]> bbs.cooldavid.org Git - net-next-2.6.git/blame - sound/soc/soc-core.c
[ALSA] soc - 0.13 ASoC headers
[net-next-2.6.git] / sound / soc / soc-core.c
CommitLineData
db2a4165
FM
1/*
2 * soc-core.c -- ALSA SoC Audio Layer
3 *
4 * Copyright 2005 Wolfson Microelectronics PLC.
0664d888
LG
5 * Copyright 2005 Openedhand Ltd.
6 *
db2a4165
FM
7 * Author: Liam Girdwood
8 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
0664d888
LG
9 * with code, comments and ideas from :-
10 * Richard Purdie <richard@openedhand.com>
db2a4165
FM
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 * Revision history
18 * 12th Aug 2005 Initial version.
19 * 25th Oct 2005 Working Codec, Interface and Platform registration.
20 *
21 * TODO:
22 * o Add hw rules to enforce rates, etc.
23 * o More testing with other codecs/machines.
24 * o Add more codecs and platforms to ensure good API coverage.
25 * o Support TDM on PCM and I2S
26 */
27
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/init.h>
31#include <linux/delay.h>
32#include <linux/pm.h>
33#include <linux/bitops.h>
34#include <linux/platform_device.h>
35#include <sound/driver.h>
36#include <sound/core.h>
37#include <sound/pcm.h>
38#include <sound/pcm_params.h>
39#include <sound/soc.h>
40#include <sound/soc-dapm.h>
41#include <sound/initval.h>
42
43/* debug */
44#define SOC_DEBUG 0
45#if SOC_DEBUG
46#define dbg(format, arg...) printk(format, ## arg)
47#else
48#define dbg(format, arg...)
49#endif
50/* debug DAI capabilities matching */
51#define SOC_DEBUG_DAI 0
52#if SOC_DEBUG_DAI
53#define dbgc(format, arg...) printk(format, ## arg)
54#else
55#define dbgc(format, arg...)
56#endif
57
a71a468a
LG
58#define CODEC_CPU(codec, cpu) ((codec << 4) | cpu)
59
db2a4165
FM
60static DEFINE_MUTEX(pcm_mutex);
61static DEFINE_MUTEX(io_mutex);
db2a4165
FM
62static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
63
64/* supported sample rates */
65/* ATTENTION: these values depend on the definition in pcm.h! */
66static const unsigned int rates[] = {
67 5512, 8000, 11025, 16000, 22050, 32000, 44100,
68 48000, 64000, 88200, 96000, 176400, 192000
69};
70
71/*
72 * This is a timeout to do a DAPM powerdown after a stream is closed().
73 * It can be used to eliminate pops between different playback streams, e.g.
74 * between two audio tracks.
75 */
76static int pmdown_time = 5000;
77module_param(pmdown_time, int, 0);
78MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
79
965ac42c
LG
80/*
81 * This function forces any delayed work to be queued and run.
82 */
83static int run_delayed_work(struct delayed_work *dwork)
84{
85 int ret;
86
87 /* cancel any work waiting to be queued. */
88 ret = cancel_delayed_work(dwork);
89
90 /* if there was any work waiting then we run it now and
91 * wait for it's completion */
92 if (ret) {
93 schedule_delayed_work(dwork, 0);
94 flush_scheduled_work();
95 }
96 return ret;
97}
98
db2a4165
FM
99#ifdef CONFIG_SND_SOC_AC97_BUS
100/* unregister ac97 codec */
101static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
102{
103 if (codec->ac97->dev.bus)
104 device_unregister(&codec->ac97->dev);
105 return 0;
106}
107
108/* stop no dev release warning */
109static void soc_ac97_device_release(struct device *dev){}
110
111/* register ac97 codec to bus */
112static int soc_ac97_dev_register(struct snd_soc_codec *codec)
113{
114 int err;
115
116 codec->ac97->dev.bus = &ac97_bus_type;
117 codec->ac97->dev.parent = NULL;
118 codec->ac97->dev.release = soc_ac97_device_release;
119
120 snprintf(codec->ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
121 codec->card->number, 0, codec->name);
122 err = device_register(&codec->ac97->dev);
123 if (err < 0) {
124 snd_printk(KERN_ERR "Can't register ac97 bus\n");
125 codec->ac97->dev.bus = NULL;
126 return err;
127 }
128 return 0;
129}
130#endif
131
132static inline const char* get_dai_name(int type)
133{
134 switch(type) {
135 case SND_SOC_DAI_AC97:
136 return "AC97";
137 case SND_SOC_DAI_I2S:
138 return "I2S";
139 case SND_SOC_DAI_PCM:
140 return "PCM";
141 }
142 return NULL;
143}
144
145/* get rate format from rate */
146static inline int soc_get_rate_format(int rate)
147{
148 int i;
149
150 for (i = 0; i < ARRAY_SIZE(rates); i++) {
151 if (rates[i] == rate)
152 return 1 << i;
153 }
154 return 0;
155}
156
157/* gets the audio system mclk/sysclk for the given parameters */
158static unsigned inline int soc_get_mclk(struct snd_soc_pcm_runtime *rtd,
159 struct snd_soc_clock_info *info)
160{
161 struct snd_soc_device *socdev = rtd->socdev;
162 struct snd_soc_machine *machine = socdev->machine;
163 int i;
164
165 /* find the matching machine config and get it's mclk for the given
166 * sample rate and hardware format */
167 for(i = 0; i < machine->num_links; i++) {
168 if (machine->dai_link[i].cpu_dai == rtd->cpu_dai &&
169 machine->dai_link[i].config_sysclk)
170 return machine->dai_link[i].config_sysclk(rtd, info);
171 }
172 return 0;
173}
174
175/* changes a bitclk multiplier mask to a divider mask */
a71a468a 176static u64 soc_bfs_rcw_to_div(u64 bfs, int rate, unsigned int mclk,
db2a4165
FM
177 unsigned int pcmfmt, unsigned int chn)
178{
179 int i, j;
a71a468a 180 u64 bfs_ = 0;
db2a4165
FM
181 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
182
183 if (size <= 0)
184 return 0;
185
186 /* the minimum bit clock that has enough bandwidth */
187 min = size * rate * chn;
a71a468a 188 dbgc("rcw --> div min bclk %d with mclk %d\n", min, mclk);
db2a4165 189
a71a468a 190 for (i = 0; i < 64; i++) {
db2a4165 191 if ((bfs >> i) & 0x1) {
a71a468a
LG
192 j = min * (i + 1);
193 bfs_ |= SND_SOC_FSBD(mclk/j);
194 dbgc("rcw --> div support mult %d\n",
195 SND_SOC_FSBD_REAL(1<<i));
db2a4165
FM
196 }
197 }
198
199 return bfs_;
200}
201
202/* changes a bitclk divider mask to a multiplier mask */
a71a468a 203static u64 soc_bfs_div_to_rcw(u64 bfs, int rate, unsigned int mclk,
db2a4165
FM
204 unsigned int pcmfmt, unsigned int chn)
205{
206 int i, j;
a71a468a 207 u64 bfs_ = 0;
db2a4165
FM
208
209 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
210
211 if (size <= 0)
212 return 0;
213
214 /* the minimum bit clock that has enough bandwidth */
215 min = size * rate * chn;
a71a468a 216 dbgc("div to rcw min bclk %d with mclk %d\n", min, mclk);
db2a4165 217
a71a468a 218 for (i = 0; i < 64; i++) {
db2a4165 219 if ((bfs >> i) & 0x1) {
a71a468a 220 j = mclk / (i + 1);
db2a4165 221 if (j >= min) {
a71a468a
LG
222 bfs_ |= SND_SOC_FSBW(j/min);
223 dbgc("div --> rcw support div %d\n",
224 SND_SOC_FSBW_REAL(1<<i));
db2a4165
FM
225 }
226 }
227 }
228
229 return bfs_;
230}
231
a71a468a
LG
232/* changes a constant bitclk to a multiplier mask */
233static u64 soc_bfs_rate_to_rcw(u64 bfs, int rate, unsigned int mclk,
234 unsigned int pcmfmt, unsigned int chn)
235{
236 unsigned int bfs_ = rate * bfs;
237 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
238
239 if (size <= 0)
240 return 0;
241
242 /* the minimum bit clock that has enough bandwidth */
