]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - include/linux/skbuff.h
[ATM]: Fix clip module reload crash.
[net-next-2.6.git] / include / linux / skbuff.h
... / ...
CommitLineData
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/kernel.h>
18#include <linux/compiler.h>
19#include <linux/time.h>
20#include <linux/cache.h>
21
22#include <asm/atomic.h>
23#include <asm/types.h>
24#include <linux/spinlock.h>
25#include <linux/net.h>
26#include <linux/textsearch.h>
27#include <net/checksum.h>
28#include <linux/rcupdate.h>
29#include <linux/dmaengine.h>
30#include <linux/hrtimer.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34
35/* Don't change this without changing skb_csum_unnecessary! */
36#define CHECKSUM_NONE 0
37#define CHECKSUM_UNNECESSARY 1
38#define CHECKSUM_COMPLETE 2
39#define CHECKSUM_PARTIAL 3
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_WITH_OVERHEAD(X) \
44 (((X) - sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46#define SKB_MAX_ORDER(X, ORDER) \
47 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
48#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
49#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50
51/* A. Checksumming of received packets by device.
52 *
53 * NONE: device failed to checksum this packet.
54 * skb->csum is undefined.
55 *
56 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
57 * skb->csum is undefined.
58 * It is bad option, but, unfortunately, many of vendors do this.
59 * Apparently with secret goal to sell you new device, when you
60 * will add new protocol to your host. F.e. IPv6. 8)
61 *
62 * COMPLETE: the most generic way. Device supplied checksum of _all_
63 * the packet as seen by netif_rx in skb->csum.
64 * NOTE: Even if device supports only some protocols, but
65 * is able to produce some skb->csum, it MUST use COMPLETE,
66 * not UNNECESSARY.
67 *
68 * PARTIAL: identical to the case for output below. This may occur
69 * on a packet received directly from another Linux OS, e.g.,
70 * a virtualised Linux kernel on the same host. The packet can
71 * be treated in the same way as UNNECESSARY except that on
72 * output (i.e., forwarding) the checksum must be filled in
73 * by the OS or the hardware.
74 *
75 * B. Checksumming on output.
76 *
77 * NONE: skb is checksummed by protocol or csum is not required.
78 *
79 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
80 * from skb->csum_start to the end and to record the checksum
81 * at skb->csum_start + skb->csum_offset.
82 *
83 * Device must show its capabilities in dev->features, set
84 * at device setup time.
85 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
86 * everything.
87 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
88 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
89 * TCP/UDP over IPv4. Sigh. Vendors like this
90 * way by an unknown reason. Though, see comment above
91 * about CHECKSUM_UNNECESSARY. 8)
92 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 *
94 * Any questions? No questions, good. --ANK
95 */
96
97struct net_device;
98struct scatterlist;
99
100#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101struct nf_conntrack {
102 atomic_t use;
103};
104#endif
105
106#ifdef CONFIG_BRIDGE_NETFILTER
107struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
112 struct net_device *netoutdev;
113#endif
114 unsigned int mask;
115 unsigned long data[32 / sizeof(unsigned long)];
116};
117#endif
118
119struct sk_buff_head {
120 /* These two members must be first. */
121 struct sk_buff *next;
122 struct sk_buff *prev;
123
124 __u32 qlen;
125 spinlock_t lock;
126};
127
128struct sk_buff;
129
130/* To allow 64K frame to be packed as single skb without frag_list */
131#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
132
133typedef struct skb_frag_struct skb_frag_t;
134
135struct skb_frag_struct {
136 struct page *page;
137 __u32 page_offset;
138 __u32 size;
139};
140
141/* This data is invariant across clones and lives at
142 * the end of the header data, ie. at skb->end.
143 */
144struct skb_shared_info {
145 atomic_t dataref;
146 unsigned short nr_frags;
147 unsigned short gso_size;
148 /* Warning: this field is not always filled in (UFO)! */
149 unsigned short gso_segs;
150 unsigned short gso_type;
151 __be32 ip6_frag_id;
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154};
155
156/* We divide dataref into two halves. The higher 16 bits hold references
157 * to the payload part of skb->data. The lower 16 bits hold references to
158 * the entire skb->data. A clone of a headerless skb holds the length of
159 * the header in skb->hdr_len.
160 *
161 * All users must obey the rule that the skb->data reference count must be
162 * greater than or equal to the payload reference count.
163 *
164 * Holding a reference to the payload part means that the user does not
165 * care about modifications to the header part of skb->data.
166 */
167#define SKB_DATAREF_SHIFT 16
168#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
169
170
171enum {
172 SKB_FCLONE_UNAVAILABLE,
173 SKB_FCLONE_ORIG,
174 SKB_FCLONE_CLONE,
175};
176
177enum {
178 SKB_GSO_TCPV4 = 1 << 0,
179 SKB_GSO_UDP = 1 << 1,
180
181 /* This indicates the skb is from an untrusted source. */
182 SKB_GSO_DODGY = 1 << 2,
183
184 /* This indicates the tcp segment has CWR set. */
185 SKB_GSO_TCP_ECN = 1 << 3,
186
187 SKB_GSO_TCPV6 = 1 << 4,
188};
189
190#if BITS_PER_LONG > 32
191#define NET_SKBUFF_DATA_USES_OFFSET 1
192#endif
193
194#ifdef NET_SKBUFF_DATA_USES_OFFSET
195typedef unsigned int sk_buff_data_t;
196#else
197typedef unsigned char *sk_buff_data_t;
198#endif
199
200/**
201 * struct sk_buff - socket buffer
202 * @next: Next buffer in list
203 * @prev: Previous buffer in list
204 * @sk: Socket we are owned by
205 * @tstamp: Time we arrived
206 * @dev: Device we arrived on/are leaving by
207 * @transport_header: Transport layer header
208 * @network_header: Network layer header
209 * @mac_header: Link layer header
210 * @dst: destination entry
211 * @sp: the security path, used for xfrm
212 * @cb: Control buffer. Free for use by every layer. Put private vars here
213 * @len: Length of actual data
214 * @data_len: Data length
215 * @mac_len: Length of link layer header
216 * @hdr_len: writable header length of cloned skb
217 * @csum: Checksum (must include start/offset pair)
218 * @csum_start: Offset from skb->head where checksumming should start
219 * @csum_offset: Offset from csum_start where checksum should be stored
220 * @local_df: allow local fragmentation
221 * @cloned: Head may be cloned (check refcnt to be sure)
222 * @nohdr: Payload reference only, must not modify header
223 * @pkt_type: Packet class
224 * @fclone: skbuff clone status
225 * @ip_summed: Driver fed us an IP checksum
226 * @priority: Packet queueing priority
227 * @users: User count - see {datagram,tcp}.c
228 * @protocol: Packet protocol from driver
229 * @truesize: Buffer size
230 * @head: Head of buffer
231 * @data: Data head pointer
232 * @tail: Tail pointer
233 * @end: End pointer
234 * @destructor: Destruct function
235 * @mark: Generic packet mark
236 * @nfct: Associated connection, if any
237 * @ipvs_property: skbuff is owned by ipvs
238 * @nf_trace: netfilter packet trace flag
239 * @nfctinfo: Relationship of this skb to the connection
240 * @nfct_reasm: netfilter conntrack re-assembly pointer
241 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
242 * @iif: ifindex of device we arrived on
243 * @queue_mapping: Queue mapping for multiqueue devices
244 * @tc_index: Traffic control index
245 * @tc_verd: traffic control verdict
246 * @dma_cookie: a cookie to one of several possible DMA operations
247 * done by skb DMA functions
248 * @secmark: security marking
249 */
250
251struct sk_buff {
252 /* These two members must be first. */
253 struct sk_buff *next;
254 struct sk_buff *prev;
255
256 struct sock *sk;
257 ktime_t tstamp;
258 struct net_device *dev;
259
260 struct dst_entry *dst;
261 struct sec_path *sp;
262
263 /*
264 * This is the control buffer. It is free to use for every
265 * layer. Please put your private variables there. If you
266 * want to keep them across layers you have to do a skb_clone()
267 * first. This is owned by whoever has the skb queued ATM.
