]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - fs/btrfs/transaction.c
Btrfs: Integrate metadata reservation with start_transaction
[net-next-2.6.git] / fs / btrfs / transaction.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "locking.h"
29#include "tree-log.h"
30
31#define BTRFS_ROOT_TRANS_TAG 0
32
33static noinline void put_transaction(struct btrfs_transaction *transaction)
34{
35 WARN_ON(transaction->use_count == 0);
36 transaction->use_count--;
37 if (transaction->use_count == 0) {
38 list_del_init(&transaction->list);
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
41 }
42}
43
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
48}
49
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
53static noinline int join_transaction(struct btrfs_root *root)
54{
55 struct btrfs_transaction *cur_trans;
56 cur_trans = root->fs_info->running_transaction;
57 if (!cur_trans) {
58 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
59 GFP_NOFS);
60 BUG_ON(!cur_trans);
61 root->fs_info->generation++;
62 cur_trans->num_writers = 1;
63 cur_trans->num_joined = 0;
64 cur_trans->transid = root->fs_info->generation;
65 init_waitqueue_head(&cur_trans->writer_wait);
66 init_waitqueue_head(&cur_trans->commit_wait);
67 cur_trans->in_commit = 0;
68 cur_trans->blocked = 0;
69 cur_trans->use_count = 1;
70 cur_trans->commit_done = 0;
71 cur_trans->start_time = get_seconds();
72
73 cur_trans->delayed_refs.root = RB_ROOT;
74 cur_trans->delayed_refs.num_entries = 0;
75 cur_trans->delayed_refs.num_heads_ready = 0;
76 cur_trans->delayed_refs.num_heads = 0;
77 cur_trans->delayed_refs.flushing = 0;
78 cur_trans->delayed_refs.run_delayed_start = 0;
79 spin_lock_init(&cur_trans->delayed_refs.lock);
80
81 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
82 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
83 extent_io_tree_init(&cur_trans->dirty_pages,
84 root->fs_info->btree_inode->i_mapping,
85 GFP_NOFS);
86 spin_lock(&root->fs_info->new_trans_lock);
87 root->fs_info->running_transaction = cur_trans;
88 spin_unlock(&root->fs_info->new_trans_lock);
89 } else {
90 cur_trans->num_writers++;
91 cur_trans->num_joined++;
92 }
93
94 return 0;
95}
96
97/*
98 * this does all the record keeping required to make sure that a reference
99 * counted root is properly recorded in a given transaction. This is required
100 * to make sure the old root from before we joined the transaction is deleted
101 * when the transaction commits
102 */
103static noinline int record_root_in_trans(struct btrfs_trans_handle *trans,
104 struct btrfs_root *root)
105{
106 if (root->ref_cows && root->last_trans < trans->transid) {
107 WARN_ON(root == root->fs_info->extent_root);
108 WARN_ON(root->commit_root != root->node);
109
110 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
111 (unsigned long)root->root_key.objectid,
112 BTRFS_ROOT_TRANS_TAG);
113 root->last_trans = trans->transid;
114 btrfs_init_reloc_root(trans, root);
115 }
116 return 0;
117}
118
119int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
120 struct btrfs_root *root)
121{
122 if (!root->ref_cows)
123 return 0;
124
125 mutex_lock(&root->fs_info->trans_mutex);
126 if (root->last_trans == trans->transid) {
127 mutex_unlock(&root->fs_info->trans_mutex);
128 return 0;
129 }
130
131 record_root_in_trans(trans, root);
132 mutex_unlock(&root->fs_info->trans_mutex);
133 return 0;
134}
135
136/* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
139 */
140static void wait_current_trans(struct btrfs_root *root)
141{
142 struct btrfs_transaction *cur_trans;
143