243 min = size * rate * chn;
244 dbgc("rate --> rcw min bclk %d with mclk %d\n", min, mclk);
245
246 if (bfs_ < min)
247 return 0;
248 else {
249 bfs_ = SND_SOC_FSBW(bfs_/min);
250 dbgc("rate --> rcw support div %d\n", SND_SOC_FSBW_REAL(bfs_));
251 return bfs_;
252 }
253}
254
255/* changes a bitclk multiplier mask to a divider mask */
256static u64 soc_bfs_rate_to_div(u64 bfs, int rate, unsigned int mclk,
257 unsigned int pcmfmt, unsigned int chn)
258{
259 unsigned int bfs_ = rate * bfs;
260 int size = snd_pcm_format_physical_width(pcmfmt), min = 0;
261
262 if (size <= 0)
263 return 0;
264
265 /* the minimum bit clock that has enough bandwidth */
266 min = size * rate * chn;
267 dbgc("rate --> div min bclk %d with mclk %d\n", min, mclk);
268
269 if (bfs_ < min)
270 return 0;
271 else {
272 bfs_ = SND_SOC_FSBW(mclk/bfs_);
273 dbgc("rate --> div support div %d\n", SND_SOC_FSBD_REAL(bfs_));
274 return bfs_;
275 }
276}
277
db2a4165
FM
278/* Matches codec DAI and SoC CPU DAI hardware parameters */
279static int soc_hw_match_params(struct snd_pcm_substream *substream,
280 struct snd_pcm_hw_params *params)
281{
282 struct snd_soc_pcm_runtime *rtd = substream->private_data;
283 struct snd_soc_dai_mode *codec_dai_mode = NULL;
284 struct snd_soc_dai_mode *cpu_dai_mode = NULL;
285 struct snd_soc_clock_info clk_info;
a71a468a 286 unsigned int fs, mclk, rate = params_rate(params),
db2a4165
FM
287 chn, j, k, cpu_bclk, codec_bclk, pcmrate;
288 u16 fmt = 0;
a71a468a 289 u64 codec_bfs, cpu_bfs;
db2a4165
FM
290
291 dbg("asoc: match version %s\n", SND_SOC_VERSION);
292 clk_info.rate = rate;
293 pcmrate = soc_get_rate_format(rate);
294
295 /* try and find a match from the codec and cpu DAI capabilities */
296 for (j = 0; j < rtd->codec_dai->caps.num_modes; j++) {
297 for (k = 0; k < rtd->cpu_dai->caps.num_modes; k++) {
298 codec_dai_mode = &rtd->codec_dai->caps.mode[j];
299 cpu_dai_mode = &rtd->cpu_dai->caps.mode[k];
300
301 if (!(codec_dai_mode->pcmrate & cpu_dai_mode->pcmrate &
302 pcmrate)) {
303 dbgc("asoc: DAI[%d:%d] failed to match rate\n", j, k);
304 continue;
305 }
306
307 fmt = codec_dai_mode->fmt & cpu_dai_mode->fmt;
308 if (!(fmt & SND_SOC_DAIFMT_FORMAT_MASK)) {
309 dbgc("asoc: DAI[%d:%d] failed to match format\n", j, k);
310 continue;
311 }
312
313 if (!(fmt & SND_SOC_DAIFMT_CLOCK_MASK)) {
314 dbgc("asoc: DAI[%d:%d] failed to match clock masters\n",
315 j, k);
316 continue;
317 }
318
319 if (!(fmt & SND_SOC_DAIFMT_INV_MASK)) {
320 dbgc("asoc: DAI[%d:%d] failed to match invert\n", j, k);
321 continue;
322 }
323
324 if (!(codec_dai_mode->pcmfmt & cpu_dai_mode->pcmfmt)) {
325 dbgc("asoc: DAI[%d:%d] failed to match pcm format\n", j, k);
326 continue;
327 }
328
329 if (!(codec_dai_mode->pcmdir & cpu_dai_mode->pcmdir)) {
330 dbgc("asoc: DAI[%d:%d] failed to match direction\n", j, k);
331 continue;
332 }
333
334 /* todo - still need to add tdm selection */
335 rtd->cpu_dai->dai_runtime.fmt =
336 rtd->codec_dai->dai_runtime.fmt =
337 1 << (ffs(fmt & SND_SOC_DAIFMT_FORMAT_MASK) -1) |
338 1 << (ffs(fmt & SND_SOC_DAIFMT_CLOCK_MASK) - 1) |
339 1 << (ffs(fmt & SND_SOC_DAIFMT_INV_MASK) - 1);
340 clk_info.bclk_master =
341 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_CLOCK_MASK;
342
343 /* make sure the ratio between rate and master
344 * clock is acceptable*/
345 fs = (cpu_dai_mode->fs & codec_dai_mode->fs);
346 if (fs == 0) {
347 dbgc("asoc: DAI[%d:%d] failed to match FS\n", j, k);
348 continue;
349 }
350 clk_info.fs = rtd->cpu_dai->dai_runtime.fs =
351 rtd->codec_dai->dai_runtime.fs = fs;
352
353 /* calculate audio system clocking using slowest clocks possible*/
354 mclk = soc_get_mclk(rtd, &clk_info);
355 if (mclk == 0) {
356 dbgc("asoc: DAI[%d:%d] configuration not clockable\n", j, k);
357 dbgc("asoc: rate %d fs %d master %x\n", rate, fs,
358 clk_info.bclk_master);
359 continue;
360 }
361
362 /* calculate word size (per channel) and frame size */
363 rtd->codec_dai->dai_runtime.pcmfmt =
364 rtd->cpu_dai->dai_runtime.pcmfmt =
365 1 << params_format(params);
366
367 chn = params_channels(params);
368 /* i2s always has left and right */
369 if (params_channels(params) == 1 &&
370 rtd->cpu_dai->dai_runtime.fmt & (SND_SOC_DAIFMT_I2S |
371 SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_LEFT_J))
372 chn <<= 1;
373
374 /* Calculate bfs - the ratio between bitclock and the sample rate
375 * We must take into consideration the dividers and multipliers
376 * used in the codec and cpu DAI modes. We always choose the
377 * lowest possible clocks to reduce power.
378 */
a71a468a
LG
379 switch (CODEC_CPU(codec_dai_mode->flags, cpu_dai_mode->flags)) {
380 case CODEC_CPU(SND_SOC_DAI_BFS_DIV, SND_SOC_DAI_BFS_DIV):
db2a4165
FM
381 /* cpu & codec bfs dividers */
382 rtd->cpu_dai->dai_runtime.bfs =
383 rtd->codec_dai->dai_runtime.bfs =
384 1 << (fls(codec_dai_mode->bfs & cpu_dai_mode->bfs) - 1);
a71a468a
LG
385 break;
386 case CODEC_CPU(SND_SOC_DAI_BFS_DIV, SND_SOC_DAI_BFS_RCW):
387 /* normalise bfs codec divider & cpu rcw mult */
388 codec_bfs = soc_bfs_div_to_rcw(codec_dai_mode->bfs, rate,
db2a4165
FM
389 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
390 rtd->cpu_dai->dai_runtime.bfs =
391 1 << (ffs(codec_bfs & cpu_dai_mode->bfs) - 1);
a71a468a 392 cpu_bfs = soc_bfs_rcw_to_div(cpu_dai_mode->bfs, rate, mclk,
db2a4165
FM
393 rtd->codec_dai->dai_runtime.pcmfmt, chn);
394 rtd->codec_dai->dai_runtime.bfs =
395 1 << (fls(codec_dai_mode->bfs & cpu_bfs) - 1);
a71a468a
LG
396 break;
397 case CODEC_CPU(SND_SOC_DAI_BFS_RCW, SND_SOC_DAI_BFS_DIV):
398 /* normalise bfs codec rcw mult & cpu divider */
399 codec_bfs = soc_bfs_rcw_to_div(codec_dai_mode->bfs, rate,
db2a4165
FM
400 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
401 rtd->cpu_dai->dai_runtime.bfs =
402 1 << (fls(codec_bfs & cpu_dai_mode->bfs) -1);
a71a468a 403 cpu_bfs = soc_bfs_div_to_rcw(cpu_dai_mode->bfs, rate, mclk,
db2a4165
FM
404 rtd->codec_dai->dai_runtime.pcmfmt, chn);
405 rtd->codec_dai->dai_runtime.bfs =
406 1 << (ffs(codec_dai_mode->bfs & cpu_bfs) -1);
a71a468a
LG
407 break;
408 case CODEC_CPU(SND_SOC_DAI_BFS_RCW, SND_SOC_DAI_BFS_RCW):
409 /* codec & cpu bfs rate rcw multipliers */
db2a4165
FM
410 rtd->cpu_dai->dai_runtime.bfs =
411 rtd->codec_dai->dai_runtime.bfs =
412 1 << (ffs(codec_dai_mode->bfs & cpu_dai_mode->bfs) -1);
a71a468a
LG
413 break;
414 case CODEC_CPU(SND_SOC_DAI_BFS_DIV, SND_SOC_DAI_BFS_RATE):
415 /* normalise cpu bfs rate const multiplier & codec div */
416 cpu_bfs = soc_bfs_rate_to_div(cpu_dai_mode->bfs, rate,
417 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
418 if(codec_dai_mode->bfs & cpu_bfs) {
419 rtd->codec_dai->dai_runtime.bfs = cpu_bfs;
420 rtd->cpu_dai->dai_runtime.bfs = cpu_dai_mode->bfs;
421 } else
422 rtd->cpu_dai->dai_runtime.bfs = 0;
423 break;
424 case CODEC_CPU(SND_SOC_DAI_BFS_RCW, SND_SOC_DAI_BFS_RATE):
425 /* normalise cpu bfs rate const multiplier & codec rcw mult */
426 cpu_bfs = soc_bfs_rate_to_rcw(cpu_dai_mode->bfs, rate,
