]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - drivers/net/wireless/zd1211rw/zd_mac.c
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[net-next-2.6.git] / drivers / net / wireless / zd1211rw / zd_mac.c
... / ...
CommitLineData
1/* ZD1211 USB-WLAN driver for Linux
2 *
3 * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
4 * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
5 * Copyright (C) 2006-2007 Michael Wu <flamingice@sourmilk.net>
6 * Copyright (C) 2007-2008 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23#include <linux/netdevice.h>
24#include <linux/etherdevice.h>
25#include <linux/slab.h>
26#include <linux/usb.h>
27#include <linux/jiffies.h>
28#include <net/ieee80211_radiotap.h>
29
30#include "zd_def.h"
31#include "zd_chip.h"
32#include "zd_mac.h"
33#include "zd_rf.h"
34
35struct zd_reg_alpha2_map {
36 u32 reg;
37 char alpha2[2];
38};
39
40static struct zd_reg_alpha2_map reg_alpha2_map[] = {
41 { ZD_REGDOMAIN_FCC, "US" },
42 { ZD_REGDOMAIN_IC, "CA" },
43 { ZD_REGDOMAIN_ETSI, "DE" }, /* Generic ETSI, use most restrictive */
44 { ZD_REGDOMAIN_JAPAN, "JP" },
45 { ZD_REGDOMAIN_JAPAN_ADD, "JP" },
46 { ZD_REGDOMAIN_SPAIN, "ES" },
47 { ZD_REGDOMAIN_FRANCE, "FR" },
48};
49
50/* This table contains the hardware specific values for the modulation rates. */
51static const struct ieee80211_rate zd_rates[] = {
52 { .bitrate = 10,
53 .hw_value = ZD_CCK_RATE_1M, },
54 { .bitrate = 20,
55 .hw_value = ZD_CCK_RATE_2M,
56 .hw_value_short = ZD_CCK_RATE_2M | ZD_CCK_PREA_SHORT,
57 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
58 { .bitrate = 55,
59 .hw_value = ZD_CCK_RATE_5_5M,
60 .hw_value_short = ZD_CCK_RATE_5_5M | ZD_CCK_PREA_SHORT,
61 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
62 { .bitrate = 110,
63 .hw_value = ZD_CCK_RATE_11M,
64 .hw_value_short = ZD_CCK_RATE_11M | ZD_CCK_PREA_SHORT,
65 .flags = IEEE80211_RATE_SHORT_PREAMBLE },
66 { .bitrate = 60,
67 .hw_value = ZD_OFDM_RATE_6M,
68 .flags = 0 },
69 { .bitrate = 90,
70 .hw_value = ZD_OFDM_RATE_9M,
71 .flags = 0 },
72 { .bitrate = 120,
73 .hw_value = ZD_OFDM_RATE_12M,
74 .flags = 0 },
75 { .bitrate = 180,
76 .hw_value = ZD_OFDM_RATE_18M,
77 .flags = 0 },
78 { .bitrate = 240,
79 .hw_value = ZD_OFDM_RATE_24M,
80 .flags = 0 },
81 { .bitrate = 360,
82 .hw_value = ZD_OFDM_RATE_36M,
83 .flags = 0 },
84 { .bitrate = 480,
85 .hw_value = ZD_OFDM_RATE_48M,
86 .flags = 0 },
87 { .bitrate = 540,
88 .hw_value = ZD_OFDM_RATE_54M,
89 .flags = 0 },
90};
91
92/*
93 * Zydas retry rates table. Each line is listed in the same order as
94 * in zd_rates[] and contains all the rate used when a packet is sent
95 * starting with a given rates. Let's consider an example :
96 *
97 * "11 Mbits : 4, 3, 2, 1, 0" means :
98 * - packet is sent using 4 different rates
99 * - 1st rate is index 3 (ie 11 Mbits)
100 * - 2nd rate is index 2 (ie 5.5 Mbits)
101 * - 3rd rate is index 1 (ie 2 Mbits)
102 * - 4th rate is index 0 (ie 1 Mbits)
103 */
104
105static const struct tx_retry_rate zd_retry_rates[] = {
106 { /* 1 Mbits */ 1, { 0 }},
107 { /* 2 Mbits */ 2, { 1, 0 }},
108 { /* 5.5 Mbits */ 3, { 2, 1, 0 }},
109 { /* 11 Mbits */ 4, { 3, 2, 1, 0 }},
110 { /* 6 Mbits */ 5, { 4, 3, 2, 1, 0 }},
111 { /* 9 Mbits */ 6, { 5, 4, 3, 2, 1, 0}},
112 { /* 12 Mbits */ 5, { 6, 3, 2, 1, 0 }},
113 { /* 18 Mbits */ 6, { 7, 6, 3, 2, 1, 0 }},
114 { /* 24 Mbits */ 6, { 8, 6, 3, 2, 1, 0 }},
115 { /* 36 Mbits */ 7, { 9, 8, 6, 3, 2, 1, 0 }},
116 { /* 48 Mbits */ 8, {10, 9, 8, 6, 3, 2, 1, 0 }},
117 { /* 54 Mbits */ 9, {11, 10, 9, 8, 6, 3, 2, 1, 0 }}
118};
119
120static const struct ieee80211_channel zd_channels[] = {
121 { .center_freq = 2412, .hw_value = 1 },
122 { .center_freq = 2417, .hw_value = 2 },
123 { .center_freq = 2422, .hw_value = 3 },
124 { .center_freq = 2427, .hw_value = 4 },
125 { .center_freq = 2432, .hw_value = 5 },
126 { .center_freq = 2437, .hw_value = 6 },
127 { .center_freq = 2442, .hw_value = 7 },
128 { .center_freq = 2447, .hw_value = 8 },
129 { .center_freq = 2452, .hw_value = 9 },
130 { .center_freq = 2457, .hw_value = 10 },
131 { .center_freq = 2462, .hw_value = 11 },
