]> bbs.cooldavid.org Git - net-next-2.6.git/blame - tools/perf/builtin-timechart.c
perf timechart: Add "perf timechart record"
[net-next-2.6.git] / tools / perf / builtin-timechart.c
CommitLineData
10274989
AV
1/*
2 * builtin-timechart.c - make an svg timechart of system activity
3 *
4 * (C) Copyright 2009 Intel Corporation
5 *
6 * Authors:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; version 2
12 * of the License.
13 */
14
15#include "builtin.h"
16
17#include "util/util.h"
18
19#include "util/color.h"
20#include <linux/list.h>
21#include "util/cache.h"
22#include <linux/rbtree.h>
23#include "util/symbol.h"
24#include "util/string.h"
25#include "util/callchain.h"
26#include "util/strlist.h"
27
28#include "perf.h"
29#include "util/header.h"
30#include "util/parse-options.h"
31#include "util/parse-events.h"
32#include "util/svghelper.h"
33
34static char const *input_name = "perf.data";
35static char const *output_name = "output.svg";
36
37
38static unsigned long page_size;
39static unsigned long mmap_window = 32;
40static u64 sample_type;
41
42static unsigned int numcpus;
43static u64 min_freq; /* Lowest CPU frequency seen */
44static u64 max_freq; /* Highest CPU frequency seen */
45static u64 turbo_frequency;
46
47static u64 first_time, last_time;
48
49
50static struct perf_header *header;
51
52struct per_pid;
53struct per_pidcomm;
54
55struct cpu_sample;
56struct power_event;
57struct wake_event;
58
59struct sample_wrapper;
60
61/*
62 * Datastructure layout:
63 * We keep an list of "pid"s, matching the kernels notion of a task struct.
64 * Each "pid" entry, has a list of "comm"s.
65 * this is because we want to track different programs different, while
66 * exec will reuse the original pid (by design).
67 * Each comm has a list of samples that will be used to draw
68 * final graph.
69 */
70
71struct per_pid {
72 struct per_pid *next;
73
74 int pid;
75 int ppid;
76
77 u64 start_time;
78 u64 end_time;
79 u64 total_time;
80 int display;
81
82 struct per_pidcomm *all;
83 struct per_pidcomm *current;
84
85 int painted;
86};
87
88
89struct per_pidcomm {
90 struct per_pidcomm *next;
91
92 u64 start_time;
93 u64 end_time;
94 u64 total_time;
95
96 int Y;
97 int display;
98
99 long state;
100 u64 state_since;
101
102 char *comm;
103
104 struct cpu_sample *samples;
105};
106
107struct sample_wrapper {
108 struct sample_wrapper *next;
109
110 u64 timestamp;
111 unsigned char data[0];
112};
113
114#define TYPE_NONE 0
115#define TYPE_RUNNING 1
116#define TYPE_WAITING 2
117#define TYPE_BLOCKED 3
118
119struct cpu_sample {
120 struct cpu_sample *next;
121
122 u64 start_time;
123 u64 end_time;
124 int type;
125 int cpu;
126};
127
128static struct per_pid *all_data;
129
130#define CSTATE 1
131#define PSTATE 2
132
133struct power_event {
134 struct power_event *next;
135 int type;
136 int state;
137 u64 start_time;
138 u64 end_time;
139 int cpu;
140};
141
142struct wake_event {
143 struct wake_event *next;
144 int waker;
145 int wakee;
146 u64 time;
147};
148
149static struct power_event *power_events;
150static struct wake_event *wake_events;
151
152struct sample_wrapper *all_samples;
153
154static struct per_pid *find_create_pid(int pid)
155{
156 struct per_pid *cursor = all_data;
157
158 while (cursor) {
159 if (cursor->pid == pid)
160 return cursor;
161 cursor = cursor->next;
162 }
163 cursor = malloc(sizeof(struct per_pid));
164 assert(cursor != NULL);
165 memset(cursor, 0, sizeof(struct per_pid));
166 cursor->pid = pid;
167 cursor->next = all_data;
168 all_data = cursor;
169 return cursor;