268 */
269 char cb[48];
270
271 unsigned int len,
272 data_len;
273 __u16 mac_len,
274 hdr_len;
275 union {
276 __wsum csum;
277 struct {
278 __u16 csum_start;
279 __u16 csum_offset;
280 };
281 };
282 __u32 priority;
283 __u8 local_df:1,
284 cloned:1,
285 ip_summed:2,
286 nohdr:1,
287 nfctinfo:3;
288 __u8 pkt_type:3,
289 fclone:2,
290 ipvs_property:1,
291 nf_trace:1;
292 __be16 protocol;
293
294 void (*destructor)(struct sk_buff *skb);
295#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
296 struct nf_conntrack *nfct;
297 struct sk_buff *nfct_reasm;
298#endif
299#ifdef CONFIG_BRIDGE_NETFILTER
300 struct nf_bridge_info *nf_bridge;
301#endif
302
303 int iif;
304 __u16 queue_mapping;
305
306#ifdef CONFIG_NET_SCHED
307 __u16 tc_index; /* traffic control index */
308#ifdef CONFIG_NET_CLS_ACT
309 __u16 tc_verd; /* traffic control verdict */
310#endif
311#endif
312 /* 2 byte hole */
313
314#ifdef CONFIG_NET_DMA
315 dma_cookie_t dma_cookie;
316#endif
317#ifdef CONFIG_NETWORK_SECMARK
318 __u32 secmark;
319#endif
320
321 __u32 mark;
322
323 sk_buff_data_t transport_header;
324 sk_buff_data_t network_header;
325 sk_buff_data_t mac_header;
326 /* These elements must be at the end, see alloc_skb() for details. */
327 sk_buff_data_t tail;
328 sk_buff_data_t end;
329 unsigned char *head,
330 *data;
331 unsigned int truesize;
332 atomic_t users;
333};
334
335#ifdef __KERNEL__
336/*
337 * Handling routines are only of interest to the kernel
338 */
339#include <linux/slab.h>
340
341#include <asm/system.h>
342
343extern void kfree_skb(struct sk_buff *skb);
344extern void __kfree_skb(struct sk_buff *skb);
345extern struct sk_buff *__alloc_skb(unsigned int size,
346 gfp_t priority, int fclone, int node);
347static inline struct sk_buff *alloc_skb(unsigned int size,
348 gfp_t priority)
349{
350 return __alloc_skb(size, priority, 0, -1);
351}
352
353static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
354 gfp_t priority)
355{
356 return __alloc_skb(size, priority, 1, -1);
357}
358
359extern void kfree_skbmem(struct sk_buff *skb);
360extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
361extern struct sk_buff *skb_clone(struct sk_buff *skb,
362 gfp_t priority);
363extern struct sk_buff *skb_copy(const struct sk_buff *skb,
364 gfp_t priority);
365extern struct sk_buff *pskb_copy(struct sk_buff *skb,
366 gfp_t gfp_mask);
367extern int pskb_expand_head(struct sk_buff *skb,
368 int nhead, int ntail,
369 gfp_t gfp_mask);
370extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
371 unsigned int headroom);
372extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
373 int newheadroom, int newtailroom,
374 gfp_t priority);
375extern int skb_to_sgvec(struct sk_buff *skb,
376 struct scatterlist *sg, int offset,
377 int len);
378extern int skb_cow_data(struct sk_buff *skb, int tailbits,
379 struct sk_buff **trailer);
380extern int skb_pad(struct sk_buff *skb, int pad);
381#define dev_kfree_skb(a) kfree_skb(a)
382extern void skb_over_panic(struct sk_buff *skb, int len,
383 void *here);
384extern void skb_under_panic(struct sk_buff *skb, int len,
385 void *here);
386extern void skb_truesize_bug(struct sk_buff *skb);
387
388static inline void skb_truesize_check(struct sk_buff *skb)
389{
390 if (unlikely((int)skb->truesize < sizeof(struct sk_buff) + skb->len))
391 skb_truesize_bug(skb);
392}
393
394extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
395 int getfrag(void *from, char *to, int offset,
396 int len,int odd, struct sk_buff *skb),
397 void *from, int length);
398
399struct skb_seq_state
400{
401 __u32 lower_offset;
402 __u32 upper_offset;
403 __u32 frag_idx;
404 __u32 stepped_offset;
405 struct sk_buff *root_skb;
406 struct sk_buff *cur_skb;
407 __u8 *frag_data;
408};
409
410extern void skb_prepare_seq_read(struct sk_buff *skb,
411 unsigned int from, unsigned int to,
412 struct skb_seq_state *st);
413extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
414 struct skb_seq_state *st);
415extern void skb_abort_seq_read(struct skb_seq_state *st);
416
417extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
418 unsigned int to, struct ts_config *config,
419 struct ts_state *state);
420
421#ifdef NET_SKBUFF_DATA_USES_OFFSET
422static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
423{
424 return skb->head + skb->end;
425}
426#else
427static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
428{
429 return skb->end;
430}
431#endif
432
433/* Internal */
434#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
435
436/**
437 * skb_queue_empty - check if a queue is empty
438 * @list: queue head
439 *
440 * Returns true if the queue is empty, false otherwise.