132 { .center_freq = 2467, .hw_value = 12 },
133 { .center_freq = 2472, .hw_value = 13 },
134 { .center_freq = 2484, .hw_value = 14 },
135};
136
137static void housekeeping_init(struct zd_mac *mac);
138static void housekeeping_enable(struct zd_mac *mac);
139static void housekeeping_disable(struct zd_mac *mac);
140
141static int zd_reg2alpha2(u8 regdomain, char *alpha2)
142{
143 unsigned int i;
144 struct zd_reg_alpha2_map *reg_map;
145 for (i = 0; i < ARRAY_SIZE(reg_alpha2_map); i++) {
146 reg_map = &reg_alpha2_map[i];
147 if (regdomain == reg_map->reg) {
148 alpha2[0] = reg_map->alpha2[0];
149 alpha2[1] = reg_map->alpha2[1];
150 return 0;
151 }
152 }
153 return 1;
154}
155
156int zd_mac_preinit_hw(struct ieee80211_hw *hw)
157{
158 int r;
159 u8 addr[ETH_ALEN];
160 struct zd_mac *mac = zd_hw_mac(hw);
161
162 r = zd_chip_read_mac_addr_fw(&mac->chip, addr);
163 if (r)
164 return r;
165
166 SET_IEEE80211_PERM_ADDR(hw, addr);
167
168 return 0;
169}
170
171int zd_mac_init_hw(struct ieee80211_hw *hw)
172{
173 int r;
174 struct zd_mac *mac = zd_hw_mac(hw);
175 struct zd_chip *chip = &mac->chip;
176 char alpha2[2];
177 u8 default_regdomain;
178
179 r = zd_chip_enable_int(chip);
180 if (r)
181 goto out;
182 r = zd_chip_init_hw(chip);
183 if (r)
184 goto disable_int;
185
186 ZD_ASSERT(!irqs_disabled());
187
188 r = zd_read_regdomain(chip, &default_regdomain);
189 if (r)
190 goto disable_int;
191 spin_lock_irq(&mac->lock);
192 mac->regdomain = mac->default_regdomain = default_regdomain;
193 spin_unlock_irq(&mac->lock);
194
195 /* We must inform the device that we are doing encryption/decryption in
196 * software at the moment. */
197 r = zd_set_encryption_type(chip, ENC_SNIFFER);
198 if (r)
199 goto disable_int;
200
201 r = zd_reg2alpha2(mac->regdomain, alpha2);
202 if (r)
203 goto disable_int;
204
205 r = regulatory_hint(hw->wiphy, alpha2);
206disable_int:
207 zd_chip_disable_int(chip);
208out:
209 return r;
210}
211
212void zd_mac_clear(struct zd_mac *mac)
213{
214 flush_workqueue(zd_workqueue);
215 zd_chip_clear(&mac->chip);
216 ZD_ASSERT(!spin_is_locked(&mac->lock));
217 ZD_MEMCLEAR(mac, sizeof(struct zd_mac));
218}
219
220static int set_rx_filter(struct zd_mac *mac)
221{
222 unsigned long flags;
223 u32 filter = STA_RX_FILTER;
224
225 spin_lock_irqsave(&mac->lock, flags);
226 if (mac->pass_ctrl)
227 filter |= RX_FILTER_CTRL;
228 spin_unlock_irqrestore(&mac->lock, flags);
229
230 return zd_iowrite32(&mac->chip, CR_RX_FILTER, filter);
231}
232
233static int set_mc_hash(struct zd_mac *mac)
234{
235 struct zd_mc_hash hash;
236 zd_mc_clear(&hash);
237 return zd_chip_set_multicast_hash(&mac->chip, &hash);
238}
239
240static int zd_op_start(struct ieee80211_hw *hw)
241{
242 struct zd_mac *mac = zd_hw_mac(hw);
243 struct zd_chip *chip = &mac->chip;
244 struct zd_usb *usb = &chip->usb;
245 int r;
246
247 if (!usb->initialized) {
248 r = zd_usb_init_hw(usb);
249 if (r)
250 goto out;
251 }
252
253 r = zd_chip_enable_int(chip);
254 if (r < 0)
255 goto out;
256
257 r = zd_chip_set_basic_rates(chip, CR_RATES_80211B | CR_RATES_80211G);
258 if (r < 0)
259 goto disable_int;
260 r = set_rx_filter(mac);
261 if (r)
262 goto disable_int;
263 r = set_mc_hash(mac);
264 if (r)
265 goto disable_int;
266 r = zd_chip_switch_radio_on(chip);
267 if (r < 0)
268 goto disable_int;
269 r = zd_chip_enable_rxtx(chip);
270 if (r < 0)
271 goto disable_radio;
272 r = zd_chip_enable_hwint(chip);
273 if (r < 0)
274 goto disable_rxtx;
275
276 housekeeping_enable(mac);
277 return 0;
278disable_rxtx:
279 zd_chip_disable_rxtx(chip);
280disable_radio:
281 zd_chip_switch_radio_off(chip);
282disable_int:
283 zd_chip_disable_int(chip);
284out:
285 return r;
286}
287
288static void zd_op_stop(struct ieee80211_hw *hw)
289{
290 struct zd_mac *mac = zd_hw_mac(hw);
291 struct zd_chip *chip = &mac->chip;
292 struct sk_buff *skb;
293 struct sk_buff_head *ack_wait_queue = &mac->ack_wait_queue;
294
295 /* The order here deliberately is a little different from the open()
296 * method, since we need to make sure there is no opportunity for RX
297 * frames to be processed by mac80211 after we have stopped it.
