2991 .release = cgroup_pidlist_release,
2992};
2993
2994/*
2995 * The following functions handle opens on a file that displays a pidlist
2996 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
2997 * in the cgroup.
2998 */
2999/* helper function for the two below it */
3000static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3001{
3002 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3003 struct cgroup_pidlist *l;
3004 int retval;
3005
3006 /* Nothing to do for write-only files */
3007 if (!(file->f_mode & FMODE_READ))
3008 return 0;
3009
3010 /* have the array populated */
3011 retval = pidlist_array_load(cgrp, type, &l);
3012 if (retval)
3013 return retval;
3014 /* configure file information */
3015 file->f_op = &cgroup_pidlist_operations;
3016
3017 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3018 if (retval) {
3019 cgroup_release_pid_array(l);
3020 return retval;
3021 }
3022 ((struct seq_file *)file->private_data)->private = l;
3023 return 0;
3024}
3025static int cgroup_tasks_open(struct inode *unused, struct file *file)
3026{
3027 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3028}
3029static int cgroup_procs_open(struct inode *unused, struct file *file)
3030{
3031 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3032}
3033
3034static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3035 struct cftype *cft)
3036{
3037 return notify_on_release(cgrp);
3038}
3039
3040static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3041 struct cftype *cft,
3042 u64 val)
3043{
3044 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3045 if (val)
3046 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3047 else
3048 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3049 return 0;
3050}
3051
3052/*
3053 * Unregister event and free resources.
3054 *
3055 * Gets called from workqueue.
3056 */
3057static void cgroup_event_remove(struct work_struct *work)
3058{
3059 struct cgroup_event *event = container_of(work, struct cgroup_event,
3060 remove);
3061 struct cgroup *cgrp = event->cgrp;
3062
3063 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3064
3065 eventfd_ctx_put(event->eventfd);
3066 kfree(event);
3067 dput(cgrp->dentry);
3068}
3069
3070/*
3071 * Gets called on POLLHUP on eventfd when user closes it.
3072 *
3073 * Called with wqh->lock held and interrupts disabled.
3074 */
3075static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3076 int sync, void *key)
3077{
3078 struct cgroup_event *event = container_of(wait,
3079 struct cgroup_event, wait);
3080 struct cgroup *cgrp = event->cgrp;
3081 unsigned long flags = (unsigned long)key;
3082
3083 if (flags & POLLHUP) {
3084 __remove_wait_queue(event->wqh, &event->wait);
3085 spin_lock(&cgrp->event_list_lock);
3086 list_del(&event->list);
3087 spin_unlock(&cgrp->event_list_lock);
3088 /*
3089 * We are in atomic context, but cgroup_event_remove() may
3090 * sleep, so we have to call it in workqueue.
3091 */
3092 schedule_work(&event->remove);
3093 }
3094
3095 return 0;
3096}
3097
3098static void cgroup_event_ptable_queue_proc(struct file *file,
3099 wait_queue_head_t *wqh, poll_table *pt)
3100{
3101 struct cgroup_event *event = container_of(pt,
3102 struct cgroup_event, pt);
3103
3104 event->wqh = wqh;
3105 add_wait_queue(wqh, &event->wait);
3106}
3107
3108/*
3109 * Parse input and register new cgroup event handler.
3110 *
3111 * Input must be in format '<event_fd> <control_fd> <args>'.
3112 * Interpretation of args is defined by control file implementation.
3113 */
3114static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3115 const char *buffer)
3116{
3117 struct cgroup_event *event = NULL;
3118 unsigned int efd, cfd;
3119 struct file *efile = NULL;
3120 struct file *cfile = NULL;
3121 char *endp;
3122 int ret;
3123
3124 efd = simple_strtoul(buffer, &endp, 10);
3125 if (*endp != ' ')
3126 return -EINVAL;
3127 buffer = endp + 1;
3128
3129 cfd = simple_strtoul(buffer, &endp, 10);
3130 if ((*endp != ' ') && (*endp != '\0'))
3131 return -EINVAL;
3132 buffer = endp + 1;
3133
3134 event = kzalloc(sizeof(*event), GFP_KERNEL);
3135 if (!event)
3136 return -ENOMEM;
3137 event->cgrp = cgrp;
3138 INIT_LIST_HEAD(&event->list);
3139 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3140 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3141 INIT_WORK(&event->remove, cgroup_event_remove);
3142
3143 efile = eventfd_fget(efd);
3144 if (IS_ERR(efile)) {
3145 ret = PTR_ERR(efile);
3146 goto fail;
3147 }
3148
3149 event->eventfd = eventfd_ctx_fileget(efile);
3150 if (IS_ERR(event->eventfd)) {
3151 ret = PTR_ERR(event->eventfd);
3152 goto fail;
3153 }
3154
3155 cfile = fget(cfd);
3156 if (!cfile) {
3157 ret = -EBADF;
3158 goto fail;
3159 }
3160
3161 /* the process need read permission on control file */
3162 ret = file_permission(cfile, MAY_READ);
3163 if (ret < 0)
3164 goto fail;
3165
3166 event->cft = __file_cft(cfile);
3167 if (IS_ERR(event->cft)) {
3168 ret = PTR_ERR(event->cft);
3169 goto fail;
3170 }
3171
3172 if (!event->cft->register_event || !event->cft->unregister_event) {
3173 ret = -EINVAL;
3174 goto fail;
3175 }
3176
3177 ret = event->cft->register_event(cgrp, event->cft,
3178 event->eventfd, buffer);
3179 if (ret)
3180 goto fail;
3181
3182 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3183 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3184 ret = 0;
3185 goto fail;
3186 }
3187
3188 /*
3189 * Events should be removed after rmdir of cgroup directory, but before
3190 * destroying subsystem state objects. Let's take reference to cgroup
3191 * directory dentry to do that.
3192 */
3193 dget(cgrp->dentry);
3194
3195 spin_lock(&cgrp->event_list_lock);
3196 list_add(&event->list, &cgrp->event_list);
3197 spin_unlock(&cgrp->event_list_lock);
3198
3199 fput(cfile);
3200 fput(efile);
3201
3202 return 0;
3203
3204fail:
3205 if (cfile)
3206 fput(cfile);
3207
3208 if (event && event->eventfd && !IS_ERR(event->eventfd))
3209 eventfd_ctx_put(event->eventfd);
3210
3211 if (!IS_ERR_OR_NULL(efile))
3212 fput(efile);
3213
3214 kfree(event);
3215
3216 return ret;
3217}
3218
3219static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3220 struct cftype *cft)
3221{
3222 return clone_children(cgrp);
3223}
3224
3225static int cgroup_clone_children_write(struct cgroup *cgrp,
3226 struct cftype *cft,
3227 u64 val)
3228{
3229 if (val)
3230 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3231 else
3232 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3233 return 0;
3234}
3235
3236/*
3237 * for the common functions, 'private' gives the type of file
3238 */
3239/* for hysterical raisins, we can't put this on the older files */
3240#define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3241static struct cftype files[] = {
3242 {
3243 .name = "tasks",
3244 .open = cgroup_tasks_open,
3245 .write_u64 = cgroup_tasks_write,
3246 .release = cgroup_pidlist_release,
3247 .mode = S_IRUGO | S_IWUSR,
3248 },
3249 {
3250 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3251 .open = cgroup_procs_open,
3252 /* .write_u64 = cgroup_procs_write, TODO */
3253 .release = cgroup_pidlist_release,
3254 .mode = S_IRUGO,
3255 },
3256 {
3257 .name = "notify_on_release",
3258 .read_u64 = cgroup_read_notify_on_release,
3259 .write_u64 = cgroup_write_notify_on_release,
3260 },
3261 {
3262 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3263 .write_string = cgroup_write_event_control,
3264 .mode = S_IWUGO,
3265 },
3266 {
3267 .name = "cgroup.clone_children",
3268 .read_u64 = cgroup_clone_children_read,
3269 .write_u64 = cgroup_clone_children_write,
3270 },
3271};
3272
3273static struct cftype cft_release_agent = {
3274 .name = "release_agent",
3275 .read_seq_string = cgroup_release_agent_show,
3276 .write_string = cgroup_release_agent_write,
3277 .max_write_len = PATH_MAX,
3278};
3279
3280static int cgroup_populate_dir(struct cgroup *cgrp)
3281{
3282 int err;
3283 struct cgroup_subsys *ss;
3284
3285 /* First clear out any existing files */
3286 cgroup_clear_directory(cgrp->dentry);
3287
3288 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3289 if (err < 0)
3290 return err;
3291
3292 if (cgrp == cgrp->top_cgroup) {
3293 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3294 return err;
3295 }
3296
3297 for_each_subsys(cgrp->root, ss) {
3298 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3299 return err;
3300 }
3301 /* This cgroup is ready now */
3302 for_each_subsys(cgrp->root, ss) {
3303 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3304 /*
3305 * Update id->css pointer and make this css visible from
3306 * CSS ID functions. This pointer will be dereferened
3307 * from RCU-read-side without locks.
