]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
[NETFILTER]: Use setup_timer
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/net.h>
26#include <linux/textsearch.h>
27#include <net/checksum.h>
28#include <linux/rcupdate.h>
29#include <linux/dmaengine.h>
30#include <linux/hrtimer.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35#define CHECKSUM_NONE 0
36#define CHECKSUM_PARTIAL 1
37#define CHECKSUM_UNNECESSARY 2
38#define CHECKSUM_COMPLETE 3
39
40#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42#define SKB_WITH_OVERHEAD(X) \
43 (((X) - sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
49
50/* A. Checksumming of received packets by device.
51 *
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
54 *
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
60 *
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
66 *
67 * B. Checksumming on output.
68 *
69 * NONE: skb is checksummed by protocol or csum is not required.
70 *
71 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
72 * from skb->transport_header to the end and to record the checksum
73 * at skb->transport_header + skb->csum.
74 *
75 * Device must show its capabilities in dev->features, set
76 * at device setup time.
77 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
78 * everything.
79 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
80 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
81 * TCP/UDP over IPv4. Sigh. Vendors like this
82 * way by an unknown reason. Though, see comment above
83 * about CHECKSUM_UNNECESSARY. 8)
84 *
85 * Any questions? No questions, good. --ANK
86 */
87
88struct net_device;
89
90#ifdef CONFIG_NETFILTER
91struct nf_conntrack {
92 atomic_t use;
93 void (*destroy)(struct nf_conntrack *);
94};
95
96#ifdef CONFIG_BRIDGE_NETFILTER
97struct nf_bridge_info {
98 atomic_t use;
99 struct net_device *physindev;
100 struct net_device *physoutdev;
101#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
102 struct net_device *netoutdev;
103#endif
104 unsigned int mask;
105 unsigned long data[32 / sizeof(unsigned long)];
106};
107#endif
108
109#endif
110
111struct sk_buff_head {
112 /* These two members must be first. */
113 struct sk_buff *next;
114 struct sk_buff *prev;
115
116 __u32 qlen;
117 spinlock_t lock;
118};
119
120struct sk_buff;
121
122/* To allow 64K frame to be packed as single skb without frag_list */
123#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
124
125typedef struct skb_frag_struct skb_frag_t;
126
127struct skb_frag_struct {
128 struct page *page;
129 __u16 page_offset;
130 __u16 size;
131};
132
133/* This data is invariant across clones and lives at
134 * the end of the header data, ie. at skb->end.
135 */
136struct skb_shared_info {
137 atomic_t dataref;
138 unsigned short nr_frags;
139 unsigned short gso_size;
140 /* Warning: this field is not always filled in (UFO)! */
141 unsigned short gso_segs;
142 unsigned short gso_type;
143 __be32 ip6_frag_id;
144 struct sk_buff *frag_list;
145 skb_frag_t frags[MAX_SKB_FRAGS];
146};
147
148/* We divide dataref into two halves. The higher 16 bits hold references
149 * to the payload part of skb->data. The lower 16 bits hold references to
150 * the entire skb->data. It is up to the users of the skb to agree on
151 * where the payload starts.
152 *
153 * All users must obey the rule that the skb->data reference count must be
154 * greater than or equal to the payload reference count.
155 *
156 * Holding a reference to the payload part means that the user does not
157 * care about modifications to the header part of skb->data.
158 */
159#define SKB_DATAREF_SHIFT 16
160#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
161
162
163enum {
164 SKB_FCLONE_UNAVAILABLE,
165 SKB_FCLONE_ORIG,
166 SKB_FCLONE_CLONE,
167};
168
169enum {
170 SKB_GSO_TCPV4 = 1 << 0,
171 SKB_GSO_UDP = 1 << 1,
172
173 /* This indicates the skb is from an untrusted source. */
174 SKB_GSO_DODGY = 1 << 2,
175
176 /* This indicates the tcp segment has CWR set. */
177 SKB_GSO_TCP_ECN = 1 << 3,
178
179 SKB_GSO_TCPV6 = 1 << 4,
180};
181
182#if BITS_PER_LONG > 32
183#define NET_SKBUFF_DATA_USES_OFFSET 1
184#endif
185
186#ifdef NET_SKBUFF_DATA_USES_OFFSET
187typedef unsigned int sk_buff_data_t;
188#else
189typedef unsigned char *sk_buff_data_t;
190#endif
191
192/**
193 * struct sk_buff - socket buffer
194 * @next: Next buffer in list
195 * @prev: Previous buffer in list
196 * @sk: Socket we are owned by
197 * @tstamp: Time we arrived
198 * @dev: Device we arrived on/are leaving by
199 * @iif: ifindex of device we arrived on
200 * @h: Transport layer header
201 * @network_header: Network layer header
202 * @mac_header: Link layer header
203 * @dst: destination entry
204 * @sp: the security path, used for xfrm
205 * @cb: Control buffer. Free for use by every layer. Put private vars here
206 * @len: Length of actual data
207 * @data_len: Data length
208 * @mac_len: Length of link layer header
209 * @csum: Checksum
210 * @local_df: allow local fragmentation
211 * @cloned: Head may be cloned (check refcnt to be sure)
212 * @nohdr: Payload reference only, must not modify header
213 * @pkt_type: Packet class
214 * @fclone: skbuff clone status
215 * @ip_summed: Driver fed us an IP checksum
216 * @priority: Packet queueing priority
217 * @users: User count - see {datagram,tcp}.c
218 * @protocol: Packet protocol from driver
219 * @truesize: Buffer size
220 * @head: Head of buffer
221 * @data: Data head pointer
222 * @tail: Tail pointer
223 * @end: End pointer
224 * @destructor: Destruct function
225 * @mark: Generic packet mark
226 * @nfct: Associated connection, if any
227 * @ipvs_property: skbuff is owned by ipvs
228 * @nfctinfo: Relationship of this skb to the connection
229 * @nfct_reasm: netfilter conntrack re-assembly pointer
230 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
231 * @tc_index: Traffic control index
232 * @tc_verd: traffic control verdict
233 * @dma_cookie: a cookie to one of several possible DMA operations
234 * done by skb DMA functions
235 * @secmark: security marking
236 */
237
238struct sk_buff {
239 /* These two members must be first. */
240 struct sk_buff *next;
241 struct sk_buff *prev;
242
243 struct sock *sk;
244 ktime_t tstamp;
245 struct net_device *dev;
246 int iif;
247 /* 4 byte hole on 64 bit*/
248
249 struct dst_entry *dst;
250 struct sec_path *sp;
251
252 /*
253 * This is the control buffer. It is free to use for every
254 * layer. Please put your private variables there. If you
255 * want to keep them across layers you have to do a skb_clone()
256 * first. This is owned by whoever has the skb queued ATM.
