]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - drivers/mtd/nand/nand_base.c
mtd: nand: extend NAND flash detection to new MLC chips
[net-next-2.6.git] / drivers / mtd / nand / nand_base.c
... / ...
CommitLineData
1/*
2 * drivers/mtd/nand.c
3 *
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
8 *
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
11 *
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
14 *
15 * Credits:
16 * David Woodhouse for adding multichip support
17 *
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
20 *
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/delay.h>
37#include <linux/errno.h>
38#include <linux/err.h>
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/mtd/mtd.h>
43#include <linux/mtd/nand.h>
44#include <linux/mtd/nand_ecc.h>
45#include <linux/mtd/compatmac.h>
46#include <linux/interrupt.h>
47#include <linux/bitops.h>
48#include <linux/leds.h>
49#include <asm/io.h>
50
51#ifdef CONFIG_MTD_PARTITIONS
52#include <linux/mtd/partitions.h>
53#endif
54
55/* Define default oob placement schemes for large and small page devices */
56static struct nand_ecclayout nand_oob_8 = {
57 .eccbytes = 3,
58 .eccpos = {0, 1, 2},
59 .oobfree = {
60 {.offset = 3,
61 .length = 2},
62 {.offset = 6,
63 .length = 2}}
64};
65
66static struct nand_ecclayout nand_oob_16 = {
67 .eccbytes = 6,
68 .eccpos = {0, 1, 2, 3, 6, 7},
69 .oobfree = {
70 {.offset = 8,
71 . length = 8}}
72};
73
74static struct nand_ecclayout nand_oob_64 = {
75 .eccbytes = 24,
76 .eccpos = {
77 40, 41, 42, 43, 44, 45, 46, 47,
78 48, 49, 50, 51, 52, 53, 54, 55,
79 56, 57, 58, 59, 60, 61, 62, 63},
80 .oobfree = {
81 {.offset = 2,
82 .length = 38}}
83};
84
85static struct nand_ecclayout nand_oob_128 = {
86 .eccbytes = 48,
87 .eccpos = {
88 80, 81, 82, 83, 84, 85, 86, 87,
89 88, 89, 90, 91, 92, 93, 94, 95,
90 96, 97, 98, 99, 100, 101, 102, 103,
91 104, 105, 106, 107, 108, 109, 110, 111,
92 112, 113, 114, 115, 116, 117, 118, 119,
93 120, 121, 122, 123, 124, 125, 126, 127},
94 .oobfree = {
95 {.offset = 2,
96 .length = 78}}
97};
98
99static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
100 int new_state);
101
102static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
103 struct mtd_oob_ops *ops);
104
105/*
106 * For devices which display every fart in the system on a separate LED. Is
107 * compiled away when LED support is disabled.
108 */
109DEFINE_LED_TRIGGER(nand_led_trigger);
110
111static int check_offs_len(struct mtd_info *mtd,
112 loff_t ofs, uint64_t len)
113{
114 struct nand_chip *chip = mtd->priv;
115 int ret = 0;
116
117 /* Start address must align on block boundary */
118 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
119 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
120 ret = -EINVAL;
121 }
122
123 /* Length must align on block boundary */
124 if (len & ((1 << chip->phys_erase_shift) - 1)) {
125 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
126 __func__);
127 ret = -EINVAL;
128 }
129
130 /* Do not allow past end of device */
131 if (ofs + len > mtd->size) {
132 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
133 __func__);
134 ret = -EINVAL;
135 }
136
137 return ret;
138}
139
140/**
141 * nand_release_device - [GENERIC] release chip
142 * @mtd: MTD device structure
143 *
144 * Deselect, release chip lock and wake up anyone waiting on the device
145 */
146static void nand_release_device(struct mtd_info *mtd)
147{
148 struct nand_chip *chip = mtd->priv;
149
150 /* De-select the NAND device */
151 chip->select_chip(mtd, -1);
152
153 /* Release the controller and the chip */
154 spin_lock(&chip->controller->lock);
155 chip->controller->active = NULL;
156 chip->state = FL_READY;
157 wake_up(&chip->controller->wq);
158 spin_unlock(&chip->controller->lock);
159}
160
161/**
162 * nand_read_byte - [DEFAULT] read one byte from the chip
163 * @mtd: MTD device structure
164 *
165 * Default read function for 8bit buswith
166 */
167static uint8_t nand_read_byte(struct mtd_info *mtd)
168{
169 struct nand_chip *chip = mtd->priv;
170 return readb(chip->IO_ADDR_R);
171}
172
173/**
174 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
175 * @mtd: MTD device structure
176 *
177 * Default read function for 16bit buswith with
178 * endianess conversion
179 */
180static uint8_t nand_read_byte16(struct mtd_info *mtd)
181{
182 struct nand_chip *chip = mtd->priv;
183 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
184}
185
186/**
187 * nand_read_word - [DEFAULT] read one word from the chip
188 * @mtd: MTD device structure
189 *
190 * Default read function for 16bit buswith without
191 * endianess conversion
192 */
193static u16 nand_read_word(struct mtd_info *mtd)
194{
195 struct nand_chip *chip = mtd->priv;
196 return readw(chip->IO_ADDR_R);
197}
198
199/**
200 * nand_select_chip - [DEFAULT] control CE line
201 * @mtd: MTD device structure
202 * @chipnr: chipnumber to select, -1 for deselect
203 *
204 * Default select function for 1 chip devices.
205 */
206static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207{
208 struct nand_chip *chip = mtd->priv;
209
210 switch (chipnr) {
211 case -1:
212 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
213 break;
214 case 0:
215 break;
216
217 default:
218 BUG();
219 }
220}
221
222/**
223 * nand_write_buf - [DEFAULT] write buffer to chip
224 * @mtd: MTD device structure
225 * @buf: data buffer
226 * @len: number of bytes to write
227 *
228 * Default write function for 8bit buswith
229 */
230static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231{
232 int i;
233 struct nand_chip *chip = mtd->priv;
234
235 for (i = 0; i < len; i++)
236 writeb(buf[i], chip->IO_ADDR_W);
237}
238
239/**
240 * nand_read_buf - [DEFAULT] read chip data into buffer
241 * @mtd: MTD device structure
242 * @buf: buffer to store date
243 * @len: number of bytes to read
244 *
245 * Default read function for 8bit buswith
246 */
247static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248{
249 int i;
250 struct nand_chip *chip = mtd->priv;
251
252 for (i = 0; i < len; i++)
253 buf[i] = readb(chip->IO_ADDR_R);
254}
255
256/**
257 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
258 * @mtd: MTD device structure
259 * @buf: buffer containing the data to compare
260 * @len: number of bytes to compare
261 *
262 * Default verify function for 8bit buswith
263 */
264static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265{
266 int i;
267 struct nand_chip *chip = mtd->priv;
268
269 for (i = 0; i < len; i++)
270 if (buf[i] != readb(chip->IO_ADDR_R))
271 return -EFAULT;
272 return 0;
273}
274
275/**
276 * nand_write_buf16 - [DEFAULT] write buffer to chip
277 * @mtd: MTD device structure
278 * @buf: data buffer
279 * @len: number of bytes to write
280 *
281 * Default write function for 16bit buswith
282 */
283static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284{
285 int i;
286 struct nand_chip *chip = mtd->priv;
287 u16 *p = (u16 *) buf;
288 len >>= 1;
289
290 for (i = 0; i < len; i++)
291 writew(p[i], chip->IO_ADDR_W);
292
293}
294
295/**
296 * nand_read_buf16 - [DEFAULT] read chip data into buffer
297 * @mtd: MTD device structure
298 * @buf: buffer to store date
299 * @len: number of bytes to read
300 *
301 * Default read function for 16bit buswith
302 */
303static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304{
305 int i;
306 struct nand_chip *chip = mtd->priv;
307 u16 *p = (u16 *) buf;
308 len >>= 1;
309
310 for (i = 0; i < len; i++)
311 p[i] = readw(chip->IO_ADDR_R);
312}
313
314/**
315 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
316 * @mtd: MTD device structure
317 * @buf: buffer containing the data to compare
318 * @len: number of bytes to compare
319 *
320 * Default verify function for 16bit buswith
321 */
322static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323{
324 int i;
325 struct nand_chip *chip = mtd->priv;
326 u16 *p = (u16 *) buf;
327 len >>= 1;
328
329 for (i = 0; i < len; i++)
330 if (p[i] != readw(chip->IO_ADDR_R))
331 return -EFAULT;
332
333 return 0;
334}
335
336/**
337 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
338 * @mtd: MTD device structure
339 * @ofs: offset from device start
340 * @getchip: 0, if the chip is already selected
341 *
342 * Check, if the block is bad.
343 */
344static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345{
346 int page, chipnr, res = 0;
347 struct nand_chip *chip = mtd->priv;
348 u16 bad;
349
350 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
351
352 if (getchip) {
353 chipnr = (int)(ofs >> chip->chip_shift);
354
355 nand_get_device(chip, mtd, FL_READING);
356
357 /* Select the NAND device */
358 chip->select_chip(mtd, chipnr);
359 }
360
361 if (chip->options & NAND_BUSWIDTH_16) {
362 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
363 page);
364 bad = cpu_to_le16(chip->read_word(mtd));
365 if (chip->badblockpos & 0x1)
366 bad >>= 8;
367 else
368 bad &= 0xFF;
369 } else {
370 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
371 bad = chip->read_byte(mtd);
372 }
373
374 if (likely(chip->badblockbits == 8))
375 res = bad != 0xFF;
376 else
377 res = hweight8(bad) < chip->badblockbits;
378
379 if (getchip)
380 nand_release_device(mtd);
381
382 return res;
383}
384
385/**
386 * nand_default_block_markbad - [DEFAULT] mark a block bad
387 * @mtd: MTD device structure
388 * @ofs: offset from device start
389 *
390 * This is the default implementation, which can be overridden by
391 * a hardware specific driver.
392*/
393static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
394{
395 struct nand_chip *chip = mtd->priv;
396 uint8_t buf[2] = { 0, 0 };
397 int block, ret;
398
399 /* Get block number */
400 block = (int)(ofs >> chip->bbt_erase_shift);
401 if (chip->bbt)
402 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
403
404 /* Do we have a flash based bad block table ? */
405 if (chip->options & NAND_USE_FLASH_BBT)
406 ret = nand_update_bbt(mtd, ofs);
407 else {
408 /* We write two bytes, so we dont have to mess with 16 bit
409 * access
410 */
411 nand_get_device(chip, mtd, FL_WRITING);
412 ofs += mtd->oobsize;
413 chip->ops.len = chip->ops.ooblen = 2;
414 chip->ops.datbuf = NULL;
415 chip->ops.oobbuf = buf;
416 chip->ops.ooboffs = chip->badblockpos & ~0x01;
417
418 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
419 nand_release_device(mtd);
420 }
421 if (!ret)
422 mtd->ecc_stats.badblocks++;
423
424 return ret;
425}
426
427/**
428 * nand_check_wp - [GENERIC] check if the chip is write protected
429 * @mtd: MTD device structure
430 * Check, if the device is write protected
431 *
432 * The function expects, that the device is already selected
433 */
434static int nand_check_wp(struct mtd_info *mtd)
435{
436 struct nand_chip *chip = mtd->priv;
437
438 /* broken xD cards report WP despite being writable */
439 if (chip->options & NAND_BROKEN_XD)
440 return 0;
441
442 /* Check the WP bit */
443 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
444 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
445}
446
447/**
448 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
449 * @mtd: MTD device structure
450 * @ofs: offset from device start
451 * @getchip: 0, if the chip is already selected
452 * @allowbbt: 1, if its allowed to access the bbt area
453 *
454 * Check, if the block is bad. Either by reading the bad block table or
455 * calling of the scan function.
456 */
457static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
458 int allowbbt)
459{
460 struct nand_chip *chip = mtd->priv;
461
462 if (!chip->bbt)
463 return chip->block_bad(mtd, ofs, getchip);
464
465 /* Return info from the table */
466 return nand_isbad_bbt(mtd, ofs, allowbbt);
467}
468
469/**
470 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
471 * @mtd: MTD device structure
472 * @timeo: Timeout
473 *
474 * Helper function for nand_wait_ready used when needing to wait in interrupt
475 * context.
