]> bbs.cooldavid.org Git - net-next-2.6.git/blame - security/selinux/ss/services.c
selinux: convert the policy type_attr_map to flex_array
[net-next-2.6.git] / security / selinux / ss / services.c
CommitLineData
1da177e4
LT
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5d55a345 5 * James Morris <jmorris@redhat.com>
1da177e4
LT
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
376bd9cb 10 * Support for context based audit filters.
1da177e4
LT
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
5d55a345 14 * Added conditional policy language extensions
1da177e4 15 *
7420ed23
VY
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
17 *
18 * Added support for NetLabel
3bb56b25 19 * Added support for the policy capability bitmap
7420ed23 20 *
b94c7e67
CS
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
44c2d9bd
KK
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
0719aaf5
GT
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
44c2d9bd 33 * Copyright (C) 2008, 2009 NEC Corporation
3bb56b25 34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
376bd9cb 35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
b94c7e67 36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
1da177e4
LT
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
5d55a345 39 * it under the terms of the GNU General Public License as published by
1da177e4
LT
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
9f2ad665 46#include <linux/rcupdate.h>
1da177e4
LT
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
bb003079 51#include <linux/mutex.h>
0e55a004 52#include <linux/selinux.h>
6371dcd3 53#include <linux/flex_array.h>
7420ed23 54#include <net/netlabel.h>
bb003079 55
1da177e4
LT
56#include "flask.h"
57#include "avc.h"
58#include "avc_ss.h"
59#include "security.h"
60#include "context.h"
61#include "policydb.h"
62#include "sidtab.h"
63#include "services.h"
64#include "conditional.h"
65#include "mls.h"
7420ed23 66#include "objsec.h"
c60475bf 67#include "netlabel.h"
3de4bab5 68#include "xfrm.h"
02752760 69#include "ebitmap.h"
9d57a7f9 70#include "audit.h"
1da177e4
LT
71
72extern void selnl_notify_policyload(u32 seqno);
1da177e4 73
3bb56b25 74int selinux_policycap_netpeer;
b0c636b9 75int selinux_policycap_openperm;
3bb56b25 76
1da177e4 77static DEFINE_RWLOCK(policy_rwlock);
1da177e4
LT
78
79static struct sidtab sidtab;
80struct policydb policydb;
5d55a345 81int ss_initialized;
1da177e4
LT
82
83/*
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
87 * occurs.
88 */
5d55a345 89static u32 latest_granting;
1da177e4
LT
90
91/* Forward declaration. */
92static int context_struct_to_string(struct context *context, char **scontext,
93 u32 *scontext_len);
94
19439d05
SS
95static void context_struct_compute_av(struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd);
c6d3aaa4
SS
99
100struct selinux_mapping {
101 u16 value; /* policy value */
102 unsigned num_perms;
103 u32 perms[sizeof(u32) * 8];
104};
105
106static struct selinux_mapping *current_mapping;
107static u16 current_mapping_size;
108
109static int selinux_set_mapping(struct policydb *pol,
110 struct security_class_mapping *map,
111 struct selinux_mapping **out_map_p,
112 u16 *out_map_size)
113{
114 struct selinux_mapping *out_map = NULL;
115 size_t size = sizeof(struct selinux_mapping);
116 u16 i, j;
117 unsigned k;
118 bool print_unknown_handle = false;
119
120 /* Find number of classes in the input mapping */
121 if (!map)
122 return -EINVAL;
123 i = 0;
124 while (map[i].name)
125 i++;
126
127 /* Allocate space for the class records, plus one for class zero */
128 out_map = kcalloc(++i, size, GFP_ATOMIC);
129 if (!out_map)
130 return -ENOMEM;
131
132 /* Store the raw class and permission values */
133 j = 0;
134 while (map[j].name) {
135 struct security_class_mapping *p_in = map + (j++);
136 struct selinux_mapping *p_out = out_map + j;
137
138 /* An empty class string skips ahead */
139 if (!strcmp(p_in->name, "")) {
140 p_out->num_perms = 0;
141 continue;
142 }
143
144 p_out->value = string_to_security_class(pol, p_in->name);
145 if (!p_out->value) {
146 printk(KERN_INFO
147 "SELinux: Class %s not defined in policy.\n",
148 p_in->name);
149 if (pol->reject_unknown)
150 goto err;
151 p_out->num_perms = 0;
152 print_unknown_handle = true;
153 continue;
154 }
155
156 k = 0;
157 while (p_in->perms && p_in->perms[k]) {
158 /* An empty permission string skips ahead */
159 if (!*p_in->perms[k]) {
160 k++;
161 continue;
162 }
163 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
164 p_in->perms[k]);
165 if (!p_out->perms[k]) {
166 printk(KERN_INFO
167 "SELinux: Permission %s in class %s not defined in policy.\n",
168 p_in->perms[k], p_in->name);
169 if (pol->reject_unknown)
170 goto err;
171 print_unknown_handle = true;
172 }
173
174 k++;
175 }
176 p_out->num_perms = k;
177 }
178
179 if (print_unknown_handle)
180 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