3308 */
3309 if (css->id)
3310 rcu_assign_pointer(css->id->css, css);
3311 }
3312
3313 return 0;
3314}
3315
3316static void init_cgroup_css(struct cgroup_subsys_state *css,
3317 struct cgroup_subsys *ss,
3318 struct cgroup *cgrp)
3319{
3320 css->cgroup = cgrp;
3321 atomic_set(&css->refcnt, 1);
3322 css->flags = 0;
3323 css->id = NULL;
3324 if (cgrp == dummytop)
3325 set_bit(CSS_ROOT, &css->flags);
3326 BUG_ON(cgrp->subsys[ss->subsys_id]);
3327 cgrp->subsys[ss->subsys_id] = css;
3328}
3329
3330static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3331{
3332 /* We need to take each hierarchy_mutex in a consistent order */
3333 int i;
3334
3335 /*
3336 * No worry about a race with rebind_subsystems that might mess up the
3337 * locking order, since both parties are under cgroup_mutex.
3338 */
3339 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3340 struct cgroup_subsys *ss = subsys[i];
3341 if (ss == NULL)
3342 continue;
3343 if (ss->root == root)
3344 mutex_lock(&ss->hierarchy_mutex);
3345 }
3346}
3347
3348static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3349{
3350 int i;
3351
3352 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3353 struct cgroup_subsys *ss = subsys[i];
3354 if (ss == NULL)
3355 continue;
3356 if (ss->root == root)
3357 mutex_unlock(&ss->hierarchy_mutex);
3358 }
3359}
3360
3361/*
3362 * cgroup_create - create a cgroup
3363 * @parent: cgroup that will be parent of the new cgroup
3364 * @dentry: dentry of the new cgroup
3365 * @mode: mode to set on new inode
3366 *
3367 * Must be called with the mutex on the parent inode held
3368 */
3369static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3370 mode_t mode)
3371{
3372 struct cgroup *cgrp;
3373 struct cgroupfs_root *root = parent->root;
3374 int err = 0;
3375 struct cgroup_subsys *ss;
3376 struct super_block *sb = root->sb;
3377
3378 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3379 if (!cgrp)
3380 return -ENOMEM;
3381
3382 /* Grab a reference on the superblock so the hierarchy doesn't
3383 * get deleted on unmount if there are child cgroups. This
3384 * can be done outside cgroup_mutex, since the sb can't
3385 * disappear while someone has an open control file on the
3386 * fs */
3387 atomic_inc(&sb->s_active);
3388
3389 mutex_lock(&cgroup_mutex);
3390
3391 init_cgroup_housekeeping(cgrp);
3392
3393 cgrp->parent = parent;
3394 cgrp->root = parent->root;
3395 cgrp->top_cgroup = parent->top_cgroup;
3396
3397 if (notify_on_release(parent))
3398 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3399
3400 if (clone_children(parent))
3401 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3402
3403 for_each_subsys(root, ss) {
3404 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3405
3406 if (IS_ERR(css)) {
3407 err = PTR_ERR(css);
3408 goto err_destroy;
3409 }
3410 init_cgroup_css(css, ss, cgrp);
3411 if (ss->use_id) {
3412 err = alloc_css_id(ss, parent, cgrp);
3413 if (err)
3414 goto err_destroy;
3415 }
3416 /* At error, ->destroy() callback has to free assigned ID. */
3417 if (clone_children(parent) && ss->post_clone)
3418 ss->post_clone(ss, cgrp);
3419 }
3420
3421 cgroup_lock_hierarchy(root);
3422 list_add(&cgrp->sibling, &cgrp->parent->children);
3423 cgroup_unlock_hierarchy(root);
3424 root->number_of_cgroups++;
3425
3426 err = cgroup_create_dir(cgrp, dentry, mode);
3427 if (err < 0)
3428 goto err_remove;
3429
3430 /* The cgroup directory was pre-locked for us */
3431 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3432
3433 err = cgroup_populate_dir(cgrp);
3434 /* If err < 0, we have a half-filled directory - oh well ;) */
3435
3436 mutex_unlock(&cgroup_mutex);
3437 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3438
3439 return 0;
3440
3441 err_remove:
3442
3443 cgroup_lock_hierarchy(root);
3444 list_del(&cgrp->sibling);
3445 cgroup_unlock_hierarchy(root);
3446 root->number_of_cgroups--;
3447
3448 err_destroy:
3449
3450 for_each_subsys(root, ss) {
3451 if (cgrp->subsys[ss->subsys_id])
3452 ss->destroy(ss, cgrp);
3453 }
3454
3455 mutex_unlock(&cgroup_mutex);
3456
3457 /* Release the reference count that we took on the superblock */
3458 deactivate_super(sb);
3459
3460 kfree(cgrp);
3461 return err;
3462}
3463
3464static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3465{
3466 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3467
3468 /* the vfs holds inode->i_mutex already */
3469 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3470}
3471
3472static int cgroup_has_css_refs(struct cgroup *cgrp)
3473{
3474 /* Check the reference count on each subsystem. Since we
3475 * already established that there are no tasks in the
3476 * cgroup, if the css refcount is also 1, then there should
3477 * be no outstanding references, so the subsystem is safe to
3478 * destroy. We scan across all subsystems rather than using
3479 * the per-hierarchy linked list of mounted subsystems since
3480 * we can be called via check_for_release() with no
3481 * synchronization other than RCU, and the subsystem linked
3482 * list isn't RCU-safe */
3483 int i;
3484 /*
3485 * We won't need to lock the subsys array, because the subsystems
3486 * we're concerned about aren't going anywhere since our cgroup root
3487 * has a reference on them.