257 */
258 char cb[48];
259
260 unsigned int len,
261 data_len,
262 mac_len;
263 union {
264 __wsum csum;
265 __u32 csum_offset;
266 };
267 __u32 priority;
268 __u8 local_df:1,
269 cloned:1,
270 ip_summed:2,
271 nohdr:1,
272 nfctinfo:3;
273 __u8 pkt_type:3,
274 fclone:2,
275 ipvs_property:1;
276 __be16 protocol;
277
278 void (*destructor)(struct sk_buff *skb);
279#ifdef CONFIG_NETFILTER
280 struct nf_conntrack *nfct;
281#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
282 struct sk_buff *nfct_reasm;
283#endif
284#ifdef CONFIG_BRIDGE_NETFILTER
285 struct nf_bridge_info *nf_bridge;
286#endif
287#endif /* CONFIG_NETFILTER */
288#ifdef CONFIG_NET_SCHED
289 __u16 tc_index; /* traffic control index */
290#ifdef CONFIG_NET_CLS_ACT
291 __u16 tc_verd; /* traffic control verdict */
292#endif
293#endif
294#ifdef CONFIG_NET_DMA
295 dma_cookie_t dma_cookie;
296#endif
297#ifdef CONFIG_NETWORK_SECMARK
298 __u32 secmark;
299#endif
300
301 __u32 mark;
302
303 sk_buff_data_t transport_header;
304 sk_buff_data_t network_header;
305 sk_buff_data_t mac_header;
306 /* These elements must be at the end, see alloc_skb() for details. */
307 sk_buff_data_t tail;
308 sk_buff_data_t end;
309 unsigned char *head,
310 *data;
311 unsigned int truesize;
312 atomic_t users;
313};
314
315#ifdef __KERNEL__
316/*
317 * Handling routines are only of interest to the kernel
318 */
319#include <linux/slab.h>
320
321#include <asm/system.h>
322
323extern void kfree_skb(struct sk_buff *skb);
324extern void __kfree_skb(struct sk_buff *skb);
325extern struct sk_buff *__alloc_skb(unsigned int size,
326 gfp_t priority, int fclone, int node);
327static inline struct sk_buff *alloc_skb(unsigned int size,
328 gfp_t priority)
329{
330 return __alloc_skb(size, priority, 0, -1);
331}
332
333static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
334 gfp_t priority)
335{
336 return __alloc_skb(size, priority, 1, -1);
337}
338
339extern void kfree_skbmem(struct sk_buff *skb);
340extern struct sk_buff *skb_clone(struct sk_buff *skb,
341 gfp_t priority);
342extern struct sk_buff *skb_copy(const struct sk_buff *skb,
343 gfp_t priority);
344extern struct sk_buff *pskb_copy(struct sk_buff *skb,
345 gfp_t gfp_mask);
346extern int pskb_expand_head(struct sk_buff *skb,
347 int nhead, int ntail,
348 gfp_t gfp_mask);
349extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
350 unsigned int headroom);
351extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
352 int newheadroom, int newtailroom,
353 gfp_t priority);
354extern int skb_pad(struct sk_buff *skb, int pad);
355#define dev_kfree_skb(a) kfree_skb(a)
356extern void skb_over_panic(struct sk_buff *skb, int len,
357 void *here);
358extern void skb_under_panic(struct sk_buff *skb, int len,
359 void *here);
360extern void skb_truesize_bug(struct sk_buff *skb);
361
362static inline void skb_truesize_check(struct sk_buff *skb)
363{
364 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
365 skb_truesize_bug(skb);
366}
367
368extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
369 int getfrag(void *from, char *to, int offset,
370 int len,int odd, struct sk_buff *skb),
371 void *from, int length);
372
373struct skb_seq_state
374{
375 __u32 lower_offset;
376 __u32 upper_offset;
377 __u32 frag_idx;
378 __u32 stepped_offset;
379 struct sk_buff *root_skb;
380 struct sk_buff *cur_skb;
381 __u8 *frag_data;
382};
383
384extern void skb_prepare_seq_read(struct sk_buff *skb,
385 unsigned int from, unsigned int to,
386 struct skb_seq_state *st);
387extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
388 struct skb_seq_state *st);
389extern void skb_abort_seq_read(struct skb_seq_state *st);
390
391extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
392 unsigned int to, struct ts_config *config,
393 struct ts_state *state);
394
395#ifdef NET_SKBUFF_DATA_USES_OFFSET
396static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
397{
398 return skb->head + skb->end;
399}
400#else
401static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
402{
403 return skb->end;
404}
405#endif
406
407/* Internal */
408#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
409
410/**
411 * skb_queue_empty - check if a queue is empty
412 * @list: queue head
413 *
414 * Returns true if the queue is empty, false otherwise.