427 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
428 if(codec_dai_mode->bfs & cpu_bfs) {
429 rtd->codec_dai->dai_runtime.bfs = cpu_bfs;
430 rtd->cpu_dai->dai_runtime.bfs = cpu_dai_mode->bfs;
431 } else
432 rtd->cpu_dai->dai_runtime.bfs = 0;
433 break;
434 case CODEC_CPU(SND_SOC_DAI_BFS_RATE, SND_SOC_DAI_BFS_RCW):
435 /* normalise cpu bfs rate rcw multiplier & codec const mult */
436 codec_bfs = soc_bfs_rate_to_rcw(codec_dai_mode->bfs, rate,
437 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
438 if(cpu_dai_mode->bfs & codec_bfs) {
439 rtd->cpu_dai->dai_runtime.bfs = codec_bfs;
440 rtd->codec_dai->dai_runtime.bfs = codec_dai_mode->bfs;
441 } else
442 rtd->cpu_dai->dai_runtime.bfs = 0;
443 break;
444 case CODEC_CPU(SND_SOC_DAI_BFS_RATE, SND_SOC_DAI_BFS_DIV):
445 /* normalise cpu bfs div & codec const mult */
446 codec_bfs = soc_bfs_rate_to_div(codec_dai_mode->bfs, rate,
447 mclk, rtd->codec_dai->dai_runtime.pcmfmt, chn);
2e26e483 448 if(cpu_dai_mode->bfs & codec_bfs) {
a71a468a
LG
449 rtd->cpu_dai->dai_runtime.bfs = codec_bfs;
450 rtd->codec_dai->dai_runtime.bfs = codec_dai_mode->bfs;
451 } else
452 rtd->cpu_dai->dai_runtime.bfs = 0;
453 break;
454 case CODEC_CPU(SND_SOC_DAI_BFS_RATE, SND_SOC_DAI_BFS_RATE):
455 /* cpu & codec constant mult */
456 if(codec_dai_mode->bfs == cpu_dai_mode->bfs)
457 rtd->cpu_dai->dai_runtime.bfs =
458 rtd->codec_dai->dai_runtime.bfs =
459 codec_dai_mode->bfs;
460 else
461 rtd->cpu_dai->dai_runtime.bfs =
462 rtd->codec_dai->dai_runtime.bfs = 0;
463 break;
db2a4165
FM
464 }
465
466 /* make sure the bit clock speed is acceptable */
467 if (!rtd->cpu_dai->dai_runtime.bfs ||
468 !rtd->codec_dai->dai_runtime.bfs) {
469 dbgc("asoc: DAI[%d:%d] failed to match BFS\n", j, k);
a71a468a 470 dbgc("asoc: cpu_dai %llu codec %llu\n",
db2a4165
FM
471 rtd->cpu_dai->dai_runtime.bfs,
472 rtd->codec_dai->dai_runtime.bfs);
473 dbgc("asoc: mclk %d hwfmt %x\n", mclk, fmt);
474 continue;
475 }
476
477 goto found;
478 }
479 }
480 printk(KERN_ERR "asoc: no matching DAI found between codec and CPU\n");
481 return -EINVAL;
482
483found:
484 /* we have matching DAI's, so complete the runtime info */
485 rtd->codec_dai->dai_runtime.pcmrate =
486 rtd->cpu_dai->dai_runtime.pcmrate =
487 soc_get_rate_format(rate);
488
489 rtd->codec_dai->dai_runtime.priv = codec_dai_mode->priv;
490 rtd->cpu_dai->dai_runtime.priv = cpu_dai_mode->priv;
491 rtd->codec_dai->dai_runtime.flags = codec_dai_mode->flags;
492 rtd->cpu_dai->dai_runtime.flags = cpu_dai_mode->flags;
493
494 /* for debug atm */
495 dbg("asoc: DAI[%d:%d] Match OK\n", j, k);
496 if (rtd->codec_dai->dai_runtime.flags == SND_SOC_DAI_BFS_DIV) {
497 codec_bclk = (rtd->codec_dai->dai_runtime.fs * params_rate(params)) /
498 SND_SOC_FSBD_REAL(rtd->codec_dai->dai_runtime.bfs);
499 dbg("asoc: codec fs %d mclk %d bfs div %d bclk %d\n",
500 rtd->codec_dai->dai_runtime.fs, mclk,
501 SND_SOC_FSBD_REAL(rtd->codec_dai->dai_runtime.bfs), codec_bclk);
a71a468a
LG
502 } else if(rtd->codec_dai->dai_runtime.flags == SND_SOC_DAI_BFS_RATE) {
503 codec_bclk = params_rate(params) * rtd->codec_dai->dai_runtime.bfs;
504 dbg("asoc: codec fs %d mclk %d bfs rate mult %llu bclk %d\n",
db2a4165 505 rtd->codec_dai->dai_runtime.fs, mclk,
a71a468a
LG
506 rtd->codec_dai->dai_runtime.bfs, codec_bclk);
507 } else if (rtd->cpu_dai->dai_runtime.flags == SND_SOC_DAI_BFS_RCW) {
508 codec_bclk = params_rate(params) * params_channels(params) *
509 snd_pcm_format_physical_width(rtd->codec_dai->dai_runtime.pcmfmt) *
510 SND_SOC_FSBW_REAL(rtd->codec_dai->dai_runtime.bfs);
511 dbg("asoc: codec fs %d mclk %d bfs rcw mult %d bclk %d\n",
512 rtd->codec_dai->dai_runtime.fs, mclk,
513 SND_SOC_FSBW_REAL(rtd->codec_dai->dai_runtime.bfs), codec_bclk);
514 } else
515 codec_bclk = 0;
516
db2a4165
FM
517 if (rtd->cpu_dai->dai_runtime.flags == SND_SOC_DAI_BFS_DIV) {
518 cpu_bclk = (rtd->cpu_dai->dai_runtime.fs * params_rate(params)) /
519 SND_SOC_FSBD_REAL(rtd->cpu_dai->dai_runtime.bfs);
520 dbg("asoc: cpu fs %d mclk %d bfs div %d bclk %d\n",
521 rtd->cpu_dai->dai_runtime.fs, mclk,
522 SND_SOC_FSBD_REAL(rtd->cpu_dai->dai_runtime.bfs), cpu_bclk);
a71a468a
LG
523 } else if (rtd->cpu_dai->dai_runtime.flags == SND_SOC_DAI_BFS_RATE) {
524 cpu_bclk = params_rate(params) * rtd->cpu_dai->dai_runtime.bfs;
525 dbg("asoc: cpu fs %d mclk %d bfs rate mult %llu bclk %d\n",
db2a4165 526 rtd->cpu_dai->dai_runtime.fs, mclk,
a71a468a
LG
527 rtd->cpu_dai->dai_runtime.bfs, cpu_bclk);
528 } else if (rtd->cpu_dai->dai_runtime.flags == SND_SOC_DAI_BFS_RCW) {
529 cpu_bclk = params_rate(params) * params_channels(params) *
530 snd_pcm_format_physical_width(rtd->cpu_dai->dai_runtime.pcmfmt) *
531 SND_SOC_FSBW_REAL(rtd->cpu_dai->dai_runtime.bfs);
532 dbg("asoc: cpu fs %d mclk %d bfs mult rcw %d bclk %d\n",
533 rtd->cpu_dai->dai_runtime.fs, mclk,
534 SND_SOC_FSBW_REAL(rtd->cpu_dai->dai_runtime.bfs), cpu_bclk);
535 } else
536 cpu_bclk = 0;
db2a4165
FM
537
538 /*
539 * Check we have matching bitclocks. If we don't then it means the
540 * sysclock returned by either the codec or cpu DAI (selected by the
541 * machine sysclock function) is wrong compared with the supported DAI
0664d888
LG
542 * modes for the codec or cpu DAI. Check your codec or CPU DAI
543 * config_sysclock() functions.
db2a4165 544 */
a71a468a 545 if (cpu_bclk != codec_bclk && cpu_bclk){
db2a4165
FM
546 printk(KERN_ERR
547 "asoc: codec and cpu bitclocks differ, audio may be wrong speed\n"
548 );
549 printk(KERN_ERR "asoc: codec %d != cpu %d\n", codec_bclk, cpu_bclk);
550 }
551
552 switch(rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_CLOCK_MASK) {
553 case SND_SOC_DAIFMT_CBM_CFM:
554 dbg("asoc: DAI codec BCLK master, LRC master\n");
555 break;
556 case SND_SOC_DAIFMT_CBS_CFM:
557 dbg("asoc: DAI codec BCLK slave, LRC master\n");
558 break;
559 case SND_SOC_DAIFMT_CBM_CFS:
560 dbg("asoc: DAI codec BCLK master, LRC slave\n");
561 break;
562 case SND_SOC_DAIFMT_CBS_CFS:
563 dbg("asoc: DAI codec BCLK slave, LRC slave\n");
564 break;
565 }
566 dbg("asoc: mode %x, invert %x\n",
567 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_FORMAT_MASK,
568 rtd->cpu_dai->dai_runtime.fmt & SND_SOC_DAIFMT_INV_MASK);
569 dbg("asoc: audio rate %d chn %d fmt %x\n", params_rate(params),
570 params_channels(params), params_format(params));
571
572 return 0;
573}
574
575static inline u32 get_rates(struct snd_soc_dai_mode *modes, int nmodes)
576{
577 int i;
578 u32 rates = 0;
579
580 for(i = 0; i < nmodes; i++)
581 rates |= modes[i].pcmrate;
582
583 return rates;
584}
585
586static inline u64 get_formats(struct snd_soc_dai_mode *modes, int nmodes)
587{
588 int i;
589 u64 formats = 0;
590
591 for(i = 0; i < nmodes; i++)
592 formats |= modes[i].pcmfmt;
593
594 return formats;
595}
596
597/*
598 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
599 * then initialized and any private data can be allocated. This also calls
600 * startup for the cpu DAI, platform, machine and codec DAI.
