]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - kernel/audit.c
audit: Use rcu for task lookup protection
[net-next-2.6.git] / kernel / audit.c
... / ...
CommitLineData
1/* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
4 *
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
23 *
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
40 *
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
42 */
43
44#include <linux/init.h>
45#include <asm/types.h>
46#include <asm/atomic.h>
47#include <linux/mm.h>
48#include <linux/module.h>
49#include <linux/slab.h>
50#include <linux/err.h>
51#include <linux/kthread.h>
52
53#include <linux/audit.h>
54
55#include <net/sock.h>
56#include <net/netlink.h>
57#include <linux/skbuff.h>
58#include <linux/netlink.h>
59#include <linux/freezer.h>
60#include <linux/tty.h>
61
62#include "audit.h"
63
64/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
65 * (Initialization happens after skb_init is called.) */
66#define AUDIT_DISABLED -1
67#define AUDIT_UNINITIALIZED 0
68#define AUDIT_INITIALIZED 1
69static int audit_initialized;
70
71#define AUDIT_OFF 0
72#define AUDIT_ON 1
73#define AUDIT_LOCKED 2
74int audit_enabled;
75int audit_ever_enabled;
76
77/* Default state when kernel boots without any parameters. */
78static int audit_default;
79
80/* If auditing cannot proceed, audit_failure selects what happens. */
81static int audit_failure = AUDIT_FAIL_PRINTK;
82
83/*
84 * If audit records are to be written to the netlink socket, audit_pid
85 * contains the pid of the auditd process and audit_nlk_pid contains
86 * the pid to use to send netlink messages to that process.
87 */
88int audit_pid;
89static int audit_nlk_pid;
90
91/* If audit_rate_limit is non-zero, limit the rate of sending audit records
92 * to that number per second. This prevents DoS attacks, but results in
93 * audit records being dropped. */
94static int audit_rate_limit;
95
96/* Number of outstanding audit_buffers allowed. */
97static int audit_backlog_limit = 64;
98static int audit_backlog_wait_time = 60 * HZ;
99static int audit_backlog_wait_overflow = 0;
100
101/* The identity of the user shutting down the audit system. */
102uid_t audit_sig_uid = -1;
103pid_t audit_sig_pid = -1;
104u32 audit_sig_sid = 0;
105
106/* Records can be lost in several ways:
107 0) [suppressed in audit_alloc]
108 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
109 2) out of memory in audit_log_move [alloc_skb]
110 3) suppressed due to audit_rate_limit
111 4) suppressed due to audit_backlog_limit
112*/
113static atomic_t audit_lost = ATOMIC_INIT(0);
114
115/* The netlink socket. */
116static struct sock *audit_sock;
117
118/* Hash for inode-based rules */
119struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
120
121/* The audit_freelist is a list of pre-allocated audit buffers (if more
122 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
123 * being placed on the freelist). */
124static DEFINE_SPINLOCK(audit_freelist_lock);
125static int audit_freelist_count;
126static LIST_HEAD(audit_freelist);
127
128static struct sk_buff_head audit_skb_queue;
129/* queue of skbs to send to auditd when/if it comes back */
130static struct sk_buff_head audit_skb_hold_queue;
131static struct task_struct *kauditd_task;
132static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
133static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
134
135/* Serialize requests from userspace. */
136DEFINE_MUTEX(audit_cmd_mutex);
137
138/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
139 * audit records. Since printk uses a 1024 byte buffer, this buffer
140 * should be at least that large. */
141#define AUDIT_BUFSIZ 1024
142
143/* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
144 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
145#define AUDIT_MAXFREE (2*NR_CPUS)
146
147/* The audit_buffer is used when formatting an audit record. The caller
148 * locks briefly to get the record off the freelist or to allocate the
149 * buffer, and locks briefly to send the buffer to the netlink layer or
150 * to place it on a transmit queue. Multiple audit_buffers can be in
151 * use simultaneously. */
152struct audit_buffer {
153 struct list_head list;
154 struct sk_buff *skb; /* formatted skb ready to send */
155 struct audit_context *ctx; /* NULL or associated context */
156 gfp_t gfp_mask;
157};
158
159struct audit_reply {
160 int pid;
161 struct sk_buff *skb;
162};
163
164static void audit_set_pid(struct audit_buffer *ab, pid_t pid)
165{
166 if (ab) {
167 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
168 nlh->nlmsg_pid = pid;
169 }
170}
171
172void audit_panic(const char *message)
173{
174 switch (audit_failure)
175 {
176 case AUDIT_FAIL_SILENT:
177 break;
178 case AUDIT_FAIL_PRINTK:
179 if (printk_ratelimit())
180 printk(KERN_ERR "audit: %s\n", message);
181 break;
182 case AUDIT_FAIL_PANIC:
183 /* test audit_pid since printk is always losey, why bother? */
184 if (audit_pid)
185 panic("audit: %s\n", message);
186 break;
187 }
188}
189
190static inline int audit_rate_check(void)
191{
192 static unsigned long last_check = 0;
193 static int messages = 0;
194 static DEFINE_SPINLOCK(lock);
195 unsigned long flags;
196 unsigned long now;
197 unsigned long elapsed;
198 int retval = 0;
199
200 if (!audit_rate_limit) return 1;
201
202 spin_lock_irqsave(&lock, flags);
203 if (++messages < audit_rate_limit) {
204 retval = 1;
205 } else {
206 now = jiffies;
207 elapsed = now - last_check;
208 if (elapsed > HZ) {
209 last_check = now;
210 messages = 0;
211 retval = 1;
212 }
213 }
214 spin_unlock_irqrestore(&lock, flags);
215
216 return retval;
217}
218
219/**
220 * audit_log_lost - conditionally log lost audit message event
221 * @message: the message stating reason for lost audit message
222 *
223 * Emit at least 1 message per second, even if audit_rate_check is
224 * throttling.