415 */
416static inline int skb_queue_empty(const struct sk_buff_head *list)
417{
418 return list->next == (struct sk_buff *)list;
419}
420
421/**
422 * skb_get - reference buffer
423 * @skb: buffer to reference
424 *
425 * Makes another reference to a socket buffer and returns a pointer
426 * to the buffer.
427 */
428static inline struct sk_buff *skb_get(struct sk_buff *skb)
429{
430 atomic_inc(&skb->users);
431 return skb;
432}
433
434/*
435 * If users == 1, we are the only owner and are can avoid redundant
436 * atomic change.
437 */
438
439/**
440 * skb_cloned - is the buffer a clone
441 * @skb: buffer to check
442 *
443 * Returns true if the buffer was generated with skb_clone() and is
444 * one of multiple shared copies of the buffer. Cloned buffers are
445 * shared data so must not be written to under normal circumstances.
446 */
447static inline int skb_cloned(const struct sk_buff *skb)
448{
449 return skb->cloned &&
450 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
451}
452
453/**
454 * skb_header_cloned - is the header a clone
455 * @skb: buffer to check
456 *
457 * Returns true if modifying the header part of the buffer requires
458 * the data to be copied.
459 */
460static inline int skb_header_cloned(const struct sk_buff *skb)
461{
462 int dataref;
463
464 if (!skb->cloned)
465 return 0;
466
467 dataref = atomic_read(&skb_shinfo(skb)->dataref);
468 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
469 return dataref != 1;
470}
471
472/**
473 * skb_header_release - release reference to header
474 * @skb: buffer to operate on
475 *
476 * Drop a reference to the header part of the buffer. This is done
477 * by acquiring a payload reference. You must not read from the header
478 * part of skb->data after this.
479 */
480static inline void skb_header_release(struct sk_buff *skb)
481{
482 BUG_ON(skb->nohdr);
483 skb->nohdr = 1;
484 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
485}
486
487/**
488 * skb_shared - is the buffer shared
489 * @skb: buffer to check
490 *
491 * Returns true if more than one person has a reference to this
492 * buffer.
493 */
494static inline int skb_shared(const struct sk_buff *skb)
495{
496 return atomic_read(&skb->users) != 1;
497}
498
499/**
500 * skb_share_check - check if buffer is shared and if so clone it
501 * @skb: buffer to check
502 * @pri: priority for memory allocation
503 *
504 * If the buffer is shared the buffer is cloned and the old copy
505 * drops a reference. A new clone with a single reference is returned.
506 * If the buffer is not shared the original buffer is returned. When
507 * being called from interrupt status or with spinlocks held pri must
508 * be GFP_ATOMIC.
509 *
510 * NULL is returned on a memory allocation failure.
511 */
512static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
513 gfp_t pri)
514{
515 might_sleep_if(pri & __GFP_WAIT);
516 if (skb_shared(skb)) {
517 struct sk_buff *nskb = skb_clone(skb, pri);
518 kfree_skb(skb);
519 skb = nskb;
520 }
521 return skb;
522}
523
524/*
525 * Copy shared buffers into a new sk_buff. We effectively do COW on
526 * packets to handle cases where we have a local reader and forward
527 * and a couple of other messy ones. The normal one is tcpdumping
528 * a packet thats being forwarded.
529 */
530
531/**
532 * skb_unshare - make a copy of a shared buffer
533 * @skb: buffer to check
534 * @pri: priority for memory allocation
535 *
536 * If the socket buffer is a clone then this function creates a new
537 * copy of the data, drops a reference count on the old copy and returns
538 * the new copy with the reference count at 1. If the buffer is not a clone
539 * the original buffer is returned. When called with a spinlock held or
540 * from interrupt state @pri must be %GFP_ATOMIC
541 *
542 * %NULL is returned on a memory allocation failure.
543 */
544static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
545 gfp_t pri)
546{
547 might_sleep_if(pri & __GFP_WAIT);
548 if (skb_cloned(skb)) {
549 struct sk_buff *nskb = skb_copy(skb, pri);
550 kfree_skb(skb); /* Free our shared copy */
551 skb = nskb;
552 }
553 return skb;
554}
555
556/**
557 * skb_peek
558 * @list_: list to peek at
559 *
560 * Peek an &sk_buff. Unlike most other operations you _MUST_
561 * be careful with this one. A peek leaves the buffer on the
562 * list and someone else may run off with it. You must hold
563 * the appropriate locks or have a private queue to do this.
564 *
565 * Returns %NULL for an empty list or a pointer to the head element.
566 * The reference count is not incremented and the reference is therefore
567 * volatile. Use with caution.
568 */
569static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
570{
571 struct sk_buff *list = ((struct sk_buff *)list_)->next;
572 if (list == (struct sk_buff *)list_)
573 list = NULL;
574 return list;
575}
576
577/**
578 * skb_peek_tail
579 * @list_: list to peek at
580 *
581 * Peek an &sk_buff. Unlike most other operations you _MUST_
582 * be careful with this one. A peek leaves the buffer on the
583 * list and someone else may run off with it. You must hold
584 * the appropriate locks or have a private queue to do this.
585 *
586 * Returns %NULL for an empty list or a pointer to the tail element.
587 * The reference count is not incremented and the reference is therefore
588 * volatile. Use with caution.
589 */
590static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
591{
592 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
593 if (list == (struct sk_buff *)list_)
594 list = NULL;
595 return list;
596}
597
598/**
599 * skb_queue_len - get queue length
600 * @list_: list to measure
601 *
602 * Return the length of an &sk_buff queue.
603 */
604static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
605{
606 return list_->qlen;
607}
608
609/*
610 * This function creates a split out lock class for each invocation;
611 * this is needed for now since a whole lot of users of the skb-queue
612 * infrastructure in drivers have different locking usage (in hardirq)
613 * than the networking core (in softirq only). In the long run either the
614 * network layer or drivers should need annotation to consolidate the
615 * main types of usage into 3 classes.
