]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - drivers/mtd/nand/nand_base.c
mtd: nand: refactor BB marker detection
[net-next-2.6.git] / drivers / mtd / nand / nand_base.c
... / ...
CommitLineData
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/delay.h>
37#include <linux/errno.h>
38#include <linux/err.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
45#include <linux/mtd/compatmac.h>
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
48#include <linux/leds.h>
49#include <asm/io.h>
50
51#ifdef CONFIG_MTD_PARTITIONS
52#include <linux/mtd/partitions.h>
53#endif
54
55/* Define default oob placement schemes for large and small page devices */
56static struct nand_ecclayout nand_oob_8 = {
57 .eccbytes = 3,
58 .eccpos = {0, 1, 2},
59 .oobfree = {
60 {.offset = 3,
61 .length = 2},
62 {.offset = 6,
63 .length = 2}}
64};
65
66static struct nand_ecclayout nand_oob_16 = {
67 .eccbytes = 6,
68 .eccpos = {0, 1, 2, 3, 6, 7},
69 .oobfree = {
70 {.offset = 8,
71 . length = 8}}
72};
73
74static struct nand_ecclayout nand_oob_64 = {
75 .eccbytes = 24,
76 .eccpos = {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
80 .oobfree = {
81 {.offset = 2,
82 .length = 38}}
83};
84
85static struct nand_ecclayout nand_oob_128 = {
86 .eccbytes = 48,
87 .eccpos = {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
94 .oobfree = {
95 {.offset = 2,
96 .length = 78}}
97};
98
99static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100 int new_state);
101
102static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103 struct mtd_oob_ops *ops);
104
105/*
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
108 */
109DEFINE_LED_TRIGGER(nand_led_trigger);
110
111static int check_offs_len(struct mtd_info *mtd,
112 loff_t ofs, uint64_t len)
113{
114 struct nand_chip *chip = mtd->priv;
115 int ret = 0;
116
117 /* Start address must align on block boundary */
118 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
119 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
120 ret = -EINVAL;
121 }
122
123 /* Length must align on block boundary */
124 if (len & ((1 << chip->phys_erase_shift) - 1)) {
125 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
126 __func__);
127 ret = -EINVAL;
128 }
129
130 /* Do not allow past end of device */
131 if (ofs + len > mtd->size) {
132 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
133 __func__);
134 ret = -EINVAL;
135 }
136
137 return ret;
138}
139
140/**
141 * nand_release_device - [GENERIC] release chip
142 * @mtd: MTD device structure
143 *
144 * Deselect, release chip lock and wake up anyone waiting on the device
145 */
146static void nand_release_device(struct mtd_info *mtd)
147{
148 struct nand_chip *chip = mtd->priv;
149
150 /* De-select the NAND device */
151 chip->select_chip(mtd, -1);
152
153 /* Release the controller and the chip */
154 spin_lock(&chip->controller->lock);
155 chip->controller->active = NULL;
156 chip->state = FL_READY;
157 wake_up(&chip->controller->wq);
158 spin_unlock(&chip->controller->lock);
159}
160
161/**
162 * nand_read_byte - [DEFAULT] read one byte from the chip
163 * @mtd: MTD device structure
164 *
165 * Default read function for 8bit buswith
166 */
167static uint8_t nand_read_byte(struct mtd_info *mtd)
168{
169 struct nand_chip *chip = mtd->priv;
170 return readb(chip->IO_ADDR_R);
171}
172
173/**
174 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
175 * @mtd: MTD device structure
176 *
177 * Default read function for 16bit buswith with
178 * endianess conversion
179 */
180static uint8_t nand_read_byte16(struct mtd_info *mtd)
181{
182 struct nand_chip *chip = mtd->priv;
183 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
184}
185
186/**
187 * nand_read_word - [DEFAULT] read one word from the chip
188 * @mtd: MTD device structure
189 *
190 * Default read function for 16bit buswith without
191 * endianess conversion
192 */
193static u16 nand_read_word(struct mtd_info *mtd)
194{
195 struct nand_chip *chip = mtd->priv;
196 return readw(chip->IO_ADDR_R);
197}
198
199/**
200 * nand_select_chip - [DEFAULT] control CE line
201 * @mtd: MTD device structure
202 * @chipnr: chipnumber to select, -1 for deselect
203 *
204 * Default select function for 1 chip devices.
205 */
206static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207{
208 struct nand_chip *chip = mtd->priv;
209
210 switch (chipnr) {
211 case -1:
212 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
213 break;
214 case 0:
215 break;
216
217 default:
218 BUG();
219 }
220}
221
222/**
223 * nand_write_buf - [DEFAULT] write buffer to chip
224 * @mtd: MTD device structure
225 * @buf: data buffer
226 * @len: number of bytes to write
227 *
228 * Default write function for 8bit buswith
229 */
230static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231{
232 int i;
233 struct nand_chip *chip = mtd->priv;
234
235 for (i = 0; i < len; i++)
236 writeb(buf[i], chip->IO_ADDR_W);
237}
238
239/**
240 * nand_read_buf - [DEFAULT] read chip data into buffer
241 * @mtd: MTD device structure
242 * @buf: buffer to store date
243 * @len: number of bytes to read
244 *
245 * Default read function for 8bit buswith
246 */
247static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248{
249 int i;
250 struct nand_chip *chip = mtd->priv;
251
252 for (i = 0; i < len; i++)
253 buf[i] = readb(chip->IO_ADDR_R);
254}
255
256/**
257 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
258 * @mtd: MTD device structure
259 * @buf: buffer containing the data to compare
260 * @len: number of bytes to compare
261 *
262 * Default verify function for 8bit buswith
263 */
264static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265{
266 int i;
267 struct nand_chip *chip = mtd->priv;
268
269 for (i = 0; i < len; i++)
270 if (buf[i] != readb(chip->IO_ADDR_R))
271 return -EFAULT;
272 return 0;
273}
274
275/**
276 * nand_write_buf16 - [DEFAULT] write buffer to chip
277 * @mtd: MTD device structure
278 * @buf: data buffer
279 * @len: number of bytes to write
280 *
281 * Default write function for 16bit buswith
282 */
283static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284{
285 int i;
286 struct nand_chip *chip = mtd->priv;
287 u16 *p = (u16 *) buf;
288 len >>= 1;
289
290 for (i = 0; i < len; i++)
291 writew(p[i], chip->IO_ADDR_W);
292
293}
294
295/**
296 * nand_read_buf16 - [DEFAULT] read chip data into buffer
297 * @mtd: MTD device structure
298 * @buf: buffer to store date
299 * @len: number of bytes to read
300 *
301 * Default read function for 16bit buswith
302 */
303static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304{
305 int i;
306 struct nand_chip *chip = mtd->priv;
307 u16 *p = (u16 *) buf;
308 len >>= 1;
309
310 for (i = 0; i < len; i++)
311 p[i] = readw(chip->IO_ADDR_R);
312}
313
314/**
315 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
316 * @mtd: MTD device structure
317 * @buf: buffer containing the data to compare
318 * @len: number of bytes to compare
319 *
320 * Default verify function for 16bit buswith
321 */
322static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323{
324 int i;
325 struct nand_chip *chip = mtd->priv;
326 u16 *p = (u16 *) buf;
327 len >>= 1;
328
329 for (i = 0; i < len; i++)
330 if (p[i] != readw(chip->IO_ADDR_R))
331 return -EFAULT;
332
333 return 0;
334}
335
336/**
337 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
338 * @mtd: MTD device structure
339 * @ofs: offset from device start
340 * @getchip: 0, if the chip is already selected
341 *
342 * Check, if the block is bad.
343 */
344static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345{
346 int page, chipnr, res = 0;
347 struct nand_chip *chip = mtd->priv;
348 u16 bad;
349
350 if (chip->options & NAND_BBT_SCANLASTPAGE)
351 ofs += mtd->erasesize - mtd->writesize;
352
353 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
354
355 if (getchip) {
356 chipnr = (int)(ofs >> chip->chip_shift);
357
358 nand_get_device(chip, mtd, FL_READING);
359
360 /* Select the NAND device */
361 chip->select_chip(mtd, chipnr);
362 }
363
364 if (chip->options & NAND_BUSWIDTH_16) {
365 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
366 page);
367 bad = cpu_to_le16(chip->read_word(mtd));
368 if (chip->badblockpos & 0x1)
369 bad >>= 8;
370 else
371 bad &= 0xFF;
372 } else {
373 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
374 bad = chip->read_byte(mtd);
375 }
376
377 if (likely(chip->badblockbits == 8))
378 res = bad != 0xFF;
379 else
380 res = hweight8(bad) < chip->badblockbits;
381
382 if (getchip)
383 nand_release_device(mtd);
384
385 return res;
386}
387
388/**
389 * nand_default_block_markbad - [DEFAULT] mark a block bad
390 * @mtd: MTD device structure
391 * @ofs: offset from device start
392 *
393 * This is the default implementation, which can be overridden by
394 * a hardware specific driver.
395*/
396static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
397{
398 struct nand_chip *chip = mtd->priv;
399 uint8_t buf[2] = { 0, 0 };
400 int block, ret;
401
402 if (chip->options & NAND_BBT_SCANLASTPAGE)
403 ofs += mtd->erasesize - mtd->writesize;
404
405 /* Get block number */
406 block = (int)(ofs >> chip->bbt_erase_shift);
407 if (chip->bbt)
408 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
409
410 /* Do we have a flash based bad block table ? */
411 if (chip->options & NAND_USE_FLASH_BBT)
412 ret = nand_update_bbt(mtd, ofs);
413 else {
414 /* We write two bytes, so we dont have to mess with 16 bit
415 * access
416 */
417 nand_get_device(chip, mtd, FL_WRITING);
418 ofs += mtd->oobsize;
419 chip->ops.len = chip->ops.ooblen = 2;
420 chip->ops.datbuf = NULL;
421 chip->ops.oobbuf = buf;
422 chip->ops.ooboffs = chip->badblockpos & ~0x01;
423
424 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
425 nand_release_device(mtd);
426 }
427 if (!ret)
428 mtd->ecc_stats.badblocks++;
429
430 return ret;
431}
432
433/**
434 * nand_check_wp - [GENERIC] check if the chip is write protected
435 * @mtd: MTD device structure
436 * Check, if the device is write protected
437 *
438 * The function expects, that the device is already selected
439 */
440static int nand_check_wp(struct mtd_info *mtd)
441{
442 struct nand_chip *chip = mtd->priv;
443
444 /* broken xD cards report WP despite being writable */
445 if (chip->options & NAND_BROKEN_XD)
446 return 0;
447
448 /* Check the WP bit */
449 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
450 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
451}
452
453/**
454 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
455 * @mtd: MTD device structure
456 * @ofs: offset from device start
457 * @getchip: 0, if the chip is already selected
458 * @allowbbt: 1, if its allowed to access the bbt area
459 *
460 * Check, if the block is bad. Either by reading the bad block table or
461 * calling of the scan function.
462 */
463static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
464 int allowbbt)
465{
466 struct nand_chip *chip = mtd->priv;
467
468 if (!chip->bbt)
469 return chip->block_bad(mtd, ofs, getchip);
470
471 /* Return info from the table */
472 return nand_isbad_bbt(mtd, ofs, allowbbt);
473}
474
475/**
476 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
477 * @mtd: MTD device structure
478 * @timeo: Timeout
479 *
480 * Helper function for nand_wait_ready used when needing to wait in interrupt
481 * context.
482 */
483static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
484{
485 struct nand_chip *chip = mtd->priv;
486 int i;
487
488 /* Wait for the device to get ready */
489 for (i = 0; i < timeo; i++) {
490 if (chip->dev_ready(mtd))
491 break;
492 touch_softlockup_watchdog();
493 mdelay(1);
494 }
495}
496
497/*
498 * Wait for the ready pin, after a command
499 * The timeout is catched later.