441 */
442static inline int skb_queue_empty(const struct sk_buff_head *list)
443{
444 return list->next == (struct sk_buff *)list;
445}
446
447/**
448 * skb_get - reference buffer
449 * @skb: buffer to reference
450 *
451 * Makes another reference to a socket buffer and returns a pointer
452 * to the buffer.
453 */
454static inline struct sk_buff *skb_get(struct sk_buff *skb)
455{
456 atomic_inc(&skb->users);
457 return skb;
458}
459
460/*
461 * If users == 1, we are the only owner and are can avoid redundant
462 * atomic change.
463 */
464
465/**
466 * skb_cloned - is the buffer a clone
467 * @skb: buffer to check
468 *
469 * Returns true if the buffer was generated with skb_clone() and is
470 * one of multiple shared copies of the buffer. Cloned buffers are
471 * shared data so must not be written to under normal circumstances.
472 */
473static inline int skb_cloned(const struct sk_buff *skb)
474{
475 return skb->cloned &&
476 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
477}
478
479/**
480 * skb_header_cloned - is the header a clone
481 * @skb: buffer to check
482 *
483 * Returns true if modifying the header part of the buffer requires
484 * the data to be copied.
485 */
486static inline int skb_header_cloned(const struct sk_buff *skb)
487{
488 int dataref;
489
490 if (!skb->cloned)
491 return 0;
492
493 dataref = atomic_read(&skb_shinfo(skb)->dataref);
494 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
495 return dataref != 1;
496}
497
498/**
499 * skb_header_release - release reference to header
500 * @skb: buffer to operate on
501 *
502 * Drop a reference to the header part of the buffer. This is done
503 * by acquiring a payload reference. You must not read from the header
504 * part of skb->data after this.
505 */
506static inline void skb_header_release(struct sk_buff *skb)
507{
508 BUG_ON(skb->nohdr);
509 skb->nohdr = 1;
510 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
511}
512
513/**
514 * skb_shared - is the buffer shared
515 * @skb: buffer to check
516 *
517 * Returns true if more than one person has a reference to this
518 * buffer.
519 */
520static inline int skb_shared(const struct sk_buff *skb)
521{
522 return atomic_read(&skb->users) != 1;
523}
524
525/**
526 * skb_share_check - check if buffer is shared and if so clone it
527 * @skb: buffer to check
528 * @pri: priority for memory allocation
529 *
530 * If the buffer is shared the buffer is cloned and the old copy
531 * drops a reference. A new clone with a single reference is returned.
532 * If the buffer is not shared the original buffer is returned. When
533 * being called from interrupt status or with spinlocks held pri must
534 * be GFP_ATOMIC.
535 *
536 * NULL is returned on a memory allocation failure.
537 */
538static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
539 gfp_t pri)
540{
541 might_sleep_if(pri & __GFP_WAIT);
542 if (skb_shared(skb)) {
543 struct sk_buff *nskb = skb_clone(skb, pri);
544 kfree_skb(skb);
545 skb = nskb;
546 }
547 return skb;
548}
549
550/*
551 * Copy shared buffers into a new sk_buff. We effectively do COW on
552 * packets to handle cases where we have a local reader and forward
553 * and a couple of other messy ones. The normal one is tcpdumping
554 * a packet thats being forwarded.
555 */
556
557/**
558 * skb_unshare - make a copy of a shared buffer
559 * @skb: buffer to check
560 * @pri: priority for memory allocation
561 *
562 * If the socket buffer is a clone then this function creates a new
563 * copy of the data, drops a reference count on the old copy and returns
564 * the new copy with the reference count at 1. If the buffer is not a clone
565 * the original buffer is returned. When called with a spinlock held or
566 * from interrupt state @pri must be %GFP_ATOMIC
567 *
568 * %NULL is returned on a memory allocation failure.
569 */
570static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
571 gfp_t pri)
572{
573 might_sleep_if(pri & __GFP_WAIT);
574 if (skb_cloned(skb)) {
575 struct sk_buff *nskb = skb_copy(skb, pri);
576 kfree_skb(skb); /* Free our shared copy */
577 skb = nskb;
578 }
579 return skb;
580}
581
582/**
583 * skb_peek
584 * @list_: list to peek at
585 *
586 * Peek an &sk_buff. Unlike most other operations you _MUST_
587 * be careful with this one. A peek leaves the buffer on the
588 * list and someone else may run off with it. You must hold
589 * the appropriate locks or have a private queue to do this.
590 *
591 * Returns %NULL for an empty list or a pointer to the head element.
592 * The reference count is not incremented and the reference is therefore
593 * volatile. Use with caution.
594 */
595static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
596{
597 struct sk_buff *list = ((struct sk_buff *)list_)->next;
598 if (list == (struct sk_buff *)list_)
599 list = NULL;
600 return list;
601}
602
603/**
604 * skb_peek_tail
605 * @list_: list to peek at
606 *
607 * Peek an &sk_buff. Unlike most other operations you _MUST_
608 * be careful with this one. A peek leaves the buffer on the
609 * list and someone else may run off with it. You must hold
610 * the appropriate locks or have a private queue to do this.
611 *
612 * Returns %NULL for an empty list or a pointer to the tail element.
613 * The reference count is not incremented and the reference is therefore
614 * volatile. Use with caution.
615 */
616static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
617{
618 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
619 if (list == (struct sk_buff *)list_)
620 list = NULL;
621 return list;
622}
623
624/**
625 * skb_queue_len - get queue length
626 * @list_: list to measure
627 *
628 * Return the length of an &sk_buff queue.
