]> bbs.cooldavid.org Git - net-next-2.6.git/blame_incremental - arch/x86/kernel/apic/io_apic.c
genirq: Switch sparse_irq allocator to GFP_KERNEL
[net-next-2.6.git] / arch / x86 / kernel / apic / io_apic.c
... / ...
CommitLineData
1/*
2 * Intel IO-APIC support for multi-Pentium hosts.
3 *
4 * Copyright (C) 1997, 1998, 1999, 2000, 2009 Ingo Molnar, Hajnalka Szabo
5 *
6 * Many thanks to Stig Venaas for trying out countless experimental
7 * patches and reporting/debugging problems patiently!
8 *
9 * (c) 1999, Multiple IO-APIC support, developed by
10 * Ken-ichi Yaku <yaku@css1.kbnes.nec.co.jp> and
11 * Hidemi Kishimoto <kisimoto@css1.kbnes.nec.co.jp>,
12 * further tested and cleaned up by Zach Brown <zab@redhat.com>
13 * and Ingo Molnar <mingo@redhat.com>
14 *
15 * Fixes
16 * Maciej W. Rozycki : Bits for genuine 82489DX APICs;
17 * thanks to Eric Gilmore
18 * and Rolf G. Tews
19 * for testing these extensively
20 * Paul Diefenbaugh : Added full ACPI support
21 */
22
23#include <linux/mm.h>
24#include <linux/interrupt.h>
25#include <linux/init.h>
26#include <linux/delay.h>
27#include <linux/sched.h>
28#include <linux/pci.h>
29#include <linux/mc146818rtc.h>
30#include <linux/compiler.h>
31#include <linux/acpi.h>
32#include <linux/module.h>
33#include <linux/sysdev.h>
34#include <linux/msi.h>
35#include <linux/htirq.h>
36#include <linux/freezer.h>
37#include <linux/kthread.h>
38#include <linux/jiffies.h> /* time_after() */
39#include <linux/slab.h>
40#ifdef CONFIG_ACPI
41#include <acpi/acpi_bus.h>
42#endif
43#include <linux/bootmem.h>
44#include <linux/dmar.h>
45#include <linux/hpet.h>
46
47#include <asm/idle.h>
48#include <asm/io.h>
49#include <asm/smp.h>
50#include <asm/cpu.h>
51#include <asm/desc.h>
52#include <asm/proto.h>
53#include <asm/acpi.h>
54#include <asm/dma.h>
55#include <asm/timer.h>
56#include <asm/i8259.h>
57#include <asm/nmi.h>
58#include <asm/msidef.h>
59#include <asm/hypertransport.h>
60#include <asm/setup.h>
61#include <asm/irq_remapping.h>
62#include <asm/hpet.h>
63#include <asm/hw_irq.h>
64
65#include <asm/apic.h>
66
67#define __apicdebuginit(type) static type __init
68#define for_each_irq_pin(entry, head) \
69 for (entry = head; entry; entry = entry->next)
70
71/*
72 * Is the SiS APIC rmw bug present ?
73 * -1 = don't know, 0 = no, 1 = yes
74 */
75int sis_apic_bug = -1;
76
77static DEFINE_RAW_SPINLOCK(ioapic_lock);
78static DEFINE_RAW_SPINLOCK(vector_lock);
79
80/*
81 * # of IRQ routing registers
82 */
83int nr_ioapic_registers[MAX_IO_APICS];
84
85/* I/O APIC entries */
86struct mpc_ioapic mp_ioapics[MAX_IO_APICS];
87int nr_ioapics;
88
89/* IO APIC gsi routing info */
90struct mp_ioapic_gsi mp_gsi_routing[MAX_IO_APICS];
91
92/* The one past the highest gsi number used */
93u32 gsi_top;
94
95/* MP IRQ source entries */
96struct mpc_intsrc mp_irqs[MAX_IRQ_SOURCES];
97
98/* # of MP IRQ source entries */
99int mp_irq_entries;
100
101/* GSI interrupts */
102static int nr_irqs_gsi = NR_IRQS_LEGACY;
103
104#if defined (CONFIG_MCA) || defined (CONFIG_EISA)
105int mp_bus_id_to_type[MAX_MP_BUSSES];
106#endif
107
108DECLARE_BITMAP(mp_bus_not_pci, MAX_MP_BUSSES);
109
110int skip_ioapic_setup;
111
112void arch_disable_smp_support(void)
113{
114#ifdef CONFIG_PCI
115 noioapicquirk = 1;
116 noioapicreroute = -1;
117#endif
118 skip_ioapic_setup = 1;
119}
120
121static int __init parse_noapic(char *str)
122{
123 /* disable IO-APIC */
124 arch_disable_smp_support();
125 return 0;
126}
127early_param("noapic", parse_noapic);
128
129struct irq_pin_list {
130 int apic, pin;
131 struct irq_pin_list *next;
132};
133
134static struct irq_pin_list *alloc_irq_pin_list(int node)
135{
136 return kzalloc_node(sizeof(struct irq_pin_list), GFP_ATOMIC, node);
137}
138
139/* irq_cfg is indexed by the sum of all RTEs in all I/O APICs. */
140#ifdef CONFIG_SPARSE_IRQ
141static struct irq_cfg irq_cfgx[NR_IRQS_LEGACY];
142#else
143static struct irq_cfg irq_cfgx[NR_IRQS];
144#endif
145
146int __init arch_early_irq_init(void)
147{
148 struct irq_cfg *cfg;
149 int count, node, i;
150
151 if (!legacy_pic->nr_legacy_irqs) {
152 nr_irqs_gsi = 0;
153 io_apic_irqs = ~0UL;
154 }
155
156 cfg = irq_cfgx;
157 count = ARRAY_SIZE(irq_cfgx);
158 node = cpu_to_node(0);
159
160 /* Make sure the legacy interrupts are marked in the bitmap */
161 irq_reserve_irqs(0, legacy_pic->nr_legacy_irqs);
162
163 for (i = 0; i < count; i++) {
164 set_irq_chip_data(i, &cfg[i]);
165 zalloc_cpumask_var_node(&cfg[i].domain, GFP_NOWAIT, node);
166 zalloc_cpumask_var_node(&cfg[i].old_domain, GFP_NOWAIT, node);
167 /*
168 * For legacy IRQ's, start with assigning irq0 to irq15 to
169 * IRQ0_VECTOR to IRQ15_VECTOR on cpu 0.
170 */
171 if (i < legacy_pic->nr_legacy_irqs) {
172 cfg[i].vector = IRQ0_VECTOR + i;
173 cpumask_set_cpu(0, cfg[i].domain);
174 }
175 }
176
177 return 0;
178}
179
180#ifdef CONFIG_SPARSE_IRQ
181static struct irq_cfg *irq_cfg(unsigned int irq)
182{
183 return get_irq_chip_data(irq);
184}
185
186static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
187{
188 struct irq_cfg *cfg;
189
190 cfg = kzalloc_node(sizeof(*cfg), GFP_ATOMIC, node);
191 if (!cfg)
192 return NULL;
193 if (!zalloc_cpumask_var_node(&cfg->domain, GFP_ATOMIC, node))
194 goto out_cfg;
195 if (!zalloc_cpumask_var_node(&cfg->old_domain, GFP_ATOMIC, node))
196 goto out_domain;
197 return cfg;
198out_domain:
199 free_cpumask_var(cfg->domain);
200out_cfg:
201 kfree(cfg);
202 return NULL;
203}
204
205static void free_irq_cfg(unsigned int at, struct irq_cfg *cfg)
206{
207 if (!cfg)
208 return;
209 set_irq_chip_data(at, NULL);
210 free_cpumask_var(cfg->domain);
211 free_cpumask_var(cfg->old_domain);
212 kfree(cfg);
213}
214
215#else
216
217struct irq_cfg *irq_cfg(unsigned int irq)
218{
219 return irq < nr_irqs ? irq_cfgx + irq : NULL;
220}
221
222static struct irq_cfg *alloc_irq_cfg(unsigned int irq, int node)
223{
224 return irq_cfgx + irq;
225}
226
227static inline void free_irq_cfg(unsigned int at, struct irq_cfg *cfg) { }
228
229#endif
230
231static struct irq_cfg *alloc_irq_and_cfg_at(unsigned int at, int node)
232{
233 int res = irq_alloc_desc_at(at, node);
234 struct irq_cfg *cfg;
235
236 if (res < 0) {
237 if (res != -EEXIST)
238 return NULL;
239 cfg = get_irq_chip_data(at);
240 if (cfg)
241 return cfg;
242 }
243
244 cfg = alloc_irq_cfg(at, node);
245 if (cfg)
246 set_irq_chip_data(at, cfg);
247 else
248 irq_free_desc(at);
249 return cfg;
250}
251
252static int alloc_irq_from(unsigned int from, int node)
253{
254 return irq_alloc_desc_from(from, node);
255}
256
257static void free_irq_at(unsigned int at, struct irq_cfg *cfg)
258{
259 free_irq_cfg(at, cfg);
260 irq_free_desc(at);
261}
262
263struct io_apic {
264 unsigned int index;
265 unsigned int unused[3];
266 unsigned int data;
267 unsigned int unused2[11];
268 unsigned int eoi;
269};
270
271static __attribute_const__ struct io_apic __iomem *io_apic_base(int idx)
272{
273 return (void __iomem *) __fix_to_virt(FIX_IO_APIC_BASE_0 + idx)
274 + (mp_ioapics[idx].apicaddr & ~PAGE_MASK);
275}
276
277static inline void io_apic_eoi(unsigned int apic, unsigned int vector)
278{
279 struct io_apic __iomem *io_apic = io_apic_base(apic);
280 writel(vector, &io_apic->eoi);
281}
282
283static inline unsigned int io_apic_read(unsigned int apic, unsigned int reg)
284{
285 struct io_apic __iomem *io_apic = io_apic_base(apic);
286 writel(reg, &io_apic->index);
287 return readl(&io_apic->data);
288}
289
290static inline void io_apic_write(unsigned int apic, unsigned int reg, unsigned int value)
291{
292 struct io_apic __iomem *io_apic = io_apic_base(apic);
293 writel(reg, &io_apic->index);
294 writel(value, &io_apic->data);
295}
296
297/*
298 * Re-write a value: to be used for read-modify-write
299 * cycles where the read already set up the index register.
300 *
301 * Older SiS APIC requires we rewrite the index register
302 */
303static inline void io_apic_modify(unsigned int apic, unsigned int reg, unsigned int value)
304{
305 struct io_apic __iomem *io_apic = io_apic_base(apic);
306
307 if (sis_apic_bug)
308 writel(reg, &io_apic->index);
309 writel(value, &io_apic->data);
310}
311
312static bool io_apic_level_ack_pending(struct irq_cfg *cfg)
313{
314 struct irq_pin_list *entry;
315 unsigned long flags;
316
317 raw_spin_lock_irqsave(&ioapic_lock, flags);
318 for_each_irq_pin(entry, cfg->irq_2_pin) {
319 unsigned int reg;
320 int pin;
321
322 pin = entry->pin;
323 reg = io_apic_read(entry->apic, 0x10 + pin*2);
324 /* Is the remote IRR bit set? */
325 if (reg & IO_APIC_REDIR_REMOTE_IRR) {
326 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
327 return true;
328 }
329 }
330 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
331
332 return false;
333}
334
335union entry_union {
336 struct { u32 w1, w2; };
337 struct IO_APIC_route_entry entry;
338};
339
340static struct IO_APIC_route_entry ioapic_read_entry(int apic, int pin)
341{
342 union entry_union eu;
343 unsigned long flags;
344 raw_spin_lock_irqsave(&ioapic_lock, flags);
345 eu.w1 = io_apic_read(apic, 0x10 + 2 * pin);
346 eu.w2 = io_apic_read(apic, 0x11 + 2 * pin);
347 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
348 return eu.entry;
349}
350
351/*
352 * When we write a new IO APIC routing entry, we need to write the high
353 * word first! If the mask bit in the low word is clear, we will enable
354 * the interrupt, and we need to make sure the entry is fully populated
355 * before that happens.
356 */
357static void
358__ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
359{
360 union entry_union eu = {{0, 0}};
361
362 eu.entry = e;
363 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
364 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
365}
366
367static void ioapic_write_entry(int apic, int pin, struct IO_APIC_route_entry e)
368{
369 unsigned long flags;
370 raw_spin_lock_irqsave(&ioapic_lock, flags);
371 __ioapic_write_entry(apic, pin, e);
372 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
373}
374
375/*
376 * When we mask an IO APIC routing entry, we need to write the low
377 * word first, in order to set the mask bit before we change the
378 * high bits!
379 */
380static void ioapic_mask_entry(int apic, int pin)
381{
382 unsigned long flags;
383 union entry_union eu = { .entry.mask = 1 };
384
385 raw_spin_lock_irqsave(&ioapic_lock, flags);
386 io_apic_write(apic, 0x10 + 2*pin, eu.w1);
387 io_apic_write(apic, 0x11 + 2*pin, eu.w2);
388 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
389}
390
391/*
392 * The common case is 1:1 IRQ<->pin mappings. Sometimes there are
393 * shared ISA-space IRQs, so we have to support them. We are super
394 * fast in the common case, and fast for shared ISA-space IRQs.
395 */
396static int
397__add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
398{
399 struct irq_pin_list **last, *entry;
400
401 /* don't allow duplicates */
402 last = &cfg->irq_2_pin;
403 for_each_irq_pin(entry, cfg->irq_2_pin) {
404 if (entry->apic == apic && entry->pin == pin)
405 return 0;
406 last = &entry->next;
407 }
408
409 entry = alloc_irq_pin_list(node);
410 if (!entry) {
411 printk(KERN_ERR "can not alloc irq_pin_list (%d,%d,%d)\n",
412 node, apic, pin);
413 return -ENOMEM;
414 }
415 entry->apic = apic;
416 entry->pin = pin;
417
418 *last = entry;
419 return 0;
420}
421
422static void add_pin_to_irq_node(struct irq_cfg *cfg, int node, int apic, int pin)
423{
424 if (__add_pin_to_irq_node(cfg, node, apic, pin))
425 panic("IO-APIC: failed to add irq-pin. Can not proceed\n");
426}
427
428/*
429 * Reroute an IRQ to a different pin.
430 */
431static void __init replace_pin_at_irq_node(struct irq_cfg *cfg, int node,
432 int oldapic, int oldpin,
433 int newapic, int newpin)
434{
435 struct irq_pin_list *entry;
436
437 for_each_irq_pin(entry, cfg->irq_2_pin) {
438 if (entry->apic == oldapic && entry->pin == oldpin) {
439 entry->apic = newapic;
440 entry->pin = newpin;
441 /* every one is different, right? */
442 return;
443 }
444 }
445
446 /* old apic/pin didn't exist, so just add new ones */
447 add_pin_to_irq_node(cfg, node, newapic, newpin);
448}
449
450static void __io_apic_modify_irq(struct irq_pin_list *entry,
451 int mask_and, int mask_or,
452 void (*final)(struct irq_pin_list *entry))
453{
454 unsigned int reg, pin;
455
456 pin = entry->pin;
457 reg = io_apic_read(entry->apic, 0x10 + pin * 2);
458 reg &= mask_and;
459 reg |= mask_or;
460 io_apic_modify(entry->apic, 0x10 + pin * 2, reg);
461 if (final)
462 final(entry);
463}
464
465static void io_apic_modify_irq(struct irq_cfg *cfg,
466 int mask_and, int mask_or,
467 void (*final)(struct irq_pin_list *entry))
468{
469 struct irq_pin_list *entry;
470
471 for_each_irq_pin(entry, cfg->irq_2_pin)
472 __io_apic_modify_irq(entry, mask_and, mask_or, final);
473}
474
475static void __mask_and_edge_IO_APIC_irq(struct irq_pin_list *entry)
476{
477 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_LEVEL_TRIGGER,
478 IO_APIC_REDIR_MASKED, NULL);
479}
480
481static void __unmask_and_level_IO_APIC_irq(struct irq_pin_list *entry)
482{
483 __io_apic_modify_irq(entry, ~IO_APIC_REDIR_MASKED,
484 IO_APIC_REDIR_LEVEL_TRIGGER, NULL);
485}
486
487static void io_apic_sync(struct irq_pin_list *entry)
488{
489 /*
490 * Synchronize the IO-APIC and the CPU by doing
491 * a dummy read from the IO-APIC
492 */
493 struct io_apic __iomem *io_apic;
494 io_apic = io_apic_base(entry->apic);
495 readl(&io_apic->data);
496}
497
498static void mask_ioapic(struct irq_cfg *cfg)
499{
500 unsigned long flags;
501
502 raw_spin_lock_irqsave(&ioapic_lock, flags);
503 io_apic_modify_irq(cfg, ~0, IO_APIC_REDIR_MASKED, &io_apic_sync);
504 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
505}
506
507static void mask_ioapic_irq(struct irq_data *data)
508{
509 mask_ioapic(data->chip_data);
510}
511
512static void __unmask_ioapic(struct irq_cfg *cfg)
513{
514 io_apic_modify_irq(cfg, ~IO_APIC_REDIR_MASKED, 0, NULL);
515}
516
517static void unmask_ioapic(struct irq_cfg *cfg)
518{
519 unsigned long flags;
520
521 raw_spin_lock_irqsave(&ioapic_lock, flags);
522 __unmask_ioapic(cfg);
523 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
524}
525
526static void unmask_ioapic_irq(struct irq_data *data)
527{
528 unmask_ioapic(data->chip_data);
529}
530
531static void clear_IO_APIC_pin(unsigned int apic, unsigned int pin)
532{
533 struct IO_APIC_route_entry entry;
534
535 /* Check delivery_mode to be sure we're not clearing an SMI pin */
536 entry = ioapic_read_entry(apic, pin);
537 if (entry.delivery_mode == dest_SMI)
538 return;
539 /*
540 * Disable it in the IO-APIC irq-routing table:
541 */
542 ioapic_mask_entry(apic, pin);
543}
544
545static void clear_IO_APIC (void)
546{
547 int apic, pin;
548
549 for (apic = 0; apic < nr_ioapics; apic++)
550 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
551 clear_IO_APIC_pin(apic, pin);
552}
553
554#ifdef CONFIG_X86_32
555/*
556 * support for broken MP BIOSs, enables hand-redirection of PIRQ0-7 to
557 * specific CPU-side IRQs.