181 pol->allow_unknown ? "allowed" : "denied");
182
183 *out_map_p = out_map;
184 *out_map_size = i;
185 return 0;
186err:
187 kfree(out_map);
188 return -EINVAL;
189}
190
191/*
192 * Get real, policy values from mapped values
193 */
194
195static u16 unmap_class(u16 tclass)
196{
197 if (tclass < current_mapping_size)
198 return current_mapping[tclass].value;
199
200 return tclass;
201}
202
c6d3aaa4
SS
203static void map_decision(u16 tclass, struct av_decision *avd,
204 int allow_unknown)
205{
206 if (tclass < current_mapping_size) {
207 unsigned i, n = current_mapping[tclass].num_perms;
208 u32 result;
209
210 for (i = 0, result = 0; i < n; i++) {
211 if (avd->allowed & current_mapping[tclass].perms[i])
212 result |= 1<<i;
213 if (allow_unknown && !current_mapping[tclass].perms[i])
214 result |= 1<<i;
215 }
216 avd->allowed = result;
217
218 for (i = 0, result = 0; i < n; i++)
219 if (avd->auditallow & current_mapping[tclass].perms[i])
220 result |= 1<<i;
221 avd->auditallow = result;
222
223 for (i = 0, result = 0; i < n; i++) {
224 if (avd->auditdeny & current_mapping[tclass].perms[i])
225 result |= 1<<i;
226 if (!allow_unknown && !current_mapping[tclass].perms[i])
227 result |= 1<<i;
228 }
0bce9527
EP
229 /*
230 * In case the kernel has a bug and requests a permission
231 * between num_perms and the maximum permission number, we
232 * should audit that denial
233 */
234 for (; i < (sizeof(u32)*8); i++)
235 result |= 1<<i;
c6d3aaa4
SS
236 avd->auditdeny = result;
237 }
238}
239
0719aaf5
GT
240int security_mls_enabled(void)
241{
242 return policydb.mls_enabled;
243}
c6d3aaa4 244
1da177e4
LT
245/*
246 * Return the boolean value of a constraint expression
247 * when it is applied to the specified source and target
248 * security contexts.
249 *
250 * xcontext is a special beast... It is used by the validatetrans rules
251 * only. For these rules, scontext is the context before the transition,
252 * tcontext is the context after the transition, and xcontext is the context
253 * of the process performing the transition. All other callers of
254 * constraint_expr_eval should pass in NULL for xcontext.
255 */
256static int constraint_expr_eval(struct context *scontext,
257 struct context *tcontext,
258 struct context *xcontext,
259 struct constraint_expr *cexpr)
260{
261 u32 val1, val2;
262 struct context *c;
263 struct role_datum *r1, *r2;
264 struct mls_level *l1, *l2;
265 struct constraint_expr *e;
266 int s[CEXPR_MAXDEPTH];
267 int sp = -1;
268
269 for (e = cexpr; e; e = e->next) {
270 switch (e->expr_type) {
271 case CEXPR_NOT:
272 BUG_ON(sp < 0);
273 s[sp] = !s[sp];
274 break;
275 case CEXPR_AND:
276 BUG_ON(sp < 1);
277 sp--;
c1a7368a 278 s[sp] &= s[sp + 1];
1da177e4
LT
279 break;
280 case CEXPR_OR:
281 BUG_ON(sp < 1);
282 sp--;
c1a7368a 283 s[sp] |= s[sp + 1];
1da177e4
LT
284 break;
285 case CEXPR_ATTR:
c1a7368a 286 if (sp == (CEXPR_MAXDEPTH - 1))
1da177e4
LT
287 return 0;
288 switch (e->attr) {
289 case CEXPR_USER:
290 val1 = scontext->user;
291 val2 = tcontext->user;
292 break;
293 case CEXPR_TYPE:
294 val1 = scontext->type;
295 val2 = tcontext->type;
296 break;
297 case CEXPR_ROLE:
298 val1 = scontext->role;
299 val2 = tcontext->role;
300 r1 = policydb.role_val_to_struct[val1 - 1];
301 r2 = policydb.role_val_to_struct[val2 - 1];
302 switch (e->op) {
303 case CEXPR_DOM:
304 s[++sp] = ebitmap_get_bit(&r1->dominates,
305 val2 - 1);
306 continue;
307 case CEXPR_DOMBY:
308 s[++sp] = ebitmap_get_bit(&r2->dominates,
309 val1 - 1);
310 continue;
311 case CEXPR_INCOMP:
5d55a345
EP
312 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
313 val2 - 1) &&
314 !ebitmap_get_bit(&r2->dominates,
315 val1 - 1));
1da177e4
LT
316 continue;
317 default:
318 break;
319 }
320 break;
321 case CEXPR_L1L2:
322 l1 = &(scontext->range.level[0]);
323 l2 = &(tcontext->range.level[0]);
324 goto mls_ops;
325 case CEXPR_L1H2:
326 l1 = &(scontext->range.level[0]);
327 l2 = &(tcontext->range.level[1]);
328 goto mls_ops;
329 case CEXPR_H1L2:
330 l1 = &(scontext->range.level[1]);
331 l2 = &(tcontext->range.level[0]);
332 goto mls_ops;
333 case CEXPR_H1H2:
334 l1 = &(scontext->range.level[1]);
335 l2 = &(tcontext->range.level[1]);
336 goto mls_ops;
337 case CEXPR_L1H1:
338 l1 = &(scontext->range.level[0]);
339 l2 = &(scontext->range.level[1]);
340 goto mls_ops;
341 case CEXPR_L2H2:
342 l1 = &(tcontext->range.level[0]);
343 l2 = &(tcontext->range.level[1]);
344 goto mls_ops;
345mls_ops:
346 switch (e->op) {
347 case CEXPR_EQ:
348 s[++sp] = mls_level_eq(l1, l2);
349 continue;
350 case CEXPR_NEQ:
351 s[++sp] = !mls_level_eq(l1, l2);
352 continue;
353 case CEXPR_DOM:
354 s[++sp] = mls_level_dom(l1, l2);
355 continue;
356 case CEXPR_DOMBY:
357 s[++sp] = mls_level_dom(l2, l1);
358 continue;
359 case CEXPR_INCOMP:
360 s[++sp] = mls_level_incomp(l2, l1);
361 continue;
362 default:
363 BUG();
364 return 0;
365 }
366 break;
367 default:
368 BUG();
369 return 0;
370 }
371