629 */
630static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
631{
632 return list_->qlen;
633}
634
635/*
636 * This function creates a split out lock class for each invocation;
637 * this is needed for now since a whole lot of users of the skb-queue
638 * infrastructure in drivers have different locking usage (in hardirq)
639 * than the networking core (in softirq only). In the long run either the
640 * network layer or drivers should need annotation to consolidate the
641 * main types of usage into 3 classes.
642 */
643static inline void skb_queue_head_init(struct sk_buff_head *list)
644{
645 spin_lock_init(&list->lock);
646 list->prev = list->next = (struct sk_buff *)list;
647 list->qlen = 0;
648}
649
650static inline void skb_queue_head_init_class(struct sk_buff_head *list,
651 struct lock_class_key *class)
652{
653 skb_queue_head_init(list);
654 lockdep_set_class(&list->lock, class);
655}
656
657/*
658 * Insert an sk_buff at the start of a list.
659 *
660 * The "__skb_xxxx()" functions are the non-atomic ones that
661 * can only be called with interrupts disabled.
662 */
663
664/**
665 * __skb_queue_after - queue a buffer at the list head
666 * @list: list to use
667 * @prev: place after this buffer
668 * @newsk: buffer to queue
669 *
670 * Queue a buffer int the middle of a list. This function takes no locks
671 * and you must therefore hold required locks before calling it.
672 *
673 * A buffer cannot be placed on two lists at the same time.
674 */
675static inline void __skb_queue_after(struct sk_buff_head *list,
676 struct sk_buff *prev,
677 struct sk_buff *newsk)
678{
679 struct sk_buff *next;
680 list->qlen++;
681
682 next = prev->next;
683 newsk->next = next;
684 newsk->prev = prev;
685 next->prev = prev->next = newsk;
686}
687
688/**
689 * __skb_queue_head - queue a buffer at the list head
690 * @list: list to use
691 * @newsk: buffer to queue
692 *
693 * Queue a buffer at the start of a list. This function takes no locks
694 * and you must therefore hold required locks before calling it.
695 *
696 * A buffer cannot be placed on two lists at the same time.
697 */
698extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
699static inline void __skb_queue_head(struct sk_buff_head *list,
700 struct sk_buff *newsk)
701{
702 __skb_queue_after(list, (struct sk_buff *)list, newsk);
703}
704
705/**
706 * __skb_queue_tail - queue a buffer at the list tail
707 * @list: list to use
708 * @newsk: buffer to queue
709 *
710 * Queue a buffer at the end of a list. This function takes no locks
711 * and you must therefore hold required locks before calling it.
712 *
713 * A buffer cannot be placed on two lists at the same time.
714 */
715extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
716static inline void __skb_queue_tail(struct sk_buff_head *list,
717 struct sk_buff *newsk)
718{
719 struct sk_buff *prev, *next;
720
721 list->qlen++;
722 next = (struct sk_buff *)list;
723 prev = next->prev;
724 newsk->next = next;
725 newsk->prev = prev;
726 next->prev = prev->next = newsk;
727}
728
729
730/**
731 * __skb_dequeue - remove from the head of the queue
732 * @list: list to dequeue from
733 *
734 * Remove the head of the list. This function does not take any locks
735 * so must be used with appropriate locks held only. The head item is
736 * returned or %NULL if the list is empty.
737 */
738extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
739static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
740{
741 struct sk_buff *next, *prev, *result;
742
743 prev = (struct sk_buff *) list;
744 next = prev->next;
745 result = NULL;
746 if (next != prev) {
747 result = next;
748 next = next->next;
749 list->qlen--;
750 next->prev = prev;
751 prev->next = next;
752 result->next = result->prev = NULL;
753 }
754 return result;
755}
756
757
758/*
759 * Insert a packet on a list.
760 */
761extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
762static inline void __skb_insert(struct sk_buff *newsk,
763 struct sk_buff *prev, struct sk_buff *next,
764 struct sk_buff_head *list)
765{
766 newsk->next = next;
767 newsk->prev = prev;
768 next->prev = prev->next = newsk;
769 list->qlen++;
770}
771
772/*
773 * Place a packet after a given packet in a list.
774 */
775extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
776static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
777{
778 __skb_insert(newsk, old, old->next, list);
779}
780
781/*
782 * remove sk_buff from list. _Must_ be called atomically, and with
783 * the list known..
784 */
785extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
786static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
787{
788 struct sk_buff *next, *prev;
789
790 list->qlen--;
791 next = skb->next;
792 prev = skb->prev;
793 skb->next = skb->prev = NULL;
794 next->prev = prev;
795 prev->next = next;
796}
797
798
799/* XXX: more streamlined implementation */
800
801/**
802 * __skb_dequeue_tail - remove from the tail of the queue
803 * @list: list to dequeue from
804 *
805 * Remove the tail of the list. This function does not take any locks
806 * so must be used with appropriate locks held only. The tail item is
807 * returned or %NULL if the list is empty.
808 */
809extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
810static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
811{
812 struct sk_buff *skb = skb_peek_tail(list);
813 if (skb)
814 __skb_unlink(skb, list);
815 return skb;
816}
817
818
819static inline int skb_is_nonlinear(const struct sk_buff *skb)
820{
821 return skb->data_len;
822}
823
824static inline unsigned int skb_headlen(const struct sk_buff *skb)
825{
826 return skb->len - skb->data_len;
827}
828
829static inline int skb_pagelen(const struct sk_buff *skb)
830{
831 int i, len = 0;
832
833 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
834 len += skb_shinfo(skb)->frags[i].size;
835 return len + skb_headlen(skb);
836}
837
838static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
839 struct page *page, int off, int size)
840{
841 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
842
843 frag->page = page;
844 frag->page_offset = off;
845 frag->size = size;
846 skb_shinfo(skb)->nr_frags = i + 1;
847}
848
849#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
850#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
851#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
852
853#ifdef NET_SKBUFF_DATA_USES_OFFSET
854static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
855{
856 return skb->head + skb->tail;
857}
858
859static inline void skb_reset_tail_pointer(struct sk_buff *skb)
860{
861 skb->tail = skb->data - skb->head;
862}
863
864static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
865{
866 skb_reset_tail_pointer(skb);
867 skb->tail += offset;
868}
869#else /* NET_SKBUFF_DATA_USES_OFFSET */
870static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
871{
872 return skb->tail;
873}
874
875static inline void skb_reset_tail_pointer(struct sk_buff *skb)
876{
877 skb->tail = skb->data;
878}
879
880static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
881{
882 skb->tail = skb->data + offset;
883}
884
885#endif /* NET_SKBUFF_DATA_USES_OFFSET */
886
887/*
888 * Add data to an sk_buff
889 */
890static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
891{
892 unsigned char *tmp = skb_tail_pointer(skb);
893 SKB_LINEAR_ASSERT(skb);
894 skb->tail += len;
895 skb->len += len;
896 return tmp;
897}
898
899/**
900 * skb_put - add data to a buffer
901 * @skb: buffer to use
902 * @len: amount of data to add
903 *
904 * This function extends the used data area of the buffer. If this would
905 * exceed the total buffer size the kernel will panic. A pointer to the
906 * first byte of the extra data is returned.