144 cur_trans = root->fs_info->running_transaction;
145 if (cur_trans && cur_trans->blocked) {
146 DEFINE_WAIT(wait);
147 cur_trans->use_count++;
148 while (1) {
149 prepare_to_wait(&root->fs_info->transaction_wait, &wait,
150 TASK_UNINTERRUPTIBLE);
151 if (!cur_trans->blocked)
152 break;
153 mutex_unlock(&root->fs_info->trans_mutex);
154 schedule();
155 mutex_lock(&root->fs_info->trans_mutex);
156 }
157 finish_wait(&root->fs_info->transaction_wait, &wait);
158 put_transaction(cur_trans);
159 }
160}
161
162enum btrfs_trans_type {
163 TRANS_START,
164 TRANS_JOIN,
165 TRANS_USERSPACE,
166};
167
168static int may_wait_transaction(struct btrfs_root *root, int type)
169{
170 if (!root->fs_info->log_root_recovering &&
171 ((type == TRANS_START && !root->fs_info->open_ioctl_trans) ||
172 type == TRANS_USERSPACE))
173 return 1;
174 return 0;
175}
176
177static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
178 u64 num_items, int type)
179{
180 struct btrfs_trans_handle *h;
181 struct btrfs_transaction *cur_trans;
182 int retries = 0;
183 int ret;
184again:
185 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
186 if (!h)
187 return ERR_PTR(-ENOMEM);
188
189 mutex_lock(&root->fs_info->trans_mutex);
190 if (may_wait_transaction(root, type))
191 wait_current_trans(root);
192
193 ret = join_transaction(root);
194 BUG_ON(ret);
195
196 cur_trans = root->fs_info->running_transaction;
197 cur_trans->use_count++;
198 mutex_unlock(&root->fs_info->trans_mutex);
199
200 h->transid = cur_trans->transid;
201 h->transaction = cur_trans;
202 h->blocks_used = 0;
203 h->block_group = 0;
204 h->bytes_reserved = 0;
205 h->delayed_ref_updates = 0;
206 h->block_rsv = NULL;
207
208 smp_mb();
209 if (cur_trans->blocked && may_wait_transaction(root, type)) {
210 btrfs_commit_transaction(h, root);
211 goto again;
212 }
213
214 if (num_items > 0) {
215 ret = btrfs_trans_reserve_metadata(h, root, num_items,
216 &retries);
217 if (ret == -EAGAIN) {
218 btrfs_commit_transaction(h, root);
219 goto again;
220 }
221 if (ret < 0) {
222 btrfs_end_transaction(h, root);
223 return ERR_PTR(ret);
224 }
225 }
226
227 mutex_lock(&root->fs_info->trans_mutex);
228 record_root_in_trans(h, root);
229 mutex_unlock(&root->fs_info->trans_mutex);
230
231 if (!current->journal_info && type != TRANS_USERSPACE)
232 current->journal_info = h;
233 return h;
234}
235
236struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
237 int num_items)
238{
239 return start_transaction(root, num_items, TRANS_START);
240}
241struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
242 int num_blocks)
243{
244 return start_transaction(root, 0, TRANS_JOIN);
245}
246
247struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
248 int num_blocks)
249{
250 return start_transaction(r, 0, TRANS_USERSPACE);
251}
252
253/* wait for a transaction commit to be fully complete */
254static noinline int wait_for_commit(struct btrfs_root *root,
255 struct btrfs_transaction *commit)
256{
257 DEFINE_WAIT(wait);
258 mutex_lock(&root->fs_info->trans_mutex);
259 while (!commit->commit_done) {
260 prepare_to_wait(&commit->commit_wait, &wait,
261 TASK_UNINTERRUPTIBLE);
262 if (commit->commit_done)
263 break;
264 mutex_unlock(&root->fs_info->trans_mutex);
265 schedule();
266 mutex_lock(&root->fs_info->trans_mutex);
267 }
268 mutex_unlock(&root->fs_info->trans_mutex);
269 finish_wait(&commit->commit_wait, &wait);
270 return 0;
271}
272
273#if 0
274/*
275 * rate limit against the drop_snapshot code. This helps to slow down new
276 * operations if the drop_snapshot code isn't able to keep up.