170}
171
172static void pid_set_comm(int pid, char *comm)
173{
174 struct per_pid *p;
175 struct per_pidcomm *c;
176 p = find_create_pid(pid);
177 c = p->all;
178 while (c) {
179 if (c->comm && strcmp(c->comm, comm) == 0) {
180 p->current = c;
181 return;
182 }
183 if (!c->comm) {
184 c->comm = strdup(comm);
185 p->current = c;
186 return;
187 }
188 c = c->next;
189 }
190 c = malloc(sizeof(struct per_pidcomm));
191 assert(c != NULL);
192 memset(c, 0, sizeof(struct per_pidcomm));
193 c->comm = strdup(comm);
194 p->current = c;
195 c->next = p->all;
196 p->all = c;
197}
198
199static void pid_fork(int pid, int ppid, u64 timestamp)
200{
201 struct per_pid *p, *pp;
202 p = find_create_pid(pid);
203 pp = find_create_pid(ppid);
204 p->ppid = ppid;
205 if (pp->current && pp->current->comm && !p->current)
206 pid_set_comm(pid, pp->current->comm);
207
208 p->start_time = timestamp;
209 if (p->current) {
210 p->current->start_time = timestamp;
211 p->current->state_since = timestamp;
212 }
213}
214
215static void pid_exit(int pid, u64 timestamp)
216{
217 struct per_pid *p;
218 p = find_create_pid(pid);
219 p->end_time = timestamp;
220 if (p->current)
221 p->current->end_time = timestamp;
222}
223
224static void
225pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
226{
227 struct per_pid *p;
228 struct per_pidcomm *c;
229 struct cpu_sample *sample;
230
231 p = find_create_pid(pid);
232 c = p->current;
233 if (!c) {
234 c = malloc(sizeof(struct per_pidcomm));
235 assert(c != NULL);
236 memset(c, 0, sizeof(struct per_pidcomm));
237 p->current = c;
238 c->next = p->all;
239 p->all = c;
240 }
241
242 sample = malloc(sizeof(struct cpu_sample));
243 assert(sample != NULL);
244 memset(sample, 0, sizeof(struct cpu_sample));
245 sample->start_time = start;
246 sample->end_time = end;
247 sample->type = type;
248 sample->next = c->samples;
249 sample->cpu = cpu;
250 c->samples = sample;
251
252 if (sample->type == TYPE_RUNNING && end > start && start > 0) {
253 c->total_time += (end-start);
254 p->total_time += (end-start);
255 }
256
257 if (c->start_time == 0 || c->start_time > start)
258 c->start_time = start;
259 if (p->start_time == 0 || p->start_time > start)
260 p->start_time = start;
261
262 if (cpu > numcpus)
263 numcpus = cpu;
264}
265
266#define MAX_CPUS 4096
267
268static u64 cpus_cstate_start_times[MAX_CPUS];
269static int cpus_cstate_state[MAX_CPUS];
270static u64 cpus_pstate_start_times[MAX_CPUS];
271static u64 cpus_pstate_state[MAX_CPUS];
272
273static int
274process_comm_event(event_t *event)
275{
276 pid_set_comm(event->comm.pid, event->comm.comm);
277 return 0;
278}
279static int
280process_fork_event(event_t *event)
281{
282 pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
283 return 0;
284}
285
286static int
287process_exit_event(event_t *event)
288{
289 pid_exit(event->fork.pid, event->fork.time);
290 return 0;
291}
292
293struct trace_entry {
294 u32 size;
295 unsigned short type;
296 unsigned char flags;
297 unsigned char preempt_count;
298 int pid;
299 int tgid;
300};
301
302struct power_entry {
303 struct trace_entry te;
304 s64 type;
305 s64 value;
306};
307
308#define TASK_COMM_LEN 16
309struct wakeup_entry {
310 struct trace_entry te;
311 char comm[TASK_COMM_LEN];
312 int pid;
313 int prio;
314 int success;
315};
316
317/*
318 * trace_flag_type is an enumeration that holds different
319 * states when a trace occurs. These are:
320 * IRQS_OFF - interrupts were disabled
321 * IRQS_NOSUPPORT - arch does not support irqs_disabled_flags