601 */
602static int soc_pcm_open(struct snd_pcm_substream *substream)
603{
604 struct snd_soc_pcm_runtime *rtd = substream->private_data;
605 struct snd_soc_device *socdev = rtd->socdev;
606 struct snd_pcm_runtime *runtime = substream->runtime;
607 struct snd_soc_machine *machine = socdev->machine;
608 struct snd_soc_platform *platform = socdev->platform;
609 struct snd_soc_codec_dai *codec_dai = rtd->codec_dai;
610 struct snd_soc_cpu_dai *cpu_dai = rtd->cpu_dai;
611 int ret = 0;
612
613 mutex_lock(&pcm_mutex);
614
615 /* startup the audio subsystem */
616 if (rtd->cpu_dai->ops.startup) {
617 ret = rtd->cpu_dai->ops.startup(substream);
618 if (ret < 0) {
619 printk(KERN_ERR "asoc: can't open interface %s\n",
620 rtd->cpu_dai->name);
621 goto out;
622 }
623 }
624
625 if (platform->pcm_ops->open) {
626 ret = platform->pcm_ops->open(substream);
627 if (ret < 0) {
628 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
629 goto platform_err;
630 }
631 }
632
633 if (machine->ops && machine->ops->startup) {
634 ret = machine->ops->startup(substream);
635 if (ret < 0) {
636 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
637 goto machine_err;
638 }
639 }
640
641 if (rtd->codec_dai->ops.startup) {
642 ret = rtd->codec_dai->ops.startup(substream);
643 if (ret < 0) {
644 printk(KERN_ERR "asoc: can't open codec %s\n",
645 rtd->codec_dai->name);
646 goto codec_dai_err;
647 }
648 }
649
650 /* create runtime params from DMA, codec and cpu DAI */
651 if (runtime->hw.rates)
652 runtime->hw.rates &=
653 get_rates(codec_dai->caps.mode, codec_dai->caps.num_modes) &
654 get_rates(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
655 else
656 runtime->hw.rates =
657 get_rates(codec_dai->caps.mode, codec_dai->caps.num_modes) &
658 get_rates(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
659 if (runtime->hw.formats)
660 runtime->hw.formats &=
661 get_formats(codec_dai->caps.mode, codec_dai->caps.num_modes) &
662 get_formats(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
663 else
664 runtime->hw.formats =
665 get_formats(codec_dai->caps.mode, codec_dai->caps.num_modes) &
666 get_formats(cpu_dai->caps.mode, cpu_dai->caps.num_modes);
667
668 /* Check that the codec and cpu DAI's are compatible */
669 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
670 runtime->hw.rate_min =
671 max(rtd->codec_dai->playback.rate_min,
672 rtd->cpu_dai->playback.rate_min);
673 runtime->hw.rate_max =
674 min(rtd->codec_dai->playback.rate_max,
675 rtd->cpu_dai->playback.rate_max);
676 runtime->hw.channels_min =
677 max(rtd->codec_dai->playback.channels_min,
678 rtd->cpu_dai->playback.channels_min);
679 runtime->hw.channels_max =
680 min(rtd->codec_dai->playback.channels_max,
681 rtd->cpu_dai->playback.channels_max);
682 } else {
683 runtime->hw.rate_min =
684 max(rtd->codec_dai->capture.rate_min,
685 rtd->cpu_dai->capture.rate_min);
686 runtime->hw.rate_max =
687 min(rtd->codec_dai->capture.rate_max,
688 rtd->cpu_dai->capture.rate_max);
689 runtime->hw.channels_min =
690 max(rtd->codec_dai->capture.channels_min,
691 rtd->cpu_dai->capture.channels_min);
692 runtime->hw.channels_max =
693 min(rtd->codec_dai->capture.channels_max,
694 rtd->cpu_dai->capture.channels_max);
695 }
696
697 snd_pcm_limit_hw_rates(runtime);
698 if (!runtime->hw.rates) {
699 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
700 rtd->codec_dai->name, rtd->cpu_dai->name);
701 goto codec_dai_err;
702 }
703 if (!runtime->hw.formats) {
704 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
705 rtd->codec_dai->name, rtd->cpu_dai->name);
706 goto codec_dai_err;
707 }
708 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
709 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
710 rtd->codec_dai->name, rtd->cpu_dai->name);
711 goto codec_dai_err;
712 }
713
714 dbg("asoc: %s <-> %s info:\n", rtd->codec_dai->name, rtd->cpu_dai->name);
b5c5fd24
LG
715 dbg("asoc: rate mask 0x%x\n", runtime->hw.rates);
716 dbg("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
717 runtime->hw.channels_max);
718 dbg("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
719 runtime->hw.rate_max);
db2a4165
FM
720
721
722 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
723 rtd->cpu_dai->playback.active = rtd->codec_dai->playback.active = 1;
724 else
725 rtd->cpu_dai->capture.active = rtd->codec_dai->capture.active = 1;
726 rtd->cpu_dai->active = rtd->codec_dai->active = 1;
727 rtd->cpu_dai->runtime = runtime;
728 socdev->codec->active++;
729 mutex_unlock(&pcm_mutex);
730 return 0;
731
732codec_dai_err:
733 if (machine->ops && machine->ops->shutdown)
734 machine->ops->shutdown(substream);
735
736machine_err:
737 if (platform->pcm_ops->close)
738 platform->pcm_ops->close(substream);
739
740platform_err:
741 if (rtd->cpu_dai->ops.shutdown)
742 rtd->cpu_dai->ops.shutdown(substream);
743out:
744 mutex_unlock(&pcm_mutex);
745 return ret;
746}
747
748/*
749 * Power down the audio subsytem pmdown_time msecs after close is called.
750 * This is to ensure there are no pops or clicks in between any music tracks
751 * due to DAPM power cycling.
752 */
4484bb2e 753static void close_delayed_work(struct work_struct *work)
db2a4165 754{
4484bb2e
AM
755 struct snd_soc_device *socdev =
756 container_of(work, struct snd_soc_device, delayed_work.work);
db2a4165
FM
757 struct snd_soc_codec *codec = socdev->codec;
758 struct snd_soc_codec_dai *codec_dai;
759 int i;
760
761 mutex_lock(&pcm_mutex);
762 for(i = 0; i < codec->num_dai; i++) {
763 codec_dai = &codec->dai[i];
764
765 dbg("pop wq checking: %s status: %s waiting: %s\n",
766 codec_dai->playback.stream_name,
767 codec_dai->playback.active ? "active" : "inactive",
768 codec_dai->pop_wait ? "yes" : "no");
769
770 /* are we waiting on this codec DAI stream */
771 if (codec_dai->pop_wait == 1) {
772
773 codec_dai->pop_wait = 0;
774 snd_soc_dapm_stream_event(codec, codec_dai->playback.stream_name,
775 SND_SOC_DAPM_STREAM_STOP);
776
777 /* power down the codec power domain if no longer active */
778 if (codec->active == 0) {
779 dbg("pop wq D3 %s %s\n", codec->name,
780 codec_dai->playback.stream_name);
781 if (codec->dapm_event)
782 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
783 }
784 }
785 }
786 mutex_unlock(&pcm_mutex);
787}
788
789/*
790 * Called by ALSA when a PCM substream is closed. Private data can be
791 * freed here. The cpu DAI, codec DAI, machine and platform are also
792 * shutdown.
793 */
794static int soc_codec_close(struct snd_pcm_substream *substream)
795{
796 struct snd_soc_pcm_runtime *rtd = substream->private_data;
797 struct snd_soc_device *socdev = rtd->socdev;
798 struct snd_soc_machine *machine = socdev->machine;
799 struct snd_soc_platform *platform = socdev->platform;
800 struct snd_soc_codec *codec = socdev->codec;
801
802 mutex_lock(&pcm_mutex);
803
804 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
805 rtd->cpu_dai->playback.active = rtd->codec_dai->playback.active = 0;
806 else
807 rtd->cpu_dai->capture.active = rtd->codec_dai->capture.active = 0;
808
809 if (rtd->codec_dai->playback.active == 0 &&
810 rtd->codec_dai->capture.active == 0) {
811 rtd->cpu_dai->active = rtd->codec_dai->active = 0;
812 }
813 codec->active--;
814
815 if (rtd->cpu_dai->ops.shutdown)
816 rtd->cpu_dai->ops.shutdown(substream);
817
818 if (rtd->codec_dai->ops.shutdown)
819 rtd->codec_dai->ops.shutdown(substream);
820
821 if (machine->ops && machine->ops->shutdown)
822 machine->ops->shutdown(substream);
823
824 if (platform->pcm_ops->close)
825 platform->pcm_ops->close(substream);
826 rtd->cpu_dai->runtime = NULL;
827
828 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
829 /* start delayed pop wq here for playback streams */
830 rtd->codec_dai->pop_wait = 1;
4bb09523 831 schedule_delayed_work(&socdev->delayed_work,
db2a4165
FM
832 msecs_to_jiffies(pmdown_time));
833 } else {
834 /* capture streams can be powered down now */
835 snd_soc_dapm_stream_event(codec, rtd->codec_dai->capture.stream_name,
836 SND_SOC_DAPM_STREAM_STOP);
837
838 if (codec->active == 0 && rtd->codec_dai->pop_wait == 0){
839 if (codec->dapm_event)
840 codec->dapm_event(codec, SNDRV_CTL_POWER_D3hot);
841 }
842 }
843
844 mutex_unlock(&pcm_mutex);
845 return 0;
846}
847
848/*
849 * Called by ALSA when the PCM substream is prepared, can set format, sample
850 * rate, etc. This function is non atomic and can be called multiple times,
851 * it can refer to the runtime info.