277 */
278static void throttle_on_drops(struct btrfs_root *root)
279{
280 struct btrfs_fs_info *info = root->fs_info;
281 int harder_count = 0;
282
283harder:
284 if (atomic_read(&info->throttles)) {
285 DEFINE_WAIT(wait);
286 int thr;
287 thr = atomic_read(&info->throttle_gen);
288
289 do {
290 prepare_to_wait(&info->transaction_throttle,
291 &wait, TASK_UNINTERRUPTIBLE);
292 if (!atomic_read(&info->throttles)) {
293 finish_wait(&info->transaction_throttle, &wait);
294 break;
295 }
296 schedule();
297 finish_wait(&info->transaction_throttle, &wait);
298 } while (thr == atomic_read(&info->throttle_gen));
299 harder_count++;
300
301 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
302 harder_count < 2)
303 goto harder;
304
305 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
306 harder_count < 10)
307 goto harder;
308
309 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
310 harder_count < 20)
311 goto harder;
312 }
313}
314#endif
315
316void btrfs_throttle(struct btrfs_root *root)
317{
318 mutex_lock(&root->fs_info->trans_mutex);
319 if (!root->fs_info->open_ioctl_trans)
320 wait_current_trans(root);
321 mutex_unlock(&root->fs_info->trans_mutex);
322}
323
324static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
325 struct btrfs_root *root, int throttle)
326{
327 struct btrfs_transaction *cur_trans;
328 struct btrfs_fs_info *info = root->fs_info;
329 int count = 0;
330
331 while (count < 4) {
332 unsigned long cur = trans->delayed_ref_updates;
333 trans->delayed_ref_updates = 0;
334 if (cur &&
335 trans->transaction->delayed_refs.num_heads_ready > 64) {
336 trans->delayed_ref_updates = 0;
337
338 /*
339 * do a full flush if the transaction is trying
340 * to close
341 */
342 if (trans->transaction->delayed_refs.flushing)
343 cur = 0;
344 btrfs_run_delayed_refs(trans, root, cur);
345 } else {
346 break;
347 }
348 count++;
349 }
350
351 btrfs_trans_release_metadata(trans, root);
352
353 mutex_lock(&info->trans_mutex);
354 cur_trans = info->running_transaction;
355 WARN_ON(cur_trans != trans->transaction);
356 WARN_ON(cur_trans->num_writers < 1);
357 cur_trans->num_writers--;
358
359 if (waitqueue_active(&cur_trans->writer_wait))
360 wake_up(&cur_trans->writer_wait);
361 put_transaction(cur_trans);
362 mutex_unlock(&info->trans_mutex);
363
364 if (current->journal_info == trans)
365 current->journal_info = NULL;
366 memset(trans, 0, sizeof(*trans));
367 kmem_cache_free(btrfs_trans_handle_cachep, trans);
368
369 if (throttle)
370 btrfs_run_delayed_iputs(root);
371
372 return 0;
373}
374
375int btrfs_end_transaction(struct btrfs_trans_handle *trans,
376 struct btrfs_root *root)
377{
378 return __btrfs_end_transaction(trans, root, 0);
379}
380
381int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
382 struct btrfs_root *root)
383{
384 return __btrfs_end_transaction(trans, root, 1);
385}
386
387/*
388 * when btree blocks are allocated, they have some corresponding bits set for
389 * them in one of two extent_io trees. This is used to make sure all of
390 * those extents are sent to disk but does not wait on them
391 */
392int btrfs_write_marked_extents(struct btrfs_root *root,
393 struct extent_io_tree *dirty_pages, int mark)
394{
395 int ret;
396 int err = 0;
397 int werr = 0;
398 struct page *page;
399 struct inode *btree_inode = root->fs_info->btree_inode;
400 u64 start = 0;
401 u64 end;
402 unsigned long index;
403
404 while (1) {
405 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
406 mark);
407 if (ret)
408 break;
409 while (start <= end) {
410 cond_resched();
411
412 index = start >> PAGE_CACHE_SHIFT;
413 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
414 page = find_get_page(btree_inode->i_mapping, index);
415 if (!page)
416 continue;
417
418 btree_lock_page_hook(page);
419 if (!page->mapping) {
420 unlock_page(page);
421 page_cache_release(page);
422 continue;
423 }
424
425 if (PageWriteback(page)) {
426 if (PageDirty(page))
427 wait_on_page_writeback(page);
428 else {
429 unlock_page(page);
430 page_cache_release(page);
431 continue;
432 }
433 }
434 err = write_one_page(page, 0);
435 if (err)
436 werr = err;
437 page_cache_release(page);
438 }
439 }
440 if (err)
441 werr = err;
442 return werr;
443}
444
445/*
446 * when btree blocks are allocated, they have some corresponding bits set for
447 * them in one of two extent_io trees. This is used to make sure all of
448 * those extents are on disk for transaction or log commit. We wait
449 * on all the pages and clear them from the dirty pages state tree
450 */
451int btrfs_wait_marked_extents(struct btrfs_root *root,
452 struct extent_io_tree *dirty_pages, int mark)
453{
454 int ret;
455 int err = 0;
456 int werr = 0;
457 struct page *page;
458 struct inode *btree_inode = root->fs_info->btree_inode;
459 u64 start = 0;
460 u64 end;
461 unsigned long index;
462
463 while (1) {
464 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
465 mark);
466 if (ret)
467 break;
468
469 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
470 while (start <= end) {
471 index = start >> PAGE_CACHE_SHIFT;
472 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
473 page = find_get_page(btree_inode->i_mapping, index);