298 */
299
300 zd_chip_disable_rxtx(chip);
301 housekeeping_disable(mac);
302 flush_workqueue(zd_workqueue);
303
304 zd_chip_disable_hwint(chip);
305 zd_chip_switch_radio_off(chip);
306 zd_chip_disable_int(chip);
307
308
309 while ((skb = skb_dequeue(ack_wait_queue)))
310 dev_kfree_skb_any(skb);
311}
312
313/**
314 * zd_mac_tx_status - reports tx status of a packet if required
315 * @hw - a &struct ieee80211_hw pointer
316 * @skb - a sk-buffer
317 * @flags: extra flags to set in the TX status info
318 * @ackssi: ACK signal strength
319 * @success - True for successful transmission of the frame
320 *
321 * This information calls ieee80211_tx_status_irqsafe() if required by the
322 * control information. It copies the control information into the status
323 * information.
324 *
325 * If no status information has been requested, the skb is freed.
326 */
327static void zd_mac_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb,
328 int ackssi, struct tx_status *tx_status)
329{
330 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
331 int i;
332 int success = 1, retry = 1;
333 int first_idx;
334 const struct tx_retry_rate *retries;
335
336 ieee80211_tx_info_clear_status(info);
337
338 if (tx_status) {
339 success = !tx_status->failure;
340 retry = tx_status->retry + success;
341 }
342
343 if (success) {
344 /* success */
345 info->flags |= IEEE80211_TX_STAT_ACK;
346 } else {
347 /* failure */
348 info->flags &= ~IEEE80211_TX_STAT_ACK;
349 }
350
351 first_idx = info->status.rates[0].idx;
352 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
353 retries = &zd_retry_rates[first_idx];
354 ZD_ASSERT(1 <= retry && retry <= retries->count);
355
356 info->status.rates[0].idx = retries->rate[0];
357 info->status.rates[0].count = 1; // (retry > 1 ? 2 : 1);
358
359 for (i=1; i<IEEE80211_TX_MAX_RATES-1 && i<retry; i++) {
360 info->status.rates[i].idx = retries->rate[i];
361 info->status.rates[i].count = 1; // ((i==retry-1) && success ? 1:2);
362 }
363 for (; i<IEEE80211_TX_MAX_RATES && i<retry; i++) {
364 info->status.rates[i].idx = retries->rate[retry - 1];
365 info->status.rates[i].count = 1; // (success ? 1:2);
366 }
367 if (i<IEEE80211_TX_MAX_RATES)
368 info->status.rates[i].idx = -1; /* terminate */
369
370 info->status.ack_signal = ackssi;
371 ieee80211_tx_status_irqsafe(hw, skb);
372}
373
374/**
375 * zd_mac_tx_failed - callback for failed frames
376 * @dev: the mac80211 wireless device
377 *
378 * This function is called if a frame couldn't be successfully
379 * transferred. The first frame from the tx queue, will be selected and
380 * reported as error to the upper layers.
381 */
382void zd_mac_tx_failed(struct urb *urb)
383{
384 struct ieee80211_hw * hw = zd_usb_to_hw(urb->context);
385 struct zd_mac *mac = zd_hw_mac(hw);
386 struct sk_buff_head *q = &mac->ack_wait_queue;
387 struct sk_buff *skb;
388 struct tx_status *tx_status = (struct tx_status *)urb->transfer_buffer;
389 unsigned long flags;
390 int success = !tx_status->failure;
391 int retry = tx_status->retry + success;
392 int found = 0;
393 int i, position = 0;
394
395 q = &mac->ack_wait_queue;
396 spin_lock_irqsave(&q->lock, flags);
397
398 skb_queue_walk(q, skb) {
399 struct ieee80211_hdr *tx_hdr;
400 struct ieee80211_tx_info *info;
401 int first_idx, final_idx;
402 const struct tx_retry_rate *retries;
403 u8 final_rate;
404
405 position ++;
406
407 /* if the hardware reports a failure and we had a 802.11 ACK
408 * pending, then we skip the first skb when searching for a
409 * matching frame */
410 if (tx_status->failure && mac->ack_pending &&
411 skb_queue_is_first(q, skb)) {
412 continue;
413 }
414
415 tx_hdr = (struct ieee80211_hdr *)skb->data;
416
417 /* we skip all frames not matching the reported destination */
418 if (unlikely(memcmp(tx_hdr->addr1, tx_status->mac, ETH_ALEN))) {
419 continue;
420 }
421
422 /* we skip all frames not matching the reported final rate */
423
424 info = IEEE80211_SKB_CB(skb);
425 first_idx = info->status.rates[0].idx;
426 ZD_ASSERT(0<=first_idx && first_idx<ARRAY_SIZE(zd_retry_rates));
427 retries = &zd_retry_rates[first_idx];
428 if (retry <= 0 || retry > retries->count)
429 continue;
430
431 final_idx = retries->rate[retry - 1];
432 final_rate = zd_rates[final_idx].hw_value;
433
434 if (final_rate != tx_status->rate) {
435 continue;
436 }
437
438 found = 1;
439 break;
440 }
441
442 if (found) {
443 for (i=1; i<=position; i++) {
444 skb = __skb_dequeue(q);
445 zd_mac_tx_status(hw, skb,
446 mac->ack_pending ? mac->ack_signal : 0,
447 i == position ? tx_status : NULL);
448 mac->ack_pending = 0;
449 }
450 }
451
452 spin_unlock_irqrestore(&q->lock, flags);
453}
454
455/**
456 * zd_mac_tx_to_dev - callback for USB layer
457 * @skb: a &sk_buff pointer
458 * @error: error value, 0 if transmission successful
459 *
460 * Informs the MAC layer that the frame has successfully transferred to the
461 * device. If an ACK is required and the transfer to the device has been
462 * successful, the packets are put on the @ack_wait_queue with
463 * the control set removed.