372 switch (e->op) {
373 case CEXPR_EQ:
374 s[++sp] = (val1 == val2);
375 break;
376 case CEXPR_NEQ:
377 s[++sp] = (val1 != val2);
378 break;
379 default:
380 BUG();
381 return 0;
382 }
383 break;
384 case CEXPR_NAMES:
385 if (sp == (CEXPR_MAXDEPTH-1))
386 return 0;
387 c = scontext;
388 if (e->attr & CEXPR_TARGET)
389 c = tcontext;
390 else if (e->attr & CEXPR_XTARGET) {
391 c = xcontext;
392 if (!c) {
393 BUG();
394 return 0;
395 }
396 }
397 if (e->attr & CEXPR_USER)
398 val1 = c->user;
399 else if (e->attr & CEXPR_ROLE)
400 val1 = c->role;
401 else if (e->attr & CEXPR_TYPE)
402 val1 = c->type;
403 else {
404 BUG();
405 return 0;
406 }
407
408 switch (e->op) {
409 case CEXPR_EQ:
410 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
411 break;
412 case CEXPR_NEQ:
413 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
414 break;
415 default:
416 BUG();
417 return 0;
418 }
419 break;
420 default:
421 BUG();
422 return 0;
423 }
424 }
425
426 BUG_ON(sp != 0);
427 return s[0];
428}
429
44c2d9bd
KK
430/*
431 * security_dump_masked_av - dumps masked permissions during
432 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
433 */
434static int dump_masked_av_helper(void *k, void *d, void *args)
435{
436 struct perm_datum *pdatum = d;
437 char **permission_names = args;
438
439 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
440
441 permission_names[pdatum->value - 1] = (char *)k;
442
443 return 0;
444}
445
446static void security_dump_masked_av(struct context *scontext,
447 struct context *tcontext,
448 u16 tclass,
449 u32 permissions,
450 const char *reason)
451{
452 struct common_datum *common_dat;
453 struct class_datum *tclass_dat;
454 struct audit_buffer *ab;
455 char *tclass_name;
456 char *scontext_name = NULL;
457 char *tcontext_name = NULL;
458 char *permission_names[32];
2da5d31b
JM
459 int index;
460 u32 length;
44c2d9bd
KK
461 bool need_comma = false;
462
463 if (!permissions)
464 return;
465
466 tclass_name = policydb.p_class_val_to_name[tclass - 1];
467 tclass_dat = policydb.class_val_to_struct[tclass - 1];
468 common_dat = tclass_dat->comdatum;
469
470 /* init permission_names */
471 if (common_dat &&
472 hashtab_map(common_dat->permissions.table,
473 dump_masked_av_helper, permission_names) < 0)
474 goto out;
475
476 if (hashtab_map(tclass_dat->permissions.table,
477 dump_masked_av_helper, permission_names) < 0)
478 goto out;
479
480 /* get scontext/tcontext in text form */
481 if (context_struct_to_string(scontext,
482 &scontext_name, &length) < 0)
483 goto out;
484
485 if (context_struct_to_string(tcontext,
486 &tcontext_name, &length) < 0)
487 goto out;
488
489 /* audit a message */
490 ab = audit_log_start(current->audit_context,
491 GFP_ATOMIC, AUDIT_SELINUX_ERR);
492 if (!ab)
493 goto out;
494
495 audit_log_format(ab, "op=security_compute_av reason=%s "
496 "scontext=%s tcontext=%s tclass=%s perms=",
497 reason, scontext_name, tcontext_name, tclass_name);
498
499 for (index = 0; index < 32; index++) {
500 u32 mask = (1 << index);
501
502 if ((mask & permissions) == 0)
503 continue;
504
505 audit_log_format(ab, "%s%s",
506 need_comma ? "," : "",
507 permission_names[index]
508 ? permission_names[index] : "????");
509 need_comma = true;
510 }
511 audit_log_end(ab);
512out:
513 /* release scontext/tcontext */
514 kfree(tcontext_name);
515 kfree(scontext_name);
516
517 return;
518}
519
d9250dea
KK
520/*
521 * security_boundary_permission - drops violated permissions
522 * on boundary constraint.
523 */
524static void type_attribute_bounds_av(struct context *scontext,
525 struct context *tcontext,
526 u16 tclass,
d9250dea
KK
527 struct av_decision *avd)
528{
2ae3ba39
KK
529 struct context lo_scontext;
530 struct context lo_tcontext;
531 struct av_decision lo_avd;
d9250dea
KK
532 struct type_datum *source
533 = policydb.type_val_to_struct[scontext->type - 1];
2ae3ba39
KK
534 struct type_datum *target
535 = policydb.type_val_to_struct[tcontext->type - 1];
536 u32 masked = 0;
d9250dea
KK
537
538 if (source->bounds) {
539 memset(&lo_avd, 0, sizeof(lo_avd));
540
541 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
542 lo_scontext.type = source->bounds;
543
544 context_struct_compute_av(&lo_scontext,
545 tcontext,
546 tclass,
d9250dea
KK
547 &lo_avd);
548 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
549 return; /* no masked permission */
550 masked = ~lo_avd.allowed & avd->allowed;
2ae3ba39
KK
551 }
552
553 if (target->bounds) {
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
557 lo_tcontext.type = target->bounds;
558
559 context_struct_compute_av(scontext,
560 &lo_tcontext,
561 tclass,
562 &lo_avd);
563 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
564 return; /* no masked permission */
565 masked = ~lo_avd.allowed & avd->allowed;
566 }
567
568 if (source->bounds && target->bounds) {
569 memset(&lo_avd, 0, sizeof(lo_avd));
570 /*
571 * lo_scontext and lo_tcontext are already
572 * set up.