476 */
477static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
478{
479 struct nand_chip *chip = mtd->priv;
480 int i;
481
482 /* Wait for the device to get ready */
483 for (i = 0; i < timeo; i++) {
484 if (chip->dev_ready(mtd))
485 break;
486 touch_softlockup_watchdog();
487 mdelay(1);
488 }
489}
490
491/*
492 * Wait for the ready pin, after a command
493 * The timeout is catched later.
494 */
495void nand_wait_ready(struct mtd_info *mtd)
496{
497 struct nand_chip *chip = mtd->priv;
498 unsigned long timeo = jiffies + 2;
499
500 /* 400ms timeout */
501 if (in_interrupt() || oops_in_progress)
502 return panic_nand_wait_ready(mtd, 400);
503
504 led_trigger_event(nand_led_trigger, LED_FULL);
505 /* wait until command is processed or timeout occures */
506 do {
507 if (chip->dev_ready(mtd))
508 break;
509 touch_softlockup_watchdog();
510 } while (time_before(jiffies, timeo));
511 led_trigger_event(nand_led_trigger, LED_OFF);
512}
513EXPORT_SYMBOL_GPL(nand_wait_ready);
514
515/**
516 * nand_command - [DEFAULT] Send command to NAND device
517 * @mtd: MTD device structure
518 * @command: the command to be sent
519 * @column: the column address for this command, -1 if none
520 * @page_addr: the page address for this command, -1 if none
521 *
522 * Send command to NAND device. This function is used for small page
523 * devices (256/512 Bytes per page)
524 */
525static void nand_command(struct mtd_info *mtd, unsigned int command,
526 int column, int page_addr)
527{
528 register struct nand_chip *chip = mtd->priv;
529 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
530
531 /*
532 * Write out the command to the device.
533 */
534 if (command == NAND_CMD_SEQIN) {
535 int readcmd;
536
537 if (column >= mtd->writesize) {
538 /* OOB area */
539 column -= mtd->writesize;
540 readcmd = NAND_CMD_READOOB;
541 } else if (column < 256) {
542 /* First 256 bytes --> READ0 */
543 readcmd = NAND_CMD_READ0;
544 } else {
545 column -= 256;
546 readcmd = NAND_CMD_READ1;
547 }
548 chip->cmd_ctrl(mtd, readcmd, ctrl);
549 ctrl &= ~NAND_CTRL_CHANGE;
550 }
551 chip->cmd_ctrl(mtd, command, ctrl);
552
553 /*
554 * Address cycle, when necessary
555 */
556 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
557 /* Serially input address */
558 if (column != -1) {
559 /* Adjust columns for 16 bit buswidth */
560 if (chip->options & NAND_BUSWIDTH_16)
561 column >>= 1;
562 chip->cmd_ctrl(mtd, column, ctrl);
563 ctrl &= ~NAND_CTRL_CHANGE;
564 }
565 if (page_addr != -1) {
566 chip->cmd_ctrl(mtd, page_addr, ctrl);
567 ctrl &= ~NAND_CTRL_CHANGE;
568 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
569 /* One more address cycle for devices > 32MiB */
570 if (chip->chipsize > (32 << 20))
571 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
572 }
573 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
574
575 /*
576 * program and erase have their own busy handlers
577 * status and sequential in needs no delay
578 */
579 switch (command) {
580
581 case NAND_CMD_PAGEPROG:
582 case NAND_CMD_ERASE1:
583 case NAND_CMD_ERASE2:
584 case NAND_CMD_SEQIN:
585 case NAND_CMD_STATUS:
586 return;
587
588 case NAND_CMD_RESET:
589 if (chip->dev_ready)
590 break;
591 udelay(chip->chip_delay);
592 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
593 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
594 chip->cmd_ctrl(mtd,
595 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
596 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
597 return;
598
599 /* This applies to read commands */
600 default:
601 /*
602 * If we don't have access to the busy pin, we apply the given
603 * command delay
604 */
605 if (!chip->dev_ready) {
606 udelay(chip->chip_delay);
607 return;
608 }
609 }
610 /* Apply this short delay always to ensure that we do wait tWB in
611 * any case on any machine. */
612 ndelay(100);
613
614 nand_wait_ready(mtd);
615}
616
617/**
618 * nand_command_lp - [DEFAULT] Send command to NAND large page device
619 * @mtd: MTD device structure
620 * @command: the command to be sent
621 * @column: the column address for this command, -1 if none
622 * @page_addr: the page address for this command, -1 if none
623 *
624 * Send command to NAND device. This is the version for the new large page
625 * devices We dont have the separate regions as we have in the small page
626 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
627 */
628static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
629 int column, int page_addr)
630{
631 register struct nand_chip *chip = mtd->priv;
632
633 /* Emulate NAND_CMD_READOOB */
634 if (command == NAND_CMD_READOOB) {
635 column += mtd->writesize;
636 command = NAND_CMD_READ0;
637 }
638
639 /* Command latch cycle */
640 chip->cmd_ctrl(mtd, command & 0xff,
641 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
642
643 if (column != -1 || page_addr != -1) {
644 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
645
646 /* Serially input address */
647 if (column != -1) {
648 /* Adjust columns for 16 bit buswidth */
649 if (chip->options & NAND_BUSWIDTH_16)
650 column >>= 1;
651 chip->cmd_ctrl(mtd, column, ctrl);
652 ctrl &= ~NAND_CTRL_CHANGE;
653 chip->cmd_ctrl(mtd, column >> 8, ctrl);
654 }
655 if (page_addr != -1) {
656 chip->cmd_ctrl(mtd, page_addr, ctrl);
657 chip->cmd_ctrl(mtd, page_addr >> 8,
658 NAND_NCE | NAND_ALE);
659 /* One more address cycle for devices > 128MiB */
660 if (chip->chipsize > (128 << 20))
661 chip->cmd_ctrl(mtd, page_addr >> 16,
662 NAND_NCE | NAND_ALE);
663 }
664 }
665 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
666
667 /*
668 * program and erase have their own busy handlers
669 * status, sequential in, and deplete1 need no delay
670 */
671 switch (command) {
672
673 case NAND_CMD_CACHEDPROG:
674 case NAND_CMD_PAGEPROG:
675 case NAND_CMD_ERASE1:
676 case NAND_CMD_ERASE2:
677 case NAND_CMD_SEQIN:
678 case NAND_CMD_RNDIN:
679 case NAND_CMD_STATUS:
680 case NAND_CMD_DEPLETE1:
681 return;
682
683 /*
684 * read error status commands require only a short delay
685 */
686 case NAND_CMD_STATUS_ERROR:
687 case NAND_CMD_STATUS_ERROR0:
688 case NAND_CMD_STATUS_ERROR1:
689 case NAND_CMD_STATUS_ERROR2:
690 case NAND_CMD_STATUS_ERROR3:
691 udelay(chip->chip_delay);
692 return;
693
694 case NAND_CMD_RESET:
695 if (chip->dev_ready)
696 break;
697 udelay(chip->chip_delay);
698 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
699 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
700 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
701 NAND_NCE | NAND_CTRL_CHANGE);
702 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
703 return;
704
705 case NAND_CMD_RNDOUT:
706 /* No ready / busy check necessary */
707 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
708 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
709 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
710 NAND_NCE | NAND_CTRL_CHANGE);
711 return;
712
713 case NAND_CMD_READ0:
714 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
715 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
716 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
717 NAND_NCE | NAND_CTRL_CHANGE);
718
719 /* This applies to read commands */
720 default:
721 /*
722 * If we don't have access to the busy pin, we apply the given
723 * command delay
724 */
725 if (!chip->dev_ready) {
726 udelay(chip->chip_delay);
727 return;
728 }
729 }
730
731 /* Apply this short delay always to ensure that we do wait tWB in
732 * any case on any machine. */
733 ndelay(100);
734
735 nand_wait_ready(mtd);
736}
737
738/**
739 * panic_nand_get_device - [GENERIC] Get chip for selected access
740 * @chip: the nand chip descriptor
741 * @mtd: MTD device structure
742 * @new_state: the state which is requested
743 *
744 * Used when in panic, no locks are taken.
745 */
746static void panic_nand_get_device(struct nand_chip *chip,
747 struct mtd_info *mtd, int new_state)
748{
749 /* Hardware controller shared among independend devices */
750 chip->controller->active = chip;
751 chip->state = new_state;
752}
753
754/**
755 * nand_get_device - [GENERIC] Get chip for selected access
756 * @chip: the nand chip descriptor
757 * @mtd: MTD device structure
758 * @new_state: the state which is requested
759 *
760 * Get the device and lock it for exclusive access
761 */
762static int
763nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
764{
765 spinlock_t *lock = &chip->controller->lock;
766 wait_queue_head_t *wq = &chip->controller->wq;
767 DECLARE_WAITQUEUE(wait, current);
768 retry:
769 spin_lock(lock);
770
771 /* Hardware controller shared among independent devices */
772 if (!chip->controller->active)
773 chip->controller->active = chip;
774
775 if (chip->controller->active == chip && chip->state == FL_READY) {
776 chip->state = new_state;
777 spin_unlock(lock);
778 return 0;
779 }
780 if (new_state == FL_PM_SUSPENDED) {
781 if (chip->controller->active->state == FL_PM_SUSPENDED) {
782 chip->state = FL_PM_SUSPENDED;
783 spin_unlock(lock);
784 return 0;
785 }
786 }
787 set_current_state(TASK_UNINTERRUPTIBLE);
788 add_wait_queue(wq, &wait);
789 spin_unlock(lock);
790 schedule();
791 remove_wait_queue(wq, &wait);
792 goto retry;
793}
794
795/**
796 * panic_nand_wait - [GENERIC] wait until the command is done
797 * @mtd: MTD device structure
798 * @chip: NAND chip structure
799 * @timeo: Timeout
800 *
801 * Wait for command done. This is a helper function for nand_wait used when
802 * we are in interrupt context. May happen when in panic and trying to write
803 * an oops trough mtdoops.
804 */
805static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
806 unsigned long timeo)
807{
808 int i;
809 for (i = 0; i < timeo; i++) {
810 if (chip->dev_ready) {
811 if (chip->dev_ready(mtd))
812 break;
813 } else {
814 if (chip->read_byte(mtd) & NAND_STATUS_READY)
815 break;
816 }
817 mdelay(1);
818 }
819}
820
821/**
822 * nand_wait - [DEFAULT] wait until the command is done
823 * @mtd: MTD device structure
824 * @chip: NAND chip structure
825 *
826 * Wait for command done. This applies to erase and program only
827 * Erase can take up to 400ms and program up to 20ms according to
828 * general NAND and SmartMedia specs
829 */
830static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
831{
832
833 unsigned long timeo = jiffies;
834 int status, state = chip->state;
835
836 if (state == FL_ERASING)
837 timeo += (HZ * 400) / 1000;
838 else
839 timeo += (HZ * 20) / 1000;
840
841 led_trigger_event(nand_led_trigger, LED_FULL);
842
843 /* Apply this short delay always to ensure that we do wait tWB in
844 * any case on any machine. */
845 ndelay(100);
846
847 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
848 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
849 else
850 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
851
852 if (in_interrupt() || oops_in_progress)
853 panic_nand_wait(mtd, chip, timeo);
854 else {
855 while (time_before(jiffies, timeo)) {
856 if (chip->dev_ready) {
857 if (chip->dev_ready(mtd))
858 break;
859 } else {
860 if (chip->read_byte(mtd) & NAND_STATUS_READY)
861 break;
862 }
863 cond_resched();
864 }
865 }
866 led_trigger_event(nand_led_trigger, LED_OFF);
867
868 status = (int)chip->read_byte(mtd);
869 return status;
870}
871
872/**
873 * __nand_unlock - [REPLACABLE] unlocks specified locked blockes
874 *
875 * @param mtd - mtd info
876 * @param ofs - offset to start unlock from
877 * @param len - length to unlock
878 * @invert - when = 0, unlock the range of blocks within the lower and
879 * upper boundary address
880 * whne = 1, unlock the range of blocks outside the boundaries
881 * of the lower and upper boundary address
882 *
883 * @return - unlock status
884 */
885static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
886 uint64_t len, int invert)
887{
888 int ret = 0;
889 int status, page;
890 struct nand_chip *chip = mtd->priv;
891
892 /* Submit address of first page to unlock */
893 page = ofs >> chip->page_shift;
894 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
895
896 /* Submit address of last page to unlock */
897 page = (ofs + len) >> chip->page_shift;
898 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
899 (page | invert) & chip->pagemask);
900
901 /* Call wait ready function */
902 status = chip->waitfunc(mtd, chip);
903 udelay(1000);
904 /* See if device thinks it succeeded */
905 if (status & 0x01) {
906 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
907 __func__, status);
908 ret = -EIO;
909 }
910
911 return ret;
912}
913
914/**
915 * nand_unlock - [REPLACABLE] unlocks specified locked blockes
916 *
917 * @param mtd - mtd info
918 * @param ofs - offset to start unlock from
919 * @param len - length to unlock
920 *
921 * @return - unlock status
922 */
923int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
924{
925 int ret = 0;
926 int chipnr;
927 struct nand_chip *chip = mtd->priv;
928
929 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
930 __func__, (unsigned long long)ofs, len);
931
932 if (check_offs_len(mtd, ofs, len))
933 ret = -EINVAL;
934
935 /* Align to last block address if size addresses end of the device */
936 if (ofs + len == mtd->size)
937 len -= mtd->erasesize;
938
939 nand_get_device(chip, mtd, FL_UNLOCKING);
940
941 /* Shift to get chip number */
942 chipnr = ofs >> chip->chip_shift;
943
944 chip->select_chip(mtd, chipnr);
945
946 /* Check, if it is write protected */
947 if (nand_check_wp(mtd)) {
948 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
949 __func__);
950 ret = -EIO;
951 goto out;
952 }
953
954 ret = __nand_unlock(mtd, ofs, len, 0);
955
956out:
957 /* de-select the NAND device */
958 chip->select_chip(mtd, -1);
959
960 nand_release_device(mtd);
961
962 return ret;
963}
964
965/**
966 * nand_lock - [REPLACABLE] locks all blockes present in the device
967 *
968 * @param mtd - mtd info
969 * @param ofs - offset to start unlock from
970 * @param len - length to unlock
971 *
972 * @return - lock status
973 *
974 * This feature is not support in many NAND parts. 'Micron' NAND parts
975 * do have this feature, but it allows only to lock all blocks not for
976 * specified range for block.