616 */
617static inline void skb_queue_head_init(struct sk_buff_head *list)
618{
619 spin_lock_init(&list->lock);
620 list->prev = list->next = (struct sk_buff *)list;
621 list->qlen = 0;
622}
623
624static inline void skb_queue_head_init_class(struct sk_buff_head *list,
625 struct lock_class_key *class)
626{
627 skb_queue_head_init(list);
628 lockdep_set_class(&list->lock, class);
629}
630
631/*
632 * Insert an sk_buff at the start of a list.
633 *
634 * The "__skb_xxxx()" functions are the non-atomic ones that
635 * can only be called with interrupts disabled.
636 */
637
638/**
639 * __skb_queue_after - queue a buffer at the list head
640 * @list: list to use
641 * @prev: place after this buffer
642 * @newsk: buffer to queue
643 *
644 * Queue a buffer int the middle of a list. This function takes no locks
645 * and you must therefore hold required locks before calling it.
646 *
647 * A buffer cannot be placed on two lists at the same time.
648 */
649static inline void __skb_queue_after(struct sk_buff_head *list,
650 struct sk_buff *prev,
651 struct sk_buff *newsk)
652{
653 struct sk_buff *next;
654 list->qlen++;
655
656 next = prev->next;
657 newsk->next = next;
658 newsk->prev = prev;
659 next->prev = prev->next = newsk;
660}
661
662/**
663 * __skb_queue_head - queue a buffer at the list head
664 * @list: list to use
665 * @newsk: buffer to queue
666 *
667 * Queue a buffer at the start of a list. This function takes no locks
668 * and you must therefore hold required locks before calling it.
669 *
670 * A buffer cannot be placed on two lists at the same time.
671 */
672extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
673static inline void __skb_queue_head(struct sk_buff_head *list,
674 struct sk_buff *newsk)
675{
676 __skb_queue_after(list, (struct sk_buff *)list, newsk);
677}
678
679/**
680 * __skb_queue_tail - queue a buffer at the list tail
681 * @list: list to use
682 * @newsk: buffer to queue
683 *
684 * Queue a buffer at the end of a list. This function takes no locks
685 * and you must therefore hold required locks before calling it.
686 *
687 * A buffer cannot be placed on two lists at the same time.
688 */
689extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
690static inline void __skb_queue_tail(struct sk_buff_head *list,
691 struct sk_buff *newsk)
692{
693 struct sk_buff *prev, *next;
694
695 list->qlen++;
696 next = (struct sk_buff *)list;
697 prev = next->prev;
698 newsk->next = next;
699 newsk->prev = prev;
700 next->prev = prev->next = newsk;
701}
702
703
704/**
705 * __skb_dequeue - remove from the head of the queue
706 * @list: list to dequeue from
707 *
708 * Remove the head of the list. This function does not take any locks
709 * so must be used with appropriate locks held only. The head item is
710 * returned or %NULL if the list is empty.
711 */
712extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
713static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
714{
715 struct sk_buff *next, *prev, *result;
716
717 prev = (struct sk_buff *) list;
718 next = prev->next;
719 result = NULL;
720 if (next != prev) {
721 result = next;
722 next = next->next;
723 list->qlen--;
724 next->prev = prev;
725 prev->next = next;
726 result->next = result->prev = NULL;
727 }
728 return result;
729}
730
731
732/*
733 * Insert a packet on a list.
734 */
735extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
736static inline void __skb_insert(struct sk_buff *newsk,
737 struct sk_buff *prev, struct sk_buff *next,
738 struct sk_buff_head *list)
739{
740 newsk->next = next;
741 newsk->prev = prev;
742 next->prev = prev->next = newsk;
743 list->qlen++;
744}
745
746/*
747 * Place a packet after a given packet in a list.
748 */
749extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
750static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
751{
752 __skb_insert(newsk, old, old->next, list);
753}
754
755/*
756 * remove sk_buff from list. _Must_ be called atomically, and with
757 * the list known..
758 */
759extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
760static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
761{
762 struct sk_buff *next, *prev;
763
764 list->qlen--;
765 next = skb->next;
766 prev = skb->prev;
767 skb->next = skb->prev = NULL;
768 next->prev = prev;
769 prev->next = next;
770}
771
772
773/* XXX: more streamlined implementation */
774
775/**
776 * __skb_dequeue_tail - remove from the tail of the queue
777 * @list: list to dequeue from
778 *
779 * Remove the tail of the list. This function does not take any locks
780 * so must be used with appropriate locks held only. The tail item is
781 * returned or %NULL if the list is empty.