500 */
501void nand_wait_ready(struct mtd_info *mtd)
502{
503 struct nand_chip *chip = mtd->priv;
504 unsigned long timeo = jiffies + 2;
505
506 /* 400ms timeout */
507 if (in_interrupt() || oops_in_progress)
508 return panic_nand_wait_ready(mtd, 400);
509
510 led_trigger_event(nand_led_trigger, LED_FULL);
511 /* wait until command is processed or timeout occures */
512 do {
513 if (chip->dev_ready(mtd))
514 break;
515 touch_softlockup_watchdog();
516 } while (time_before(jiffies, timeo));
517 led_trigger_event(nand_led_trigger, LED_OFF);
518}
519EXPORT_SYMBOL_GPL(nand_wait_ready);
520
521/**
522 * nand_command - [DEFAULT] Send command to NAND device
523 * @mtd: MTD device structure
524 * @command: the command to be sent
525 * @column: the column address for this command, -1 if none
526 * @page_addr: the page address for this command, -1 if none
527 *
528 * Send command to NAND device. This function is used for small page
529 * devices (256/512 Bytes per page)
530 */
531static void nand_command(struct mtd_info *mtd, unsigned int command,
532 int column, int page_addr)
533{
534 register struct nand_chip *chip = mtd->priv;
535 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
536
537 /*
538 * Write out the command to the device.
539 */
540 if (command == NAND_CMD_SEQIN) {
541 int readcmd;
542
543 if (column >= mtd->writesize) {
544 /* OOB area */
545 column -= mtd->writesize;
546 readcmd = NAND_CMD_READOOB;
547 } else if (column < 256) {
548 /* First 256 bytes --> READ0 */
549 readcmd = NAND_CMD_READ0;
550 } else {
551 column -= 256;
552 readcmd = NAND_CMD_READ1;
553 }
554 chip->cmd_ctrl(mtd, readcmd, ctrl);
555 ctrl &= ~NAND_CTRL_CHANGE;
556 }
557 chip->cmd_ctrl(mtd, command, ctrl);
558
559 /*
560 * Address cycle, when necessary
561 */
562 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
563 /* Serially input address */
564 if (column != -1) {
565 /* Adjust columns for 16 bit buswidth */
566 if (chip->options & NAND_BUSWIDTH_16)
567 column >>= 1;
568 chip->cmd_ctrl(mtd, column, ctrl);
569 ctrl &= ~NAND_CTRL_CHANGE;
570 }
571 if (page_addr != -1) {
572 chip->cmd_ctrl(mtd, page_addr, ctrl);
573 ctrl &= ~NAND_CTRL_CHANGE;
574 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
575 /* One more address cycle for devices > 32MiB */
576 if (chip->chipsize > (32 << 20))
577 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
578 }
579 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
580
581 /*
582 * program and erase have their own busy handlers
583 * status and sequential in needs no delay
584 */
585 switch (command) {
586
587 case NAND_CMD_PAGEPROG:
588 case NAND_CMD_ERASE1:
589 case NAND_CMD_ERASE2:
590 case NAND_CMD_SEQIN:
591 case NAND_CMD_STATUS:
592 return;
593
594 case NAND_CMD_RESET:
595 if (chip->dev_ready)
596 break;
597 udelay(chip->chip_delay);
598 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
599 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
600 chip->cmd_ctrl(mtd,
601 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
602 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
603 return;
604
605 /* This applies to read commands */
606 default:
607 /*
608 * If we don't have access to the busy pin, we apply the given
609 * command delay
610 */
611 if (!chip->dev_ready) {
612 udelay(chip->chip_delay);
613 return;
614 }
615 }
616 /* Apply this short delay always to ensure that we do wait tWB in
617 * any case on any machine. */
618 ndelay(100);
619
620 nand_wait_ready(mtd);
621}
622
623/**
624 * nand_command_lp - [DEFAULT] Send command to NAND large page device
625 * @mtd: MTD device structure
626 * @command: the command to be sent
627 * @column: the column address for this command, -1 if none
628 * @page_addr: the page address for this command, -1 if none
629 *
630 * Send command to NAND device. This is the version for the new large page
631 * devices We dont have the separate regions as we have in the small page
632 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
633 */
634static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
635 int column, int page_addr)
636{
637 register struct nand_chip *chip = mtd->priv;
638
639 /* Emulate NAND_CMD_READOOB */
640 if (command == NAND_CMD_READOOB) {
641 column += mtd->writesize;
642 command = NAND_CMD_READ0;
643 }
644
645 /* Command latch cycle */
646 chip->cmd_ctrl(mtd, command & 0xff,
647 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
648
649 if (column != -1 || page_addr != -1) {
650 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
651
652 /* Serially input address */
653 if (column != -1) {
654 /* Adjust columns for 16 bit buswidth */
655 if (chip->options & NAND_BUSWIDTH_16)
656 column >>= 1;
657 chip->cmd_ctrl(mtd, column, ctrl);
658 ctrl &= ~NAND_CTRL_CHANGE;
659 chip->cmd_ctrl(mtd, column >> 8, ctrl);
660 }
661 if (page_addr != -1) {
662 chip->cmd_ctrl(mtd, page_addr, ctrl);
663 chip->cmd_ctrl(mtd, page_addr >> 8,
664 NAND_NCE | NAND_ALE);
665 /* One more address cycle for devices > 128MiB */
666 if (chip->chipsize > (128 << 20))
667 chip->cmd_ctrl(mtd, page_addr >> 16,
668 NAND_NCE | NAND_ALE);
669 }
670 }
671 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
672
673 /*
674 * program and erase have their own busy handlers
675 * status, sequential in, and deplete1 need no delay
676 */
677 switch (command) {
678
679 case NAND_CMD_CACHEDPROG:
680 case NAND_CMD_PAGEPROG:
681 case NAND_CMD_ERASE1:
682 case NAND_CMD_ERASE2:
683 case NAND_CMD_SEQIN:
684 case NAND_CMD_RNDIN:
685 case NAND_CMD_STATUS:
686 case NAND_CMD_DEPLETE1:
687 return;
688
689 /*
690 * read error status commands require only a short delay
691 */
692 case NAND_CMD_STATUS_ERROR:
693 case NAND_CMD_STATUS_ERROR0:
694 case NAND_CMD_STATUS_ERROR1:
695 case NAND_CMD_STATUS_ERROR2:
696 case NAND_CMD_STATUS_ERROR3:
697 udelay(chip->chip_delay);
698 return;
699
700 case NAND_CMD_RESET:
701 if (chip->dev_ready)
702 break;
703 udelay(chip->chip_delay);
704 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
705 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
706 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
707 NAND_NCE | NAND_CTRL_CHANGE);
708 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
709 return;
710
711 case NAND_CMD_RNDOUT:
712 /* No ready / busy check necessary */
713 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
714 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
715 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
716 NAND_NCE | NAND_CTRL_CHANGE);
717 return;
718
719 case NAND_CMD_READ0:
720 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
721 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
722 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
723 NAND_NCE | NAND_CTRL_CHANGE);
724
725 /* This applies to read commands */
726 default:
727 /*
728 * If we don't have access to the busy pin, we apply the given
729 * command delay
730 */
731 if (!chip->dev_ready) {
732 udelay(chip->chip_delay);
733 return;
734 }
735 }
736
737 /* Apply this short delay always to ensure that we do wait tWB in
738 * any case on any machine. */
739 ndelay(100);
740
741 nand_wait_ready(mtd);
742}
743
744/**
745 * panic_nand_get_device - [GENERIC] Get chip for selected access
746 * @chip: the nand chip descriptor
747 * @mtd: MTD device structure
748 * @new_state: the state which is requested
749 *
750 * Used when in panic, no locks are taken.
751 */
752static void panic_nand_get_device(struct nand_chip *chip,
753 struct mtd_info *mtd, int new_state)
754{
755 /* Hardware controller shared among independend devices */
756 chip->controller->active = chip;
757 chip->state = new_state;
758}
759
760/**
761 * nand_get_device - [GENERIC] Get chip for selected access
762 * @chip: the nand chip descriptor
763 * @mtd: MTD device structure
764 * @new_state: the state which is requested
765 *
766 * Get the device and lock it for exclusive access
767 */
768static int
769nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
770{
771 spinlock_t *lock = &chip->controller->lock;
772 wait_queue_head_t *wq = &chip->controller->wq;
773 DECLARE_WAITQUEUE(wait, current);
774 retry:
775 spin_lock(lock);
776
777 /* Hardware controller shared among independent devices */
778 if (!chip->controller->active)
779 chip->controller->active = chip;
780
781 if (chip->controller->active == chip && chip->state == FL_READY) {
782 chip->state = new_state;
783 spin_unlock(lock);
784 return 0;
785 }
786 if (new_state == FL_PM_SUSPENDED) {
787 if (chip->controller->active->state == FL_PM_SUSPENDED) {
788 chip->state = FL_PM_SUSPENDED;
789 spin_unlock(lock);
790 return 0;
791 }
792 }
793 set_current_state(TASK_UNINTERRUPTIBLE);
794 add_wait_queue(wq, &wait);
795 spin_unlock(lock);
796 schedule();
797 remove_wait_queue(wq, &wait);
798 goto retry;
799}
800
801/**
802 * panic_nand_wait - [GENERIC] wait until the command is done
803 * @mtd: MTD device structure
804 * @chip: NAND chip structure
805 * @timeo: Timeout
806 *
807 * Wait for command done. This is a helper function for nand_wait used when
808 * we are in interrupt context. May happen when in panic and trying to write
809 * an oops trough mtdoops.
810 */
811static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
812 unsigned long timeo)
813{
814 int i;
815 for (i = 0; i < timeo; i++) {
816 if (chip->dev_ready) {
817 if (chip->dev_ready(mtd))
818 break;
819 } else {
820 if (chip->read_byte(mtd) & NAND_STATUS_READY)
821 break;
822 }
823 mdelay(1);
824 }
825}
826
827/**
828 * nand_wait - [DEFAULT] wait until the command is done
829 * @mtd: MTD device structure
830 * @chip: NAND chip structure
831 *
832 * Wait for command done. This applies to erase and program only
833 * Erase can take up to 400ms and program up to 20ms according to
834 * general NAND and SmartMedia specs
835 */
836static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
837{
838
839 unsigned long timeo = jiffies;
840 int status, state = chip->state;
841
842 if (state == FL_ERASING)
843 timeo += (HZ * 400) / 1000;
844 else
845 timeo += (HZ * 20) / 1000;
846
847 led_trigger_event(nand_led_trigger, LED_FULL);
848
849 /* Apply this short delay always to ensure that we do wait tWB in
850 * any case on any machine. */
851 ndelay(100);
852
853 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
854 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
855 else
856 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
857
858 if (in_interrupt() || oops_in_progress)
859 panic_nand_wait(mtd, chip, timeo);
860 else {
861 while (time_before(jiffies, timeo)) {
862 if (chip->dev_ready) {
863 if (chip->dev_ready(mtd))
864 break;
865 } else {
866 if (chip->read_byte(mtd) & NAND_STATUS_READY)
867 break;
868 }
869 cond_resched();
870 }
871 }
872 led_trigger_event(nand_led_trigger, LED_OFF);
873
874 status = (int)chip->read_byte(mtd);
875 return status;
876}
877
878/**
879 * __nand_unlock - [REPLACABLE] unlocks specified locked blockes
880 *
881 * @param mtd - mtd info
882 * @param ofs - offset to start unlock from
883 * @param len - length to unlock
884 * @invert - when = 0, unlock the range of blocks within the lower and
885 * upper boundary address
886 * whne = 1, unlock the range of blocks outside the boundaries
887 * of the lower and upper boundary address
888 *
889 * @return - unlock status
890 */
891static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
892 uint64_t len, int invert)
893{
894 int ret = 0;
895 int status, page;
896 struct nand_chip *chip = mtd->priv;
897
898 /* Submit address of first page to unlock */
899 page = ofs >> chip->page_shift;
900 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
901
902 /* Submit address of last page to unlock */
903 page = (ofs + len) >> chip->page_shift;
904 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
905 (page | invert) & chip->pagemask);
906
907 /* Call wait ready function */
908 status = chip->waitfunc(mtd, chip);
909 udelay(1000);
910 /* See if device thinks it succeeded */
911 if (status & 0x01) {
912 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
913 __func__, status);
914 ret = -EIO;
915 }
916
917 return ret;
918}
919
920/**
921 * nand_unlock - [REPLACABLE] unlocks specified locked blockes
922 *
923 * @param mtd - mtd info
924 * @param ofs - offset to start unlock from
925 * @param len - length to unlock
926 *
927 * @return - unlock status
928 */
929int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
930{
931 int ret = 0;
932 int chipnr;
933 struct nand_chip *chip = mtd->priv;
934
935 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
936 __func__, (unsigned long long)ofs, len);
937
938 if (check_offs_len(mtd, ofs, len))
939 ret = -EINVAL;
940
941 /* Align to last block address if size addresses end of the device */
942 if (ofs + len == mtd->size)
943 len -= mtd->erasesize;
944
945 nand_get_device(chip, mtd, FL_UNLOCKING);
946
947 /* Shift to get chip number */
948 chipnr = ofs >> chip->chip_shift;
949
950 chip->select_chip(mtd, chipnr);
951
952 /* Check, if it is write protected */
953 if (nand_check_wp(mtd)) {
954 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
955 __func__);
956 ret = -EIO;
957 goto out;
958 }
959
960 ret = __nand_unlock(mtd, ofs, len, 0);
961
962out:
963 /* de-select the NAND device */
964 chip->select_chip(mtd, -1);
965
966 nand_release_device(mtd);
967
968 return ret;
969}
970
971/**
972 * nand_lock - [REPLACABLE] locks all blockes present in the device
973 *
974 * @param mtd - mtd info
975 * @param ofs - offset to start unlock from
976 * @param len - length to unlock
977 *
978 * @return - lock status
979 *
980 * This feature is not support in many NAND parts. 'Micron' NAND parts
981 * do have this feature, but it allows only to lock all blocks not for
982 * specified range for block.