474 if (!page)
475 continue;
476 if (PageDirty(page)) {
477 btree_lock_page_hook(page);
478 wait_on_page_writeback(page);
479 err = write_one_page(page, 0);
480 if (err)
481 werr = err;
482 }
483 wait_on_page_writeback(page);
484 page_cache_release(page);
485 cond_resched();
486 }
487 }
488 if (err)
489 werr = err;
490 return werr;
491}
492
493/*
494 * when btree blocks are allocated, they have some corresponding bits set for
495 * them in one of two extent_io trees. This is used to make sure all of
496 * those extents are on disk for transaction or log commit
497 */
498int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
499 struct extent_io_tree *dirty_pages, int mark)
500{
501 int ret;
502 int ret2;
503
504 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
505 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
506 return ret || ret2;
507}
508
509int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
510 struct btrfs_root *root)
511{
512 if (!trans || !trans->transaction) {
513 struct inode *btree_inode;
514 btree_inode = root->fs_info->btree_inode;
515 return filemap_write_and_wait(btree_inode->i_mapping);
516 }
517 return btrfs_write_and_wait_marked_extents(root,
518 &trans->transaction->dirty_pages,
519 EXTENT_DIRTY);
520}
521
522/*
523 * this is used to update the root pointer in the tree of tree roots.
524 *
525 * But, in the case of the extent allocation tree, updating the root
526 * pointer may allocate blocks which may change the root of the extent
527 * allocation tree.
528 *
529 * So, this loops and repeats and makes sure the cowonly root didn't
530 * change while the root pointer was being updated in the metadata.
531 */
532static int update_cowonly_root(struct btrfs_trans_handle *trans,
533 struct btrfs_root *root)
534{
535 int ret;
536 u64 old_root_bytenr;
537 u64 old_root_used;
538 struct btrfs_root *tree_root = root->fs_info->tree_root;
539
540 old_root_used = btrfs_root_used(&root->root_item);
541 btrfs_write_dirty_block_groups(trans, root);
542
543 while (1) {
544 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
545 if (old_root_bytenr == root->node->start &&
546 old_root_used == btrfs_root_used(&root->root_item))
547 break;
548
549 btrfs_set_root_node(&root->root_item, root->node);
550 ret = btrfs_update_root(trans, tree_root,
551 &root->root_key,
552 &root->root_item);
553 BUG_ON(ret);
554
555 old_root_used = btrfs_root_used(&root->root_item);
556 ret = btrfs_write_dirty_block_groups(trans, root);
557 BUG_ON(ret);
558 }
559
560 if (root != root->fs_info->extent_root)
561 switch_commit_root(root);
562
563 return 0;
564}
565
566/*
567 * update all the cowonly tree roots on disk
568 */
569static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
570 struct btrfs_root *root)
571{
572 struct btrfs_fs_info *fs_info = root->fs_info;
573 struct list_head *next;
574 struct extent_buffer *eb;
575 int ret;
576
577 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
578 BUG_ON(ret);
579
580 eb = btrfs_lock_root_node(fs_info->tree_root);
581 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
582 btrfs_tree_unlock(eb);
583 free_extent_buffer(eb);
584
585 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
586 BUG_ON(ret);
587
588 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
589 next = fs_info->dirty_cowonly_roots.next;
590 list_del_init(next);
591 root = list_entry(next, struct btrfs_root, dirty_list);
592
593 update_cowonly_root(trans, root);
594 }
595
596 down_write(&fs_info->extent_commit_sem);
597 switch_commit_root(fs_info->extent_root);
598 up_write(&fs_info->extent_commit_sem);
599
600 return 0;
601}
602
603/*
604 * dead roots are old snapshots that need to be deleted. This allocates
605 * a dirty root struct and adds it into the list of dead roots that need to
606 * be deleted
607 */
608int btrfs_add_dead_root(struct btrfs_root *root)
609{
610 mutex_lock(&root->fs_info->trans_mutex);
611 list_add(&root->root_list, &root->fs_info->dead_roots);
612 mutex_unlock(&root->fs_info->trans_mutex);
613 return 0;
614}
615
616/*
617 * update all the cowonly tree roots on disk
618 */
619static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
620 struct btrfs_root *root)
621{
622 struct btrfs_root *gang[8];
623 struct btrfs_fs_info *fs_info = root->fs_info;
624 int i;
625 int ret;
626 int err = 0;
627
628 while (1) {
629 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
630 (void **)gang, 0,
631 ARRAY_SIZE(gang),
632 BTRFS_ROOT_TRANS_TAG);
633 if (ret == 0)
634 break;
635 for (i = 0; i < ret; i++) {
636 root = gang[i];
637 radix_tree_tag_clear(&fs_info->fs_roots_radix,
638 (unsigned long)root->root_key.objectid,
639 BTRFS_ROOT_TRANS_TAG);
640
641 btrfs_free_log(trans, root);
642 btrfs_update_reloc_root(trans, root);
643
644 if (root->commit_root != root->node) {
645 switch_commit_root(root);
646 btrfs_set_root_node(&root->root_item,
647 root->node);
648 }
649
650 err = btrfs_update_root(trans, fs_info->tree_root,
651 &root->root_key,
652 &root->root_item);
653 if (err)
654 break;
655 }
656 }
657 return err;
658}
659
660/*
661 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
662 * otherwise every leaf in the btree is read and defragged.