3488 */
3489 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3490 struct cgroup_subsys *ss = subsys[i];
3491 struct cgroup_subsys_state *css;
3492 /* Skip subsystems not present or not in this hierarchy */
3493 if (ss == NULL || ss->root != cgrp->root)
3494 continue;
3495 css = cgrp->subsys[ss->subsys_id];
3496 /* When called from check_for_release() it's possible
3497 * that by this point the cgroup has been removed
3498 * and the css deleted. But a false-positive doesn't
3499 * matter, since it can only happen if the cgroup
3500 * has been deleted and hence no longer needs the
3501 * release agent to be called anyway. */
3502 if (css && (atomic_read(&css->refcnt) > 1))
3503 return 1;
3504 }
3505 return 0;
3506}
3507
3508/*
3509 * Atomically mark all (or else none) of the cgroup's CSS objects as
3510 * CSS_REMOVED. Return true on success, or false if the cgroup has
3511 * busy subsystems. Call with cgroup_mutex held
3512 */
3513
3514static int cgroup_clear_css_refs(struct cgroup *cgrp)
3515{
3516 struct cgroup_subsys *ss;
3517 unsigned long flags;
3518 bool failed = false;
3519 local_irq_save(flags);
3520 for_each_subsys(cgrp->root, ss) {
3521 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3522 int refcnt;
3523 while (1) {
3524 /* We can only remove a CSS with a refcnt==1 */
3525 refcnt = atomic_read(&css->refcnt);
3526 if (refcnt > 1) {
3527 failed = true;
3528 goto done;
3529 }
3530 BUG_ON(!refcnt);
3531 /*
3532 * Drop the refcnt to 0 while we check other
3533 * subsystems. This will cause any racing
3534 * css_tryget() to spin until we set the
3535 * CSS_REMOVED bits or abort
3536 */
3537 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3538 break;
3539 cpu_relax();
3540 }
3541 }
3542 done:
3543 for_each_subsys(cgrp->root, ss) {
3544 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3545 if (failed) {
3546 /*
3547 * Restore old refcnt if we previously managed
3548 * to clear it from 1 to 0
3549 */
3550 if (!atomic_read(&css->refcnt))
3551 atomic_set(&css->refcnt, 1);
3552 } else {
3553 /* Commit the fact that the CSS is removed */
3554 set_bit(CSS_REMOVED, &css->flags);
3555 }
3556 }
3557 local_irq_restore(flags);
3558 return !failed;
3559}
3560
3561static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3562{
3563 struct cgroup *cgrp = dentry->d_fsdata;
3564 struct dentry *d;
3565 struct cgroup *parent;
3566 DEFINE_WAIT(wait);
3567 struct cgroup_event *event, *tmp;
3568 int ret;
3569
3570 /* the vfs holds both inode->i_mutex already */
3571again:
3572 mutex_lock(&cgroup_mutex);
3573 if (atomic_read(&cgrp->count) != 0) {
3574 mutex_unlock(&cgroup_mutex);
3575 return -EBUSY;
3576 }
3577 if (!list_empty(&cgrp->children)) {
3578 mutex_unlock(&cgroup_mutex);
3579 return -EBUSY;
3580 }
3581 mutex_unlock(&cgroup_mutex);
3582
3583 /*
3584 * In general, subsystem has no css->refcnt after pre_destroy(). But
3585 * in racy cases, subsystem may have to get css->refcnt after
3586 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3587 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3588 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3589 * and subsystem's reference count handling. Please see css_get/put
3590 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3591 */
3592 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3593
3594 /*
3595 * Call pre_destroy handlers of subsys. Notify subsystems
3596 * that rmdir() request comes.
3597 */
3598 ret = cgroup_call_pre_destroy(cgrp);
3599 if (ret) {
3600 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3601 return ret;
3602 }
3603
3604 mutex_lock(&cgroup_mutex);
3605 parent = cgrp->parent;
3606 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3607 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3608 mutex_unlock(&cgroup_mutex);
3609 return -EBUSY;
3610 }
3611 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3612 if (!cgroup_clear_css_refs(cgrp)) {
3613 mutex_unlock(&cgroup_mutex);
3614 /*
3615 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3616 * prepare_to_wait(), we need to check this flag.
3617 */
3618 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3619 schedule();
3620 finish_wait(&cgroup_rmdir_waitq, &wait);
3621 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3622 if (signal_pending(current))
3623 return -EINTR;
3624 goto again;
3625 }
3626 /* NO css_tryget() can success after here. */
3627 finish_wait(&cgroup_rmdir_waitq, &wait);
3628 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3629
3630 spin_lock(&release_list_lock);
3631 set_bit(CGRP_REMOVED, &cgrp->flags);
3632 if (!list_empty(&cgrp->release_list))
3633 list_del(&cgrp->release_list);
3634 spin_unlock(&release_list_lock);
3635
3636 cgroup_lock_hierarchy(cgrp->root);
3637 /* delete this cgroup from parent->children */
3638 list_del(&cgrp->sibling);
3639 cgroup_unlock_hierarchy(cgrp->root);
3640
3641 spin_lock(&cgrp->dentry->d_lock);
3642 d = dget(cgrp->dentry);
3643 spin_unlock(&d->d_lock);
3644
3645 cgroup_d_remove_dir(d);
3646 dput(d);
3647
3648 set_bit(CGRP_RELEASABLE, &parent->flags);
3649 check_for_release(parent);
3650
3651 /*
3652 * Unregister events and notify userspace.
3653 * Notify userspace about cgroup removing only after rmdir of cgroup
3654 * directory to avoid race between userspace and kernelspace
3655 */
3656 spin_lock(&cgrp->event_list_lock);
3657 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
3658 list_del(&event->list);
3659 remove_wait_queue(event->wqh, &event->wait);
3660 eventfd_signal(event->eventfd, 1);
3661 schedule_work(&event->remove);
3662 }
3663 spin_unlock(&cgrp->event_list_lock);
3664
3665 mutex_unlock(&cgroup_mutex);
3666 return 0;
3667}
3668
3669static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
3670{
3671 struct cgroup_subsys_state *css;
3672
3673 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
3674
3675 /* Create the top cgroup state for this subsystem */
3676 list_add(&ss->sibling, &rootnode.subsys_list);
3677 ss->root = &rootnode;
3678 css = ss->create(ss, dummytop);
3679 /* We don't handle early failures gracefully */
3680 BUG_ON(IS_ERR(css));
3681 init_cgroup_css(css, ss, dummytop);
3682
3683 /* Update the init_css_set to contain a subsys
3684 * pointer to this state - since the subsystem is
3685 * newly registered, all tasks and hence the
3686 * init_css_set is in the subsystem's top cgroup. */
3687 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
3688
3689 need_forkexit_callback |= ss->fork || ss->exit;
3690
3691 /* At system boot, before all subsystems have been
3692 * registered, no tasks have been forked, so we don't
3693 * need to invoke fork callbacks here. */
3694 BUG_ON(!list_empty(&init_task.tasks));
3695
3696 mutex_init(&ss->hierarchy_mutex);
3697 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3698 ss->active = 1;
3699
3700 /* this function shouldn't be used with modular subsystems, since they
3701 * need to register a subsys_id, among other things */
3702 BUG_ON(ss->module);
3703}
3704
3705/**
3706 * cgroup_load_subsys: load and register a modular subsystem at runtime
3707 * @ss: the subsystem to load
3708 *
3709 * This function should be called in a modular subsystem's initcall. If the
3710 * subsystem is built as a module, it will be assigned a new subsys_id and set
3711 * up for use. If the subsystem is built-in anyway, work is delegated to the
3712 * simpler cgroup_init_subsys.
3713 */
3714int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
3715{
3716 int i;
3717 struct cgroup_subsys_state *css;
3718
3719 /* check name and function validity */
3720 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
3721 ss->create == NULL || ss->destroy == NULL)
3722 return -EINVAL;
3723
3724 /*
3725 * we don't support callbacks in modular subsystems. this check is
3726 * before the ss->module check for consistency; a subsystem that could
3727 * be a module should still have no callbacks even if the user isn't
3728 * compiling it as one.
3729 */
3730 if (ss->fork || ss->exit)
3731 return -EINVAL;
3732
3733 /*
3734 * an optionally modular subsystem is built-in: we want to do nothing,
3735 * since cgroup_init_subsys will have already taken care of it.
3736 */
3737 if (ss->module == NULL) {
3738 /* a few sanity checks */
3739 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
3740 BUG_ON(subsys[ss->subsys_id] != ss);
3741 return 0;
3742 }
3743
3744 /*
3745 * need to register a subsys id before anything else - for example,
3746 * init_cgroup_css needs it.