983 *
984 * Implementing 'lock' feature by making use of 'unlock', for now.
985 */
986int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
987{
988 int ret = 0;
989 int chipnr, status, page;
990 struct nand_chip *chip = mtd->priv;
991
992 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
993 __func__, (unsigned long long)ofs, len);
994
995 if (check_offs_len(mtd, ofs, len))
996 ret = -EINVAL;
997
998 nand_get_device(chip, mtd, FL_LOCKING);
999
1000 /* Shift to get chip number */
1001 chipnr = ofs >> chip->chip_shift;
1002
1003 chip->select_chip(mtd, chipnr);
1004
1005 /* Check, if it is write protected */
1006 if (nand_check_wp(mtd)) {
1007 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1008 __func__);
1009 status = MTD_ERASE_FAILED;
1010 ret = -EIO;
1011 goto out;
1012 }
1013
1014 /* Submit address of first page to lock */
1015 page = ofs >> chip->page_shift;
1016 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1017
1018 /* Call wait ready function */
1019 status = chip->waitfunc(mtd, chip);
1020 udelay(1000);
1021 /* See if device thinks it succeeded */
1022 if (status & 0x01) {
1023 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1024 __func__, status);
1025 ret = -EIO;
1026 goto out;
1027 }
1028
1029 ret = __nand_unlock(mtd, ofs, len, 0x1);
1030
1031out:
1032 /* de-select the NAND device */
1033 chip->select_chip(mtd, -1);
1034
1035 nand_release_device(mtd);
1036
1037 return ret;
1038}
1039
1040/**
1041 * nand_read_page_raw - [Intern] read raw page data without ecc
1042 * @mtd: mtd info structure
1043 * @chip: nand chip info structure
1044 * @buf: buffer to store read data
1045 * @page: page number to read
1046 *
1047 * Not for syndrome calculating ecc controllers, which use a special oob layout
1048 */
1049static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1050 uint8_t *buf, int page)
1051{
1052 chip->read_buf(mtd, buf, mtd->writesize);
1053 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1054 return 0;
1055}
1056
1057/**
1058 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1059 * @mtd: mtd info structure
1060 * @chip: nand chip info structure
1061 * @buf: buffer to store read data
1062 * @page: page number to read
1063 *
1064 * We need a special oob layout and handling even when OOB isn't used.
1065 */
1066static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1067 uint8_t *buf, int page)
1068{
1069 int eccsize = chip->ecc.size;
1070 int eccbytes = chip->ecc.bytes;
1071 uint8_t *oob = chip->oob_poi;
1072 int steps, size;
1073
1074 for (steps = chip->ecc.steps; steps > 0; steps--) {
1075 chip->read_buf(mtd, buf, eccsize);
1076 buf += eccsize;
1077
1078 if (chip->ecc.prepad) {
1079 chip->read_buf(mtd, oob, chip->ecc.prepad);
1080 oob += chip->ecc.prepad;
1081 }
1082
1083 chip->read_buf(mtd, oob, eccbytes);
1084 oob += eccbytes;
1085
1086 if (chip->ecc.postpad) {
1087 chip->read_buf(mtd, oob, chip->ecc.postpad);
1088 oob += chip->ecc.postpad;
1089 }
1090 }
1091
1092 size = mtd->oobsize - (oob - chip->oob_poi);
1093 if (size)
1094 chip->read_buf(mtd, oob, size);
1095
1096 return 0;
1097}
1098
1099/**
1100 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1101 * @mtd: mtd info structure
1102 * @chip: nand chip info structure
1103 * @buf: buffer to store read data
1104 * @page: page number to read
1105 */
1106static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1107 uint8_t *buf, int page)
1108{
1109 int i, eccsize = chip->ecc.size;
1110 int eccbytes = chip->ecc.bytes;
1111 int eccsteps = chip->ecc.steps;
1112 uint8_t *p = buf;
1113 uint8_t *ecc_calc = chip->buffers->ecccalc;
1114 uint8_t *ecc_code = chip->buffers->ecccode;
1115 uint32_t *eccpos = chip->ecc.layout->eccpos;
1116
1117 chip->ecc.read_page_raw(mtd, chip, buf, page);
1118
1119 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1120 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1121
1122 for (i = 0; i < chip->ecc.total; i++)
1123 ecc_code[i] = chip->oob_poi[eccpos[i]];
1124
1125 eccsteps = chip->ecc.steps;
1126 p = buf;
1127
1128 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1129 int stat;
1130
1131 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1132 if (stat < 0)
1133 mtd->ecc_stats.failed++;
1134 else
1135 mtd->ecc_stats.corrected += stat;
1136 }
1137 return 0;
1138}
1139
1140/**
1141 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1142 * @mtd: mtd info structure
1143 * @chip: nand chip info structure
1144 * @data_offs: offset of requested data within the page
1145 * @readlen: data length
1146 * @bufpoi: buffer to store read data
1147 */
1148static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1149{
1150 int start_step, end_step, num_steps;
1151 uint32_t *eccpos = chip->ecc.layout->eccpos;
1152 uint8_t *p;
1153 int data_col_addr, i, gaps = 0;
1154 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1155 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1156
1157 /* Column address wihin the page aligned to ECC size (256bytes). */
1158 start_step = data_offs / chip->ecc.size;
1159 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1160 num_steps = end_step - start_step + 1;
1161
1162 /* Data size aligned to ECC ecc.size*/
1163 datafrag_len = num_steps * chip->ecc.size;
1164 eccfrag_len = num_steps * chip->ecc.bytes;
1165
1166 data_col_addr = start_step * chip->ecc.size;
1167 /* If we read not a page aligned data */
1168 if (data_col_addr != 0)
1169 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1170
1171 p = bufpoi + data_col_addr;
1172 chip->read_buf(mtd, p, datafrag_len);
1173
1174 /* Calculate ECC */
1175 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1176 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1177
1178 /* The performance is faster if to position offsets
1179 according to ecc.pos. Let make sure here that
1180 there are no gaps in ecc positions */
1181 for (i = 0; i < eccfrag_len - 1; i++) {
1182 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1183 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1184 gaps = 1;
1185 break;
1186 }
1187 }
1188 if (gaps) {
1189 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1190 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1191 } else {
1192 /* send the command to read the particular ecc bytes */
1193 /* take care about buswidth alignment in read_buf */
1194 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1195 aligned_len = eccfrag_len;
1196 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1197 aligned_len++;
1198 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1199 aligned_len++;
1200
1201 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1202 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1203 }
1204
1205 for (i = 0; i < eccfrag_len; i++)
1206 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1207
1208 p = bufpoi + data_col_addr;
1209 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1210 int stat;
1211
1212 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1213 if (stat == -1)
1214 mtd->ecc_stats.failed++;
1215 else
1216 mtd->ecc_stats.corrected += stat;
1217 }
1218 return 0;
1219}
1220
1221/**
1222 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1223 * @mtd: mtd info structure
1224 * @chip: nand chip info structure
1225 * @buf: buffer to store read data
1226 * @page: page number to read
1227 *
1228 * Not for syndrome calculating ecc controllers which need a special oob layout
1229 */
1230static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1231 uint8_t *buf, int page)
1232{
1233 int i, eccsize = chip->ecc.size;
1234 int eccbytes = chip->ecc.bytes;
1235 int eccsteps = chip->ecc.steps;
1236 uint8_t *p = buf;
1237 uint8_t *ecc_calc = chip->buffers->ecccalc;
1238 uint8_t *ecc_code = chip->buffers->ecccode;
1239 uint32_t *eccpos = chip->ecc.layout->eccpos;
1240
1241 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1242 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1243 chip->read_buf(mtd, p, eccsize);
1244 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1245 }
1246 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1247
1248 for (i = 0; i < chip->ecc.total; i++)
1249 ecc_code[i] = chip->oob_poi[eccpos[i]];
1250
1251 eccsteps = chip->ecc.steps;
1252 p = buf;
1253
1254 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1255 int stat;
1256
1257 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1258 if (stat < 0)
1259 mtd->ecc_stats.failed++;
1260 else
1261 mtd->ecc_stats.corrected += stat;
1262 }
1263 return 0;
1264}
1265
1266/**
1267 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1268 * @mtd: mtd info structure
1269 * @chip: nand chip info structure
1270 * @buf: buffer to store read data
1271 * @page: page number to read
1272 *
1273 * Hardware ECC for large page chips, require OOB to be read first.
1274 * For this ECC mode, the write_page method is re-used from ECC_HW.
1275 * These methods read/write ECC from the OOB area, unlike the
1276 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1277 * "infix ECC" scheme and reads/writes ECC from the data area, by
1278 * overwriting the NAND manufacturer bad block markings.
1279 */
1280static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1281 struct nand_chip *chip, uint8_t *buf, int page)
1282{
1283 int i, eccsize = chip->ecc.size;
1284 int eccbytes = chip->ecc.bytes;
1285 int eccsteps = chip->ecc.steps;
1286 uint8_t *p = buf;
1287 uint8_t *ecc_code = chip->buffers->ecccode;
1288 uint32_t *eccpos = chip->ecc.layout->eccpos;
1289 uint8_t *ecc_calc = chip->buffers->ecccalc;
1290
1291 /* Read the OOB area first */
1292 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1293 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1294 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1295
1296 for (i = 0; i < chip->ecc.total; i++)
1297 ecc_code[i] = chip->oob_poi[eccpos[i]];
1298
1299 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1300 int stat;
1301
1302 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1303 chip->read_buf(mtd, p, eccsize);
1304 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1305
1306 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1307 if (stat < 0)
1308 mtd->ecc_stats.failed++;
1309 else
1310 mtd->ecc_stats.corrected += stat;
1311 }
1312 return 0;
1313}
1314
1315/**
1316 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1317 * @mtd: mtd info structure
1318 * @chip: nand chip info structure
1319 * @buf: buffer to store read data
1320 * @page: page number to read
1321 *
1322 * The hw generator calculates the error syndrome automatically. Therefor
1323 * we need a special oob layout and handling.