977 *
978 * Implementing 'lock' feature by making use of 'unlock', for now.
979 */
980int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
981{
982 int ret = 0;
983 int chipnr, status, page;
984 struct nand_chip *chip = mtd->priv;
985
986 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
987 __func__, (unsigned long long)ofs, len);
988
989 if (check_offs_len(mtd, ofs, len))
990 ret = -EINVAL;
991
992 nand_get_device(chip, mtd, FL_LOCKING);
993
994 /* Shift to get chip number */
995 chipnr = ofs >> chip->chip_shift;
996
997 chip->select_chip(mtd, chipnr);
998
999 /* Check, if it is write protected */
1000 if (nand_check_wp(mtd)) {
1001 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1002 __func__);
1003 status = MTD_ERASE_FAILED;
1004 ret = -EIO;
1005 goto out;
1006 }
1007
1008 /* Submit address of first page to lock */
1009 page = ofs >> chip->page_shift;
1010 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1011
1012 /* Call wait ready function */
1013 status = chip->waitfunc(mtd, chip);
1014 udelay(1000);
1015 /* See if device thinks it succeeded */
1016 if (status & 0x01) {
1017 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1018 __func__, status);
1019 ret = -EIO;
1020 goto out;
1021 }
1022
1023 ret = __nand_unlock(mtd, ofs, len, 0x1);
1024
1025out:
1026 /* de-select the NAND device */
1027 chip->select_chip(mtd, -1);
1028
1029 nand_release_device(mtd);
1030
1031 return ret;
1032}
1033
1034/**
1035 * nand_read_page_raw - [Intern] read raw page data without ecc
1036 * @mtd: mtd info structure
1037 * @chip: nand chip info structure
1038 * @buf: buffer to store read data
1039 * @page: page number to read
1040 *
1041 * Not for syndrome calculating ecc controllers, which use a special oob layout
1042 */
1043static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1044 uint8_t *buf, int page)
1045{
1046 chip->read_buf(mtd, buf, mtd->writesize);
1047 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1048 return 0;
1049}
1050
1051/**
1052 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1053 * @mtd: mtd info structure
1054 * @chip: nand chip info structure
1055 * @buf: buffer to store read data
1056 * @page: page number to read
1057 *
1058 * We need a special oob layout and handling even when OOB isn't used.
1059 */
1060static int nand_read_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1061 uint8_t *buf, int page)
1062{
1063 int eccsize = chip->ecc.size;
1064 int eccbytes = chip->ecc.bytes;
1065 uint8_t *oob = chip->oob_poi;
1066 int steps, size;
1067
1068 for (steps = chip->ecc.steps; steps > 0; steps--) {
1069 chip->read_buf(mtd, buf, eccsize);
1070 buf += eccsize;
1071
1072 if (chip->ecc.prepad) {
1073 chip->read_buf(mtd, oob, chip->ecc.prepad);
1074 oob += chip->ecc.prepad;
1075 }
1076
1077 chip->read_buf(mtd, oob, eccbytes);
1078 oob += eccbytes;
1079
1080 if (chip->ecc.postpad) {
1081 chip->read_buf(mtd, oob, chip->ecc.postpad);
1082 oob += chip->ecc.postpad;
1083 }
1084 }
1085
1086 size = mtd->oobsize - (oob - chip->oob_poi);
1087 if (size)
1088 chip->read_buf(mtd, oob, size);
1089
1090 return 0;
1091}
1092
1093/**
1094 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1095 * @mtd: mtd info structure
1096 * @chip: nand chip info structure
1097 * @buf: buffer to store read data
1098 * @page: page number to read
1099 */
1100static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1101 uint8_t *buf, int page)
1102{
1103 int i, eccsize = chip->ecc.size;
1104 int eccbytes = chip->ecc.bytes;
1105 int eccsteps = chip->ecc.steps;
1106 uint8_t *p = buf;
1107 uint8_t *ecc_calc = chip->buffers->ecccalc;
1108 uint8_t *ecc_code = chip->buffers->ecccode;
1109 uint32_t *eccpos = chip->ecc.layout->eccpos;
1110
1111 chip->ecc.read_page_raw(mtd, chip, buf, page);
1112
1113 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1114 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1115
1116 for (i = 0; i < chip->ecc.total; i++)
1117 ecc_code[i] = chip->oob_poi[eccpos[i]];
1118
1119 eccsteps = chip->ecc.steps;
1120 p = buf;
1121
1122 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1123 int stat;
1124
1125 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1126 if (stat < 0)
1127 mtd->ecc_stats.failed++;
1128 else
1129 mtd->ecc_stats.corrected += stat;
1130 }
1131 return 0;
1132}
1133
1134/**
1135 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1136 * @mtd: mtd info structure
1137 * @chip: nand chip info structure
1138 * @data_offs: offset of requested data within the page
1139 * @readlen: data length
1140 * @bufpoi: buffer to store read data
1141 */
1142static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip, uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1143{
1144 int start_step, end_step, num_steps;
1145 uint32_t *eccpos = chip->ecc.layout->eccpos;
1146 uint8_t *p;
1147 int data_col_addr, i, gaps = 0;
1148 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1149 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1150
1151 /* Column address wihin the page aligned to ECC size (256bytes). */
1152 start_step = data_offs / chip->ecc.size;
1153 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1154 num_steps = end_step - start_step + 1;
1155
1156 /* Data size aligned to ECC ecc.size*/
1157 datafrag_len = num_steps * chip->ecc.size;
1158 eccfrag_len = num_steps * chip->ecc.bytes;
1159
1160 data_col_addr = start_step * chip->ecc.size;
1161 /* If we read not a page aligned data */
1162 if (data_col_addr != 0)
1163 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1164
1165 p = bufpoi + data_col_addr;
1166 chip->read_buf(mtd, p, datafrag_len);
1167
1168 /* Calculate ECC */
1169 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1170 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1171
1172 /* The performance is faster if to position offsets
1173 according to ecc.pos. Let make sure here that
1174 there are no gaps in ecc positions */
1175 for (i = 0; i < eccfrag_len - 1; i++) {
1176 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1177 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1178 gaps = 1;
1179 break;
1180 }
1181 }
1182 if (gaps) {
1183 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1184 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1185 } else {
1186 /* send the command to read the particular ecc bytes */
1187 /* take care about buswidth alignment in read_buf */
1188 aligned_pos = eccpos[start_step * chip->ecc.bytes] & ~(busw - 1);
1189 aligned_len = eccfrag_len;
1190 if (eccpos[start_step * chip->ecc.bytes] & (busw - 1))
1191 aligned_len++;
1192 if (eccpos[(start_step + num_steps) * chip->ecc.bytes] & (busw - 1))
1193 aligned_len++;
1194
1195 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize + aligned_pos, -1);
1196 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1197 }
1198
1199 for (i = 0; i < eccfrag_len; i++)
1200 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + start_step * chip->ecc.bytes]];
1201
1202 p = bufpoi + data_col_addr;
1203 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1204 int stat;
1205
1206 stat = chip->ecc.correct(mtd, p, &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1207 if (stat == -1)
1208 mtd->ecc_stats.failed++;
1209 else
1210 mtd->ecc_stats.corrected += stat;
1211 }
1212 return 0;
1213}
1214
1215/**
1216 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1217 * @mtd: mtd info structure
1218 * @chip: nand chip info structure
1219 * @buf: buffer to store read data
1220 * @page: page number to read
1221 *
1222 * Not for syndrome calculating ecc controllers which need a special oob layout
1223 */
1224static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1225 uint8_t *buf, int page)
1226{
1227 int i, eccsize = chip->ecc.size;
1228 int eccbytes = chip->ecc.bytes;
1229 int eccsteps = chip->ecc.steps;
1230 uint8_t *p = buf;
1231 uint8_t *ecc_calc = chip->buffers->ecccalc;
1232 uint8_t *ecc_code = chip->buffers->ecccode;
1233 uint32_t *eccpos = chip->ecc.layout->eccpos;
1234
1235 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1236 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1237 chip->read_buf(mtd, p, eccsize);
1238 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1239 }
1240 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1241
1242 for (i = 0; i < chip->ecc.total; i++)
1243 ecc_code[i] = chip->oob_poi[eccpos[i]];
1244
1245 eccsteps = chip->ecc.steps;
1246 p = buf;
1247
1248 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1249 int stat;
1250
1251 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1252 if (stat < 0)
1253 mtd->ecc_stats.failed++;
1254 else
1255 mtd->ecc_stats.corrected += stat;
1256 }
1257 return 0;
1258}
1259
1260/**
1261 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1262 * @mtd: mtd info structure
1263 * @chip: nand chip info structure
1264 * @buf: buffer to store read data
1265 * @page: page number to read
1266 *
1267 * Hardware ECC for large page chips, require OOB to be read first.
1268 * For this ECC mode, the write_page method is re-used from ECC_HW.
1269 * These methods read/write ECC from the OOB area, unlike the
1270 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1271 * "infix ECC" scheme and reads/writes ECC from the data area, by
1272 * overwriting the NAND manufacturer bad block markings.
1273 */
1274static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1275 struct nand_chip *chip, uint8_t *buf, int page)
1276{
1277 int i, eccsize = chip->ecc.size;
1278 int eccbytes = chip->ecc.bytes;
1279 int eccsteps = chip->ecc.steps;
1280 uint8_t *p = buf;
1281 uint8_t *ecc_code = chip->buffers->ecccode;
1282 uint32_t *eccpos = chip->ecc.layout->eccpos;
1283 uint8_t *ecc_calc = chip->buffers->ecccalc;
1284
1285 /* Read the OOB area first */
1286 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1287 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1288 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1289
1290 for (i = 0; i < chip->ecc.total; i++)
1291 ecc_code[i] = chip->oob_poi[eccpos[i]];
1292
1293 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1294 int stat;
1295
1296 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1297 chip->read_buf(mtd, p, eccsize);
1298 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1299
1300 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1301 if (stat < 0)
1302 mtd->ecc_stats.failed++;
1303 else
1304 mtd->ecc_stats.corrected += stat;
1305 }
1306 return 0;
1307}
1308
1309/**
1310 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1311 * @mtd: mtd info structure
1312 * @chip: nand chip info structure
1313 * @buf: buffer to store read data
1314 * @page: page number to read
1315 *
1316 * The hw generator calculates the error syndrome automatically. Therefor
1317 * we need a special oob layout and handling.