225 * Always increment the lost messages counter.
226*/
227void audit_log_lost(const char *message)
228{
229 static unsigned long last_msg = 0;
230 static DEFINE_SPINLOCK(lock);
231 unsigned long flags;
232 unsigned long now;
233 int print;
234
235 atomic_inc(&audit_lost);
236
237 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
238
239 if (!print) {
240 spin_lock_irqsave(&lock, flags);
241 now = jiffies;
242 if (now - last_msg > HZ) {
243 print = 1;
244 last_msg = now;
245 }
246 spin_unlock_irqrestore(&lock, flags);
247 }
248
249 if (print) {
250 if (printk_ratelimit())
251 printk(KERN_WARNING
252 "audit: audit_lost=%d audit_rate_limit=%d "
253 "audit_backlog_limit=%d\n",
254 atomic_read(&audit_lost),
255 audit_rate_limit,
256 audit_backlog_limit);
257 audit_panic(message);
258 }
259}
260
261static int audit_log_config_change(char *function_name, int new, int old,
262 uid_t loginuid, u32 sessionid, u32 sid,
263 int allow_changes)
264{
265 struct audit_buffer *ab;
266 int rc = 0;
267
268 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
269 audit_log_format(ab, "%s=%d old=%d auid=%u ses=%u", function_name, new,
270 old, loginuid, sessionid);
271 if (sid) {
272 char *ctx = NULL;
273 u32 len;
274
275 rc = security_secid_to_secctx(sid, &ctx, &len);
276 if (rc) {
277 audit_log_format(ab, " sid=%u", sid);
278 allow_changes = 0; /* Something weird, deny request */
279 } else {
280 audit_log_format(ab, " subj=%s", ctx);
281 security_release_secctx(ctx, len);
282 }
283 }
284 audit_log_format(ab, " res=%d", allow_changes);
285 audit_log_end(ab);
286 return rc;
287}
288
289static int audit_do_config_change(char *function_name, int *to_change,
290 int new, uid_t loginuid, u32 sessionid,
291 u32 sid)
292{
293 int allow_changes, rc = 0, old = *to_change;
294
295 /* check if we are locked */
296 if (audit_enabled == AUDIT_LOCKED)
297 allow_changes = 0;
298 else
299 allow_changes = 1;
300
301 if (audit_enabled != AUDIT_OFF) {
302 rc = audit_log_config_change(function_name, new, old, loginuid,
303 sessionid, sid, allow_changes);
304 if (rc)
305 allow_changes = 0;
306 }
307
308 /* If we are allowed, make the change */
309 if (allow_changes == 1)
310 *to_change = new;
311 /* Not allowed, update reason */
312 else if (rc == 0)
313 rc = -EPERM;
314 return rc;
315}
316
317static int audit_set_rate_limit(int limit, uid_t loginuid, u32 sessionid,
318 u32 sid)
319{
320 return audit_do_config_change("audit_rate_limit", &audit_rate_limit,
321 limit, loginuid, sessionid, sid);
322}
323
324static int audit_set_backlog_limit(int limit, uid_t loginuid, u32 sessionid,
325 u32 sid)
326{
327 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit,
328 limit, loginuid, sessionid, sid);
329}
330
331static int audit_set_enabled(int state, uid_t loginuid, u32 sessionid, u32 sid)
332{
333 int rc;
334 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
335 return -EINVAL;
336
337 rc = audit_do_config_change("audit_enabled", &audit_enabled, state,
338 loginuid, sessionid, sid);
339
340 if (!rc)
341 audit_ever_enabled |= !!state;
342
343 return rc;
344}
345
346static int audit_set_failure(int state, uid_t loginuid, u32 sessionid, u32 sid)
347{
348 if (state != AUDIT_FAIL_SILENT
349 && state != AUDIT_FAIL_PRINTK
350 && state != AUDIT_FAIL_PANIC)
351 return -EINVAL;
352
353 return audit_do_config_change("audit_failure", &audit_failure, state,
354 loginuid, sessionid, sid);
355}
356
357/*
358 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
359 * already have been sent via prink/syslog and so if these messages are dropped
360 * it is not a huge concern since we already passed the audit_log_lost()
361 * notification and stuff. This is just nice to get audit messages during
362 * boot before auditd is running or messages generated while auditd is stopped.
363 * This only holds messages is audit_default is set, aka booting with audit=1
364 * or building your kernel that way.
365 */
366static void audit_hold_skb(struct sk_buff *skb)
367{
368 if (audit_default &&
369 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit)
370 skb_queue_tail(&audit_skb_hold_queue, skb);
371 else
372 kfree_skb(skb);
373}
374
375/*
376 * For one reason or another this nlh isn't getting delivered to the userspace
377 * audit daemon, just send it to printk.
378 */
379static void audit_printk_skb(struct sk_buff *skb)
380{
381 struct nlmsghdr *nlh = nlmsg_hdr(skb);
382 char *data = NLMSG_DATA(nlh);
383
384 if (nlh->nlmsg_type != AUDIT_EOE) {
385 if (printk_ratelimit())
386 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
387 else
388 audit_log_lost("printk limit exceeded\n");
389 }
390
391 audit_hold_skb(skb);
392}
393
394static void kauditd_send_skb(struct sk_buff *skb)
395{
396 int err;
397 /* take a reference in case we can't send it and we want to hold it */
398 skb_get(skb);
399 err = netlink_unicast(audit_sock, skb, audit_nlk_pid, 0);
400 if (err < 0) {
401 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
402 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
403 audit_log_lost("auditd dissapeared\n");
404 audit_pid = 0;
405 /* we might get lucky and get this in the next auditd */
406 audit_hold_skb(skb);
407 } else
408 /* drop the extra reference if sent ok */
409 consume_skb(skb);
410}
411
412static int kauditd_thread(void *dummy)
413{
414 struct sk_buff *skb;
415
416 set_freezable();
417 while (!kthread_should_stop()) {
418 /*
419 * if auditd just started drain the queue of messages already
420 * sent to syslog/printk. remember loss here is ok. we already
421 * called audit_log_lost() if it didn't go out normally. so the
422 * race between the skb_dequeue and the next check for audit_pid
423 * doesn't matter.