3747 */
3748 mutex_lock(&cgroup_mutex);
3749 /* find the first empty slot in the array */
3750 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
3751 if (subsys[i] == NULL)
3752 break;
3753 }
3754 if (i == CGROUP_SUBSYS_COUNT) {
3755 /* maximum number of subsystems already registered! */
3756 mutex_unlock(&cgroup_mutex);
3757 return -EBUSY;
3758 }
3759 /* assign ourselves the subsys_id */
3760 ss->subsys_id = i;
3761 subsys[i] = ss;
3762
3763 /*
3764 * no ss->create seems to need anything important in the ss struct, so
3765 * this can happen first (i.e. before the rootnode attachment).
3766 */
3767 css = ss->create(ss, dummytop);
3768 if (IS_ERR(css)) {
3769 /* failure case - need to deassign the subsys[] slot. */
3770 subsys[i] = NULL;
3771 mutex_unlock(&cgroup_mutex);
3772 return PTR_ERR(css);
3773 }
3774
3775 list_add(&ss->sibling, &rootnode.subsys_list);
3776 ss->root = &rootnode;
3777
3778 /* our new subsystem will be attached to the dummy hierarchy. */
3779 init_cgroup_css(css, ss, dummytop);
3780 /* init_idr must be after init_cgroup_css because it sets css->id. */
3781 if (ss->use_id) {
3782 int ret = cgroup_init_idr(ss, css);
3783 if (ret) {
3784 dummytop->subsys[ss->subsys_id] = NULL;
3785 ss->destroy(ss, dummytop);
3786 subsys[i] = NULL;
3787 mutex_unlock(&cgroup_mutex);
3788 return ret;
3789 }
3790 }
3791
3792 /*
3793 * Now we need to entangle the css into the existing css_sets. unlike
3794 * in cgroup_init_subsys, there are now multiple css_sets, so each one
3795 * will need a new pointer to it; done by iterating the css_set_table.
3796 * furthermore, modifying the existing css_sets will corrupt the hash
3797 * table state, so each changed css_set will need its hash recomputed.
3798 * this is all done under the css_set_lock.
3799 */
3800 write_lock(&css_set_lock);
3801 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
3802 struct css_set *cg;
3803 struct hlist_node *node, *tmp;
3804 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
3805
3806 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
3807 /* skip entries that we already rehashed */
3808 if (cg->subsys[ss->subsys_id])
3809 continue;
3810 /* remove existing entry */
3811 hlist_del(&cg->hlist);
3812 /* set new value */
3813 cg->subsys[ss->subsys_id] = css;
3814 /* recompute hash and restore entry */
3815 new_bucket = css_set_hash(cg->subsys);
3816 hlist_add_head(&cg->hlist, new_bucket);
3817 }
3818 }
3819 write_unlock(&css_set_lock);
3820
3821 mutex_init(&ss->hierarchy_mutex);
3822 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
3823 ss->active = 1;
3824
3825 /* success! */
3826 mutex_unlock(&cgroup_mutex);
3827 return 0;
3828}
3829EXPORT_SYMBOL_GPL(cgroup_load_subsys);
3830
3831/**
3832 * cgroup_unload_subsys: unload a modular subsystem
3833 * @ss: the subsystem to unload
3834 *
3835 * This function should be called in a modular subsystem's exitcall. When this
3836 * function is invoked, the refcount on the subsystem's module will be 0, so
3837 * the subsystem will not be attached to any hierarchy.
3838 */
3839void cgroup_unload_subsys(struct cgroup_subsys *ss)
3840{
3841 struct cg_cgroup_link *link;
3842 struct hlist_head *hhead;
3843
3844 BUG_ON(ss->module == NULL);
3845
3846 /*
3847 * we shouldn't be called if the subsystem is in use, and the use of
3848 * try_module_get in parse_cgroupfs_options should ensure that it
3849 * doesn't start being used while we're killing it off.
3850 */
3851 BUG_ON(ss->root != &rootnode);
3852
3853 mutex_lock(&cgroup_mutex);
3854 /* deassign the subsys_id */
3855 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
3856 subsys[ss->subsys_id] = NULL;
3857
3858 /* remove subsystem from rootnode's list of subsystems */
3859 list_del(&ss->sibling);
3860
3861 /*
3862 * disentangle the css from all css_sets attached to the dummytop. as
3863 * in loading, we need to pay our respects to the hashtable gods.
3864 */
3865 write_lock(&css_set_lock);
3866 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
3867 struct css_set *cg = link->cg;
3868
3869 hlist_del(&cg->hlist);
3870 BUG_ON(!cg->subsys[ss->subsys_id]);
3871 cg->subsys[ss->subsys_id] = NULL;
3872 hhead = css_set_hash(cg->subsys);
3873 hlist_add_head(&cg->hlist, hhead);
3874 }
3875 write_unlock(&css_set_lock);
3876
3877 /*
3878 * remove subsystem's css from the dummytop and free it - need to free
3879 * before marking as null because ss->destroy needs the cgrp->subsys
3880 * pointer to find their state. note that this also takes care of
3881 * freeing the css_id.
3882 */
3883 ss->destroy(ss, dummytop);
3884 dummytop->subsys[ss->subsys_id] = NULL;
3885
3886 mutex_unlock(&cgroup_mutex);
3887}
3888EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
3889
3890/**
3891 * cgroup_init_early - cgroup initialization at system boot
3892 *
3893 * Initialize cgroups at system boot, and initialize any
3894 * subsystems that request early init.
3895 */
3896int __init cgroup_init_early(void)
3897{
3898 int i;
3899 atomic_set(&init_css_set.refcount, 1);
3900 INIT_LIST_HEAD(&init_css_set.cg_links);
3901 INIT_LIST_HEAD(&init_css_set.tasks);
3902 INIT_HLIST_NODE(&init_css_set.hlist);
3903 css_set_count = 1;
3904 init_cgroup_root(&rootnode);
3905 root_count = 1;
3906 init_task.cgroups = &init_css_set;
3907
3908 init_css_set_link.cg = &init_css_set;
3909 init_css_set_link.cgrp = dummytop;
3910 list_add(&init_css_set_link.cgrp_link_list,
3911 &rootnode.top_cgroup.css_sets);
3912 list_add(&init_css_set_link.cg_link_list,
3913 &init_css_set.cg_links);
3914
3915 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
3916 INIT_HLIST_HEAD(&css_set_table[i]);
3917
3918 /* at bootup time, we don't worry about modular subsystems */
3919 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3920 struct cgroup_subsys *ss = subsys[i];
3921
3922 BUG_ON(!ss->name);
3923 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
3924 BUG_ON(!ss->create);
3925 BUG_ON(!ss->destroy);
3926 if (ss->subsys_id != i) {
3927 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
3928 ss->name, ss->subsys_id);
3929 BUG();
3930 }
3931
3932 if (ss->early_init)
3933 cgroup_init_subsys(ss);
3934 }
3935 return 0;
3936}
3937
3938/**
3939 * cgroup_init - cgroup initialization
3940 *
3941 * Register cgroup filesystem and /proc file, and initialize
3942 * any subsystems that didn't request early init.
