]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - arch/x86/mm/fault.c
mm: invoke oom-killer from page fault
[net-next-2.6.git] / arch / x86 / mm / fault.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001,2002 Andi Kleen, SuSE Labs.
4 */
5
6#include <linux/signal.h>
7#include <linux/sched.h>
8#include <linux/kernel.h>
9#include <linux/errno.h>
10#include <linux/string.h>
11#include <linux/types.h>
12#include <linux/ptrace.h>
13#include <linux/mmiotrace.h>
14#include <linux/mman.h>
15#include <linux/mm.h>
16#include <linux/smp.h>
17#include <linux/interrupt.h>
18#include <linux/init.h>
19#include <linux/tty.h>
20#include <linux/vt_kern.h> /* For unblank_screen() */
21#include <linux/compiler.h>
22#include <linux/highmem.h>
23#include <linux/bootmem.h> /* for max_low_pfn */
24#include <linux/vmalloc.h>
25#include <linux/module.h>
26#include <linux/kprobes.h>
27#include <linux/uaccess.h>
28#include <linux/kdebug.h>
29
30#include <asm/system.h>
31#include <asm/desc.h>
32#include <asm/segment.h>
33#include <asm/pgalloc.h>
34#include <asm/smp.h>
35#include <asm/tlbflush.h>
36#include <asm/proto.h>
37#include <asm-generic/sections.h>
38#include <asm/traps.h>
39
40/*
41 * Page fault error code bits
42 * bit 0 == 0 means no page found, 1 means protection fault
43 * bit 1 == 0 means read, 1 means write
44 * bit 2 == 0 means kernel, 1 means user-mode
45 * bit 3 == 1 means use of reserved bit detected
46 * bit 4 == 1 means fault was an instruction fetch
47 */
48#define PF_PROT (1<<0)
49#define PF_WRITE (1<<1)
50#define PF_USER (1<<2)
51#define PF_RSVD (1<<3)
52#define PF_INSTR (1<<4)
53
54static inline int kmmio_fault(struct pt_regs *regs, unsigned long addr)
55{
56#ifdef CONFIG_MMIOTRACE
57 if (unlikely(is_kmmio_active()))
58 if (kmmio_handler(regs, addr) == 1)
59 return -1;
60#endif
61 return 0;
62}
63
64static inline int notify_page_fault(struct pt_regs *regs)
65{
66#ifdef CONFIG_KPROBES
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
70 if (!user_mode_vm(regs)) {
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
75 }
76
77 return ret;
78#else
79 return 0;
80#endif
81}
82
83/*
84 * X86_32
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
87 *
88 * X86_64
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner
93 */
94static int is_prefetch(struct pt_regs *regs, unsigned long addr,
95 unsigned long error_code)
96{
97 unsigned char *instr;
98 int scan_more = 1;
99 int prefetch = 0;
100 unsigned char *max_instr;
101
102 /*
103 * If it was a exec (instruction fetch) fault on NX page, then
104 * do not ignore the fault:
105 */
106 if (error_code & PF_INSTR)
107 return 0;
108
109 instr = (unsigned char *)convert_ip_to_linear(current, regs);
110 max_instr = instr + 15;
111
112 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
113 return 0;
114
115 while (scan_more && instr < max_instr) {
116 unsigned char opcode;
117 unsigned char instr_hi;
118 unsigned char instr_lo;
119
120 if (probe_kernel_address(instr, opcode))
121 break;
122
123 instr_hi = opcode & 0xf0;
124 instr_lo = opcode & 0x0f;
125 instr++;
126
127 switch (instr_hi) {
128 case 0x20:
129 case 0x30:
130 /*
131 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
132 * In X86_64 long mode, the CPU will signal invalid
133 * opcode if some of these prefixes are present so
134 * X86_64 will never get here anyway
135 */
136 scan_more = ((instr_lo & 7) == 0x6);
137 break;
138#ifdef CONFIG_X86_64
139 case 0x40:
140 /*
141 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
142 * Need to figure out under what instruction mode the
143 * instruction was issued. Could check the LDT for lm,
144 * but for now it's good enough to assume that long
145 * mode only uses well known segments or kernel.