424 *
425 * if you ever find kauditd to be too slow we can get a perf win
426 * by doing our own locking and keeping better track if there
427 * are messages in this queue. I don't see the need now, but
428 * in 5 years when I want to play with this again I'll see this
429 * note and still have no friggin idea what i'm thinking today.
430 */
431 if (audit_default && audit_pid) {
432 skb = skb_dequeue(&audit_skb_hold_queue);
433 if (unlikely(skb)) {
434 while (skb && audit_pid) {
435 kauditd_send_skb(skb);
436 skb = skb_dequeue(&audit_skb_hold_queue);
437 }
438 }
439 }
440
441 skb = skb_dequeue(&audit_skb_queue);
442 wake_up(&audit_backlog_wait);
443 if (skb) {
444 if (audit_pid)
445 kauditd_send_skb(skb);
446 else
447 audit_printk_skb(skb);
448 } else {
449 DECLARE_WAITQUEUE(wait, current);
450 set_current_state(TASK_INTERRUPTIBLE);
451 add_wait_queue(&kauditd_wait, &wait);
452
453 if (!skb_queue_len(&audit_skb_queue)) {
454 try_to_freeze();
455 schedule();
456 }
457
458 __set_current_state(TASK_RUNNING);
459 remove_wait_queue(&kauditd_wait, &wait);
460 }
461 }
462 return 0;
463}
464
465static int audit_prepare_user_tty(pid_t pid, uid_t loginuid, u32 sessionid)
466{
467 struct task_struct *tsk;
468 int err;
469
470 rcu_read_lock();
471 tsk = find_task_by_vpid(pid);
472 if (!tsk) {
473 rcu_read_unlock();
474 return -ESRCH;
475 }
476 get_task_struct(tsk);
477 rcu_read_unlock();
478 err = tty_audit_push_task(tsk, loginuid, sessionid);
479 put_task_struct(tsk);
480 return err;
481}
482
483int audit_send_list(void *_dest)
484{
485 struct audit_netlink_list *dest = _dest;
486 int pid = dest->pid;
487 struct sk_buff *skb;
488
489 /* wait for parent to finish and send an ACK */
490 mutex_lock(&audit_cmd_mutex);
491 mutex_unlock(&audit_cmd_mutex);
492
493 while ((skb = __skb_dequeue(&dest->q)) != NULL)
494 netlink_unicast(audit_sock, skb, pid, 0);
495
496 kfree(dest);
497
498 return 0;
499}
500
501struct sk_buff *audit_make_reply(int pid, int seq, int type, int done,
502 int multi, const void *payload, int size)
503{
504 struct sk_buff *skb;
505 struct nlmsghdr *nlh;
506 void *data;
507 int flags = multi ? NLM_F_MULTI : 0;
508 int t = done ? NLMSG_DONE : type;
509
510 skb = nlmsg_new(size, GFP_KERNEL);
511 if (!skb)
512 return NULL;
513
514 nlh = NLMSG_NEW(skb, pid, seq, t, size, flags);
515 data = NLMSG_DATA(nlh);
516 memcpy(data, payload, size);
517 return skb;
518
519nlmsg_failure: /* Used by NLMSG_NEW */
520 if (skb)
521 kfree_skb(skb);
522 return NULL;
523}
524
525static int audit_send_reply_thread(void *arg)
526{
527 struct audit_reply *reply = (struct audit_reply *)arg;
528
529 mutex_lock(&audit_cmd_mutex);
530 mutex_unlock(&audit_cmd_mutex);
531
532 /* Ignore failure. It'll only happen if the sender goes away,
533 because our timeout is set to infinite. */
534 netlink_unicast(audit_sock, reply->skb, reply->pid, 0);
535 kfree(reply);
536 return 0;
537}
538/**
539 * audit_send_reply - send an audit reply message via netlink
540 * @pid: process id to send reply to
541 * @seq: sequence number
542 * @type: audit message type
543 * @done: done (last) flag
544 * @multi: multi-part message flag
545 * @payload: payload data
546 * @size: payload size
547 *
548 * Allocates an skb, builds the netlink message, and sends it to the pid.
549 * No failure notifications.
550 */
551static void audit_send_reply(int pid, int seq, int type, int done, int multi,
552 const void *payload, int size)
553{
554 struct sk_buff *skb;
555 struct task_struct *tsk;
556 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
557 GFP_KERNEL);
558
559 if (!reply)
560 return;
561
562 skb = audit_make_reply(pid, seq, type, done, multi, payload, size);
563 if (!skb)
564 goto out;
565
566 reply->pid = pid;
567 reply->skb = skb;
568
569 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
570 if (!IS_ERR(tsk))
571 return;
572 kfree_skb(skb);
573out:
574 kfree(reply);
575}
576
577/*
578 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
579 * control messages.