3943 */
3944int __init cgroup_init(void)
3945{
3946 int err;
3947 int i;
3948 struct hlist_head *hhead;
3949
3950 err = bdi_init(&cgroup_backing_dev_info);
3951 if (err)
3952 return err;
3953
3954 /* at bootup time, we don't worry about modular subsystems */
3955 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
3956 struct cgroup_subsys *ss = subsys[i];
3957 if (!ss->early_init)
3958 cgroup_init_subsys(ss);
3959 if (ss->use_id)
3960 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
3961 }
3962
3963 /* Add init_css_set to the hash table */
3964 hhead = css_set_hash(init_css_set.subsys);
3965 hlist_add_head(&init_css_set.hlist, hhead);
3966 BUG_ON(!init_root_id(&rootnode));
3967
3968 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
3969 if (!cgroup_kobj) {
3970 err = -ENOMEM;
3971 goto out;
3972 }
3973
3974 err = register_filesystem(&cgroup_fs_type);
3975 if (err < 0) {
3976 kobject_put(cgroup_kobj);
3977 goto out;
3978 }
3979
3980 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
3981
3982out:
3983 if (err)
3984 bdi_destroy(&cgroup_backing_dev_info);
3985
3986 return err;
3987}
3988
3989/*
3990 * proc_cgroup_show()
3991 * - Print task's cgroup paths into seq_file, one line for each hierarchy
3992 * - Used for /proc/<pid>/cgroup.
3993 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
3994 * doesn't really matter if tsk->cgroup changes after we read it,
3995 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
3996 * anyway. No need to check that tsk->cgroup != NULL, thanks to
3997 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
3998 * cgroup to top_cgroup.
3999 */
4000
4001/* TODO: Use a proper seq_file iterator */
4002static int proc_cgroup_show(struct seq_file *m, void *v)
4003{
4004 struct pid *pid;
4005 struct task_struct *tsk;
4006 char *buf;
4007 int retval;
4008 struct cgroupfs_root *root;
4009
4010 retval = -ENOMEM;
4011 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4012 if (!buf)
4013 goto out;
4014
4015 retval = -ESRCH;
4016 pid = m->private;
4017 tsk = get_pid_task(pid, PIDTYPE_PID);
4018 if (!tsk)
4019 goto out_free;
4020
4021 retval = 0;
4022
4023 mutex_lock(&cgroup_mutex);
4024
4025 for_each_active_root(root) {
4026 struct cgroup_subsys *ss;
4027 struct cgroup *cgrp;
4028 int count = 0;
4029
4030 seq_printf(m, "%d:", root->hierarchy_id);
4031 for_each_subsys(root, ss)
4032 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4033 if (strlen(root->name))
4034 seq_printf(m, "%sname=%s", count ? "," : "",
4035 root->name);
4036 seq_putc(m, ':');
4037 cgrp = task_cgroup_from_root(tsk, root);
4038 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4039 if (retval < 0)
4040 goto out_unlock;
4041 seq_puts(m, buf);
4042 seq_putc(m, '\n');
4043 }
4044
4045out_unlock:
4046 mutex_unlock(&cgroup_mutex);
4047 put_task_struct(tsk);
4048out_free:
4049 kfree(buf);
4050out:
4051 return retval;
4052}
4053
4054static int cgroup_open(struct inode *inode, struct file *file)
4055{
4056 struct pid *pid = PROC_I(inode)->pid;
4057 return single_open(file, proc_cgroup_show, pid);
4058}
4059
4060const struct file_operations proc_cgroup_operations = {
4061 .open = cgroup_open,
4062 .read = seq_read,
4063 .llseek = seq_lseek,
4064 .release = single_release,
4065};
4066
4067/* Display information about each subsystem and each hierarchy */
4068static int proc_cgroupstats_show(struct seq_file *m, void *v)
4069{
4070 int i;
4071
4072 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4073 /*
4074 * ideally we don't want subsystems moving around while we do this.
4075 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4076 * subsys/hierarchy state.
4077 */
4078 mutex_lock(&cgroup_mutex);
4079 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4080 struct cgroup_subsys *ss = subsys[i];
4081 if (ss == NULL)
4082 continue;
4083 seq_printf(m, "%s\t%d\t%d\t%d\n",
4084 ss->name, ss->root->hierarchy_id,
4085 ss->root->number_of_cgroups, !ss->disabled);
4086 }
4087 mutex_unlock(&cgroup_mutex);
4088 return 0;
4089}
4090
4091static int cgroupstats_open(struct inode *inode, struct file *file)
4092{
4093 return single_open(file, proc_cgroupstats_show, NULL);
4094}
4095
4096static const struct file_operations proc_cgroupstats_operations = {
4097 .open = cgroupstats_open,
4098 .read = seq_read,
4099 .llseek = seq_lseek,
4100 .release = single_release,
4101};
4102
4103/**
4104 * cgroup_fork - attach newly forked task to its parents cgroup.
4105 * @child: pointer to task_struct of forking parent process.
4106 *
4107 * Description: A task inherits its parent's cgroup at fork().
4108 *
4109 * A pointer to the shared css_set was automatically copied in
4110 * fork.c by dup_task_struct(). However, we ignore that copy, since
4111 * it was not made under the protection of RCU or cgroup_mutex, so
4112 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4113 * have already changed current->cgroups, allowing the previously
4114 * referenced cgroup group to be removed and freed.
4115 *
4116 * At the point that cgroup_fork() is called, 'current' is the parent
4117 * task, and the passed argument 'child' points to the child task.
4118 */
4119void cgroup_fork(struct task_struct *child)
4120{
4121 task_lock(current);
4122 child->cgroups = current->cgroups;
4123 get_css_set(child->cgroups);
4124 task_unlock(current);
4125 INIT_LIST_HEAD(&child->cg_list);
4126}
4127
4128/**
4129 * cgroup_fork_callbacks - run fork callbacks
4130 * @child: the new task
4131 *
4132 * Called on a new task very soon before adding it to the
4133 * tasklist. No need to take any locks since no-one can
4134 * be operating on this task.
4135 */
4136void cgroup_fork_callbacks(struct task_struct *child)
4137{
4138 if (need_forkexit_callback) {
4139 int i;
4140 /*
4141 * forkexit callbacks are only supported for builtin
4142 * subsystems, and the builtin section of the subsys array is
4143 * immutable, so we don't need to lock the subsys array here.
4144 */
4145 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4146 struct cgroup_subsys *ss = subsys[i];
4147 if (ss->fork)
4148 ss->fork(ss, child);
4149 }
4150 }
4151}
4152
4153/**
4154 * cgroup_post_fork - called on a new task after adding it to the task list
4155 * @child: the task in question
4156 *
4157 * Adds the task to the list running through its css_set if necessary.
4158 * Has to be after the task is visible on the task list in case we race
4159 * with the first call to cgroup_iter_start() - to guarantee that the
4160 * new task ends up on its list.
4161 */
4162void cgroup_post_fork(struct task_struct *child)
4163{
4164 if (use_task_css_set_links) {
4165 write_lock(&css_set_lock);
4166 task_lock(child);
4167 if (list_empty(&child->cg_list))
4168 list_add(&child->cg_list, &child->cgroups->tasks);
4169 task_unlock(child);
4170 write_unlock(&css_set_lock);
4171 }
4172}
4173/**
4174 * cgroup_exit - detach cgroup from exiting task
4175 * @tsk: pointer to task_struct of exiting process
4176 * @run_callback: run exit callbacks?
4177 *
4178 * Description: Detach cgroup from @tsk and release it.
4179 *
4180 * Note that cgroups marked notify_on_release force every task in
4181 * them to take the global cgroup_mutex mutex when exiting.
4182 * This could impact scaling on very large systems. Be reluctant to
4183 * use notify_on_release cgroups where very high task exit scaling
4184 * is required on large systems.
4185 *
4186 * the_top_cgroup_hack:
4187 *
4188 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4189 *
4190 * We call cgroup_exit() while the task is still competent to
4191 * handle notify_on_release(), then leave the task attached to the
4192 * root cgroup in each hierarchy for the remainder of its exit.
4193 *
4194 * To do this properly, we would increment the reference count on
4195 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4196 * code we would add a second cgroup function call, to drop that
4197 * reference. This would just create an unnecessary hot spot on
4198 * the top_cgroup reference count, to no avail.