464 */
465void zd_mac_tx_to_dev(struct sk_buff *skb, int error)
466{
467 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
468 struct ieee80211_hw *hw = info->rate_driver_data[0];
469 struct zd_mac *mac = zd_hw_mac(hw);
470
471 ieee80211_tx_info_clear_status(info);
472
473 skb_pull(skb, sizeof(struct zd_ctrlset));
474 if (unlikely(error ||
475 (info->flags & IEEE80211_TX_CTL_NO_ACK))) {
476 /*
477 * FIXME : do we need to fill in anything ?
478 */
479 ieee80211_tx_status_irqsafe(hw, skb);
480 } else {
481 struct sk_buff_head *q = &mac->ack_wait_queue;
482
483 skb_queue_tail(q, skb);
484 while (skb_queue_len(q) > ZD_MAC_MAX_ACK_WAITERS) {
485 zd_mac_tx_status(hw, skb_dequeue(q),
486 mac->ack_pending ? mac->ack_signal : 0,
487 NULL);
488 mac->ack_pending = 0;
489 }
490 }
491}
492
493static int zd_calc_tx_length_us(u8 *service, u8 zd_rate, u16 tx_length)
494{
495 /* ZD_PURE_RATE() must be used to remove the modulation type flag of
496 * the zd-rate values.
497 */
498 static const u8 rate_divisor[] = {
499 [ZD_PURE_RATE(ZD_CCK_RATE_1M)] = 1,
500 [ZD_PURE_RATE(ZD_CCK_RATE_2M)] = 2,
501 /* Bits must be doubled. */
502 [ZD_PURE_RATE(ZD_CCK_RATE_5_5M)] = 11,
503 [ZD_PURE_RATE(ZD_CCK_RATE_11M)] = 11,
504 [ZD_PURE_RATE(ZD_OFDM_RATE_6M)] = 6,
505 [ZD_PURE_RATE(ZD_OFDM_RATE_9M)] = 9,
506 [ZD_PURE_RATE(ZD_OFDM_RATE_12M)] = 12,
507 [ZD_PURE_RATE(ZD_OFDM_RATE_18M)] = 18,
508 [ZD_PURE_RATE(ZD_OFDM_RATE_24M)] = 24,
509 [ZD_PURE_RATE(ZD_OFDM_RATE_36M)] = 36,
510 [ZD_PURE_RATE(ZD_OFDM_RATE_48M)] = 48,
511 [ZD_PURE_RATE(ZD_OFDM_RATE_54M)] = 54,
512 };
513
514 u32 bits = (u32)tx_length * 8;
515 u32 divisor;
516
517 divisor = rate_divisor[ZD_PURE_RATE(zd_rate)];
518 if (divisor == 0)
519 return -EINVAL;
520
521 switch (zd_rate) {
522 case ZD_CCK_RATE_5_5M:
523 bits = (2*bits) + 10; /* round up to the next integer */
524 break;
525 case ZD_CCK_RATE_11M:
526 if (service) {
527 u32 t = bits % 11;
528 *service &= ~ZD_PLCP_SERVICE_LENGTH_EXTENSION;
529 if (0 < t && t <= 3) {
530 *service |= ZD_PLCP_SERVICE_LENGTH_EXTENSION;
531 }
532 }
533 bits += 10; /* round up to the next integer */
534 break;
535 }
536
537 return bits/divisor;
538}
539
540static void cs_set_control(struct zd_mac *mac, struct zd_ctrlset *cs,
541 struct ieee80211_hdr *header,
542 struct ieee80211_tx_info *info)
543{
544 /*
545 * CONTROL TODO:
546 * - if backoff needed, enable bit 0
547 * - if burst (backoff not needed) disable bit 0
548 */
549
550 cs->control = 0;
551
552 /* First fragment */
553 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
554 cs->control |= ZD_CS_NEED_RANDOM_BACKOFF;
555
556 /* No ACK expected (multicast, etc.) */
557 if (info->flags & IEEE80211_TX_CTL_NO_ACK)
558 cs->control |= ZD_CS_NO_ACK;
559
560 /* PS-POLL */
561 if (ieee80211_is_pspoll(header->frame_control))
562 cs->control |= ZD_CS_PS_POLL_FRAME;
563
564 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS)
565 cs->control |= ZD_CS_RTS;
566
567 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_CTS_PROTECT)
568 cs->control |= ZD_CS_SELF_CTS;
569
570 /* FIXME: Management frame? */
571}
572
573static int zd_mac_config_beacon(struct ieee80211_hw *hw, struct sk_buff *beacon)
574{
575 struct zd_mac *mac = zd_hw_mac(hw);
576 int r;
577 u32 tmp, j = 0;
578 /* 4 more bytes for tail CRC */
579 u32 full_len = beacon->len + 4;
580
581 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 0);
582 if (r < 0)
583 return r;
584 r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
585 if (r < 0)
586 return r;
587
588 while (tmp & 0x2) {
589 r = zd_ioread32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, &tmp);
590 if (r < 0)
591 return r;
592 if ((++j % 100) == 0) {
593 printk(KERN_ERR "CR_BCN_FIFO_SEMAPHORE not ready\n");
594 if (j >= 500) {
595 printk(KERN_ERR "Giving up beacon config.\n");
596 return -ETIMEDOUT;
597 }
598 }
599 msleep(1);
600 }
601
602 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, full_len - 1);
603 if (r < 0)
604 return r;
605 if (zd_chip_is_zd1211b(&mac->chip)) {
606 r = zd_iowrite32(&mac->chip, CR_BCN_LENGTH, full_len - 1);
607 if (r < 0)
608 return r;
609 }
610
611 for (j = 0 ; j < beacon->len; j++) {
612 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO,
613 *((u8 *)(beacon->data + j)));
614 if (r < 0)
615 return r;
616 }
617
618 for (j = 0; j < 4; j++) {
619 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO, 0x0);
620 if (r < 0)
621 return r;
622 }
623
624 r = zd_iowrite32(&mac->chip, CR_BCN_FIFO_SEMAPHORE, 1);
625 if (r < 0)
626 return r;
627
628 /* 802.11b/g 2.4G CCK 1Mb
629 * 802.11a, not yet implemented, uses different values (see GPL vendor
630 * driver)
631 */
632 return zd_iowrite32(&mac->chip, CR_BCN_PLCP_CFG, 0x00000400 |
633 (full_len << 19));
634}
635
636static int fill_ctrlset(struct zd_mac *mac,
637 struct sk_buff *skb)
638{
639 int r;
640 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
641 unsigned int frag_len = skb->len + FCS_LEN;
642 unsigned int packet_length;
643 struct ieee80211_rate *txrate;
644 struct zd_ctrlset *cs = (struct zd_ctrlset *)
645 skb_push(skb, sizeof(struct zd_ctrlset));
646 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
647
648 ZD_ASSERT(frag_len <= 0xffff);
649
650 txrate = ieee80211_get_tx_rate(mac->hw, info);
651
652 cs->modulation = txrate->hw_value;
653 if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
654 cs->modulation = txrate->hw_value_short;
655
656 cs->tx_length = cpu_to_le16(frag_len);
657
658 cs_set_control(mac, cs, hdr, info);
659
660 packet_length = frag_len + sizeof(struct zd_ctrlset) + 10;
661 ZD_ASSERT(packet_length <= 0xffff);
662 /* ZD1211B: Computing the length difference this way, gives us
663 * flexibility to compute the packet length.