782 */
783extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
784static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
785{
786 struct sk_buff *skb = skb_peek_tail(list);
787 if (skb)
788 __skb_unlink(skb, list);
789 return skb;
790}
791
792
793static inline int skb_is_nonlinear(const struct sk_buff *skb)
794{
795 return skb->data_len;
796}
797
798static inline unsigned int skb_headlen(const struct sk_buff *skb)
799{
800 return skb->len - skb->data_len;
801}
802
803static inline int skb_pagelen(const struct sk_buff *skb)
804{
805 int i, len = 0;
806
807 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
808 len += skb_shinfo(skb)->frags[i].size;
809 return len + skb_headlen(skb);
810}
811
812static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
813 struct page *page, int off, int size)
814{
815 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
816
817 frag->page = page;
818 frag->page_offset = off;
819 frag->size = size;
820 skb_shinfo(skb)->nr_frags = i + 1;
821}
822
823#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
824#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
825#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
826
827#ifdef NET_SKBUFF_DATA_USES_OFFSET
828static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
829{
830 return skb->head + skb->tail;
831}
832
833static inline void skb_reset_tail_pointer(struct sk_buff *skb)
834{
835 skb->tail = skb->data - skb->head;
836}
837
838static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
839{
840 skb_reset_tail_pointer(skb);
841 skb->tail += offset;
842}
843#else /* NET_SKBUFF_DATA_USES_OFFSET */
844static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
845{
846 return skb->tail;
847}
848
849static inline void skb_reset_tail_pointer(struct sk_buff *skb)
850{
851 skb->tail = skb->data;
852}
853
854static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
855{
856 skb->tail = skb->data + offset;
857}
858
859#endif /* NET_SKBUFF_DATA_USES_OFFSET */
860
861/*
862 * Add data to an sk_buff
863 */
864static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
865{
866 unsigned char *tmp = skb_tail_pointer(skb);
867 SKB_LINEAR_ASSERT(skb);
868 skb->tail += len;
869 skb->len += len;
870 return tmp;
871}
872
873/**
874 * skb_put - add data to a buffer
875 * @skb: buffer to use
876 * @len: amount of data to add
877 *
878 * This function extends the used data area of the buffer. If this would
879 * exceed the total buffer size the kernel will panic. A pointer to the
880 * first byte of the extra data is returned.
881 */
882static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
883{
884 unsigned char *tmp = skb_tail_pointer(skb);
885 SKB_LINEAR_ASSERT(skb);
886 skb->tail += len;
887 skb->len += len;
888 if (unlikely(skb->tail > skb->end))
889 skb_over_panic(skb, len, current_text_addr());
890 return tmp;
891}
892
893static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
894{
895 skb->data -= len;
896 skb->len += len;
897 return skb->data;
898}
899
900/**
901 * skb_push - add data to the start of a buffer
902 * @skb: buffer to use
903 * @len: amount of data to add
904 *
905 * This function extends the used data area of the buffer at the buffer
906 * start. If this would exceed the total buffer headroom the kernel will
907 * panic. A pointer to the first byte of the extra data is returned.
908 */
909static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
910{
911 skb->data -= len;
912 skb->len += len;
913 if (unlikely(skb->data<skb->head))
914 skb_under_panic(skb, len, current_text_addr());
915 return skb->data;
916}
917
918static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
919{
920 skb->len -= len;
921 BUG_ON(skb->len < skb->data_len);
922 return skb->data += len;
923}
924
925/**
926 * skb_pull - remove data from the start of a buffer
927 * @skb: buffer to use
928 * @len: amount of data to remove
929 *
930 * This function removes data from the start of a buffer, returning
931 * the memory to the headroom. A pointer to the next data in the buffer
932 * is returned. Once the data has been pulled future pushes will overwrite
933 * the old data.
934 */
935static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
936{
937 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
938}
939
940extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
941
942static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
943{
944 if (len > skb_headlen(skb) &&
945 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
946 return NULL;
947 skb->len -= len;
948 return skb->data += len;
949}
950
951static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
952{
953 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
954}
955
956static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
957{
958 if (likely(len <= skb_headlen(skb)))
959 return 1;
960 if (unlikely(len > skb->len))
961 return 0;
962 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
963}
964
965/**
966 * skb_headroom - bytes at buffer head
967 * @skb: buffer to check
968 *
969 * Return the number of bytes of free space at the head of an &sk_buff.
970 */
971static inline int skb_headroom(const struct sk_buff *skb)
972{
973 return skb->data - skb->head;
974}
975
976/**
977 * skb_tailroom - bytes at buffer end
978 * @skb: buffer to check
979 *
980 * Return the number of bytes of free space at the tail of an sk_buff
981 */
982static inline int skb_tailroom(const struct sk_buff *skb)
983{
984 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
985}
986
987/**
988 * skb_reserve - adjust headroom
989 * @skb: buffer to alter
990 * @len: bytes to move
991 *
992 * Increase the headroom of an empty &sk_buff by reducing the tail
993 * room. This is only allowed for an empty buffer.
994 */
995static inline void skb_reserve(struct sk_buff *skb, int len)
996{
997 skb->data += len;
998 skb->tail += len;
999}
1000
1001#ifdef NET_SKBUFF_DATA_USES_OFFSET
1002static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1003{
1004 return skb->head + skb->transport_header;
1005}
1006
1007static inline void skb_reset_transport_header(struct sk_buff *skb)
1008{
1009 skb->transport_header = skb->data - skb->head;
1010}
1011
1012static inline void skb_set_transport_header(struct sk_buff *skb,
1013 const int offset)
1014{
1015 skb_reset_transport_header(skb);
1016 skb->transport_header += offset;
1017}
1018
1019static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1020{
1021 return skb->head + skb->network_header;
1022}
1023
1024static inline void skb_reset_network_header(struct sk_buff *skb)
1025{
1026 skb->network_header = skb->data - skb->head;
1027}
1028
1029static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1030{
1031 skb_reset_network_header(skb);
1032 skb->network_header += offset;
1033}
1034
1035static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1036{
1037 return skb->head + skb->mac_header;
1038}
1039
1040static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1041{
1042 return skb->mac_header != ~0U;
1043}
1044
1045static inline void skb_reset_mac_header(struct sk_buff *skb)
1046{
1047 skb->mac_header = skb->data - skb->head;
1048}
1049
1050static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1051{
1052 skb_reset_mac_header(skb);
1053 skb->mac_header += offset;
1054}
1055
1056#else /* NET_SKBUFF_DATA_USES_OFFSET */
1057
1058static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1059{
1060 return skb->transport_header;
1061}
1062
1063static inline void skb_reset_transport_header(struct sk_buff *skb)
1064{
1065 skb->transport_header = skb->data;
1066}
1067
1068static inline void skb_set_transport_header(struct sk_buff *skb,
1069 const int offset)
1070{
1071 skb->transport_header = skb->data + offset;
1072}
1073
1074static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1075{
1076 return skb->network_header;
1077}
1078
1079static inline void skb_reset_network_header(struct sk_buff *skb)
1080{
1081 skb->network_header = skb->data;
1082}
1083
1084static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1085{
1086 skb->network_header = skb->data + offset;
1087}
1088
1089static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1090{
1091 return skb->mac_header;
1092}
1093
1094static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1095{
1096 return skb->mac_header != NULL;
1097}
1098
1099static inline void skb_reset_mac_header(struct sk_buff *skb)
1100{
1101 skb->mac_header = skb->data;
1102}
1103
1104static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1105{
1106 skb->mac_header = skb->data + offset;
1107}
1108#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1109
1110static inline int skb_transport_offset(const struct sk_buff *skb)
1111{
1112 return skb_transport_header(skb) - skb->data;
1113}
1114
1115static inline u32 skb_network_header_len(const struct sk_buff *skb)
1116{
1117 return skb->transport_header - skb->network_header;
1118}
1119
1120static inline int skb_network_offset(const struct sk_buff *skb)
1121{
1122 return skb_network_header(skb) - skb->data;
1123}
1124
1125/*
1126 * CPUs often take a performance hit when accessing unaligned memory
1127 * locations. The actual performance hit varies, it can be small if the
1128 * hardware handles it or large if we have to take an exception and fix it
1129 * in software.