852 */
853static int soc_pcm_prepare(struct snd_pcm_substream *substream)
854{
855 struct snd_soc_pcm_runtime *rtd = substream->private_data;
856 struct snd_soc_device *socdev = rtd->socdev;
857 struct snd_soc_platform *platform = socdev->platform;
858 struct snd_soc_codec *codec = socdev->codec;
859 int ret = 0;
860
861 mutex_lock(&pcm_mutex);
862 if (platform->pcm_ops->prepare) {
863 ret = platform->pcm_ops->prepare(substream);
a71a468a
LG
864 if (ret < 0) {
865 printk(KERN_ERR "asoc: platform prepare error\n");
db2a4165 866 goto out;
a71a468a 867 }
db2a4165
FM
868 }
869
870 if (rtd->codec_dai->ops.prepare) {
871 ret = rtd->codec_dai->ops.prepare(substream);
a71a468a
LG
872 if (ret < 0) {
873 printk(KERN_ERR "asoc: codec DAI prepare error\n");
db2a4165 874 goto out;
a71a468a 875 }
db2a4165
FM
876 }
877
878 if (rtd->cpu_dai->ops.prepare)
879 ret = rtd->cpu_dai->ops.prepare(substream);
880
881 /* we only want to start a DAPM playback stream if we are not waiting
882 * on an existing one stopping */
883 if (rtd->codec_dai->pop_wait) {
884 /* we are waiting for the delayed work to start */
885 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
886 snd_soc_dapm_stream_event(codec,
887 rtd->codec_dai->capture.stream_name,
888 SND_SOC_DAPM_STREAM_START);
889 else {
890 rtd->codec_dai->pop_wait = 0;
4484bb2e 891 cancel_delayed_work(&socdev->delayed_work);
db2a4165
FM
892 if (rtd->codec_dai->digital_mute)
893 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
894 }
895 } else {
896 /* no delayed work - do we need to power up codec */
897 if (codec->dapm_state != SNDRV_CTL_POWER_D0) {
898
899 if (codec->dapm_event)
900 codec->dapm_event(codec, SNDRV_CTL_POWER_D1);
901
902 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
903 snd_soc_dapm_stream_event(codec,
904 rtd->codec_dai->playback.stream_name,
905 SND_SOC_DAPM_STREAM_START);
906 else
907 snd_soc_dapm_stream_event(codec,
908 rtd->codec_dai->capture.stream_name,
909 SND_SOC_DAPM_STREAM_START);
910
911 if (codec->dapm_event)
912 codec->dapm_event(codec, SNDRV_CTL_POWER_D0);
913 if (rtd->codec_dai->digital_mute)
914 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
915
916 } else {
917 /* codec already powered - power on widgets */
918 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
919 snd_soc_dapm_stream_event(codec,
920 rtd->codec_dai->playback.stream_name,
921 SND_SOC_DAPM_STREAM_START);
922 else
923 snd_soc_dapm_stream_event(codec,
924 rtd->codec_dai->capture.stream_name,
925 SND_SOC_DAPM_STREAM_START);
926 if (rtd->codec_dai->digital_mute)
927 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 0);
928 }
929 }
930
931out:
932 mutex_unlock(&pcm_mutex);
933 return ret;
934}
935
936/*
937 * Called by ALSA when the hardware params are set by application. This
938 * function can also be called multiple times and can allocate buffers
939 * (using snd_pcm_lib_* ). It's non-atomic.
940 */
941static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
942 struct snd_pcm_hw_params *params)
943{
944 struct snd_soc_pcm_runtime *rtd = substream->private_data;
945 struct snd_soc_device *socdev = rtd->socdev;
946 struct snd_soc_platform *platform = socdev->platform;
947 struct snd_soc_machine *machine = socdev->machine;
948 int ret = 0;
949
950 mutex_lock(&pcm_mutex);
951
952 /* we don't need to match any AC97 params */
953 if (rtd->cpu_dai->type != SND_SOC_DAI_AC97) {
954 ret = soc_hw_match_params(substream, params);
955 if (ret < 0)
956 goto out;
957 } else {
958 struct snd_soc_clock_info clk_info;
959 clk_info.rate = params_rate(params);
960 ret = soc_get_mclk(rtd, &clk_info);
961 if (ret < 0)
962 goto out;
963 }
964
965 if (rtd->codec_dai->ops.hw_params) {
966 ret = rtd->codec_dai->ops.hw_params(substream, params);
967 if (ret < 0) {
968 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
969 rtd->codec_dai->name);
970 goto out;
971 }
972 }
973
974 if (rtd->cpu_dai->ops.hw_params) {
975 ret = rtd->cpu_dai->ops.hw_params(substream, params);
976 if (ret < 0) {
977 printk(KERN_ERR "asoc: can't set interface %s hw params\n",
978 rtd->cpu_dai->name);
979 goto interface_err;
980 }
981 }
982
983 if (platform->pcm_ops->hw_params) {
984 ret = platform->pcm_ops->hw_params(substream, params);
985 if (ret < 0) {
986 printk(KERN_ERR "asoc: can't set platform %s hw params\n",
987 platform->name);
988 goto platform_err;
989 }
990 }
991
992 if (machine->ops && machine->ops->hw_params) {
993 ret = machine->ops->hw_params(substream, params);
994 if (ret < 0) {
995 printk(KERN_ERR "asoc: machine hw_params failed\n");
996 goto machine_err;
997 }
998 }
999
1000out:
1001 mutex_unlock(&pcm_mutex);
1002 return ret;
1003
1004machine_err:
1005 if (platform->pcm_ops->hw_free)
1006 platform->pcm_ops->hw_free(substream);
1007
1008platform_err:
1009 if (rtd->cpu_dai->ops.hw_free)
1010 rtd->cpu_dai->ops.hw_free(substream);
1011
1012interface_err:
1013 if (rtd->codec_dai->ops.hw_free)
1014 rtd->codec_dai->ops.hw_free(substream);
1015
1016 mutex_unlock(&pcm_mutex);
1017 return ret;
1018}
1019
1020/*
1021 * Free's resources allocated by hw_params, can be called multiple times
1022 */
1023static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
1024{
1025 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1026 struct snd_soc_device *socdev = rtd->socdev;
1027 struct snd_soc_platform *platform = socdev->platform;
1028 struct snd_soc_codec *codec = socdev->codec;
1029 struct snd_soc_machine *machine = socdev->machine;
1030
1031 mutex_lock(&pcm_mutex);
1032
1033 /* apply codec digital mute */
1034 if (!codec->active && rtd->codec_dai->digital_mute)
1035 rtd->codec_dai->digital_mute(codec, rtd->codec_dai, 1);
1036
1037 /* free any machine hw params */
1038 if (machine->ops && machine->ops->hw_free)
1039 machine->ops->hw_free(substream);
1040
1041 /* free any DMA resources */
1042 if (platform->pcm_ops->hw_free)
1043 platform->pcm_ops->hw_free(substream);
1044
1045 /* now free hw params for the DAI's */
1046 if (rtd->codec_dai->ops.hw_free)
1047 rtd->codec_dai->ops.hw_free(substream);
1048
1049 if (rtd->cpu_dai->ops.hw_free)
1050 rtd->cpu_dai->ops.hw_free(substream);
1051
1052 mutex_unlock(&pcm_mutex);
1053 return 0;
1054}
1055
1056static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1057{
1058 struct snd_soc_pcm_runtime *rtd = substream->private_data;
1059 struct snd_soc_device *socdev = rtd->socdev;
1060 struct snd_soc_platform *platform = socdev->platform;
1061 int ret;
1062
1063 if (rtd->codec_dai->ops.trigger) {
1064 ret = rtd->codec_dai->ops.trigger(substream, cmd);
1065 if (ret < 0)
1066 return ret;
1067 }
1068
1069 if (platform->pcm_ops->trigger) {
1070 ret = platform->pcm_ops->trigger(substream, cmd);
1071 if (ret < 0)
1072 return ret;
1073 }
1074
1075 if (rtd->cpu_dai->ops.trigger) {
1076 ret = rtd->cpu_dai->ops.trigger(substream, cmd);
1077 if (ret < 0)
1078 return ret;
1079 }
1080 return 0;
1081}
1082
1083/* ASoC PCM operations */
1084static struct snd_pcm_ops soc_pcm_ops = {
1085 .open = soc_pcm_open,
1086 .close = soc_codec_close,
1087 .hw_params = soc_pcm_hw_params,
1088 .hw_free = soc_pcm_hw_free,
1089 .prepare = soc_pcm_prepare,
1090 .trigger = soc_pcm_trigger,
1091};
1092
1093#ifdef CONFIG_PM
1094/* powers down audio subsystem for suspend */
1095static int soc_suspend(struct platform_device *pdev, pm_message_t state)
1096{
1097 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1098 struct snd_soc_machine *machine = socdev->machine;
1099 struct snd_soc_platform *platform = socdev->platform;
1100 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1101 struct snd_soc_codec *codec = socdev->codec;
1102 int i;
1103
1104 /* mute any active DAC's */
1105 for(i = 0; i < machine->num_links; i++) {
1106 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
1107 if (dai->digital_mute && dai->playback.active)
1108 dai->digital_mute(codec, dai, 1);
1109 }
1110
1111 if (machine->suspend_pre)
1112 machine->suspend_pre(pdev, state);
1113
1114 for(i = 0; i < machine->num_links; i++) {
1115 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1116 if (cpu_dai->suspend && cpu_dai->type != SND_SOC_DAI_AC97)
1117 cpu_dai->suspend(pdev, cpu_dai);
1118 if (platform->suspend)
1119 platform->suspend(pdev, cpu_dai);
1120 }
1121
1122 /* close any waiting streams and save state */
965ac42c 1123 run_delayed_work(&socdev->delayed_work);
db2a4165
FM
1124 codec->suspend_dapm_state = codec->dapm_state;
1125
1126 for(i = 0; i < codec->num_dai; i++) {
1127 char *stream = codec->dai[i].playback.stream_name;
1128 if (stream != NULL)
1129 snd_soc_dapm_stream_event(codec, stream,
1130 SND_SOC_DAPM_STREAM_SUSPEND);
1131 stream = codec->dai[i].capture.stream_name;
1132 if (stream != NULL)
1133 snd_soc_dapm_stream_event(codec, stream,
1134 SND_SOC_DAPM_STREAM_SUSPEND);
1135 }
1136
1137 if (codec_dev->suspend)
1138 codec_dev->suspend(pdev, state);
1139
1140 for(i = 0; i < machine->num_links; i++) {
1141 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1142 if (cpu_dai->suspend && cpu_dai->type == SND_SOC_DAI_AC97)