664 */
665 cs->packet_length = cpu_to_le16(zd_chip_is_zd1211b(&mac->chip) ?
666 packet_length - frag_len : packet_length);
667
668 /*
669 * CURRENT LENGTH:
670 * - transmit frame length in microseconds
671 * - seems to be derived from frame length
672 * - see Cal_Us_Service() in zdinlinef.h
673 * - if macp->bTxBurstEnable is enabled, then multiply by 4
674 * - bTxBurstEnable is never set in the vendor driver
675 *
676 * SERVICE:
677 * - "for PLCP configuration"
678 * - always 0 except in some situations at 802.11b 11M
679 * - see line 53 of zdinlinef.h
680 */
681 cs->service = 0;
682 r = zd_calc_tx_length_us(&cs->service, ZD_RATE(cs->modulation),
683 le16_to_cpu(cs->tx_length));
684 if (r < 0)
685 return r;
686 cs->current_length = cpu_to_le16(r);
687 cs->next_frame_length = 0;
688
689 return 0;
690}
691
692/**
693 * zd_op_tx - transmits a network frame to the device
694 *
695 * @dev: mac80211 hardware device
696 * @skb: socket buffer
697 * @control: the control structure
698 *
699 * This function transmit an IEEE 802.11 network frame to the device. The
700 * control block of the skbuff will be initialized. If necessary the incoming
701 * mac80211 queues will be stopped.
702 */
703static int zd_op_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
704{
705 struct zd_mac *mac = zd_hw_mac(hw);
706 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
707 int r;
708
709 r = fill_ctrlset(mac, skb);
710 if (r)
711 goto fail;
712
713 info->rate_driver_data[0] = hw;
714
715 r = zd_usb_tx(&mac->chip.usb, skb);
716 if (r)
717 goto fail;
718 return 0;
719
720fail:
721 dev_kfree_skb(skb);
722 return 0;
723}
724
725/**
726 * filter_ack - filters incoming packets for acknowledgements
727 * @dev: the mac80211 device
728 * @rx_hdr: received header
729 * @stats: the status for the received packet
730 *
731 * This functions looks for ACK packets and tries to match them with the
732 * frames in the tx queue. If a match is found the frame will be dequeued and
733 * the upper layers is informed about the successful transmission. If
734 * mac80211 queues have been stopped and the number of frames still to be
735 * transmitted is low the queues will be opened again.
736 *
737 * Returns 1 if the frame was an ACK, 0 if it was ignored.
738 */
739static int filter_ack(struct ieee80211_hw *hw, struct ieee80211_hdr *rx_hdr,
740 struct ieee80211_rx_status *stats)
741{
742 struct zd_mac *mac = zd_hw_mac(hw);
743 struct sk_buff *skb;
744 struct sk_buff_head *q;
745 unsigned long flags;
746 int found = 0;
747 int i, position = 0;
748
749 if (!ieee80211_is_ack(rx_hdr->frame_control))
750 return 0;
751
752 q = &mac->ack_wait_queue;
753 spin_lock_irqsave(&q->lock, flags);
754 skb_queue_walk(q, skb) {
755 struct ieee80211_hdr *tx_hdr;
756
757 position ++;
758
759 if (mac->ack_pending && skb_queue_is_first(q, skb))
760 continue;
761
762 tx_hdr = (struct ieee80211_hdr *)skb->data;
763 if (likely(!memcmp(tx_hdr->addr2, rx_hdr->addr1, ETH_ALEN)))
764 {
765 found = 1;
766 break;
767 }
768 }
769
770 if (found) {
771 for (i=1; i<position; i++) {
772 skb = __skb_dequeue(q);
773 zd_mac_tx_status(hw, skb,
774 mac->ack_pending ? mac->ack_signal : 0,
775 NULL);
776 mac->ack_pending = 0;
777 }
778
779 mac->ack_pending = 1;
780 mac->ack_signal = stats->signal;
781 }
782
783 spin_unlock_irqrestore(&q->lock, flags);
784 return 1;
785}
786
787int zd_mac_rx(struct ieee80211_hw *hw, const u8 *buffer, unsigned int length)
788{
789 struct zd_mac *mac = zd_hw_mac(hw);
790 struct ieee80211_rx_status stats;
791 const struct rx_status *status;
792 struct sk_buff *skb;
793 int bad_frame = 0;
794 __le16 fc;
795 int need_padding;
796 int i;
797 u8 rate;
798
799 if (length < ZD_PLCP_HEADER_SIZE + 10 /* IEEE80211_1ADDR_LEN */ +
800 FCS_LEN + sizeof(struct rx_status))
801 return -EINVAL;
802
803 memset(&stats, 0, sizeof(stats));
804
805 /* Note about pass_failed_fcs and pass_ctrl access below:
806 * mac locking intentionally omitted here, as this is the only unlocked
807 * reader and the only writer is configure_filter. Plus, if there were
808 * any races accessing these variables, it wouldn't really matter.