580 */
581static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
582{
583 int err = 0;
584
585 switch (msg_type) {
586 case AUDIT_GET:
587 case AUDIT_LIST:
588 case AUDIT_LIST_RULES:
589 case AUDIT_SET:
590 case AUDIT_ADD:
591 case AUDIT_ADD_RULE:
592 case AUDIT_DEL:
593 case AUDIT_DEL_RULE:
594 case AUDIT_SIGNAL_INFO:
595 case AUDIT_TTY_GET:
596 case AUDIT_TTY_SET:
597 case AUDIT_TRIM:
598 case AUDIT_MAKE_EQUIV:
599 if (security_netlink_recv(skb, CAP_AUDIT_CONTROL))
600 err = -EPERM;
601 break;
602 case AUDIT_USER:
603 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
604 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
605 if (security_netlink_recv(skb, CAP_AUDIT_WRITE))
606 err = -EPERM;
607 break;
608 default: /* bad msg */
609 err = -EINVAL;
610 }
611
612 return err;
613}
614
615static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type,
616 u32 pid, u32 uid, uid_t auid, u32 ses,
617 u32 sid)
618{
619 int rc = 0;
620 char *ctx = NULL;
621 u32 len;
622
623 if (!audit_enabled) {
624 *ab = NULL;
625 return rc;
626 }
627
628 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
629 audit_log_format(*ab, "user pid=%d uid=%u auid=%u ses=%u",
630 pid, uid, auid, ses);
631 if (sid) {
632 rc = security_secid_to_secctx(sid, &ctx, &len);
633 if (rc)
634 audit_log_format(*ab, " ssid=%u", sid);
635 else {
636 audit_log_format(*ab, " subj=%s", ctx);
637 security_release_secctx(ctx, len);
638 }
639 }
640
641 return rc;
642}
643
644static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
645{
646 u32 uid, pid, seq, sid;
647 void *data;
648 struct audit_status *status_get, status_set;
649 int err;
650 struct audit_buffer *ab;
651 u16 msg_type = nlh->nlmsg_type;
652 uid_t loginuid; /* loginuid of sender */
653 u32 sessionid;
654 struct audit_sig_info *sig_data;
655 char *ctx = NULL;
656 u32 len;
657
658 err = audit_netlink_ok(skb, msg_type);
659 if (err)
660 return err;
661
662 /* As soon as there's any sign of userspace auditd,
663 * start kauditd to talk to it */
664 if (!kauditd_task)
665 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
666 if (IS_ERR(kauditd_task)) {
667 err = PTR_ERR(kauditd_task);
668 kauditd_task = NULL;
669 return err;
670 }
671
672 pid = NETLINK_CREDS(skb)->pid;
673 uid = NETLINK_CREDS(skb)->uid;
674 loginuid = NETLINK_CB(skb).loginuid;
675 sessionid = NETLINK_CB(skb).sessionid;
676 sid = NETLINK_CB(skb).sid;
677 seq = nlh->nlmsg_seq;
678 data = NLMSG_DATA(nlh);
679
680 switch (msg_type) {
681 case AUDIT_GET:
682 status_set.enabled = audit_enabled;
683 status_set.failure = audit_failure;
684 status_set.pid = audit_pid;
685 status_set.rate_limit = audit_rate_limit;
686 status_set.backlog_limit = audit_backlog_limit;
687 status_set.lost = atomic_read(&audit_lost);
688 status_set.backlog = skb_queue_len(&audit_skb_queue);
689 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_GET, 0, 0,
690 &status_set, sizeof(status_set));
691 break;
692 case AUDIT_SET:
693 if (nlh->nlmsg_len < sizeof(struct audit_status))
694 return -EINVAL;
695 status_get = (struct audit_status *)data;
696 if (status_get->mask & AUDIT_STATUS_ENABLED) {
697 err = audit_set_enabled(status_get->enabled,
698 loginuid, sessionid, sid);
699 if (err < 0)
700 return err;
701 }
702 if (status_get->mask & AUDIT_STATUS_FAILURE) {
703 err = audit_set_failure(status_get->failure,
704 loginuid, sessionid, sid);
705 if (err < 0)
706 return err;
707 }
708 if (status_get->mask & AUDIT_STATUS_PID) {
709 int new_pid = status_get->pid;
710
711 if (audit_enabled != AUDIT_OFF)
712 audit_log_config_change("audit_pid", new_pid,
713 audit_pid, loginuid,
714 sessionid, sid, 1);
715
716 audit_pid = new_pid;
717 audit_nlk_pid = NETLINK_CB(skb).pid;
718 }
719 if (status_get->mask & AUDIT_STATUS_RATE_LIMIT) {
720 err = audit_set_rate_limit(status_get->rate_limit,
721 loginuid, sessionid, sid);
722 if (err < 0)
723 return err;
724 }
725 if (status_get->mask & AUDIT_STATUS_BACKLOG_LIMIT)
726 err = audit_set_backlog_limit(status_get->backlog_limit,
727 loginuid, sessionid, sid);
728 break;
729 case AUDIT_USER:
730 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
731 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
732 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
733 return 0;
734
735 err = audit_filter_user(&NETLINK_CB(skb));
736 if (err == 1) {
737 err = 0;
738 if (msg_type == AUDIT_USER_TTY) {
739 err = audit_prepare_user_tty(pid, loginuid,
740 sessionid);
741 if (err)
742 break;
743 }
744 audit_log_common_recv_msg(&ab, msg_type, pid, uid,
745 loginuid, sessionid, sid);
746
747 if (msg_type != AUDIT_USER_TTY)