1324 */
1325static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1326 uint8_t *buf, int page)
1327{
1328 int i, eccsize = chip->ecc.size;
1329 int eccbytes = chip->ecc.bytes;
1330 int eccsteps = chip->ecc.steps;
1331 uint8_t *p = buf;
1332 uint8_t *oob = chip->oob_poi;
1333
1334 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1335 int stat;
1336
1337 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1338 chip->read_buf(mtd, p, eccsize);
1339
1340 if (chip->ecc.prepad) {
1341 chip->read_buf(mtd, oob, chip->ecc.prepad);
1342 oob += chip->ecc.prepad;
1343 }
1344
1345 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1346 chip->read_buf(mtd, oob, eccbytes);
1347 stat = chip->ecc.correct(mtd, p, oob, NULL);
1348
1349 if (stat < 0)
1350 mtd->ecc_stats.failed++;
1351 else
1352 mtd->ecc_stats.corrected += stat;
1353
1354 oob += eccbytes;
1355
1356 if (chip->ecc.postpad) {
1357 chip->read_buf(mtd, oob, chip->ecc.postpad);
1358 oob += chip->ecc.postpad;
1359 }
1360 }
1361
1362 /* Calculate remaining oob bytes */
1363 i = mtd->oobsize - (oob - chip->oob_poi);
1364 if (i)
1365 chip->read_buf(mtd, oob, i);
1366
1367 return 0;
1368}
1369
1370/**
1371 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1372 * @chip: nand chip structure
1373 * @oob: oob destination address
1374 * @ops: oob ops structure
1375 * @len: size of oob to transfer
1376 */
1377static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1378 struct mtd_oob_ops *ops, size_t len)
1379{
1380 switch(ops->mode) {
1381
1382 case MTD_OOB_PLACE:
1383 case MTD_OOB_RAW:
1384 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1385 return oob + len;
1386
1387 case MTD_OOB_AUTO: {
1388 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1389 uint32_t boffs = 0, roffs = ops->ooboffs;
1390 size_t bytes = 0;
1391
1392 for(; free->length && len; free++, len -= bytes) {
1393 /* Read request not from offset 0 ? */
1394 if (unlikely(roffs)) {
1395 if (roffs >= free->length) {
1396 roffs -= free->length;
1397 continue;
1398 }
1399 boffs = free->offset + roffs;
1400 bytes = min_t(size_t, len,
1401 (free->length - roffs));
1402 roffs = 0;
1403 } else {
1404 bytes = min_t(size_t, len, free->length);
1405 boffs = free->offset;
1406 }
1407 memcpy(oob, chip->oob_poi + boffs, bytes);
1408 oob += bytes;
1409 }
1410 return oob;
1411 }
1412 default:
1413 BUG();
1414 }
1415 return NULL;
1416}
1417
1418/**
1419 * nand_do_read_ops - [Internal] Read data with ECC
1420 *
1421 * @mtd: MTD device structure
1422 * @from: offset to read from
1423 * @ops: oob ops structure
1424 *
1425 * Internal function. Called with chip held.
1426 */
1427static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1428 struct mtd_oob_ops *ops)
1429{
1430 int chipnr, page, realpage, col, bytes, aligned;
1431 struct nand_chip *chip = mtd->priv;
1432 struct mtd_ecc_stats stats;
1433 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1434 int sndcmd = 1;
1435 int ret = 0;
1436 uint32_t readlen = ops->len;
1437 uint32_t oobreadlen = ops->ooblen;
1438 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1439 mtd->oobavail : mtd->oobsize;
1440
1441 uint8_t *bufpoi, *oob, *buf;
1442
1443 stats = mtd->ecc_stats;
1444
1445 chipnr = (int)(from >> chip->chip_shift);
1446 chip->select_chip(mtd, chipnr);
1447
1448 realpage = (int)(from >> chip->page_shift);
1449 page = realpage & chip->pagemask;
1450
1451 col = (int)(from & (mtd->writesize - 1));
1452
1453 buf = ops->datbuf;
1454 oob = ops->oobbuf;
1455
1456 while(1) {
1457 bytes = min(mtd->writesize - col, readlen);
1458 aligned = (bytes == mtd->writesize);
1459
1460 /* Is the current page in the buffer ? */
1461 if (realpage != chip->pagebuf || oob) {
1462 bufpoi = aligned ? buf : chip->buffers->databuf;
1463
1464 if (likely(sndcmd)) {
1465 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1466 sndcmd = 0;
1467 }
1468
1469 /* Now read the page into the buffer */
1470 if (unlikely(ops->mode == MTD_OOB_RAW))
1471 ret = chip->ecc.read_page_raw(mtd, chip,
1472 bufpoi, page);
1473 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1474 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1475 else
1476 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1477 page);
1478 if (ret < 0)
1479 break;
1480
1481 /* Transfer not aligned data */
1482 if (!aligned) {
1483 if (!NAND_SUBPAGE_READ(chip) && !oob)
1484 chip->pagebuf = realpage;
1485 memcpy(buf, chip->buffers->databuf + col, bytes);
1486 }
1487
1488 buf += bytes;
1489
1490 if (unlikely(oob)) {
1491
1492 int toread = min(oobreadlen, max_oobsize);
1493
1494 if (toread) {
1495 oob = nand_transfer_oob(chip,
1496 oob, ops, toread);
1497 oobreadlen -= toread;
1498 }
1499 }
1500
1501 if (!(chip->options & NAND_NO_READRDY)) {
1502 /*
1503 * Apply delay or wait for ready/busy pin. Do
1504 * this before the AUTOINCR check, so no
1505 * problems arise if a chip which does auto
1506 * increment is marked as NOAUTOINCR by the
1507 * board driver.
1508 */
1509 if (!chip->dev_ready)
1510 udelay(chip->chip_delay);
1511 else
1512 nand_wait_ready(mtd);
1513 }
1514 } else {
1515 memcpy(buf, chip->buffers->databuf + col, bytes);
1516 buf += bytes;
1517 }
1518
1519 readlen -= bytes;
1520
1521 if (!readlen)
1522 break;
1523
1524 /* For subsequent reads align to page boundary. */
1525 col = 0;
1526 /* Increment page address */
1527 realpage++;
1528
1529 page = realpage & chip->pagemask;
1530 /* Check, if we cross a chip boundary */
1531 if (!page) {
1532 chipnr++;
1533 chip->select_chip(mtd, -1);
1534 chip->select_chip(mtd, chipnr);
1535 }
1536
1537 /* Check, if the chip supports auto page increment
1538 * or if we have hit a block boundary.
1539 */
1540 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1541 sndcmd = 1;
1542 }
1543
1544 ops->retlen = ops->len - (size_t) readlen;
1545 if (oob)
1546 ops->oobretlen = ops->ooblen - oobreadlen;
1547
1548 if (ret)
1549 return ret;
1550
1551 if (mtd->ecc_stats.failed - stats.failed)
1552 return -EBADMSG;
1553
1554 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1555}
1556
1557/**
1558 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1559 * @mtd: MTD device structure
1560 * @from: offset to read from
1561 * @len: number of bytes to read
1562 * @retlen: pointer to variable to store the number of read bytes
1563 * @buf: the databuffer to put data
1564 *
1565 * Get hold of the chip and call nand_do_read
1566 */
1567static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1568 size_t *retlen, uint8_t *buf)
1569{
1570 struct nand_chip *chip = mtd->priv;
1571 int ret;
1572
1573 /* Do not allow reads past end of device */
1574 if ((from + len) > mtd->size)
1575 return -EINVAL;
1576 if (!len)
1577 return 0;
1578
1579 nand_get_device(chip, mtd, FL_READING);
1580
1581 chip->ops.len = len;
1582 chip->ops.datbuf = buf;
1583 chip->ops.oobbuf = NULL;
1584
1585 ret = nand_do_read_ops(mtd, from, &chip->ops);
1586
1587 *retlen = chip->ops.retlen;
1588
1589 nand_release_device(mtd);
1590
1591 return ret;
1592}
1593
1594/**
1595 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1596 * @mtd: mtd info structure
1597 * @chip: nand chip info structure
1598 * @page: page number to read
1599 * @sndcmd: flag whether to issue read command or not
1600 */
1601static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1602 int page, int sndcmd)
1603{
1604 if (sndcmd) {
1605 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1606 sndcmd = 0;
1607 }
1608 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1609 return sndcmd;
1610}
1611
1612/**
1613 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1614 * with syndromes
1615 * @mtd: mtd info structure
1616 * @chip: nand chip info structure
1617 * @page: page number to read
1618 * @sndcmd: flag whether to issue read command or not
1619 */
1620static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1621 int page, int sndcmd)
1622{
1623 uint8_t *buf = chip->oob_poi;
1624 int length = mtd->oobsize;
1625 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1626 int eccsize = chip->ecc.size;
1627 uint8_t *bufpoi = buf;
1628 int i, toread, sndrnd = 0, pos;
1629
1630 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1631 for (i = 0; i < chip->ecc.steps; i++) {
1632 if (sndrnd) {
1633 pos = eccsize + i * (eccsize + chunk);
1634 if (mtd->writesize > 512)
1635 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1636 else
1637 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1638 } else
1639 sndrnd = 1;
1640 toread = min_t(int, length, chunk);
1641 chip->read_buf(mtd, bufpoi, toread);
1642 bufpoi += toread;
1643 length -= toread;
1644 }
1645 if (length > 0)
1646 chip->read_buf(mtd, bufpoi, length);
1647
1648 return 1;
1649}
1650
1651/**
1652 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1653 * @mtd: mtd info structure
1654 * @chip: nand chip info structure
1655 * @page: page number to write
1656 */
1657static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1658 int page)
1659{
1660 int status = 0;
1661 const uint8_t *buf = chip->oob_poi;
1662 int length = mtd->oobsize;
1663
1664 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1665 chip->write_buf(mtd, buf, length);
1666 /* Send command to program the OOB data */
1667 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1668
1669 status = chip->waitfunc(mtd, chip);
1670
1671 return status & NAND_STATUS_FAIL ? -EIO : 0;
1672}
1673
1674/**
1675 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1676 * with syndrome - only for large page flash !
1677 * @mtd: mtd info structure
1678 * @chip: nand chip info structure
1679 * @page: page number to write
1680 */
1681static int nand_write_oob_syndrome(struct mtd_info *mtd,
1682 struct nand_chip *chip, int page)
1683{
1684 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1685 int eccsize = chip->ecc.size, length = mtd->oobsize;
1686 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1687 const uint8_t *bufpoi = chip->oob_poi;
1688
1689 /*
1690 * data-ecc-data-ecc ... ecc-oob
1691 * or
1692 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1693 */
1694 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1695 pos = steps * (eccsize + chunk);
1696 steps = 0;
1697 } else
1698 pos = eccsize;
1699
1700 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1701 for (i = 0; i < steps; i++) {
1702 if (sndcmd) {
1703 if (mtd->writesize <= 512) {
1704 uint32_t fill = 0xFFFFFFFF;
1705
1706 len = eccsize;
1707 while (len > 0) {
1708 int num = min_t(int, len, 4);
1709 chip->write_buf(mtd, (uint8_t *)&fill,
1710 num);
1711 len -= num;
1712 }
1713 } else {
1714 pos = eccsize + i * (eccsize + chunk);
1715 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1716 }
1717 } else
1718 sndcmd = 1;
1719 len = min_t(int, length, chunk);
1720 chip->write_buf(mtd, bufpoi, len);
1721 bufpoi += len;
1722 length -= len;
1723 }
1724 if (length > 0)
1725 chip->write_buf(mtd, bufpoi, length);
1726
1727 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1728 status = chip->waitfunc(mtd, chip);
1729
1730 return status & NAND_STATUS_FAIL ? -EIO : 0;
1731}
1732
1733/**
1734 * nand_do_read_oob - [Intern] NAND read out-of-band
1735 * @mtd: MTD device structure
1736 * @from: offset to read from
1737 * @ops: oob operations description structure
1738 *
1739 * NAND read out-of-band data from the spare area
1740 */
1741static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1742 struct mtd_oob_ops *ops)
1743{
1744 int page, realpage, chipnr, sndcmd = 1;
1745 struct nand_chip *chip = mtd->priv;
1746 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1747 int readlen = ops->ooblen;
1748 int len;
1749 uint8_t *buf = ops->oobbuf;
1750
1751 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1752 __func__, (unsigned long long)from, readlen);
1753
1754 if (ops->mode == MTD_OOB_AUTO)
1755 len = chip->ecc.layout->oobavail;
1756 else
1757 len = mtd->oobsize;
1758
1759 if (unlikely(ops->ooboffs >= len)) {
1760 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1761 "outside oob\n", __func__);
1762 return -EINVAL;
1763 }
1764
1765 /* Do not allow reads past end of device */
1766 if (unlikely(from >= mtd->size ||
1767 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1768 (from >> chip->page_shift)) * len)) {
1769 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1770 "of device\n", __func__);
1771 return -EINVAL;
1772 }
1773
1774 chipnr = (int)(from >> chip->chip_shift);
1775 chip->select_chip(mtd, chipnr);
1776
1777 /* Shift to get page */
1778 realpage = (int)(from >> chip->page_shift);
1779 page = realpage & chip->pagemask;
1780
1781 while(1) {
1782 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1783
1784 len = min(len, readlen);
1785 buf = nand_transfer_oob(chip, buf, ops, len);
1786
1787 if (!(chip->options & NAND_NO_READRDY)) {
1788 /*
1789 * Apply delay or wait for ready/busy pin. Do this
1790 * before the AUTOINCR check, so no problems arise if a
1791 * chip which does auto increment is marked as
1792 * NOAUTOINCR by the board driver.