809 * If mac80211 ever provides a way for us to access filter flags
810 * from outside configure_filter, we could improve on this. Also, this
811 * situation may change once we implement some kind of DMA-into-skb
812 * RX path. */
813
814 /* Caller has to ensure that length >= sizeof(struct rx_status). */
815 status = (struct rx_status *)
816 (buffer + (length - sizeof(struct rx_status)));
817 if (status->frame_status & ZD_RX_ERROR) {
818 if (mac->pass_failed_fcs &&
819 (status->frame_status & ZD_RX_CRC32_ERROR)) {
820 stats.flag |= RX_FLAG_FAILED_FCS_CRC;
821 bad_frame = 1;
822 } else {
823 return -EINVAL;
824 }
825 }
826
827 stats.freq = zd_channels[_zd_chip_get_channel(&mac->chip) - 1].center_freq;
828 stats.band = IEEE80211_BAND_2GHZ;
829 stats.signal = status->signal_strength;
830
831 rate = zd_rx_rate(buffer, status);
832
833 /* todo: return index in the big switches in zd_rx_rate instead */
834 for (i = 0; i < mac->band.n_bitrates; i++)
835 if (rate == mac->band.bitrates[i].hw_value)
836 stats.rate_idx = i;
837
838 length -= ZD_PLCP_HEADER_SIZE + sizeof(struct rx_status);
839 buffer += ZD_PLCP_HEADER_SIZE;
840
841 /* Except for bad frames, filter each frame to see if it is an ACK, in
842 * which case our internal TX tracking is updated. Normally we then
843 * bail here as there's no need to pass ACKs on up to the stack, but
844 * there is also the case where the stack has requested us to pass
845 * control frames on up (pass_ctrl) which we must consider. */
846 if (!bad_frame &&
847 filter_ack(hw, (struct ieee80211_hdr *)buffer, &stats)
848 && !mac->pass_ctrl)
849 return 0;
850
851 fc = get_unaligned((__le16*)buffer);
852 need_padding = ieee80211_is_data_qos(fc) ^ ieee80211_has_a4(fc);
853
854 skb = dev_alloc_skb(length + (need_padding ? 2 : 0));
855 if (skb == NULL)
856 return -ENOMEM;
857 if (need_padding) {
858 /* Make sure the the payload data is 4 byte aligned. */
859 skb_reserve(skb, 2);
860 }
861
862 /* FIXME : could we avoid this big memcpy ? */
863 memcpy(skb_put(skb, length), buffer, length);
864
865 memcpy(IEEE80211_SKB_RXCB(skb), &stats, sizeof(stats));
866 ieee80211_rx_irqsafe(hw, skb);
867 return 0;
868}
869
870static int zd_op_add_interface(struct ieee80211_hw *hw,
871 struct ieee80211_vif *vif)
872{
873 struct zd_mac *mac = zd_hw_mac(hw);
874
875 /* using NL80211_IFTYPE_UNSPECIFIED to indicate no mode selected */
876 if (mac->type != NL80211_IFTYPE_UNSPECIFIED)
877 return -EOPNOTSUPP;
878
879 switch (vif->type) {
880 case NL80211_IFTYPE_MONITOR:
881 case NL80211_IFTYPE_MESH_POINT:
882 case NL80211_IFTYPE_STATION:
883 case NL80211_IFTYPE_ADHOC:
884 mac->type = vif->type;
885 break;
886 default:
887 return -EOPNOTSUPP;
888 }
889
890 return zd_write_mac_addr(&mac->chip, vif->addr);
891}
892
893static void zd_op_remove_interface(struct ieee80211_hw *hw,
894 struct ieee80211_vif *vif)
895{
896 struct zd_mac *mac = zd_hw_mac(hw);
897 mac->type = NL80211_IFTYPE_UNSPECIFIED;
898 zd_set_beacon_interval(&mac->chip, 0);
899 zd_write_mac_addr(&mac->chip, NULL);
900}
901
902static int zd_op_config(struct ieee80211_hw *hw, u32 changed)
903{
904 struct zd_mac *mac = zd_hw_mac(hw);
905 struct ieee80211_conf *conf = &hw->conf;
906
907 return zd_chip_set_channel(&mac->chip, conf->channel->hw_value);
908}
909
910static void zd_process_intr(struct work_struct *work)
911{
912 u16 int_status;
913 struct zd_mac *mac = container_of(work, struct zd_mac, process_intr);
914
915 int_status = le16_to_cpu(*(__le16 *)(mac->intr_buffer+4));
916 if (int_status & INT_CFG_NEXT_BCN)
917 dev_dbg_f_limit(zd_mac_dev(mac), "INT_CFG_NEXT_BCN\n");
918 else
919 dev_dbg_f(zd_mac_dev(mac), "Unsupported interrupt\n");
920
921 zd_chip_enable_hwint(&mac->chip);
922}
923
924
925static void set_multicast_hash_handler(struct work_struct *work)
926{
927 struct zd_mac *mac =
928 container_of(work, struct zd_mac, set_multicast_hash_work);
929 struct zd_mc_hash hash;
930
931 spin_lock_irq(&mac->lock);
932 hash = mac->multicast_hash;
933 spin_unlock_irq(&mac->lock);
934
935 zd_chip_set_multicast_hash(&mac->chip, &hash);
936}
937
938static void set_rx_filter_handler(struct work_struct *work)
939{
940 struct zd_mac *mac =
941 container_of(work, struct zd_mac, set_rx_filter_work);