1318 */
1319static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1320 uint8_t *buf, int page)
1321{
1322 int i, eccsize = chip->ecc.size;
1323 int eccbytes = chip->ecc.bytes;
1324 int eccsteps = chip->ecc.steps;
1325 uint8_t *p = buf;
1326 uint8_t *oob = chip->oob_poi;
1327
1328 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1329 int stat;
1330
1331 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1332 chip->read_buf(mtd, p, eccsize);
1333
1334 if (chip->ecc.prepad) {
1335 chip->read_buf(mtd, oob, chip->ecc.prepad);
1336 oob += chip->ecc.prepad;
1337 }
1338
1339 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1340 chip->read_buf(mtd, oob, eccbytes);
1341 stat = chip->ecc.correct(mtd, p, oob, NULL);
1342
1343 if (stat < 0)
1344 mtd->ecc_stats.failed++;
1345 else
1346 mtd->ecc_stats.corrected += stat;
1347
1348 oob += eccbytes;
1349
1350 if (chip->ecc.postpad) {
1351 chip->read_buf(mtd, oob, chip->ecc.postpad);
1352 oob += chip->ecc.postpad;
1353 }
1354 }
1355
1356 /* Calculate remaining oob bytes */
1357 i = mtd->oobsize - (oob - chip->oob_poi);
1358 if (i)
1359 chip->read_buf(mtd, oob, i);
1360
1361 return 0;
1362}
1363
1364/**
1365 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1366 * @chip: nand chip structure
1367 * @oob: oob destination address
1368 * @ops: oob ops structure
1369 * @len: size of oob to transfer
1370 */
1371static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1372 struct mtd_oob_ops *ops, size_t len)
1373{
1374 switch(ops->mode) {
1375
1376 case MTD_OOB_PLACE:
1377 case MTD_OOB_RAW:
1378 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1379 return oob + len;
1380
1381 case MTD_OOB_AUTO: {
1382 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1383 uint32_t boffs = 0, roffs = ops->ooboffs;
1384 size_t bytes = 0;
1385
1386 for(; free->length && len; free++, len -= bytes) {
1387 /* Read request not from offset 0 ? */
1388 if (unlikely(roffs)) {
1389 if (roffs >= free->length) {
1390 roffs -= free->length;
1391 continue;
1392 }
1393 boffs = free->offset + roffs;
1394 bytes = min_t(size_t, len,
1395 (free->length - roffs));
1396 roffs = 0;
1397 } else {
1398 bytes = min_t(size_t, len, free->length);
1399 boffs = free->offset;
1400 }
1401 memcpy(oob, chip->oob_poi + boffs, bytes);
1402 oob += bytes;
1403 }
1404 return oob;
1405 }
1406 default:
1407 BUG();
1408 }
1409 return NULL;
1410}
1411
1412/**
1413 * nand_do_read_ops - [Internal] Read data with ECC
1414 *
1415 * @mtd: MTD device structure
1416 * @from: offset to read from
1417 * @ops: oob ops structure
1418 *
1419 * Internal function. Called with chip held.
1420 */
1421static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1422 struct mtd_oob_ops *ops)
1423{
1424 int chipnr, page, realpage, col, bytes, aligned;
1425 struct nand_chip *chip = mtd->priv;
1426 struct mtd_ecc_stats stats;
1427 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1428 int sndcmd = 1;
1429 int ret = 0;
1430 uint32_t readlen = ops->len;
1431 uint32_t oobreadlen = ops->ooblen;
1432 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1433 mtd->oobavail : mtd->oobsize;
1434
1435 uint8_t *bufpoi, *oob, *buf;
1436
1437 stats = mtd->ecc_stats;
1438
1439 chipnr = (int)(from >> chip->chip_shift);
1440 chip->select_chip(mtd, chipnr);
1441
1442 realpage = (int)(from >> chip->page_shift);
1443 page = realpage & chip->pagemask;
1444
1445 col = (int)(from & (mtd->writesize - 1));
1446
1447 buf = ops->datbuf;
1448 oob = ops->oobbuf;
1449
1450 while(1) {
1451 bytes = min(mtd->writesize - col, readlen);
1452 aligned = (bytes == mtd->writesize);
1453
1454 /* Is the current page in the buffer ? */
1455 if (realpage != chip->pagebuf || oob) {
1456 bufpoi = aligned ? buf : chip->buffers->databuf;
1457
1458 if (likely(sndcmd)) {
1459 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1460 sndcmd = 0;
1461 }
1462
1463 /* Now read the page into the buffer */
1464 if (unlikely(ops->mode == MTD_OOB_RAW))
1465 ret = chip->ecc.read_page_raw(mtd, chip,
1466 bufpoi, page);
1467 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1468 ret = chip->ecc.read_subpage(mtd, chip, col, bytes, bufpoi);
1469 else
1470 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1471 page);
1472 if (ret < 0)
1473 break;
1474
1475 /* Transfer not aligned data */
1476 if (!aligned) {
1477 if (!NAND_SUBPAGE_READ(chip) && !oob)
1478 chip->pagebuf = realpage;
1479 memcpy(buf, chip->buffers->databuf + col, bytes);
1480 }
1481
1482 buf += bytes;
1483
1484 if (unlikely(oob)) {
1485
1486 int toread = min(oobreadlen, max_oobsize);
1487
1488 if (toread) {
1489 oob = nand_transfer_oob(chip,
1490 oob, ops, toread);
1491 oobreadlen -= toread;
1492 }
1493 }
1494
1495 if (!(chip->options & NAND_NO_READRDY)) {
1496 /*
1497 * Apply delay or wait for ready/busy pin. Do
1498 * this before the AUTOINCR check, so no
1499 * problems arise if a chip which does auto
1500 * increment is marked as NOAUTOINCR by the
1501 * board driver.
1502 */
1503 if (!chip->dev_ready)
1504 udelay(chip->chip_delay);
1505 else
1506 nand_wait_ready(mtd);
1507 }
1508 } else {
1509 memcpy(buf, chip->buffers->databuf + col, bytes);
1510 buf += bytes;
1511 }
1512
1513 readlen -= bytes;
1514
1515 if (!readlen)
1516 break;
1517
1518 /* For subsequent reads align to page boundary. */
1519 col = 0;
1520 /* Increment page address */
1521 realpage++;
1522
1523 page = realpage & chip->pagemask;
1524 /* Check, if we cross a chip boundary */
1525 if (!page) {
1526 chipnr++;
1527 chip->select_chip(mtd, -1);
1528 chip->select_chip(mtd, chipnr);
1529 }
1530
1531 /* Check, if the chip supports auto page increment
1532 * or if we have hit a block boundary.
1533 */
1534 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1535 sndcmd = 1;
1536 }
1537
1538 ops->retlen = ops->len - (size_t) readlen;
1539 if (oob)
1540 ops->oobretlen = ops->ooblen - oobreadlen;
1541
1542 if (ret)
1543 return ret;
1544
1545 if (mtd->ecc_stats.failed - stats.failed)
1546 return -EBADMSG;
1547
1548 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1549}
1550
1551/**
1552 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1553 * @mtd: MTD device structure
1554 * @from: offset to read from
1555 * @len: number of bytes to read
1556 * @retlen: pointer to variable to store the number of read bytes
1557 * @buf: the databuffer to put data
1558 *
1559 * Get hold of the chip and call nand_do_read
1560 */
1561static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1562 size_t *retlen, uint8_t *buf)
1563{
1564 struct nand_chip *chip = mtd->priv;
1565 int ret;
1566
1567 /* Do not allow reads past end of device */
1568 if ((from + len) > mtd->size)
1569 return -EINVAL;
1570 if (!len)
1571 return 0;
1572
1573 nand_get_device(chip, mtd, FL_READING);
1574
1575 chip->ops.len = len;
1576 chip->ops.datbuf = buf;
1577 chip->ops.oobbuf = NULL;
1578
1579 ret = nand_do_read_ops(mtd, from, &chip->ops);
1580
1581 *retlen = chip->ops.retlen;
1582
1583 nand_release_device(mtd);
1584
1585 return ret;
1586}
1587
1588/**
1589 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1590 * @mtd: mtd info structure
1591 * @chip: nand chip info structure
1592 * @page: page number to read
1593 * @sndcmd: flag whether to issue read command or not
1594 */
1595static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1596 int page, int sndcmd)
1597{
1598 if (sndcmd) {
1599 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1600 sndcmd = 0;
1601 }
1602 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1603 return sndcmd;
1604}
1605
1606/**
1607 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1608 * with syndromes
1609 * @mtd: mtd info structure
1610 * @chip: nand chip info structure
1611 * @page: page number to read
1612 * @sndcmd: flag whether to issue read command or not
1613 */
1614static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1615 int page, int sndcmd)
1616{
1617 uint8_t *buf = chip->oob_poi;
1618 int length = mtd->oobsize;
1619 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1620 int eccsize = chip->ecc.size;
1621 uint8_t *bufpoi = buf;
1622 int i, toread, sndrnd = 0, pos;
1623
1624 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1625 for (i = 0; i < chip->ecc.steps; i++) {
1626 if (sndrnd) {
1627 pos = eccsize + i * (eccsize + chunk);
1628 if (mtd->writesize > 512)
1629 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1630 else
1631 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1632 } else
1633 sndrnd = 1;
1634 toread = min_t(int, length, chunk);
1635 chip->read_buf(mtd, bufpoi, toread);
1636 bufpoi += toread;
1637 length -= toread;
1638 }
1639 if (length > 0)
1640 chip->read_buf(mtd, bufpoi, length);
1641
1642 return 1;
1643}
1644
1645/**
1646 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1647 * @mtd: mtd info structure
1648 * @chip: nand chip info structure
1649 * @page: page number to write
1650 */
1651static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1652 int page)
1653{
1654 int status = 0;
1655 const uint8_t *buf = chip->oob_poi;
1656 int length = mtd->oobsize;
1657
1658 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1659 chip->write_buf(mtd, buf, length);
1660 /* Send command to program the OOB data */
1661 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1662
1663 status = chip->waitfunc(mtd, chip);
1664
1665 return status & NAND_STATUS_FAIL ? -EIO : 0;
1666}
1667
1668/**
1669 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1670 * with syndrome - only for large page flash !
1671 * @mtd: mtd info structure
1672 * @chip: nand chip info structure
1673 * @page: page number to write
1674 */
1675static int nand_write_oob_syndrome(struct mtd_info *mtd,
1676 struct nand_chip *chip, int page)
1677{
1678 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1679 int eccsize = chip->ecc.size, length = mtd->oobsize;
1680 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1681 const uint8_t *bufpoi = chip->oob_poi;
1682
1683 /*
1684 * data-ecc-data-ecc ... ecc-oob
1685 * or
1686 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1687 */
1688 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1689 pos = steps * (eccsize + chunk);
1690 steps = 0;
1691 } else
1692 pos = eccsize;
1693
1694 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1695 for (i = 0; i < steps; i++) {
1696 if (sndcmd) {
1697 if (mtd->writesize <= 512) {
1698 uint32_t fill = 0xFFFFFFFF;
1699
1700 len = eccsize;
1701 while (len > 0) {
1702 int num = min_t(int, len, 4);
1703 chip->write_buf(mtd, (uint8_t *)&fill,
1704 num);
1705 len -= num;
1706 }
1707 } else {
1708 pos = eccsize + i * (eccsize + chunk);
1709 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1710 }
1711 } else
1712 sndcmd = 1;
1713 len = min_t(int, length, chunk);
1714 chip->write_buf(mtd, bufpoi, len);
1715 bufpoi += len;
1716 length -= len;
1717 }
1718 if (length > 0)
1719 chip->write_buf(mtd, bufpoi, length);
1720
1721 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1722 status = chip->waitfunc(mtd, chip);
1723
1724 return status & NAND_STATUS_FAIL ? -EIO : 0;
1725}
1726
1727/**
1728 * nand_do_read_oob - [Intern] NAND read out-of-band
1729 * @mtd: MTD device structure
1730 * @from: offset to read from
1731 * @ops: oob operations description structure
1732 *
1733 * NAND read out-of-band data from the spare area
1734 */
1735static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1736 struct mtd_oob_ops *ops)
1737{
1738 int page, realpage, chipnr, sndcmd = 1;
1739 struct nand_chip *chip = mtd->priv;
1740 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1741 int readlen = ops->ooblen;
1742 int len;
1743 uint8_t *buf = ops->oobbuf;
1744
1745 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1746 __func__, (unsigned long long)from, readlen);
1747
1748 if (ops->mode == MTD_OOB_AUTO)
1749 len = chip->ecc.layout->oobavail;
1750 else
1751 len = mtd->oobsize;
1752
1753 if (unlikely(ops->ooboffs >= len)) {
1754 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1755 "outside oob\n", __func__);
1756 return -EINVAL;
1757 }
1758
1759 /* Do not allow reads past end of device */
1760 if (unlikely(from >= mtd->size ||
1761 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1762 (from >> chip->page_shift)) * len)) {
1763 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1764 "of device\n", __func__);
1765 return -EINVAL;
1766 }
1767
1768 chipnr = (int)(from >> chip->chip_shift);
1769 chip->select_chip(mtd, chipnr);
1770
1771 /* Shift to get page */
1772 realpage = (int)(from >> chip->page_shift);
1773 page = realpage & chip->pagemask;
1774
1775 while(1) {
1776 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1777
1778 len = min(len, readlen);
1779 buf = nand_transfer_oob(chip, buf, ops, len);
1780
1781 if (!(chip->options & NAND_NO_READRDY)) {
1782 /*
1783 * Apply delay or wait for ready/busy pin. Do this
1784 * before the AUTOINCR check, so no problems arise if a
1785 * chip which does auto increment is marked as
1786 * NOAUTOINCR by the board driver.