573 */
574
575 context_struct_compute_av(&lo_scontext,
576 &lo_tcontext,
577 tclass,
578 &lo_avd);
579 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
580 return; /* no masked permission */
581 masked = ~lo_avd.allowed & avd->allowed;
582 }
d9250dea 583
2ae3ba39 584 if (masked) {
d9250dea
KK
585 /* mask violated permissions */
586 avd->allowed &= ~masked;
587
44c2d9bd
KK
588 /* audit masked permissions */
589 security_dump_masked_av(scontext, tcontext,
590 tclass, masked, "bounds");
d9250dea
KK
591 }
592}
593
1da177e4
LT
594/*
595 * Compute access vectors based on a context structure pair for
596 * the permissions in a particular class.
597 */
19439d05
SS
598static void context_struct_compute_av(struct context *scontext,
599 struct context *tcontext,
600 u16 tclass,
601 struct av_decision *avd)
1da177e4
LT
602{
603 struct constraint_node *constraint;
604 struct role_allow *ra;
605 struct avtab_key avkey;
782ebb99 606 struct avtab_node *node;
1da177e4 607 struct class_datum *tclass_datum;
782ebb99
SS
608 struct ebitmap *sattr, *tattr;
609 struct ebitmap_node *snode, *tnode;
610 unsigned int i, j;
1da177e4 611
1da177e4 612 avd->allowed = 0;
1da177e4
LT
613 avd->auditallow = 0;
614 avd->auditdeny = 0xffffffff;
1da177e4 615
c6d3aaa4
SS
616 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
617 if (printk_ratelimit())
618 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
19439d05 619 return;
c6d3aaa4 620 }
3f12070e
EP
621
622 tclass_datum = policydb.class_val_to_struct[tclass - 1];
623
1da177e4
LT
624 /*
625 * If a specific type enforcement rule was defined for
626 * this permission check, then use it.
627 */
1da177e4 628 avkey.target_class = tclass;
782ebb99 629 avkey.specified = AVTAB_AV;
6371dcd3
EP
630 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
631 BUG_ON(!sattr);
632 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
633 BUG_ON(!tattr);
9fe79ad1
KK
634 ebitmap_for_each_positive_bit(sattr, snode, i) {
635 ebitmap_for_each_positive_bit(tattr, tnode, j) {
782ebb99
SS
636 avkey.source_type = i + 1;
637 avkey.target_type = j + 1;
638 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
dbc74c65 639 node;
782ebb99
SS
640 node = avtab_search_node_next(node, avkey.specified)) {
641 if (node->key.specified == AVTAB_ALLOWED)
642 avd->allowed |= node->datum.data;
643 else if (node->key.specified == AVTAB_AUDITALLOW)
644 avd->auditallow |= node->datum.data;
645 else if (node->key.specified == AVTAB_AUDITDENY)
646 avd->auditdeny &= node->datum.data;
647 }
1da177e4 648
782ebb99
SS
649 /* Check conditional av table for additional permissions */
650 cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
651
652 }
653 }
1da177e4
LT
654
655 /*
656 * Remove any permissions prohibited by a constraint (this includes
657 * the MLS policy).
658 */
659 constraint = tclass_datum->constraints;
660 while (constraint) {
661 if ((constraint->permissions & (avd->allowed)) &&
662 !constraint_expr_eval(scontext, tcontext, NULL,
663 constraint->expr)) {
caabbdc0 664 avd->allowed &= ~(constraint->permissions);
1da177e4
LT
665 }
666 constraint = constraint->next;
667 }
668
669 /*
670 * If checking process transition permission and the
671 * role is changing, then check the (current_role, new_role)
672 * pair.
673 */
c6d3aaa4
SS
674 if (tclass == policydb.process_class &&
675 (avd->allowed & policydb.process_trans_perms) &&
1da177e4
LT
676 scontext->role != tcontext->role) {
677 for (ra = policydb.role_allow; ra; ra = ra->next) {
678 if (scontext->role == ra->role &&
679 tcontext->role == ra->new_role)
680 break;
681 }
682 if (!ra)
c6d3aaa4 683 avd->allowed &= ~policydb.process_trans_perms;
1da177e4
LT
684 }
685
d9250dea
KK
686 /*
687 * If the given source and target types have boundary
688 * constraint, lazy checks have to mask any violated
689 * permission and notice it to userspace via audit.