558 */
559
560#define MAX_PIRQS 8
561static int pirq_entries[MAX_PIRQS] = {
562 [0 ... MAX_PIRQS - 1] = -1
563};
564
565static int __init ioapic_pirq_setup(char *str)
566{
567 int i, max;
568 int ints[MAX_PIRQS+1];
569
570 get_options(str, ARRAY_SIZE(ints), ints);
571
572 apic_printk(APIC_VERBOSE, KERN_INFO
573 "PIRQ redirection, working around broken MP-BIOS.\n");
574 max = MAX_PIRQS;
575 if (ints[0] < MAX_PIRQS)
576 max = ints[0];
577
578 for (i = 0; i < max; i++) {
579 apic_printk(APIC_VERBOSE, KERN_DEBUG
580 "... PIRQ%d -> IRQ %d\n", i, ints[i+1]);
581 /*
582 * PIRQs are mapped upside down, usually.
583 */
584 pirq_entries[MAX_PIRQS-i-1] = ints[i+1];
585 }
586 return 1;
587}
588
589__setup("pirq=", ioapic_pirq_setup);
590#endif /* CONFIG_X86_32 */
591
592struct IO_APIC_route_entry **alloc_ioapic_entries(void)
593{
594 int apic;
595 struct IO_APIC_route_entry **ioapic_entries;
596
597 ioapic_entries = kzalloc(sizeof(*ioapic_entries) * nr_ioapics,
598 GFP_ATOMIC);
599 if (!ioapic_entries)
600 return 0;
601
602 for (apic = 0; apic < nr_ioapics; apic++) {
603 ioapic_entries[apic] =
604 kzalloc(sizeof(struct IO_APIC_route_entry) *
605 nr_ioapic_registers[apic], GFP_ATOMIC);
606 if (!ioapic_entries[apic])
607 goto nomem;
608 }
609
610 return ioapic_entries;
611
612nomem:
613 while (--apic >= 0)
614 kfree(ioapic_entries[apic]);
615 kfree(ioapic_entries);
616
617 return 0;
618}
619
620/*
621 * Saves all the IO-APIC RTE's
622 */
623int save_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
624{
625 int apic, pin;
626
627 if (!ioapic_entries)
628 return -ENOMEM;
629
630 for (apic = 0; apic < nr_ioapics; apic++) {
631 if (!ioapic_entries[apic])
632 return -ENOMEM;
633
634 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
635 ioapic_entries[apic][pin] =
636 ioapic_read_entry(apic, pin);
637 }
638
639 return 0;
640}
641
642/*
643 * Mask all IO APIC entries.
644 */
645void mask_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
646{
647 int apic, pin;
648
649 if (!ioapic_entries)
650 return;
651
652 for (apic = 0; apic < nr_ioapics; apic++) {
653 if (!ioapic_entries[apic])
654 break;
655
656 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
657 struct IO_APIC_route_entry entry;
658
659 entry = ioapic_entries[apic][pin];
660 if (!entry.mask) {
661 entry.mask = 1;
662 ioapic_write_entry(apic, pin, entry);
663 }
664 }
665 }
666}
667
668/*
669 * Restore IO APIC entries which was saved in ioapic_entries.
670 */
671int restore_IO_APIC_setup(struct IO_APIC_route_entry **ioapic_entries)
672{
673 int apic, pin;
674
675 if (!ioapic_entries)
676 return -ENOMEM;
677
678 for (apic = 0; apic < nr_ioapics; apic++) {
679 if (!ioapic_entries[apic])
680 return -ENOMEM;
681
682 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++)
683 ioapic_write_entry(apic, pin,
684 ioapic_entries[apic][pin]);
685 }
686 return 0;
687}
688
689void free_ioapic_entries(struct IO_APIC_route_entry **ioapic_entries)
690{
691 int apic;
692
693 for (apic = 0; apic < nr_ioapics; apic++)
694 kfree(ioapic_entries[apic]);
695
696 kfree(ioapic_entries);
697}
698
699/*
700 * Find the IRQ entry number of a certain pin.
701 */
702static int find_irq_entry(int apic, int pin, int type)
703{
704 int i;
705
706 for (i = 0; i < mp_irq_entries; i++)
707 if (mp_irqs[i].irqtype == type &&
708 (mp_irqs[i].dstapic == mp_ioapics[apic].apicid ||
709 mp_irqs[i].dstapic == MP_APIC_ALL) &&
710 mp_irqs[i].dstirq == pin)
711 return i;
712
713 return -1;
714}
715
716/*
717 * Find the pin to which IRQ[irq] (ISA) is connected
718 */
719static int __init find_isa_irq_pin(int irq, int type)
720{
721 int i;
722
723 for (i = 0; i < mp_irq_entries; i++) {
724 int lbus = mp_irqs[i].srcbus;
725
726 if (test_bit(lbus, mp_bus_not_pci) &&
727 (mp_irqs[i].irqtype == type) &&
728 (mp_irqs[i].srcbusirq == irq))
729
730 return mp_irqs[i].dstirq;
731 }
732 return -1;
733}
734
735static int __init find_isa_irq_apic(int irq, int type)
736{
737 int i;
738
739 for (i = 0; i < mp_irq_entries; i++) {
740 int lbus = mp_irqs[i].srcbus;
741
742 if (test_bit(lbus, mp_bus_not_pci) &&
743 (mp_irqs[i].irqtype == type) &&
744 (mp_irqs[i].srcbusirq == irq))
745 break;
746 }
747 if (i < mp_irq_entries) {
748 int apic;
749 for(apic = 0; apic < nr_ioapics; apic++) {
750 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic)
751 return apic;
752 }
753 }
754
755 return -1;
756}
757
758#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
759/*
760 * EISA Edge/Level control register, ELCR
761 */
762static int EISA_ELCR(unsigned int irq)
763{
764 if (irq < legacy_pic->nr_legacy_irqs) {
765 unsigned int port = 0x4d0 + (irq >> 3);
766 return (inb(port) >> (irq & 7)) & 1;
767 }
768 apic_printk(APIC_VERBOSE, KERN_INFO
769 "Broken MPtable reports ISA irq %d\n", irq);
770 return 0;
771}
772
773#endif
774
775/* ISA interrupts are always polarity zero edge triggered,
776 * when listed as conforming in the MP table. */
777
778#define default_ISA_trigger(idx) (0)
779#define default_ISA_polarity(idx) (0)
780
781/* EISA interrupts are always polarity zero and can be edge or level
782 * trigger depending on the ELCR value. If an interrupt is listed as
783 * EISA conforming in the MP table, that means its trigger type must
784 * be read in from the ELCR */
785
786#define default_EISA_trigger(idx) (EISA_ELCR(mp_irqs[idx].srcbusirq))
787#define default_EISA_polarity(idx) default_ISA_polarity(idx)
788
789/* PCI interrupts are always polarity one level triggered,
790 * when listed as conforming in the MP table. */
791
792#define default_PCI_trigger(idx) (1)
793#define default_PCI_polarity(idx) (1)
794
795/* MCA interrupts are always polarity zero level triggered,
796 * when listed as conforming in the MP table. */
797
798#define default_MCA_trigger(idx) (1)
799#define default_MCA_polarity(idx) default_ISA_polarity(idx)
800
801static int MPBIOS_polarity(int idx)
802{
803 int bus = mp_irqs[idx].srcbus;
804 int polarity;
805
806 /*
807 * Determine IRQ line polarity (high active or low active):
808 */
809 switch (mp_irqs[idx].irqflag & 3)
810 {
811 case 0: /* conforms, ie. bus-type dependent polarity */
812 if (test_bit(bus, mp_bus_not_pci))
813 polarity = default_ISA_polarity(idx);
814 else
815 polarity = default_PCI_polarity(idx);
816 break;
817 case 1: /* high active */
818 {
819 polarity = 0;
820 break;
821 }
822 case 2: /* reserved */
823 {
824 printk(KERN_WARNING "broken BIOS!!\n");
825 polarity = 1;
826 break;
827 }
828 case 3: /* low active */
829 {
830 polarity = 1;
831 break;
832 }
833 default: /* invalid */
834 {
835 printk(KERN_WARNING "broken BIOS!!\n");
836 polarity = 1;
837 break;
838 }
839 }
840 return polarity;
841}
842
843static int MPBIOS_trigger(int idx)
844{
845 int bus = mp_irqs[idx].srcbus;
846 int trigger;
847
848 /*
849 * Determine IRQ trigger mode (edge or level sensitive):
850 */
851 switch ((mp_irqs[idx].irqflag>>2) & 3)
852 {
853 case 0: /* conforms, ie. bus-type dependent */
854 if (test_bit(bus, mp_bus_not_pci))
855 trigger = default_ISA_trigger(idx);
856 else
857 trigger = default_PCI_trigger(idx);
858#if defined(CONFIG_EISA) || defined(CONFIG_MCA)
859 switch (mp_bus_id_to_type[bus]) {
860 case MP_BUS_ISA: /* ISA pin */
861 {
862 /* set before the switch */
863 break;
864 }
865 case MP_BUS_EISA: /* EISA pin */
866 {
867 trigger = default_EISA_trigger(idx);
868 break;
869 }
870 case MP_BUS_PCI: /* PCI pin */
871 {
872 /* set before the switch */
873 break;
874 }
875 case MP_BUS_MCA: /* MCA pin */
876 {
877 trigger = default_MCA_trigger(idx);
878 break;
879 }
880 default:
881 {
882 printk(KERN_WARNING "broken BIOS!!\n");
883 trigger = 1;
884 break;
885 }
886 }
887#endif
888 break;
889 case 1: /* edge */
890 {
891 trigger = 0;
892 break;
893 }
894 case 2: /* reserved */
895 {
896 printk(KERN_WARNING "broken BIOS!!\n");
897 trigger = 1;
898 break;
899 }
900 case 3: /* level */
901 {
902 trigger = 1;
903 break;
904 }
905 default: /* invalid */
906 {
907 printk(KERN_WARNING "broken BIOS!!\n");
908 trigger = 0;
909 break;
910 }
911 }
912 return trigger;
913}
914
915static inline int irq_polarity(int idx)
916{
917 return MPBIOS_polarity(idx);
918}
919
920static inline int irq_trigger(int idx)
921{
922 return MPBIOS_trigger(idx);
923}
924
925static int pin_2_irq(int idx, int apic, int pin)
926{
927 int irq;
928 int bus = mp_irqs[idx].srcbus;
929
930 /*
931 * Debugging check, we are in big trouble if this message pops up!
932 */
933 if (mp_irqs[idx].dstirq != pin)
934 printk(KERN_ERR "broken BIOS or MPTABLE parser, ayiee!!\n");
935
936 if (test_bit(bus, mp_bus_not_pci)) {
937 irq = mp_irqs[idx].srcbusirq;
938 } else {
939 u32 gsi = mp_gsi_routing[apic].gsi_base + pin;
940
941 if (gsi >= NR_IRQS_LEGACY)
942 irq = gsi;
943 else
944 irq = gsi_top + gsi;
945 }
946
947#ifdef CONFIG_X86_32
948 /*
949 * PCI IRQ command line redirection. Yes, limits are hardcoded.
950 */
951 if ((pin >= 16) && (pin <= 23)) {
952 if (pirq_entries[pin-16] != -1) {
953 if (!pirq_entries[pin-16]) {
954 apic_printk(APIC_VERBOSE, KERN_DEBUG
955 "disabling PIRQ%d\n", pin-16);
956 } else {
957 irq = pirq_entries[pin-16];
958 apic_printk(APIC_VERBOSE, KERN_DEBUG
959 "using PIRQ%d -> IRQ %d\n",
960 pin-16, irq);
961 }
962 }
963 }
964#endif
965
966 return irq;
967}
968
969/*
970 * Find a specific PCI IRQ entry.
971 * Not an __init, possibly needed by modules
972 */
973int IO_APIC_get_PCI_irq_vector(int bus, int slot, int pin,
974 struct io_apic_irq_attr *irq_attr)
975{
976 int apic, i, best_guess = -1;
977
978 apic_printk(APIC_DEBUG,
979 "querying PCI -> IRQ mapping bus:%d, slot:%d, pin:%d.\n",
980 bus, slot, pin);
981 if (test_bit(bus, mp_bus_not_pci)) {
982 apic_printk(APIC_VERBOSE,
983 "PCI BIOS passed nonexistent PCI bus %d!\n", bus);
984 return -1;
985 }
986 for (i = 0; i < mp_irq_entries; i++) {
987 int lbus = mp_irqs[i].srcbus;
988
989 for (apic = 0; apic < nr_ioapics; apic++)
990 if (mp_ioapics[apic].apicid == mp_irqs[i].dstapic ||
991 mp_irqs[i].dstapic == MP_APIC_ALL)
992 break;
993
994 if (!test_bit(lbus, mp_bus_not_pci) &&
995 !mp_irqs[i].irqtype &&
996 (bus == lbus) &&
997 (slot == ((mp_irqs[i].srcbusirq >> 2) & 0x1f))) {
998 int irq = pin_2_irq(i, apic, mp_irqs[i].dstirq);
999
1000 if (!(apic || IO_APIC_IRQ(irq)))
1001 continue;
1002
1003 if (pin == (mp_irqs[i].srcbusirq & 3)) {
1004 set_io_apic_irq_attr(irq_attr, apic,
1005 mp_irqs[i].dstirq,
1006 irq_trigger(i),
1007 irq_polarity(i));
1008 return irq;
1009 }
1010 /*
1011 * Use the first all-but-pin matching entry as a
1012 * best-guess fuzzy result for broken mptables.
1013 */
1014 if (best_guess < 0) {
1015 set_io_apic_irq_attr(irq_attr, apic,
1016 mp_irqs[i].dstirq,
1017 irq_trigger(i),
1018 irq_polarity(i));
1019 best_guess = irq;
1020 }
1021 }
1022 }
1023 return best_guess;
1024}
1025EXPORT_SYMBOL(IO_APIC_get_PCI_irq_vector);
1026
1027void lock_vector_lock(void)
1028{
1029 /* Used to the online set of cpus does not change
1030 * during assign_irq_vector.
1031 */
1032 raw_spin_lock(&vector_lock);
1033}
1034
1035void unlock_vector_lock(void)
1036{
1037 raw_spin_unlock(&vector_lock);
1038}
1039
1040static int
1041__assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1042{
1043 /*
1044 * NOTE! The local APIC isn't very good at handling
1045 * multiple interrupts at the same interrupt level.
1046 * As the interrupt level is determined by taking the
1047 * vector number and shifting that right by 4, we
1048 * want to spread these out a bit so that they don't
1049 * all fall in the same interrupt level.
1050 *
1051 * Also, we've got to be careful not to trash gate
1052 * 0x80, because int 0x80 is hm, kind of importantish. ;)
1053 */
1054 static int current_vector = FIRST_EXTERNAL_VECTOR + VECTOR_OFFSET_START;
1055 static int current_offset = VECTOR_OFFSET_START % 8;
1056 unsigned int old_vector;
1057 int cpu, err;
1058 cpumask_var_t tmp_mask;
1059
1060 if (cfg->move_in_progress)
1061 return -EBUSY;
1062
1063 if (!alloc_cpumask_var(&tmp_mask, GFP_ATOMIC))
1064 return -ENOMEM;
1065
1066 old_vector = cfg->vector;
1067 if (old_vector) {
1068 cpumask_and(tmp_mask, mask, cpu_online_mask);
1069 cpumask_and(tmp_mask, cfg->domain, tmp_mask);
1070 if (!cpumask_empty(tmp_mask)) {
1071 free_cpumask_var(tmp_mask);
1072 return 0;
1073 }
1074 }
1075
1076 /* Only try and allocate irqs on cpus that are present */
1077 err = -ENOSPC;
1078 for_each_cpu_and(cpu, mask, cpu_online_mask) {
1079 int new_cpu;
1080 int vector, offset;
1081
1082 apic->vector_allocation_domain(cpu, tmp_mask);
1083
1084 vector = current_vector;
1085 offset = current_offset;
1086next:
1087 vector += 8;
1088 if (vector >= first_system_vector) {
1089 /* If out of vectors on large boxen, must share them. */
1090 offset = (offset + 1) % 8;
1091 vector = FIRST_EXTERNAL_VECTOR + offset;
1092 }
1093 if (unlikely(current_vector == vector))
1094 continue;
1095
1096 if (test_bit(vector, used_vectors))
1097 goto next;
1098
1099 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1100 if (per_cpu(vector_irq, new_cpu)[vector] != -1)
1101 goto next;
1102 /* Found one! */
1103 current_vector = vector;
1104 current_offset = offset;
1105 if (old_vector) {
1106 cfg->move_in_progress = 1;
1107 cpumask_copy(cfg->old_domain, cfg->domain);
1108 }
1109 for_each_cpu_and(new_cpu, tmp_mask, cpu_online_mask)
1110 per_cpu(vector_irq, new_cpu)[vector] = irq;
1111 cfg->vector = vector;
1112 cpumask_copy(cfg->domain, tmp_mask);
1113 err = 0;
1114 break;
1115 }
1116 free_cpumask_var(tmp_mask);
1117 return err;
1118}
1119
1120int assign_irq_vector(int irq, struct irq_cfg *cfg, const struct cpumask *mask)
1121{
1122 int err;
1123 unsigned long flags;
1124
1125 raw_spin_lock_irqsave(&vector_lock, flags);
1126 err = __assign_irq_vector(irq, cfg, mask);
1127 raw_spin_unlock_irqrestore(&vector_lock, flags);
1128 return err;
1129}
1130
1131static void __clear_irq_vector(int irq, struct irq_cfg *cfg)
1132{
1133 int cpu, vector;
1134
1135 BUG_ON(!cfg->vector);
1136
1137 vector = cfg->vector;
1138 for_each_cpu_and(cpu, cfg->domain, cpu_online_mask)
1139 per_cpu(vector_irq, cpu)[vector] = -1;
1140
1141 cfg->vector = 0;
1142 cpumask_clear(cfg->domain);
1143
1144 if (likely(!cfg->move_in_progress))
1145 return;
1146 for_each_cpu_and(cpu, cfg->old_domain, cpu_online_mask) {
1147 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS;
1148 vector++) {
1149 if (per_cpu(vector_irq, cpu)[vector] != irq)
1150 continue;
1151 per_cpu(vector_irq, cpu)[vector] = -1;
1152 break;
1153 }
1154 }
1155 cfg->move_in_progress = 0;
1156}
1157
1158void __setup_vector_irq(int cpu)
1159{
1160 /* Initialize vector_irq on a new cpu */
1161 int irq, vector;
1162 struct irq_cfg *cfg;
1163
1164 /*
1165 * vector_lock will make sure that we don't run into irq vector
1166 * assignments that might be happening on another cpu in parallel,
1167 * while we setup our initial vector to irq mappings.