1787 */
1788 if (!chip->dev_ready)
1789 udelay(chip->chip_delay);
1790 else
1791 nand_wait_ready(mtd);
1792 }
1793
1794 readlen -= len;
1795 if (!readlen)
1796 break;
1797
1798 /* Increment page address */
1799 realpage++;
1800
1801 page = realpage & chip->pagemask;
1802 /* Check, if we cross a chip boundary */
1803 if (!page) {
1804 chipnr++;
1805 chip->select_chip(mtd, -1);
1806 chip->select_chip(mtd, chipnr);
1807 }
1808
1809 /* Check, if the chip supports auto page increment
1810 * or if we have hit a block boundary.
1811 */
1812 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1813 sndcmd = 1;
1814 }
1815
1816 ops->oobretlen = ops->ooblen;
1817 return 0;
1818}
1819
1820/**
1821 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1822 * @mtd: MTD device structure
1823 * @from: offset to read from
1824 * @ops: oob operation description structure
1825 *
1826 * NAND read data and/or out-of-band data
1827 */
1828static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1829 struct mtd_oob_ops *ops)
1830{
1831 struct nand_chip *chip = mtd->priv;
1832 int ret = -ENOTSUPP;
1833
1834 ops->retlen = 0;
1835
1836 /* Do not allow reads past end of device */
1837 if (ops->datbuf && (from + ops->len) > mtd->size) {
1838 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1839 "beyond end of device\n", __func__);
1840 return -EINVAL;
1841 }
1842
1843 nand_get_device(chip, mtd, FL_READING);
1844
1845 switch(ops->mode) {
1846 case MTD_OOB_PLACE:
1847 case MTD_OOB_AUTO:
1848 case MTD_OOB_RAW:
1849 break;
1850
1851 default:
1852 goto out;
1853 }
1854
1855 if (!ops->datbuf)
1856 ret = nand_do_read_oob(mtd, from, ops);
1857 else
1858 ret = nand_do_read_ops(mtd, from, ops);
1859
1860 out:
1861 nand_release_device(mtd);
1862 return ret;
1863}
1864
1865
1866/**
1867 * nand_write_page_raw - [Intern] raw page write function
1868 * @mtd: mtd info structure
1869 * @chip: nand chip info structure
1870 * @buf: data buffer
1871 *
1872 * Not for syndrome calculating ecc controllers, which use a special oob layout
1873 */
1874static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1875 const uint8_t *buf)
1876{
1877 chip->write_buf(mtd, buf, mtd->writesize);
1878 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1879}
1880
1881/**
1882 * nand_write_page_raw_syndrome - [Intern] raw page write function
1883 * @mtd: mtd info structure
1884 * @chip: nand chip info structure
1885 * @buf: data buffer
1886 *
1887 * We need a special oob layout and handling even when ECC isn't checked.
1888 */
1889static void nand_write_page_raw_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1890 const uint8_t *buf)
1891{
1892 int eccsize = chip->ecc.size;
1893 int eccbytes = chip->ecc.bytes;
1894 uint8_t *oob = chip->oob_poi;
1895 int steps, size;
1896
1897 for (steps = chip->ecc.steps; steps > 0; steps--) {
1898 chip->write_buf(mtd, buf, eccsize);
1899 buf += eccsize;
1900
1901 if (chip->ecc.prepad) {
1902 chip->write_buf(mtd, oob, chip->ecc.prepad);
1903 oob += chip->ecc.prepad;
1904 }
1905
1906 chip->read_buf(mtd, oob, eccbytes);
1907 oob += eccbytes;
1908
1909 if (chip->ecc.postpad) {
1910 chip->write_buf(mtd, oob, chip->ecc.postpad);
1911 oob += chip->ecc.postpad;
1912 }
1913 }
1914
1915 size = mtd->oobsize - (oob - chip->oob_poi);
1916 if (size)
1917 chip->write_buf(mtd, oob, size);
1918}
1919/**
1920 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1921 * @mtd: mtd info structure
1922 * @chip: nand chip info structure
1923 * @buf: data buffer
1924 */
1925static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1926 const uint8_t *buf)
1927{
1928 int i, eccsize = chip->ecc.size;
1929 int eccbytes = chip->ecc.bytes;
1930 int eccsteps = chip->ecc.steps;
1931 uint8_t *ecc_calc = chip->buffers->ecccalc;
1932 const uint8_t *p = buf;
1933 uint32_t *eccpos = chip->ecc.layout->eccpos;
1934
1935 /* Software ecc calculation */
1936 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1937 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1938
1939 for (i = 0; i < chip->ecc.total; i++)
1940 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1941
1942 chip->ecc.write_page_raw(mtd, chip, buf);
1943}
1944
1945/**
1946 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1947 * @mtd: mtd info structure
1948 * @chip: nand chip info structure
1949 * @buf: data buffer
1950 */
1951static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1952 const uint8_t *buf)
1953{
1954 int i, eccsize = chip->ecc.size;
1955 int eccbytes = chip->ecc.bytes;
1956 int eccsteps = chip->ecc.steps;
1957 uint8_t *ecc_calc = chip->buffers->ecccalc;
1958 const uint8_t *p = buf;
1959 uint32_t *eccpos = chip->ecc.layout->eccpos;
1960
1961 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1962 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1963 chip->write_buf(mtd, p, eccsize);
1964 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1965 }
1966
1967 for (i = 0; i < chip->ecc.total; i++)
1968 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1969
1970 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1971}
1972
1973/**
1974 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1975 * @mtd: mtd info structure
1976 * @chip: nand chip info structure
1977 * @buf: data buffer
1978 *
1979 * The hw generator calculates the error syndrome automatically. Therefor
1980 * we need a special oob layout and handling.
1981 */
1982static void nand_write_page_syndrome(struct mtd_info *mtd,
1983 struct nand_chip *chip, const uint8_t *buf)
1984{
1985 int i, eccsize = chip->ecc.size;
1986 int eccbytes = chip->ecc.bytes;
1987 int eccsteps = chip->ecc.steps;
1988 const uint8_t *p = buf;
1989 uint8_t *oob = chip->oob_poi;
1990
1991 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1992
1993 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1994 chip->write_buf(mtd, p, eccsize);
1995
1996 if (chip->ecc.prepad) {
1997 chip->write_buf(mtd, oob, chip->ecc.prepad);
1998 oob += chip->ecc.prepad;
1999 }
2000
2001 chip->ecc.calculate(mtd, p, oob);
2002 chip->write_buf(mtd, oob, eccbytes);
2003 oob += eccbytes;
2004
2005 if (chip->ecc.postpad) {
2006 chip->write_buf(mtd, oob, chip->ecc.postpad);
2007 oob += chip->ecc.postpad;
2008 }
2009 }
2010
2011 /* Calculate remaining oob bytes */
2012 i = mtd->oobsize - (oob - chip->oob_poi);
2013 if (i)
2014 chip->write_buf(mtd, oob, i);
2015}
2016
2017/**
2018 * nand_write_page - [REPLACEABLE] write one page
2019 * @mtd: MTD device structure
2020 * @chip: NAND chip descriptor
2021 * @buf: the data to write
2022 * @page: page number to write
2023 * @cached: cached programming
2024 * @raw: use _raw version of write_page
2025 */
2026static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2027 const uint8_t *buf, int page, int cached, int raw)
2028{
2029 int status;
2030
2031 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2032
2033 if (unlikely(raw))
2034 chip->ecc.write_page_raw(mtd, chip, buf);
2035 else
2036 chip->ecc.write_page(mtd, chip, buf);
2037
2038 /*
2039 * Cached progamming disabled for now, Not sure if its worth the
2040 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2041 */
2042 cached = 0;
2043
2044 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2045
2046 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2047 status = chip->waitfunc(mtd, chip);
2048 /*
2049 * See if operation failed and additional status checks are
2050 * available
2051 */
2052 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2053 status = chip->errstat(mtd, chip, FL_WRITING, status,
2054 page);
2055
2056 if (status & NAND_STATUS_FAIL)
2057 return -EIO;
2058 } else {
2059 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2060 status = chip->waitfunc(mtd, chip);
2061 }
2062
2063#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2064 /* Send command to read back the data */
2065 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2066
2067 if (chip->verify_buf(mtd, buf, mtd->writesize))
2068 return -EIO;
2069#endif
2070 return 0;
2071}
2072
2073/**
2074 * nand_fill_oob - [Internal] Transfer client buffer to oob
2075 * @chip: nand chip structure
2076 * @oob: oob data buffer
2077 * @ops: oob ops structure
2078 */
2079static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2080 struct mtd_oob_ops *ops)
2081{
2082 switch(ops->mode) {
2083
2084 case MTD_OOB_PLACE:
2085 case MTD_OOB_RAW:
2086 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2087 return oob + len;
2088
2089 case MTD_OOB_AUTO: {
2090 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2091 uint32_t boffs = 0, woffs = ops->ooboffs;
2092 size_t bytes = 0;
2093
2094 for(; free->length && len; free++, len -= bytes) {
2095 /* Write request not from offset 0 ? */
2096 if (unlikely(woffs)) {
2097 if (woffs >= free->length) {
2098 woffs -= free->length;
2099 continue;
2100 }
2101 boffs = free->offset + woffs;
2102 bytes = min_t(size_t, len,
2103 (free->length - woffs));
2104 woffs = 0;
2105 } else {
2106 bytes = min_t(size_t, len, free->length);
2107 boffs = free->offset;
2108 }
2109 memcpy(chip->oob_poi + boffs, oob, bytes);
2110 oob += bytes;
2111 }
2112 return oob;
2113 }
2114 default:
2115 BUG();
2116 }
2117 return NULL;
2118}
2119
2120#define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
2121
2122/**
2123 * nand_do_write_ops - [Internal] NAND write with ECC
2124 * @mtd: MTD device structure
2125 * @to: offset to write to
2126 * @ops: oob operations description structure
2127 *
2128 * NAND write with ECC
2129 */
2130static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2131 struct mtd_oob_ops *ops)
2132{
2133 int chipnr, realpage, page, blockmask, column;
2134 struct nand_chip *chip = mtd->priv;
2135 uint32_t writelen = ops->len;
2136
2137 uint32_t oobwritelen = ops->ooblen;
2138 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2139 mtd->oobavail : mtd->oobsize;
2140
2141 uint8_t *oob = ops->oobbuf;
2142 uint8_t *buf = ops->datbuf;
2143 int ret, subpage;
2144
2145 ops->retlen = 0;
2146 if (!writelen)
2147 return 0;
2148
2149 /* reject writes, which are not page aligned */
2150 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2151 printk(KERN_NOTICE "%s: Attempt to write not "
2152 "page aligned data\n", __func__);
2153 return -EINVAL;
2154 }
2155
2156 column = to & (mtd->writesize - 1);
2157 subpage = column || (writelen & (mtd->writesize - 1));
2158
2159 if (subpage && oob)
2160 return -EINVAL;
2161
2162 chipnr = (int)(to >> chip->chip_shift);
2163 chip->select_chip(mtd, chipnr);
2164
2165 /* Check, if it is write protected */
2166 if (nand_check_wp(mtd))
2167 return -EIO;
2168
2169 realpage = (int)(to >> chip->page_shift);
2170 page = realpage & chip->pagemask;
2171 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2172
2173 /* Invalidate the page cache, when we write to the cached page */
2174 if (to <= (chip->pagebuf << chip->page_shift) &&
2175 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2176 chip->pagebuf = -1;
2177
2178 /* If we're not given explicit OOB data, let it be 0xFF */
2179 if (likely(!oob))
2180 memset(chip->oob_poi, 0xff, mtd->oobsize);
2181
2182 /* Don't allow multipage oob writes with offset */
2183 if (ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2184 return -EINVAL;
2185
2186 while(1) {
2187 int bytes = mtd->writesize;
2188 int cached = writelen > bytes && page != blockmask;
2189 uint8_t *wbuf = buf;
2190
2191 /* Partial page write ? */
2192 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2193 cached = 0;
2194 bytes = min_t(int, bytes - column, (int) writelen);
2195 chip->pagebuf = -1;
2196 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2197 memcpy(&chip->buffers->databuf[column], buf, bytes);
2198 wbuf = chip->buffers->databuf;
2199 }
2200
2201 if (unlikely(oob)) {
2202 size_t len = min(oobwritelen, oobmaxlen);
2203 oob = nand_fill_oob(chip, oob, len, ops);
2204 oobwritelen -= len;
2205 }
2206
2207 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2208 (ops->mode == MTD_OOB_RAW));
2209 if (ret)
2210 break;
2211
2212 writelen -= bytes;
2213 if (!writelen)
2214 break;
2215
2216 column = 0;
2217 buf += bytes;
2218 realpage++;
2219
2220 page = realpage & chip->pagemask;
2221 /* Check, if we cross a chip boundary */
2222 if (!page) {
2223 chipnr++;
2224 chip->select_chip(mtd, -1);
2225 chip->select_chip(mtd, chipnr);
2226 }
2227 }
2228
2229 ops->retlen = ops->len - writelen;
2230 if (unlikely(oob))
2231 ops->oobretlen = ops->ooblen;
2232 return ret;
2233}
2234
2235/**
2236 * panic_nand_write - [MTD Interface] NAND write with ECC
2237 * @mtd: MTD device structure
2238 * @to: offset to write to
2239 * @len: number of bytes to write
2240 * @retlen: pointer to variable to store the number of written bytes
2241 * @buf: the data to write
2242 *
2243 * NAND write with ECC. Used when performing writes in interrupt context, this
2244 * may for example be called by mtdoops when writing an oops while in panic.