663 */
664int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
665{
666 struct btrfs_fs_info *info = root->fs_info;
667 int ret;
668 struct btrfs_trans_handle *trans;
669 unsigned long nr;
670
671 smp_mb();
672 if (root->defrag_running)
673 return 0;
674 trans = btrfs_start_transaction(root, 1);
675 while (1) {
676 root->defrag_running = 1;
677 ret = btrfs_defrag_leaves(trans, root, cacheonly);
678 nr = trans->blocks_used;
679 btrfs_end_transaction(trans, root);
680 btrfs_btree_balance_dirty(info->tree_root, nr);
681 cond_resched();
682
683 trans = btrfs_start_transaction(root, 1);
684 if (root->fs_info->closing || ret != -EAGAIN)
685 break;
686 }
687 root->defrag_running = 0;
688 smp_mb();
689 btrfs_end_transaction(trans, root);
690 return 0;
691}
692
693#if 0
694/*
695 * when dropping snapshots, we generate a ton of delayed refs, and it makes
696 * sense not to join the transaction while it is trying to flush the current
697 * queue of delayed refs out.
698 *
699 * This is used by the drop snapshot code only
700 */
701static noinline int wait_transaction_pre_flush(struct btrfs_fs_info *info)
702{
703 DEFINE_WAIT(wait);
704
705 mutex_lock(&info->trans_mutex);
706 while (info->running_transaction &&
707 info->running_transaction->delayed_refs.flushing) {
708 prepare_to_wait(&info->transaction_wait, &wait,
709 TASK_UNINTERRUPTIBLE);
710 mutex_unlock(&info->trans_mutex);
711
712 schedule();
713
714 mutex_lock(&info->trans_mutex);
715 finish_wait(&info->transaction_wait, &wait);
716 }
717 mutex_unlock(&info->trans_mutex);
718 return 0;
719}
720
721/*
722 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
723 * all of them
724 */
725int btrfs_drop_dead_root(struct btrfs_root *root)
726{
727 struct btrfs_trans_handle *trans;
728 struct btrfs_root *tree_root = root->fs_info->tree_root;
729 unsigned long nr;
730 int ret;
731
732 while (1) {
733 /*
734 * we don't want to jump in and create a bunch of
735 * delayed refs if the transaction is starting to close
736 */
737 wait_transaction_pre_flush(tree_root->fs_info);
738 trans = btrfs_start_transaction(tree_root, 1);
739
740 /*
741 * we've joined a transaction, make sure it isn't
742 * closing right now
743 */
744 if (trans->transaction->delayed_refs.flushing) {
745 btrfs_end_transaction(trans, tree_root);
746 continue;
747 }
748
749 ret = btrfs_drop_snapshot(trans, root);
750 if (ret != -EAGAIN)
751 break;
752
753 ret = btrfs_update_root(trans, tree_root,
754 &root->root_key,
755 &root->root_item);
756 if (ret)
757 break;
758
759 nr = trans->blocks_used;
760 ret = btrfs_end_transaction(trans, tree_root);
761 BUG_ON(ret);
762
763 btrfs_btree_balance_dirty(tree_root, nr);
764 cond_resched();
765 }
766 BUG_ON(ret);
767
768 ret = btrfs_del_root(trans, tree_root, &root->root_key);
769 BUG_ON(ret);
770
771 nr = trans->blocks_used;
772 ret = btrfs_end_transaction(trans, tree_root);
773 BUG_ON(ret);
774
775 free_extent_buffer(root->node);
776 free_extent_buffer(root->commit_root);
777 kfree(root);
778
779 btrfs_btree_balance_dirty(tree_root, nr);
780 return ret;
781}
782#endif
783
784/*
785 * new snapshots need to be created at a very specific time in the
786 * transaction commit. This does the actual creation
787 */
788static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
789 struct btrfs_fs_info *fs_info,
790 struct btrfs_pending_snapshot *pending)
791{
792 struct btrfs_key key;
793 struct btrfs_root_item *new_root_item;
794 struct btrfs_root *tree_root = fs_info->tree_root;
795 struct btrfs_root *root = pending->root;
796 struct btrfs_root *parent_root;
797 struct inode *parent_inode;
798 struct dentry *dentry;
799 struct extent_buffer *tmp;
800 struct extent_buffer *old;