1130 *
1131 * Since an ethernet header is 14 bytes network drivers often end up with
1132 * the IP header at an unaligned offset. The IP header can be aligned by
1133 * shifting the start of the packet by 2 bytes. Drivers should do this
1134 * with:
1135 *
1136 * skb_reserve(NET_IP_ALIGN);
1137 *
1138 * The downside to this alignment of the IP header is that the DMA is now
1139 * unaligned. On some architectures the cost of an unaligned DMA is high
1140 * and this cost outweighs the gains made by aligning the IP header.
1141 *
1142 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1143 * to be overridden.
1144 */
1145#ifndef NET_IP_ALIGN
1146#define NET_IP_ALIGN 2
1147#endif
1148
1149/*
1150 * The networking layer reserves some headroom in skb data (via
1151 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1152 * the header has to grow. In the default case, if the header has to grow
1153 * 16 bytes or less we avoid the reallocation.
1154 *
1155 * Unfortunately this headroom changes the DMA alignment of the resulting
1156 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1157 * on some architectures. An architecture can override this value,
1158 * perhaps setting it to a cacheline in size (since that will maintain
1159 * cacheline alignment of the DMA). It must be a power of 2.
1160 *
1161 * Various parts of the networking layer expect at least 16 bytes of
1162 * headroom, you should not reduce this.
1163 */
1164#ifndef NET_SKB_PAD
1165#define NET_SKB_PAD 16
1166#endif
1167
1168extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1169
1170static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1171{
1172 if (unlikely(skb->data_len)) {
1173 WARN_ON(1);
1174 return;
1175 }
1176 skb->len = len;
1177 skb_set_tail_pointer(skb, len);
1178}
1179
1180/**
1181 * skb_trim - remove end from a buffer
1182 * @skb: buffer to alter
1183 * @len: new length
1184 *
1185 * Cut the length of a buffer down by removing data from the tail. If
1186 * the buffer is already under the length specified it is not modified.
1187 * The skb must be linear.
1188 */
1189static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1190{
1191 if (skb->len > len)
1192 __skb_trim(skb, len);
1193}
1194
1195
1196static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1197{
1198 if (skb->data_len)
1199 return ___pskb_trim(skb, len);
1200 __skb_trim(skb, len);
1201 return 0;
1202}
1203
1204static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1205{
1206 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1207}
1208
1209/**
1210 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1211 * @skb: buffer to alter
1212 * @len: new length
1213 *
1214 * This is identical to pskb_trim except that the caller knows that
1215 * the skb is not cloned so we should never get an error due to out-
1216 * of-memory.
1217 */
1218static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1219{
1220 int err = pskb_trim(skb, len);
1221 BUG_ON(err);
1222}
1223
1224/**
1225 * skb_orphan - orphan a buffer
1226 * @skb: buffer to orphan
1227 *
1228 * If a buffer currently has an owner then we call the owner's
1229 * destructor function and make the @skb unowned. The buffer continues
1230 * to exist but is no longer charged to its former owner.
1231 */
1232static inline void skb_orphan(struct sk_buff *skb)
1233{
1234 if (skb->destructor)
1235 skb->destructor(skb);
1236 skb->destructor = NULL;
1237 skb->sk = NULL;
1238}
1239
1240/**
1241 * __skb_queue_purge - empty a list
1242 * @list: list to empty
1243 *
1244 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1245 * the list and one reference dropped. This function does not take the
1246 * list lock and the caller must hold the relevant locks to use it.
1247 */
1248extern void skb_queue_purge(struct sk_buff_head *list);
1249static inline void __skb_queue_purge(struct sk_buff_head *list)
1250{
1251 struct sk_buff *skb;
1252 while ((skb = __skb_dequeue(list)) != NULL)
1253 kfree_skb(skb);
1254}
1255
1256/**
1257 * __dev_alloc_skb - allocate an skbuff for receiving
1258 * @length: length to allocate
1259 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1260 *
1261 * Allocate a new &sk_buff and assign it a usage count of one. The
1262 * buffer has unspecified headroom built in. Users should allocate
1263 * the headroom they think they need without accounting for the
1264 * built in space. The built in space is used for optimisations.
1265 *
1266 * %NULL is returned if there is no free memory.