2245 */
2246static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2247 size_t *retlen, const uint8_t *buf)
2248{
2249 struct nand_chip *chip = mtd->priv;
2250 int ret;
2251
2252 /* Do not allow reads past end of device */
2253 if ((to + len) > mtd->size)
2254 return -EINVAL;
2255 if (!len)
2256 return 0;
2257
2258 /* Wait for the device to get ready. */
2259 panic_nand_wait(mtd, chip, 400);
2260
2261 /* Grab the device. */
2262 panic_nand_get_device(chip, mtd, FL_WRITING);
2263
2264 chip->ops.len = len;
2265 chip->ops.datbuf = (uint8_t *)buf;
2266 chip->ops.oobbuf = NULL;
2267
2268 ret = nand_do_write_ops(mtd, to, &chip->ops);
2269
2270 *retlen = chip->ops.retlen;
2271 return ret;
2272}
2273
2274/**
2275 * nand_write - [MTD Interface] NAND write with ECC
2276 * @mtd: MTD device structure
2277 * @to: offset to write to
2278 * @len: number of bytes to write
2279 * @retlen: pointer to variable to store the number of written bytes
2280 * @buf: the data to write
2281 *
2282 * NAND write with ECC
2283 */
2284static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2285 size_t *retlen, const uint8_t *buf)
2286{
2287 struct nand_chip *chip = mtd->priv;
2288 int ret;
2289
2290 /* Do not allow reads past end of device */
2291 if ((to + len) > mtd->size)
2292 return -EINVAL;
2293 if (!len)
2294 return 0;
2295
2296 nand_get_device(chip, mtd, FL_WRITING);
2297
2298 chip->ops.len = len;
2299 chip->ops.datbuf = (uint8_t *)buf;
2300 chip->ops.oobbuf = NULL;
2301
2302 ret = nand_do_write_ops(mtd, to, &chip->ops);
2303
2304 *retlen = chip->ops.retlen;
2305
2306 nand_release_device(mtd);
2307
2308 return ret;
2309}
2310
2311/**
2312 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2313 * @mtd: MTD device structure
2314 * @to: offset to write to
2315 * @ops: oob operation description structure
2316 *
2317 * NAND write out-of-band
2318 */
2319static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2320 struct mtd_oob_ops *ops)
2321{
2322 int chipnr, page, status, len;
2323 struct nand_chip *chip = mtd->priv;
2324
2325 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2326 __func__, (unsigned int)to, (int)ops->ooblen);
2327
2328 if (ops->mode == MTD_OOB_AUTO)
2329 len = chip->ecc.layout->oobavail;
2330 else
2331 len = mtd->oobsize;
2332
2333 /* Do not allow write past end of page */
2334 if ((ops->ooboffs + ops->ooblen) > len) {
2335 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2336 "past end of page\n", __func__);
2337 return -EINVAL;
2338 }
2339
2340 if (unlikely(ops->ooboffs >= len)) {
2341 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2342 "write outside oob\n", __func__);
2343 return -EINVAL;
2344 }
2345
2346 /* Do not allow reads past end of device */
2347 if (unlikely(to >= mtd->size ||
2348 ops->ooboffs + ops->ooblen >
2349 ((mtd->size >> chip->page_shift) -
2350 (to >> chip->page_shift)) * len)) {
2351 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2352 "end of device\n", __func__);
2353 return -EINVAL;
2354 }
2355
2356 chipnr = (int)(to >> chip->chip_shift);
2357 chip->select_chip(mtd, chipnr);
2358
2359 /* Shift to get page */
2360 page = (int)(to >> chip->page_shift);
2361
2362 /*
2363 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2364 * of my DiskOnChip 2000 test units) will clear the whole data page too
2365 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2366 * it in the doc2000 driver in August 1999. dwmw2.
2367 */
2368 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2369
2370 /* Check, if it is write protected */
2371 if (nand_check_wp(mtd))
2372 return -EROFS;
2373
2374 /* Invalidate the page cache, if we write to the cached page */
2375 if (page == chip->pagebuf)
2376 chip->pagebuf = -1;
2377
2378 memset(chip->oob_poi, 0xff, mtd->oobsize);
2379 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2380 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2381 memset(chip->oob_poi, 0xff, mtd->oobsize);
2382
2383 if (status)
2384 return status;
2385
2386 ops->oobretlen = ops->ooblen;
2387
2388 return 0;
2389}
2390
2391/**
2392 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2393 * @mtd: MTD device structure
2394 * @to: offset to write to
2395 * @ops: oob operation description structure
2396 */
2397static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2398 struct mtd_oob_ops *ops)
2399{
2400 struct nand_chip *chip = mtd->priv;
2401 int ret = -ENOTSUPP;
2402
2403 ops->retlen = 0;
2404
2405 /* Do not allow writes past end of device */
2406 if (ops->datbuf && (to + ops->len) > mtd->size) {
2407 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2408 "end of device\n", __func__);
2409 return -EINVAL;
2410 }
2411
2412 nand_get_device(chip, mtd, FL_WRITING);
2413
2414 switch(ops->mode) {
2415 case MTD_OOB_PLACE:
2416 case MTD_OOB_AUTO:
2417 case MTD_OOB_RAW:
2418 break;
2419
2420 default:
2421 goto out;
2422 }
2423
2424 if (!ops->datbuf)
2425 ret = nand_do_write_oob(mtd, to, ops);
2426 else
2427 ret = nand_do_write_ops(mtd, to, ops);
2428
2429 out:
2430 nand_release_device(mtd);
2431 return ret;
2432}
2433
2434/**
2435 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2436 * @mtd: MTD device structure
2437 * @page: the page address of the block which will be erased
2438 *
2439 * Standard erase command for NAND chips
2440 */
2441static void single_erase_cmd(struct mtd_info *mtd, int page)
2442{
2443 struct nand_chip *chip = mtd->priv;
2444 /* Send commands to erase a block */
2445 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2446 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2447}
2448
2449/**
2450 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2451 * @mtd: MTD device structure
2452 * @page: the page address of the block which will be erased
2453 *
2454 * AND multi block erase command function
2455 * Erase 4 consecutive blocks
2456 */
2457static void multi_erase_cmd(struct mtd_info *mtd, int page)
2458{
2459 struct nand_chip *chip = mtd->priv;
2460 /* Send commands to erase a block */
2461 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2462 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2463 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2464 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2465 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2466}
2467
2468/**
2469 * nand_erase - [MTD Interface] erase block(s)
2470 * @mtd: MTD device structure
2471 * @instr: erase instruction
2472 *
2473 * Erase one ore more blocks
2474 */
2475static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2476{
2477 return nand_erase_nand(mtd, instr, 0);
2478}
2479
2480#define BBT_PAGE_MASK 0xffffff3f
2481/**
2482 * nand_erase_nand - [Internal] erase block(s)
2483 * @mtd: MTD device structure
2484 * @instr: erase instruction
2485 * @allowbbt: allow erasing the bbt area
2486 *
2487 * Erase one ore more blocks
2488 */
2489int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2490 int allowbbt)
2491{
2492 int page, status, pages_per_block, ret, chipnr;
2493 struct nand_chip *chip = mtd->priv;
2494 loff_t rewrite_bbt[NAND_MAX_CHIPS]={0};
2495 unsigned int bbt_masked_page = 0xffffffff;
2496 loff_t len;
2497
2498 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2499 __func__, (unsigned long long)instr->addr,
2500 (unsigned long long)instr->len);
2501
2502 if (check_offs_len(mtd, instr->addr, instr->len))
2503 return -EINVAL;
2504
2505 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2506
2507 /* Grab the lock and see if the device is available */
2508 nand_get_device(chip, mtd, FL_ERASING);
2509
2510 /* Shift to get first page */
2511 page = (int)(instr->addr >> chip->page_shift);
2512 chipnr = (int)(instr->addr >> chip->chip_shift);
2513
2514 /* Calculate pages in each block */
2515 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2516
2517 /* Select the NAND device */
2518 chip->select_chip(mtd, chipnr);
2519
2520 /* Check, if it is write protected */
2521 if (nand_check_wp(mtd)) {
2522 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2523 __func__);
2524 instr->state = MTD_ERASE_FAILED;
2525 goto erase_exit;
2526 }
2527
2528 /*
2529 * If BBT requires refresh, set the BBT page mask to see if the BBT
2530 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2531 * can not be matched. This is also done when the bbt is actually
2532 * erased to avoid recusrsive updates
2533 */
2534 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2535 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2536
2537 /* Loop through the pages */
2538 len = instr->len;
2539
2540 instr->state = MTD_ERASING;
2541
2542 while (len) {
2543 /*
2544 * heck if we have a bad block, we do not erase bad blocks !