907 */
908static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
909{
910 unsigned char *tmp = skb_tail_pointer(skb);
911 SKB_LINEAR_ASSERT(skb);
912 skb->tail += len;
913 skb->len += len;
914 if (unlikely(skb->tail > skb->end))
915 skb_over_panic(skb, len, current_text_addr());
916 return tmp;
917}
918
919static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
920{
921 skb->data -= len;
922 skb->len += len;
923 return skb->data;
924}
925
926/**
927 * skb_push - add data to the start of a buffer
928 * @skb: buffer to use
929 * @len: amount of data to add
930 *
931 * This function extends the used data area of the buffer at the buffer
932 * start. If this would exceed the total buffer headroom the kernel will
933 * panic. A pointer to the first byte of the extra data is returned.
934 */
935static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
936{
937 skb->data -= len;
938 skb->len += len;
939 if (unlikely(skb->data<skb->head))
940 skb_under_panic(skb, len, current_text_addr());
941 return skb->data;
942}
943
944static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
945{
946 skb->len -= len;
947 BUG_ON(skb->len < skb->data_len);
948 return skb->data += len;
949}
950
951/**
952 * skb_pull - remove data from the start of a buffer
953 * @skb: buffer to use
954 * @len: amount of data to remove
955 *
956 * This function removes data from the start of a buffer, returning
957 * the memory to the headroom. A pointer to the next data in the buffer
958 * is returned. Once the data has been pulled future pushes will overwrite
959 * the old data.
960 */
961static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
962{
963 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
964}
965
966extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
967
968static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
969{
970 if (len > skb_headlen(skb) &&
971 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
972 return NULL;
973 skb->len -= len;
974 return skb->data += len;
975}
976
977static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
978{
979 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
980}
981
982static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
983{
984 if (likely(len <= skb_headlen(skb)))
985 return 1;
986 if (unlikely(len > skb->len))
987 return 0;
988 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
989}
990
991/**
992 * skb_headroom - bytes at buffer head
993 * @skb: buffer to check
994 *
995 * Return the number of bytes of free space at the head of an &sk_buff.
996 */
997static inline int skb_headroom(const struct sk_buff *skb)
998{
999 return skb->data - skb->head;
1000}
1001
1002/**
1003 * skb_tailroom - bytes at buffer end
1004 * @skb: buffer to check
1005 *
1006 * Return the number of bytes of free space at the tail of an sk_buff
1007 */
1008static inline int skb_tailroom(const struct sk_buff *skb)
1009{
1010 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1011}
1012
1013/**
1014 * skb_reserve - adjust headroom
1015 * @skb: buffer to alter
1016 * @len: bytes to move
1017 *
1018 * Increase the headroom of an empty &sk_buff by reducing the tail
1019 * room. This is only allowed for an empty buffer.
1020 */
1021static inline void skb_reserve(struct sk_buff *skb, int len)
1022{
1023 skb->data += len;
1024 skb->tail += len;
1025}
1026
1027#ifdef NET_SKBUFF_DATA_USES_OFFSET
1028static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1029{
1030 return skb->head + skb->transport_header;
1031}
1032
1033static inline void skb_reset_transport_header(struct sk_buff *skb)
1034{
1035 skb->transport_header = skb->data - skb->head;
1036}
1037
1038static inline void skb_set_transport_header(struct sk_buff *skb,
1039 const int offset)
1040{
1041 skb_reset_transport_header(skb);
1042 skb->transport_header += offset;
1043}
1044
1045static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1046{
1047 return skb->head + skb->network_header;
1048}
1049
1050static inline void skb_reset_network_header(struct sk_buff *skb)
1051{
1052 skb->network_header = skb->data - skb->head;
1053}
1054
1055static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1056{
1057 skb_reset_network_header(skb);
1058 skb->network_header += offset;
1059}
1060
1061static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1062{
1063 return skb->head + skb->mac_header;
1064}
1065
1066static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1067{
1068 return skb->mac_header != ~0U;
1069}
1070
1071static inline void skb_reset_mac_header(struct sk_buff *skb)
1072{
1073 skb->mac_header = skb->data - skb->head;
1074}
1075
1076static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1077{
1078 skb_reset_mac_header(skb);
1079 skb->mac_header += offset;
1080}
1081
1082#else /* NET_SKBUFF_DATA_USES_OFFSET */
1083
1084static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1085{
1086 return skb->transport_header;
1087}
1088
1089static inline void skb_reset_transport_header(struct sk_buff *skb)
1090{
1091 skb->transport_header = skb->data;
1092}
1093
1094static inline void skb_set_transport_header(struct sk_buff *skb,
1095 const int offset)
1096{
1097 skb->transport_header = skb->data + offset;
1098}
1099
1100static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1101{
1102 return skb->network_header;
1103}
1104
1105static inline void skb_reset_network_header(struct sk_buff *skb)
1106{
1107 skb->network_header = skb->data;
1108}
1109
1110static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1111{
1112 skb->network_header = skb->data + offset;
1113}
1114
1115static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1116{
1117 return skb->mac_header;
1118}
1119
1120static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1121{
1122 return skb->mac_header != NULL;
1123}
1124
1125static inline void skb_reset_mac_header(struct sk_buff *skb)
1126{
1127 skb->mac_header = skb->data;
1128}
1129
1130static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1131{
1132 skb->mac_header = skb->data + offset;
1133}
1134#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1135
1136static inline int skb_transport_offset(const struct sk_buff *skb)
1137{
1138 return skb_transport_header(skb) - skb->data;
1139}
1140
1141static inline u32 skb_network_header_len(const struct sk_buff *skb)
1142{
1143 return skb->transport_header - skb->network_header;
1144}
1145
1146static inline int skb_network_offset(const struct sk_buff *skb)
1147{
1148 return skb_network_header(skb) - skb->data;
1149}
1150
1151/*
1152 * CPUs often take a performance hit when accessing unaligned memory
1153 * locations. The actual performance hit varies, it can be small if the
1154 * hardware handles it or large if we have to take an exception and fix it
1155 * in software.