322 * NEED_RESCED - reschedule is requested
323 * HARDIRQ - inside an interrupt handler
324 * SOFTIRQ - inside a softirq handler
325 */
326enum trace_flag_type {
327 TRACE_FLAG_IRQS_OFF = 0x01,
328 TRACE_FLAG_IRQS_NOSUPPORT = 0x02,
329 TRACE_FLAG_NEED_RESCHED = 0x04,
330 TRACE_FLAG_HARDIRQ = 0x08,
331 TRACE_FLAG_SOFTIRQ = 0x10,
332};
333
334
335
336struct sched_switch {
337 struct trace_entry te;
338 char prev_comm[TASK_COMM_LEN];
339 int prev_pid;
340 int prev_prio;
341 long prev_state; /* Arjan weeps. */
342 char next_comm[TASK_COMM_LEN];
343 int next_pid;
344 int next_prio;
345};
346
347static void c_state_start(int cpu, u64 timestamp, int state)
348{
349 cpus_cstate_start_times[cpu] = timestamp;
350 cpus_cstate_state[cpu] = state;
351}
352
353static void c_state_end(int cpu, u64 timestamp)
354{
355 struct power_event *pwr;
356 pwr = malloc(sizeof(struct power_event));
357 if (!pwr)
358 return;
359 memset(pwr, 0, sizeof(struct power_event));
360
361 pwr->state = cpus_cstate_state[cpu];
362 pwr->start_time = cpus_cstate_start_times[cpu];
363 pwr->end_time = timestamp;
364 pwr->cpu = cpu;
365 pwr->type = CSTATE;
366 pwr->next = power_events;
367
368 power_events = pwr;
369}
370
371static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
372{
373 struct power_event *pwr;
374 pwr = malloc(sizeof(struct power_event));
375
376 if (new_freq > 8000000) /* detect invalid data */
377 return;
378
379 if (!pwr)
380 return;
381 memset(pwr, 0, sizeof(struct power_event));
382
383 pwr->state = cpus_pstate_state[cpu];
384 pwr->start_time = cpus_pstate_start_times[cpu];
385 pwr->end_time = timestamp;
386 pwr->cpu = cpu;
387 pwr->type = PSTATE;
388 pwr->next = power_events;
389
390 if (!pwr->start_time)
391 pwr->start_time = first_time;
392
393 power_events = pwr;
394
395 cpus_pstate_state[cpu] = new_freq;
396 cpus_pstate_start_times[cpu] = timestamp;
397
398 if ((u64)new_freq > max_freq)
399 max_freq = new_freq;
400
401 if (new_freq < min_freq || min_freq == 0)
402 min_freq = new_freq;
403
404 if (new_freq == max_freq - 1000)
405 turbo_frequency = max_freq;
406}
407
408static void
409sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
410{
411 struct wake_event *we;
412 struct per_pid *p;
413 struct wakeup_entry *wake = (void *)te;
414
415 we = malloc(sizeof(struct wake_event));
416 if (!we)
417 return;
418
419 memset(we, 0, sizeof(struct wake_event));
420 we->time = timestamp;
421 we->waker = pid;
422
423 if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
424 we->waker = -1;
425
426 we->wakee = wake->pid;
427 we->next = wake_events;
428 wake_events = we;
429 p = find_create_pid(we->wakee);
430
431 if (p && p->current && p->current->state == TYPE_NONE) {
432 p->current->state_since = timestamp;
433 p->current->state = TYPE_WAITING;
434 }
435 if (p && p->current && p->current->state == TYPE_BLOCKED) {
436 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
437 p->current->state_since = timestamp;
438 p->current->state = TYPE_WAITING;
439 }
440}
441
442static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
443{
444 struct per_pid *p = NULL, *prev_p;
445 struct sched_switch *sw = (void *)te;
446
447
448 prev_p = find_create_pid(sw->prev_pid);
449
450 p = find_create_pid(sw->next_pid);
451
452 if (prev_p->current && prev_p->current->state != TYPE_NONE)
453 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
454 if (p && p->current) {
455 if (p->current->state != TYPE_NONE)
456 pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
457
458 p->current->state_since = timestamp;