146 */
147 scan_more = (!user_mode(regs)) || (regs->cs == __USER_CS);
148 break;
149#endif
150 case 0x60:
151 /* 0x64 thru 0x67 are valid prefixes in all modes. */
152 scan_more = (instr_lo & 0xC) == 0x4;
153 break;
154 case 0xF0:
155 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
156 scan_more = !instr_lo || (instr_lo>>1) == 1;
157 break;
158 case 0x00:
159 /* Prefetch instruction is 0x0F0D or 0x0F18 */
160 scan_more = 0;
161
162 if (probe_kernel_address(instr, opcode))
163 break;
164 prefetch = (instr_lo == 0xF) &&
165 (opcode == 0x0D || opcode == 0x18);
166 break;
167 default:
168 scan_more = 0;
169 break;
170 }
171 }
172 return prefetch;
173}
174
175static void force_sig_info_fault(int si_signo, int si_code,
176 unsigned long address, struct task_struct *tsk)
177{
178 siginfo_t info;
179
180 info.si_signo = si_signo;
181 info.si_errno = 0;
182 info.si_code = si_code;
183 info.si_addr = (void __user *)address;
184 force_sig_info(si_signo, &info, tsk);
185}
186
187#ifdef CONFIG_X86_64
188static int bad_address(void *p)
189{
190 unsigned long dummy;
191 return probe_kernel_address((unsigned long *)p, dummy);
192}
193#endif
194
195static void dump_pagetable(unsigned long address)
196{
197#ifdef CONFIG_X86_32
198 __typeof__(pte_val(__pte(0))) page;
199
200 page = read_cr3();
201 page = ((__typeof__(page) *) __va(page))[address >> PGDIR_SHIFT];
202#ifdef CONFIG_X86_PAE
203 printk("*pdpt = %016Lx ", page);
204 if ((page >> PAGE_SHIFT) < max_low_pfn
205 && page & _PAGE_PRESENT) {
206 page &= PAGE_MASK;
207 page = ((__typeof__(page) *) __va(page))[(address >> PMD_SHIFT)
208 & (PTRS_PER_PMD - 1)];
209 printk(KERN_CONT "*pde = %016Lx ", page);
210 page &= ~_PAGE_NX;
211 }
212#else
213 printk("*pde = %08lx ", page);
214#endif
215
216 /*
217 * We must not directly access the pte in the highpte
218 * case if the page table is located in highmem.
219 * And let's rather not kmap-atomic the pte, just in case
220 * it's allocated already.
221 */
222 if ((page >> PAGE_SHIFT) < max_low_pfn
223 && (page & _PAGE_PRESENT)
224 && !(page & _PAGE_PSE)) {
225 page &= PAGE_MASK;
226 page = ((__typeof__(page) *) __va(page))[(address >> PAGE_SHIFT)
227 & (PTRS_PER_PTE - 1)];
228 printk("*pte = %0*Lx ", sizeof(page)*2, (u64)page);
229 }
230
231 printk("\n");
232#else /* CONFIG_X86_64 */
233 pgd_t *pgd;
234 pud_t *pud;
235 pmd_t *pmd;
236 pte_t *pte;
237
238 pgd = (pgd_t *)read_cr3();
239
240 pgd = __va((unsigned long)pgd & PHYSICAL_PAGE_MASK);
241 pgd += pgd_index(address);
242 if (bad_address(pgd)) goto bad;
243 printk("PGD %lx ", pgd_val(*pgd));
244 if (!pgd_present(*pgd)) goto ret;
245
246 pud = pud_offset(pgd, address);
247 if (bad_address(pud)) goto bad;
248 printk("PUD %lx ", pud_val(*pud));
249 if (!pud_present(*pud) || pud_large(*pud))
250 goto ret;
251
252 pmd = pmd_offset(pud, address);
253 if (bad_address(pmd)) goto bad;
254 printk("PMD %lx ", pmd_val(*pmd));
255 if (!pmd_present(*pmd) || pmd_large(*pmd)) goto ret;
256
257 pte = pte_offset_kernel(pmd, address);
258 if (bad_address(pte)) goto bad;
259 printk("PTE %lx", pte_val(*pte));
260ret:
261 printk("\n");
262 return;
263bad:
264 printk("BAD\n");
265#endif
266}
267
268#ifdef CONFIG_X86_32
269static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
270{
271 unsigned index = pgd_index(address);
272 pgd_t *pgd_k;
273 pud_t *pud, *pud_k;
274 pmd_t *pmd, *pmd_k;
275
276 pgd += index;
277 pgd_k = init_mm.pgd + index;
278
279 if (!pgd_present(*pgd_k))
280 return NULL;
281
282 /*
283 * set_pgd(pgd, *pgd_k); here would be useless on PAE
284 * and redundant with the set_pmd() on non-PAE. As would
285 * set_pud.