748 audit_log_format(ab, " msg='%.1024s'",
749 (char *)data);
750 else {
751 int size;
752
753 audit_log_format(ab, " msg=");
754 size = nlmsg_len(nlh);
755 if (size > 0 &&
756 ((unsigned char *)data)[size - 1] == '\0')
757 size--;
758 audit_log_n_untrustedstring(ab, data, size);
759 }
760 audit_set_pid(ab, pid);
761 audit_log_end(ab);
762 }
763 break;
764 case AUDIT_ADD:
765 case AUDIT_DEL:
766 if (nlmsg_len(nlh) < sizeof(struct audit_rule))
767 return -EINVAL;
768 if (audit_enabled == AUDIT_LOCKED) {
769 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
770 uid, loginuid, sessionid, sid);
771
772 audit_log_format(ab, " audit_enabled=%d res=0",
773 audit_enabled);
774 audit_log_end(ab);
775 return -EPERM;
776 }
777 /* fallthrough */
778 case AUDIT_LIST:
779 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
780 uid, seq, data, nlmsg_len(nlh),
781 loginuid, sessionid, sid);
782 break;
783 case AUDIT_ADD_RULE:
784 case AUDIT_DEL_RULE:
785 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
786 return -EINVAL;
787 if (audit_enabled == AUDIT_LOCKED) {
788 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
789 uid, loginuid, sessionid, sid);
790
791 audit_log_format(ab, " audit_enabled=%d res=0",
792 audit_enabled);
793 audit_log_end(ab);
794 return -EPERM;
795 }
796 /* fallthrough */
797 case AUDIT_LIST_RULES:
798 err = audit_receive_filter(msg_type, NETLINK_CB(skb).pid,
799 uid, seq, data, nlmsg_len(nlh),
800 loginuid, sessionid, sid);
801 break;
802 case AUDIT_TRIM:
803 audit_trim_trees();
804
805 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
806 uid, loginuid, sessionid, sid);
807
808 audit_log_format(ab, " op=trim res=1");
809 audit_log_end(ab);
810 break;
811 case AUDIT_MAKE_EQUIV: {
812 void *bufp = data;
813 u32 sizes[2];
814 size_t msglen = nlmsg_len(nlh);
815 char *old, *new;
816
817 err = -EINVAL;
818 if (msglen < 2 * sizeof(u32))
819 break;
820 memcpy(sizes, bufp, 2 * sizeof(u32));
821 bufp += 2 * sizeof(u32);
822 msglen -= 2 * sizeof(u32);
823 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
824 if (IS_ERR(old)) {
825 err = PTR_ERR(old);
826 break;
827 }
828 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
829 if (IS_ERR(new)) {
830 err = PTR_ERR(new);
831 kfree(old);
832 break;
833 }
834 /* OK, here comes... */
835 err = audit_tag_tree(old, new);
836
837 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE, pid,
838 uid, loginuid, sessionid, sid);
839
840 audit_log_format(ab, " op=make_equiv old=");
841 audit_log_untrustedstring(ab, old);
842 audit_log_format(ab, " new=");
843 audit_log_untrustedstring(ab, new);
844 audit_log_format(ab, " res=%d", !err);
845 audit_log_end(ab);
846 kfree(old);
847 kfree(new);
848 break;
849 }
850 case AUDIT_SIGNAL_INFO:
851 len = 0;
852 if (audit_sig_sid) {
853 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
854 if (err)
855 return err;
856 }
857 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
858 if (!sig_data) {
859 if (audit_sig_sid)
860 security_release_secctx(ctx, len);
861 return -ENOMEM;
862 }
863 sig_data->uid = audit_sig_uid;
864 sig_data->pid = audit_sig_pid;
865 if (audit_sig_sid) {
866 memcpy(sig_data->ctx, ctx, len);
867 security_release_secctx(ctx, len);
868 }
869 audit_send_reply(NETLINK_CB(skb).pid, seq, AUDIT_SIGNAL_INFO,
870 0, 0, sig_data, sizeof(*sig_data) + len);
871 kfree(sig_data);
872 break;
873 case AUDIT_TTY_GET: {
874 struct audit_tty_status s;
875 struct task_struct *tsk;
876 unsigned long flags;
877
878 rcu_read_lock();
879 tsk = find_task_by_vpid(pid);
880 if (tsk && lock_task_sighand(tsk, &flags)) {
881 s.enabled = tsk->signal->audit_tty != 0;
882 unlock_task_sighand(tsk, &flags);
883 } else
884 err = -ESRCH;
885 rcu_read_unlock();
886
887 if (!err)
888 audit_send_reply(NETLINK_CB(skb).pid, seq,
889 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
890 break;
891 }
892 case AUDIT_TTY_SET: {
893 struct audit_tty_status *s;
894 struct task_struct *tsk;
895 unsigned long flags;
896
897 if (nlh->nlmsg_len < sizeof(struct audit_tty_status))
898 return -EINVAL;
899 s = data;
900 if (s->enabled != 0 && s->enabled != 1)
901 return -EINVAL;
902 rcu_read_lock();
903 tsk = find_task_by_vpid(pid);
904 if (tsk && lock_task_sighand(tsk, &flags)) {
905 tsk->signal->audit_tty = s->enabled != 0;
906 unlock_task_sighand(tsk, &flags);
907 } else
908 err = -ESRCH;
909 rcu_read_unlock();
910 break;
911 }
912 default:
913 err = -EINVAL;
914 break;
915 }
916
917 return err < 0 ? err : 0;
918}
919
920/*
921 * Get message from skb. Each message is processed by audit_receive_msg.
922 * Malformed skbs with wrong length are discarded silently.