1156 *
1157 * Since an ethernet header is 14 bytes network drivers often end up with
1158 * the IP header at an unaligned offset. The IP header can be aligned by
1159 * shifting the start of the packet by 2 bytes. Drivers should do this
1160 * with:
1161 *
1162 * skb_reserve(NET_IP_ALIGN);
1163 *
1164 * The downside to this alignment of the IP header is that the DMA is now
1165 * unaligned. On some architectures the cost of an unaligned DMA is high
1166 * and this cost outweighs the gains made by aligning the IP header.
1167 *
1168 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1169 * to be overridden.
1170 */
1171#ifndef NET_IP_ALIGN
1172#define NET_IP_ALIGN 2
1173#endif
1174
1175/*
1176 * The networking layer reserves some headroom in skb data (via
1177 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1178 * the header has to grow. In the default case, if the header has to grow
1179 * 16 bytes or less we avoid the reallocation.
1180 *
1181 * Unfortunately this headroom changes the DMA alignment of the resulting
1182 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1183 * on some architectures. An architecture can override this value,
1184 * perhaps setting it to a cacheline in size (since that will maintain
1185 * cacheline alignment of the DMA). It must be a power of 2.
1186 *
1187 * Various parts of the networking layer expect at least 16 bytes of
1188 * headroom, you should not reduce this.
1189 */
1190#ifndef NET_SKB_PAD
1191#define NET_SKB_PAD 16
1192#endif
1193
1194extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1195
1196static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1197{
1198 if (unlikely(skb->data_len)) {
1199 WARN_ON(1);
1200 return;
1201 }
1202 skb->len = len;
1203 skb_set_tail_pointer(skb, len);
1204}
1205
1206/**
1207 * skb_trim - remove end from a buffer
1208 * @skb: buffer to alter
1209 * @len: new length
1210 *
1211 * Cut the length of a buffer down by removing data from the tail. If
1212 * the buffer is already under the length specified it is not modified.
1213 * The skb must be linear.
1214 */
1215static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1216{
1217 if (skb->len > len)
1218 __skb_trim(skb, len);
1219}
1220
1221
1222static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1223{
1224 if (skb->data_len)
1225 return ___pskb_trim(skb, len);
1226 __skb_trim(skb, len);
1227 return 0;
1228}
1229
1230static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1231{
1232 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1233}
1234
1235/**
1236 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1237 * @skb: buffer to alter
1238 * @len: new length
1239 *
1240 * This is identical to pskb_trim except that the caller knows that
1241 * the skb is not cloned so we should never get an error due to out-
1242 * of-memory.
1243 */
1244static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1245{
1246 int err = pskb_trim(skb, len);
1247 BUG_ON(err);
1248}
1249
1250/**
1251 * skb_orphan - orphan a buffer
1252 * @skb: buffer to orphan
1253 *
1254 * If a buffer currently has an owner then we call the owner's
1255 * destructor function and make the @skb unowned. The buffer continues
1256 * to exist but is no longer charged to its former owner.
1257 */
1258static inline void skb_orphan(struct sk_buff *skb)
1259{
1260 if (skb->destructor)
1261 skb->destructor(skb);
1262 skb->destructor = NULL;
1263 skb->sk = NULL;
1264}
1265
1266/**
1267 * __skb_queue_purge - empty a list
1268 * @list: list to empty
1269 *
1270 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1271 * the list and one reference dropped. This function does not take the
1272 * list lock and the caller must hold the relevant locks to use it.
1273 */
1274extern void skb_queue_purge(struct sk_buff_head *list);
1275static inline void __skb_queue_purge(struct sk_buff_head *list)
1276{
1277 struct sk_buff *skb;
1278 while ((skb = __skb_dequeue(list)) != NULL)
1279 kfree_skb(skb);
1280}
1281
1282/**
1283 * __dev_alloc_skb - allocate an skbuff for receiving
1284 * @length: length to allocate
1285 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1286 *
1287 * Allocate a new &sk_buff and assign it a usage count of one. The
1288 * buffer has unspecified headroom built in. Users should allocate
1289 * the headroom they think they need without accounting for the
1290 * built in space. The built in space is used for optimisations.
1291 *
1292 * %NULL is returned if there is no free memory.
1293 */
1294static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1295 gfp_t gfp_mask)
1296{
1297 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1298 if (likely(skb))
1299 skb_reserve(skb, NET_SKB_PAD);
1300 return skb;
1301}
1302
1303/**
1304 * dev_alloc_skb - allocate an skbuff for receiving
1305 * @length: length to allocate
1306 *
1307 * Allocate a new &sk_buff and assign it a usage count of one. The
1308 * buffer has unspecified headroom built in. Users should allocate
1309 * the headroom they think they need without accounting for the
1310 * built in space. The built in space is used for optimisations.
1311 *
1312 * %NULL is returned if there is no free memory. Although this function
1313 * allocates memory it can be called from an interrupt.
1314 */
1315static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1316{
1317 return __dev_alloc_skb(length, GFP_ATOMIC);
1318}
1319
1320extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1321 unsigned int length, gfp_t gfp_mask);
1322
1323/**
1324 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1325 * @dev: network device to receive on
1326 * @length: length to allocate
1327 *
1328 * Allocate a new &sk_buff and assign it a usage count of one. The
1329 * buffer has unspecified headroom built in. Users should allocate
1330 * the headroom they think they need without accounting for the
1331 * built in space. The built in space is used for optimisations.
1332 *
1333 * %NULL is returned if there is no free memory. Although this function
1334 * allocates memory it can be called from an interrupt.