286 */
287
288 pud = pud_offset(pgd, address);
289 pud_k = pud_offset(pgd_k, address);
290 if (!pud_present(*pud_k))
291 return NULL;
292
293 pmd = pmd_offset(pud, address);
294 pmd_k = pmd_offset(pud_k, address);
295 if (!pmd_present(*pmd_k))
296 return NULL;
297 if (!pmd_present(*pmd)) {
298 set_pmd(pmd, *pmd_k);
299 arch_flush_lazy_mmu_mode();
300 } else
301 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
302 return pmd_k;
303}
304#endif
305
306#ifdef CONFIG_X86_64
307static const char errata93_warning[] =
308KERN_ERR "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
309KERN_ERR "******* Working around it, but it may cause SEGVs or burn power.\n"
310KERN_ERR "******* Please consider a BIOS update.\n"
311KERN_ERR "******* Disabling USB legacy in the BIOS may also help.\n";
312#endif
313
314/* Workaround for K8 erratum #93 & buggy BIOS.
315 BIOS SMM functions are required to use a specific workaround
316 to avoid corruption of the 64bit RIP register on C stepping K8.
317 A lot of BIOS that didn't get tested properly miss this.
318 The OS sees this as a page fault with the upper 32bits of RIP cleared.
319 Try to work around it here.
320 Note we only handle faults in kernel here.
321 Does nothing for X86_32
322 */
323static int is_errata93(struct pt_regs *regs, unsigned long address)
324{
325#ifdef CONFIG_X86_64
326 static int warned;
327 if (address != regs->ip)
328 return 0;
329 if ((address >> 32) != 0)
330 return 0;
331 address |= 0xffffffffUL << 32;
332 if ((address >= (u64)_stext && address <= (u64)_etext) ||
333 (address >= MODULES_VADDR && address <= MODULES_END)) {
334 if (!warned) {
335 printk(errata93_warning);
336 warned = 1;
337 }
338 regs->ip = address;
339 return 1;
340 }
341#endif
342 return 0;
343}
344
345/*
346 * Work around K8 erratum #100 K8 in compat mode occasionally jumps to illegal
347 * addresses >4GB. We catch this in the page fault handler because these
348 * addresses are not reachable. Just detect this case and return. Any code
349 * segment in LDT is compatibility mode.
350 */
351static int is_errata100(struct pt_regs *regs, unsigned long address)
352{
353#ifdef CONFIG_X86_64
354 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) &&
355 (address >> 32))
356 return 1;
357#endif
358 return 0;
359}
360
361static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
362{
363#ifdef CONFIG_X86_F00F_BUG
364 unsigned long nr;
365 /*
366 * Pentium F0 0F C7 C8 bug workaround.