1168 */
1169 raw_spin_lock(&vector_lock);
1170 /* Mark the inuse vectors */
1171 for_each_active_irq(irq) {
1172 cfg = get_irq_chip_data(irq);
1173 if (!cfg)
1174 continue;
1175 /*
1176 * If it is a legacy IRQ handled by the legacy PIC, this cpu
1177 * will be part of the irq_cfg's domain.
1178 */
1179 if (irq < legacy_pic->nr_legacy_irqs && !IO_APIC_IRQ(irq))
1180 cpumask_set_cpu(cpu, cfg->domain);
1181
1182 if (!cpumask_test_cpu(cpu, cfg->domain))
1183 continue;
1184 vector = cfg->vector;
1185 per_cpu(vector_irq, cpu)[vector] = irq;
1186 }
1187 /* Mark the free vectors */
1188 for (vector = 0; vector < NR_VECTORS; ++vector) {
1189 irq = per_cpu(vector_irq, cpu)[vector];
1190 if (irq < 0)
1191 continue;
1192
1193 cfg = irq_cfg(irq);
1194 if (!cpumask_test_cpu(cpu, cfg->domain))
1195 per_cpu(vector_irq, cpu)[vector] = -1;
1196 }
1197 raw_spin_unlock(&vector_lock);
1198}
1199
1200static struct irq_chip ioapic_chip;
1201static struct irq_chip ir_ioapic_chip;
1202
1203#define IOAPIC_AUTO -1
1204#define IOAPIC_EDGE 0
1205#define IOAPIC_LEVEL 1
1206
1207#ifdef CONFIG_X86_32
1208static inline int IO_APIC_irq_trigger(int irq)
1209{
1210 int apic, idx, pin;
1211
1212 for (apic = 0; apic < nr_ioapics; apic++) {
1213 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1214 idx = find_irq_entry(apic, pin, mp_INT);
1215 if ((idx != -1) && (irq == pin_2_irq(idx, apic, pin)))
1216 return irq_trigger(idx);
1217 }
1218 }
1219 /*
1220 * nonexistent IRQs are edge default
1221 */
1222 return 0;
1223}
1224#else
1225static inline int IO_APIC_irq_trigger(int irq)
1226{
1227 return 1;
1228}
1229#endif
1230
1231static void ioapic_register_intr(unsigned int irq, unsigned long trigger)
1232{
1233
1234 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1235 trigger == IOAPIC_LEVEL)
1236 irq_set_status_flags(irq, IRQ_LEVEL);
1237 else
1238 irq_clear_status_flags(irq, IRQ_LEVEL);
1239
1240 if (irq_remapped(get_irq_chip_data(irq))) {
1241 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
1242 if (trigger)
1243 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1244 handle_fasteoi_irq,
1245 "fasteoi");
1246 else
1247 set_irq_chip_and_handler_name(irq, &ir_ioapic_chip,
1248 handle_edge_irq, "edge");
1249 return;
1250 }
1251
1252 if ((trigger == IOAPIC_AUTO && IO_APIC_irq_trigger(irq)) ||
1253 trigger == IOAPIC_LEVEL)
1254 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1255 handle_fasteoi_irq,
1256 "fasteoi");
1257 else
1258 set_irq_chip_and_handler_name(irq, &ioapic_chip,
1259 handle_edge_irq, "edge");
1260}
1261
1262static int setup_ioapic_entry(int apic_id, int irq,
1263 struct IO_APIC_route_entry *entry,
1264 unsigned int destination, int trigger,
1265 int polarity, int vector, int pin)
1266{
1267 /*
1268 * add it to the IO-APIC irq-routing table:
1269 */
1270 memset(entry,0,sizeof(*entry));
1271
1272 if (intr_remapping_enabled) {
1273 struct intel_iommu *iommu = map_ioapic_to_ir(apic_id);
1274 struct irte irte;
1275 struct IR_IO_APIC_route_entry *ir_entry =
1276 (struct IR_IO_APIC_route_entry *) entry;
1277 int index;
1278
1279 if (!iommu)
1280 panic("No mapping iommu for ioapic %d\n", apic_id);
1281
1282 index = alloc_irte(iommu, irq, 1);
1283 if (index < 0)
1284 panic("Failed to allocate IRTE for ioapic %d\n", apic_id);
1285
1286 prepare_irte(&irte, vector, destination);
1287
1288 /* Set source-id of interrupt request */
1289 set_ioapic_sid(&irte, apic_id);
1290
1291 modify_irte(irq, &irte);
1292
1293 ir_entry->index2 = (index >> 15) & 0x1;
1294 ir_entry->zero = 0;
1295 ir_entry->format = 1;
1296 ir_entry->index = (index & 0x7fff);
1297 /*
1298 * IO-APIC RTE will be configured with virtual vector.
1299 * irq handler will do the explicit EOI to the io-apic.
1300 */
1301 ir_entry->vector = pin;
1302 } else {
1303 entry->delivery_mode = apic->irq_delivery_mode;
1304 entry->dest_mode = apic->irq_dest_mode;
1305 entry->dest = destination;
1306 entry->vector = vector;
1307 }
1308
1309 entry->mask = 0; /* enable IRQ */
1310 entry->trigger = trigger;
1311 entry->polarity = polarity;
1312
1313 /* Mask level triggered irqs.
1314 * Use IRQ_DELAYED_DISABLE for edge triggered irqs.
1315 */
1316 if (trigger)
1317 entry->mask = 1;
1318 return 0;
1319}
1320
1321static void setup_ioapic_irq(int apic_id, int pin, unsigned int irq,
1322 struct irq_cfg *cfg, int trigger, int polarity)
1323{
1324 struct IO_APIC_route_entry entry;
1325 unsigned int dest;
1326
1327 if (!IO_APIC_IRQ(irq))
1328 return;
1329 /*
1330 * For legacy irqs, cfg->domain starts with cpu 0 for legacy
1331 * controllers like 8259. Now that IO-APIC can handle this irq, update
1332 * the cfg->domain.
1333 */
1334 if (irq < legacy_pic->nr_legacy_irqs && cpumask_test_cpu(0, cfg->domain))
1335 apic->vector_allocation_domain(0, cfg->domain);
1336
1337 if (assign_irq_vector(irq, cfg, apic->target_cpus()))
1338 return;
1339
1340 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
1341
1342 apic_printk(APIC_VERBOSE,KERN_DEBUG
1343 "IOAPIC[%d]: Set routing entry (%d-%d -> 0x%x -> "
1344 "IRQ %d Mode:%i Active:%i)\n",
1345 apic_id, mp_ioapics[apic_id].apicid, pin, cfg->vector,
1346 irq, trigger, polarity);
1347
1348
1349 if (setup_ioapic_entry(mp_ioapics[apic_id].apicid, irq, &entry,
1350 dest, trigger, polarity, cfg->vector, pin)) {
1351 printk("Failed to setup ioapic entry for ioapic %d, pin %d\n",
1352 mp_ioapics[apic_id].apicid, pin);
1353 __clear_irq_vector(irq, cfg);
1354 return;
1355 }
1356
1357 ioapic_register_intr(irq, trigger);
1358 if (irq < legacy_pic->nr_legacy_irqs)
1359 legacy_pic->mask(irq);
1360
1361 ioapic_write_entry(apic_id, pin, entry);
1362}
1363
1364static struct {
1365 DECLARE_BITMAP(pin_programmed, MP_MAX_IOAPIC_PIN + 1);
1366} mp_ioapic_routing[MAX_IO_APICS];
1367
1368static void __init setup_IO_APIC_irqs(void)
1369{
1370 int apic_id, pin, idx, irq, notcon = 0;
1371 int node = cpu_to_node(0);
1372 struct irq_cfg *cfg;
1373
1374 apic_printk(APIC_VERBOSE, KERN_DEBUG "init IO_APIC IRQs\n");
1375
1376 for (apic_id = 0; apic_id < nr_ioapics; apic_id++)
1377 for (pin = 0; pin < nr_ioapic_registers[apic_id]; pin++) {
1378 idx = find_irq_entry(apic_id, pin, mp_INT);
1379 if (idx == -1) {
1380 if (!notcon) {
1381 notcon = 1;
1382 apic_printk(APIC_VERBOSE,
1383 KERN_DEBUG " %d-%d",
1384 mp_ioapics[apic_id].apicid, pin);
1385 } else
1386 apic_printk(APIC_VERBOSE, " %d-%d",
1387 mp_ioapics[apic_id].apicid, pin);
1388 continue;
1389 }
1390 if (notcon) {
1391 apic_printk(APIC_VERBOSE,
1392 " (apicid-pin) not connected\n");
1393 notcon = 0;
1394 }
1395
1396 irq = pin_2_irq(idx, apic_id, pin);
1397
1398 if ((apic_id > 0) && (irq > 16))
1399 continue;
1400
1401 /*
1402 * Skip the timer IRQ if there's a quirk handler
1403 * installed and if it returns 1:
1404 */
1405 if (apic->multi_timer_check &&
1406 apic->multi_timer_check(apic_id, irq))
1407 continue;
1408
1409 cfg = alloc_irq_and_cfg_at(irq, node);
1410 if (!cfg)
1411 continue;
1412
1413 add_pin_to_irq_node(cfg, node, apic_id, pin);
1414 /*
1415 * don't mark it in pin_programmed, so later acpi could
1416 * set it correctly when irq < 16
1417 */
1418 setup_ioapic_irq(apic_id, pin, irq, cfg, irq_trigger(idx),
1419 irq_polarity(idx));
1420 }
1421
1422 if (notcon)
1423 apic_printk(APIC_VERBOSE,
1424 " (apicid-pin) not connected\n");
1425}
1426
1427/*
1428 * for the gsit that is not in first ioapic
1429 * but could not use acpi_register_gsi()
1430 * like some special sci in IBM x3330
1431 */
1432void setup_IO_APIC_irq_extra(u32 gsi)
1433{
1434 int apic_id = 0, pin, idx, irq, node = cpu_to_node(0);
1435 struct irq_cfg *cfg;
1436
1437 /*
1438 * Convert 'gsi' to 'ioapic.pin'.
1439 */
1440 apic_id = mp_find_ioapic(gsi);
1441 if (apic_id < 0)
1442 return;
1443
1444 pin = mp_find_ioapic_pin(apic_id, gsi);
1445 idx = find_irq_entry(apic_id, pin, mp_INT);
1446 if (idx == -1)
1447 return;
1448
1449 irq = pin_2_irq(idx, apic_id, pin);
1450
1451 /* Only handle the non legacy irqs on secondary ioapics */
1452 if (apic_id == 0 || irq < NR_IRQS_LEGACY)
1453 return;
1454
1455 cfg = alloc_irq_and_cfg_at(irq, node);
1456 if (!cfg)
1457 return;
1458
1459 add_pin_to_irq_node(cfg, node, apic_id, pin);
1460
1461 if (test_bit(pin, mp_ioapic_routing[apic_id].pin_programmed)) {
1462 pr_debug("Pin %d-%d already programmed\n",
1463 mp_ioapics[apic_id].apicid, pin);
1464 return;
1465 }
1466 set_bit(pin, mp_ioapic_routing[apic_id].pin_programmed);
1467
1468 setup_ioapic_irq(apic_id, pin, irq, cfg,
1469 irq_trigger(idx), irq_polarity(idx));
1470}
1471
1472/*
1473 * Set up the timer pin, possibly with the 8259A-master behind.
1474 */
1475static void __init setup_timer_IRQ0_pin(unsigned int apic_id, unsigned int pin,
1476 int vector)
1477{
1478 struct IO_APIC_route_entry entry;
1479
1480 if (intr_remapping_enabled)
1481 return;
1482
1483 memset(&entry, 0, sizeof(entry));
1484
1485 /*
1486 * We use logical delivery to get the timer IRQ
1487 * to the first CPU.
1488 */
1489 entry.dest_mode = apic->irq_dest_mode;
1490 entry.mask = 0; /* don't mask IRQ for edge */
1491 entry.dest = apic->cpu_mask_to_apicid(apic->target_cpus());
1492 entry.delivery_mode = apic->irq_delivery_mode;
1493 entry.polarity = 0;
1494 entry.trigger = 0;
1495 entry.vector = vector;
1496
1497 /*
1498 * The timer IRQ doesn't have to know that behind the
1499 * scene we may have a 8259A-master in AEOI mode ...
1500 */
1501 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
1502
1503 /*
1504 * Add it to the IO-APIC irq-routing table:
1505 */
1506 ioapic_write_entry(apic_id, pin, entry);
1507}
1508
1509
1510__apicdebuginit(void) print_IO_APIC(void)
1511{
1512 int apic, i;
1513 union IO_APIC_reg_00 reg_00;
1514 union IO_APIC_reg_01 reg_01;
1515 union IO_APIC_reg_02 reg_02;
1516 union IO_APIC_reg_03 reg_03;
1517 unsigned long flags;
1518 struct irq_cfg *cfg;
1519 unsigned int irq;
1520
1521 printk(KERN_DEBUG "number of MP IRQ sources: %d.\n", mp_irq_entries);
1522 for (i = 0; i < nr_ioapics; i++)
1523 printk(KERN_DEBUG "number of IO-APIC #%d registers: %d.\n",
1524 mp_ioapics[i].apicid, nr_ioapic_registers[i]);
1525
1526 /*
1527 * We are a bit conservative about what we expect. We have to
1528 * know about every hardware change ASAP.
1529 */
1530 printk(KERN_INFO "testing the IO APIC.......................\n");
1531
1532 for (apic = 0; apic < nr_ioapics; apic++) {
1533
1534 raw_spin_lock_irqsave(&ioapic_lock, flags);
1535 reg_00.raw = io_apic_read(apic, 0);
1536 reg_01.raw = io_apic_read(apic, 1);
1537 if (reg_01.bits.version >= 0x10)
1538 reg_02.raw = io_apic_read(apic, 2);
1539 if (reg_01.bits.version >= 0x20)
1540 reg_03.raw = io_apic_read(apic, 3);
1541 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1542
1543 printk("\n");
1544 printk(KERN_DEBUG "IO APIC #%d......\n", mp_ioapics[apic].apicid);
1545 printk(KERN_DEBUG ".... register #00: %08X\n", reg_00.raw);
1546 printk(KERN_DEBUG "....... : physical APIC id: %02X\n", reg_00.bits.ID);
1547 printk(KERN_DEBUG "....... : Delivery Type: %X\n", reg_00.bits.delivery_type);
1548 printk(KERN_DEBUG "....... : LTS : %X\n", reg_00.bits.LTS);
1549
1550 printk(KERN_DEBUG ".... register #01: %08X\n", *(int *)&reg_01);
1551 printk(KERN_DEBUG "....... : max redirection entries: %04X\n", reg_01.bits.entries);
1552
1553 printk(KERN_DEBUG "....... : PRQ implemented: %X\n", reg_01.bits.PRQ);
1554 printk(KERN_DEBUG "....... : IO APIC version: %04X\n", reg_01.bits.version);
1555
1556 /*
1557 * Some Intel chipsets with IO APIC VERSION of 0x1? don't have reg_02,
1558 * but the value of reg_02 is read as the previous read register
1559 * value, so ignore it if reg_02 == reg_01.
1560 */
1561 if (reg_01.bits.version >= 0x10 && reg_02.raw != reg_01.raw) {
1562 printk(KERN_DEBUG ".... register #02: %08X\n", reg_02.raw);
1563 printk(KERN_DEBUG "....... : arbitration: %02X\n", reg_02.bits.arbitration);
1564 }
1565
1566 /*
1567 * Some Intel chipsets with IO APIC VERSION of 0x2? don't have reg_02
1568 * or reg_03, but the value of reg_0[23] is read as the previous read
1569 * register value, so ignore it if reg_03 == reg_0[12].
1570 */
1571 if (reg_01.bits.version >= 0x20 && reg_03.raw != reg_02.raw &&
1572 reg_03.raw != reg_01.raw) {
1573 printk(KERN_DEBUG ".... register #03: %08X\n", reg_03.raw);
1574 printk(KERN_DEBUG "....... : Boot DT : %X\n", reg_03.bits.boot_DT);
1575 }
1576
1577 printk(KERN_DEBUG ".... IRQ redirection table:\n");
1578
1579 printk(KERN_DEBUG " NR Dst Mask Trig IRR Pol"
1580 " Stat Dmod Deli Vect:\n");
1581
1582 for (i = 0; i <= reg_01.bits.entries; i++) {
1583 struct IO_APIC_route_entry entry;
1584
1585 entry = ioapic_read_entry(apic, i);
1586
1587 printk(KERN_DEBUG " %02x %03X ",
1588 i,
1589 entry.dest
1590 );
1591
1592 printk("%1d %1d %1d %1d %1d %1d %1d %02X\n",
1593 entry.mask,
1594 entry.trigger,
1595 entry.irr,
1596 entry.polarity,
1597 entry.delivery_status,
1598 entry.dest_mode,
1599 entry.delivery_mode,
1600 entry.vector
1601 );
1602 }
1603 }
1604 printk(KERN_DEBUG "IRQ to pin mappings:\n");
1605 for_each_active_irq(irq) {
1606 struct irq_pin_list *entry;
1607
1608 cfg = get_irq_chip_data(irq);
1609 if (!cfg)
1610 continue;
1611 entry = cfg->irq_2_pin;
1612 if (!entry)
1613 continue;
1614 printk(KERN_DEBUG "IRQ%d ", irq);
1615 for_each_irq_pin(entry, cfg->irq_2_pin)
1616 printk("-> %d:%d", entry->apic, entry->pin);
1617 printk("\n");
1618 }
1619
1620 printk(KERN_INFO ".................................... done.\n");
1621
1622 return;
1623}
1624
1625__apicdebuginit(void) print_APIC_field(int base)
1626{
1627 int i;
1628
1629 printk(KERN_DEBUG);
1630
1631 for (i = 0; i < 8; i++)
1632 printk(KERN_CONT "%08x", apic_read(base + i*0x10));
1633
1634 printk(KERN_CONT "\n");
1635}
1636
1637__apicdebuginit(void) print_local_APIC(void *dummy)
1638{
1639 unsigned int i, v, ver, maxlvt;
1640 u64 icr;
1641
1642 printk(KERN_DEBUG "printing local APIC contents on CPU#%d/%d:\n",
1643 smp_processor_id(), hard_smp_processor_id());
1644 v = apic_read(APIC_ID);
1645 printk(KERN_INFO "... APIC ID: %08x (%01x)\n", v, read_apic_id());
1646 v = apic_read(APIC_LVR);
1647 printk(KERN_INFO "... APIC VERSION: %08x\n", v);
1648 ver = GET_APIC_VERSION(v);
1649 maxlvt = lapic_get_maxlvt();
1650
1651 v = apic_read(APIC_TASKPRI);
1652 printk(KERN_DEBUG "... APIC TASKPRI: %08x (%02x)\n", v, v & APIC_TPRI_MASK);
1653
1654 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1655 if (!APIC_XAPIC(ver)) {
1656 v = apic_read(APIC_ARBPRI);
1657 printk(KERN_DEBUG "... APIC ARBPRI: %08x (%02x)\n", v,
1658 v & APIC_ARBPRI_MASK);
1659 }
1660 v = apic_read(APIC_PROCPRI);
1661 printk(KERN_DEBUG "... APIC PROCPRI: %08x\n", v);
1662 }
1663
1664 /*
1665 * Remote read supported only in the 82489DX and local APIC for
1666 * Pentium processors.