4199 *
4200 * Normally, holding a reference to a cgroup without bumping its
4201 * count is unsafe. The cgroup could go away, or someone could
4202 * attach us to a different cgroup, decrementing the count on
4203 * the first cgroup that we never incremented. But in this case,
4204 * top_cgroup isn't going away, and either task has PF_EXITING set,
4205 * which wards off any cgroup_attach_task() attempts, or task is a failed
4206 * fork, never visible to cgroup_attach_task.
4207 */
4208void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4209{
4210 int i;
4211 struct css_set *cg;
4212
4213 if (run_callbacks && need_forkexit_callback) {
4214 /*
4215 * modular subsystems can't use callbacks, so no need to lock
4216 * the subsys array
4217 */
4218 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4219 struct cgroup_subsys *ss = subsys[i];
4220 if (ss->exit)
4221 ss->exit(ss, tsk);
4222 }
4223 }
4224
4225 /*
4226 * Unlink from the css_set task list if necessary.
4227 * Optimistically check cg_list before taking
4228 * css_set_lock
4229 */
4230 if (!list_empty(&tsk->cg_list)) {
4231 write_lock(&css_set_lock);
4232 if (!list_empty(&tsk->cg_list))
4233 list_del(&tsk->cg_list);
4234 write_unlock(&css_set_lock);
4235 }
4236
4237 /* Reassign the task to the init_css_set. */
4238 task_lock(tsk);
4239 cg = tsk->cgroups;
4240 tsk->cgroups = &init_css_set;
4241 task_unlock(tsk);
4242 if (cg)
4243 put_css_set_taskexit(cg);
4244}
4245
4246/**
4247 * cgroup_clone - clone the cgroup the given subsystem is attached to
4248 * @tsk: the task to be moved
4249 * @subsys: the given subsystem
4250 * @nodename: the name for the new cgroup
4251 *
4252 * Duplicate the current cgroup in the hierarchy that the given
4253 * subsystem is attached to, and move this task into the new
4254 * child.
4255 */
4256int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys,
4257 char *nodename)
4258{
4259 struct dentry *dentry;
4260 int ret = 0;
4261 struct cgroup *parent, *child;
4262 struct inode *inode;
4263 struct css_set *cg;
4264 struct cgroupfs_root *root;
4265 struct cgroup_subsys *ss;
4266
4267 /* We shouldn't be called by an unregistered subsystem */
4268 BUG_ON(!subsys->active);
4269
4270 /* First figure out what hierarchy and cgroup we're dealing
4271 * with, and pin them so we can drop cgroup_mutex */
4272 mutex_lock(&cgroup_mutex);
4273 again:
4274 root = subsys->root;
4275 if (root == &rootnode) {
4276 mutex_unlock(&cgroup_mutex);
4277 return 0;
4278 }
4279
4280 /* Pin the hierarchy */
4281 if (!atomic_inc_not_zero(&root->sb->s_active)) {
4282 /* We race with the final deactivate_super() */
4283 mutex_unlock(&cgroup_mutex);
4284 return 0;
4285 }
4286
4287 /* Keep the cgroup alive */
4288 task_lock(tsk);
4289 parent = task_cgroup(tsk, subsys->subsys_id);
4290 cg = tsk->cgroups;
4291 get_css_set(cg);
4292 task_unlock(tsk);
4293
4294 mutex_unlock(&cgroup_mutex);
4295
4296 /* Now do the VFS work to create a cgroup */
4297 inode = parent->dentry->d_inode;
4298
4299 /* Hold the parent directory mutex across this operation to
4300 * stop anyone else deleting the new cgroup */
4301 mutex_lock(&inode->i_mutex);
4302 dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
4303 if (IS_ERR(dentry)) {
4304 printk(KERN_INFO
4305 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
4306 PTR_ERR(dentry));
4307 ret = PTR_ERR(dentry);
4308 goto out_release;
4309 }
4310
4311 /* Create the cgroup directory, which also creates the cgroup */
4312 ret = vfs_mkdir(inode, dentry, 0755);
4313 child = __d_cgrp(dentry);
4314 dput(dentry);
4315 if (ret) {
4316 printk(KERN_INFO
4317 "Failed to create cgroup %s: %d\n", nodename,
4318 ret);
4319 goto out_release;
4320 }
4321
4322 /* The cgroup now exists. Retake cgroup_mutex and check
4323 * that we're still in the same state that we thought we
4324 * were. */
4325 mutex_lock(&cgroup_mutex);
4326 if ((root != subsys->root) ||
4327 (parent != task_cgroup(tsk, subsys->subsys_id))) {
4328 /* Aargh, we raced ... */
4329 mutex_unlock(&inode->i_mutex);
4330 put_css_set(cg);
4331
4332 deactivate_super(root->sb);
4333 /* The cgroup is still accessible in the VFS, but
4334 * we're not going to try to rmdir() it at this
4335 * point. */
4336 printk(KERN_INFO
4337 "Race in cgroup_clone() - leaking cgroup %s\n",
4338 nodename);
4339 goto again;
4340 }
4341
4342 /* do any required auto-setup */
4343 for_each_subsys(root, ss) {
4344 if (ss->post_clone)
4345 ss->post_clone(ss, child);
4346 }
4347
4348 /* All seems fine. Finish by moving the task into the new cgroup */
4349 ret = cgroup_attach_task(child, tsk);
4350 mutex_unlock(&cgroup_mutex);
4351
4352 out_release:
4353 mutex_unlock(&inode->i_mutex);
4354
4355 mutex_lock(&cgroup_mutex);
4356 put_css_set(cg);
4357 mutex_unlock(&cgroup_mutex);
4358 deactivate_super(root->sb);
4359 return ret;
4360}
4361
4362/**
4363 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4364 * @cgrp: the cgroup in question
4365 * @task: the task in question
4366 *
4367 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4368 * hierarchy.
4369 *
4370 * If we are sending in dummytop, then presumably we are creating
4371 * the top cgroup in the subsystem.
4372 *
4373 * Called only by the ns (nsproxy) cgroup.
4374 */
4375int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4376{
4377 int ret;
4378 struct cgroup *target;
4379
4380 if (cgrp == dummytop)
4381 return 1;
4382
4383 target = task_cgroup_from_root(task, cgrp->root);
4384 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4385 cgrp = cgrp->parent;
4386 ret = (cgrp == target);
4387 return ret;
4388}
4389
4390static void check_for_release(struct cgroup *cgrp)
4391{
4392 /* All of these checks rely on RCU to keep the cgroup
4393 * structure alive */
4394 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4395 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4396 /* Control Group is currently removeable. If it's not
4397 * already queued for a userspace notification, queue
4398 * it now */
4399 int need_schedule_work = 0;
4400 spin_lock(&release_list_lock);
4401 if (!cgroup_is_removed(cgrp) &&
4402 list_empty(&cgrp->release_list)) {
4403 list_add(&cgrp->release_list, &release_list);
4404 need_schedule_work = 1;
4405 }
4406 spin_unlock(&release_list_lock);
4407 if (need_schedule_work)
4408 schedule_work(&release_agent_work);
4409 }
4410}
4411
4412/* Caller must verify that the css is not for root cgroup */
4413void __css_put(struct cgroup_subsys_state *css, int count)
4414{
4415 struct cgroup *cgrp = css->cgroup;
4416 int val;
4417 rcu_read_lock();
4418 val = atomic_sub_return(count, &css->refcnt);
4419 if (val == 1) {
4420 if (notify_on_release(cgrp)) {
4421 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4422 check_for_release(cgrp);
4423 }
4424 cgroup_wakeup_rmdir_waiter(cgrp);
4425 }
4426 rcu_read_unlock();
4427 WARN_ON_ONCE(val < 1);
4428}
4429EXPORT_SYMBOL_GPL(__css_put);
4430
4431/*
4432 * Notify userspace when a cgroup is released, by running the
4433 * configured release agent with the name of the cgroup (path
4434 * relative to the root of cgroup file system) as the argument.