367 */
368 if (boot_cpu_data.f00f_bug) {
369 nr = (address - idt_descr.address) >> 3;
370
371 if (nr == 6) {
372 do_invalid_op(regs, 0);
373 return 1;
374 }
375 }
376#endif
377 return 0;
378}
379
380static void show_fault_oops(struct pt_regs *regs, unsigned long error_code,
381 unsigned long address)
382{
383#ifdef CONFIG_X86_32
384 if (!oops_may_print())
385 return;
386#endif
387
388#ifdef CONFIG_X86_PAE
389 if (error_code & PF_INSTR) {
390 unsigned int level;
391 pte_t *pte = lookup_address(address, &level);
392
393 if (pte && pte_present(*pte) && !pte_exec(*pte))
394 printk(KERN_CRIT "kernel tried to execute "
395 "NX-protected page - exploit attempt? "
396 "(uid: %d)\n", current_uid());
397 }
398#endif
399
400 printk(KERN_ALERT "BUG: unable to handle kernel ");
401 if (address < PAGE_SIZE)
402 printk(KERN_CONT "NULL pointer dereference");
403 else
404 printk(KERN_CONT "paging request");
405 printk(KERN_CONT " at %p\n", (void *) address);
406 printk(KERN_ALERT "IP:");
407 printk_address(regs->ip, 1);
408 dump_pagetable(address);
409}
410
411#ifdef CONFIG_X86_64
412static noinline void pgtable_bad(unsigned long address, struct pt_regs *regs,
413 unsigned long error_code)
414{
415 unsigned long flags = oops_begin();
416 int sig = SIGKILL;
417 struct task_struct *tsk;
418
419 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
420 current->comm, address);
421 dump_pagetable(address);
422 tsk = current;
423 tsk->thread.cr2 = address;
424 tsk->thread.trap_no = 14;
425 tsk->thread.error_code = error_code;
426 if (__die("Bad pagetable", regs, error_code))
427 sig = 0;
428 oops_end(flags, regs, sig);
429}
430#endif
431
432static int spurious_fault_check(unsigned long error_code, pte_t *pte)
433{
434 if ((error_code & PF_WRITE) && !pte_write(*pte))
435 return 0;
436 if ((error_code & PF_INSTR) && !pte_exec(*pte))
437 return 0;
438
439 return 1;
440}
441
442/*
443 * Handle a spurious fault caused by a stale TLB entry. This allows
444 * us to lazily refresh the TLB when increasing the permissions of a
445 * kernel page (RO -> RW or NX -> X). Doing it eagerly is very
446 * expensive since that implies doing a full cross-processor TLB
447 * flush, even if no stale TLB entries exist on other processors.
448 * There are no security implications to leaving a stale TLB when
449 * increasing the permissions on a page.
450 */
451static int spurious_fault(unsigned long address,
452 unsigned long error_code)
453{
454 pgd_t *pgd;
455 pud_t *pud;
456 pmd_t *pmd;
457 pte_t *pte;
458
459 /* Reserved-bit violation or user access to kernel space? */
460 if (error_code & (PF_USER | PF_RSVD))
461 return 0;
462
463 pgd = init_mm.pgd + pgd_index(address);
464 if (!pgd_present(*pgd))
465 return 0;
466
467 pud = pud_offset(pgd, address);
468 if (!pud_present(*pud))
469 return 0;
470
471 if (pud_large(*pud))
472 return spurious_fault_check(error_code, (pte_t *) pud);
473
474 pmd = pmd_offset(pud, address);
475 if (!pmd_present(*pmd))
476 return 0;
477
478 if (pmd_large(*pmd))
479 return spurious_fault_check(error_code, (pte_t *) pmd);
480
481 pte = pte_offset_kernel(pmd, address);
482 if (!pte_present(*pte))
483 return 0;
484
485 return spurious_fault_check(error_code, pte);
486}
487
488/*
489 * X86_32
490 * Handle a fault on the vmalloc or module mapping area
491 *
492 * X86_64
493 * Handle a fault on the vmalloc area
494 *
495 * This assumes no large pages in there.
496 */
497static int vmalloc_fault(unsigned long address)
498{
499#ifdef CONFIG_X86_32
500 unsigned long pgd_paddr;
501 pmd_t *pmd_k;
502 pte_t *pte_k;
503
504 /* Make sure we are in vmalloc area */
505 if (!(address >= VMALLOC_START && address < VMALLOC_END))
506 return -1;
507
508 /*
509 * Synchronize this task's top level page-table
510 * with the 'reference' page table.
511 *
512 * Do _not_ use "current" here. We might be inside
513 * an interrupt in the middle of a task switch..