942 int r;
943
944 dev_dbg_f(zd_mac_dev(mac), "\n");
945 r = set_rx_filter(mac);
946 if (r)
947 dev_err(zd_mac_dev(mac), "set_rx_filter_handler error %d\n", r);
948}
949
950static u64 zd_op_prepare_multicast(struct ieee80211_hw *hw,
951 int mc_count, struct dev_addr_list *mclist)
952{
953 struct zd_mac *mac = zd_hw_mac(hw);
954 struct zd_mc_hash hash;
955 int i;
956
957 zd_mc_clear(&hash);
958
959 for (i = 0; i < mc_count; i++) {
960 if (!mclist)
961 break;
962 dev_dbg_f(zd_mac_dev(mac), "mc addr %pM\n", mclist->dmi_addr);
963 zd_mc_add_addr(&hash, mclist->dmi_addr);
964 mclist = mclist->next;
965 }
966
967 return hash.low | ((u64)hash.high << 32);
968}
969
970#define SUPPORTED_FIF_FLAGS \
971 (FIF_PROMISC_IN_BSS | FIF_ALLMULTI | FIF_FCSFAIL | FIF_CONTROL | \
972 FIF_OTHER_BSS | FIF_BCN_PRBRESP_PROMISC)
973static void zd_op_configure_filter(struct ieee80211_hw *hw,
974 unsigned int changed_flags,
975 unsigned int *new_flags,
976 u64 multicast)
977{
978 struct zd_mc_hash hash = {
979 .low = multicast,
980 .high = multicast >> 32,
981 };
982 struct zd_mac *mac = zd_hw_mac(hw);
983 unsigned long flags;
984
985 /* Only deal with supported flags */
986 changed_flags &= SUPPORTED_FIF_FLAGS;
987 *new_flags &= SUPPORTED_FIF_FLAGS;
988
989 /*
990 * If multicast parameter (as returned by zd_op_prepare_multicast)
991 * has changed, no bit in changed_flags is set. To handle this
992 * situation, we do not return if changed_flags is 0. If we do so,
993 * we will have some issue with IPv6 which uses multicast for link
994 * layer address resolution.
995 */
996 if (*new_flags & (FIF_PROMISC_IN_BSS | FIF_ALLMULTI))
997 zd_mc_add_all(&hash);
998
999 spin_lock_irqsave(&mac->lock, flags);
1000 mac->pass_failed_fcs = !!(*new_flags & FIF_FCSFAIL);
1001 mac->pass_ctrl = !!(*new_flags & FIF_CONTROL);
1002 mac->multicast_hash = hash;
1003 spin_unlock_irqrestore(&mac->lock, flags);
1004
1005 /* XXX: these can be called here now, can sleep now! */
1006 queue_work(zd_workqueue, &mac->set_multicast_hash_work);
1007
1008 if (changed_flags & FIF_CONTROL)
1009 queue_work(zd_workqueue, &mac->set_rx_filter_work);
1010
1011 /* no handling required for FIF_OTHER_BSS as we don't currently
1012 * do BSSID filtering */
1013 /* FIXME: in future it would be nice to enable the probe response
1014 * filter (so that the driver doesn't see them) until
1015 * FIF_BCN_PRBRESP_PROMISC is set. however due to atomicity here, we'd
1016 * have to schedule work to enable prbresp reception, which might
1017 * happen too late. For now we'll just listen and forward them all the
1018 * time. */
1019}
1020
1021static void set_rts_cts_work(struct work_struct *work)
1022{
1023 struct zd_mac *mac =
1024 container_of(work, struct zd_mac, set_rts_cts_work);
1025 unsigned long flags;
1026 unsigned int short_preamble;
1027
1028 mutex_lock(&mac->chip.mutex);
1029
1030 spin_lock_irqsave(&mac->lock, flags);
1031 mac->updating_rts_rate = 0;
1032 short_preamble = mac->short_preamble;
1033 spin_unlock_irqrestore(&mac->lock, flags);
1034
1035 zd_chip_set_rts_cts_rate_locked(&mac->chip, short_preamble);
1036 mutex_unlock(&mac->chip.mutex);
1037}
1038
1039static void zd_op_bss_info_changed(struct ieee80211_hw *hw,
1040 struct ieee80211_vif *vif,
1041 struct ieee80211_bss_conf *bss_conf,
1042 u32 changes)
1043{
1044 struct zd_mac *mac = zd_hw_mac(hw);
1045 unsigned long flags;
1046 int associated;
1047
1048 dev_dbg_f(zd_mac_dev(mac), "changes: %x\n", changes);
1049
1050 if (mac->type == NL80211_IFTYPE_MESH_POINT ||
1051 mac->type == NL80211_IFTYPE_ADHOC) {
1052 associated = true;
1053 if (changes & BSS_CHANGED_BEACON) {
1054 struct sk_buff *beacon = ieee80211_beacon_get(hw, vif);
1055
1056 if (beacon) {
1057 zd_mac_config_beacon(hw, beacon);
1058 kfree_skb(beacon);
1059 }
1060 }
1061
1062 if (changes & BSS_CHANGED_BEACON_ENABLED) {
1063 u32 interval;
1064
1065 if (bss_conf->enable_beacon)
1066 interval = BCN_MODE_IBSS |
1067 bss_conf->beacon_int;
1068 else
1069 interval = 0;
1070
1071 zd_set_beacon_interval(&mac->chip, interval);
1072 }
1073 } else
1074 associated = is_valid_ether_addr(bss_conf->bssid);
1075
1076 spin_lock_irq(&mac->lock);
1077 mac->associated = associated;