459 p->current->state = TYPE_RUNNING;
460 }
461
462 if (prev_p->current) {
463 prev_p->current->state = TYPE_NONE;
464 prev_p->current->state_since = timestamp;
465 if (sw->prev_state & 2)
466 prev_p->current->state = TYPE_BLOCKED;
467 if (sw->prev_state == 0)
468 prev_p->current->state = TYPE_WAITING;
469 }
470}
471
472
473static int
474process_sample_event(event_t *event)
475{
476 int cursor = 0;
477 u64 addr = 0;
478 u64 stamp = 0;
479 u32 cpu = 0;
480 u32 pid = 0;
481 struct trace_entry *te;
482
483 if (sample_type & PERF_SAMPLE_IP)
484 cursor++;
485
486 if (sample_type & PERF_SAMPLE_TID) {
487 pid = event->sample.array[cursor]>>32;
488 cursor++;
489 }
490 if (sample_type & PERF_SAMPLE_TIME) {
491 stamp = event->sample.array[cursor++];
492
493 if (!first_time || first_time > stamp)
494 first_time = stamp;
495 if (last_time < stamp)
496 last_time = stamp;
497
498 }
499 if (sample_type & PERF_SAMPLE_ADDR)
500 addr = event->sample.array[cursor++];
501 if (sample_type & PERF_SAMPLE_ID)
502 cursor++;
503 if (sample_type & PERF_SAMPLE_STREAM_ID)
504 cursor++;
505 if (sample_type & PERF_SAMPLE_CPU)
506 cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
507 if (sample_type & PERF_SAMPLE_PERIOD)
508 cursor++;
509
510 te = (void *)&event->sample.array[cursor];
511
512 if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
513 char *event_str;
514 struct power_entry *pe;
515
516 pe = (void *)te;
517
518 event_str = perf_header__find_event(te->type);
519
520 if (!event_str)
521 return 0;
522
523 if (strcmp(event_str, "power:power_start") == 0)
524 c_state_start(cpu, stamp, pe->value);
525
526 if (strcmp(event_str, "power:power_end") == 0)
527 c_state_end(cpu, stamp);
528
529 if (strcmp(event_str, "power:power_frequency") == 0)
530 p_state_change(cpu, stamp, pe->value);
531
532 if (strcmp(event_str, "sched:sched_wakeup") == 0)
533 sched_wakeup(cpu, stamp, pid, te);
534
535 if (strcmp(event_str, "sched:sched_switch") == 0)
536 sched_switch(cpu, stamp, te);
537 }
538 return 0;
539}
540
541/*
542 * After the last sample we need to wrap up the current C/P state
543 * and close out each CPU for these.
544 */
545static void end_sample_processing(void)
546{
547 u64 cpu;
548 struct power_event *pwr;
549
550 for (cpu = 0; cpu < numcpus; cpu++) {
551 pwr = malloc(sizeof(struct power_event));
552 if (!pwr)
553 return;
554 memset(pwr, 0, sizeof(struct power_event));
555
556 /* C state */
557#if 0
558 pwr->state = cpus_cstate_state[cpu];
559 pwr->start_time = cpus_cstate_start_times[cpu];
560 pwr->end_time = last_time;
561 pwr->cpu = cpu;
562 pwr->type = CSTATE;
563 pwr->next = power_events;
564
565 power_events = pwr;
566#endif
567 /* P state */
568
569 pwr = malloc(sizeof(struct power_event));
570 if (!pwr)
571 return;
572 memset(pwr, 0, sizeof(struct power_event));
573
574 pwr->state = cpus_pstate_state[cpu];
575 pwr->start_time = cpus_pstate_start_times[cpu];
576 pwr->end_time = last_time;
577 pwr->cpu = cpu;
578 pwr->type = PSTATE;
579 pwr->next = power_events;
580
581 if (!pwr->start_time)
582 pwr->start_time = first_time;
583 if (!pwr->state)
584 pwr->state = min_freq;
585 power_events = pwr;
586 }
587}
588
589static u64 sample_time(event_t *event)
590{
591 int cursor;
592
593 cursor = 0;
594 if (sample_type & PERF_SAMPLE_IP)
595 cursor++;
596 if (sample_type & PERF_SAMPLE_TID)
597 cursor++;
598 if (sample_type & PERF_SAMPLE_TIME)
599 return event->sample.array[cursor];
600 return 0;
601}
602
603
604/*
605 * We first queue all events, sorted backwards by insertion.
606 * The order will get flipped later.