514 */
515 pgd_paddr = read_cr3();
516 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
517 if (!pmd_k)
518 return -1;
519 pte_k = pte_offset_kernel(pmd_k, address);
520 if (!pte_present(*pte_k))
521 return -1;
522 return 0;
523#else
524 pgd_t *pgd, *pgd_ref;
525 pud_t *pud, *pud_ref;
526 pmd_t *pmd, *pmd_ref;
527 pte_t *pte, *pte_ref;
528
529 /* Make sure we are in vmalloc area */
530 if (!(address >= VMALLOC_START && address < VMALLOC_END))
531 return -1;
532
533 /* Copy kernel mappings over when needed. This can also
534 happen within a race in page table update. In the later
535 case just flush. */
536
537 pgd = pgd_offset(current->mm ?: &init_mm, address);
538 pgd_ref = pgd_offset_k(address);
539 if (pgd_none(*pgd_ref))
540 return -1;
541 if (pgd_none(*pgd))
542 set_pgd(pgd, *pgd_ref);
543 else
544 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
545
546 /* Below here mismatches are bugs because these lower tables
547 are shared */
548
549 pud = pud_offset(pgd, address);
550 pud_ref = pud_offset(pgd_ref, address);
551 if (pud_none(*pud_ref))
552 return -1;
553 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
554 BUG();
555 pmd = pmd_offset(pud, address);
556 pmd_ref = pmd_offset(pud_ref, address);
557 if (pmd_none(*pmd_ref))
558 return -1;
559 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
560 BUG();
561 pte_ref = pte_offset_kernel(pmd_ref, address);
562 if (!pte_present(*pte_ref))
563 return -1;
564 pte = pte_offset_kernel(pmd, address);
565 /* Don't use pte_page here, because the mappings can point
566 outside mem_map, and the NUMA hash lookup cannot handle
567 that. */
568 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
569 BUG();
570 return 0;
571#endif
572}
573
574int show_unhandled_signals = 1;
575
576/*
577 * This routine handles page faults. It determines the address,
578 * and the problem, and then passes it off to one of the appropriate
579 * routines.
580 */
581#ifdef CONFIG_X86_64
582asmlinkage
583#endif
584void __kprobes do_page_fault(struct pt_regs *regs, unsigned long error_code)
585{
586 struct task_struct *tsk;
587 struct mm_struct *mm;
588 struct vm_area_struct *vma;
589 unsigned long address;
590 int write, si_code;
591 int fault;
592#ifdef CONFIG_X86_64
593 unsigned long flags;
594 int sig;
595#endif
596
597 tsk = current;
598 mm = tsk->mm;
599 prefetchw(&mm->mmap_sem);
600
601 /* get the address */
602 address = read_cr2();
603
604 si_code = SEGV_MAPERR;
605
606 if (notify_page_fault(regs))
607 return;
608 if (unlikely(kmmio_fault(regs, address)))
609 return;
610
611 /*
612 * We fault-in kernel-space virtual memory on-demand. The
613 * 'reference' page table is init_mm.pgd.
614 *
615 * NOTE! We MUST NOT take any locks for this case. We may
616 * be in an interrupt or a critical region, and should
617 * only copy the information from the master page table,
618 * nothing more.
619 *
620 * This verifies that the fault happens in kernel space
621 * (error_code & 4) == 0, and that the fault was not a
622 * protection error (error_code & 9) == 0.
623 */
624#ifdef CONFIG_X86_32
625 if (unlikely(address >= TASK_SIZE)) {
626#else
627 if (unlikely(address >= TASK_SIZE64)) {
628#endif
629 if (!(error_code & (PF_RSVD|PF_USER|PF_PROT)) &&
630 vmalloc_fault(address) >= 0)
631 return;
632
633 /* Can handle a stale RO->RW TLB */
634 if (spurious_fault(address, error_code))
635 return;
636
637 /*
638 * Don't take the mm semaphore here. If we fixup a prefetch
639 * fault we could otherwise deadlock.
640 */
641 goto bad_area_nosemaphore;
642 }
643
644
645 /*
646 * It's safe to allow irq's after cr2 has been saved and the
647 * vmalloc fault has been handled.
648 *
649 * User-mode registers count as a user access even for any
650 * potential system fault or CPU buglet.
651 */
652 if (user_mode_vm(regs)) {
653 local_irq_enable();
654 error_code |= PF_USER;
655 } else if (regs->flags & X86_EFLAGS_IF)
656 local_irq_enable();
657
658#ifdef CONFIG_X86_64
659 if (unlikely(error_code & PF_RSVD))
660 pgtable_bad(address, regs, error_code);
661#endif
662
663 /*
664 * If we're in an interrupt, have no user context or are running in an
665 * atomic region then we must not take the fault.