4435 *
4436 * Most likely, this user command will try to rmdir this cgroup.
4437 *
4438 * This races with the possibility that some other task will be
4439 * attached to this cgroup before it is removed, or that some other
4440 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4441 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4442 * unused, and this cgroup will be reprieved from its death sentence,
4443 * to continue to serve a useful existence. Next time it's released,
4444 * we will get notified again, if it still has 'notify_on_release' set.
4445 *
4446 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4447 * means only wait until the task is successfully execve()'d. The
4448 * separate release agent task is forked by call_usermodehelper(),
4449 * then control in this thread returns here, without waiting for the
4450 * release agent task. We don't bother to wait because the caller of
4451 * this routine has no use for the exit status of the release agent
4452 * task, so no sense holding our caller up for that.
4453 */
4454static void cgroup_release_agent(struct work_struct *work)
4455{
4456 BUG_ON(work != &release_agent_work);
4457 mutex_lock(&cgroup_mutex);
4458 spin_lock(&release_list_lock);
4459 while (!list_empty(&release_list)) {
4460 char *argv[3], *envp[3];
4461 int i;
4462 char *pathbuf = NULL, *agentbuf = NULL;
4463 struct cgroup *cgrp = list_entry(release_list.next,
4464 struct cgroup,
4465 release_list);
4466 list_del_init(&cgrp->release_list);
4467 spin_unlock(&release_list_lock);
4468 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4469 if (!pathbuf)
4470 goto continue_free;
4471 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4472 goto continue_free;
4473 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4474 if (!agentbuf)
4475 goto continue_free;
4476
4477 i = 0;
4478 argv[i++] = agentbuf;
4479 argv[i++] = pathbuf;
4480 argv[i] = NULL;
4481
4482 i = 0;
4483 /* minimal command environment */
4484 envp[i++] = "HOME=/";
4485 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4486 envp[i] = NULL;
4487
4488 /* Drop the lock while we invoke the usermode helper,
4489 * since the exec could involve hitting disk and hence
4490 * be a slow process */
4491 mutex_unlock(&cgroup_mutex);
4492 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4493 mutex_lock(&cgroup_mutex);
4494 continue_free:
4495 kfree(pathbuf);
4496 kfree(agentbuf);
4497 spin_lock(&release_list_lock);
4498 }
4499 spin_unlock(&release_list_lock);
4500 mutex_unlock(&cgroup_mutex);
4501}
4502
4503static int __init cgroup_disable(char *str)
4504{
4505 int i;
4506 char *token;
4507
4508 while ((token = strsep(&str, ",")) != NULL) {
4509 if (!*token)
4510 continue;
4511 /*
4512 * cgroup_disable, being at boot time, can't know about module
4513 * subsystems, so we don't worry about them.
4514 */
4515 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4516 struct cgroup_subsys *ss = subsys[i];
4517
4518 if (!strcmp(token, ss->name)) {
4519 ss->disabled = 1;
4520 printk(KERN_INFO "Disabling %s control group"
4521 " subsystem\n", ss->name);
4522 break;
4523 }
4524 }
4525 }
4526 return 1;
4527}
4528__setup("cgroup_disable=", cgroup_disable);
4529
4530/*
4531 * Functons for CSS ID.
4532 */
4533
4534/*
4535 *To get ID other than 0, this should be called when !cgroup_is_removed().
4536 */
4537unsigned short css_id(struct cgroup_subsys_state *css)
4538{
4539 struct css_id *cssid;
4540
4541 /*
4542 * This css_id() can return correct value when somone has refcnt
4543 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4544 * it's unchanged until freed.
4545 */
4546 cssid = rcu_dereference_check(css->id,
4547 rcu_read_lock_held() || atomic_read(&css->refcnt));
4548
4549 if (cssid)
4550 return cssid->id;
4551 return 0;
4552}
4553EXPORT_SYMBOL_GPL(css_id);
4554
4555unsigned short css_depth(struct cgroup_subsys_state *css)
4556{
4557 struct css_id *cssid;
4558
4559 cssid = rcu_dereference_check(css->id,
4560 rcu_read_lock_held() || atomic_read(&css->refcnt));
4561
4562 if (cssid)
4563 return cssid->depth;
4564 return 0;
4565}
4566EXPORT_SYMBOL_GPL(css_depth);
4567
4568/**
4569 * css_is_ancestor - test "root" css is an ancestor of "child"
4570 * @child: the css to be tested.
4571 * @root: the css supporsed to be an ancestor of the child.
4572 *
4573 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4574 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4575 * But, considering usual usage, the csses should be valid objects after test.
4576 * Assuming that the caller will do some action to the child if this returns
4577 * returns true, the caller must take "child";s reference count.
4578 * If "child" is valid object and this returns true, "root" is valid, too.
4579 */
4580
4581bool css_is_ancestor(struct cgroup_subsys_state *child,
4582 const struct cgroup_subsys_state *root)
4583{
4584 struct css_id *child_id;
4585 struct css_id *root_id;
4586 bool ret = true;
4587
4588 rcu_read_lock();
4589 child_id = rcu_dereference(child->id);
4590 root_id = rcu_dereference(root->id);
4591 if (!child_id
4592 || !root_id
4593 || (child_id->depth < root_id->depth)
4594 || (child_id->stack[root_id->depth] != root_id->id))
4595 ret = false;
4596 rcu_read_unlock();
4597 return ret;
4598}
4599
4600static void __free_css_id_cb(struct rcu_head *head)
4601{
4602 struct css_id *id;
4603
4604 id = container_of(head, struct css_id, rcu_head);
4605 kfree(id);
4606}
4607
4608void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4609{
4610 struct css_id *id = css->id;
4611 /* When this is called before css_id initialization, id can be NULL */
4612 if (!id)
4613 return;
4614
4615 BUG_ON(!ss->use_id);
4616
4617 rcu_assign_pointer(id->css, NULL);
4618 rcu_assign_pointer(css->id, NULL);
4619 spin_lock(&ss->id_lock);
4620 idr_remove(&ss->idr, id->id);
4621 spin_unlock(&ss->id_lock);
4622 call_rcu(&id->rcu_head, __free_css_id_cb);
4623}
4624EXPORT_SYMBOL_GPL(free_css_id);
4625
4626/*
4627 * This is called by init or create(). Then, calls to this function are
4628 * always serialized (By cgroup_mutex() at create()).