607 */
608static int
609queue_sample_event(event_t *event)
610{
611 struct sample_wrapper *copy, *prev;
612 int size;
613
614 size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
615
616 copy = malloc(size);
617 if (!copy)
618 return 1;
619
620 memset(copy, 0, size);
621
622 copy->next = NULL;
623 copy->timestamp = sample_time(event);
624
625 memcpy(&copy->data, event, event->sample.header.size);
626
627 /* insert in the right place in the list */
628
629 if (!all_samples) {
630 /* first sample ever */
631 all_samples = copy;
632 return 0;
633 }
634
635 if (all_samples->timestamp < copy->timestamp) {
636 /* insert at the head of the list */
637 copy->next = all_samples;
638 all_samples = copy;
639 return 0;
640 }
641
642 prev = all_samples;
643 while (prev->next) {
644 if (prev->next->timestamp < copy->timestamp) {
645 copy->next = prev->next;
646 prev->next = copy;
647 return 0;
648 }
649 prev = prev->next;
650 }
651 /* insert at the end of the list */
652 prev->next = copy;
653
654 return 0;
655}
656
657static void sort_queued_samples(void)
658{
659 struct sample_wrapper *cursor, *next;
660
661 cursor = all_samples;
662 all_samples = NULL;
663
664 while (cursor) {
665 next = cursor->next;
666 cursor->next = all_samples;
667 all_samples = cursor;
668 cursor = next;
669 }
670}
671
672/*
673 * Sort the pid datastructure
674 */
675static void sort_pids(void)
676{
677 struct per_pid *new_list, *p, *cursor, *prev;
678 /* sort by ppid first, then by pid, lowest to highest */
679
680 new_list = NULL;
681
682 while (all_data) {
683 p = all_data;
684 all_data = p->next;
685 p->next = NULL;
686
687 if (new_list == NULL) {
688 new_list = p;
689 p->next = NULL;
690 continue;
691 }
692 prev = NULL;
693 cursor = new_list;
694 while (cursor) {
695 if (cursor->ppid > p->ppid ||
696 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
697 /* must insert before */
698 if (prev) {
699 p->next = prev->next;
700 prev->next = p;
701 cursor = NULL;
702 continue;
703 } else {
704 p->next = new_list;
705 new_list = p;
706 cursor = NULL;
707 continue;
708 }
709 }
710
711 prev = cursor;
712 cursor = cursor->next;
713 if (!cursor)
714 prev->next = p;
715 }
716 }
717 all_data = new_list;
718}
719
720
721static void draw_c_p_states(void)
722{
723 struct power_event *pwr;
724 pwr = power_events;
725
726 /*
727 * two pass drawing so that the P state bars are on top of the C state blocks
728 */
729 while (pwr) {
730 if (pwr->type == CSTATE)
731 svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
732 pwr = pwr->next;
733 }
734
735 pwr = power_events;
736 while (pwr) {
737 if (pwr->type == PSTATE) {
738 if (!pwr->state)
739 pwr->state = min_freq;
740 svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
741 }
742 pwr = pwr->next;
743 }
744}
745
746static void draw_wakeups(void)
747{
748 struct wake_event *we;
749 struct per_pid *p;
750 struct per_pidcomm *c;
751
752 we = wake_events;
753 while (we) {
754 int from = 0, to = 0;
755
756 /* locate the column of the waker and wakee */
757 p = all_data;
758 while (p) {
759 if (p->pid == we->waker || p->pid == we->wakee) {
760 c = p->all;
761 while (c) {
762 if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
763 if (p->pid == we->waker)
764 from = c->Y;
765 if (p->pid == we->wakee)
766 to = c->Y;
767 }
768 c = c->next;
769 }
770 }
771 p = p->next;
772 }
773
774 if (we->waker == -1)
775 svg_interrupt(we->time, to);
776 else if (from && to && abs(from - to) == 1)
777 svg_wakeline(we->time, from, to);
778 else
779 svg_partial_wakeline(we->time, from, to);
780 we = we->next;
781 }
782}
783
784static void draw_cpu_usage(void)
785{
786 struct per_pid *p;
787 struct per_pidcomm *c;
788 struct cpu_sample *sample;
789 p = all_data;
790 while (p) {
791 c = p->all;
792 while (c) {
793 sample = c->samples;
794 while (sample) {
795 if (sample->type == TYPE_RUNNING)