1667 */
1668 if (!APIC_INTEGRATED(ver) || maxlvt == 3) {
1669 v = apic_read(APIC_RRR);
1670 printk(KERN_DEBUG "... APIC RRR: %08x\n", v);
1671 }
1672
1673 v = apic_read(APIC_LDR);
1674 printk(KERN_DEBUG "... APIC LDR: %08x\n", v);
1675 if (!x2apic_enabled()) {
1676 v = apic_read(APIC_DFR);
1677 printk(KERN_DEBUG "... APIC DFR: %08x\n", v);
1678 }
1679 v = apic_read(APIC_SPIV);
1680 printk(KERN_DEBUG "... APIC SPIV: %08x\n", v);
1681
1682 printk(KERN_DEBUG "... APIC ISR field:\n");
1683 print_APIC_field(APIC_ISR);
1684 printk(KERN_DEBUG "... APIC TMR field:\n");
1685 print_APIC_field(APIC_TMR);
1686 printk(KERN_DEBUG "... APIC IRR field:\n");
1687 print_APIC_field(APIC_IRR);
1688
1689 if (APIC_INTEGRATED(ver)) { /* !82489DX */
1690 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
1691 apic_write(APIC_ESR, 0);
1692
1693 v = apic_read(APIC_ESR);
1694 printk(KERN_DEBUG "... APIC ESR: %08x\n", v);
1695 }
1696
1697 icr = apic_icr_read();
1698 printk(KERN_DEBUG "... APIC ICR: %08x\n", (u32)icr);
1699 printk(KERN_DEBUG "... APIC ICR2: %08x\n", (u32)(icr >> 32));
1700
1701 v = apic_read(APIC_LVTT);
1702 printk(KERN_DEBUG "... APIC LVTT: %08x\n", v);
1703
1704 if (maxlvt > 3) { /* PC is LVT#4. */
1705 v = apic_read(APIC_LVTPC);
1706 printk(KERN_DEBUG "... APIC LVTPC: %08x\n", v);
1707 }
1708 v = apic_read(APIC_LVT0);
1709 printk(KERN_DEBUG "... APIC LVT0: %08x\n", v);
1710 v = apic_read(APIC_LVT1);
1711 printk(KERN_DEBUG "... APIC LVT1: %08x\n", v);
1712
1713 if (maxlvt > 2) { /* ERR is LVT#3. */
1714 v = apic_read(APIC_LVTERR);
1715 printk(KERN_DEBUG "... APIC LVTERR: %08x\n", v);
1716 }
1717
1718 v = apic_read(APIC_TMICT);
1719 printk(KERN_DEBUG "... APIC TMICT: %08x\n", v);
1720 v = apic_read(APIC_TMCCT);
1721 printk(KERN_DEBUG "... APIC TMCCT: %08x\n", v);
1722 v = apic_read(APIC_TDCR);
1723 printk(KERN_DEBUG "... APIC TDCR: %08x\n", v);
1724
1725 if (boot_cpu_has(X86_FEATURE_EXTAPIC)) {
1726 v = apic_read(APIC_EFEAT);
1727 maxlvt = (v >> 16) & 0xff;
1728 printk(KERN_DEBUG "... APIC EFEAT: %08x\n", v);
1729 v = apic_read(APIC_ECTRL);
1730 printk(KERN_DEBUG "... APIC ECTRL: %08x\n", v);
1731 for (i = 0; i < maxlvt; i++) {
1732 v = apic_read(APIC_EILVTn(i));
1733 printk(KERN_DEBUG "... APIC EILVT%d: %08x\n", i, v);
1734 }
1735 }
1736 printk("\n");
1737}
1738
1739__apicdebuginit(void) print_local_APICs(int maxcpu)
1740{
1741 int cpu;
1742
1743 if (!maxcpu)
1744 return;
1745
1746 preempt_disable();
1747 for_each_online_cpu(cpu) {
1748 if (cpu >= maxcpu)
1749 break;
1750 smp_call_function_single(cpu, print_local_APIC, NULL, 1);
1751 }
1752 preempt_enable();
1753}
1754
1755__apicdebuginit(void) print_PIC(void)
1756{
1757 unsigned int v;
1758 unsigned long flags;
1759
1760 if (!legacy_pic->nr_legacy_irqs)
1761 return;
1762
1763 printk(KERN_DEBUG "\nprinting PIC contents\n");
1764
1765 raw_spin_lock_irqsave(&i8259A_lock, flags);
1766
1767 v = inb(0xa1) << 8 | inb(0x21);
1768 printk(KERN_DEBUG "... PIC IMR: %04x\n", v);
1769
1770 v = inb(0xa0) << 8 | inb(0x20);
1771 printk(KERN_DEBUG "... PIC IRR: %04x\n", v);
1772
1773 outb(0x0b,0xa0);
1774 outb(0x0b,0x20);
1775 v = inb(0xa0) << 8 | inb(0x20);
1776 outb(0x0a,0xa0);
1777 outb(0x0a,0x20);
1778
1779 raw_spin_unlock_irqrestore(&i8259A_lock, flags);
1780
1781 printk(KERN_DEBUG "... PIC ISR: %04x\n", v);
1782
1783 v = inb(0x4d1) << 8 | inb(0x4d0);
1784 printk(KERN_DEBUG "... PIC ELCR: %04x\n", v);
1785}
1786
1787static int __initdata show_lapic = 1;
1788static __init int setup_show_lapic(char *arg)
1789{
1790 int num = -1;
1791
1792 if (strcmp(arg, "all") == 0) {
1793 show_lapic = CONFIG_NR_CPUS;
1794 } else {
1795 get_option(&arg, &num);
1796 if (num >= 0)
1797 show_lapic = num;
1798 }
1799
1800 return 1;
1801}
1802__setup("show_lapic=", setup_show_lapic);
1803
1804__apicdebuginit(int) print_ICs(void)
1805{
1806 if (apic_verbosity == APIC_QUIET)
1807 return 0;
1808
1809 print_PIC();
1810
1811 /* don't print out if apic is not there */
1812 if (!cpu_has_apic && !apic_from_smp_config())
1813 return 0;
1814
1815 print_local_APICs(show_lapic);
1816 print_IO_APIC();
1817
1818 return 0;
1819}
1820
1821fs_initcall(print_ICs);
1822
1823
1824/* Where if anywhere is the i8259 connect in external int mode */
1825static struct { int pin, apic; } ioapic_i8259 = { -1, -1 };
1826
1827void __init enable_IO_APIC(void)
1828{
1829 int i8259_apic, i8259_pin;
1830 int apic;
1831
1832 if (!legacy_pic->nr_legacy_irqs)
1833 return;
1834
1835 for(apic = 0; apic < nr_ioapics; apic++) {
1836 int pin;
1837 /* See if any of the pins is in ExtINT mode */
1838 for (pin = 0; pin < nr_ioapic_registers[apic]; pin++) {
1839 struct IO_APIC_route_entry entry;
1840 entry = ioapic_read_entry(apic, pin);
1841
1842 /* If the interrupt line is enabled and in ExtInt mode
1843 * I have found the pin where the i8259 is connected.
1844 */
1845 if ((entry.mask == 0) && (entry.delivery_mode == dest_ExtINT)) {
1846 ioapic_i8259.apic = apic;
1847 ioapic_i8259.pin = pin;
1848 goto found_i8259;
1849 }
1850 }
1851 }
1852 found_i8259:
1853 /* Look to see what if the MP table has reported the ExtINT */
1854 /* If we could not find the appropriate pin by looking at the ioapic
1855 * the i8259 probably is not connected the ioapic but give the
1856 * mptable a chance anyway.
1857 */
1858 i8259_pin = find_isa_irq_pin(0, mp_ExtINT);
1859 i8259_apic = find_isa_irq_apic(0, mp_ExtINT);
1860 /* Trust the MP table if nothing is setup in the hardware */
1861 if ((ioapic_i8259.pin == -1) && (i8259_pin >= 0)) {
1862 printk(KERN_WARNING "ExtINT not setup in hardware but reported by MP table\n");
1863 ioapic_i8259.pin = i8259_pin;
1864 ioapic_i8259.apic = i8259_apic;
1865 }
1866 /* Complain if the MP table and the hardware disagree */
1867 if (((ioapic_i8259.apic != i8259_apic) || (ioapic_i8259.pin != i8259_pin)) &&
1868 (i8259_pin >= 0) && (ioapic_i8259.pin >= 0))
1869 {
1870 printk(KERN_WARNING "ExtINT in hardware and MP table differ\n");
1871 }
1872
1873 /*
1874 * Do not trust the IO-APIC being empty at bootup
1875 */
1876 clear_IO_APIC();
1877}
1878
1879/*
1880 * Not an __init, needed by the reboot code
1881 */
1882void disable_IO_APIC(void)
1883{
1884 /*
1885 * Clear the IO-APIC before rebooting:
1886 */
1887 clear_IO_APIC();
1888
1889 if (!legacy_pic->nr_legacy_irqs)
1890 return;
1891
1892 /*
1893 * If the i8259 is routed through an IOAPIC
1894 * Put that IOAPIC in virtual wire mode
1895 * so legacy interrupts can be delivered.
1896 *
1897 * With interrupt-remapping, for now we will use virtual wire A mode,
1898 * as virtual wire B is little complex (need to configure both
1899 * IOAPIC RTE aswell as interrupt-remapping table entry).
1900 * As this gets called during crash dump, keep this simple for now.
1901 */
1902 if (ioapic_i8259.pin != -1 && !intr_remapping_enabled) {
1903 struct IO_APIC_route_entry entry;
1904
1905 memset(&entry, 0, sizeof(entry));
1906 entry.mask = 0; /* Enabled */
1907 entry.trigger = 0; /* Edge */
1908 entry.irr = 0;
1909 entry.polarity = 0; /* High */
1910 entry.delivery_status = 0;
1911 entry.dest_mode = 0; /* Physical */
1912 entry.delivery_mode = dest_ExtINT; /* ExtInt */
1913 entry.vector = 0;
1914 entry.dest = read_apic_id();
1915
1916 /*
1917 * Add it to the IO-APIC irq-routing table:
1918 */
1919 ioapic_write_entry(ioapic_i8259.apic, ioapic_i8259.pin, entry);
1920 }
1921
1922 /*
1923 * Use virtual wire A mode when interrupt remapping is enabled.
1924 */
1925 if (cpu_has_apic || apic_from_smp_config())
1926 disconnect_bsp_APIC(!intr_remapping_enabled &&
1927 ioapic_i8259.pin != -1);
1928}
1929
1930#ifdef CONFIG_X86_32
1931/*
1932 * function to set the IO-APIC physical IDs based on the
1933 * values stored in the MPC table.
1934 *
1935 * by Matt Domsch <Matt_Domsch@dell.com> Tue Dec 21 12:25:05 CST 1999
1936 */
1937
1938void __init setup_ioapic_ids_from_mpc(void)
1939{
1940 union IO_APIC_reg_00 reg_00;
1941 physid_mask_t phys_id_present_map;
1942 int apic_id;
1943 int i;
1944 unsigned char old_id;
1945 unsigned long flags;
1946
1947 if (acpi_ioapic)
1948 return;
1949 /*
1950 * Don't check I/O APIC IDs for xAPIC systems. They have
1951 * no meaning without the serial APIC bus.
1952 */
1953 if (!(boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1954 || APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
1955 return;
1956 /*
1957 * This is broken; anything with a real cpu count has to
1958 * circumvent this idiocy regardless.
1959 */
1960 apic->ioapic_phys_id_map(&phys_cpu_present_map, &phys_id_present_map);
1961
1962 /*
1963 * Set the IOAPIC ID to the value stored in the MPC table.
1964 */
1965 for (apic_id = 0; apic_id < nr_ioapics; apic_id++) {
1966
1967 /* Read the register 0 value */
1968 raw_spin_lock_irqsave(&ioapic_lock, flags);
1969 reg_00.raw = io_apic_read(apic_id, 0);
1970 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
1971
1972 old_id = mp_ioapics[apic_id].apicid;
1973
1974 if (mp_ioapics[apic_id].apicid >= get_physical_broadcast()) {
1975 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID is %d in the MPC table!...\n",
1976 apic_id, mp_ioapics[apic_id].apicid);
1977 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1978 reg_00.bits.ID);
1979 mp_ioapics[apic_id].apicid = reg_00.bits.ID;
1980 }
1981
1982 /*
1983 * Sanity check, is the ID really free? Every APIC in a
1984 * system must have a unique ID or we get lots of nice
1985 * 'stuck on smp_invalidate_needed IPI wait' messages.
1986 */
1987 if (apic->check_apicid_used(&phys_id_present_map,
1988 mp_ioapics[apic_id].apicid)) {
1989 printk(KERN_ERR "BIOS bug, IO-APIC#%d ID %d is already used!...\n",
1990 apic_id, mp_ioapics[apic_id].apicid);
1991 for (i = 0; i < get_physical_broadcast(); i++)
1992 if (!physid_isset(i, phys_id_present_map))
1993 break;
1994 if (i >= get_physical_broadcast())
1995 panic("Max APIC ID exceeded!\n");
1996 printk(KERN_ERR "... fixing up to %d. (tell your hw vendor)\n",
1997 i);
1998 physid_set(i, phys_id_present_map);
1999 mp_ioapics[apic_id].apicid = i;
2000 } else {
2001 physid_mask_t tmp;
2002 apic->apicid_to_cpu_present(mp_ioapics[apic_id].apicid, &tmp);
2003 apic_printk(APIC_VERBOSE, "Setting %d in the "
2004 "phys_id_present_map\n",
2005 mp_ioapics[apic_id].apicid);
2006 physids_or(phys_id_present_map, phys_id_present_map, tmp);
2007 }
2008
2009
2010 /*
2011 * We need to adjust the IRQ routing table
2012 * if the ID changed.
2013 */
2014 if (old_id != mp_ioapics[apic_id].apicid)
2015 for (i = 0; i < mp_irq_entries; i++)
2016 if (mp_irqs[i].dstapic == old_id)
2017 mp_irqs[i].dstapic
2018 = mp_ioapics[apic_id].apicid;
2019
2020 /*
2021 * Read the right value from the MPC table and
2022 * write it into the ID register.
2023 */
2024 apic_printk(APIC_VERBOSE, KERN_INFO
2025 "...changing IO-APIC physical APIC ID to %d ...",
2026 mp_ioapics[apic_id].apicid);
2027
2028 reg_00.bits.ID = mp_ioapics[apic_id].apicid;
2029 raw_spin_lock_irqsave(&ioapic_lock, flags);
2030 io_apic_write(apic_id, 0, reg_00.raw);
2031 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2032
2033 /*
2034 * Sanity check
2035 */
2036 raw_spin_lock_irqsave(&ioapic_lock, flags);
2037 reg_00.raw = io_apic_read(apic_id, 0);
2038 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2039 if (reg_00.bits.ID != mp_ioapics[apic_id].apicid)
2040 printk("could not set ID!\n");
2041 else
2042 apic_printk(APIC_VERBOSE, " ok.\n");
2043 }
2044}
2045#endif
2046
2047int no_timer_check __initdata;
2048
2049static int __init notimercheck(char *s)
2050{
2051 no_timer_check = 1;
2052 return 1;
2053}
2054__setup("no_timer_check", notimercheck);
2055
2056/*
2057 * There is a nasty bug in some older SMP boards, their mptable lies
2058 * about the timer IRQ. We do the following to work around the situation:
2059 *
2060 * - timer IRQ defaults to IO-APIC IRQ
2061 * - if this function detects that timer IRQs are defunct, then we fall
2062 * back to ISA timer IRQs
2063 */
2064static int __init timer_irq_works(void)
2065{
2066 unsigned long t1 = jiffies;
2067 unsigned long flags;
2068
2069 if (no_timer_check)
2070 return 1;
2071
2072 local_save_flags(flags);
2073 local_irq_enable();
2074 /* Let ten ticks pass... */
2075 mdelay((10 * 1000) / HZ);
2076 local_irq_restore(flags);
2077
2078 /*
2079 * Expect a few ticks at least, to be sure some possible
2080 * glue logic does not lock up after one or two first
2081 * ticks in a non-ExtINT mode. Also the local APIC
2082 * might have cached one ExtINT interrupt. Finally, at
2083 * least one tick may be lost due to delays.
2084 */
2085
2086 /* jiffies wrap? */
2087 if (time_after(jiffies, t1 + 4))
2088 return 1;
2089 return 0;
2090}
2091
2092/*
2093 * In the SMP+IOAPIC case it might happen that there are an unspecified
2094 * number of pending IRQ events unhandled. These cases are very rare,
2095 * so we 'resend' these IRQs via IPIs, to the same CPU. It's much
2096 * better to do it this way as thus we do not have to be aware of
2097 * 'pending' interrupts in the IRQ path, except at this point.
2098 */
2099/*
2100 * Edge triggered needs to resend any interrupt
2101 * that was delayed but this is now handled in the device
2102 * independent code.