1335 */
1336static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1337 unsigned int length)
1338{
1339 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1340}
1341
1342/**
1343 * skb_clone_writable - is the header of a clone writable
1344 * @skb: buffer to check
1345 * @len: length up to which to write
1346 *
1347 * Returns true if modifying the header part of the cloned buffer
1348 * does not requires the data to be copied.
1349 */
1350static inline int skb_clone_writable(struct sk_buff *skb, int len)
1351{
1352 return !skb_header_cloned(skb) &&
1353 skb_headroom(skb) + len <= skb->hdr_len;
1354}
1355
1356static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1357 int cloned)
1358{
1359 int delta = 0;
1360
1361 if (headroom < NET_SKB_PAD)
1362 headroom = NET_SKB_PAD;
1363 if (headroom > skb_headroom(skb))
1364 delta = headroom - skb_headroom(skb);
1365
1366 if (delta || cloned)
1367 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1368 GFP_ATOMIC);
1369 return 0;
1370}
1371
1372/**
1373 * skb_cow - copy header of skb when it is required
1374 * @skb: buffer to cow
1375 * @headroom: needed headroom
1376 *
1377 * If the skb passed lacks sufficient headroom or its data part
1378 * is shared, data is reallocated. If reallocation fails, an error
1379 * is returned and original skb is not changed.
1380 *
1381 * The result is skb with writable area skb->head...skb->tail
1382 * and at least @headroom of space at head.
1383 */
1384static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1385{
1386 return __skb_cow(skb, headroom, skb_cloned(skb));
1387}
1388
1389/**
1390 * skb_cow_head - skb_cow but only making the head writable
1391 * @skb: buffer to cow
1392 * @headroom: needed headroom
1393 *
1394 * This function is identical to skb_cow except that we replace the
1395 * skb_cloned check by skb_header_cloned. It should be used when
1396 * you only need to push on some header and do not need to modify
1397 * the data.
1398 */
1399static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1400{
1401 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1402}
1403
1404/**
1405 * skb_padto - pad an skbuff up to a minimal size
1406 * @skb: buffer to pad
1407 * @len: minimal length
1408 *
1409 * Pads up a buffer to ensure the trailing bytes exist and are
1410 * blanked. If the buffer already contains sufficient data it
1411 * is untouched. Otherwise it is extended. Returns zero on
1412 * success. The skb is freed on error.
1413 */
1414
1415static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1416{
1417 unsigned int size = skb->len;
1418 if (likely(size >= len))
1419 return 0;
1420 return skb_pad(skb, len-size);
1421}
1422
1423static inline int skb_add_data(struct sk_buff *skb,
1424 char __user *from, int copy)
1425{
1426 const int off = skb->len;
1427
1428 if (skb->ip_summed == CHECKSUM_NONE) {
1429 int err = 0;
1430 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1431 copy, 0, &err);
1432 if (!err) {
1433 skb->csum = csum_block_add(skb->csum, csum, off);
1434 return 0;
1435 }
1436 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1437 return 0;
1438
1439 __skb_trim(skb, off);
1440 return -EFAULT;
1441}
1442
1443static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1444 struct page *page, int off)
1445{
1446 if (i) {
1447 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1448
1449 return page == frag->page &&
1450 off == frag->page_offset + frag->size;
1451 }
1452 return 0;
1453}
1454
1455static inline int __skb_linearize(struct sk_buff *skb)
1456{
1457 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1458}
1459
1460/**
1461 * skb_linearize - convert paged skb to linear one
1462 * @skb: buffer to linarize
1463 *
1464 * If there is no free memory -ENOMEM is returned, otherwise zero
1465 * is returned and the old skb data released.
1466 */
1467static inline int skb_linearize(struct sk_buff *skb)
1468{
1469 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1470}
1471
1472/**
1473 * skb_linearize_cow - make sure skb is linear and writable
1474 * @skb: buffer to process
1475 *
1476 * If there is no free memory -ENOMEM is returned, otherwise zero
1477 * is returned and the old skb data released.
1478 */
1479static inline int skb_linearize_cow(struct sk_buff *skb)
1480{
1481 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1482 __skb_linearize(skb) : 0;
1483}
1484
1485/**
1486 * skb_postpull_rcsum - update checksum for received skb after pull
1487 * @skb: buffer to update
1488 * @start: start of data before pull
1489 * @len: length of data pulled
1490 *
1491 * After doing a pull on a received packet, you need to call this to
1492 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1493 * CHECKSUM_NONE so that it can be recomputed from scratch.
1494 */
1495
1496static inline void skb_postpull_rcsum(struct sk_buff *skb,
1497 const void *start, unsigned int len)
1498{
1499 if (skb->ip_summed == CHECKSUM_COMPLETE)
1500 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1501}
1502
1503unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1504
1505/**
1506 * pskb_trim_rcsum - trim received skb and update checksum
1507 * @skb: buffer to trim
1508 * @len: new length
1509 *
1510 * This is exactly the same as pskb_trim except that it ensures the
1511 * checksum of received packets are still valid after the operation.
1512 */
1513
1514static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1515{
1516 if (likely(len >= skb->len))
1517 return 0;
1518 if (skb->ip_summed == CHECKSUM_COMPLETE)
1519 skb->ip_summed = CHECKSUM_NONE;
1520 return __pskb_trim(skb, len);
1521}
1522
1523#define skb_queue_walk(queue, skb) \
1524 for (skb = (queue)->next; \
1525 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1526 skb = skb->next)
1527
1528#define skb_queue_walk_safe(queue, skb, tmp) \
1529 for (skb = (queue)->next, tmp = skb->next; \
1530 skb != (struct sk_buff *)(queue); \
1531 skb = tmp, tmp = skb->next)
1532
1533#define skb_queue_reverse_walk(queue, skb) \
1534 for (skb = (queue)->prev; \
1535 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1536 skb = skb->prev)
1537
1538
1539extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1540 int noblock, int *err);
1541extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1542 struct poll_table_struct *wait);
1543extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1544 int offset, struct iovec *to,
1545 int size);
1546extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1547 int hlen,
1548 struct iovec *iov);
1549extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1550extern void skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1551 unsigned int flags);
1552extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1553 int len, __wsum csum);
1554extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1555 void *to, int len);
1556extern int skb_store_bits(struct sk_buff *skb, int offset,
1557 const void *from, int len);
1558extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1559 int offset, u8 *to, int len,
1560 __wsum csum);
1561extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1562extern void skb_split(struct sk_buff *skb,
1563 struct sk_buff *skb1, const u32 len);
1564
1565extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1566
1567static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1568 int len, void *buffer)
1569{
1570 int hlen = skb_headlen(skb);
1571
1572 if (hlen - offset >= len)
1573 return skb->data + offset;
1574
1575 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1576 return NULL;
1577
1578 return buffer;
1579}
1580
1581static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1582 void *to,
1583 const unsigned int len)
1584{
1585 memcpy(to, skb->data, len);
1586}
1587
1588static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1589 const int offset, void *to,
1590 const unsigned int len)
1591{
1592 memcpy(to, skb->data + offset, len);
1593}
1594
1595static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1596 const void *from,
1597 const unsigned int len)
1598{
1599 memcpy(skb->data, from, len);
1600}
1601
1602static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1603 const int offset,
1604 const void *from,
1605 const unsigned int len)
1606{
1607 memcpy(skb->data + offset, from, len);
1608}
1609
1610extern void skb_init(void);
1611
1612/**
1613 * skb_get_timestamp - get timestamp from a skb
1614 * @skb: skb to get stamp from
1615 * @stamp: pointer to struct timeval to store stamp in
1616 *
1617 * Timestamps are stored in the skb as offsets to a base timestamp.