1078 spin_unlock_irq(&mac->lock);
1079
1080 /* TODO: do hardware bssid filtering */
1081
1082 if (changes & BSS_CHANGED_ERP_PREAMBLE) {
1083 spin_lock_irqsave(&mac->lock, flags);
1084 mac->short_preamble = bss_conf->use_short_preamble;
1085 if (!mac->updating_rts_rate) {
1086 mac->updating_rts_rate = 1;
1087 /* FIXME: should disable TX here, until work has
1088 * completed and RTS_CTS reg is updated */
1089 queue_work(zd_workqueue, &mac->set_rts_cts_work);
1090 }
1091 spin_unlock_irqrestore(&mac->lock, flags);
1092 }
1093}
1094
1095static u64 zd_op_get_tsf(struct ieee80211_hw *hw)
1096{
1097 struct zd_mac *mac = zd_hw_mac(hw);
1098 return zd_chip_get_tsf(&mac->chip);
1099}
1100
1101static const struct ieee80211_ops zd_ops = {
1102 .tx = zd_op_tx,
1103 .start = zd_op_start,
1104 .stop = zd_op_stop,
1105 .add_interface = zd_op_add_interface,
1106 .remove_interface = zd_op_remove_interface,
1107 .config = zd_op_config,
1108 .prepare_multicast = zd_op_prepare_multicast,
1109 .configure_filter = zd_op_configure_filter,
1110 .bss_info_changed = zd_op_bss_info_changed,
1111 .get_tsf = zd_op_get_tsf,
1112};
1113
1114struct ieee80211_hw *zd_mac_alloc_hw(struct usb_interface *intf)
1115{
1116 struct zd_mac *mac;
1117 struct ieee80211_hw *hw;
1118
1119 hw = ieee80211_alloc_hw(sizeof(struct zd_mac), &zd_ops);
1120 if (!hw) {
1121 dev_dbg_f(&intf->dev, "out of memory\n");
1122 return NULL;
1123 }
1124
1125 mac = zd_hw_mac(hw);
1126
1127 memset(mac, 0, sizeof(*mac));
1128 spin_lock_init(&mac->lock);
1129 mac->hw = hw;
1130
1131 mac->type = NL80211_IFTYPE_UNSPECIFIED;
1132
1133 memcpy(mac->channels, zd_channels, sizeof(zd_channels));
1134 memcpy(mac->rates, zd_rates, sizeof(zd_rates));
1135 mac->band.n_bitrates = ARRAY_SIZE(zd_rates);
1136 mac->band.bitrates = mac->rates;
1137 mac->band.n_channels = ARRAY_SIZE(zd_channels);
1138 mac->band.channels = mac->channels;
1139
1140 hw->wiphy->bands[IEEE80211_BAND_2GHZ] = &mac->band;
1141
1142 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1143 IEEE80211_HW_SIGNAL_UNSPEC;
1144
1145 hw->wiphy->interface_modes =
1146 BIT(NL80211_IFTYPE_MESH_POINT) |
1147 BIT(NL80211_IFTYPE_STATION) |
1148 BIT(NL80211_IFTYPE_ADHOC);
1149
1150 hw->max_signal = 100;
1151 hw->queues = 1;
1152 hw->extra_tx_headroom = sizeof(struct zd_ctrlset);
1153
1154 /*
1155 * Tell mac80211 that we support multi rate retries
1156 */
1157 hw->max_rates = IEEE80211_TX_MAX_RATES;
1158 hw->max_rate_tries = 18; /* 9 rates * 2 retries/rate */
1159
1160 skb_queue_head_init(&mac->ack_wait_queue);
1161 mac->ack_pending = 0;
1162
1163 zd_chip_init(&mac->chip, hw, intf);
1164 housekeeping_init(mac);
1165 INIT_WORK(&mac->set_multicast_hash_work, set_multicast_hash_handler);
1166 INIT_WORK(&mac->set_rts_cts_work, set_rts_cts_work);
1167 INIT_WORK(&mac->set_rx_filter_work, set_rx_filter_handler);
1168 INIT_WORK(&mac->process_intr, zd_process_intr);
1169
1170 SET_IEEE80211_DEV(hw, &intf->dev);
1171 return hw;
1172}
1173
1174#define LINK_LED_WORK_DELAY HZ
1175
1176static void link_led_handler(struct work_struct *work)
1177{
1178 struct zd_mac *mac =
1179 container_of(work, struct zd_mac, housekeeping.link_led_work.work);
1180 struct zd_chip *chip = &mac->chip;
1181 int is_associated;
1182 int r;
1183
1184 spin_lock_irq(&mac->lock);
1185 is_associated = mac->associated;
1186 spin_unlock_irq(&mac->lock);
1187
1188 r = zd_chip_control_leds(chip,
1189 is_associated ? ZD_LED_ASSOCIATED : ZD_LED_SCANNING);
1190 if (r)
1191 dev_dbg_f(zd_mac_dev(mac), "zd_chip_control_leds error %d\n", r);
1192
1193 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1194 LINK_LED_WORK_DELAY);
1195}
1196
1197static void housekeeping_init(struct zd_mac *mac)
1198{
1199 INIT_DELAYED_WORK(&mac->housekeeping.link_led_work, link_led_handler);
1200}
1201
1202static void housekeeping_enable(struct zd_mac *mac)
1203{
1204 dev_dbg_f(zd_mac_dev(mac), "\n");
1205 queue_delayed_work(zd_workqueue, &mac->housekeeping.link_led_work,
1206 0);
1207}
1208
1209static void housekeeping_disable(struct zd_mac *mac)
1210{
1211 dev_dbg_f(zd_mac_dev(mac), "\n");
1212 cancel_rearming_delayed_workqueue(zd_workqueue,
1213 &mac->housekeeping.link_led_work);
1214 zd_chip_control_leds(&mac->chip, ZD_LED_OFF);
1215}