666 */
667 if (unlikely(in_atomic() || !mm))
668 goto bad_area_nosemaphore;
669
670 /*
671 * When running in the kernel we expect faults to occur only to
672 * addresses in user space. All other faults represent errors in the
673 * kernel and should generate an OOPS. Unfortunately, in the case of an
674 * erroneous fault occurring in a code path which already holds mmap_sem
675 * we will deadlock attempting to validate the fault against the
676 * address space. Luckily the kernel only validly references user
677 * space from well defined areas of code, which are listed in the
678 * exceptions table.
679 *
680 * As the vast majority of faults will be valid we will only perform
681 * the source reference check when there is a possibility of a deadlock.
682 * Attempt to lock the address space, if we cannot we then validate the
683 * source. If this is invalid we can skip the address space check,
684 * thus avoiding the deadlock.
685 */
686 if (!down_read_trylock(&mm->mmap_sem)) {
687 if ((error_code & PF_USER) == 0 &&
688 !search_exception_tables(regs->ip))
689 goto bad_area_nosemaphore;
690 down_read(&mm->mmap_sem);
691 }
692
693 vma = find_vma(mm, address);
694 if (!vma)
695 goto bad_area;
696 if (vma->vm_start <= address)
697 goto good_area;
698 if (!(vma->vm_flags & VM_GROWSDOWN))
699 goto bad_area;
700 if (error_code & PF_USER) {
701 /*
702 * Accessing the stack below %sp is always a bug.
703 * The large cushion allows instructions like enter
704 * and pusha to work. ("enter $65535,$31" pushes
705 * 32 pointers and then decrements %sp by 65535.)
706 */
707 if (address + 65536 + 32 * sizeof(unsigned long) < regs->sp)
708 goto bad_area;
709 }
710 if (expand_stack(vma, address))
711 goto bad_area;
712/*
713 * Ok, we have a good vm_area for this memory access, so
714 * we can handle it..
715 */
716good_area:
717 si_code = SEGV_ACCERR;
718 write = 0;
719 switch (error_code & (PF_PROT|PF_WRITE)) {
720 default: /* 3: write, present */
721 /* fall through */
722 case PF_WRITE: /* write, not present */
723 if (!(vma->vm_flags & VM_WRITE))
724 goto bad_area;
725 write++;
726 break;
727 case PF_PROT: /* read, present */
728 goto bad_area;
729 case 0: /* read, not present */
730 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
731 goto bad_area;
732 }
733
734 /*
735 * If for any reason at all we couldn't handle the fault,
736 * make sure we exit gracefully rather than endlessly redo
737 * the fault.
738 */
739 fault = handle_mm_fault(mm, vma, address, write);
740 if (unlikely(fault & VM_FAULT_ERROR)) {
741 if (fault & VM_FAULT_OOM)
742 goto out_of_memory;
743 else if (fault & VM_FAULT_SIGBUS)
744 goto do_sigbus;
745 BUG();
746 }
747 if (fault & VM_FAULT_MAJOR)
748 tsk->maj_flt++;
749 else
750 tsk->min_flt++;
751
752#ifdef CONFIG_X86_32
753 /*
754 * Did it hit the DOS screen memory VA from vm86 mode?
755 */
756 if (v8086_mode(regs)) {
757 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;
758 if (bit < 32)
759 tsk->thread.screen_bitmap |= 1 << bit;
760 }
761#endif
762 up_read(&mm->mmap_sem);
763 return;
764
765/*
766 * Something tried to access memory that isn't in our memory map..
767 * Fix it, but check if it's kernel or user first..
768 */
769bad_area:
770 up_read(&mm->mmap_sem);
771
772bad_area_nosemaphore:
773 /* User mode accesses just cause a SIGSEGV */
774 if (error_code & PF_USER) {
775 /*
776 * It's possible to have interrupts off here.
777 */
778 local_irq_enable();
779
780 /*
781 * Valid to do another page fault here because this one came
782 * from user space.