690 */
691 type_attribute_bounds_av(scontext, tcontext,
19439d05 692 tclass, avd);
1da177e4
LT
693}
694
695static int security_validtrans_handle_fail(struct context *ocontext,
5d55a345
EP
696 struct context *ncontext,
697 struct context *tcontext,
698 u16 tclass)
1da177e4
LT
699{
700 char *o = NULL, *n = NULL, *t = NULL;
701 u32 olen, nlen, tlen;
702
703 if (context_struct_to_string(ocontext, &o, &olen) < 0)
704 goto out;
705 if (context_struct_to_string(ncontext, &n, &nlen) < 0)
706 goto out;
707 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
708 goto out;
9ad9ad38 709 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
710 "security_validate_transition: denied for"
711 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
712 o, n, t, policydb.p_class_val_to_name[tclass-1]);
1da177e4
LT
713out:
714 kfree(o);
715 kfree(n);
716 kfree(t);
717
718 if (!selinux_enforcing)
719 return 0;
720 return -EPERM;
721}
722
723int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
c6d3aaa4 724 u16 orig_tclass)
1da177e4
LT
725{
726 struct context *ocontext;
727 struct context *ncontext;
728 struct context *tcontext;
729 struct class_datum *tclass_datum;
730 struct constraint_node *constraint;
c6d3aaa4 731 u16 tclass;
1da177e4
LT
732 int rc = 0;
733
734 if (!ss_initialized)
735 return 0;
736
0804d113 737 read_lock(&policy_rwlock);
1da177e4 738
c6d3aaa4
SS
739 tclass = unmap_class(orig_tclass);
740
1da177e4 741 if (!tclass || tclass > policydb.p_classes.nprim) {
744ba35e
EP
742 printk(KERN_ERR "SELinux: %s: unrecognized class %d\n",
743 __func__, tclass);
1da177e4
LT
744 rc = -EINVAL;
745 goto out;
746 }
747 tclass_datum = policydb.class_val_to_struct[tclass - 1];
748
749 ocontext = sidtab_search(&sidtab, oldsid);
750 if (!ocontext) {
744ba35e
EP
751 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
752 __func__, oldsid);
1da177e4
LT
753 rc = -EINVAL;
754 goto out;
755 }
756
757 ncontext = sidtab_search(&sidtab, newsid);
758 if (!ncontext) {
744ba35e
EP
759 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
760 __func__, newsid);
1da177e4
LT
761 rc = -EINVAL;
762 goto out;
763 }
764
765 tcontext = sidtab_search(&sidtab, tasksid);
766 if (!tcontext) {
744ba35e
EP
767 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
768 __func__, tasksid);
1da177e4
LT
769 rc = -EINVAL;
770 goto out;
771 }
772
773 constraint = tclass_datum->validatetrans;
774 while (constraint) {
775 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
5d55a345 776 constraint->expr)) {
1da177e4 777 rc = security_validtrans_handle_fail(ocontext, ncontext,
5d55a345 778 tcontext, tclass);
1da177e4
LT
779 goto out;
780 }
781 constraint = constraint->next;
782 }
783
784out:
0804d113 785 read_unlock(&policy_rwlock);
1da177e4
LT
786 return rc;
787}
788
d9250dea
KK
789/*
790 * security_bounded_transition - check whether the given
791 * transition is directed to bounded, or not.
792 * It returns 0, if @newsid is bounded by @oldsid.
793 * Otherwise, it returns error code.
794 *
795 * @oldsid : current security identifier
796 * @newsid : destinated security identifier
797 */
798int security_bounded_transition(u32 old_sid, u32 new_sid)
799{
800 struct context *old_context, *new_context;
801 struct type_datum *type;
802 int index;
803 int rc = -EINVAL;
804
805 read_lock(&policy_rwlock);
806
807 old_context = sidtab_search(&sidtab, old_sid);
808 if (!old_context) {
809 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
810 __func__, old_sid);
811 goto out;
812 }
813
814 new_context = sidtab_search(&sidtab, new_sid);
815 if (!new_context) {
816 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
817 __func__, new_sid);
818 goto out;
819 }
820
af901ca1 821 /* type/domain unchanged */
d9250dea
KK
822 if (old_context->type == new_context->type) {
823 rc = 0;
824 goto out;
825 }
826
827 index = new_context->type;
828 while (true) {
829 type = policydb.type_val_to_struct[index - 1];
830 BUG_ON(!type);
831
832 /* not bounded anymore */
833 if (!type->bounds) {
834 rc = -EPERM;
835 break;
836 }
837
838 /* @newsid is bounded by @oldsid */
839 if (type->bounds == old_context->type) {
840 rc = 0;
841 break;
842 }
843 index = type->bounds;
844 }
44c2d9bd
KK
845
846 if (rc) {
847 char *old_name = NULL;
848 char *new_name = NULL;
2da5d31b 849 u32 length;
44c2d9bd
KK
850
851 if (!context_struct_to_string(old_context,
852 &old_name, &length) &&
853 !context_struct_to_string(new_context,
854 &new_name, &length)) {
855 audit_log(current->audit_context,
856 GFP_ATOMIC, AUDIT_SELINUX_ERR,
857 "op=security_bounded_transition "
858 "result=denied "
859 "oldcontext=%s newcontext=%s",
860 old_name, new_name);
861 }
862 kfree(new_name);
863 kfree(old_name);
864 }
d9250dea
KK
865out:
866 read_unlock(&policy_rwlock);
867
868 return rc;
869}
870
19439d05 871static void avd_init(struct av_decision *avd)
c6d3aaa4 872{
19439d05
SS
873 avd->allowed = 0;
874 avd->auditallow = 0;
875 avd->auditdeny = 0xffffffff;
876 avd->seqno = latest_granting;
877 avd->flags = 0;
c6d3aaa4
SS
878}
879
19439d05 880
1da177e4
LT
881/**
882 * security_compute_av - Compute access vector decisions.