2103 */
2104
2105/*
2106 * Starting up a edge-triggered IO-APIC interrupt is
2107 * nasty - we need to make sure that we get the edge.
2108 * If it is already asserted for some reason, we need
2109 * return 1 to indicate that is was pending.
2110 *
2111 * This is not complete - we should be able to fake
2112 * an edge even if it isn't on the 8259A...
2113 */
2114
2115static unsigned int startup_ioapic_irq(struct irq_data *data)
2116{
2117 int was_pending = 0, irq = data->irq;
2118 unsigned long flags;
2119
2120 raw_spin_lock_irqsave(&ioapic_lock, flags);
2121 if (irq < legacy_pic->nr_legacy_irqs) {
2122 legacy_pic->mask(irq);
2123 if (legacy_pic->irq_pending(irq))
2124 was_pending = 1;
2125 }
2126 __unmask_ioapic(data->chip_data);
2127 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2128
2129 return was_pending;
2130}
2131
2132static int ioapic_retrigger_irq(struct irq_data *data)
2133{
2134 struct irq_cfg *cfg = data->chip_data;
2135 unsigned long flags;
2136
2137 raw_spin_lock_irqsave(&vector_lock, flags);
2138 apic->send_IPI_mask(cpumask_of(cpumask_first(cfg->domain)), cfg->vector);
2139 raw_spin_unlock_irqrestore(&vector_lock, flags);
2140
2141 return 1;
2142}
2143
2144/*
2145 * Level and edge triggered IO-APIC interrupts need different handling,
2146 * so we use two separate IRQ descriptors. Edge triggered IRQs can be
2147 * handled with the level-triggered descriptor, but that one has slightly
2148 * more overhead. Level-triggered interrupts cannot be handled with the
2149 * edge-triggered handler, without risking IRQ storms and other ugly
2150 * races.
2151 */
2152
2153#ifdef CONFIG_SMP
2154void send_cleanup_vector(struct irq_cfg *cfg)
2155{
2156 cpumask_var_t cleanup_mask;
2157
2158 if (unlikely(!alloc_cpumask_var(&cleanup_mask, GFP_ATOMIC))) {
2159 unsigned int i;
2160 for_each_cpu_and(i, cfg->old_domain, cpu_online_mask)
2161 apic->send_IPI_mask(cpumask_of(i), IRQ_MOVE_CLEANUP_VECTOR);
2162 } else {
2163 cpumask_and(cleanup_mask, cfg->old_domain, cpu_online_mask);
2164 apic->send_IPI_mask(cleanup_mask, IRQ_MOVE_CLEANUP_VECTOR);
2165 free_cpumask_var(cleanup_mask);
2166 }
2167 cfg->move_in_progress = 0;
2168}
2169
2170static void __target_IO_APIC_irq(unsigned int irq, unsigned int dest, struct irq_cfg *cfg)
2171{
2172 int apic, pin;
2173 struct irq_pin_list *entry;
2174 u8 vector = cfg->vector;
2175
2176 for_each_irq_pin(entry, cfg->irq_2_pin) {
2177 unsigned int reg;
2178
2179 apic = entry->apic;
2180 pin = entry->pin;
2181 /*
2182 * With interrupt-remapping, destination information comes
2183 * from interrupt-remapping table entry.
2184 */
2185 if (!irq_remapped(cfg))
2186 io_apic_write(apic, 0x11 + pin*2, dest);
2187 reg = io_apic_read(apic, 0x10 + pin*2);
2188 reg &= ~IO_APIC_REDIR_VECTOR_MASK;
2189 reg |= vector;
2190 io_apic_modify(apic, 0x10 + pin*2, reg);
2191 }
2192}
2193
2194/*
2195 * Either sets data->affinity to a valid value, and returns
2196 * ->cpu_mask_to_apicid of that in dest_id, or returns -1 and
2197 * leaves data->affinity untouched.
2198 */
2199int __ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2200 unsigned int *dest_id)
2201{
2202 struct irq_cfg *cfg = data->chip_data;
2203
2204 if (!cpumask_intersects(mask, cpu_online_mask))
2205 return -1;
2206
2207 if (assign_irq_vector(data->irq, data->chip_data, mask))
2208 return -1;
2209
2210 cpumask_copy(data->affinity, mask);
2211
2212 *dest_id = apic->cpu_mask_to_apicid_and(mask, cfg->domain);
2213 return 0;
2214}
2215
2216static int
2217ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2218 bool force)
2219{
2220 unsigned int dest, irq = data->irq;
2221 unsigned long flags;
2222 int ret;
2223
2224 raw_spin_lock_irqsave(&ioapic_lock, flags);
2225 ret = __ioapic_set_affinity(data, mask, &dest);
2226 if (!ret) {
2227 /* Only the high 8 bits are valid. */
2228 dest = SET_APIC_LOGICAL_ID(dest);
2229 __target_IO_APIC_irq(irq, dest, data->chip_data);
2230 }
2231 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2232 return ret;
2233}
2234
2235#ifdef CONFIG_INTR_REMAP
2236
2237/*
2238 * Migrate the IO-APIC irq in the presence of intr-remapping.
2239 *
2240 * For both level and edge triggered, irq migration is a simple atomic
2241 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
2242 *
2243 * For level triggered, we eliminate the io-apic RTE modification (with the
2244 * updated vector information), by using a virtual vector (io-apic pin number).
2245 * Real vector that is used for interrupting cpu will be coming from
2246 * the interrupt-remapping table entry.
2247 */
2248static int
2249ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2250 bool force)
2251{
2252 struct irq_cfg *cfg = data->chip_data;
2253 unsigned int dest, irq = data->irq;
2254 struct irte irte;
2255
2256 if (!cpumask_intersects(mask, cpu_online_mask))
2257 return -EINVAL;
2258
2259 if (get_irte(irq, &irte))
2260 return -EBUSY;
2261
2262 if (assign_irq_vector(irq, cfg, mask))
2263 return -EBUSY;
2264
2265 dest = apic->cpu_mask_to_apicid_and(cfg->domain, mask);
2266
2267 irte.vector = cfg->vector;
2268 irte.dest_id = IRTE_DEST(dest);
2269
2270 /*
2271 * Modified the IRTE and flushes the Interrupt entry cache.
2272 */
2273 modify_irte(irq, &irte);
2274
2275 if (cfg->move_in_progress)
2276 send_cleanup_vector(cfg);
2277
2278 cpumask_copy(data->affinity, mask);
2279 return 0;
2280}
2281
2282#else
2283static inline int
2284ir_ioapic_set_affinity(struct irq_data *data, const struct cpumask *mask,
2285 bool force)
2286{
2287 return 0;
2288}
2289#endif
2290
2291asmlinkage void smp_irq_move_cleanup_interrupt(void)
2292{
2293 unsigned vector, me;
2294
2295 ack_APIC_irq();
2296 exit_idle();
2297 irq_enter();
2298
2299 me = smp_processor_id();
2300 for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
2301 unsigned int irq;
2302 unsigned int irr;
2303 struct irq_desc *desc;
2304 struct irq_cfg *cfg;
2305 irq = __get_cpu_var(vector_irq)[vector];
2306
2307 if (irq == -1)
2308 continue;
2309
2310 desc = irq_to_desc(irq);
2311 if (!desc)
2312 continue;
2313
2314 cfg = irq_cfg(irq);
2315 raw_spin_lock(&desc->lock);
2316
2317 /*
2318 * Check if the irq migration is in progress. If so, we
2319 * haven't received the cleanup request yet for this irq.
2320 */
2321 if (cfg->move_in_progress)
2322 goto unlock;
2323
2324 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2325 goto unlock;
2326
2327 irr = apic_read(APIC_IRR + (vector / 32 * 0x10));
2328 /*
2329 * Check if the vector that needs to be cleanedup is
2330 * registered at the cpu's IRR. If so, then this is not
2331 * the best time to clean it up. Lets clean it up in the
2332 * next attempt by sending another IRQ_MOVE_CLEANUP_VECTOR
2333 * to myself.
2334 */
2335 if (irr & (1 << (vector % 32))) {
2336 apic->send_IPI_self(IRQ_MOVE_CLEANUP_VECTOR);
2337 goto unlock;
2338 }
2339 __get_cpu_var(vector_irq)[vector] = -1;
2340unlock:
2341 raw_spin_unlock(&desc->lock);
2342 }
2343
2344 irq_exit();
2345}
2346
2347static void __irq_complete_move(struct irq_cfg *cfg, unsigned vector)
2348{
2349 unsigned me;
2350
2351 if (likely(!cfg->move_in_progress))
2352 return;
2353
2354 me = smp_processor_id();
2355
2356 if (vector == cfg->vector && cpumask_test_cpu(me, cfg->domain))
2357 send_cleanup_vector(cfg);
2358}
2359
2360static void irq_complete_move(struct irq_cfg *cfg)
2361{
2362 __irq_complete_move(cfg, ~get_irq_regs()->orig_ax);
2363}
2364
2365void irq_force_complete_move(int irq)
2366{
2367 struct irq_cfg *cfg = get_irq_chip_data(irq);
2368
2369 if (!cfg)
2370 return;
2371
2372 __irq_complete_move(cfg, cfg->vector);
2373}
2374#else
2375static inline void irq_complete_move(struct irq_cfg *cfg) { }
2376#endif
2377
2378static void ack_apic_edge(struct irq_data *data)
2379{
2380 irq_complete_move(data->chip_data);
2381 move_native_irq(data->irq);
2382 ack_APIC_irq();
2383}
2384
2385atomic_t irq_mis_count;
2386
2387/*
2388 * IO-APIC versions below 0x20 don't support EOI register.
2389 * For the record, here is the information about various versions:
2390 * 0Xh 82489DX
2391 * 1Xh I/OAPIC or I/O(x)APIC which are not PCI 2.2 Compliant
2392 * 2Xh I/O(x)APIC which is PCI 2.2 Compliant
2393 * 30h-FFh Reserved
2394 *
2395 * Some of the Intel ICH Specs (ICH2 to ICH5) documents the io-apic
2396 * version as 0x2. This is an error with documentation and these ICH chips
2397 * use io-apic's of version 0x20.
2398 *
2399 * For IO-APIC's with EOI register, we use that to do an explicit EOI.
2400 * Otherwise, we simulate the EOI message manually by changing the trigger
2401 * mode to edge and then back to level, with RTE being masked during this.
2402*/
2403static void eoi_ioapic_irq(unsigned int irq, struct irq_cfg *cfg)
2404{
2405 struct irq_pin_list *entry;
2406 unsigned long flags;
2407
2408 raw_spin_lock_irqsave(&ioapic_lock, flags);
2409 for_each_irq_pin(entry, cfg->irq_2_pin) {
2410 if (mp_ioapics[entry->apic].apicver >= 0x20) {
2411 /*
2412 * Intr-remapping uses pin number as the virtual vector
2413 * in the RTE. Actual vector is programmed in
2414 * intr-remapping table entry. Hence for the io-apic
2415 * EOI we use the pin number.
2416 */
2417 if (irq_remapped(cfg))
2418 io_apic_eoi(entry->apic, entry->pin);
2419 else
2420 io_apic_eoi(entry->apic, cfg->vector);
2421 } else {
2422 __mask_and_edge_IO_APIC_irq(entry);
2423 __unmask_and_level_IO_APIC_irq(entry);
2424 }
2425 }
2426 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
2427}
2428
2429static void ack_apic_level(struct irq_data *data)
2430{
2431 struct irq_cfg *cfg = data->chip_data;
2432 int i, do_unmask_irq = 0, irq = data->irq;
2433 struct irq_desc *desc = irq_to_desc(irq);
2434 unsigned long v;
2435
2436 irq_complete_move(cfg);
2437#ifdef CONFIG_GENERIC_PENDING_IRQ
2438 /* If we are moving the irq we need to mask it */
2439 if (unlikely(desc->status & IRQ_MOVE_PENDING)) {
2440 do_unmask_irq = 1;
2441 mask_ioapic(cfg);
2442 }
2443#endif
2444
2445 /*
2446 * It appears there is an erratum which affects at least version 0x11
2447 * of I/O APIC (that's the 82093AA and cores integrated into various
2448 * chipsets). Under certain conditions a level-triggered interrupt is
2449 * erroneously delivered as edge-triggered one but the respective IRR
2450 * bit gets set nevertheless. As a result the I/O unit expects an EOI
2451 * message but it will never arrive and further interrupts are blocked
2452 * from the source. The exact reason is so far unknown, but the
2453 * phenomenon was observed when two consecutive interrupt requests
2454 * from a given source get delivered to the same CPU and the source is
2455 * temporarily disabled in between.
2456 *
2457 * A workaround is to simulate an EOI message manually. We achieve it
2458 * by setting the trigger mode to edge and then to level when the edge
2459 * trigger mode gets detected in the TMR of a local APIC for a
2460 * level-triggered interrupt. We mask the source for the time of the
2461 * operation to prevent an edge-triggered interrupt escaping meanwhile.
2462 * The idea is from Manfred Spraul. --macro
2463 *
2464 * Also in the case when cpu goes offline, fixup_irqs() will forward
2465 * any unhandled interrupt on the offlined cpu to the new cpu
2466 * destination that is handling the corresponding interrupt. This
2467 * interrupt forwarding is done via IPI's. Hence, in this case also
2468 * level-triggered io-apic interrupt will be seen as an edge
2469 * interrupt in the IRR. And we can't rely on the cpu's EOI
2470 * to be broadcasted to the IO-APIC's which will clear the remoteIRR
2471 * corresponding to the level-triggered interrupt. Hence on IO-APIC's
2472 * supporting EOI register, we do an explicit EOI to clear the
2473 * remote IRR and on IO-APIC's which don't have an EOI register,
2474 * we use the above logic (mask+edge followed by unmask+level) from
2475 * Manfred Spraul to clear the remote IRR.
2476 */
2477 i = cfg->vector;
2478 v = apic_read(APIC_TMR + ((i & ~0x1f) >> 1));
2479
2480 /*
2481 * We must acknowledge the irq before we move it or the acknowledge will
2482 * not propagate properly.
2483 */
2484 ack_APIC_irq();
2485
2486 /*
2487 * Tail end of clearing remote IRR bit (either by delivering the EOI
2488 * message via io-apic EOI register write or simulating it using
2489 * mask+edge followed by unnask+level logic) manually when the
2490 * level triggered interrupt is seen as the edge triggered interrupt
2491 * at the cpu.
2492 */
2493 if (!(v & (1 << (i & 0x1f)))) {
2494 atomic_inc(&irq_mis_count);
2495
2496 eoi_ioapic_irq(irq, cfg);
2497 }
2498
2499 /* Now we can move and renable the irq */
2500 if (unlikely(do_unmask_irq)) {
2501 /* Only migrate the irq if the ack has been received.
2502 *
2503 * On rare occasions the broadcast level triggered ack gets
2504 * delayed going to ioapics, and if we reprogram the
2505 * vector while Remote IRR is still set the irq will never
2506 * fire again.
2507 *
2508 * To prevent this scenario we read the Remote IRR bit
2509 * of the ioapic. This has two effects.
2510 * - On any sane system the read of the ioapic will
2511 * flush writes (and acks) going to the ioapic from
2512 * this cpu.
2513 * - We get to see if the ACK has actually been delivered.
2514 *
2515 * Based on failed experiments of reprogramming the
2516 * ioapic entry from outside of irq context starting
2517 * with masking the ioapic entry and then polling until
2518 * Remote IRR was clear before reprogramming the
2519 * ioapic I don't trust the Remote IRR bit to be
2520 * completey accurate.
2521 *
2522 * However there appears to be no other way to plug
2523 * this race, so if the Remote IRR bit is not
2524 * accurate and is causing problems then it is a hardware bug
2525 * and you can go talk to the chipset vendor about it.
2526 */
2527 if (!io_apic_level_ack_pending(cfg))
2528 move_masked_irq(irq);
2529 unmask_ioapic(cfg);
2530 }
2531}
2532
2533#ifdef CONFIG_INTR_REMAP
2534static void ir_ack_apic_edge(struct irq_data *data)
2535{
2536 ack_APIC_irq();
2537}
2538
2539static void ir_ack_apic_level(struct irq_data *data)
2540{
2541 ack_APIC_irq();
2542 eoi_ioapic_irq(data->irq, data->chip_data);
2543}
2544#endif /* CONFIG_INTR_REMAP */
2545
2546static struct irq_chip ioapic_chip __read_mostly = {
2547 .name = "IO-APIC",
2548 .irq_startup = startup_ioapic_irq,
2549 .irq_mask = mask_ioapic_irq,
2550 .irq_unmask = unmask_ioapic_irq,
2551 .irq_ack = ack_apic_edge,
2552 .irq_eoi = ack_apic_level,
2553#ifdef CONFIG_SMP
2554 .irq_set_affinity = ioapic_set_affinity,
2555#endif
2556 .irq_retrigger = ioapic_retrigger_irq,
2557};
2558
2559static struct irq_chip ir_ioapic_chip __read_mostly = {
2560 .name = "IR-IO-APIC",
2561 .irq_startup = startup_ioapic_irq,
2562 .irq_mask = mask_ioapic_irq,
2563 .irq_unmask = unmask_ioapic_irq,
2564#ifdef CONFIG_INTR_REMAP
2565 .irq_ack = ir_ack_apic_edge,
2566 .irq_eoi = ir_ack_apic_level,
2567#ifdef CONFIG_SMP
2568 .irq_set_affinity = ir_ioapic_set_affinity,
2569#endif
2570#endif
2571 .irq_retrigger = ioapic_retrigger_irq,
2572};
2573
2574static inline void init_IO_APIC_traps(void)
2575{
2576 struct irq_cfg *cfg;
2577 unsigned int irq;
2578
2579 /*
2580 * NOTE! The local APIC isn't very good at handling
2581 * multiple interrupts at the same interrupt level.
2582 * As the interrupt level is determined by taking the
2583 * vector number and shifting that right by 4, we
2584 * want to spread these out a bit so that they don't
2585 * all fall in the same interrupt level.
2586 *
2587 * Also, we've got to be careful not to trash gate
2588 * 0x80, because int 0x80 is hm, kind of importantish. ;)
2589 */
2590 for_each_active_irq(irq) {
2591 cfg = get_irq_chip_data(irq);
2592 if (IO_APIC_IRQ(irq) && cfg && !cfg->vector) {
2593 /*
2594 * Hmm.. We don't have an entry for this,
2595 * so default to an old-fashioned 8259
2596 * interrupt if we can..