796 svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
797
798 sample = sample->next;
799 }
800 c = c->next;
801 }
802 p = p->next;
803 }
804}
805
806static void draw_process_bars(void)
807{
808 struct per_pid *p;
809 struct per_pidcomm *c;
810 struct cpu_sample *sample;
811 int Y = 0;
812
813 Y = 2 * numcpus + 2;
814
815 p = all_data;
816 while (p) {
817 c = p->all;
818 while (c) {
819 if (!c->display) {
820 c->Y = 0;
821 c = c->next;
822 continue;
823 }
824
825 svg_box(Y, p->start_time, p->end_time, "process");
826 sample = c->samples;
827 while (sample) {
828 if (sample->type == TYPE_RUNNING)
829 svg_sample(Y, sample->cpu, sample->start_time, sample->end_time, "sample");
830 if (sample->type == TYPE_BLOCKED)
831 svg_box(Y, sample->start_time, sample->end_time, "blocked");
832 if (sample->type == TYPE_WAITING)
833 svg_box(Y, sample->start_time, sample->end_time, "waiting");
834 sample = sample->next;
835 }
836
837 if (c->comm) {
838 char comm[256];
839 if (c->total_time > 5000000000) /* 5 seconds */
840 sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
841 else
842 sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
843
844 svg_text(Y, c->start_time, comm);
845 }
846 c->Y = Y;
847 Y++;
848 c = c->next;
849 }
850 p = p->next;
851 }
852}
853
854static int determine_display_tasks(u64 threshold)
855{
856 struct per_pid *p;
857 struct per_pidcomm *c;
858 int count = 0;
859
860 p = all_data;
861 while (p) {
862 p->display = 0;
863 if (p->start_time == 1)
864 p->start_time = first_time;
865
866 /* no exit marker, task kept running to the end */
867 if (p->end_time == 0)
868 p->end_time = last_time;
869 if (p->total_time >= threshold)
870 p->display = 1;
871
872 c = p->all;
873
874 while (c) {
875 c->display = 0;
876
877 if (c->start_time == 1)
878 c->start_time = first_time;
879
880 if (c->total_time >= threshold) {
881 c->display = 1;
882 count++;
883 }
884
885 if (c->end_time == 0)
886 c->end_time = last_time;
887
888 c = c->next;
889 }
890 p = p->next;
891 }
892 return count;
893}
894
895
896
897#define TIME_THRESH 10000000
898
899static void write_svg_file(const char *filename)
900{
901 u64 i;
902 int count;
903
904 numcpus++;
905
906
907 count = determine_display_tasks(TIME_THRESH);
908
909 /* We'd like to show at least 15 tasks; be less picky if we have fewer */
910 if (count < 15)
911 count = determine_display_tasks(TIME_THRESH / 10);
912
913 open_svg(filename, numcpus, count);
914
915 svg_time_grid(first_time, last_time);
916 svg_legenda();
917
918 for (i = 0; i < numcpus; i++)
919 svg_cpu_box(i, max_freq, turbo_frequency);
920
921 draw_cpu_usage();
922 draw_process_bars();
923 draw_c_p_states();
924 draw_wakeups();
925
926 svg_close();
927}
928
929static int
930process_event(event_t *event)
931{
932
933 switch (event->header.type) {
934
935 case PERF_EVENT_COMM:
936 return process_comm_event(event);
937 case PERF_EVENT_FORK:
938 return process_fork_event(event);
939 case PERF_EVENT_EXIT:
940 return process_exit_event(event);
941 case PERF_EVENT_SAMPLE:
942 return queue_sample_event(event);
943
944 /*
945 * We dont process them right now but they are fine:
946 */
947 case PERF_EVENT_MMAP:
948 case PERF_EVENT_THROTTLE:
949 case PERF_EVENT_UNTHROTTLE:
950 return 0;
951
952 default:
953 return -1;
954 }
955
956 return 0;
957}
958
959static void process_samples(void)
960{
961 struct sample_wrapper *cursor;
962 event_t *event;
963
964 sort_queued_samples();
965
966 cursor = all_samples;
967 while (cursor) {
968 event = (void *)&cursor->data;
969 cursor = cursor->next;
970 process_sample_event(event);
971 }
972}
973
974
975static int __cmd_timechart(void)
976{
977 int ret, rc = EXIT_FAILURE;
978 unsigned long offset = 0;
979 unsigned long head, shift;
980 struct stat statbuf;
981 event_t *event;
982 uint32_t size;
983 char *buf;
984 int input;
985
986 input = open(input_name, O_RDONLY);
987 if (input < 0) {