1793 */
1794 if (!chip->dev_ready)
1795 udelay(chip->chip_delay);
1796 else
1797 nand_wait_ready(mtd);
1798 }
1799
1800 readlen -= len;
1801 if (!readlen)
1802 break;
1803
1804 /* Increment page address */
1805 realpage++;
1806
1807 page = realpage & chip->pagemask;
1808 /* Check, if we cross a chip boundary */
1809 if (!page) {
1810 chipnr++;
1811 chip->select_chip(mtd, -1);
1812 chip->select_chip(mtd, chipnr);
1813 }
1814
1815 /* Check, if the chip supports auto page increment
1816 * or if we have hit a block boundary.
1817 */
1818 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1819 sndcmd = 1;
1820 }
1821
1822 ops->oobretlen = ops->ooblen;
1823 return 0;
1824}
1825
1826/**
1827 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1828 * @mtd: MTD device structure
1829 * @from: offset to read from
1830 * @ops: oob operation description structure
1831 *
1832 * NAND read data and/or out-of-band data
1833 */
1834static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1835 struct mtd_oob_ops *ops)
1836{
1837 struct nand_chip *chip = mtd->priv;
1838 int ret = -ENOTSUPP;
1839
1840 ops->retlen = 0;
1841
1842 /* Do not allow reads past end of device */
1843 if (ops->datbuf && (from + ops->len) > mtd->size) {
1844 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1845 "beyond end of device\n", __func__);
1846 return -EINVAL;
1847 }
1848
1849 nand_get_device(chip, mtd, FL_READING);
1850
1851 switch(ops->mode) {
1852 case MTD_OOB_PLACE:
1853 case MTD_OOB_AUTO:
1854 case MTD_OOB_RAW:
1855 break;
1856
1857 default:
1858 goto out;
1859 }
1860
1861 if (!ops->datbuf)
1862 ret = nand_do_read_oob(mtd, from, ops);
1863 else
1864 ret = nand_do_read_ops(mtd, from, ops);
1865
1866 out:
1867 nand_release_device(mtd);
1868 return ret;
1869}
1870
1871
1872/**
1873 * nand_write_page_raw - [Intern] raw page write function
1874 * @mtd: mtd info structure
1875 * @chip: nand chip info structure
1876 * @buf: data buffer
1877 *
1878 * Not for syndrome calculating ecc controllers, which use a special oob layout
1879 */
1880static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1881 const uint8_t *buf)
1882{
1883 chip->write_buf(mtd, buf, mtd->writesize);
1884 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1885}
1886
1887/**
1888 * nand_write_page_raw_syndrome - [Intern] raw page write function
1889 * @mtd: mtd info structure
1890 * @chip: nand chip info structure
1891 * @buf: data buffer
1892 *
1893 * We need a special oob layout and handling even when ECC isn't checked.
1894 */
1895static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1896 const uint8_t *buf)
1897{
1898 int eccsize = chip->ecc.size;
1899 int eccbytes = chip->ecc.bytes;
1900 uint8_t *oob = chip->oob_poi;
1901 int steps, size;
1902
1903 for (steps = chip->ecc.steps; steps > 0; steps--) {
1904 chip->write_buf(mtd, buf, eccsize);
1905 buf += eccsize;
1906
1907 if (chip->ecc.prepad) {
1908 chip->write_buf(mtd, oob, chip->ecc.prepad);
1909 oob += chip->ecc.prepad;
1910 }
1911
1912 chip->read_buf(mtd, oob, eccbytes);
1913 oob += eccbytes;
1914
1915 if (chip->ecc.postpad) {
1916 chip->write_buf(mtd, oob, chip->ecc.postpad);
1917 oob += chip->ecc.postpad;
1918 }
1919 }
1920
1921 size = mtd->oobsize - (oob - chip->oob_poi);
1922 if (size)
1923 chip->write_buf(mtd, oob, size);
1924}
1925/**
1926 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1927 * @mtd: mtd info structure
1928 * @chip: nand chip info structure
1929 * @buf: data buffer
1930 */
1931static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1932 const uint8_t *buf)
1933{
1934 int i, eccsize = chip->ecc.size;
1935 int eccbytes = chip->ecc.bytes;
1936 int eccsteps = chip->ecc.steps;
1937 uint8_t *ecc_calc = chip->buffers->ecccalc;
1938 const uint8_t *p = buf;
1939 uint32_t *eccpos = chip->ecc.layout->eccpos;
1940
1941 /* Software ecc calculation */
1942 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1943 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1944
1945 for (i = 0; i < chip->ecc.total; i++)
1946 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1947
1948 chip->ecc.write_page_raw(mtd, chip, buf);
1949}
1950
1951/**
1952 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1953 * @mtd: mtd info structure
1954 * @chip: nand chip info structure
1955 * @buf: data buffer
1956 */
1957static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1958 const uint8_t *buf)
1959{
1960 int i, eccsize = chip->ecc.size;
1961 int eccbytes = chip->ecc.bytes;
1962 int eccsteps = chip->ecc.steps;
1963 uint8_t *ecc_calc = chip->buffers->ecccalc;
1964 const uint8_t *p = buf;
1965 uint32_t *eccpos = chip->ecc.layout->eccpos;
1966
1967 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1968 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1969 chip->write_buf(mtd, p, eccsize);
1970 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1971 }
1972
1973 for (i = 0; i < chip->ecc.total; i++)
1974 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1975
1976 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1977}
1978
1979/**
1980 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1981 * @mtd: mtd info structure
1982 * @chip: nand chip info structure
1983 * @buf: data buffer
1984 *
1985 * The hw generator calculates the error syndrome automatically. Therefor
1986 * we need a special oob layout and handling.
1987 */
1988static void nand_write_page_syndrome(struct mtd_info *mtd,
1989 struct nand_chip *chip, const uint8_t *buf)
1990{
1991 int i, eccsize = chip->ecc.size;
1992 int eccbytes = chip->ecc.bytes;
1993 int eccsteps = chip->ecc.steps;
1994 const uint8_t *p = buf;
1995 uint8_t *oob = chip->oob_poi;
1996
1997 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1998
1999 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2000 chip->write_buf(mtd, p, eccsize);
2001
2002 if (chip->ecc.prepad) {
2003 chip->write_buf(mtd, oob, chip->ecc.prepad);
2004 oob += chip->ecc.prepad;
2005 }
2006
2007 chip->ecc.calculate(mtd, p, oob);
2008 chip->write_buf(mtd, oob, eccbytes);
2009 oob += eccbytes;
2010
2011 if (chip->ecc.postpad) {
2012 chip->write_buf(mtd, oob, chip->ecc.postpad);
2013 oob += chip->ecc.postpad;
2014 }
2015 }
2016
2017 /* Calculate remaining oob bytes */
2018 i = mtd->oobsize - (oob - chip->oob_poi);
2019 if (i)
2020 chip->write_buf(mtd, oob, i);
2021}
2022
2023/**
2024 * nand_write_page - [REPLACEABLE] write one page
2025 * @mtd: MTD device structure
2026 * @chip: NAND chip descriptor
2027 * @buf: the data to write
2028 * @page: page number to write
2029 * @cached: cached programming
2030 * @raw: use _raw version of write_page
2031 */
2032static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2033 const uint8_t *buf, int page, int cached, int raw)
2034{
2035 int status;
2036
2037 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2038
2039 if (unlikely(raw))
2040 chip->ecc.write_page_raw(mtd, chip, buf);
2041 else
2042 chip->ecc.write_page(mtd, chip, buf);
2043
2044 /*
2045 * Cached progamming disabled for now, Not sure if its worth the
2046 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2047 */
2048 cached = 0;
2049
2050 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2051
2052 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2053 status = chip->waitfunc(mtd, chip);
2054 /*
2055 * See if operation failed and additional status checks are
2056 * available
2057 */
2058 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2059 status = chip->errstat(mtd, chip, FL_WRITING, status,
2060 page);
2061
2062 if (status & NAND_STATUS_FAIL)
2063 return -EIO;
2064 } else {
2065 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2066 status = chip->waitfunc(mtd, chip);
2067 }
2068
2069#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2070 /* Send command to read back the data */
2071 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2072
2073 if (chip->verify_buf(mtd, buf, mtd->writesize))
2074 return -EIO;
2075#endif
2076 return 0;
2077}
2078
2079/**
2080 * nand_fill_oob - [Internal] Transfer client buffer to oob
2081 * @chip: nand chip structure
2082 * @oob: oob data buffer
2083 * @ops: oob ops structure
2084 */
2085static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2086 struct mtd_oob_ops *ops)
2087{
2088 switch(ops->mode) {
2089
2090 case MTD_OOB_PLACE:
2091 case MTD_OOB_RAW:
2092 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2093 return oob + len;
2094
2095 case MTD_OOB_AUTO: {
2096 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2097 uint32_t boffs = 0, woffs = ops->ooboffs;
2098 size_t bytes = 0;
2099
2100 for(; free->length && len; free++, len -= bytes) {
2101 /* Write request not from offset 0 ? */
2102 if (unlikely(woffs)) {
2103 if (woffs >= free->length) {
2104 woffs -= free->length;
2105 continue;
2106 }
2107 boffs = free->offset + woffs;
2108 bytes = min_t(size_t, len,
2109 (free->length - woffs));
2110 woffs = 0;
2111 } else {
2112 bytes = min_t(size_t, len, free->length);
2113 boffs = free->offset;
2114 }
2115 memcpy(chip->oob_poi + boffs, oob, bytes);
2116 oob += bytes;
2117 }
2118 return oob;
2119 }
2120 default:
2121 BUG();
2122 }
2123 return NULL;
2124}
2125
2126#define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
2127
2128/**
2129 * nand_do_write_ops - [Internal] NAND write with ECC
2130 * @mtd: MTD device structure
2131 * @to: offset to write to
2132 * @ops: oob operations description structure
2133 *
2134 * NAND write with ECC
2135 */
2136static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2137 struct mtd_oob_ops *ops)
2138{
2139 int chipnr, realpage, page, blockmask, column;
2140 struct nand_chip *chip = mtd->priv;
2141 uint32_t writelen = ops->len;
2142
2143 uint32_t oobwritelen = ops->ooblen;
2144 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2145 mtd->oobavail : mtd->oobsize;
2146
2147 uint8_t *oob = ops->oobbuf;
2148 uint8_t *buf = ops->datbuf;
2149 int ret, subpage;
2150
2151 ops->retlen = 0;
2152 if (!writelen)
2153 return 0;
2154
2155 /* reject writes, which are not page aligned */
2156 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2157 printk(KERN_NOTICE "%s: Attempt to write not "
2158 "page aligned data\n", __func__);
2159 return -EINVAL;
2160 }
2161
2162 column = to & (mtd->writesize - 1);
2163 subpage = column || (writelen & (mtd->writesize - 1));
2164
2165 if (subpage && oob)
2166 return -EINVAL;
2167
2168 chipnr = (int)(to >> chip->chip_shift);
2169 chip->select_chip(mtd, chipnr);
2170
2171 /* Check, if it is write protected */
2172 if (nand_check_wp(mtd))
2173 return -EIO;
2174
2175 realpage = (int)(to >> chip->page_shift);
2176 page = realpage & chip->pagemask;
2177 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2178
2179 /* Invalidate the page cache, when we write to the cached page */
2180 if (to <= (chip->pagebuf << chip->page_shift) &&
2181 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2182 chip->pagebuf = -1;
2183
2184 /* If we're not given explicit OOB data, let it be 0xFF */
2185 if (likely(!oob))
2186 memset(chip->oob_poi, 0xff, mtd->oobsize);
2187
2188 /* Don't allow multipage oob writes with offset */
2189 if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2190 return -EINVAL;
2191
2192 while(1) {
2193 int bytes = mtd->writesize;
2194 int cached = writelen > bytes && page != blockmask;
2195 uint8_t *wbuf = buf;
2196
2197 /* Partial page write ? */
2198 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2199 cached = 0;
2200 bytes = min_t(int, bytes - column, (int) writelen);
2201 chip->pagebuf = -1;
2202 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2203 memcpy(&chip->buffers->databuf[column], buf, bytes);
2204 wbuf = chip->buffers->databuf;
2205 }
2206
2207 if (unlikely(oob)) {
2208 size_t len = min(oobwritelen, oobmaxlen);
2209 oob = nand_fill_oob(chip, oob, len, ops);
2210 oobwritelen -= len;
2211 }
2212
2213 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2214 (ops->mode == MTD_OOB_RAW));
2215 if (ret)
2216 break;
2217
2218 writelen -= bytes;
2219 if (!writelen)
2220 break;
2221
2222 column = 0;
2223 buf += bytes;
2224 realpage++;
2225
2226 page = realpage & chip->pagemask;
2227 /* Check, if we cross a chip boundary */
2228 if (!page) {
2229 chipnr++;
2230 chip->select_chip(mtd, -1);
2231 chip->select_chip(mtd, chipnr);
2232 }
2233 }
2234
2235 ops->retlen = ops->len - writelen;
2236 if (unlikely(oob))
2237 ops->oobretlen = ops->ooblen;
2238 return ret;
2239}
2240
2241/**
2242 * panic_nand_write - [MTD Interface] NAND write with ECC
2243 * @mtd: MTD device structure
2244 * @to: offset to write to
2245 * @len: number of bytes to write
2246 * @retlen: pointer to variable to store the number of written bytes
2247 * @buf: the data to write
2248 *
2249 * NAND write with ECC. Used when performing writes in interrupt context, this
2250 * may for example be called by mtdoops when writing an oops while in panic.