883 * @ssid: source security identifier
884 * @tsid: target security identifier
885 * @tclass: target security class
1da177e4
LT
886 * @avd: access vector decisions
887 *
888 * Compute a set of access vector decisions based on the
889 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1da177e4 890 */
19439d05
SS
891void security_compute_av(u32 ssid,
892 u32 tsid,
893 u16 orig_tclass,
894 struct av_decision *avd)
1da177e4 895{
c6d3aaa4 896 u16 tclass;
19439d05 897 struct context *scontext = NULL, *tcontext = NULL;
c6d3aaa4 898
b7f3008a 899 read_lock(&policy_rwlock);
19439d05 900 avd_init(avd);
c6d3aaa4
SS
901 if (!ss_initialized)
902 goto allow;
903
19439d05
SS
904 scontext = sidtab_search(&sidtab, ssid);
905 if (!scontext) {
906 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
907 __func__, ssid);
908 goto out;
909 }
910
911 /* permissive domain? */
912 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
913 avd->flags |= AVD_FLAGS_PERMISSIVE;
914
915 tcontext = sidtab_search(&sidtab, tsid);
916 if (!tcontext) {
917 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
918 __func__, tsid);
919 goto out;
920 }
921
c6d3aaa4
SS
922 tclass = unmap_class(orig_tclass);
923 if (unlikely(orig_tclass && !tclass)) {
924 if (policydb.allow_unknown)
925 goto allow;
b7f3008a 926 goto out;
c6d3aaa4 927 }
19439d05 928 context_struct_compute_av(scontext, tcontext, tclass, avd);
c6d3aaa4 929 map_decision(orig_tclass, avd, policydb.allow_unknown);
b7f3008a 930out:
c6d3aaa4 931 read_unlock(&policy_rwlock);
19439d05 932 return;
c6d3aaa4
SS
933allow:
934 avd->allowed = 0xffffffff;
b7f3008a 935 goto out;
c6d3aaa4
SS
936}
937
19439d05
SS
938void security_compute_av_user(u32 ssid,
939 u32 tsid,
940 u16 tclass,
941 struct av_decision *avd)
c6d3aaa4 942{
19439d05 943 struct context *scontext = NULL, *tcontext = NULL;
1da177e4 944
19439d05
SS
945 read_lock(&policy_rwlock);
946 avd_init(avd);
947 if (!ss_initialized)
948 goto allow;
949
950 scontext = sidtab_search(&sidtab, ssid);
951 if (!scontext) {
952 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
953 __func__, ssid);
954 goto out;
1da177e4
LT
955 }
956
19439d05
SS
957 /* permissive domain? */
958 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
959 avd->flags |= AVD_FLAGS_PERMISSIVE;
960
961 tcontext = sidtab_search(&sidtab, tsid);
962 if (!tcontext) {
963 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
964 __func__, tsid);
965 goto out;
966 }
967
968 if (unlikely(!tclass)) {
969 if (policydb.allow_unknown)
970 goto allow;
971 goto out;
972 }
973
974 context_struct_compute_av(scontext, tcontext, tclass, avd);
975 out:
0804d113 976 read_unlock(&policy_rwlock);
19439d05
SS
977 return;
978allow:
979 avd->allowed = 0xffffffff;
980 goto out;
1da177e4
LT
981}
982
983/*
984 * Write the security context string representation of
985 * the context structure `context' into a dynamically
986 * allocated string of the correct size. Set `*scontext'
987 * to point to this string and set `*scontext_len' to
988 * the length of the string.
989 */
990static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
991{
992 char *scontextp;
993
994 *scontext = NULL;
995 *scontext_len = 0;
996
12b29f34
SS
997 if (context->len) {
998 *scontext_len = context->len;
999 *scontext = kstrdup(context->str, GFP_ATOMIC);
1000 if (!(*scontext))
1001 return -ENOMEM;
1002 return 0;
1003 }
1004
1da177e4
LT
1005 /* Compute the size of the context. */
1006 *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
1007 *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
1008 *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
1009 *scontext_len += mls_compute_context_len(context);
1010
1011 /* Allocate space for the context; caller must free this space. */
1012 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
5d55a345 1013 if (!scontextp)
1da177e4 1014 return -ENOMEM;
1da177e4
LT
1015 *scontext = scontextp;
1016
1017 /*
1018 * Copy the user name, role name and type name into the context.