1618 * This function converts the offset back to a struct timeval and stores
1619 * it in stamp.
1620 */
1621static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1622{
1623 *stamp = ktime_to_timeval(skb->tstamp);
1624}
1625
1626static inline void __net_timestamp(struct sk_buff *skb)
1627{
1628 skb->tstamp = ktime_get_real();
1629}
1630
1631static inline ktime_t net_timedelta(ktime_t t)
1632{
1633 return ktime_sub(ktime_get_real(), t);
1634}
1635
1636static inline ktime_t net_invalid_timestamp(void)
1637{
1638 return ktime_set(0, 0);
1639}
1640
1641extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1642extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1643
1644static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1645{
1646 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1647}
1648
1649/**
1650 * skb_checksum_complete - Calculate checksum of an entire packet
1651 * @skb: packet to process
1652 *
1653 * This function calculates the checksum over the entire packet plus
1654 * the value of skb->csum. The latter can be used to supply the
1655 * checksum of a pseudo header as used by TCP/UDP. It returns the
1656 * checksum.
1657 *
1658 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1659 * this function can be used to verify that checksum on received
1660 * packets. In that case the function should return zero if the
1661 * checksum is correct. In particular, this function will return zero
1662 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1663 * hardware has already verified the correctness of the checksum.
1664 */
1665static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1666{
1667 return skb_csum_unnecessary(skb) ?
1668 0 : __skb_checksum_complete(skb);
1669}
1670
1671#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1672extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1673static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1674{
1675 if (nfct && atomic_dec_and_test(&nfct->use))
1676 nf_conntrack_destroy(nfct);
1677}
1678static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1679{
1680 if (nfct)
1681 atomic_inc(&nfct->use);
1682}
1683static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1684{
1685 if (skb)
1686 atomic_inc(&skb->users);
1687}
1688static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1689{
1690 if (skb)
1691 kfree_skb(skb);
1692}
1693#endif
1694#ifdef CONFIG_BRIDGE_NETFILTER
1695static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1696{
1697 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1698 kfree(nf_bridge);
1699}
1700static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1701{
1702 if (nf_bridge)
1703 atomic_inc(&nf_bridge->use);
1704}
1705#endif /* CONFIG_BRIDGE_NETFILTER */
1706static inline void nf_reset(struct sk_buff *skb)
1707{
1708#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1709 nf_conntrack_put(skb->nfct);
1710 skb->nfct = NULL;
1711 nf_conntrack_put_reasm(skb->nfct_reasm);
1712 skb->nfct_reasm = NULL;
1713#endif
1714#ifdef CONFIG_BRIDGE_NETFILTER
1715 nf_bridge_put(skb->nf_bridge);
1716 skb->nf_bridge = NULL;
1717#endif
1718}
1719
1720/* Note: This doesn't put any conntrack and bridge info in dst. */
1721static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1722{
1723#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1724 dst->nfct = src->nfct;
1725 nf_conntrack_get(src->nfct);
1726 dst->nfctinfo = src->nfctinfo;
1727 dst->nfct_reasm = src->nfct_reasm;
1728 nf_conntrack_get_reasm(src->nfct_reasm);
1729#endif
1730#ifdef CONFIG_BRIDGE_NETFILTER
1731 dst->nf_bridge = src->nf_bridge;
1732 nf_bridge_get(src->nf_bridge);
1733#endif
1734}
1735
1736static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1737{
1738#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1739 nf_conntrack_put(dst->nfct);
1740 nf_conntrack_put_reasm(dst->nfct_reasm);
1741#endif
1742#ifdef CONFIG_BRIDGE_NETFILTER
1743 nf_bridge_put(dst->nf_bridge);
1744#endif
1745 __nf_copy(dst, src);
1746}
1747
1748#ifdef CONFIG_NETWORK_SECMARK
1749static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1750{
1751 to->secmark = from->secmark;
1752}
1753
1754static inline void skb_init_secmark(struct sk_buff *skb)
1755{
1756 skb->secmark = 0;
1757}
1758#else
1759static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1760{ }
1761
1762static inline void skb_init_secmark(struct sk_buff *skb)
1763{ }
1764#endif
1765
1766static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1767{
1768#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1769 skb->queue_mapping = queue_mapping;
1770#endif
1771}
1772
1773static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1774{
1775#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1776 to->queue_mapping = from->queue_mapping;
1777#endif
1778}
1779
1780static inline int skb_is_gso(const struct sk_buff *skb)
1781{
1782 return skb_shinfo(skb)->gso_size;
1783}
1784
1785static inline int skb_is_gso_v6(const struct sk_buff *skb)
1786{
1787 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1788}
1789
1790static inline void skb_forward_csum(struct sk_buff *skb)
1791{
1792 /* Unfortunately we don't support this one. Any brave souls? */
1793 if (skb->ip_summed == CHECKSUM_COMPLETE)
1794 skb->ip_summed = CHECKSUM_NONE;
1795}
1796
1797#endif /* __KERNEL__ */
1798#endif /* _LINUX_SKBUFF_H */