2251 */
2252static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2253 size_t *retlen, const uint8_t *buf)
2254{
2255 struct nand_chip *chip = mtd->priv;
2256 int ret;
2257
2258 /* Do not allow reads past end of device */
2259 if ((to + len) > mtd->size)
2260 return -EINVAL;
2261 if (!len)
2262 return 0;
2263
2264 /* Wait for the device to get ready. */
2265 panic_nand_wait(mtd, chip, 400);
2266
2267 /* Grab the device. */
2268 panic_nand_get_device(chip, mtd, FL_WRITING);
2269
2270 chip->ops.len = len;
2271 chip->ops.datbuf = (uint8_t *)buf;
2272 chip->ops.oobbuf = NULL;
2273
2274 ret = nand_do_write_ops(mtd, to, &chip->ops);
2275
2276 *retlen = chip->ops.retlen;
2277 return ret;
2278}
2279
2280/**
2281 * nand_write - [MTD Interface] NAND write with ECC
2282 * @mtd: MTD device structure
2283 * @to: offset to write to
2284 * @len: number of bytes to write
2285 * @retlen: pointer to variable to store the number of written bytes
2286 * @buf: the data to write
2287 *
2288 * NAND write with ECC
2289 */
2290static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2291 size_t *retlen, const uint8_t *buf)
2292{
2293 struct nand_chip *chip = mtd->priv;
2294 int ret;
2295
2296 /* Do not allow reads past end of device */
2297 if ((to + len) > mtd->size)
2298 return -EINVAL;
2299 if (!len)
2300 return 0;
2301
2302 nand_get_device(chip, mtd, FL_WRITING);
2303
2304 chip->ops.len = len;
2305 chip->ops.datbuf = (uint8_t *)buf;
2306 chip->ops.oobbuf = NULL;
2307
2308 ret = nand_do_write_ops(mtd, to, &chip->ops);
2309
2310 *retlen = chip->ops.retlen;
2311
2312 nand_release_device(mtd);
2313
2314 return ret;
2315}
2316
2317/**
2318 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2319 * @mtd: MTD device structure
2320 * @to: offset to write to
2321 * @ops: oob operation description structure
2322 *
2323 * NAND write out-of-band
2324 */
2325static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2326 struct mtd_oob_ops *ops)
2327{
2328 int chipnr, page, status, len;
2329 struct nand_chip *chip = mtd->priv;
2330
2331 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2332 __func__, (unsigned int)to, (int)ops->ooblen);
2333
2334 if (ops->mode == MTD_OOB_AUTO)
2335 len = chip->ecc.layout->oobavail;
2336 else
2337 len = mtd->oobsize;
2338
2339 /* Do not allow write past end of page */
2340 if ((ops->ooboffs + ops->ooblen) > len) {
2341 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2342 "past end of page\n", __func__);
2343 return -EINVAL;
2344 }
2345
2346 if (unlikely(ops->ooboffs >= len)) {
2347 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2348 "write outside oob\n", __func__);
2349 return -EINVAL;
2350 }
2351
2352 /* Do not allow reads past end of device */
2353 if (unlikely(to >= mtd->size ||
2354 ops->ooboffs + ops->ooblen >
2355 ((mtd->size >> chip->page_shift) -
2356 (to >> chip->page_shift)) * len)) {
2357 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2358 "end of device\n", __func__);
2359 return -EINVAL;
2360 }
2361
2362 chipnr = (int)(to >> chip->chip_shift);
2363 chip->select_chip(mtd, chipnr);
2364
2365 /* Shift to get page */
2366 page = (int)(to >> chip->page_shift);
2367
2368 /*
2369 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2370 * of my DiskOnChip 2000 test units) will clear the whole data page too
2371 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2372 * it in the doc2000 driver in August 1999. dwmw2.
2373 */
2374 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2375
2376 /* Check, if it is write protected */
2377 if (nand_check_wp(mtd))
2378 return -EROFS;
2379
2380 /* Invalidate the page cache, if we write to the cached page */
2381 if (page == chip->pagebuf)
2382 chip->pagebuf = -1;
2383
2384 memset(chip->oob_poi, 0xff, mtd->oobsize);
2385 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2386 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2387 memset(chip->oob_poi, 0xff, mtd->oobsize);
2388
2389 if (status)
2390 return status;
2391
2392 ops->oobretlen = ops->ooblen;
2393
2394 return 0;
2395}
2396
2397/**
2398 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2399 * @mtd: MTD device structure
2400 * @to: offset to write to
2401 * @ops: oob operation description structure
2402 */
2403static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2404 struct mtd_oob_ops *ops)
2405{
2406 struct nand_chip *chip = mtd->priv;
2407 int ret = -ENOTSUPP;
2408
2409 ops->retlen = 0;
2410
2411 /* Do not allow writes past end of device */
2412 if (ops->datbuf && (to + ops->len) > mtd->size) {
2413 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2414 "end of device\n", __func__);
2415 return -EINVAL;
2416 }
2417
2418 nand_get_device(chip, mtd, FL_WRITING);
2419
2420 switch(ops->mode) {
2421 case MTD_OOB_PLACE:
2422 case MTD_OOB_AUTO:
2423 case MTD_OOB_RAW:
2424 break;
2425
2426 default:
2427 goto out;
2428 }
2429
2430 if (!ops->datbuf)
2431 ret = nand_do_write_oob(mtd, to, ops);
2432 else
2433 ret = nand_do_write_ops(mtd, to, ops);
2434
2435 out:
2436 nand_release_device(mtd);
2437 return ret;
2438}
2439
2440/**
2441 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2442 * @mtd: MTD device structure
2443 * @page: the page address of the block which will be erased
2444 *
2445 * Standard erase command for NAND chips
2446 */
2447static void single_erase_cmd(struct mtd_info *mtd, int page)
2448{
2449 struct nand_chip *chip = mtd->priv;
2450 /* Send commands to erase a block */
2451 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2452 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2453}
2454
2455/**
2456 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2457 * @mtd: MTD device structure
2458 * @page: the page address of the block which will be erased
2459 *
2460 * AND multi block erase command function
2461 * Erase 4 consecutive blocks
2462 */
2463static void multi_erase_cmd(struct mtd_info *mtd, int page)
2464{
2465 struct nand_chip *chip = mtd->priv;
2466 /* Send commands to erase a block */
2467 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2468 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2469 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2470 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2471 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2472}
2473
2474/**
2475 * nand_erase - [MTD Interface] erase block(s)
2476 * @mtd: MTD device structure
2477 * @instr: erase instruction
2478 *
2479 * Erase one ore more blocks
2480 */
2481static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2482{
2483 return nand_erase_nand(mtd, instr, 0);
2484}
2485
2486#define BBT_PAGE_MASK 0xffffff3f
2487/**
2488 * nand_erase_nand - [Internal] erase block(s)
2489 * @mtd: MTD device structure
2490 * @instr: erase instruction
2491 * @allowbbt: allow erasing the bbt area
2492 *
2493 * Erase one ore more blocks
2494 */
2495int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2496 int allowbbt)
2497{
2498 int page, status, pages_per_block, ret, chipnr;
2499 struct nand_chip *chip = mtd->priv;
2500 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2501 unsigned int bbt_masked_page = 0xffffffff;
2502 loff_t len;
2503
2504 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2505 __func__, (unsigned long long)instr->addr,
2506 (unsigned long long)instr->len);
2507
2508 if (check_offs_len(mtd, instr->addr, instr->len))
2509 return -EINVAL;
2510
2511 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2512
2513 /* Grab the lock and see if the device is available */
2514 nand_get_device(chip, mtd, FL_ERASING);
2515
2516 /* Shift to get first page */
2517 page = (int)(instr->addr >> chip->page_shift);
2518 chipnr = (int)(instr->addr >> chip->chip_shift);
2519
2520 /* Calculate pages in each block */
2521 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2522
2523 /* Select the NAND device */
2524 chip->select_chip(mtd, chipnr);
2525
2526 /* Check, if it is write protected */
2527 if (nand_check_wp(mtd)) {
2528 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2529 __func__);
2530 instr->state = MTD_ERASE_FAILED;
2531 goto erase_exit;
2532 }
2533
2534 /*
2535 * If BBT requires refresh, set the BBT page mask to see if the BBT
2536 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2537 * can not be matched. This is also done when the bbt is actually
2538 * erased to avoid recusrsive updates
2539 */
2540 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2541 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2542
2543 /* Loop through the pages */
2544 len = instr->len;
2545
2546 instr->state = MTD_ERASING;
2547
2548 while (len) {
2549 /*
2550 * heck if we have a bad block, we do not erase bad blocks !