1143 cpu_dai->suspend(pdev, cpu_dai);
1144 }
1145
1146 if (machine->suspend_post)
1147 machine->suspend_post(pdev, state);
1148
1149 return 0;
1150}
1151
1152/* powers up audio subsystem after a suspend */
1153static int soc_resume(struct platform_device *pdev)
1154{
1155 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1156 struct snd_soc_machine *machine = socdev->machine;
1157 struct snd_soc_platform *platform = socdev->platform;
1158 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1159 struct snd_soc_codec *codec = socdev->codec;
1160 int i;
1161
1162 if (machine->resume_pre)
1163 machine->resume_pre(pdev);
1164
1165 for(i = 0; i < machine->num_links; i++) {
1166 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1167 if (cpu_dai->resume && cpu_dai->type == SND_SOC_DAI_AC97)
1168 cpu_dai->resume(pdev, cpu_dai);
1169 }
1170
1171 if (codec_dev->resume)
1172 codec_dev->resume(pdev);
1173
1174 for(i = 0; i < codec->num_dai; i++) {
1175 char* stream = codec->dai[i].playback.stream_name;
1176 if (stream != NULL)
1177 snd_soc_dapm_stream_event(codec, stream,
1178 SND_SOC_DAPM_STREAM_RESUME);
1179 stream = codec->dai[i].capture.stream_name;
1180 if (stream != NULL)
1181 snd_soc_dapm_stream_event(codec, stream,
1182 SND_SOC_DAPM_STREAM_RESUME);
1183 }
1184
1185 /* unmute any active DAC's */
1186 for(i = 0; i < machine->num_links; i++) {
1187 struct snd_soc_codec_dai *dai = machine->dai_link[i].codec_dai;
1188 if (dai->digital_mute && dai->playback.active)
1189 dai->digital_mute(codec, dai, 0);
1190 }
1191
1192 for(i = 0; i < machine->num_links; i++) {
1193 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1194 if (cpu_dai->resume && cpu_dai->type != SND_SOC_DAI_AC97)
1195 cpu_dai->resume(pdev, cpu_dai);
1196 if (platform->resume)
1197 platform->resume(pdev, cpu_dai);
1198 }
1199
1200 if (machine->resume_post)
1201 machine->resume_post(pdev);
1202
1203 return 0;
1204}
1205
1206#else
1207#define soc_suspend NULL
1208#define soc_resume NULL
1209#endif
1210
1211/* probes a new socdev */
1212static int soc_probe(struct platform_device *pdev)
1213{
1214 int ret = 0, i;
1215 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1216 struct snd_soc_machine *machine = socdev->machine;
1217 struct snd_soc_platform *platform = socdev->platform;
1218 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1219
1220 if (machine->probe) {
1221 ret = machine->probe(pdev);
1222 if(ret < 0)
1223 return ret;
1224 }
1225
1226 for (i = 0; i < machine->num_links; i++) {
1227 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1228 if (cpu_dai->probe) {
1229 ret = cpu_dai->probe(pdev);
1230 if(ret < 0)
1231 goto cpu_dai_err;
1232 }
1233 }
1234
1235 if (codec_dev->probe) {
1236 ret = codec_dev->probe(pdev);
1237 if(ret < 0)
1238 goto cpu_dai_err;
1239 }
1240
1241 if (platform->probe) {
1242 ret = platform->probe(pdev);
1243 if(ret < 0)
1244 goto platform_err;
1245 }
1246
1247 /* DAPM stream work */
4484bb2e 1248 INIT_DELAYED_WORK(&socdev->delayed_work, close_delayed_work);
db2a4165
FM
1249 return 0;
1250
db2a4165
FM
1251platform_err:
1252 if (codec_dev->remove)
1253 codec_dev->remove(pdev);
1254
1255cpu_dai_err:
18b9b3d9 1256 for (i--; i >= 0; i--) {
db2a4165
FM
1257 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1258 if (cpu_dai->remove)
1259 cpu_dai->remove(pdev);
1260 }
1261
1262 if (machine->remove)
1263 machine->remove(pdev);
1264
1265 return ret;
1266}
1267
1268/* removes a socdev */
1269static int soc_remove(struct platform_device *pdev)
1270{
1271 int i;
1272 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1273 struct snd_soc_machine *machine = socdev->machine;
1274 struct snd_soc_platform *platform = socdev->platform;
1275 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1276
965ac42c
LG
1277 run_delayed_work(&socdev->delayed_work);
1278
db2a4165
FM
1279 if (platform->remove)
1280 platform->remove(pdev);
1281
1282 if (codec_dev->remove)
1283 codec_dev->remove(pdev);
1284
1285 for (i = 0; i < machine->num_links; i++) {
1286 struct snd_soc_cpu_dai *cpu_dai = machine->dai_link[i].cpu_dai;
1287 if (cpu_dai->remove)
1288 cpu_dai->remove(pdev);
1289 }
1290
1291 if (machine->remove)
1292 machine->remove(pdev);
1293
1294 return 0;
1295}
1296
1297/* ASoC platform driver */
1298static struct platform_driver soc_driver = {
1299 .driver = {
1300 .name = "soc-audio",
1301 },
1302 .probe = soc_probe,
1303 .remove = soc_remove,
1304 .suspend = soc_suspend,
1305 .resume = soc_resume,
1306};
1307
1308/* create a new pcm */
1309static int soc_new_pcm(struct snd_soc_device *socdev,
1310 struct snd_soc_dai_link *dai_link, int num)
1311{
1312 struct snd_soc_codec *codec = socdev->codec;
1313 struct snd_soc_codec_dai *codec_dai = dai_link->codec_dai;
1314 struct snd_soc_cpu_dai *cpu_dai = dai_link->cpu_dai;
1315 struct snd_soc_pcm_runtime *rtd;
1316 struct snd_pcm *pcm;
1317 char new_name[64];
1318 int ret = 0, playback = 0, capture = 0;
1319
1320 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1321 if (rtd == NULL)
1322 return -ENOMEM;
1323 rtd->cpu_dai = cpu_dai;
1324 rtd->codec_dai = codec_dai;
1325 rtd->socdev = socdev;
1326
1327 /* check client and interface hw capabilities */
1328 sprintf(new_name, "%s %s-%s-%d",dai_link->stream_name, codec_dai->name,
1329 get_dai_name(cpu_dai->type), num);
1330
1331 if (codec_dai->playback.channels_min)
1332 playback = 1;
1333 if (codec_dai->capture.channels_min)
1334 capture = 1;
1335
1336 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1337 capture, &pcm);
1338 if (ret < 0) {
1339 printk(KERN_ERR "asoc: can't create pcm for codec %s\n", codec->name);
1340 kfree(rtd);
1341 return ret;
1342 }
1343
1344 pcm->private_data = rtd;
1345 soc_pcm_ops.mmap = socdev->platform->pcm_ops->mmap;
1346 soc_pcm_ops.pointer = socdev->platform->pcm_ops->pointer;
1347 soc_pcm_ops.ioctl = socdev->platform->pcm_ops->ioctl;
1348 soc_pcm_ops.copy = socdev->platform->pcm_ops->copy;
1349 soc_pcm_ops.silence = socdev->platform->pcm_ops->silence;
1350 soc_pcm_ops.ack = socdev->platform->pcm_ops->ack;
1351 soc_pcm_ops.page = socdev->platform->pcm_ops->page;
1352
1353 if (playback)
1354 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1355
1356 if (capture)
1357 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1358
1359 ret = socdev->platform->pcm_new(codec->card, codec_dai, pcm);
1360 if (ret < 0) {
1361 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1362 kfree(rtd);
1363 return ret;
1364 }
1365
1366 pcm->private_free = socdev->platform->pcm_free;
1367 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1368 cpu_dai->name);
1369 return ret;
1370}
1371
1372/* codec register dump */
1373static ssize_t codec_reg_show(struct device *dev,
1374 struct device_attribute *attr, char *buf)
1375{
1376 struct snd_soc_device *devdata = dev_get_drvdata(dev);
1377 struct snd_soc_codec *codec = devdata->codec;
1378 int i, step = 1, count = 0;
1379
1380 if (!codec->reg_cache_size)
1381 return 0;
1382
1383 if (codec->reg_cache_step)
1384 step = codec->reg_cache_step;
1385
1386 count += sprintf(buf, "%s registers\n", codec->name);
1387 for(i = 0; i < codec->reg_cache_size; i += step)
1388 count += sprintf(buf + count, "%2x: %4x\n", i, codec->read(codec, i));
1389
1390 return count;
1391}
1392static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
1393
1394/**
1395 * snd_soc_new_ac97_codec - initailise AC97 device
1396 * @codec: audio codec
1397 * @ops: AC97 bus operations
1398 * @num: AC97 codec number
1399 *
1400 * Initialises AC97 codec resources for use by ad-hoc devices only.
1401 */
1402int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1403 struct snd_ac97_bus_ops *ops, int num)
1404{
1405 mutex_lock(&codec->mutex);
1406
1407 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1408 if (codec->ac97 == NULL) {
1409 mutex_unlock(&codec->mutex);
1410 return -ENOMEM;
1411 }
1412
1413 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1414 if (codec->ac97->bus == NULL) {
1415 kfree(codec->ac97);
1416 codec->ac97 = NULL;
1417 mutex_unlock(&codec->mutex);
1418 return -ENOMEM;
1419 }
1420
1421 codec->ac97->bus->ops = ops;
1422 codec->ac97->num = num;
1423 mutex_unlock(&codec->mutex);
1424 return 0;
1425}
1426EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1427
1428/**
1429 * snd_soc_free_ac97_codec - free AC97 codec device
1430 * @codec: audio codec
1431 *
1432 * Frees AC97 codec device resources.
1433 */
1434void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1435{
1436 mutex_lock(&codec->mutex);
1437 kfree(codec->ac97->bus);
1438 kfree(codec->ac97);
1439 codec->ac97 = NULL;
1440 mutex_unlock(&codec->mutex);
1441}
1442EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1443
1444/**
1445 * snd_soc_update_bits - update codec register bits
1446 * @codec: audio codec
1447 * @reg: codec register
1448 * @mask: register mask
1449 * @value: new value
1450 *
1451 * Writes new register value.
1452 *
1453 * Returns 1 for change else 0.