2597 */
2598 if (irq < legacy_pic->nr_legacy_irqs)
2599 legacy_pic->make_irq(irq);
2600 else
2601 /* Strange. Oh, well.. */
2602 set_irq_chip(irq, &no_irq_chip);
2603 }
2604 }
2605}
2606
2607/*
2608 * The local APIC irq-chip implementation:
2609 */
2610
2611static void mask_lapic_irq(struct irq_data *data)
2612{
2613 unsigned long v;
2614
2615 v = apic_read(APIC_LVT0);
2616 apic_write(APIC_LVT0, v | APIC_LVT_MASKED);
2617}
2618
2619static void unmask_lapic_irq(struct irq_data *data)
2620{
2621 unsigned long v;
2622
2623 v = apic_read(APIC_LVT0);
2624 apic_write(APIC_LVT0, v & ~APIC_LVT_MASKED);
2625}
2626
2627static void ack_lapic_irq(struct irq_data *data)
2628{
2629 ack_APIC_irq();
2630}
2631
2632static struct irq_chip lapic_chip __read_mostly = {
2633 .name = "local-APIC",
2634 .irq_mask = mask_lapic_irq,
2635 .irq_unmask = unmask_lapic_irq,
2636 .irq_ack = ack_lapic_irq,
2637};
2638
2639static void lapic_register_intr(int irq)
2640{
2641 irq_clear_status_flags(irq, IRQ_LEVEL);
2642 set_irq_chip_and_handler_name(irq, &lapic_chip, handle_edge_irq,
2643 "edge");
2644}
2645
2646static void __init setup_nmi(void)
2647{
2648 /*
2649 * Dirty trick to enable the NMI watchdog ...
2650 * We put the 8259A master into AEOI mode and
2651 * unmask on all local APICs LVT0 as NMI.
2652 *
2653 * The idea to use the 8259A in AEOI mode ('8259A Virtual Wire')
2654 * is from Maciej W. Rozycki - so we do not have to EOI from
2655 * the NMI handler or the timer interrupt.
2656 */
2657 apic_printk(APIC_VERBOSE, KERN_INFO "activating NMI Watchdog ...");
2658
2659 enable_NMI_through_LVT0();
2660
2661 apic_printk(APIC_VERBOSE, " done.\n");
2662}
2663
2664/*
2665 * This looks a bit hackish but it's about the only one way of sending
2666 * a few INTA cycles to 8259As and any associated glue logic. ICR does
2667 * not support the ExtINT mode, unfortunately. We need to send these
2668 * cycles as some i82489DX-based boards have glue logic that keeps the
2669 * 8259A interrupt line asserted until INTA. --macro
2670 */
2671static inline void __init unlock_ExtINT_logic(void)
2672{
2673 int apic, pin, i;
2674 struct IO_APIC_route_entry entry0, entry1;
2675 unsigned char save_control, save_freq_select;
2676
2677 pin = find_isa_irq_pin(8, mp_INT);
2678 if (pin == -1) {
2679 WARN_ON_ONCE(1);
2680 return;
2681 }
2682 apic = find_isa_irq_apic(8, mp_INT);
2683 if (apic == -1) {
2684 WARN_ON_ONCE(1);
2685 return;
2686 }
2687
2688 entry0 = ioapic_read_entry(apic, pin);
2689 clear_IO_APIC_pin(apic, pin);
2690
2691 memset(&entry1, 0, sizeof(entry1));
2692
2693 entry1.dest_mode = 0; /* physical delivery */
2694 entry1.mask = 0; /* unmask IRQ now */
2695 entry1.dest = hard_smp_processor_id();
2696 entry1.delivery_mode = dest_ExtINT;
2697 entry1.polarity = entry0.polarity;
2698 entry1.trigger = 0;
2699 entry1.vector = 0;
2700
2701 ioapic_write_entry(apic, pin, entry1);
2702
2703 save_control = CMOS_READ(RTC_CONTROL);
2704 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
2705 CMOS_WRITE((save_freq_select & ~RTC_RATE_SELECT) | 0x6,
2706 RTC_FREQ_SELECT);
2707 CMOS_WRITE(save_control | RTC_PIE, RTC_CONTROL);
2708
2709 i = 100;
2710 while (i-- > 0) {
2711 mdelay(10);
2712 if ((CMOS_READ(RTC_INTR_FLAGS) & RTC_PF) == RTC_PF)
2713 i -= 10;
2714 }
2715
2716 CMOS_WRITE(save_control, RTC_CONTROL);
2717 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
2718 clear_IO_APIC_pin(apic, pin);
2719
2720 ioapic_write_entry(apic, pin, entry0);
2721}
2722
2723static int disable_timer_pin_1 __initdata;
2724/* Actually the next is obsolete, but keep it for paranoid reasons -AK */
2725static int __init disable_timer_pin_setup(char *arg)
2726{
2727 disable_timer_pin_1 = 1;
2728 return 0;
2729}
2730early_param("disable_timer_pin_1", disable_timer_pin_setup);
2731
2732int timer_through_8259 __initdata;
2733
2734/*
2735 * This code may look a bit paranoid, but it's supposed to cooperate with
2736 * a wide range of boards and BIOS bugs. Fortunately only the timer IRQ
2737 * is so screwy. Thanks to Brian Perkins for testing/hacking this beast
2738 * fanatically on his truly buggy board.
2739 *
2740 * FIXME: really need to revamp this for all platforms.
2741 */
2742static inline void __init check_timer(void)
2743{
2744 struct irq_cfg *cfg = get_irq_chip_data(0);
2745 int node = cpu_to_node(0);
2746 int apic1, pin1, apic2, pin2;
2747 unsigned long flags;
2748 int no_pin1 = 0;
2749
2750 local_irq_save(flags);
2751
2752 /*
2753 * get/set the timer IRQ vector:
2754 */
2755 legacy_pic->mask(0);
2756 assign_irq_vector(0, cfg, apic->target_cpus());
2757
2758 /*
2759 * As IRQ0 is to be enabled in the 8259A, the virtual
2760 * wire has to be disabled in the local APIC. Also
2761 * timer interrupts need to be acknowledged manually in
2762 * the 8259A for the i82489DX when using the NMI
2763 * watchdog as that APIC treats NMIs as level-triggered.
2764 * The AEOI mode will finish them in the 8259A
2765 * automatically.
2766 */
2767 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_EXTINT);
2768 legacy_pic->init(1);
2769#ifdef CONFIG_X86_32
2770 {
2771 unsigned int ver;
2772
2773 ver = apic_read(APIC_LVR);
2774 ver = GET_APIC_VERSION(ver);
2775 timer_ack = (nmi_watchdog == NMI_IO_APIC && !APIC_INTEGRATED(ver));
2776 }
2777#endif
2778
2779 pin1 = find_isa_irq_pin(0, mp_INT);
2780 apic1 = find_isa_irq_apic(0, mp_INT);
2781 pin2 = ioapic_i8259.pin;
2782 apic2 = ioapic_i8259.apic;
2783
2784 apic_printk(APIC_QUIET, KERN_INFO "..TIMER: vector=0x%02X "
2785 "apic1=%d pin1=%d apic2=%d pin2=%d\n",
2786 cfg->vector, apic1, pin1, apic2, pin2);
2787
2788 /*
2789 * Some BIOS writers are clueless and report the ExtINTA
2790 * I/O APIC input from the cascaded 8259A as the timer
2791 * interrupt input. So just in case, if only one pin
2792 * was found above, try it both directly and through the
2793 * 8259A.
2794 */
2795 if (pin1 == -1) {
2796 if (intr_remapping_enabled)
2797 panic("BIOS bug: timer not connected to IO-APIC");
2798 pin1 = pin2;
2799 apic1 = apic2;
2800 no_pin1 = 1;
2801 } else if (pin2 == -1) {
2802 pin2 = pin1;
2803 apic2 = apic1;
2804 }
2805
2806 if (pin1 != -1) {
2807 /*
2808 * Ok, does IRQ0 through the IOAPIC work?
2809 */
2810 if (no_pin1) {
2811 add_pin_to_irq_node(cfg, node, apic1, pin1);
2812 setup_timer_IRQ0_pin(apic1, pin1, cfg->vector);
2813 } else {
2814 /* for edge trigger, setup_ioapic_irq already
2815 * leave it unmasked.
2816 * so only need to unmask if it is level-trigger
2817 * do we really have level trigger timer?
2818 */
2819 int idx;
2820 idx = find_irq_entry(apic1, pin1, mp_INT);
2821 if (idx != -1 && irq_trigger(idx))
2822 unmask_ioapic(cfg);
2823 }
2824 if (timer_irq_works()) {
2825 if (nmi_watchdog == NMI_IO_APIC) {
2826 setup_nmi();
2827 legacy_pic->unmask(0);
2828 }
2829 if (disable_timer_pin_1 > 0)
2830 clear_IO_APIC_pin(0, pin1);
2831 goto out;
2832 }
2833 if (intr_remapping_enabled)
2834 panic("timer doesn't work through Interrupt-remapped IO-APIC");
2835 local_irq_disable();
2836 clear_IO_APIC_pin(apic1, pin1);
2837 if (!no_pin1)
2838 apic_printk(APIC_QUIET, KERN_ERR "..MP-BIOS bug: "
2839 "8254 timer not connected to IO-APIC\n");
2840
2841 apic_printk(APIC_QUIET, KERN_INFO "...trying to set up timer "
2842 "(IRQ0) through the 8259A ...\n");
2843 apic_printk(APIC_QUIET, KERN_INFO
2844 "..... (found apic %d pin %d) ...\n", apic2, pin2);
2845 /*
2846 * legacy devices should be connected to IO APIC #0
2847 */
2848 replace_pin_at_irq_node(cfg, node, apic1, pin1, apic2, pin2);
2849 setup_timer_IRQ0_pin(apic2, pin2, cfg->vector);
2850 legacy_pic->unmask(0);
2851 if (timer_irq_works()) {
2852 apic_printk(APIC_QUIET, KERN_INFO "....... works.\n");
2853 timer_through_8259 = 1;
2854 if (nmi_watchdog == NMI_IO_APIC) {
2855 legacy_pic->mask(0);
2856 setup_nmi();
2857 legacy_pic->unmask(0);
2858 }
2859 goto out;
2860 }
2861 /*
2862 * Cleanup, just in case ...
2863 */
2864 local_irq_disable();
2865 legacy_pic->mask(0);
2866 clear_IO_APIC_pin(apic2, pin2);
2867 apic_printk(APIC_QUIET, KERN_INFO "....... failed.\n");
2868 }
2869
2870 if (nmi_watchdog == NMI_IO_APIC) {
2871 apic_printk(APIC_QUIET, KERN_WARNING "timer doesn't work "
2872 "through the IO-APIC - disabling NMI Watchdog!\n");
2873 nmi_watchdog = NMI_NONE;
2874 }
2875#ifdef CONFIG_X86_32
2876 timer_ack = 0;
2877#endif
2878
2879 apic_printk(APIC_QUIET, KERN_INFO
2880 "...trying to set up timer as Virtual Wire IRQ...\n");
2881
2882 lapic_register_intr(0);
2883 apic_write(APIC_LVT0, APIC_DM_FIXED | cfg->vector); /* Fixed mode */
2884 legacy_pic->unmask(0);
2885
2886 if (timer_irq_works()) {
2887 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2888 goto out;
2889 }
2890 local_irq_disable();
2891 legacy_pic->mask(0);
2892 apic_write(APIC_LVT0, APIC_LVT_MASKED | APIC_DM_FIXED | cfg->vector);
2893 apic_printk(APIC_QUIET, KERN_INFO "..... failed.\n");
2894
2895 apic_printk(APIC_QUIET, KERN_INFO
2896 "...trying to set up timer as ExtINT IRQ...\n");
2897
2898 legacy_pic->init(0);
2899 legacy_pic->make_irq(0);
2900 apic_write(APIC_LVT0, APIC_DM_EXTINT);
2901
2902 unlock_ExtINT_logic();
2903
2904 if (timer_irq_works()) {
2905 apic_printk(APIC_QUIET, KERN_INFO "..... works.\n");
2906 goto out;
2907 }
2908 local_irq_disable();
2909 apic_printk(APIC_QUIET, KERN_INFO "..... failed :(.\n");
2910 panic("IO-APIC + timer doesn't work! Boot with apic=debug and send a "
2911 "report. Then try booting with the 'noapic' option.\n");
2912out:
2913 local_irq_restore(flags);
2914}
2915
2916/*
2917 * Traditionally ISA IRQ2 is the cascade IRQ, and is not available
2918 * to devices. However there may be an I/O APIC pin available for
2919 * this interrupt regardless. The pin may be left unconnected, but
2920 * typically it will be reused as an ExtINT cascade interrupt for
2921 * the master 8259A. In the MPS case such a pin will normally be
2922 * reported as an ExtINT interrupt in the MP table. With ACPI
2923 * there is no provision for ExtINT interrupts, and in the absence
2924 * of an override it would be treated as an ordinary ISA I/O APIC
2925 * interrupt, that is edge-triggered and unmasked by default. We
2926 * used to do this, but it caused problems on some systems because
2927 * of the NMI watchdog and sometimes IRQ0 of the 8254 timer using
2928 * the same ExtINT cascade interrupt to drive the local APIC of the
2929 * bootstrap processor. Therefore we refrain from routing IRQ2 to
2930 * the I/O APIC in all cases now. No actual device should request
2931 * it anyway. --macro
2932 */
2933#define PIC_IRQS (1UL << PIC_CASCADE_IR)
2934
2935void __init setup_IO_APIC(void)
2936{
2937
2938 /*
2939 * calling enable_IO_APIC() is moved to setup_local_APIC for BP
2940 */
2941 io_apic_irqs = legacy_pic->nr_legacy_irqs ? ~PIC_IRQS : ~0UL;
2942
2943 apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
2944 /*
2945 * Set up IO-APIC IRQ routing.
2946 */
2947 x86_init.mpparse.setup_ioapic_ids();
2948
2949 sync_Arb_IDs();
2950 setup_IO_APIC_irqs();
2951 init_IO_APIC_traps();
2952 if (legacy_pic->nr_legacy_irqs)
2953 check_timer();
2954}
2955
2956/*
2957 * Called after all the initialization is done. If we didnt find any
2958 * APIC bugs then we can allow the modify fast path
2959 */
2960
2961static int __init io_apic_bug_finalize(void)
2962{
2963 if (sis_apic_bug == -1)
2964 sis_apic_bug = 0;
2965 return 0;
2966}
2967
2968late_initcall(io_apic_bug_finalize);
2969
2970struct sysfs_ioapic_data {
2971 struct sys_device dev;
2972 struct IO_APIC_route_entry entry[0];
2973};
2974static struct sysfs_ioapic_data * mp_ioapic_data[MAX_IO_APICS];
2975
2976static int ioapic_suspend(struct sys_device *dev, pm_message_t state)
2977{
2978 struct IO_APIC_route_entry *entry;
2979 struct sysfs_ioapic_data *data;
2980 int i;
2981
2982 data = container_of(dev, struct sysfs_ioapic_data, dev);
2983 entry = data->entry;
2984 for (i = 0; i < nr_ioapic_registers[dev->id]; i ++, entry ++ )
2985 *entry = ioapic_read_entry(dev->id, i);
2986
2987 return 0;
2988}
2989
2990static int ioapic_resume(struct sys_device *dev)
2991{
2992 struct IO_APIC_route_entry *entry;
2993 struct sysfs_ioapic_data *data;
2994 unsigned long flags;
2995 union IO_APIC_reg_00 reg_00;
2996 int i;
2997
2998 data = container_of(dev, struct sysfs_ioapic_data, dev);
2999 entry = data->entry;
3000
3001 raw_spin_lock_irqsave(&ioapic_lock, flags);
3002 reg_00.raw = io_apic_read(dev->id, 0);
3003 if (reg_00.bits.ID != mp_ioapics[dev->id].apicid) {
3004 reg_00.bits.ID = mp_ioapics[dev->id].apicid;
3005 io_apic_write(dev->id, 0, reg_00.raw);
3006 }
3007 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3008 for (i = 0; i < nr_ioapic_registers[dev->id]; i++)
3009 ioapic_write_entry(dev->id, i, entry[i]);
3010
3011 return 0;
3012}
3013
3014static struct sysdev_class ioapic_sysdev_class = {
3015 .name = "ioapic",
3016 .suspend = ioapic_suspend,
3017 .resume = ioapic_resume,
3018};
3019
3020static int __init ioapic_init_sysfs(void)
3021{
3022 struct sys_device * dev;
3023 int i, size, error;
3024
3025 error = sysdev_class_register(&ioapic_sysdev_class);
3026 if (error)
3027 return error;
3028
3029 for (i = 0; i < nr_ioapics; i++ ) {
3030 size = sizeof(struct sys_device) + nr_ioapic_registers[i]
3031 * sizeof(struct IO_APIC_route_entry);
3032 mp_ioapic_data[i] = kzalloc(size, GFP_KERNEL);
3033 if (!mp_ioapic_data[i]) {
3034 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3035 continue;
3036 }
3037 dev = &mp_ioapic_data[i]->dev;
3038 dev->id = i;
3039 dev->cls = &ioapic_sysdev_class;
3040 error = sysdev_register(dev);
3041 if (error) {
3042 kfree(mp_ioapic_data[i]);
3043 mp_ioapic_data[i] = NULL;
3044 printk(KERN_ERR "Can't suspend/resume IOAPIC %d\n", i);
3045 continue;
3046 }
3047 }
3048
3049 return 0;
3050}
3051
3052device_initcall(ioapic_init_sysfs);
3053
3054/*
3055 * Dynamic irq allocate and deallocation
3056 */
3057unsigned int create_irq_nr(unsigned int from, int node)
3058{
3059 struct irq_cfg *cfg;
3060 unsigned long flags;
3061 unsigned int ret = 0;
3062 int irq;
3063
3064 if (from < nr_irqs_gsi)
3065 from = nr_irqs_gsi;
3066
3067 irq = alloc_irq_from(from, node);
3068 if (irq < 0)
3069 return 0;
3070 cfg = alloc_irq_cfg(irq, node);
3071 if (!cfg) {
3072 free_irq_at(irq, NULL);
3073 return 0;
3074 }
3075
3076 raw_spin_lock_irqsave(&vector_lock, flags);
3077 if (!__assign_irq_vector(irq, cfg, apic->target_cpus()))
3078 ret = irq;
3079 raw_spin_unlock_irqrestore(&vector_lock, flags);
3080
3081 if (ret) {
3082 set_irq_chip_data(irq, cfg);
3083 irq_clear_status_flags(irq, IRQ_NOREQUEST);
3084 } else {
3085 free_irq_at(irq, cfg);
3086 }
3087 return ret;
3088}
3089
3090int create_irq(void)
3091{
3092 int node = cpu_to_node(0);
3093 unsigned int irq_want;
3094 int irq;
3095
3096 irq_want = nr_irqs_gsi;
3097 irq = create_irq_nr(irq_want, node);
3098
3099 if (irq == 0)
3100 irq = -1;
3101
3102 return irq;
3103}
3104
3105void destroy_irq(unsigned int irq)
3106{
3107 struct irq_cfg *cfg = get_irq_chip_data(irq);
3108 unsigned long flags;
3109
3110 irq_set_status_flags(irq, IRQ_NOREQUEST|IRQ_NOPROBE);
3111
3112 free_irte(irq);
3113 raw_spin_lock_irqsave(&vector_lock, flags);
3114 __clear_irq_vector(irq, cfg);
3115 raw_spin_unlock_irqrestore(&vector_lock, flags);
3116 free_irq_at(irq, cfg);
3117}
3118
3119/*
3120 * MSI message composition
3121 */
3122#ifdef CONFIG_PCI_MSI
3123static int msi_compose_msg(struct pci_dev *pdev, unsigned int irq,
3124 struct msi_msg *msg, u8 hpet_id)
3125{
3126 struct irq_cfg *cfg;
3127 int err;
3128 unsigned dest;
3129
3130 if (disable_apic)
3131 return -ENXIO;
3132
3133 cfg = irq_cfg(irq);
3134 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3135 if (err)
3136 return err;
3137
3138 dest = apic->cpu_mask_to_apicid_and(cfg->domain, apic->target_cpus());
3139
3140 if (irq_remapped(get_irq_chip_data(irq))) {
3141 struct irte irte;
3142 int ir_index;
3143 u16 sub_handle;
3144
3145 ir_index = map_irq_to_irte_handle(irq, &sub_handle);
3146 BUG_ON(ir_index == -1);
3147
3148 prepare_irte(&irte, cfg->vector, dest);
3149
3150 /* Set source-id of interrupt request */
3151 if (pdev)
3152 set_msi_sid(&irte, pdev);
3153 else
3154 set_hpet_sid(&irte, hpet_id);
3155
3156 modify_irte(irq, &irte);
3157
3158 msg->address_hi = MSI_ADDR_BASE_HI;
3159 msg->data = sub_handle;
3160 msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
3161 MSI_ADDR_IR_SHV |
3162 MSI_ADDR_IR_INDEX1(ir_index) |
3163 MSI_ADDR_IR_INDEX2(ir_index);
3164 } else {
3165 if (x2apic_enabled())
3166 msg->address_hi = MSI_ADDR_BASE_HI |
3167 MSI_ADDR_EXT_DEST_ID(dest);
3168 else
3169 msg->address_hi = MSI_ADDR_BASE_HI;
3170
3171 msg->address_lo =
3172 MSI_ADDR_BASE_LO |
3173 ((apic->irq_dest_mode == 0) ?