783 */
784 if (is_prefetch(regs, address, error_code))
785 return;
786
787 if (is_errata100(regs, address))
788 return;
789
790 if (show_unhandled_signals && unhandled_signal(tsk, SIGSEGV) &&
791 printk_ratelimit()) {
792 printk(
793 "%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
794 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
795 tsk->comm, task_pid_nr(tsk), address,
796 (void *) regs->ip, (void *) regs->sp, error_code);
797 print_vma_addr(" in ", regs->ip);
798 printk("\n");
799 }
800
801 tsk->thread.cr2 = address;
802 /* Kernel addresses are always protection faults */
803 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
804 tsk->thread.trap_no = 14;
805 force_sig_info_fault(SIGSEGV, si_code, address, tsk);
806 return;
807 }
808
809 if (is_f00f_bug(regs, address))
810 return;
811
812no_context:
813 /* Are we prepared to handle this kernel fault? */
814 if (fixup_exception(regs))
815 return;
816
817 /*
818 * X86_32
819 * Valid to do another page fault here, because if this fault
820 * had been triggered by is_prefetch fixup_exception would have
821 * handled it.
822 *
823 * X86_64
824 * Hall of shame of CPU/BIOS bugs.
825 */
826 if (is_prefetch(regs, address, error_code))
827 return;
828
829 if (is_errata93(regs, address))
830 return;
831
832/*
833 * Oops. The kernel tried to access some bad page. We'll have to
834 * terminate things with extreme prejudice.
835 */
836#ifdef CONFIG_X86_32
837 bust_spinlocks(1);
838#else
839 flags = oops_begin();
840#endif
841
842 show_fault_oops(regs, error_code, address);
843
844 tsk->thread.cr2 = address;
845 tsk->thread.trap_no = 14;
846 tsk->thread.error_code = error_code;
847
848#ifdef CONFIG_X86_32
849 die("Oops", regs, error_code);
850 bust_spinlocks(0);
851 do_exit(SIGKILL);
852#else
853 sig = SIGKILL;
854 if (__die("Oops", regs, error_code))
855 sig = 0;
856 /* Executive summary in case the body of the oops scrolled away */
857 printk(KERN_EMERG "CR2: %016lx\n", address);
858 oops_end(flags, regs, sig);
859#endif
860
861out_of_memory:
862 /*
863 * We ran out of memory, call the OOM killer, and return the userspace
864 * (which will retry the fault, or kill us if we got oom-killed).
865 */
866 up_read(&mm->mmap_sem);
867 pagefault_out_of_memory();
868 return;
869
870do_sigbus:
871 up_read(&mm->mmap_sem);
872
873 /* Kernel mode? Handle exceptions or die */
874 if (!(error_code & PF_USER))
875 goto no_context;
876#ifdef CONFIG_X86_32
877 /* User space => ok to do another page fault */
878 if (is_prefetch(regs, address, error_code))
879 return;
880#endif
881 tsk->thread.cr2 = address;
882 tsk->thread.error_code = error_code;
883 tsk->thread.trap_no = 14;
884 force_sig_info_fault(SIGBUS, BUS_ADRERR, address, tsk);
885}
886
887DEFINE_SPINLOCK(pgd_lock);
888LIST_HEAD(pgd_list);
889
890void vmalloc_sync_all(void)
891{
892 unsigned long address;
893
894#ifdef CONFIG_X86_32
895 if (SHARED_KERNEL_PMD)
896 return;
897
898 for (address = VMALLOC_START & PMD_MASK;
899 address >= TASK_SIZE && address < FIXADDR_TOP;
900 address += PMD_SIZE) {
901 unsigned long flags;
902 struct page *page;
903
904 spin_lock_irqsave(&pgd_lock, flags);
905 list_for_each_entry(page, &pgd_list, lru) {
906 if (!vmalloc_sync_one(page_address(page),
907 address))
908 break;
909 }
910 spin_unlock_irqrestore(&pgd_lock, flags);
911 }
912#else /* CONFIG_X86_64 */
913 for (address = VMALLOC_START & PGDIR_MASK; address <= VMALLOC_END;
914 address += PGDIR_SIZE) {
915 const pgd_t *pgd_ref = pgd_offset_k(address);
916 unsigned long flags;
917 struct page *page;
918
919 if (pgd_none(*pgd_ref))
920 continue;
921 spin_lock_irqsave(&pgd_lock, flags);
922 list_for_each_entry(page, &pgd_list, lru) {
923 pgd_t *pgd;
924 pgd = (pgd_t *)page_address(page) + pgd_index(address);
925 if (pgd_none(*pgd))
926 set_pgd(pgd, *pgd_ref);
927 else
928 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
929 }
930 spin_unlock_irqrestore(&pgd_lock, flags);
931 }
932#endif
933}