988 fprintf(stderr, " failed to open file: %s", input_name);
989 if (!strcmp(input_name, "perf.data"))
990 fprintf(stderr, " (try 'perf record' first)");
991 fprintf(stderr, "\n");
992 exit(-1);
993 }
994
995 ret = fstat(input, &statbuf);
996 if (ret < 0) {
997 perror("failed to stat file");
998 exit(-1);
999 }
1000
1001 if (!statbuf.st_size) {
1002 fprintf(stderr, "zero-sized file, nothing to do!\n");
1003 exit(0);
1004 }
1005
1006 header = perf_header__read(input);
1007 head = header->data_offset;
1008
1009 sample_type = perf_header__sample_type(header);
1010
1011 shift = page_size * (head / page_size);
1012 offset += shift;
1013 head -= shift;
1014
1015remap:
1016 buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1017 MAP_SHARED, input, offset);
1018 if (buf == MAP_FAILED) {
1019 perror("failed to mmap file");
1020 exit(-1);
1021 }
1022
1023more:
1024 event = (event_t *)(buf + head);
1025
1026 size = event->header.size;
1027 if (!size)
1028 size = 8;
1029
1030 if (head + event->header.size >= page_size * mmap_window) {
1031 int ret2;
1032
1033 shift = page_size * (head / page_size);
1034
1035 ret2 = munmap(buf, page_size * mmap_window);
1036 assert(ret2 == 0);
1037
1038 offset += shift;
1039 head -= shift;
1040 goto remap;
1041 }
1042
1043 size = event->header.size;
1044
1045 if (!size || process_event(event) < 0) {
1046
1047 printf("%p [%p]: skipping unknown header type: %d\n",
1048 (void *)(offset + head),
1049 (void *)(long)(event->header.size),
1050 event->header.type);
1051
1052 /*
1053 * assume we lost track of the stream, check alignment, and
1054 * increment a single u64 in the hope to catch on again 'soon'.
1055 */
1056
1057 if (unlikely(head & 7))
1058 head &= ~7ULL;
1059
1060 size = 8;
1061 }
1062
1063 head += size;
1064
1065 if (offset + head >= header->data_offset + header->data_size)
1066 goto done;
1067
1068 if (offset + head < (unsigned long)statbuf.st_size)
1069 goto more;
1070
1071done:
1072 rc = EXIT_SUCCESS;
1073 close(input);
1074
1075
1076 process_samples();
1077
1078 end_sample_processing();
1079
1080 sort_pids();
1081
1082 write_svg_file(output_name);
1083
1084 printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
1085
1086 return rc;
1087}
1088
3c09eebd
AV
1089static const char * const timechart_usage[] = {
1090 "perf timechart [<options>] {record}",
10274989
AV
1091 NULL
1092};
1093
3c09eebd
AV
1094static const char *record_args[] = {
1095 "record",
1096 "-a",
1097 "-R",
1098 "-M",
1099 "-f",
1100 "-c", "1",
1101 "-e", "power:power_start",
1102 "-e", "power:power_end",
1103 "-e", "power:power_frequency",
1104 "-e", "sched:sched_wakeup",
1105 "-e", "sched:sched_switch",
1106};
1107
1108static int __cmd_record(int argc, const char **argv)
1109{
1110 unsigned int rec_argc, i, j;
1111 const char **rec_argv;
1112
1113 rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1114 rec_argv = calloc(rec_argc + 1, sizeof(char *));
1115
1116 for (i = 0; i < ARRAY_SIZE(record_args); i++)
1117 rec_argv[i] = strdup(record_args[i]);
1118
1119 for (j = 1; j < (unsigned int)argc; j++, i++)
1120 rec_argv[i] = argv[j];
1121
1122 return cmd_record(i, rec_argv, NULL);
1123}
1124
10274989
AV
1125static const struct option options[] = {
1126 OPT_STRING('i', "input", &input_name, "file",
1127 "input file name"),
1128 OPT_STRING('o', "output", &output_name, "file",
1129 "output file name"),
1130 OPT_END()
1131};
1132
1133
1134int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1135{
1136 symbol__init();
1137
1138 page_size = getpagesize();
1139
3c09eebd
AV
1140 argc = parse_options(argc, argv, options, timechart_usage,
1141 PARSE_OPT_STOP_AT_NON_OPTION);
10274989 1142
3c09eebd
AV
1143 if (argc && !strncmp(argv[0], "rec", 3))
1144 return __cmd_record(argc, argv);
1145 else if (argc)
1146 usage_with_options(timechart_usage, options);
10274989
AV
1147
1148 setup_pager();
1149
1150 return __cmd_timechart();
1151}