3174 MSI_ADDR_DEST_MODE_PHYSICAL:
3175 MSI_ADDR_DEST_MODE_LOGICAL) |
3176 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3177 MSI_ADDR_REDIRECTION_CPU:
3178 MSI_ADDR_REDIRECTION_LOWPRI) |
3179 MSI_ADDR_DEST_ID(dest);
3180
3181 msg->data =
3182 MSI_DATA_TRIGGER_EDGE |
3183 MSI_DATA_LEVEL_ASSERT |
3184 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3185 MSI_DATA_DELIVERY_FIXED:
3186 MSI_DATA_DELIVERY_LOWPRI) |
3187 MSI_DATA_VECTOR(cfg->vector);
3188 }
3189 return err;
3190}
3191
3192#ifdef CONFIG_SMP
3193static int
3194msi_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3195{
3196 struct irq_cfg *cfg = data->chip_data;
3197 struct msi_msg msg;
3198 unsigned int dest;
3199
3200 if (__ioapic_set_affinity(data, mask, &dest))
3201 return -1;
3202
3203 __get_cached_msi_msg(data->msi_desc, &msg);
3204
3205 msg.data &= ~MSI_DATA_VECTOR_MASK;
3206 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3207 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3208 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3209
3210 __write_msi_msg(data->msi_desc, &msg);
3211
3212 return 0;
3213}
3214#ifdef CONFIG_INTR_REMAP
3215/*
3216 * Migrate the MSI irq to another cpumask. This migration is
3217 * done in the process context using interrupt-remapping hardware.
3218 */
3219static int
3220ir_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3221 bool force)
3222{
3223 struct irq_cfg *cfg = data->chip_data;
3224 unsigned int dest, irq = data->irq;
3225 struct irte irte;
3226
3227 if (get_irte(irq, &irte))
3228 return -1;
3229
3230 if (__ioapic_set_affinity(data, mask, &dest))
3231 return -1;
3232
3233 irte.vector = cfg->vector;
3234 irte.dest_id = IRTE_DEST(dest);
3235
3236 /*
3237 * atomically update the IRTE with the new destination and vector.
3238 */
3239 modify_irte(irq, &irte);
3240
3241 /*
3242 * After this point, all the interrupts will start arriving
3243 * at the new destination. So, time to cleanup the previous
3244 * vector allocation.
3245 */
3246 if (cfg->move_in_progress)
3247 send_cleanup_vector(cfg);
3248
3249 return 0;
3250}
3251
3252#endif
3253#endif /* CONFIG_SMP */
3254
3255/*
3256 * IRQ Chip for MSI PCI/PCI-X/PCI-Express Devices,
3257 * which implement the MSI or MSI-X Capability Structure.
3258 */
3259static struct irq_chip msi_chip = {
3260 .name = "PCI-MSI",
3261 .irq_unmask = unmask_msi_irq,
3262 .irq_mask = mask_msi_irq,
3263 .irq_ack = ack_apic_edge,
3264#ifdef CONFIG_SMP
3265 .irq_set_affinity = msi_set_affinity,
3266#endif
3267 .irq_retrigger = ioapic_retrigger_irq,
3268};
3269
3270static struct irq_chip msi_ir_chip = {
3271 .name = "IR-PCI-MSI",
3272 .irq_unmask = unmask_msi_irq,
3273 .irq_mask = mask_msi_irq,
3274#ifdef CONFIG_INTR_REMAP
3275 .irq_ack = ir_ack_apic_edge,
3276#ifdef CONFIG_SMP
3277 .irq_set_affinity = ir_msi_set_affinity,
3278#endif
3279#endif
3280 .irq_retrigger = ioapic_retrigger_irq,
3281};
3282
3283/*
3284 * Map the PCI dev to the corresponding remapping hardware unit
3285 * and allocate 'nvec' consecutive interrupt-remapping table entries
3286 * in it.
3287 */
3288static int msi_alloc_irte(struct pci_dev *dev, int irq, int nvec)
3289{
3290 struct intel_iommu *iommu;
3291 int index;
3292
3293 iommu = map_dev_to_ir(dev);
3294 if (!iommu) {
3295 printk(KERN_ERR
3296 "Unable to map PCI %s to iommu\n", pci_name(dev));
3297 return -ENOENT;
3298 }
3299
3300 index = alloc_irte(iommu, irq, nvec);
3301 if (index < 0) {
3302 printk(KERN_ERR
3303 "Unable to allocate %d IRTE for PCI %s\n", nvec,
3304 pci_name(dev));
3305 return -ENOSPC;
3306 }
3307 return index;
3308}
3309
3310static int setup_msi_irq(struct pci_dev *dev, struct msi_desc *msidesc, int irq)
3311{
3312 struct msi_msg msg;
3313 int ret;
3314
3315 ret = msi_compose_msg(dev, irq, &msg, -1);
3316 if (ret < 0)
3317 return ret;
3318
3319 set_irq_msi(irq, msidesc);
3320 write_msi_msg(irq, &msg);
3321
3322 if (irq_remapped(get_irq_chip_data(irq))) {
3323 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3324 set_irq_chip_and_handler_name(irq, &msi_ir_chip, handle_edge_irq, "edge");
3325 } else
3326 set_irq_chip_and_handler_name(irq, &msi_chip, handle_edge_irq, "edge");
3327
3328 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for MSI/MSI-X\n", irq);
3329
3330 return 0;
3331}
3332
3333int arch_setup_msi_irqs(struct pci_dev *dev, int nvec, int type)
3334{
3335 int node, ret, sub_handle, index = 0;
3336 unsigned int irq, irq_want;
3337 struct msi_desc *msidesc;
3338 struct intel_iommu *iommu = NULL;
3339
3340 /* x86 doesn't support multiple MSI yet */
3341 if (type == PCI_CAP_ID_MSI && nvec > 1)
3342 return 1;
3343
3344 node = dev_to_node(&dev->dev);
3345 irq_want = nr_irqs_gsi;
3346 sub_handle = 0;
3347 list_for_each_entry(msidesc, &dev->msi_list, list) {
3348 irq = create_irq_nr(irq_want, node);
3349 if (irq == 0)
3350 return -1;
3351 irq_want = irq + 1;
3352 if (!intr_remapping_enabled)
3353 goto no_ir;
3354
3355 if (!sub_handle) {
3356 /*
3357 * allocate the consecutive block of IRTE's
3358 * for 'nvec'
3359 */
3360 index = msi_alloc_irte(dev, irq, nvec);
3361 if (index < 0) {
3362 ret = index;
3363 goto error;
3364 }
3365 } else {
3366 iommu = map_dev_to_ir(dev);
3367 if (!iommu) {
3368 ret = -ENOENT;
3369 goto error;
3370 }
3371 /*
3372 * setup the mapping between the irq and the IRTE
3373 * base index, the sub_handle pointing to the
3374 * appropriate interrupt remap table entry.
3375 */
3376 set_irte_irq(irq, iommu, index, sub_handle);
3377 }
3378no_ir:
3379 ret = setup_msi_irq(dev, msidesc, irq);
3380 if (ret < 0)
3381 goto error;
3382 sub_handle++;
3383 }
3384 return 0;
3385
3386error:
3387 destroy_irq(irq);
3388 return ret;
3389}
3390
3391void arch_teardown_msi_irq(unsigned int irq)
3392{
3393 destroy_irq(irq);
3394}
3395
3396#if defined (CONFIG_DMAR) || defined (CONFIG_INTR_REMAP)
3397#ifdef CONFIG_SMP
3398static int
3399dmar_msi_set_affinity(struct irq_data *data, const struct cpumask *mask,
3400 bool force)
3401{
3402 struct irq_cfg *cfg = data->chip_data;
3403 unsigned int dest, irq = data->irq;
3404 struct msi_msg msg;
3405
3406 if (__ioapic_set_affinity(data, mask, &dest))
3407 return -1;
3408
3409 dmar_msi_read(irq, &msg);
3410
3411 msg.data &= ~MSI_DATA_VECTOR_MASK;
3412 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3413 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3414 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3415
3416 dmar_msi_write(irq, &msg);
3417
3418 return 0;
3419}
3420
3421#endif /* CONFIG_SMP */
3422
3423static struct irq_chip dmar_msi_type = {
3424 .name = "DMAR_MSI",
3425 .irq_unmask = dmar_msi_unmask,
3426 .irq_mask = dmar_msi_mask,
3427 .irq_ack = ack_apic_edge,
3428#ifdef CONFIG_SMP
3429 .irq_set_affinity = dmar_msi_set_affinity,
3430#endif
3431 .irq_retrigger = ioapic_retrigger_irq,
3432};
3433
3434int arch_setup_dmar_msi(unsigned int irq)
3435{
3436 int ret;
3437 struct msi_msg msg;
3438
3439 ret = msi_compose_msg(NULL, irq, &msg, -1);
3440 if (ret < 0)
3441 return ret;
3442 dmar_msi_write(irq, &msg);
3443 set_irq_chip_and_handler_name(irq, &dmar_msi_type, handle_edge_irq,
3444 "edge");
3445 return 0;
3446}
3447#endif
3448
3449#ifdef CONFIG_HPET_TIMER
3450
3451#ifdef CONFIG_SMP
3452static int hpet_msi_set_affinity(struct irq_data *data,
3453 const struct cpumask *mask, bool force)
3454{
3455 struct irq_cfg *cfg = data->chip_data;
3456 struct msi_msg msg;
3457 unsigned int dest;
3458
3459 if (__ioapic_set_affinity(data, mask, &dest))
3460 return -1;
3461
3462 hpet_msi_read(data->handler_data, &msg);
3463
3464 msg.data &= ~MSI_DATA_VECTOR_MASK;
3465 msg.data |= MSI_DATA_VECTOR(cfg->vector);
3466 msg.address_lo &= ~MSI_ADDR_DEST_ID_MASK;
3467 msg.address_lo |= MSI_ADDR_DEST_ID(dest);
3468
3469 hpet_msi_write(data->handler_data, &msg);
3470
3471 return 0;
3472}
3473
3474#endif /* CONFIG_SMP */
3475
3476static struct irq_chip ir_hpet_msi_type = {
3477 .name = "IR-HPET_MSI",
3478 .irq_unmask = hpet_msi_unmask,
3479 .irq_mask = hpet_msi_mask,
3480#ifdef CONFIG_INTR_REMAP
3481 .irq_ack = ir_ack_apic_edge,
3482#ifdef CONFIG_SMP
3483 .irq_set_affinity = ir_msi_set_affinity,
3484#endif
3485#endif
3486 .irq_retrigger = ioapic_retrigger_irq,
3487};
3488
3489static struct irq_chip hpet_msi_type = {
3490 .name = "HPET_MSI",
3491 .irq_unmask = hpet_msi_unmask,
3492 .irq_mask = hpet_msi_mask,
3493 .irq_ack = ack_apic_edge,
3494#ifdef CONFIG_SMP
3495 .irq_set_affinity = hpet_msi_set_affinity,
3496#endif
3497 .irq_retrigger = ioapic_retrigger_irq,
3498};
3499
3500int arch_setup_hpet_msi(unsigned int irq, unsigned int id)
3501{
3502 struct msi_msg msg;
3503 int ret;
3504
3505 if (intr_remapping_enabled) {
3506 struct intel_iommu *iommu = map_hpet_to_ir(id);
3507 int index;
3508
3509 if (!iommu)
3510 return -1;
3511
3512 index = alloc_irte(iommu, irq, 1);
3513 if (index < 0)
3514 return -1;
3515 }
3516
3517 ret = msi_compose_msg(NULL, irq, &msg, id);
3518 if (ret < 0)
3519 return ret;
3520
3521 hpet_msi_write(get_irq_data(irq), &msg);
3522 irq_set_status_flags(irq, IRQ_MOVE_PCNTXT);
3523 if (irq_remapped(get_irq_chip_data(irq)))
3524 set_irq_chip_and_handler_name(irq, &ir_hpet_msi_type,
3525 handle_edge_irq, "edge");
3526 else
3527 set_irq_chip_and_handler_name(irq, &hpet_msi_type,
3528 handle_edge_irq, "edge");
3529
3530 return 0;
3531}
3532#endif
3533
3534#endif /* CONFIG_PCI_MSI */
3535/*
3536 * Hypertransport interrupt support
3537 */
3538#ifdef CONFIG_HT_IRQ
3539
3540#ifdef CONFIG_SMP
3541
3542static void target_ht_irq(unsigned int irq, unsigned int dest, u8 vector)
3543{
3544 struct ht_irq_msg msg;
3545 fetch_ht_irq_msg(irq, &msg);
3546
3547 msg.address_lo &= ~(HT_IRQ_LOW_VECTOR_MASK | HT_IRQ_LOW_DEST_ID_MASK);
3548 msg.address_hi &= ~(HT_IRQ_HIGH_DEST_ID_MASK);
3549
3550 msg.address_lo |= HT_IRQ_LOW_VECTOR(vector) | HT_IRQ_LOW_DEST_ID(dest);
3551 msg.address_hi |= HT_IRQ_HIGH_DEST_ID(dest);
3552
3553 write_ht_irq_msg(irq, &msg);
3554}
3555
3556static int
3557ht_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force)
3558{
3559 struct irq_cfg *cfg = data->chip_data;
3560 unsigned int dest;
3561
3562 if (__ioapic_set_affinity(data, mask, &dest))
3563 return -1;
3564
3565 target_ht_irq(data->irq, dest, cfg->vector);
3566 return 0;
3567}
3568
3569#endif
3570
3571static struct irq_chip ht_irq_chip = {
3572 .name = "PCI-HT",
3573 .irq_mask = mask_ht_irq,
3574 .irq_unmask = unmask_ht_irq,
3575 .irq_ack = ack_apic_edge,
3576#ifdef CONFIG_SMP
3577 .irq_set_affinity = ht_set_affinity,
3578#endif
3579 .irq_retrigger = ioapic_retrigger_irq,
3580};
3581
3582int arch_setup_ht_irq(unsigned int irq, struct pci_dev *dev)
3583{
3584 struct irq_cfg *cfg;
3585 int err;
3586
3587 if (disable_apic)
3588 return -ENXIO;
3589
3590 cfg = irq_cfg(irq);
3591 err = assign_irq_vector(irq, cfg, apic->target_cpus());
3592 if (!err) {
3593 struct ht_irq_msg msg;
3594 unsigned dest;
3595
3596 dest = apic->cpu_mask_to_apicid_and(cfg->domain,
3597 apic->target_cpus());
3598
3599 msg.address_hi = HT_IRQ_HIGH_DEST_ID(dest);
3600
3601 msg.address_lo =
3602 HT_IRQ_LOW_BASE |
3603 HT_IRQ_LOW_DEST_ID(dest) |
3604 HT_IRQ_LOW_VECTOR(cfg->vector) |
3605 ((apic->irq_dest_mode == 0) ?
3606 HT_IRQ_LOW_DM_PHYSICAL :
3607 HT_IRQ_LOW_DM_LOGICAL) |
3608 HT_IRQ_LOW_RQEOI_EDGE |
3609 ((apic->irq_delivery_mode != dest_LowestPrio) ?