1454 */
1455int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1456 unsigned short mask, unsigned short value)
1457{
1458 int change;
1459 unsigned short old, new;
1460
1461 mutex_lock(&io_mutex);
1462 old = snd_soc_read(codec, reg);
1463 new = (old & ~mask) | value;
1464 change = old != new;
1465 if (change)
1466 snd_soc_write(codec, reg, new);
1467
1468 mutex_unlock(&io_mutex);
1469 return change;
1470}
1471EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1472
1473/**
1474 * snd_soc_test_bits - test register for change
1475 * @codec: audio codec
1476 * @reg: codec register
1477 * @mask: register mask
1478 * @value: new value
1479 *
1480 * Tests a register with a new value and checks if the new value is
1481 * different from the old value.
1482 *
1483 * Returns 1 for change else 0.
1484 */
1485int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1486 unsigned short mask, unsigned short value)
1487{
1488 int change;
1489 unsigned short old, new;
1490
1491 mutex_lock(&io_mutex);
1492 old = snd_soc_read(codec, reg);
1493 new = (old & ~mask) | value;
1494 change = old != new;
1495 mutex_unlock(&io_mutex);
1496
1497 return change;
1498}
1499EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1500
1501/**
1502 * snd_soc_get_rate - get int sample rate
1503 * @hwpcmrate: the hardware pcm rate
1504 *
1505 * Returns the audio rate integaer value, else 0.
1506 */
1507int snd_soc_get_rate(int hwpcmrate)
1508{
1509 int rate = ffs(hwpcmrate) - 1;
1510
1511 if (rate > ARRAY_SIZE(rates))
1512 return 0;
1513 return rates[rate];
1514}
1515EXPORT_SYMBOL_GPL(snd_soc_get_rate);
1516
1517/**
1518 * snd_soc_new_pcms - create new sound card and pcms
1519 * @socdev: the SoC audio device
1520 *
1521 * Create a new sound card based upon the codec and interface pcms.
1522 *
1523 * Returns 0 for success, else error.
1524 */
bc7320c5 1525int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
db2a4165
FM
1526{
1527 struct snd_soc_codec *codec = socdev->codec;
1528 struct snd_soc_machine *machine = socdev->machine;
1529 int ret = 0, i;
1530
1531 mutex_lock(&codec->mutex);
1532
1533 /* register a sound card */
1534 codec->card = snd_card_new(idx, xid, codec->owner, 0);
1535 if (!codec->card) {
1536 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1537 codec->name);
1538 mutex_unlock(&codec->mutex);
1539 return -ENODEV;
1540 }
1541
1542 codec->card->dev = socdev->dev;
1543 codec->card->private_data = codec;
1544 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1545
1546 /* create the pcms */
1547 for(i = 0; i < machine->num_links; i++) {
1548 ret = soc_new_pcm(socdev, &machine->dai_link[i], i);
1549 if (ret < 0) {
1550 printk(KERN_ERR "asoc: can't create pcm %s\n",
1551 machine->dai_link[i].stream_name);
1552 mutex_unlock(&codec->mutex);
1553 return ret;
1554 }
1555 }
1556
1557 mutex_unlock(&codec->mutex);
1558 return ret;
1559}
1560EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1561
1562/**
1563 * snd_soc_register_card - register sound card
1564 * @socdev: the SoC audio device
1565 *
1566 * Register a SoC sound card. Also registers an AC97 device if the
1567 * codec is AC97 for ad hoc devices.
1568 *
1569 * Returns 0 for success, else error.
1570 */
1571int snd_soc_register_card(struct snd_soc_device *socdev)
1572{
1573 struct snd_soc_codec *codec = socdev->codec;
1574 struct snd_soc_machine *machine = socdev->machine;
12e74f7d 1575 int ret = 0, i, ac97 = 0, err = 0;
db2a4165
FM
1576
1577 mutex_lock(&codec->mutex);
1578 for(i = 0; i < machine->num_links; i++) {
12e74f7d
LG
1579 if (socdev->machine->dai_link[i].init) {
1580 err = socdev->machine->dai_link[i].init(codec);
1581 if (err < 0) {
1582 printk(KERN_ERR "asoc: failed to init %s\n",
1583 socdev->machine->dai_link[i].stream_name);
1584 continue;
1585 }
1586 }
db2a4165
FM
1587 if (socdev->machine->dai_link[i].cpu_dai->type == SND_SOC_DAI_AC97)
1588 ac97 = 1;
1589 }
1590 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1591 "%s", machine->name);
1592 snprintf(codec->card->longname, sizeof(codec->card->longname),
1593 "%s (%s)", machine->name, codec->name);
1594
1595 ret = snd_card_register(codec->card);
1596 if (ret < 0) {
1597 printk(KERN_ERR "asoc: failed to register soundcard for codec %s\n",
1598 codec->name);
12e74f7d 1599 goto out;
db2a4165
FM
1600 }
1601
1602#ifdef CONFIG_SND_SOC_AC97_BUS
12e74f7d
LG
1603 if (ac97) {
1604 ret = soc_ac97_dev_register(codec);
1605 if (ret < 0) {
1606 printk(KERN_ERR "asoc: AC97 device register failed\n");
1607 snd_card_free(codec->card);
1608 goto out;
1609 }
1610 }
db2a4165
FM
1611#endif
1612
12e74f7d
LG
1613 err = snd_soc_dapm_sys_add(socdev->dev);
1614 if (err < 0)
1615 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1616
1617 err = device_create_file(socdev->dev, &dev_attr_codec_reg);
1618 if (err < 0)
1619 printk(KERN_WARNING "asoc: failed to add codec sysfs entries\n");
1620out:
db2a4165
FM
1621 mutex_unlock(&codec->mutex);
1622 return ret;
1623}
1624EXPORT_SYMBOL_GPL(snd_soc_register_card);
1625
1626/**
1627 * snd_soc_free_pcms - free sound card and pcms
1628 * @socdev: the SoC audio device
1629 *
1630 * Frees sound card and pcms associated with the socdev.
1631 * Also unregister the codec if it is an AC97 device.
1632 */
1633void snd_soc_free_pcms(struct snd_soc_device *socdev)
1634{
1635 struct snd_soc_codec *codec = socdev->codec;
1636
1637 mutex_lock(&codec->mutex);
1638#ifdef CONFIG_SND_SOC_AC97_BUS
1639 if (codec->ac97)
1640 soc_ac97_dev_unregister(codec);
1641#endif
1642
1643 if (codec->card)
1644 snd_card_free(codec->card);
1645 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1646 mutex_unlock(&codec->mutex);
1647}
1648EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1649
1650/**
1651 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1652 * @substream: the pcm substream
1653 * @hw: the hardware parameters
1654 *
1655 * Sets the substream runtime hardware parameters.
1656 */
1657int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1658 const struct snd_pcm_hardware *hw)
1659{
1660 struct snd_pcm_runtime *runtime = substream->runtime;
1661 runtime->hw.info = hw->info;
1662 runtime->hw.formats = hw->formats;
1663 runtime->hw.period_bytes_min = hw->period_bytes_min;
1664 runtime->hw.period_bytes_max = hw->period_bytes_max;
1665 runtime->hw.periods_min = hw->periods_min;
1666 runtime->hw.periods_max = hw->periods_max;
1667 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1668 runtime->hw.fifo_size = hw->fifo_size;
1669 return 0;
1670}
1671EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1672
1673/**
1674 * snd_soc_cnew - create new control
1675 * @_template: control template
1676 * @data: control private data
1677 * @lnng_name: control long name
1678 *
1679 * Create a new mixer control from a template control.
1680 *
1681 * Returns 0 for success, else error.
1682 */
1683struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1684 void *data, char *long_name)
1685{
1686 struct snd_kcontrol_new template;
1687
1688 memcpy(&template, _template, sizeof(template));
1689 if (long_name)
1690 template.name = long_name;
1691 template.access = SNDRV_CTL_ELEM_ACCESS_READWRITE;
1692 template.index = 0;
1693
1694 return snd_ctl_new1(&template, data);
1695}
1696EXPORT_SYMBOL_GPL(snd_soc_cnew);
1697
1698/**
1699 * snd_soc_info_enum_double - enumerated double mixer info callback
1700 * @kcontrol: mixer control
1701 * @uinfo: control element information
1702 *
1703 * Callback to provide information about a double enumerated
1704 * mixer control.
1705 *
1706 * Returns 0 for success.
1707 */
1708int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1709 struct snd_ctl_elem_info *uinfo)
1710{
1711 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1712
1713 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1714 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1715 uinfo->value.enumerated.items = e->mask;
1716
1717 if (uinfo->value.enumerated.item > e->mask - 1)
1718 uinfo->value.enumerated.item = e->mask - 1;
1719 strcpy(uinfo->value.enumerated.name,
1720 e->texts[uinfo->value.enumerated.item]);
1721 return 0;
1722}
1723EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1724
1725/**
1726 * snd_soc_get_enum_double - enumerated double mixer get callback
1727 * @kcontrol: mixer control
1728 * @uinfo: control element information
1729 *
1730 * Callback to get the value of a double enumerated mixer.
1731 *
1732 * Returns 0 for success.
1733 */
1734int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1735 struct snd_ctl_elem_value *ucontrol)
1736{
1737 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1738 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1739 unsigned short val, bitmask;
1740
1741 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1742 ;
1743 val = snd_soc_read(codec, e->reg);
1744 ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
1745 if (e->shift_l != e->shift_r)
1746 ucontrol->value.enumerated.item[1] =
1747 (val >> e->shift_r) & (bitmask - 1);
1748
1749 return 0;
1750}
1751EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1752
1753/**
1754 * snd_soc_put_enum_double - enumerated double mixer put callback
1755 * @kcontrol: mixer control
1756 * @uinfo: control element information
1757 *
1758 * Callback to set the value of a double enumerated mixer.
1759 *
1760 * Returns 0 for success.