923 */
924static void audit_receive_skb(struct sk_buff *skb)
925{
926 struct nlmsghdr *nlh;
927 /*
928 * len MUST be signed for NLMSG_NEXT to be able to dec it below 0
929 * if the nlmsg_len was not aligned
930 */
931 int len;
932 int err;
933
934 nlh = nlmsg_hdr(skb);
935 len = skb->len;
936
937 while (NLMSG_OK(nlh, len)) {
938 err = audit_receive_msg(skb, nlh);
939 /* if err or if this message says it wants a response */
940 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
941 netlink_ack(skb, nlh, err);
942
943 nlh = NLMSG_NEXT(nlh, len);
944 }
945}
946
947/* Receive messages from netlink socket. */
948static void audit_receive(struct sk_buff *skb)
949{
950 mutex_lock(&audit_cmd_mutex);
951 audit_receive_skb(skb);
952 mutex_unlock(&audit_cmd_mutex);
953}
954
955/* Initialize audit support at boot time. */
956static int __init audit_init(void)
957{
958 int i;
959
960 if (audit_initialized == AUDIT_DISABLED)
961 return 0;
962
963 printk(KERN_INFO "audit: initializing netlink socket (%s)\n",
964 audit_default ? "enabled" : "disabled");
965 audit_sock = netlink_kernel_create(&init_net, NETLINK_AUDIT, 0,
966 audit_receive, NULL, THIS_MODULE);
967 if (!audit_sock)
968 audit_panic("cannot initialize netlink socket");
969 else
970 audit_sock->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
971
972 skb_queue_head_init(&audit_skb_queue);
973 skb_queue_head_init(&audit_skb_hold_queue);
974 audit_initialized = AUDIT_INITIALIZED;
975 audit_enabled = audit_default;
976 audit_ever_enabled |= !!audit_default;
977
978 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
979
980 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
981 INIT_LIST_HEAD(&audit_inode_hash[i]);
982
983 return 0;
984}
985__initcall(audit_init);
986
987/* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
988static int __init audit_enable(char *str)
989{
990 audit_default = !!simple_strtol(str, NULL, 0);
991 if (!audit_default)
992 audit_initialized = AUDIT_DISABLED;
993
994 printk(KERN_INFO "audit: %s", audit_default ? "enabled" : "disabled");
995
996 if (audit_initialized == AUDIT_INITIALIZED) {
997 audit_enabled = audit_default;
998 audit_ever_enabled |= !!audit_default;
999 } else if (audit_initialized == AUDIT_UNINITIALIZED) {
1000 printk(" (after initialization)");
1001 } else {
1002 printk(" (until reboot)");
1003 }
1004 printk("\n");
1005
1006 return 1;
1007}
1008
1009__setup("audit=", audit_enable);
1010
1011static void audit_buffer_free(struct audit_buffer *ab)
1012{
1013 unsigned long flags;
1014
1015 if (!ab)
1016 return;
1017
1018 if (ab->skb)
1019 kfree_skb(ab->skb);
1020
1021 spin_lock_irqsave(&audit_freelist_lock, flags);
1022 if (audit_freelist_count > AUDIT_MAXFREE)
1023 kfree(ab);
1024 else {
1025 audit_freelist_count++;
1026 list_add(&ab->list, &audit_freelist);
1027 }
1028 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1029}
1030
1031static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1032 gfp_t gfp_mask, int type)
1033{
1034 unsigned long flags;
1035 struct audit_buffer *ab = NULL;
1036 struct nlmsghdr *nlh;
1037
1038 spin_lock_irqsave(&audit_freelist_lock, flags);
1039 if (!list_empty(&audit_freelist)) {
1040 ab = list_entry(audit_freelist.next,
1041 struct audit_buffer, list);
1042 list_del(&ab->list);
1043 --audit_freelist_count;
1044 }
1045 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1046
1047 if (!ab) {
1048 ab = kmalloc(sizeof(*ab), gfp_mask);
1049 if (!ab)
1050 goto err;
1051 }
1052
1053 ab->ctx = ctx;
1054 ab->gfp_mask = gfp_mask;
1055
1056 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1057 if (!ab->skb)
1058 goto nlmsg_failure;
1059
1060 nlh = NLMSG_NEW(ab->skb, 0, 0, type, 0, 0);
1061
1062 return ab;
1063
1064nlmsg_failure: /* Used by NLMSG_NEW */
1065 kfree_skb(ab->skb);
1066 ab->skb = NULL;
1067err:
1068 audit_buffer_free(ab);
1069 return NULL;
1070}
1071
1072/**
1073 * audit_serial - compute a serial number for the audit record
1074 *
1075 * Compute a serial number for the audit record. Audit records are
1076 * written to user-space as soon as they are generated, so a complete
1077 * audit record may be written in several pieces. The timestamp of the
1078 * record and this serial number are used by the user-space tools to
1079 * determine which pieces belong to the same audit record. The
1080 * (timestamp,serial) tuple is unique for each syscall and is live from
1081 * syscall entry to syscall exit.
1082 *
1083 * NOTE: Another possibility is to store the formatted records off the
1084 * audit context (for those records that have a context), and emit them
1085 * all at syscall exit. However, this could delay the reporting of
1086 * significant errors until syscall exit (or never, if the system
1087 * halts).
1088 */
1089unsigned int audit_serial(void)
1090{
1091 static DEFINE_SPINLOCK(serial_lock);
1092 static unsigned int serial = 0;
1093
1094 unsigned long flags;
1095 unsigned int ret;
1096
1097 spin_lock_irqsave(&serial_lock, flags);
1098 do {
1099 ret = ++serial;
1100 } while (unlikely(!ret));
1101 spin_unlock_irqrestore(&serial_lock, flags);
1102
1103 return ret;
1104}
1105
1106static inline void audit_get_stamp(struct audit_context *ctx,
1107 struct timespec *t, unsigned int *serial)
1108{
1109 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1110 *t = CURRENT_TIME;
1111 *serial = audit_serial();
1112 }
1113}
1114
1115/* Obtain an audit buffer. This routine does locking to obtain the
1116 * audit buffer, but then no locking is required for calls to
1117 * audit_log_*format. If the tsk is a task that is currently in a
1118 * syscall, then the syscall is marked as auditable and an audit record
1119 * will be written at syscall exit. If there is no associated task, tsk
1120 * should be NULL. */
1121
1122/**
1123 * audit_log_start - obtain an audit buffer
1124 * @ctx: audit_context (may be NULL)
1125 * @gfp_mask: type of allocation
1126 * @type: audit message type
1127 *
1128 * Returns audit_buffer pointer on success or NULL on error.
1129 *
1130 * Obtain an audit buffer. This routine does locking to obtain the
1131 * audit buffer, but then no locking is required for calls to
1132 * audit_log_*format. If the task (ctx) is a task that is currently in a
1133 * syscall, then the syscall is marked as auditable and an audit record
1134 * will be written at syscall exit. If there is no associated task, then
1135 * task context (ctx) should be NULL.