1267 */
1268static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1269 gfp_t gfp_mask)
1270{
1271 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1272 if (likely(skb))
1273 skb_reserve(skb, NET_SKB_PAD);
1274 return skb;
1275}
1276
1277/**
1278 * dev_alloc_skb - allocate an skbuff for receiving
1279 * @length: length to allocate
1280 *
1281 * Allocate a new &sk_buff and assign it a usage count of one. The
1282 * buffer has unspecified headroom built in. Users should allocate
1283 * the headroom they think they need without accounting for the
1284 * built in space. The built in space is used for optimisations.
1285 *
1286 * %NULL is returned if there is no free memory. Although this function
1287 * allocates memory it can be called from an interrupt.
1288 */
1289static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1290{
1291 return __dev_alloc_skb(length, GFP_ATOMIC);
1292}
1293
1294extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1295 unsigned int length, gfp_t gfp_mask);
1296
1297/**
1298 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1299 * @dev: network device to receive on
1300 * @length: length to allocate
1301 *
1302 * Allocate a new &sk_buff and assign it a usage count of one. The
1303 * buffer has unspecified headroom built in. Users should allocate
1304 * the headroom they think they need without accounting for the
1305 * built in space. The built in space is used for optimisations.
1306 *
1307 * %NULL is returned if there is no free memory. Although this function
1308 * allocates memory it can be called from an interrupt.
1309 */
1310static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1311 unsigned int length)
1312{
1313 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1314}
1315
1316/**
1317 * skb_cow - copy header of skb when it is required
1318 * @skb: buffer to cow
1319 * @headroom: needed headroom
1320 *
1321 * If the skb passed lacks sufficient headroom or its data part
1322 * is shared, data is reallocated. If reallocation fails, an error
1323 * is returned and original skb is not changed.
1324 *
1325 * The result is skb with writable area skb->head...skb->tail
1326 * and at least @headroom of space at head.
1327 */
1328static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1329{
1330 int delta = (headroom > NET_SKB_PAD ? headroom : NET_SKB_PAD) -
1331 skb_headroom(skb);
1332
1333 if (delta < 0)
1334 delta = 0;
1335
1336 if (delta || skb_cloned(skb))
1337 return pskb_expand_head(skb, (delta + (NET_SKB_PAD-1)) &
1338 ~(NET_SKB_PAD-1), 0, GFP_ATOMIC);
1339 return 0;
1340}
1341
1342/**
1343 * skb_padto - pad an skbuff up to a minimal size
1344 * @skb: buffer to pad
1345 * @len: minimal length
1346 *
1347 * Pads up a buffer to ensure the trailing bytes exist and are
1348 * blanked. If the buffer already contains sufficient data it
1349 * is untouched. Otherwise it is extended. Returns zero on
1350 * success. The skb is freed on error.
1351 */
1352
1353static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1354{
1355 unsigned int size = skb->len;
1356 if (likely(size >= len))
1357 return 0;
1358 return skb_pad(skb, len-size);
1359}
1360
1361static inline int skb_add_data(struct sk_buff *skb,
1362 char __user *from, int copy)
1363{
1364 const int off = skb->len;
1365
1366 if (skb->ip_summed == CHECKSUM_NONE) {
1367 int err = 0;
1368 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1369 copy, 0, &err);
1370 if (!err) {
1371 skb->csum = csum_block_add(skb->csum, csum, off);
1372 return 0;
1373 }
1374 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1375 return 0;
1376
1377 __skb_trim(skb, off);
1378 return -EFAULT;
1379}
1380
1381static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1382 struct page *page, int off)
1383{
1384 if (i) {
1385 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1386
1387 return page == frag->page &&
1388 off == frag->page_offset + frag->size;
1389 }
1390 return 0;
1391}
1392
1393static inline int __skb_linearize(struct sk_buff *skb)
1394{
1395 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1396}
1397
1398/**
1399 * skb_linearize - convert paged skb to linear one
1400 * @skb: buffer to linarize
1401 *
1402 * If there is no free memory -ENOMEM is returned, otherwise zero
1403 * is returned and the old skb data released.
1404 */
1405static inline int skb_linearize(struct sk_buff *skb)
1406{
1407 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1408}
1409
1410/**
1411 * skb_linearize_cow - make sure skb is linear and writable
1412 * @skb: buffer to process
1413 *
1414 * If there is no free memory -ENOMEM is returned, otherwise zero
1415 * is returned and the old skb data released.
1416 */
1417static inline int skb_linearize_cow(struct sk_buff *skb)
1418{
1419 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1420 __skb_linearize(skb) : 0;
1421}
1422
1423/**
1424 * skb_postpull_rcsum - update checksum for received skb after pull
1425 * @skb: buffer to update
1426 * @start: start of data before pull
1427 * @len: length of data pulled
1428 *
1429 * After doing a pull on a received packet, you need to call this to
1430 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1431 * CHECKSUM_NONE so that it can be recomputed from scratch.
1432 */
1433
1434static inline void skb_postpull_rcsum(struct sk_buff *skb,
1435 const void *start, unsigned int len)
1436{
1437 if (skb->ip_summed == CHECKSUM_COMPLETE)
1438 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1439}
1440
1441unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1442
1443/**
1444 * pskb_trim_rcsum - trim received skb and update checksum
1445 * @skb: buffer to trim
1446 * @len: new length
1447 *
1448 * This is exactly the same as pskb_trim except that it ensures the
1449 * checksum of received packets are still valid after the operation.