1019 */
1020 sprintf(scontextp, "%s:%s:%s",
1021 policydb.p_user_val_to_name[context->user - 1],
1022 policydb.p_role_val_to_name[context->role - 1],
1023 policydb.p_type_val_to_name[context->type - 1]);
1024 scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
5d55a345
EP
1025 1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
1026 1 + strlen(policydb.p_type_val_to_name[context->type - 1]);
1da177e4
LT
1027
1028 mls_sid_to_context(context, &scontextp);
1029
1030 *scontextp = 0;
1031
1032 return 0;
1033}
1034
1035#include "initial_sid_to_string.h"
1036
f0ee2e46
JC
1037const char *security_get_initial_sid_context(u32 sid)
1038{
1039 if (unlikely(sid > SECINITSID_NUM))
1040 return NULL;
1041 return initial_sid_to_string[sid];
1042}
1043
12b29f34
SS
1044static int security_sid_to_context_core(u32 sid, char **scontext,
1045 u32 *scontext_len, int force)
1da177e4
LT
1046{
1047 struct context *context;
1048 int rc = 0;
1049
4f4acf3a
SS
1050 *scontext = NULL;
1051 *scontext_len = 0;
1052
1da177e4
LT
1053 if (!ss_initialized) {
1054 if (sid <= SECINITSID_NUM) {
1055 char *scontextp;
1056
1057 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
5d55a345 1058 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
0cccca06
SH
1059 if (!scontextp) {
1060 rc = -ENOMEM;
1061 goto out;
1062 }
1da177e4
LT
1063 strcpy(scontextp, initial_sid_to_string[sid]);
1064 *scontext = scontextp;
1065 goto out;
1066 }
744ba35e
EP
1067 printk(KERN_ERR "SELinux: %s: called before initial "
1068 "load_policy on unknown SID %d\n", __func__, sid);
1da177e4
LT
1069 rc = -EINVAL;
1070 goto out;
1071 }
0804d113 1072 read_lock(&policy_rwlock);
12b29f34
SS
1073 if (force)
1074 context = sidtab_search_force(&sidtab, sid);
1075 else
1076 context = sidtab_search(&sidtab, sid);
1da177e4 1077 if (!context) {
744ba35e
EP
1078 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1079 __func__, sid);
1da177e4
LT
1080 rc = -EINVAL;
1081 goto out_unlock;
1082 }
1083 rc = context_struct_to_string(context, scontext, scontext_len);
1084out_unlock:
0804d113 1085 read_unlock(&policy_rwlock);
1da177e4
LT
1086out:
1087 return rc;
1088
1089}
1090
12b29f34
SS
1091/**
1092 * security_sid_to_context - Obtain a context for a given SID.
1093 * @sid: security identifier, SID
1094 * @scontext: security context
1095 * @scontext_len: length in bytes
1096 *
1097 * Write the string representation of the context associated with @sid
1098 * into a dynamically allocated string of the correct size. Set @scontext
1099 * to point to this string and set @scontext_len to the length of the string.
1100 */
1101int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1da177e4 1102{
12b29f34
SS
1103 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1104}
1105
1106int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1107{
1108 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1109}
1110
9a59daa0
SS
1111/*
1112 * Caveat: Mutates scontext.
1113 */
12b29f34
SS
1114static int string_to_context_struct(struct policydb *pol,
1115 struct sidtab *sidtabp,
9a59daa0 1116 char *scontext,
12b29f34
SS
1117 u32 scontext_len,
1118 struct context *ctx,
9a59daa0 1119 u32 def_sid)
12b29f34 1120{
1da177e4
LT
1121 struct role_datum *role;
1122 struct type_datum *typdatum;
1123 struct user_datum *usrdatum;
1124 char *scontextp, *p, oldc;
1125 int rc = 0;
1126
12b29f34 1127 context_init(ctx);
1da177e4 1128
1da177e4
LT
1129 /* Parse the security context. */
1130
1131 rc = -EINVAL;
9a59daa0 1132 scontextp = (char *) scontext;
1da177e4
LT
1133
1134 /* Extract the user. */
1135 p = scontextp;
1136 while (*p && *p != ':')
1137 p++;
1138
1139 if (*p == 0)
12b29f34 1140 goto out;
1da177e4
LT
1141
1142 *p++ = 0;
1143
12b29f34 1144 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1da177e4 1145 if (!usrdatum)
12b29f34 1146 goto out;
1da177e4 1147
12b29f34 1148 ctx->user = usrdatum->value;
1da177e4
LT
1149
1150 /* Extract role. */
1151 scontextp = p;
1152 while (*p && *p != ':')
1153 p++;
1154
1155 if (*p == 0)
12b29f34 1156 goto out;
1da177e4
LT
1157
1158 *p++ = 0;
1159
12b29f34 1160 role = hashtab_search(pol->p_roles.table, scontextp);
1da177e4 1161 if (!role)
12b29f34
SS
1162 goto out;
1163 ctx->role = role->value;
1da177e4
LT
1164
1165 /* Extract type. */
1166 scontextp = p;
1167 while (*p && *p != ':')
1168 p++;
1169 oldc = *p;
1170 *p++ = 0;
1171
12b29f34 1172 typdatum = hashtab_search(pol->p_types.table, scontextp);
d9250dea 1173 if (!typdatum || typdatum->attribute)
12b29f34 1174 goto out;
1da177e4 1175
12b29f34 1176 ctx->type = typdatum->value;
1da177e4 1177
12b29f34 1178 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1da177e4 1179 if (rc)
12b29f34 1180 goto out;
1da177e4 1181
9a59daa0 1182 if ((p - scontext) < scontext_len) {
1da177e4 1183 rc = -EINVAL;
12b29f34 1184 goto out;
1da177e4
LT
1185 }
1186
1187 /* Check the validity of the new context. */
12b29f34 1188 if (!policydb_context_isvalid(pol, ctx)) {
1da177e4 1189 rc = -EINVAL;
12b29f34 1190 goto out;
1da177e4 1191 }
12b29f34
SS
1192 rc = 0;
1193out:
8e531af9
EP
1194 if (rc)
1195 context_destroy(ctx);
12b29f34