1136 */
1137struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1138 int type)
1139{
1140 struct audit_buffer *ab = NULL;
1141 struct timespec t;
1142 unsigned int uninitialized_var(serial);
1143 int reserve;
1144 unsigned long timeout_start = jiffies;
1145
1146 if (audit_initialized != AUDIT_INITIALIZED)
1147 return NULL;
1148
1149 if (unlikely(audit_filter_type(type)))
1150 return NULL;
1151
1152 if (gfp_mask & __GFP_WAIT)
1153 reserve = 0;
1154 else
1155 reserve = 5; /* Allow atomic callers to go up to five
1156 entries over the normal backlog limit */
1157
1158 while (audit_backlog_limit
1159 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1160 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time
1161 && time_before(jiffies, timeout_start + audit_backlog_wait_time)) {
1162
1163 /* Wait for auditd to drain the queue a little */
1164 DECLARE_WAITQUEUE(wait, current);
1165 set_current_state(TASK_INTERRUPTIBLE);
1166 add_wait_queue(&audit_backlog_wait, &wait);
1167
1168 if (audit_backlog_limit &&
1169 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1170 schedule_timeout(timeout_start + audit_backlog_wait_time - jiffies);
1171
1172 __set_current_state(TASK_RUNNING);
1173 remove_wait_queue(&audit_backlog_wait, &wait);
1174 continue;
1175 }
1176 if (audit_rate_check() && printk_ratelimit())
1177 printk(KERN_WARNING
1178 "audit: audit_backlog=%d > "
1179 "audit_backlog_limit=%d\n",
1180 skb_queue_len(&audit_skb_queue),
1181 audit_backlog_limit);
1182 audit_log_lost("backlog limit exceeded");
1183 audit_backlog_wait_time = audit_backlog_wait_overflow;
1184 wake_up(&audit_backlog_wait);
1185 return NULL;
1186 }
1187
1188 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1189 if (!ab) {
1190 audit_log_lost("out of memory in audit_log_start");
1191 return NULL;
1192 }
1193
1194 audit_get_stamp(ab->ctx, &t, &serial);
1195
1196 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1197 t.tv_sec, t.tv_nsec/1000000, serial);
1198 return ab;
1199}
1200
1201/**
1202 * audit_expand - expand skb in the audit buffer
1203 * @ab: audit_buffer
1204 * @extra: space to add at tail of the skb
1205 *
1206 * Returns 0 (no space) on failed expansion, or available space if
1207 * successful.
1208 */
1209static inline int audit_expand(struct audit_buffer *ab, int extra)
1210{
1211 struct sk_buff *skb = ab->skb;
1212 int oldtail = skb_tailroom(skb);
1213 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1214 int newtail = skb_tailroom(skb);
1215
1216 if (ret < 0) {
1217 audit_log_lost("out of memory in audit_expand");
1218 return 0;
1219 }
1220
1221 skb->truesize += newtail - oldtail;
1222 return newtail;
1223}
1224
1225/*
1226 * Format an audit message into the audit buffer. If there isn't enough
1227 * room in the audit buffer, more room will be allocated and vsnprint
1228 * will be called a second time. Currently, we assume that a printk
1229 * can't format message larger than 1024 bytes, so we don't either.
1230 */
1231static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1232 va_list args)
1233{
1234 int len, avail;
1235 struct sk_buff *skb;
1236 va_list args2;
1237
1238 if (!ab)
1239 return;
1240
1241 BUG_ON(!ab->skb);
1242 skb = ab->skb;
1243 avail = skb_tailroom(skb);
1244 if (avail == 0) {
1245 avail = audit_expand(ab, AUDIT_BUFSIZ);
1246 if (!avail)
1247 goto out;
1248 }
1249 va_copy(args2, args);
1250 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1251 if (len >= avail) {
1252 /* The printk buffer is 1024 bytes long, so if we get
1253 * here and AUDIT_BUFSIZ is at least 1024, then we can
1254 * log everything that printk could have logged. */
1255 avail = audit_expand(ab,
1256 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1257 if (!avail)
1258 goto out;
1259 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1260 }
1261 va_end(args2);
1262 if (len > 0)
1263 skb_put(skb, len);
1264out:
1265 return;
1266}
1267
1268/**
1269 * audit_log_format - format a message into the audit buffer.
1270 * @ab: audit_buffer
1271 * @fmt: format string
1272 * @...: optional parameters matching @fmt string
1273 *
1274 * All the work is done in audit_log_vformat.
1275 */
1276void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1277{
1278 va_list args;
1279
1280 if (!ab)
1281 return;
1282 va_start(args, fmt);
1283 audit_log_vformat(ab, fmt, args);
1284 va_end(args);
1285}
1286
1287/**
1288 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1289 * @ab: the audit_buffer
1290 * @buf: buffer to convert to hex
1291 * @len: length of @buf to be converted
1292 *
1293 * No return value; failure to expand is silently ignored.
1294 *
1295 * This function will take the passed buf and convert it into a string of
1296 * ascii hex digits. The new string is placed onto the skb.
1297 */
1298void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1299 size_t len)
1300{
1301 int i, avail, new_len;
1302 unsigned char *ptr;
1303 struct sk_buff *skb;
1304 static const unsigned char *hex = "0123456789ABCDEF";
1305
1306 if (!ab)
1307 return;
1308
1309 BUG_ON(!ab->skb);
1310 skb = ab->skb;
1311 avail = skb_tailroom(skb);
1312 new_len = len<<1;
1313 if (new_len >= avail) {
1314 /* Round the buffer request up to the next multiple */
1315 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1316 avail = audit_expand(ab, new_len);
1317 if (!avail)
1318 return;
1319 }
1320
1321 ptr = skb_tail_pointer(skb);
1322 for (i=0; i<len; i++) {
1323 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1324 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1325 }
1326 *ptr = 0;
1327 skb_put(skb, len << 1); /* new string is twice the old string */
1328}
1329
1330/*
1331 * Format a string of no more than slen characters into the audit buffer,
1332 * enclosed in quote marks.