801 int ret;
802 u64 index = 0;
803 u64 objectid;
804
805 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
806 if (!new_root_item) {
807 pending->error = -ENOMEM;
808 goto fail;
809 }
810
811 ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
812 if (ret) {
813 pending->error = ret;
814 goto fail;
815 }
816
817 key.objectid = objectid;
818 key.offset = (u64)-1;
819 key.type = BTRFS_ROOT_ITEM_KEY;
820
821 trans->block_rsv = &pending->block_rsv;
822
823 dentry = pending->dentry;
824 parent_inode = dentry->d_parent->d_inode;
825 parent_root = BTRFS_I(parent_inode)->root;
826 record_root_in_trans(trans, parent_root);
827
828 /*
829 * insert the directory item
830 */
831 ret = btrfs_set_inode_index(parent_inode, &index);
832 BUG_ON(ret);
833 ret = btrfs_insert_dir_item(trans, parent_root,
834 dentry->d_name.name, dentry->d_name.len,
835 parent_inode->i_ino, &key,
836 BTRFS_FT_DIR, index);
837 BUG_ON(ret);
838
839 btrfs_i_size_write(parent_inode, parent_inode->i_size +
840 dentry->d_name.len * 2);
841 ret = btrfs_update_inode(trans, parent_root, parent_inode);
842 BUG_ON(ret);
843
844 record_root_in_trans(trans, root);
845 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
846 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
847
848 old = btrfs_lock_root_node(root);
849 btrfs_cow_block(trans, root, old, NULL, 0, &old);
850 btrfs_set_lock_blocking(old);
851
852 btrfs_copy_root(trans, root, old, &tmp, objectid);
853 btrfs_tree_unlock(old);
854 free_extent_buffer(old);
855
856 btrfs_set_root_node(new_root_item, tmp);
857 /* record when the snapshot was created in key.offset */
858 key.offset = trans->transid;
859 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
860 btrfs_tree_unlock(tmp);
861 free_extent_buffer(tmp);
862 BUG_ON(ret);
863
864 /*
865 * insert root back/forward references
866 */
867 ret = btrfs_add_root_ref(trans, tree_root, objectid,
868 parent_root->root_key.objectid,
869 parent_inode->i_ino, index,
870 dentry->d_name.name, dentry->d_name.len);
871 BUG_ON(ret);
872
873 key.offset = (u64)-1;
874 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
875 BUG_ON(IS_ERR(pending->snap));
876fail:
877 kfree(new_root_item);
878 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
879 return 0;
880}
881
882/*
883 * create all the snapshots we've scheduled for creation
884 */
885static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
886 struct btrfs_fs_info *fs_info)
887{
888 struct btrfs_pending_snapshot *pending;
889 struct list_head *head = &trans->transaction->pending_snapshots;
890 int ret;
891
892 list_for_each_entry(pending, head, list) {
893 ret = create_pending_snapshot(trans, fs_info, pending);
894 BUG_ON(ret);
895 }
896 return 0;
897}
898
899static void update_super_roots(struct btrfs_root *root)
900{
901 struct btrfs_root_item *root_item;
902 struct btrfs_super_block *super;
903
904 super = &root->fs_info->super_copy;
905
906 root_item = &root->fs_info->chunk_root->root_item;
907 super->chunk_root = root_item->bytenr;
908 super->chunk_root_generation = root_item->generation;
909 super->chunk_root_level = root_item->level;
910
911 root_item = &root->fs_info->tree_root->root_item;
912 super->root = root_item->bytenr;
913 super->generation = root_item->generation;
914 super->root_level = root_item->level;
915}
916
917int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
918{
919 int ret = 0;
920 spin_lock(&info->new_trans_lock);
921 if (info->running_transaction)
922 ret = info->running_transaction->in_commit;
923 spin_unlock(&info->new_trans_lock);
924 return ret;
925}
926
927int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
928 struct btrfs_root *root)
929{