4629 */
4630
4631static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4632{
4633 struct css_id *newid;
4634 int myid, error, size;
4635
4636 BUG_ON(!ss->use_id);
4637
4638 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4639 newid = kzalloc(size, GFP_KERNEL);
4640 if (!newid)
4641 return ERR_PTR(-ENOMEM);
4642 /* get id */
4643 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4644 error = -ENOMEM;
4645 goto err_out;
4646 }
4647 spin_lock(&ss->id_lock);
4648 /* Don't use 0. allocates an ID of 1-65535 */
4649 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4650 spin_unlock(&ss->id_lock);
4651
4652 /* Returns error when there are no free spaces for new ID.*/
4653 if (error) {
4654 error = -ENOSPC;
4655 goto err_out;
4656 }
4657 if (myid > CSS_ID_MAX)
4658 goto remove_idr;
4659
4660 newid->id = myid;
4661 newid->depth = depth;
4662 return newid;
4663remove_idr:
4664 error = -ENOSPC;
4665 spin_lock(&ss->id_lock);
4666 idr_remove(&ss->idr, myid);
4667 spin_unlock(&ss->id_lock);
4668err_out:
4669 kfree(newid);
4670 return ERR_PTR(error);
4671
4672}
4673
4674static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4675 struct cgroup_subsys_state *rootcss)
4676{
4677 struct css_id *newid;
4678
4679 spin_lock_init(&ss->id_lock);
4680 idr_init(&ss->idr);
4681
4682 newid = get_new_cssid(ss, 0);
4683 if (IS_ERR(newid))
4684 return PTR_ERR(newid);
4685
4686 newid->stack[0] = newid->id;
4687 newid->css = rootcss;
4688 rootcss->id = newid;
4689 return 0;
4690}
4691
4692static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4693 struct cgroup *child)
4694{
4695 int subsys_id, i, depth = 0;
4696 struct cgroup_subsys_state *parent_css, *child_css;
4697 struct css_id *child_id, *parent_id;
4698
4699 subsys_id = ss->subsys_id;
4700 parent_css = parent->subsys[subsys_id];
4701 child_css = child->subsys[subsys_id];
4702 parent_id = parent_css->id;
4703 depth = parent_id->depth + 1;
4704
4705 child_id = get_new_cssid(ss, depth);
4706 if (IS_ERR(child_id))
4707 return PTR_ERR(child_id);
4708
4709 for (i = 0; i < depth; i++)
4710 child_id->stack[i] = parent_id->stack[i];
4711 child_id->stack[depth] = child_id->id;
4712 /*
4713 * child_id->css pointer will be set after this cgroup is available
4714 * see cgroup_populate_dir()
4715 */
4716 rcu_assign_pointer(child_css->id, child_id);
4717
4718 return 0;
4719}
4720
4721/**
4722 * css_lookup - lookup css by id
4723 * @ss: cgroup subsys to be looked into.
4724 * @id: the id
4725 *
4726 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4727 * NULL if not. Should be called under rcu_read_lock()
4728 */
4729struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4730{
4731 struct css_id *cssid = NULL;
4732
4733 BUG_ON(!ss->use_id);
4734 cssid = idr_find(&ss->idr, id);
4735
4736 if (unlikely(!cssid))
4737 return NULL;
4738
4739 return rcu_dereference(cssid->css);
4740}
4741EXPORT_SYMBOL_GPL(css_lookup);
4742
4743/**
4744 * css_get_next - lookup next cgroup under specified hierarchy.
4745 * @ss: pointer to subsystem
4746 * @id: current position of iteration.
4747 * @root: pointer to css. search tree under this.
4748 * @foundid: position of found object.
4749 *
4750 * Search next css under the specified hierarchy of rootid. Calling under
4751 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
4752 */
4753struct cgroup_subsys_state *
4754css_get_next(struct cgroup_subsys *ss, int id,
4755 struct cgroup_subsys_state *root, int *foundid)
4756{
4757 struct cgroup_subsys_state *ret = NULL;
4758 struct css_id *tmp;
4759 int tmpid;
4760 int rootid = css_id(root);
4761 int depth = css_depth(root);
4762
4763 if (!rootid)
4764 return NULL;
4765
4766 BUG_ON(!ss->use_id);
4767 /* fill start point for scan */
4768 tmpid = id;
4769 while (1) {
4770 /*
4771 * scan next entry from bitmap(tree), tmpid is updated after
4772 * idr_get_next().
4773 */
4774 spin_lock(&ss->id_lock);
4775 tmp = idr_get_next(&ss->idr, &tmpid);
4776 spin_unlock(&ss->id_lock);
4777
4778 if (!tmp)
4779 break;
4780 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
4781 ret = rcu_dereference(tmp->css);
4782 if (ret) {
4783 *foundid = tmpid;
4784 break;
4785 }
4786 }
4787 /* continue to scan from next id */
4788 tmpid = tmpid + 1;
4789 }
4790 return ret;
4791}
4792
4793#ifdef CONFIG_CGROUP_DEBUG
4794static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
4795 struct cgroup *cont)
4796{
4797 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
4798
4799 if (!css)
4800 return ERR_PTR(-ENOMEM);
4801
4802 return css;
4803}
4804
4805static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
4806{
4807 kfree(cont->subsys[debug_subsys_id]);
4808}
4809
4810static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
4811{
4812 return atomic_read(&cont->count);
4813}
4814
4815static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
4816{
4817 return cgroup_task_count(cont);
4818}
4819
4820static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
4821{
4822 return (u64)(unsigned long)current->cgroups;
4823}
4824
4825static u64 current_css_set_refcount_read(struct cgroup *cont,
4826 struct cftype *cft)
4827{
4828 u64 count;
4829
4830 rcu_read_lock();
4831 count = atomic_read(&current->cgroups->refcount);
4832 rcu_read_unlock();
4833 return count;
4834}
4835
4836static int current_css_set_cg_links_read(struct cgroup *cont,
4837 struct cftype *cft,
4838 struct seq_file *seq)
4839{
4840 struct cg_cgroup_link *link;
4841 struct css_set *cg;
4842
4843 read_lock(&css_set_lock);
4844 rcu_read_lock();
4845 cg = rcu_dereference(current->cgroups);
4846 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
4847 struct cgroup *c = link->cgrp;
4848 const char *name;
4849
4850 if (c->dentry)
4851 name = c->dentry->d_name.name;
4852 else
4853 name = "?";
4854 seq_printf(seq, "Root %d group %s\n",
4855 c->root->hierarchy_id, name);
4856 }
4857 rcu_read_unlock();
4858 read_unlock(&css_set_lock);
4859 return 0;
4860}
4861
4862#define MAX_TASKS_SHOWN_PER_CSS 25
4863static int cgroup_css_links_read(struct cgroup *cont,
4864 struct cftype *cft,
4865 struct seq_file *seq)
4866{
4867 struct cg_cgroup_link *link;
4868
4869 read_lock(&css_set_lock);
4870 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
4871 struct css_set *cg = link->cg;
4872 struct task_struct *task;
4873 int count = 0;
4874 seq_printf(seq, "css_set %p\n", cg);
4875 list_for_each_entry(task, &cg->tasks, cg_list) {
4876 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
4877 seq_puts(seq, " ...\n");
4878 break;
4879 } else {
4880 seq_printf(seq, " task %d\n",
4881 task_pid_vnr(task));
4882 }
4883 }
4884 }
4885 read_unlock(&css_set_lock);
4886 return 0;
4887}
4888
4889static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
4890{
4891 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
4892}
4893
4894static struct cftype debug_files[] = {
4895 {
4896 .name = "cgroup_refcount",
4897 .read_u64 = cgroup_refcount_read,
4898 },
4899 {
4900 .name = "taskcount",
4901 .read_u64 = debug_taskcount_read,
4902 },
4903
4904 {
4905 .name = "current_css_set",
4906 .read_u64 = current_css_set_read,
4907 },
4908
4909 {
4910 .name = "current_css_set_refcount",
4911 .read_u64 = current_css_set_refcount_read,
4912 },
4913
4914 {
4915 .name = "current_css_set_cg_links",
4916 .read_seq_string = current_css_set_cg_links_read,
4917 },
4918
4919 {
4920 .name = "cgroup_css_links",
4921 .read_seq_string = cgroup_css_links_read,
4922 },
4923
4924 {
4925 .name = "releasable",
4926 .read_u64 = releasable_read,
4927 },
4928};
4929
4930static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
4931{
4932 return cgroup_add_files(cont, ss, debug_files,
4933 ARRAY_SIZE(debug_files));
4934}
4935
4936struct cgroup_subsys debug_subsys = {
4937 .name = "debug",
4938 .create = debug_create,
4939 .destroy = debug_destroy,
4940 .populate = debug_populate,
4941 .subsys_id = debug_subsys_id,
4942};
4943#endif /* CONFIG_CGROUP_DEBUG */