2551 */
2552 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2553 chip->page_shift, 0, allowbbt)) {
2554 printk(KERN_WARNING "%s: attempt to erase a bad block "
2555 "at page 0x%08x\n", __func__, page);
2556 instr->state = MTD_ERASE_FAILED;
2557 goto erase_exit;
2558 }
2559
2560 /*
2561 * Invalidate the page cache, if we erase the block which
2562 * contains the current cached page
2563 */
2564 if (page <= chip->pagebuf && chip->pagebuf <
2565 (page + pages_per_block))
2566 chip->pagebuf = -1;
2567
2568 chip->erase_cmd(mtd, page & chip->pagemask);
2569
2570 status = chip->waitfunc(mtd, chip);
2571
2572 /*
2573 * See if operation failed and additional status checks are
2574 * available
2575 */
2576 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2577 status = chip->errstat(mtd, chip, FL_ERASING,
2578 status, page);
2579
2580 /* See if block erase succeeded */
2581 if (status & NAND_STATUS_FAIL) {
2582 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2583 "page 0x%08x\n", __func__, page);
2584 instr->state = MTD_ERASE_FAILED;
2585 instr->fail_addr =
2586 ((loff_t)page << chip->page_shift);
2587 goto erase_exit;
2588 }
2589
2590 /*
2591 * If BBT requires refresh, set the BBT rewrite flag to the
2592 * page being erased
2593 */
2594 if (bbt_masked_page != 0xffffffff &&
2595 (page & BBT_PAGE_MASK) == bbt_masked_page)
2596 rewrite_bbt[chipnr] =
2597 ((loff_t)page << chip->page_shift);
2598
2599 /* Increment page address and decrement length */
2600 len -= (1 << chip->phys_erase_shift);
2601 page += pages_per_block;
2602
2603 /* Check, if we cross a chip boundary */
2604 if (len && !(page & chip->pagemask)) {
2605 chipnr++;
2606 chip->select_chip(mtd, -1);
2607 chip->select_chip(mtd, chipnr);
2608
2609 /*
2610 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2611 * page mask to see if this BBT should be rewritten
2612 */
2613 if (bbt_masked_page != 0xffffffff &&
2614 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2615 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2616 BBT_PAGE_MASK;
2617 }
2618 }
2619 instr->state = MTD_ERASE_DONE;
2620
2621 erase_exit:
2622
2623 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2624
2625 /* Deselect and wake up anyone waiting on the device */
2626 nand_release_device(mtd);
2627
2628 /* Do call back function */
2629 if (!ret)
2630 mtd_erase_callback(instr);
2631
2632 /*
2633 * If BBT requires refresh and erase was successful, rewrite any
2634 * selected bad block tables
2635 */
2636 if (bbt_masked_page == 0xffffffff || ret)
2637 return ret;
2638
2639 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2640 if (!rewrite_bbt[chipnr])
2641 continue;
2642 /* update the BBT for chip */
2643 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2644 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2645 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2646 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2647 }
2648
2649 /* Return more or less happy */
2650 return ret;
2651}
2652
2653/**
2654 * nand_sync - [MTD Interface] sync
2655 * @mtd: MTD device structure
2656 *
2657 * Sync is actually a wait for chip ready function
2658 */
2659static void nand_sync(struct mtd_info *mtd)
2660{
2661 struct nand_chip *chip = mtd->priv;
2662
2663 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2664
2665 /* Grab the lock and see if the device is available */
2666 nand_get_device(chip, mtd, FL_SYNCING);
2667 /* Release it and go back */
2668 nand_release_device(mtd);
2669}
2670
2671/**
2672 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2673 * @mtd: MTD device structure
2674 * @offs: offset relative to mtd start
2675 */
2676static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2677{
2678 /* Check for invalid offset */
2679 if (offs > mtd->size)
2680 return -EINVAL;
2681
2682 return nand_block_checkbad(mtd, offs, 1, 0);
2683}
2684
2685/**
2686 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2687 * @mtd: MTD device structure
2688 * @ofs: offset relative to mtd start
2689 */
2690static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2691{
2692 struct nand_chip *chip = mtd->priv;
2693 int ret;
2694
2695 if ((ret = nand_block_isbad(mtd, ofs))) {
2696 /* If it was bad already, return success and do nothing. */
2697 if (ret > 0)
2698 return 0;
2699 return ret;
2700 }
2701
2702 return chip->block_markbad(mtd, ofs);
2703}
2704
2705/**
2706 * nand_suspend - [MTD Interface] Suspend the NAND flash
2707 * @mtd: MTD device structure
2708 */
2709static int nand_suspend(struct mtd_info *mtd)
2710{
2711 struct nand_chip *chip = mtd->priv;
2712
2713 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2714}
2715
2716/**
2717 * nand_resume - [MTD Interface] Resume the NAND flash
2718 * @mtd: MTD device structure
2719 */
2720static void nand_resume(struct mtd_info *mtd)
2721{
2722 struct nand_chip *chip = mtd->priv;
2723
2724 if (chip->state == FL_PM_SUSPENDED)
2725 nand_release_device(mtd);
2726 else
2727 printk(KERN_ERR "%s called for a chip which is not "
2728 "in suspended state\n", __func__);
2729}
2730
2731/*
2732 * Set default functions
2733 */
2734static void nand_set_defaults(struct nand_chip *chip, int busw)
2735{
2736 /* check for proper chip_delay setup, set 20us if not */
2737 if (!chip->chip_delay)
2738 chip->chip_delay = 20;
2739
2740 /* check, if a user supplied command function given */
2741 if (chip->cmdfunc == NULL)
2742 chip->cmdfunc = nand_command;
2743
2744 /* check, if a user supplied wait function given */
2745 if (chip->waitfunc == NULL)
2746 chip->waitfunc = nand_wait;
2747
2748 if (!chip->select_chip)
2749 chip->select_chip = nand_select_chip;
2750 if (!chip->read_byte)
2751 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2752 if (!chip->read_word)
2753 chip->read_word = nand_read_word;
2754 if (!chip->block_bad)
2755 chip->block_bad = nand_block_bad;
2756 if (!chip->block_markbad)
2757 chip->block_markbad = nand_default_block_markbad;
2758 if (!chip->write_buf)
2759 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2760 if (!chip->read_buf)
2761 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2762 if (!chip->verify_buf)
2763 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2764 if (!chip->scan_bbt)
2765 chip->scan_bbt = nand_default_bbt;
2766
2767 if (!chip->controller) {
2768 chip->controller = &chip->hwcontrol;
2769 spin_lock_init(&chip->controller->lock);
2770 init_waitqueue_head(&chip->controller->wq);
2771 }
2772
2773}
2774
2775/*
2776 * Get the flash and manufacturer id and lookup if the type is supported
2777 */
2778static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2779 struct nand_chip *chip,
2780 int busw, int *maf_id,
2781 struct nand_flash_dev *type)
2782{
2783 int i, dev_id, maf_idx;
2784 u8 id_data[8];
2785
2786 /* Select the device */
2787 chip->select_chip(mtd, 0);
2788
2789 /*
2790 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2791 * after power-up
2792 */
2793 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2794
2795 /* Send the command for reading device ID */
2796 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2797
2798 /* Read manufacturer and device IDs */
2799 *maf_id = chip->read_byte(mtd);
2800 dev_id = chip->read_byte(mtd);
2801
2802 /* Try again to make sure, as some systems the bus-hold or other
2803 * interface concerns can cause random data which looks like a
2804 * possibly credible NAND flash to appear. If the two results do
2805 * not match, ignore the device completely.
2806 */
2807
2808 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2809
2810 /* Read entire ID string */
2811
2812 for (i = 0; i < 8; i++)
2813 id_data[i] = chip->read_byte(mtd);
2814
2815 if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2816 printk(KERN_INFO "%s: second ID read did not match "
2817 "%02x,%02x against %02x,%02x\n", __func__,
2818 *maf_id, dev_id, id_data[0], id_data[1]);
2819 return ERR_PTR(-ENODEV);
2820 }
2821
2822 if (!type)
2823 type = nand_flash_ids;
2824
2825 for (; type->name != NULL; type++)
2826 if (dev_id == type->id)
2827 break;
2828
2829 if (!type->name)
2830 return ERR_PTR(-ENODEV);
2831
2832 if (!mtd->name)
2833 mtd->name = type->name;
2834
2835 chip->chipsize = (uint64_t)type->chipsize << 20;
2836
2837 /* Newer devices have all the information in additional id bytes */
2838 if (!type->pagesize) {
2839 int extid;
2840 /* The 3rd id byte holds MLC / multichip data */
2841 chip->cellinfo = id_data[2];
2842 /* The 4th id byte is the important one */
2843 extid = id_data[3];
2844
2845 /*
2846 * Field definitions are in the following datasheets:
2847 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2848 * New style (6 byte ID): Samsung K9GAG08U0D (p.40)
2849 *
2850 * Check for wraparound + Samsung ID + nonzero 6th byte
2851 * to decide what to do.
2852 */
2853 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2854 id_data[0] == NAND_MFR_SAMSUNG &&
2855 id_data[5] != 0x00) {
2856 /* Calc pagesize */
2857 mtd->writesize = 2048 << (extid & 0x03);
2858 extid >>= 2;
2859 /* Calc oobsize */
2860 mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2861 extid >>= 2;
2862 /* Calc blocksize */
2863 mtd->erasesize = (128 * 1024) <<
2864 (((extid >> 1) & 0x04) | (extid & 0x03));
2865 busw = 0;
2866 } else {
2867 /* Calc pagesize */
2868 mtd->writesize = 1024 << (extid & 0x03);
2869 extid >>= 2;
2870 /* Calc oobsize */
2871 mtd->oobsize = (8 << (extid & 0x01)) *
2872 (mtd->writesize >> 9);
2873 extid >>= 2;
2874 /* Calc blocksize. Blocksize is multiples of 64KiB */
2875 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2876 extid >>= 2;
2877 /* Get buswidth information */
2878 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2879 }
2880 } else {
2881 /*
2882 * Old devices have chip data hardcoded in the device id table
2883 */
2884 mtd->erasesize = type->erasesize;
2885 mtd->writesize = type->pagesize;
2886 mtd->oobsize = mtd->writesize / 32;
2887 busw = type->options & NAND_BUSWIDTH_16;
2888 }
2889
2890 /* Try to identify manufacturer */
2891 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2892 if (nand_manuf_ids[maf_idx].id == *maf_id)
2893 break;
2894 }
2895
2896 /*
2897 * Check, if buswidth is correct. Hardware drivers should set
2898 * chip correct !
2899 */
2900 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2901 printk(KERN_INFO "NAND device: Manufacturer ID:"
2902 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2903 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2904 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2905 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2906 busw ? 16 : 8);
2907 return ERR_PTR(-EINVAL);
2908 }
2909
2910 /* Calculate the address shift from the page size */
2911 chip->page_shift = ffs(mtd->writesize) - 1;
2912 /* Convert chipsize to number of pages per chip -1. */
2913 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2914
2915 chip->bbt_erase_shift = chip->phys_erase_shift =
2916 ffs(mtd->erasesize) - 1;
2917 if (chip->chipsize & 0xffffffff)
2918 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2919 else
2920 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2921
2922 /* Set the bad block position */
2923 if (!(busw & NAND_BUSWIDTH_16) && (*maf_id == NAND_MFR_STMICRO ||
2924 (*maf_id == NAND_MFR_SAMSUNG &&
2925 mtd->writesize == 512) ||
2926 *maf_id == NAND_MFR_AMD))
2927 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
2928 else
2929 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
2930
2931
2932 /* Get chip options, preserve non chip based options */
2933 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2934 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2935
2936 /*
2937 * Set chip as a default. Board drivers can override it, if necessary
2938 */
2939 chip->options |= NAND_NO_AUTOINCR;
2940
2941 /* Check if chip is a not a samsung device. Do not clear the
2942 * options for chips which are not having an extended id.
2943 */
2944 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2945 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2946
2947 /*
2948 * Bad block marker is stored in the last page of each block
2949 * on Samsung and Hynix MLC devices; stored in first two pages
2950 * of each block on Micron devices with 2KiB pages and on
2951 * SLC Samsung, Hynix, and AMD/Spansion. All others scan only
2952 * the first page.
2953 */
2954 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2955 (*maf_id == NAND_MFR_SAMSUNG ||
2956 *maf_id == NAND_MFR_HYNIX))
2957 chip->options |= NAND_BBT_SCANLASTPAGE;
2958 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2959 (*maf_id == NAND_MFR_SAMSUNG ||
2960 *maf_id == NAND_MFR_HYNIX ||
2961 *maf_id == NAND_MFR_AMD)) ||
2962 (mtd->writesize == 2048 &&
2963 *maf_id == NAND_MFR_MICRON))
2964 chip->options |= NAND_BBT_SCAN2NDPAGE;
2965
2966
2967 /* Check for AND chips with 4 page planes */
2968 if (chip->options & NAND_4PAGE_ARRAY)
2969 chip->erase_cmd = multi_erase_cmd;
2970 else
2971 chip->erase_cmd = single_erase_cmd;
2972
2973 /* Do not replace user supplied command function ! */
2974 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2975 chip->cmdfunc = nand_command_lp;
2976
2977 printk(KERN_INFO "NAND device: Manufacturer ID:"
2978 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2979 nand_manuf_ids[maf_idx].name, type->name);
2980
2981 return type;
2982}
2983
2984/**
2985 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2986 * @mtd: MTD device structure
2987 * @maxchips: Number of chips to scan for
2988 * @table: Alternative NAND ID table
2989 *
2990 * This is the first phase of the normal nand_scan() function. It
2991 * reads the flash ID and sets up MTD fields accordingly.
2992 *
2993 * The mtd->owner field must be set to the module of the caller.