930 unsigned long joined = 0;
931 unsigned long timeout = 1;
932 struct btrfs_transaction *cur_trans;
933 struct btrfs_transaction *prev_trans = NULL;
934 DEFINE_WAIT(wait);
935 int ret;
936 int should_grow = 0;
937 unsigned long now = get_seconds();
938 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
939
940 btrfs_run_ordered_operations(root, 0);
941
942 /* make a pass through all the delayed refs we have so far
943 * any runnings procs may add more while we are here
944 */
945 ret = btrfs_run_delayed_refs(trans, root, 0);
946 BUG_ON(ret);
947
948 btrfs_trans_release_metadata(trans, root);
949
950 cur_trans = trans->transaction;
951 /*
952 * set the flushing flag so procs in this transaction have to
953 * start sending their work down.
954 */
955 cur_trans->delayed_refs.flushing = 1;
956
957 ret = btrfs_run_delayed_refs(trans, root, 0);
958 BUG_ON(ret);
959
960 mutex_lock(&root->fs_info->trans_mutex);
961 if (cur_trans->in_commit) {
962 cur_trans->use_count++;
963 mutex_unlock(&root->fs_info->trans_mutex);
964 btrfs_end_transaction(trans, root);
965
966 ret = wait_for_commit(root, cur_trans);
967 BUG_ON(ret);
968
969 mutex_lock(&root->fs_info->trans_mutex);
970 put_transaction(cur_trans);
971 mutex_unlock(&root->fs_info->trans_mutex);
972
973 return 0;
974 }
975
976 trans->transaction->in_commit = 1;
977 trans->transaction->blocked = 1;
978 if (cur_trans->list.prev != &root->fs_info->trans_list) {
979 prev_trans = list_entry(cur_trans->list.prev,
980 struct btrfs_transaction, list);
981 if (!prev_trans->commit_done) {
982 prev_trans->use_count++;
983 mutex_unlock(&root->fs_info->trans_mutex);
984
985 wait_for_commit(root, prev_trans);
986
987 mutex_lock(&root->fs_info->trans_mutex);
988 put_transaction(prev_trans);
989 }
990 }
991
992 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
993 should_grow = 1;
994
995 do {
996 int snap_pending = 0;
997 joined = cur_trans->num_joined;
998 if (!list_empty(&trans->transaction->pending_snapshots))
999 snap_pending = 1;
1000
1001 WARN_ON(cur_trans != trans->transaction);
1002 prepare_to_wait(&cur_trans->writer_wait, &wait,
1003 TASK_UNINTERRUPTIBLE);
1004
1005 if (cur_trans->num_writers > 1)
1006 timeout = MAX_SCHEDULE_TIMEOUT;
1007 else if (should_grow)
1008 timeout = 1;
1009
1010 mutex_unlock(&root->fs_info->trans_mutex);
1011
1012 if (flush_on_commit || snap_pending) {
1013 btrfs_start_delalloc_inodes(root, 1);
1014 ret = btrfs_wait_ordered_extents(root, 0, 1);
1015 BUG_ON(ret);
1016 }
1017
1018 /*
1019 * rename don't use btrfs_join_transaction, so, once we
1020 * set the transaction to blocked above, we aren't going
1021 * to get any new ordered operations. We can safely run
1022 * it here and no for sure that nothing new will be added
1023 * to the list
1024 */
1025 btrfs_run_ordered_operations(root, 1);
1026
1027 smp_mb();
1028 if (cur_trans->num_writers > 1 || should_grow)
1029 schedule_timeout(timeout);
1030
1031 mutex_lock(&root->fs_info->trans_mutex);
1032 finish_wait(&cur_trans->writer_wait, &wait);
1033 } while (cur_trans->num_writers > 1 ||
1034 (should_grow && cur_trans->num_joined != joined));
1035
1036 ret = create_pending_snapshots(trans, root->fs_info);
1037 BUG_ON(ret);
1038
1039 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1040 BUG_ON(ret);
1041
1042 WARN_ON(cur_trans != trans->transaction);
1043
1044 /* btrfs_commit_tree_roots is responsible for getting the
1045 * various roots consistent with each other. Every pointer
1046 * in the tree of tree roots has to point to the most up to date
1047 * root for every subvolume and other tree. So, we have to keep
1048 * the tree logging code from jumping in and changing any
1049 * of the trees.