3610 HT_IRQ_LOW_MT_FIXED :
3611 HT_IRQ_LOW_MT_ARBITRATED) |
3612 HT_IRQ_LOW_IRQ_MASKED;
3613
3614 write_ht_irq_msg(irq, &msg);
3615
3616 set_irq_chip_and_handler_name(irq, &ht_irq_chip,
3617 handle_edge_irq, "edge");
3618
3619 dev_printk(KERN_DEBUG, &dev->dev, "irq %d for HT\n", irq);
3620 }
3621 return err;
3622}
3623#endif /* CONFIG_HT_IRQ */
3624
3625int __init io_apic_get_redir_entries (int ioapic)
3626{
3627 union IO_APIC_reg_01 reg_01;
3628 unsigned long flags;
3629
3630 raw_spin_lock_irqsave(&ioapic_lock, flags);
3631 reg_01.raw = io_apic_read(ioapic, 1);
3632 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3633
3634 /* The register returns the maximum index redir index
3635 * supported, which is one less than the total number of redir
3636 * entries.
3637 */
3638 return reg_01.bits.entries + 1;
3639}
3640
3641void __init probe_nr_irqs_gsi(void)
3642{
3643 int nr;
3644
3645 nr = gsi_top + NR_IRQS_LEGACY;
3646 if (nr > nr_irqs_gsi)
3647 nr_irqs_gsi = nr;
3648
3649 printk(KERN_DEBUG "nr_irqs_gsi: %d\n", nr_irqs_gsi);
3650}
3651
3652#ifdef CONFIG_SPARSE_IRQ
3653int __init arch_probe_nr_irqs(void)
3654{
3655 int nr;
3656
3657 if (nr_irqs > (NR_VECTORS * nr_cpu_ids))
3658 nr_irqs = NR_VECTORS * nr_cpu_ids;
3659
3660 nr = nr_irqs_gsi + 8 * nr_cpu_ids;
3661#if defined(CONFIG_PCI_MSI) || defined(CONFIG_HT_IRQ)
3662 /*
3663 * for MSI and HT dyn irq
3664 */
3665 nr += nr_irqs_gsi * 16;
3666#endif
3667 if (nr < nr_irqs)
3668 nr_irqs = nr;
3669
3670 return NR_IRQS_LEGACY;
3671}
3672#endif
3673
3674static int __io_apic_set_pci_routing(struct device *dev, int irq,
3675 struct io_apic_irq_attr *irq_attr)
3676{
3677 struct irq_cfg *cfg;
3678 int node;
3679 int ioapic, pin;
3680 int trigger, polarity;
3681
3682 ioapic = irq_attr->ioapic;
3683 if (!IO_APIC_IRQ(irq)) {
3684 apic_printk(APIC_QUIET,KERN_ERR "IOAPIC[%d]: Invalid reference to IRQ 0\n",
3685 ioapic);
3686 return -EINVAL;
3687 }
3688
3689 if (dev)
3690 node = dev_to_node(dev);
3691 else
3692 node = cpu_to_node(0);
3693
3694 cfg = alloc_irq_and_cfg_at(irq, node);
3695 if (!cfg)
3696 return 0;
3697
3698 pin = irq_attr->ioapic_pin;
3699 trigger = irq_attr->trigger;
3700 polarity = irq_attr->polarity;
3701
3702 /*
3703 * IRQs < 16 are already in the irq_2_pin[] map
3704 */
3705 if (irq >= legacy_pic->nr_legacy_irqs) {
3706 if (__add_pin_to_irq_node(cfg, node, ioapic, pin)) {
3707 printk(KERN_INFO "can not add pin %d for irq %d\n",
3708 pin, irq);
3709 return 0;
3710 }
3711 }
3712
3713 setup_ioapic_irq(ioapic, pin, irq, cfg, trigger, polarity);
3714
3715 return 0;
3716}
3717
3718int io_apic_set_pci_routing(struct device *dev, int irq,
3719 struct io_apic_irq_attr *irq_attr)
3720{
3721 int ioapic, pin;
3722 /*
3723 * Avoid pin reprogramming. PRTs typically include entries
3724 * with redundant pin->gsi mappings (but unique PCI devices);
3725 * we only program the IOAPIC on the first.
3726 */
3727 ioapic = irq_attr->ioapic;
3728 pin = irq_attr->ioapic_pin;
3729 if (test_bit(pin, mp_ioapic_routing[ioapic].pin_programmed)) {
3730 pr_debug("Pin %d-%d already programmed\n",
3731 mp_ioapics[ioapic].apicid, pin);
3732 return 0;
3733 }
3734 set_bit(pin, mp_ioapic_routing[ioapic].pin_programmed);
3735
3736 return __io_apic_set_pci_routing(dev, irq, irq_attr);
3737}
3738
3739u8 __init io_apic_unique_id(u8 id)
3740{
3741#ifdef CONFIG_X86_32
3742 if ((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) &&
3743 !APIC_XAPIC(apic_version[boot_cpu_physical_apicid]))
3744 return io_apic_get_unique_id(nr_ioapics, id);
3745 else
3746 return id;
3747#else
3748 int i;
3749 DECLARE_BITMAP(used, 256);
3750
3751 bitmap_zero(used, 256);
3752 for (i = 0; i < nr_ioapics; i++) {
3753 struct mpc_ioapic *ia = &mp_ioapics[i];
3754 __set_bit(ia->apicid, used);
3755 }
3756 if (!test_bit(id, used))
3757 return id;
3758 return find_first_zero_bit(used, 256);
3759#endif
3760}
3761
3762#ifdef CONFIG_X86_32
3763int __init io_apic_get_unique_id(int ioapic, int apic_id)
3764{
3765 union IO_APIC_reg_00 reg_00;
3766 static physid_mask_t apic_id_map = PHYSID_MASK_NONE;
3767 physid_mask_t tmp;
3768 unsigned long flags;
3769 int i = 0;
3770
3771 /*
3772 * The P4 platform supports up to 256 APIC IDs on two separate APIC
3773 * buses (one for LAPICs, one for IOAPICs), where predecessors only
3774 * supports up to 16 on one shared APIC bus.
3775 *
3776 * TBD: Expand LAPIC/IOAPIC support on P4-class systems to take full
3777 * advantage of new APIC bus architecture.
3778 */
3779
3780 if (physids_empty(apic_id_map))
3781 apic->ioapic_phys_id_map(&phys_cpu_present_map, &apic_id_map);
3782
3783 raw_spin_lock_irqsave(&ioapic_lock, flags);
3784 reg_00.raw = io_apic_read(ioapic, 0);
3785 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3786
3787 if (apic_id >= get_physical_broadcast()) {
3788 printk(KERN_WARNING "IOAPIC[%d]: Invalid apic_id %d, trying "
3789 "%d\n", ioapic, apic_id, reg_00.bits.ID);
3790 apic_id = reg_00.bits.ID;
3791 }
3792
3793 /*
3794 * Every APIC in a system must have a unique ID or we get lots of nice
3795 * 'stuck on smp_invalidate_needed IPI wait' messages.
3796 */
3797 if (apic->check_apicid_used(&apic_id_map, apic_id)) {
3798
3799 for (i = 0; i < get_physical_broadcast(); i++) {
3800 if (!apic->check_apicid_used(&apic_id_map, i))
3801 break;
3802 }
3803
3804 if (i == get_physical_broadcast())
3805 panic("Max apic_id exceeded!\n");
3806
3807 printk(KERN_WARNING "IOAPIC[%d]: apic_id %d already used, "
3808 "trying %d\n", ioapic, apic_id, i);
3809
3810 apic_id = i;
3811 }
3812
3813 apic->apicid_to_cpu_present(apic_id, &tmp);
3814 physids_or(apic_id_map, apic_id_map, tmp);
3815
3816 if (reg_00.bits.ID != apic_id) {
3817 reg_00.bits.ID = apic_id;
3818
3819 raw_spin_lock_irqsave(&ioapic_lock, flags);
3820 io_apic_write(ioapic, 0, reg_00.raw);
3821 reg_00.raw = io_apic_read(ioapic, 0);
3822 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3823
3824 /* Sanity check */
3825 if (reg_00.bits.ID != apic_id) {
3826 printk("IOAPIC[%d]: Unable to change apic_id!\n", ioapic);
3827 return -1;
3828 }
3829 }
3830
3831 apic_printk(APIC_VERBOSE, KERN_INFO
3832 "IOAPIC[%d]: Assigned apic_id %d\n", ioapic, apic_id);
3833
3834 return apic_id;
3835}
3836#endif
3837
3838int __init io_apic_get_version(int ioapic)
3839{
3840 union IO_APIC_reg_01 reg_01;
3841 unsigned long flags;
3842
3843 raw_spin_lock_irqsave(&ioapic_lock, flags);
3844 reg_01.raw = io_apic_read(ioapic, 1);
3845 raw_spin_unlock_irqrestore(&ioapic_lock, flags);
3846
3847 return reg_01.bits.version;
3848}
3849
3850int acpi_get_override_irq(u32 gsi, int *trigger, int *polarity)
3851{
3852 int ioapic, pin, idx;
3853
3854 if (skip_ioapic_setup)
3855 return -1;
3856
3857 ioapic = mp_find_ioapic(gsi);
3858 if (ioapic < 0)
3859 return -1;
3860
3861 pin = mp_find_ioapic_pin(ioapic, gsi);
3862 if (pin < 0)
3863 return -1;
3864
3865 idx = find_irq_entry(ioapic, pin, mp_INT);
3866 if (idx < 0)
3867 return -1;
3868
3869 *trigger = irq_trigger(idx);
3870 *polarity = irq_polarity(idx);
3871 return 0;
3872}
3873
3874/*
3875 * This function currently is only a helper for the i386 smp boot process where
3876 * we need to reprogram the ioredtbls to cater for the cpus which have come online
3877 * so mask in all cases should simply be apic->target_cpus()
3878 */
3879#ifdef CONFIG_SMP
3880void __init setup_ioapic_dest(void)
3881{
3882 int pin, ioapic, irq, irq_entry;
3883 struct irq_desc *desc;
3884 const struct cpumask *mask;
3885
3886 if (skip_ioapic_setup == 1)
3887 return;
3888
3889 for (ioapic = 0; ioapic < nr_ioapics; ioapic++)
3890 for (pin = 0; pin < nr_ioapic_registers[ioapic]; pin++) {
3891 irq_entry = find_irq_entry(ioapic, pin, mp_INT);
3892 if (irq_entry == -1)
3893 continue;
3894 irq = pin_2_irq(irq_entry, ioapic, pin);
3895
3896 if ((ioapic > 0) && (irq > 16))
3897 continue;
3898
3899 desc = irq_to_desc(irq);
3900
3901 /*
3902 * Honour affinities which have been set in early boot
3903 */
3904 if (desc->status &
3905 (IRQ_NO_BALANCING | IRQ_AFFINITY_SET))
3906 mask = desc->irq_data.affinity;
3907 else
3908 mask = apic->target_cpus();
3909
3910 if (intr_remapping_enabled)
3911 ir_ioapic_set_affinity(&desc->irq_data, mask, false);
3912 else
3913 ioapic_set_affinity(&desc->irq_data, mask, false);
3914 }
3915
3916}
3917#endif
3918
3919#define IOAPIC_RESOURCE_NAME_SIZE 11
3920
3921static struct resource *ioapic_resources;
3922
3923static struct resource * __init ioapic_setup_resources(int nr_ioapics)
3924{
3925 unsigned long n;
3926 struct resource *res;
3927 char *mem;
3928 int i;
3929
3930 if (nr_ioapics <= 0)
3931 return NULL;
3932
3933 n = IOAPIC_RESOURCE_NAME_SIZE + sizeof(struct resource);
3934 n *= nr_ioapics;
3935
3936 mem = alloc_bootmem(n);
3937 res = (void *)mem;
3938
3939 mem += sizeof(struct resource) * nr_ioapics;
3940
3941 for (i = 0; i < nr_ioapics; i++) {
3942 res[i].name = mem;
3943 res[i].flags = IORESOURCE_MEM | IORESOURCE_BUSY;
3944 snprintf(mem, IOAPIC_RESOURCE_NAME_SIZE, "IOAPIC %u", i);
3945 mem += IOAPIC_RESOURCE_NAME_SIZE;
3946 }
3947
3948 ioapic_resources = res;
3949
3950 return res;
3951}
3952
3953void __init ioapic_init_mappings(void)
3954{
3955 unsigned long ioapic_phys, idx = FIX_IO_APIC_BASE_0;
3956 struct resource *ioapic_res;
3957 int i;
3958
3959 ioapic_res = ioapic_setup_resources(nr_ioapics);
3960 for (i = 0; i < nr_ioapics; i++) {
3961 if (smp_found_config) {
3962 ioapic_phys = mp_ioapics[i].apicaddr;
3963#ifdef CONFIG_X86_32
3964 if (!ioapic_phys) {
3965 printk(KERN_ERR
3966 "WARNING: bogus zero IO-APIC "
3967 "address found in MPTABLE, "
3968 "disabling IO/APIC support!\n");
3969 smp_found_config = 0;
3970 skip_ioapic_setup = 1;
3971 goto fake_ioapic_page;
3972 }
3973#endif
3974 } else {
3975#ifdef CONFIG_X86_32
3976fake_ioapic_page:
3977#endif
3978 ioapic_phys = (unsigned long)alloc_bootmem_pages(PAGE_SIZE);
3979 ioapic_phys = __pa(ioapic_phys);
3980 }
3981 set_fixmap_nocache(idx, ioapic_phys);
3982 apic_printk(APIC_VERBOSE, "mapped IOAPIC to %08lx (%08lx)\n",
3983 __fix_to_virt(idx) + (ioapic_phys & ~PAGE_MASK),
3984 ioapic_phys);
3985 idx++;
3986
3987 ioapic_res->start = ioapic_phys;
3988 ioapic_res->end = ioapic_phys + IO_APIC_SLOT_SIZE - 1;
3989 ioapic_res++;
3990 }
3991}
3992
3993void __init ioapic_insert_resources(void)
3994{
3995 int i;
3996 struct resource *r = ioapic_resources;
3997
3998 if (!r) {
3999 if (nr_ioapics > 0)
4000 printk(KERN_ERR
4001 "IO APIC resources couldn't be allocated.\n");
4002 return;
4003 }
4004
4005 for (i = 0; i < nr_ioapics; i++) {
4006 insert_resource(&iomem_resource, r);
4007 r++;
4008 }
4009}
4010
4011int mp_find_ioapic(u32 gsi)
4012{
4013 int i = 0;
4014
4015 /* Find the IOAPIC that manages this GSI. */
4016 for (i = 0; i < nr_ioapics; i++) {
4017 if ((gsi >= mp_gsi_routing[i].gsi_base)
4018 && (gsi <= mp_gsi_routing[i].gsi_end))
4019 return i;
4020 }
4021
4022 printk(KERN_ERR "ERROR: Unable to locate IOAPIC for GSI %d\n", gsi);
4023 return -1;
4024}
4025
4026int mp_find_ioapic_pin(int ioapic, u32 gsi)
4027{
4028 if (WARN_ON(ioapic == -1))
4029 return -1;
4030 if (WARN_ON(gsi > mp_gsi_routing[ioapic].gsi_end))
4031 return -1;
4032
4033 return gsi - mp_gsi_routing[ioapic].gsi_base;
4034}
4035
4036static int bad_ioapic(unsigned long address)
4037{
4038 if (nr_ioapics >= MAX_IO_APICS) {
4039 printk(KERN_WARNING "WARING: Max # of I/O APICs (%d) exceeded "
4040 "(found %d), skipping\n", MAX_IO_APICS, nr_ioapics);
4041 return 1;
4042 }
4043 if (!address) {
4044 printk(KERN_WARNING "WARNING: Bogus (zero) I/O APIC address"
4045 " found in table, skipping!\n");
4046 return 1;
4047 }
4048 return 0;
4049}
4050
4051void __init mp_register_ioapic(int id, u32 address, u32 gsi_base)
4052{
4053 int idx = 0;
4054 int entries;
4055
4056 if (bad_ioapic(address))
4057 return;
4058
4059 idx = nr_ioapics;
4060
4061 mp_ioapics[idx].type = MP_IOAPIC;
4062 mp_ioapics[idx].flags = MPC_APIC_USABLE;
4063 mp_ioapics[idx].apicaddr = address;
4064
4065 set_fixmap_nocache(FIX_IO_APIC_BASE_0 + idx, address);
4066 mp_ioapics[idx].apicid = io_apic_unique_id(id);
4067 mp_ioapics[idx].apicver = io_apic_get_version(idx);
4068
4069 /*
4070 * Build basic GSI lookup table to facilitate gsi->io_apic lookups
4071 * and to prevent reprogramming of IOAPIC pins (PCI GSIs).
4072 */
4073 entries = io_apic_get_redir_entries(idx);
4074 mp_gsi_routing[idx].gsi_base = gsi_base;
4075 mp_gsi_routing[idx].gsi_end = gsi_base + entries - 1;
4076
4077 /*
4078 * The number of IO-APIC IRQ registers (== #pins):
4079 */
4080 nr_ioapic_registers[idx] = entries;
4081
4082 if (mp_gsi_routing[idx].gsi_end >= gsi_top)
4083 gsi_top = mp_gsi_routing[idx].gsi_end + 1;
4084
4085 printk(KERN_INFO "IOAPIC[%d]: apic_id %d, version %d, address 0x%x, "
4086 "GSI %d-%d\n", idx, mp_ioapics[idx].apicid,
4087 mp_ioapics[idx].apicver, mp_ioapics[idx].apicaddr,
4088 mp_gsi_routing[idx].gsi_base, mp_gsi_routing[idx].gsi_end);
4089
4090 nr_ioapics++;
4091}
4092
4093/* Enable IOAPIC early just for system timer */
4094void __init pre_init_apic_IRQ0(void)
4095{
4096 struct irq_cfg *cfg;
4097
4098 printk(KERN_INFO "Early APIC setup for system timer0\n");
4099#ifndef CONFIG_SMP
4100 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_physical_apicid);
4101#endif
4102 /* Make sure the irq descriptor is set up */
4103 cfg = alloc_irq_and_cfg_at(0, 0);
4104
4105 setup_local_APIC();
4106
4107 add_pin_to_irq_node(cfg, 0, 0, 0);
4108 set_irq_chip_and_handler_name(0, &ioapic_chip, handle_edge_irq, "edge");
4109
4110 setup_ioapic_irq(0, 0, 0, cfg, 0, 0);
4111}