2994 */
2995int nand_scan_ident(struct mtd_info *mtd, int maxchips,
2996 struct nand_flash_dev *table)
2997{
2998 int i, busw, nand_maf_id;
2999 struct nand_chip *chip = mtd->priv;
3000 struct nand_flash_dev *type;
3001
3002 /* Get buswidth to select the correct functions */
3003 busw = chip->options & NAND_BUSWIDTH_16;
3004 /* Set the default functions */
3005 nand_set_defaults(chip, busw);
3006
3007 /* Read the flash type */
3008 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
3009
3010 if (IS_ERR(type)) {
3011 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3012 printk(KERN_WARNING "No NAND device found.\n");
3013 chip->select_chip(mtd, -1);
3014 return PTR_ERR(type);
3015 }
3016
3017 /* Check for a chip array */
3018 for (i = 1; i < maxchips; i++) {
3019 chip->select_chip(mtd, i);
3020 /* See comment in nand_get_flash_type for reset */
3021 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3022 /* Send the command for reading device ID */
3023 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3024 /* Read manufacturer and device IDs */
3025 if (nand_maf_id != chip->read_byte(mtd) ||
3026 type->id != chip->read_byte(mtd))
3027 break;
3028 }
3029 if (i > 1)
3030 printk(KERN_INFO "%d NAND chips detected\n", i);
3031
3032 /* Store the number of chips and calc total size for mtd */
3033 chip->numchips = i;
3034 mtd->size = i * chip->chipsize;
3035
3036 return 0;
3037}
3038
3039
3040/**
3041 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3042 * @mtd: MTD device structure
3043 *
3044 * This is the second phase of the normal nand_scan() function. It
3045 * fills out all the uninitialized function pointers with the defaults
3046 * and scans for a bad block table if appropriate.
3047 */
3048int nand_scan_tail(struct mtd_info *mtd)
3049{
3050 int i;
3051 struct nand_chip *chip = mtd->priv;
3052
3053 if (!(chip->options & NAND_OWN_BUFFERS))
3054 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3055 if (!chip->buffers)
3056 return -ENOMEM;
3057
3058 /* Set the internal oob buffer location, just after the page data */
3059 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3060
3061 /*
3062 * If no default placement scheme is given, select an appropriate one
3063 */
3064 if (!chip->ecc.layout) {
3065 switch (mtd->oobsize) {
3066 case 8:
3067 chip->ecc.layout = &nand_oob_8;
3068 break;
3069 case 16:
3070 chip->ecc.layout = &nand_oob_16;
3071 break;
3072 case 64:
3073 chip->ecc.layout = &nand_oob_64;
3074 break;
3075 case 128:
3076 chip->ecc.layout = &nand_oob_128;
3077 break;
3078 default:
3079 printk(KERN_WARNING "No oob scheme defined for "
3080 "oobsize %d\n", mtd->oobsize);
3081 BUG();
3082 }
3083 }
3084
3085 if (!chip->write_page)
3086 chip->write_page = nand_write_page;
3087
3088 /*
3089 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3090 * selected and we have 256 byte pagesize fallback to software ECC
3091 */
3092
3093 switch (chip->ecc.mode) {
3094 case NAND_ECC_HW_OOB_FIRST:
3095 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3096 if (!chip->ecc.calculate || !chip->ecc.correct ||
3097 !chip->ecc.hwctl) {
3098 printk(KERN_WARNING "No ECC functions supplied; "
3099 "Hardware ECC not possible\n");
3100 BUG();
3101 }
3102 if (!chip->ecc.read_page)
3103 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3104
3105 case NAND_ECC_HW:
3106 /* Use standard hwecc read page function ? */
3107 if (!chip->ecc.read_page)
3108 chip->ecc.read_page = nand_read_page_hwecc;
3109 if (!chip->ecc.write_page)
3110 chip->ecc.write_page = nand_write_page_hwecc;
3111 if (!chip->ecc.read_page_raw)
3112 chip->ecc.read_page_raw = nand_read_page_raw;
3113 if (!chip->ecc.write_page_raw)
3114 chip->ecc.write_page_raw = nand_write_page_raw;
3115 if (!chip->ecc.read_oob)
3116 chip->ecc.read_oob = nand_read_oob_std;
3117 if (!chip->ecc.write_oob)
3118 chip->ecc.write_oob = nand_write_oob_std;
3119
3120 case NAND_ECC_HW_SYNDROME:
3121 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3122 !chip->ecc.hwctl) &&
3123 (!chip->ecc.read_page ||
3124 chip->ecc.read_page == nand_read_page_hwecc ||
3125 !chip->ecc.write_page ||
3126 chip->ecc.write_page == nand_write_page_hwecc)) {
3127 printk(KERN_WARNING "No ECC functions supplied; "
3128 "Hardware ECC not possible\n");
3129 BUG();
3130 }
3131 /* Use standard syndrome read/write page function ? */
3132 if (!chip->ecc.read_page)
3133 chip->ecc.read_page = nand_read_page_syndrome;
3134 if (!chip->ecc.write_page)
3135 chip->ecc.write_page = nand_write_page_syndrome;
3136 if (!chip->ecc.read_page_raw)
3137 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3138 if (!chip->ecc.write_page_raw)
3139 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3140 if (!chip->ecc.read_oob)
3141 chip->ecc.read_oob = nand_read_oob_syndrome;
3142 if (!chip->ecc.write_oob)
3143 chip->ecc.write_oob = nand_write_oob_syndrome;
3144
3145 if (mtd->writesize >= chip->ecc.size)
3146 break;
3147 printk(KERN_WARNING "%d byte HW ECC not possible on "
3148 "%d byte page size, fallback to SW ECC\n",
3149 chip->ecc.size, mtd->writesize);
3150 chip->ecc.mode = NAND_ECC_SOFT;
3151
3152 case NAND_ECC_SOFT:
3153 chip->ecc.calculate = nand_calculate_ecc;
3154 chip->ecc.correct = nand_correct_data;
3155 chip->ecc.read_page = nand_read_page_swecc;
3156 chip->ecc.read_subpage = nand_read_subpage;
3157 chip->ecc.write_page = nand_write_page_swecc;
3158 chip->ecc.read_page_raw = nand_read_page_raw;
3159 chip->ecc.write_page_raw = nand_write_page_raw;
3160 chip->ecc.read_oob = nand_read_oob_std;
3161 chip->ecc.write_oob = nand_write_oob_std;
3162 if (!chip->ecc.size)
3163 chip->ecc.size = 256;
3164 chip->ecc.bytes = 3;
3165 break;
3166
3167 case NAND_ECC_NONE:
3168 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3169 "This is not recommended !!\n");
3170 chip->ecc.read_page = nand_read_page_raw;
3171 chip->ecc.write_page = nand_write_page_raw;
3172 chip->ecc.read_oob = nand_read_oob_std;
3173 chip->ecc.read_page_raw = nand_read_page_raw;
3174 chip->ecc.write_page_raw = nand_write_page_raw;
3175 chip->ecc.write_oob = nand_write_oob_std;
3176 chip->ecc.size = mtd->writesize;
3177 chip->ecc.bytes = 0;
3178 break;
3179
3180 default:
3181 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3182 chip->ecc.mode);
3183 BUG();
3184 }
3185
3186 /*
3187 * The number of bytes available for a client to place data into
3188 * the out of band area
3189 */
3190 chip->ecc.layout->oobavail = 0;
3191 for (i = 0; chip->ecc.layout->oobfree[i].length
3192 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3193 chip->ecc.layout->oobavail +=
3194 chip->ecc.layout->oobfree[i].length;
3195 mtd->oobavail = chip->ecc.layout->oobavail;
3196
3197 /*
3198 * Set the number of read / write steps for one page depending on ECC
3199 * mode
3200 */
3201 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3202 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3203 printk(KERN_WARNING "Invalid ecc parameters\n");
3204 BUG();
3205 }
3206 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3207
3208 /*
3209 * Allow subpage writes up to ecc.steps. Not possible for MLC
3210 * FLASH.
3211 */
3212 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3213 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3214 switch(chip->ecc.steps) {
3215 case 2:
3216 mtd->subpage_sft = 1;
3217 break;
3218 case 4:
3219 case 8:
3220 case 16:
3221 mtd->subpage_sft = 2;
3222 break;
3223 }
3224 }
3225 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3226
3227 /* Initialize state */
3228 chip->state = FL_READY;
3229
3230 /* De-select the device */
3231 chip->select_chip(mtd, -1);
3232
3233 /* Invalidate the pagebuffer reference */
3234 chip->pagebuf = -1;
3235
3236 /* Fill in remaining MTD driver data */
3237 mtd->type = MTD_NANDFLASH;
3238 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3239 MTD_CAP_NANDFLASH;
3240 mtd->erase = nand_erase;
3241 mtd->point = NULL;
3242 mtd->unpoint = NULL;
3243 mtd->read = nand_read;
3244 mtd->write = nand_write;
3245 mtd->panic_write = panic_nand_write;
3246 mtd->read_oob = nand_read_oob;
3247 mtd->write_oob = nand_write_oob;
3248 mtd->sync = nand_sync;
3249 mtd->lock = NULL;
3250 mtd->unlock = NULL;
3251 mtd->suspend = nand_suspend;
3252 mtd->resume = nand_resume;
3253 mtd->block_isbad = nand_block_isbad;
3254 mtd->block_markbad = nand_block_markbad;
3255
3256 /* propagate ecc.layout to mtd_info */
3257 mtd->ecclayout = chip->ecc.layout;
3258
3259 /* Check, if we should skip the bad block table scan */
3260 if (chip->options & NAND_SKIP_BBTSCAN)
3261 return 0;
3262
3263 /* Build bad block table */
3264 return chip->scan_bbt(mtd);
3265}
3266
3267/* is_module_text_address() isn't exported, and it's mostly a pointless
3268 test if this is a module _anyway_ -- they'd have to try _really_ hard
3269 to call us from in-kernel code if the core NAND support is modular. */
3270#ifdef MODULE
3271#define caller_is_module() (1)
3272#else
3273#define caller_is_module() \
3274 is_module_text_address((unsigned long)__builtin_return_address(0))
3275#endif
3276
3277/**
3278 * nand_scan - [NAND Interface] Scan for the NAND device
3279 * @mtd: MTD device structure
3280 * @maxchips: Number of chips to scan for
3281 *
3282 * This fills out all the uninitialized function pointers
3283 * with the defaults.
3284 * The flash ID is read and the mtd/chip structures are
3285 * filled with the appropriate values.
3286 * The mtd->owner field must be set to the module of the caller
3287 *
3288 */
3289int nand_scan(struct mtd_info *mtd, int maxchips)
3290{
3291 int ret;
3292
3293 /* Many callers got this wrong, so check for it for a while... */
3294 if (!mtd->owner && caller_is_module()) {
3295 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3296 __func__);
3297 BUG();
3298 }
3299
3300 ret = nand_scan_ident(mtd, maxchips, NULL);
3301 if (!ret)
3302 ret = nand_scan_tail(mtd);
3303 return ret;
3304}
3305
3306/**
3307 * nand_release - [NAND Interface] Free resources held by the NAND device
3308 * @mtd: MTD device structure
3309*/
3310void nand_release(struct mtd_info *mtd)
3311{
3312 struct nand_chip *chip = mtd->priv;
3313
3314#ifdef CONFIG_MTD_PARTITIONS
3315 /* Deregister partitions */
3316 del_mtd_partitions(mtd);
3317#endif
3318 /* Deregister the device */
3319 del_mtd_device(mtd);
3320
3321 /* Free bad block table memory */
3322 kfree(chip->bbt);
3323 if (!(chip->options & NAND_OWN_BUFFERS))
3324 kfree(chip->buffers);
3325}
3326
3327EXPORT_SYMBOL_GPL(nand_lock);
3328EXPORT_SYMBOL_GPL(nand_unlock);
3329EXPORT_SYMBOL_GPL(nand_scan);
3330EXPORT_SYMBOL_GPL(nand_scan_ident);
3331EXPORT_SYMBOL_GPL(nand_scan_tail);
3332EXPORT_SYMBOL_GPL(nand_release);
3333
3334static int __init nand_base_init(void)
3335{
3336 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3337 return 0;
3338}
3339
3340static void __exit nand_base_exit(void)
3341{
3342 led_trigger_unregister_simple(nand_led_trigger);
3343}
3344
3345module_init(nand_base_init);
3346module_exit(nand_base_exit);
3347
3348MODULE_LICENSE("GPL");
3349MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3350MODULE_DESCRIPTION("Generic NAND flash driver code");