1050 *
1051 * At this point in the commit, there can't be any tree-log
1052 * writers, but a little lower down we drop the trans mutex
1053 * and let new people in. By holding the tree_log_mutex
1054 * from now until after the super is written, we avoid races
1055 * with the tree-log code.
1056 */
1057 mutex_lock(&root->fs_info->tree_log_mutex);
1058
1059 ret = commit_fs_roots(trans, root);
1060 BUG_ON(ret);
1061
1062 /* commit_fs_roots gets rid of all the tree log roots, it is now
1063 * safe to free the root of tree log roots
1064 */
1065 btrfs_free_log_root_tree(trans, root->fs_info);
1066
1067 ret = commit_cowonly_roots(trans, root);
1068 BUG_ON(ret);
1069
1070 btrfs_prepare_extent_commit(trans, root);
1071
1072 cur_trans = root->fs_info->running_transaction;
1073 spin_lock(&root->fs_info->new_trans_lock);
1074 root->fs_info->running_transaction = NULL;
1075 spin_unlock(&root->fs_info->new_trans_lock);
1076
1077 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1078 root->fs_info->tree_root->node);
1079 switch_commit_root(root->fs_info->tree_root);
1080
1081 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1082 root->fs_info->chunk_root->node);
1083 switch_commit_root(root->fs_info->chunk_root);
1084
1085 update_super_roots(root);
1086
1087 if (!root->fs_info->log_root_recovering) {
1088 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1089 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1090 }
1091
1092 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1093 sizeof(root->fs_info->super_copy));
1094
1095 trans->transaction->blocked = 0;
1096
1097 wake_up(&root->fs_info->transaction_wait);
1098
1099 mutex_unlock(&root->fs_info->trans_mutex);
1100 ret = btrfs_write_and_wait_transaction(trans, root);
1101 BUG_ON(ret);
1102 write_ctree_super(trans, root, 0);
1103
1104 /*
1105 * the super is written, we can safely allow the tree-loggers
1106 * to go about their business
1107 */
1108 mutex_unlock(&root->fs_info->tree_log_mutex);
1109
1110 btrfs_finish_extent_commit(trans, root);
1111
1112 mutex_lock(&root->fs_info->trans_mutex);
1113
1114 cur_trans->commit_done = 1;
1115
1116 root->fs_info->last_trans_committed = cur_trans->transid;
1117
1118 wake_up(&cur_trans->commit_wait);
1119
1120 put_transaction(cur_trans);
1121 put_transaction(cur_trans);
1122
1123 mutex_unlock(&root->fs_info->trans_mutex);
1124
1125 if (current->journal_info == trans)
1126 current->journal_info = NULL;
1127
1128 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1129
1130 if (current != root->fs_info->transaction_kthread)
1131 btrfs_run_delayed_iputs(root);
1132
1133 return ret;
1134}
1135
1136/*
1137 * interface function to delete all the snapshots we have scheduled for deletion
1138 */
1139int btrfs_clean_old_snapshots(struct btrfs_root *root)
1140{
1141 LIST_HEAD(list);
1142 struct btrfs_fs_info *fs_info = root->fs_info;
1143
1144 mutex_lock(&fs_info->trans_mutex);
1145 list_splice_init(&fs_info->dead_roots, &list);
1146 mutex_unlock(&fs_info->trans_mutex);
1147
1148 while (!list_empty(&list)) {
1149 root = list_entry(list.next, struct btrfs_root, root_list);
1150 list_del(&root->root_list);
1151
1152 if (btrfs_header_backref_rev(root->node) <
1153 BTRFS_MIXED_BACKREF_REV)
1154 btrfs_drop_snapshot(root, 0);
1155 else
1156 btrfs_drop_snapshot(root, 1);
1157 }
1158 return 0;
1159}