2545 */
2546 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2547 chip->page_shift, 0, allowbbt)) {
2548 printk(KERN_WARNING "%s: attempt to erase a bad block "
2549 "at page 0x%08x\n", __func__, page);
2550 instr->state = MTD_ERASE_FAILED;
2551 goto erase_exit;
2552 }
2553
2554 /*
2555 * Invalidate the page cache, if we erase the block which
2556 * contains the current cached page
2557 */
2558 if (page <= chip->pagebuf && chip->pagebuf <
2559 (page + pages_per_block))
2560 chip->pagebuf = -1;
2561
2562 chip->erase_cmd(mtd, page & chip->pagemask);
2563
2564 status = chip->waitfunc(mtd, chip);
2565
2566 /*
2567 * See if operation failed and additional status checks are
2568 * available
2569 */
2570 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2571 status = chip->errstat(mtd, chip, FL_ERASING,
2572 status, page);
2573
2574 /* See if block erase succeeded */
2575 if (status & NAND_STATUS_FAIL) {
2576 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2577 "page 0x%08x\n", __func__, page);
2578 instr->state = MTD_ERASE_FAILED;
2579 instr->fail_addr =
2580 ((loff_t)page << chip->page_shift);
2581 goto erase_exit;
2582 }
2583
2584 /*
2585 * If BBT requires refresh, set the BBT rewrite flag to the
2586 * page being erased
2587 */
2588 if (bbt_masked_page != 0xffffffff &&
2589 (page & BBT_PAGE_MASK) == bbt_masked_page)
2590 rewrite_bbt[chipnr] =
2591 ((loff_t)page << chip->page_shift);
2592
2593 /* Increment page address and decrement length */
2594 len -= (1 << chip->phys_erase_shift);
2595 page += pages_per_block;
2596
2597 /* Check, if we cross a chip boundary */
2598 if (len && !(page & chip->pagemask)) {
2599 chipnr++;
2600 chip->select_chip(mtd, -1);
2601 chip->select_chip(mtd, chipnr);
2602
2603 /*
2604 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2605 * page mask to see if this BBT should be rewritten
2606 */
2607 if (bbt_masked_page != 0xffffffff &&
2608 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2609 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2610 BBT_PAGE_MASK;
2611 }
2612 }
2613 instr->state = MTD_ERASE_DONE;
2614
2615 erase_exit:
2616
2617 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2618
2619 /* Deselect and wake up anyone waiting on the device */
2620 nand_release_device(mtd);
2621
2622 /* Do call back function */
2623 if (!ret)
2624 mtd_erase_callback(instr);
2625
2626 /*
2627 * If BBT requires refresh and erase was successful, rewrite any
2628 * selected bad block tables
2629 */
2630 if (bbt_masked_page == 0xffffffff || ret)
2631 return ret;
2632
2633 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2634 if (!rewrite_bbt[chipnr])
2635 continue;
2636 /* update the BBT for chip */
2637 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2638 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2639 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2640 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2641 }
2642
2643 /* Return more or less happy */
2644 return ret;
2645}
2646
2647/**
2648 * nand_sync - [MTD Interface] sync
2649 * @mtd: MTD device structure
2650 *
2651 * Sync is actually a wait for chip ready function
2652 */
2653static void nand_sync(struct mtd_info *mtd)
2654{
2655 struct nand_chip *chip = mtd->priv;
2656
2657 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2658
2659 /* Grab the lock and see if the device is available */
2660 nand_get_device(chip, mtd, FL_SYNCING);
2661 /* Release it and go back */
2662 nand_release_device(mtd);
2663}
2664
2665/**
2666 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2667 * @mtd: MTD device structure
2668 * @offs: offset relative to mtd start
2669 */
2670static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2671{
2672 /* Check for invalid offset */
2673 if (offs > mtd->size)
2674 return -EINVAL;
2675
2676 return nand_block_checkbad(mtd, offs, 1, 0);
2677}
2678
2679/**
2680 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2681 * @mtd: MTD device structure
2682 * @ofs: offset relative to mtd start
2683 */
2684static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2685{
2686 struct nand_chip *chip = mtd->priv;
2687 int ret;
2688
2689 if ((ret = nand_block_isbad(mtd, ofs))) {
2690 /* If it was bad already, return success and do nothing. */
2691 if (ret > 0)
2692 return 0;
2693 return ret;
2694 }
2695
2696 return chip->block_markbad(mtd, ofs);
2697}
2698
2699/**
2700 * nand_suspend - [MTD Interface] Suspend the NAND flash
2701 * @mtd: MTD device structure
2702 */
2703static int nand_suspend(struct mtd_info *mtd)
2704{
2705 struct nand_chip *chip = mtd->priv;
2706
2707 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2708}
2709
2710/**
2711 * nand_resume - [MTD Interface] Resume the NAND flash
2712 * @mtd: MTD device structure
2713 */
2714static void nand_resume(struct mtd_info *mtd)
2715{
2716 struct nand_chip *chip = mtd->priv;
2717
2718 if (chip->state == FL_PM_SUSPENDED)
2719 nand_release_device(mtd);
2720 else
2721 printk(KERN_ERR "%s called for a chip which is not "
2722 "in suspended state\n", __func__);
2723}
2724
2725/*
2726 * Set default functions
2727 */
2728static void nand_set_defaults(struct nand_chip *chip, int busw)
2729{
2730 /* check for proper chip_delay setup, set 20us if not */
2731 if (!chip->chip_delay)
2732 chip->chip_delay = 20;
2733
2734 /* check, if a user supplied command function given */
2735 if (chip->cmdfunc == NULL)
2736 chip->cmdfunc = nand_command;
2737
2738 /* check, if a user supplied wait function given */
2739 if (chip->waitfunc == NULL)
2740 chip->waitfunc = nand_wait;
2741
2742 if (!chip->select_chip)
2743 chip->select_chip = nand_select_chip;
2744 if (!chip->read_byte)
2745 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2746 if (!chip->read_word)
2747 chip->read_word = nand_read_word;
2748 if (!chip->block_bad)
2749 chip->block_bad = nand_block_bad;
2750 if (!chip->block_markbad)
2751 chip->block_markbad = nand_default_block_markbad;
2752 if (!chip->write_buf)
2753 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2754 if (!chip->read_buf)
2755 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2756 if (!chip->verify_buf)
2757 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2758 if (!chip->scan_bbt)
2759 chip->scan_bbt = nand_default_bbt;
2760
2761 if (!chip->controller) {
2762 chip->controller = &chip->hwcontrol;
2763 spin_lock_init(&chip->controller->lock);
2764 init_waitqueue_head(&chip->controller->wq);
2765 }
2766
2767}
2768
2769/*
2770 * Get the flash and manufacturer id and lookup if the type is supported
2771 */
2772static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2773 struct nand_chip *chip,
2774 int busw, int *maf_id,
2775 struct nand_flash_dev *type)
2776{
2777 int i, dev_id, maf_idx;
2778 u8 id_data[8];
2779
2780 /* Select the device */
2781 chip->select_chip(mtd, 0);
2782
2783 /*
2784 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2785 * after power-up
2786 */
2787 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2788
2789 /* Send the command for reading device ID */
2790 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2791
2792 /* Read manufacturer and device IDs */
2793 *maf_id = chip->read_byte(mtd);
2794 dev_id = chip->read_byte(mtd);
2795
2796 /* Try again to make sure, as some systems the bus-hold or other
2797 * interface concerns can cause random data which looks like a
2798 * possibly credible NAND flash to appear. If the two results do
2799 * not match, ignore the device completely.
2800 */
2801
2802 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2803
2804 /* Read entire ID string */
2805
2806 for (i = 0; i < 8; i++)
2807 id_data[i] = chip->read_byte(mtd);
2808
2809 if (id_data[0] != *maf_id || id_data[1] != dev_id) {
2810 printk(KERN_INFO "%s: second ID read did not match "
2811 "%02x,%02x against %02x,%02x\n", __func__,
2812 *maf_id, dev_id, id_data[0], id_data[1]);
2813 return ERR_PTR(-ENODEV);
2814 }
2815
2816 if (!type)
2817 type = nand_flash_ids;
2818
2819 for (; type->name != NULL; type++)
2820 if (dev_id == type->id)
2821 break;
2822
2823 if (!type->name)
2824 return ERR_PTR(-ENODEV);
2825
2826 if (!mtd->name)
2827 mtd->name = type->name;
2828
2829 chip->chipsize = (uint64_t)type->chipsize << 20;
2830
2831 /* Newer devices have all the information in additional id bytes */
2832 if (!type->pagesize) {
2833 int extid;
2834 /* The 3rd id byte holds MLC / multichip data */
2835 chip->cellinfo = id_data[2];
2836 /* The 4th id byte is the important one */
2837 extid = id_data[3];
2838
2839 /*
2840 * Field definitions are in the following datasheets:
2841 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2842 * New style (6 byte ID): Samsung K9GAG08U0D (p.40)
2843 *
2844 * Check for wraparound + Samsung ID + nonzero 6th byte
2845 * to decide what to do.
2846 */
2847 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2848 id_data[0] == NAND_MFR_SAMSUNG &&
2849 id_data[5] != 0x00) {
2850 /* Calc pagesize */
2851 mtd->writesize = 2048 << (extid & 0x03);
2852 extid >>= 2;
2853 /* Calc oobsize */
2854 mtd->oobsize = (extid & 0x03) == 0x01 ? 128 : 218;
2855 extid >>= 2;
2856 /* Calc blocksize */
2857 mtd->erasesize = (128 * 1024) <<
2858 (((extid >> 1) & 0x04) | (extid & 0x03));
2859 busw = 0;
2860 } else {
2861 /* Calc pagesize */
2862 mtd->writesize = 1024 << (extid & 0x03);
2863 extid >>= 2;
2864 /* Calc oobsize */
2865 mtd->oobsize = (8 << (extid & 0x01)) *
2866 (mtd->writesize >> 9);
2867 extid >>= 2;
2868 /* Calc blocksize. Blocksize is multiples of 64KiB */
2869 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2870 extid >>= 2;
2871 /* Get buswidth information */
2872 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2873 }
2874 } else {
2875 /*
2876 * Old devices have chip data hardcoded in the device id table
2877 */
2878 mtd->erasesize = type->erasesize;
2879 mtd->writesize = type->pagesize;
2880 mtd->oobsize = mtd->writesize / 32;
2881 busw = type->options & NAND_BUSWIDTH_16;
2882 }
2883
2884 /* Try to identify manufacturer */
2885 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2886 if (nand_manuf_ids[maf_idx].id == *maf_id)
2887 break;
2888 }
2889
2890 /*
2891 * Check, if buswidth is correct. Hardware drivers should set
2892 * chip correct !
2893 */
2894 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2895 printk(KERN_INFO "NAND device: Manufacturer ID:"
2896 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2897 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2898 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2899 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2900 busw ? 16 : 8);
2901 return ERR_PTR(-EINVAL);
2902 }
2903
2904 /* Calculate the address shift from the page size */
2905 chip->page_shift = ffs(mtd->writesize) - 1;
2906 /* Convert chipsize to number of pages per chip -1. */
2907 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2908
2909 chip->bbt_erase_shift = chip->phys_erase_shift =
2910 ffs(mtd->erasesize) - 1;
2911 if (chip->chipsize & 0xffffffff)
2912 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
2913 else
2914 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32)) + 32 - 1;
2915
2916 /* Set the bad block position */
2917 chip->badblockpos = mtd->writesize > 512 ?
2918 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2919 chip->badblockbits = 8;
2920
2921 /* Get chip options, preserve non chip based options */
2922 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2923 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2924
2925 /*
2926 * Set chip as a default. Board drivers can override it, if necessary
2927 */
2928 chip->options |= NAND_NO_AUTOINCR;
2929
2930 /* Check if chip is a not a samsung device. Do not clear the
2931 * options for chips which are not having an extended id.
2932 */
2933 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2934 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2935
2936 /* Check for AND chips with 4 page planes */
2937 if (chip->options & NAND_4PAGE_ARRAY)
2938 chip->erase_cmd = multi_erase_cmd;
2939 else
2940 chip->erase_cmd = single_erase_cmd;
2941
2942 /* Do not replace user supplied command function ! */
2943 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2944 chip->cmdfunc = nand_command_lp;
2945
2946 printk(KERN_INFO "NAND device: Manufacturer ID:"
2947 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2948 nand_manuf_ids[maf_idx].name, type->name);
2949
2950 return type;
2951}
2952
2953/**
2954 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2955 * @mtd: MTD device structure
2956 * @maxchips: Number of chips to scan for
2957 * @table: Alternative NAND ID table
2958 *
2959 * This is the first phase of the normal nand_scan() function. It
2960 * reads the flash ID and sets up MTD fields accordingly.
2961 *
2962 * The mtd->owner field must be set to the module of the caller.