1761 */
1762int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1763 struct snd_ctl_elem_value *ucontrol)
1764{
1765 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1766 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1767 unsigned short val;
1768 unsigned short mask, bitmask;
1769
1770 for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
1771 ;
1772 if (ucontrol->value.enumerated.item[0] > e->mask - 1)
1773 return -EINVAL;
1774 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1775 mask = (bitmask - 1) << e->shift_l;
1776 if (e->shift_l != e->shift_r) {
1777 if (ucontrol->value.enumerated.item[1] > e->mask - 1)
1778 return -EINVAL;
1779 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1780 mask |= (bitmask - 1) << e->shift_r;
1781 }
1782
1783 return snd_soc_update_bits(codec, e->reg, mask, val);
1784}
1785EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1786
1787/**
1788 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1789 * @kcontrol: mixer control
1790 * @uinfo: control element information
1791 *
1792 * Callback to provide information about an external enumerated
1793 * single mixer.
1794 *
1795 * Returns 0 for success.
1796 */
1797int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1798 struct snd_ctl_elem_info *uinfo)
1799{
1800 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1801
1802 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1803 uinfo->count = 1;
1804 uinfo->value.enumerated.items = e->mask;
1805
1806 if (uinfo->value.enumerated.item > e->mask - 1)
1807 uinfo->value.enumerated.item = e->mask - 1;
1808 strcpy(uinfo->value.enumerated.name,
1809 e->texts[uinfo->value.enumerated.item]);
1810 return 0;
1811}
1812EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1813
1814/**
1815 * snd_soc_info_volsw_ext - external single mixer info callback
1816 * @kcontrol: mixer control
1817 * @uinfo: control element information
1818 *
1819 * Callback to provide information about a single external mixer control.
1820 *
1821 * Returns 0 for success.
1822 */
1823int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1824 struct snd_ctl_elem_info *uinfo)
1825{
1826 int mask = kcontrol->private_value;
1827
1828 uinfo->type =
1829 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1830 uinfo->count = 1;
1831 uinfo->value.integer.min = 0;
1832 uinfo->value.integer.max = mask;
1833 return 0;
1834}
1835EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1836
1837/**
1838 * snd_soc_info_bool_ext - external single boolean mixer info callback
1839 * @kcontrol: mixer control
1840 * @uinfo: control element information
1841 *
1842 * Callback to provide information about a single boolean external mixer control.
1843 *
1844 * Returns 0 for success.
1845 */
1846int snd_soc_info_bool_ext(struct snd_kcontrol *kcontrol,
1847 struct snd_ctl_elem_info *uinfo)
1848{
1849 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1850 uinfo->count = 1;
1851 uinfo->value.integer.min = 0;
1852 uinfo->value.integer.max = 1;
1853 return 0;
1854}
1855EXPORT_SYMBOL_GPL(snd_soc_info_bool_ext);
1856
1857/**
1858 * snd_soc_info_volsw - single mixer info callback
1859 * @kcontrol: mixer control
1860 * @uinfo: control element information
1861 *
1862 * Callback to provide information about a single mixer control.
1863 *
1864 * Returns 0 for success.
1865 */
1866int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1867 struct snd_ctl_elem_info *uinfo)
1868{
1869 int mask = (kcontrol->private_value >> 16) & 0xff;
1870 int shift = (kcontrol->private_value >> 8) & 0x0f;
1871 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1872
1873 uinfo->type =
1874 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1875 uinfo->count = shift == rshift ? 1 : 2;
1876 uinfo->value.integer.min = 0;
1877 uinfo->value.integer.max = mask;
1878 return 0;
1879}
1880EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1881
1882/**
1883 * snd_soc_get_volsw - single mixer get callback
1884 * @kcontrol: mixer control
1885 * @uinfo: control element information
1886 *
1887 * Callback to get the value of a single mixer control.
1888 *
1889 * Returns 0 for success.
1890 */
1891int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1892 struct snd_ctl_elem_value *ucontrol)
1893{
1894 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1895 int reg = kcontrol->private_value & 0xff;
1896 int shift = (kcontrol->private_value >> 8) & 0x0f;
1897 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1898 int mask = (kcontrol->private_value >> 16) & 0xff;
1899 int invert = (kcontrol->private_value >> 24) & 0x01;
1900
1901 ucontrol->value.integer.value[0] =
1902 (snd_soc_read(codec, reg) >> shift) & mask;
1903 if (shift != rshift)
1904 ucontrol->value.integer.value[1] =
1905 (snd_soc_read(codec, reg) >> rshift) & mask;
1906 if (invert) {
1907 ucontrol->value.integer.value[0] =
1908 mask - ucontrol->value.integer.value[0];
1909 if (shift != rshift)
1910 ucontrol->value.integer.value[1] =
1911 mask - ucontrol->value.integer.value[1];
1912 }
1913
1914 return 0;
1915}
1916EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1917
1918/**
1919 * snd_soc_put_volsw - single mixer put callback
1920 * @kcontrol: mixer control
1921 * @uinfo: control element information
1922 *
1923 * Callback to set the value of a single mixer control.
1924 *
1925 * Returns 0 for success.
1926 */
1927int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1928 struct snd_ctl_elem_value *ucontrol)
1929{
1930 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1931 int reg = kcontrol->private_value & 0xff;
1932 int shift = (kcontrol->private_value >> 8) & 0x0f;
1933 int rshift = (kcontrol->private_value >> 12) & 0x0f;
1934 int mask = (kcontrol->private_value >> 16) & 0xff;
1935 int invert = (kcontrol->private_value >> 24) & 0x01;
1936 int err;
1937 unsigned short val, val2, val_mask;
1938
1939 val = (ucontrol->value.integer.value[0] & mask);
1940 if (invert)
1941 val = mask - val;
1942 val_mask = mask << shift;
1943 val = val << shift;
1944 if (shift != rshift) {
1945 val2 = (ucontrol->value.integer.value[1] & mask);
1946 if (invert)
1947 val2 = mask - val2;
1948 val_mask |= mask << rshift;
1949 val |= val2 << rshift;
1950 }
1951 err = snd_soc_update_bits(codec, reg, val_mask, val);
1952 return err;
1953}
1954EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1955
1956/**
1957 * snd_soc_info_volsw_2r - double mixer info callback
1958 * @kcontrol: mixer control
1959 * @uinfo: control element information
1960 *
1961 * Callback to provide information about a double mixer control that
1962 * spans 2 codec registers.
1963 *
1964 * Returns 0 for success.
1965 */
1966int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1967 struct snd_ctl_elem_info *uinfo)
1968{
1969 int mask = (kcontrol->private_value >> 12) & 0xff;
1970
1971 uinfo->type =
1972 mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
1973 uinfo->count = 2;
1974 uinfo->value.integer.min = 0;
1975 uinfo->value.integer.max = mask;
1976 return 0;
1977}
1978EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1979
1980/**
1981 * snd_soc_get_volsw_2r - double mixer get callback
1982 * @kcontrol: mixer control
1983 * @uinfo: control element information
1984 *
1985 * Callback to get the value of a double mixer control that spans 2 registers.
1986 *
1987 * Returns 0 for success.
1988 */
1989int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
1990 struct snd_ctl_elem_value *ucontrol)
1991{
1992 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1993 int reg = kcontrol->private_value & 0xff;
1994 int reg2 = (kcontrol->private_value >> 24) & 0xff;
1995 int shift = (kcontrol->private_value >> 8) & 0x0f;
1996 int mask = (kcontrol->private_value >> 12) & 0xff;
1997 int invert = (kcontrol->private_value >> 20) & 0x01;
1998
1999 ucontrol->value.integer.value[0] =
2000 (snd_soc_read(codec, reg) >> shift) & mask;
2001 ucontrol->value.integer.value[1] =
2002 (snd_soc_read(codec, reg2) >> shift) & mask;
2003 if (invert) {
2004 ucontrol->value.integer.value[0] =
2005 mask - ucontrol->value.integer.value[0];
2006 ucontrol->value.integer.value[1] =
2007 mask - ucontrol->value.integer.value[1];
2008 }
2009
2010 return 0;
2011}
2012EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2013
2014/**
2015 * snd_soc_put_volsw_2r - double mixer set callback
2016 * @kcontrol: mixer control
2017 * @uinfo: control element information
2018 *
2019 * Callback to set the value of a double mixer control that spans 2 registers.
2020 *
2021 * Returns 0 for success.
2022 */
2023int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2024 struct snd_ctl_elem_value *ucontrol)
2025{
2026 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2027 int reg = kcontrol->private_value & 0xff;
2028 int reg2 = (kcontrol->private_value >> 24) & 0xff;
2029 int shift = (kcontrol->private_value >> 8) & 0x0f;
2030 int mask = (kcontrol->private_value >> 12) & 0xff;
2031 int invert = (kcontrol->private_value >> 20) & 0x01;
2032 int err;
2033 unsigned short val, val2, val_mask;
2034
2035 val_mask = mask << shift;
2036 val = (ucontrol->value.integer.value[0] & mask);
2037 val2 = (ucontrol->value.integer.value[1] & mask);
2038
2039 if (invert) {
2040 val = mask - val;
2041 val2 = mask - val2;
2042 }
2043
2044 val = val << shift;
2045 val2 = val2 << shift;
2046
2047 if ((err = snd_soc_update_bits(codec, reg, val_mask, val)) < 0)
2048 return err;
2049
2050 err = snd_soc_update_bits(codec, reg2, val_mask, val2);
2051 return err;
2052}
2053EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2054
2055static int __devinit snd_soc_init(void)
2056{
2057 printk(KERN_INFO "ASoC version %s\n", SND_SOC_VERSION);
2058 return platform_driver_register(&soc_driver);
2059}
2060
2061static void snd_soc_exit(void)
2062{
2063 platform_driver_unregister(&soc_driver);
2064}
2065
2066module_init(snd_soc_init);
2067module_exit(snd_soc_exit);
2068
2069/* Module information */
2070MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
2071MODULE_DESCRIPTION("ALSA SoC Core");
2072MODULE_LICENSE("GPL");