1333 */
1334void audit_log_n_string(struct audit_buffer *ab, const char *string,
1335 size_t slen)
1336{
1337 int avail, new_len;
1338 unsigned char *ptr;
1339 struct sk_buff *skb;
1340
1341 if (!ab)
1342 return;
1343
1344 BUG_ON(!ab->skb);
1345 skb = ab->skb;
1346 avail = skb_tailroom(skb);
1347 new_len = slen + 3; /* enclosing quotes + null terminator */
1348 if (new_len > avail) {
1349 avail = audit_expand(ab, new_len);
1350 if (!avail)
1351 return;
1352 }
1353 ptr = skb_tail_pointer(skb);
1354 *ptr++ = '"';
1355 memcpy(ptr, string, slen);
1356 ptr += slen;
1357 *ptr++ = '"';
1358 *ptr = 0;
1359 skb_put(skb, slen + 2); /* don't include null terminator */
1360}
1361
1362/**
1363 * audit_string_contains_control - does a string need to be logged in hex
1364 * @string: string to be checked
1365 * @len: max length of the string to check
1366 */
1367int audit_string_contains_control(const char *string, size_t len)
1368{
1369 const unsigned char *p;
1370 for (p = string; p < (const unsigned char *)string + len; p++) {
1371 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1372 return 1;
1373 }
1374 return 0;
1375}
1376
1377/**
1378 * audit_log_n_untrustedstring - log a string that may contain random characters
1379 * @ab: audit_buffer
1380 * @len: length of string (not including trailing null)
1381 * @string: string to be logged
1382 *
1383 * This code will escape a string that is passed to it if the string
1384 * contains a control character, unprintable character, double quote mark,
1385 * or a space. Unescaped strings will start and end with a double quote mark.
1386 * Strings that are escaped are printed in hex (2 digits per char).
1387 *
1388 * The caller specifies the number of characters in the string to log, which may
1389 * or may not be the entire string.
1390 */
1391void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1392 size_t len)
1393{
1394 if (audit_string_contains_control(string, len))
1395 audit_log_n_hex(ab, string, len);
1396 else
1397 audit_log_n_string(ab, string, len);
1398}
1399
1400/**
1401 * audit_log_untrustedstring - log a string that may contain random characters
1402 * @ab: audit_buffer
1403 * @string: string to be logged
1404 *
1405 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1406 * determine string length.
1407 */
1408void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1409{
1410 audit_log_n_untrustedstring(ab, string, strlen(string));
1411}
1412
1413/* This is a helper-function to print the escaped d_path */
1414void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1415 struct path *path)
1416{
1417 char *p, *pathname;
1418
1419 if (prefix)
1420 audit_log_format(ab, " %s", prefix);
1421
1422 /* We will allow 11 spaces for ' (deleted)' to be appended */
1423 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1424 if (!pathname) {
1425 audit_log_string(ab, "<no_memory>");
1426 return;
1427 }
1428 p = d_path(path, pathname, PATH_MAX+11);
1429 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1430 /* FIXME: can we save some information here? */
1431 audit_log_string(ab, "<too_long>");
1432 } else
1433 audit_log_untrustedstring(ab, p);
1434 kfree(pathname);
1435}
1436
1437void audit_log_key(struct audit_buffer *ab, char *key)
1438{
1439 audit_log_format(ab, " key=");
1440 if (key)
1441 audit_log_untrustedstring(ab, key);
1442 else
1443 audit_log_format(ab, "(null)");
1444}
1445
1446/**
1447 * audit_log_end - end one audit record
1448 * @ab: the audit_buffer
1449 *
1450 * The netlink_* functions cannot be called inside an irq context, so
1451 * the audit buffer is placed on a queue and a tasklet is scheduled to
1452 * remove them from the queue outside the irq context. May be called in
1453 * any context.
1454 */
1455void audit_log_end(struct audit_buffer *ab)
1456{
1457 if (!ab)
1458 return;
1459 if (!audit_rate_check()) {
1460 audit_log_lost("rate limit exceeded");
1461 } else {
1462 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1463 nlh->nlmsg_len = ab->skb->len - NLMSG_SPACE(0);
1464
1465 if (audit_pid) {
1466 skb_queue_tail(&audit_skb_queue, ab->skb);
1467 wake_up_interruptible(&kauditd_wait);
1468 } else {
1469 audit_printk_skb(ab->skb);
1470 }
1471 ab->skb = NULL;
1472 }
1473 audit_buffer_free(ab);
1474}
1475
1476/**
1477 * audit_log - Log an audit record
1478 * @ctx: audit context
1479 * @gfp_mask: type of allocation
1480 * @type: audit message type
1481 * @fmt: format string to use
1482 * @...: variable parameters matching the format string
1483 *
1484 * This is a convenience function that calls audit_log_start,
1485 * audit_log_vformat, and audit_log_end. It may be called
1486 * in any context.
1487 */
1488void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1489 const char *fmt, ...)
1490{
1491 struct audit_buffer *ab;
1492 va_list args;
1493
1494 ab = audit_log_start(ctx, gfp_mask, type);
1495 if (ab) {
1496 va_start(args, fmt);
1497 audit_log_vformat(ab, fmt, args);
1498 va_end(args);
1499 audit_log_end(ab);
1500 }
1501}
1502
1503EXPORT_SYMBOL(audit_log_start);
1504EXPORT_SYMBOL(audit_log_end);
1505EXPORT_SYMBOL(audit_log_format);
1506EXPORT_SYMBOL(audit_log);