2963 */
2964int nand_scan_ident(struct mtd_info *mtd, int maxchips,
2965 struct nand_flash_dev *table)
2966{
2967 int i, busw, nand_maf_id;
2968 struct nand_chip *chip = mtd->priv;
2969 struct nand_flash_dev *type;
2970
2971 /* Get buswidth to select the correct functions */
2972 busw = chip->options & NAND_BUSWIDTH_16;
2973 /* Set the default functions */
2974 nand_set_defaults(chip, busw);
2975
2976 /* Read the flash type */
2977 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id, table);
2978
2979 if (IS_ERR(type)) {
2980 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
2981 printk(KERN_WARNING "No NAND device found.\n");
2982 chip->select_chip(mtd, -1);
2983 return PTR_ERR(type);
2984 }
2985
2986 /* Check for a chip array */
2987 for (i = 1; i < maxchips; i++) {
2988 chip->select_chip(mtd, i);
2989 /* See comment in nand_get_flash_type for reset */
2990 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2991 /* Send the command for reading device ID */
2992 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2993 /* Read manufacturer and device IDs */
2994 if (nand_maf_id != chip->read_byte(mtd) ||
2995 type->id != chip->read_byte(mtd))
2996 break;
2997 }
2998 if (i > 1)
2999 printk(KERN_INFO "%d NAND chips detected\n", i);
3000
3001 /* Store the number of chips and calc total size for mtd */
3002 chip->numchips = i;
3003 mtd->size = i * chip->chipsize;
3004
3005 return 0;
3006}
3007
3008
3009/**
3010 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3011 * @mtd: MTD device structure
3012 *
3013 * This is the second phase of the normal nand_scan() function. It
3014 * fills out all the uninitialized function pointers with the defaults
3015 * and scans for a bad block table if appropriate.
3016 */
3017int nand_scan_tail(struct mtd_info *mtd)
3018{
3019 int i;
3020 struct nand_chip *chip = mtd->priv;
3021
3022 if (!(chip->options & NAND_OWN_BUFFERS))
3023 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3024 if (!chip->buffers)
3025 return -ENOMEM;
3026
3027 /* Set the internal oob buffer location, just after the page data */
3028 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3029
3030 /*
3031 * If no default placement scheme is given, select an appropriate one
3032 */
3033 if (!chip->ecc.layout) {
3034 switch (mtd->oobsize) {
3035 case 8:
3036 chip->ecc.layout = &nand_oob_8;
3037 break;
3038 case 16:
3039 chip->ecc.layout = &nand_oob_16;
3040 break;
3041 case 64:
3042 chip->ecc.layout = &nand_oob_64;
3043 break;
3044 case 128:
3045 chip->ecc.layout = &nand_oob_128;
3046 break;
3047 default:
3048 printk(KERN_WARNING "No oob scheme defined for "
3049 "oobsize %d\n", mtd->oobsize);
3050 BUG();
3051 }
3052 }
3053
3054 if (!chip->write_page)
3055 chip->write_page = nand_write_page;
3056
3057 /*
3058 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3059 * selected and we have 256 byte pagesize fallback to software ECC
3060 */
3061
3062 switch (chip->ecc.mode) {
3063 case NAND_ECC_HW_OOB_FIRST:
3064 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3065 if (!chip->ecc.calculate || !chip->ecc.correct ||
3066 !chip->ecc.hwctl) {
3067 printk(KERN_WARNING "No ECC functions supplied; "
3068 "Hardware ECC not possible\n");
3069 BUG();
3070 }
3071 if (!chip->ecc.read_page)
3072 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3073
3074 case NAND_ECC_HW:
3075 /* Use standard hwecc read page function ? */
3076 if (!chip->ecc.read_page)
3077 chip->ecc.read_page = nand_read_page_hwecc;
3078 if (!chip->ecc.write_page)
3079 chip->ecc.write_page = nand_write_page_hwecc;
3080 if (!chip->ecc.read_page_raw)
3081 chip->ecc.read_page_raw = nand_read_page_raw;
3082 if (!chip->ecc.write_page_raw)
3083 chip->ecc.write_page_raw = nand_write_page_raw;
3084 if (!chip->ecc.read_oob)
3085 chip->ecc.read_oob = nand_read_oob_std;
3086 if (!chip->ecc.write_oob)
3087 chip->ecc.write_oob = nand_write_oob_std;
3088
3089 case NAND_ECC_HW_SYNDROME:
3090 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3091 !chip->ecc.hwctl) &&
3092 (!chip->ecc.read_page ||
3093 chip->ecc.read_page == nand_read_page_hwecc ||
3094 !chip->ecc.write_page ||
3095 chip->ecc.write_page == nand_write_page_hwecc)) {
3096 printk(KERN_WARNING "No ECC functions supplied; "
3097 "Hardware ECC not possible\n");
3098 BUG();
3099 }
3100 /* Use standard syndrome read/write page function ? */
3101 if (!chip->ecc.read_page)
3102 chip->ecc.read_page = nand_read_page_syndrome;
3103 if (!chip->ecc.write_page)
3104 chip->ecc.write_page = nand_write_page_syndrome;
3105 if (!chip->ecc.read_page_raw)
3106 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3107 if (!chip->ecc.write_page_raw)
3108 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3109 if (!chip->ecc.read_oob)
3110 chip->ecc.read_oob = nand_read_oob_syndrome;
3111 if (!chip->ecc.write_oob)
3112 chip->ecc.write_oob = nand_write_oob_syndrome;
3113
3114 if (mtd->writesize >= chip->ecc.size)
3115 break;
3116 printk(KERN_WARNING "%d byte HW ECC not possible on "
3117 "%d byte page size, fallback to SW ECC\n",
3118 chip->ecc.size, mtd->writesize);
3119 chip->ecc.mode = NAND_ECC_SOFT;
3120
3121 case NAND_ECC_SOFT:
3122 chip->ecc.calculate = nand_calculate_ecc;
3123 chip->ecc.correct = nand_correct_data;
3124 chip->ecc.read_page = nand_read_page_swecc;
3125 chip->ecc.read_subpage = nand_read_subpage;
3126 chip->ecc.write_page = nand_write_page_swecc;
3127 chip->ecc.read_page_raw = nand_read_page_raw;
3128 chip->ecc.write_page_raw = nand_write_page_raw;
3129 chip->ecc.read_oob = nand_read_oob_std;
3130 chip->ecc.write_oob = nand_write_oob_std;
3131 if (!chip->ecc.size)
3132 chip->ecc.size = 256;
3133 chip->ecc.bytes = 3;
3134 break;
3135
3136 case NAND_ECC_NONE:
3137 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3138 "This is not recommended !!\n");
3139 chip->ecc.read_page = nand_read_page_raw;
3140 chip->ecc.write_page = nand_write_page_raw;
3141 chip->ecc.read_oob = nand_read_oob_std;
3142 chip->ecc.read_page_raw = nand_read_page_raw;
3143 chip->ecc.write_page_raw = nand_write_page_raw;
3144 chip->ecc.write_oob = nand_write_oob_std;
3145 chip->ecc.size = mtd->writesize;
3146 chip->ecc.bytes = 0;
3147 break;
3148
3149 default:
3150 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3151 chip->ecc.mode);
3152 BUG();
3153 }
3154
3155 /*
3156 * The number of bytes available for a client to place data into
3157 * the out of band area
3158 */
3159 chip->ecc.layout->oobavail = 0;
3160 for (i = 0; chip->ecc.layout->oobfree[i].length
3161 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3162 chip->ecc.layout->oobavail +=
3163 chip->ecc.layout->oobfree[i].length;
3164 mtd->oobavail = chip->ecc.layout->oobavail;
3165
3166 /*
3167 * Set the number of read / write steps for one page depending on ECC
3168 * mode
3169 */
3170 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3171 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3172 printk(KERN_WARNING "Invalid ecc parameters\n");
3173 BUG();
3174 }
3175 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3176
3177 /*
3178 * Allow subpage writes up to ecc.steps. Not possible for MLC
3179 * FLASH.
3180 */
3181 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3182 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3183 switch(chip->ecc.steps) {
3184 case 2:
3185 mtd->subpage_sft = 1;
3186 break;
3187 case 4:
3188 case 8:
3189 case 16:
3190 mtd->subpage_sft = 2;
3191 break;
3192 }
3193 }
3194 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3195
3196 /* Initialize state */
3197 chip->state = FL_READY;
3198
3199 /* De-select the device */
3200 chip->select_chip(mtd, -1);
3201
3202 /* Invalidate the pagebuffer reference */
3203 chip->pagebuf = -1;
3204
3205 /* Fill in remaining MTD driver data */
3206 mtd->type = MTD_NANDFLASH;
3207 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3208 MTD_CAP_NANDFLASH;
3209 mtd->erase = nand_erase;
3210 mtd->point = NULL;
3211 mtd->unpoint = NULL;
3212 mtd->read = nand_read;
3213 mtd->write = nand_write;
3214 mtd->panic_write = panic_nand_write;
3215 mtd->read_oob = nand_read_oob;
3216 mtd->write_oob = nand_write_oob;
3217 mtd->sync = nand_sync;
3218 mtd->lock = NULL;
3219 mtd->unlock = NULL;
3220 mtd->suspend = nand_suspend;
3221 mtd->resume = nand_resume;
3222 mtd->block_isbad = nand_block_isbad;
3223 mtd->block_markbad = nand_block_markbad;
3224
3225 /* propagate ecc.layout to mtd_info */
3226 mtd->ecclayout = chip->ecc.layout;
3227
3228 /* Check, if we should skip the bad block table scan */
3229 if (chip->options & NAND_SKIP_BBTSCAN)
3230 return 0;
3231
3232 /* Build bad block table */
3233 return chip->scan_bbt(mtd);
3234}
3235
3236/* is_module_text_address() isn't exported, and it's mostly a pointless
3237 test if this is a module _anyway_ -- they'd have to try _really_ hard
3238 to call us from in-kernel code if the core NAND support is modular. */
3239#ifdef MODULE
3240#define caller_is_module() (1)
3241#else
3242#define caller_is_module() \
3243 is_module_text_address((unsigned long)__builtin_return_address(0))
3244#endif
3245
3246/**
3247 * nand_scan - [NAND Interface] Scan for the NAND device
3248 * @mtd: MTD device structure
3249 * @maxchips: Number of chips to scan for
3250 *
3251 * This fills out all the uninitialized function pointers
3252 * with the defaults.
3253 * The flash ID is read and the mtd/chip structures are
3254 * filled with the appropriate values.
3255 * The mtd->owner field must be set to the module of the caller
3256 *
3257 */
3258int nand_scan(struct mtd_info *mtd, int maxchips)
3259{
3260 int ret;
3261
3262 /* Many callers got this wrong, so check for it for a while... */
3263 if (!mtd->owner && caller_is_module()) {
3264 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3265 __func__);
3266 BUG();
3267 }
3268
3269 ret = nand_scan_ident(mtd, maxchips, NULL);
3270 if (!ret)
3271 ret = nand_scan_tail(mtd);
3272 return ret;
3273}
3274
3275/**
3276 * nand_release - [NAND Interface] Free resources held by the NAND device
3277 * @mtd: MTD device structure
3278*/
3279void nand_release(struct mtd_info *mtd)
3280{
3281 struct nand_chip *chip = mtd->priv;
3282
3283#ifdef CONFIG_MTD_PARTITIONS
3284 /* Deregister partitions */
3285 del_mtd_partitions(mtd);
3286#endif
3287 /* Deregister the device */
3288 del_mtd_device(mtd);
3289
3290 /* Free bad block table memory */
3291 kfree(chip->bbt);
3292 if (!(chip->options & NAND_OWN_BUFFERS))
3293 kfree(chip->buffers);
3294}
3295
3296EXPORT_SYMBOL_GPL(nand_lock);
3297EXPORT_SYMBOL_GPL(nand_unlock);
3298EXPORT_SYMBOL_GPL(nand_scan);
3299EXPORT_SYMBOL_GPL(nand_scan_ident);
3300EXPORT_SYMBOL_GPL(nand_scan_tail);
3301EXPORT_SYMBOL_GPL(nand_release);
3302
3303static int __init nand_base_init(void)
3304{
3305 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3306 return 0;
3307}
3308
3309static void __exit nand_base_exit(void)
3310{
3311 led_trigger_unregister_simple(nand_led_trigger);
3312}
3313
3314module_init(nand_base_init);
3315module_exit(nand_base_exit);
3316
3317MODULE_LICENSE("GPL");
3318MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
3319MODULE_DESCRIPTION("Generic NAND flash driver code");