1450 */
1451
1452static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1453{
1454 if (likely(len >= skb->len))
1455 return 0;
1456 if (skb->ip_summed == CHECKSUM_COMPLETE)
1457 skb->ip_summed = CHECKSUM_NONE;
1458 return __pskb_trim(skb, len);
1459}
1460
1461#define skb_queue_walk(queue, skb) \
1462 for (skb = (queue)->next; \
1463 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1464 skb = skb->next)
1465
1466#define skb_queue_reverse_walk(queue, skb) \
1467 for (skb = (queue)->prev; \
1468 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1469 skb = skb->prev)
1470
1471
1472extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1473 int noblock, int *err);
1474extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1475 struct poll_table_struct *wait);
1476extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1477 int offset, struct iovec *to,
1478 int size);
1479extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1480 int hlen,
1481 struct iovec *iov);
1482extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1483extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1484 unsigned int flags);
1485extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1486 int len, __wsum csum);
1487extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1488 void *to, int len);
1489extern int skb_store_bits(const struct sk_buff *skb, int offset,
1490 void *from, int len);
1491extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1492 int offset, u8 *to, int len,
1493 __wsum csum);
1494extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1495extern void skb_split(struct sk_buff *skb,
1496 struct sk_buff *skb1, const u32 len);
1497
1498extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1499
1500static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1501 int len, void *buffer)
1502{
1503 int hlen = skb_headlen(skb);
1504
1505 if (hlen - offset >= len)
1506 return skb->data + offset;
1507
1508 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1509 return NULL;
1510
1511 return buffer;
1512}
1513
1514extern void skb_init(void);
1515
1516/**
1517 * skb_get_timestamp - get timestamp from a skb
1518 * @skb: skb to get stamp from
1519 * @stamp: pointer to struct timeval to store stamp in
1520 *
1521 * Timestamps are stored in the skb as offsets to a base timestamp.
1522 * This function converts the offset back to a struct timeval and stores
1523 * it in stamp.
1524 */
1525static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1526{
1527 *stamp = ktime_to_timeval(skb->tstamp);
1528}
1529
1530static inline void __net_timestamp(struct sk_buff *skb)
1531{
1532 skb->tstamp = ktime_get_real();
1533}
1534
1535
1536extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1537extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1538
1539/**
1540 * skb_checksum_complete - Calculate checksum of an entire packet
1541 * @skb: packet to process
1542 *
1543 * This function calculates the checksum over the entire packet plus
1544 * the value of skb->csum. The latter can be used to supply the
1545 * checksum of a pseudo header as used by TCP/UDP. It returns the
1546 * checksum.
1547 *
1548 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1549 * this function can be used to verify that checksum on received
1550 * packets. In that case the function should return zero if the
1551 * checksum is correct. In particular, this function will return zero
1552 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1553 * hardware has already verified the correctness of the checksum.
1554 */
1555static inline unsigned int skb_checksum_complete(struct sk_buff *skb)
1556{
1557 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
1558 __skb_checksum_complete(skb);
1559}
1560
1561#ifdef CONFIG_NETFILTER
1562static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1563{
1564 if (nfct && atomic_dec_and_test(&nfct->use))
1565 nfct->destroy(nfct);
1566}
1567static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1568{
1569 if (nfct)
1570 atomic_inc(&nfct->use);
1571}
1572#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1573static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1574{
1575 if (skb)
1576 atomic_inc(&skb->users);
1577}
1578static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1579{
1580 if (skb)
1581 kfree_skb(skb);
1582}
1583#endif
1584#ifdef CONFIG_BRIDGE_NETFILTER
1585static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1586{
1587 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1588 kfree(nf_bridge);
1589}
1590static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1591{
1592 if (nf_bridge)
1593 atomic_inc(&nf_bridge->use);
1594}
1595#endif /* CONFIG_BRIDGE_NETFILTER */
1596static inline void nf_reset(struct sk_buff *skb)
1597{
1598 nf_conntrack_put(skb->nfct);
1599 skb->nfct = NULL;
1600#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1601 nf_conntrack_put_reasm(skb->nfct_reasm);
1602 skb->nfct_reasm = NULL;
1603#endif
1604#ifdef CONFIG_BRIDGE_NETFILTER
1605 nf_bridge_put(skb->nf_bridge);
1606 skb->nf_bridge = NULL;
1607#endif
1608}
1609
1610/* Note: This doesn't put any conntrack and bridge info in dst. */
1611static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1612{
1613 dst->nfct = src->nfct;
1614 nf_conntrack_get(src->nfct);
1615 dst->nfctinfo = src->nfctinfo;
1616#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1617 dst->nfct_reasm = src->nfct_reasm;
1618 nf_conntrack_get_reasm(src->nfct_reasm);
1619#endif
1620#ifdef CONFIG_BRIDGE_NETFILTER
1621 dst->nf_bridge = src->nf_bridge;
1622 nf_bridge_get(src->nf_bridge);
1623#endif
1624}
1625
1626static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1627{
1628 nf_conntrack_put(dst->nfct);
1629#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1630 nf_conntrack_put_reasm(dst->nfct_reasm);
1631#endif
1632#ifdef CONFIG_BRIDGE_NETFILTER
1633 nf_bridge_put(dst->nf_bridge);
1634#endif
1635 __nf_copy(dst, src);
1636}
1637
1638#else /* CONFIG_NETFILTER */
1639static inline void nf_reset(struct sk_buff *skb) {}
1640static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src) {}
1641static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) {}
1642#endif /* CONFIG_NETFILTER */
1643
1644#ifdef CONFIG_NETWORK_SECMARK
1645static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1646{
1647 to->secmark = from->secmark;
1648}
1649
1650static inline void skb_init_secmark(struct sk_buff *skb)
1651{
1652 skb->secmark = 0;
1653}
1654#else
1655static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1656{ }
1657
1658static inline void skb_init_secmark(struct sk_buff *skb)
1659{ }
1660#endif
1661
1662static inline int skb_is_gso(const struct sk_buff *skb)
1663{
1664 return skb_shinfo(skb)->gso_size;
1665}
1666
1667#endif /* __KERNEL__ */
1668#endif /* _LINUX_SKBUFF_H */