SS
1196 return rc;
1197}
1198
1199static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1200 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1201 int force)
1202{
9a59daa0 1203 char *scontext2, *str = NULL;
12b29f34
SS
1204 struct context context;
1205 int rc = 0;
1206
1207 if (!ss_initialized) {
1208 int i;
1209
1210 for (i = 1; i < SECINITSID_NUM; i++) {
1211 if (!strcmp(initial_sid_to_string[i], scontext)) {
1212 *sid = i;
9a59daa0 1213 return 0;
12b29f34
SS
1214 }
1215 }
1216 *sid = SECINITSID_KERNEL;
9a59daa0 1217 return 0;
12b29f34
SS
1218 }
1219 *sid = SECSID_NULL;
1220
9a59daa0 1221 /* Copy the string so that we can modify the copy as we parse it. */
c1a7368a 1222 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
9a59daa0
SS
1223 if (!scontext2)
1224 return -ENOMEM;
1225 memcpy(scontext2, scontext, scontext_len);
1226 scontext2[scontext_len] = 0;
1227
1228 if (force) {
1229 /* Save another copy for storing in uninterpreted form */
1230 str = kstrdup(scontext2, gfp_flags);
1231 if (!str) {
1232 kfree(scontext2);
1233 return -ENOMEM;
1234 }
1235 }
1236
0804d113 1237 read_lock(&policy_rwlock);
12b29f34 1238 rc = string_to_context_struct(&policydb, &sidtab,
9a59daa0
SS
1239 scontext2, scontext_len,
1240 &context, def_sid);
12b29f34 1241 if (rc == -EINVAL && force) {
9a59daa0 1242 context.str = str;
12b29f34 1243 context.len = scontext_len;
9a59daa0 1244 str = NULL;
12b29f34
SS
1245 } else if (rc)
1246 goto out;
1247 rc = sidtab_context_to_sid(&sidtab, &context, sid);
8e531af9 1248 context_destroy(&context);
1da177e4 1249out:
0804d113 1250 read_unlock(&policy_rwlock);
9a59daa0
SS
1251 kfree(scontext2);
1252 kfree(str);
1da177e4
LT
1253 return rc;
1254}
1255
f5c1d5b2
JM
1256/**
1257 * security_context_to_sid - Obtain a SID for a given security context.
1258 * @scontext: security context
1259 * @scontext_len: length in bytes
1260 * @sid: security identifier, SID
1261 *
1262 * Obtains a SID associated with the security context that
1263 * has the string representation specified by @scontext.
1264 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1265 * memory is available, or 0 on success.
1266 */
8f0cfa52 1267int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
f5c1d5b2
JM
1268{
1269 return security_context_to_sid_core(scontext, scontext_len,
12b29f34 1270 sid, SECSID_NULL, GFP_KERNEL, 0);
f5c1d5b2
JM
1271}
1272
1273/**
1274 * security_context_to_sid_default - Obtain a SID for a given security context,
1275 * falling back to specified default if needed.
1276 *
1277 * @scontext: security context
1278 * @scontext_len: length in bytes
1279 * @sid: security identifier, SID
d133a960 1280 * @def_sid: default SID to assign on error
f5c1d5b2
JM
1281 *
1282 * Obtains a SID associated with the security context that
1283 * has the string representation specified by @scontext.
1284 * The default SID is passed to the MLS layer to be used to allow
1285 * kernel labeling of the MLS field if the MLS field is not present
1286 * (for upgrading to MLS without full relabel).
12b29f34 1287 * Implicitly forces adding of the context even if it cannot be mapped yet.
f5c1d5b2
JM
1288 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1289 * memory is available, or 0 on success.
1290 */
7bf570dc
DH
1291int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1292 u32 *sid, u32 def_sid, gfp_t gfp_flags)
f5c1d5b2
JM
1293{
1294 return security_context_to_sid_core(scontext, scontext_len,
12b29f34
SS
1295 sid, def_sid, gfp_flags, 1);
1296}
1297
1298int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1299 u32 *sid)
1300{
1301 return security_context_to_sid_core(scontext, scontext_len,
1302 sid, SECSID_NULL, GFP_KERNEL, 1);
f5c1d5b2
JM
1303}
1304
1da177e4
LT
1305static int compute_sid_handle_invalid_context(
1306 struct context *scontext,
1307 struct context *tcontext,
1308 u16 tclass,
1309 struct context *newcontext)
1310{
1311 char *s = NULL, *t = NULL, *n = NULL;
1312 u32 slen, tlen, nlen;
1313
1314 if (context_struct_to_string(scontext, &s, &slen) < 0)
1315 goto out;
1316 if (context_struct_to_string(tcontext, &t, &tlen) < 0)
1317 goto out;
1318 if (context_struct_to_string(newcontext, &n, &nlen) < 0)
1319 goto out;
9ad9ad38 1320 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1da177e4
LT
1321 "security_compute_sid: invalid context %s"
1322 " for scontext=%s"
1323 " tcontext=%s"
1324 " tclass=%s",
1325 n, s, t, policydb.p_class_val_to_name[tclass-1]);
1326out:
1327 kfree(s);
1328 kfree(t);
1329 kfree(n);
1330 if (!selinux_enforcing)
1331 return 0;
1332 return -EACCES;
1333}
1334
1335static int security_compute_sid(u32 ssid,
1336 u32 tsid,
c6d3aaa4 1337 u16 orig_tclass,
1da177e4 1338 u32 specified,
c6d3aaa4
SS
1339 u32 *out_sid,
1340 bool kern)
1da177e4
LT
1341{
1342 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1343 struct role_trans *roletr = NULL;
1344 struct avtab_key avkey;
1345 struct avtab_datum *avdatum;
1346 struct avtab_node *node;
c6d3aaa4 1347 u16 tclass;
1da177e4
LT
1348 int rc = 0;
1349
1350 if (!ss_initialized) {
c6d3aaa4
SS
1351 switch (orig_tclass) {
1352 case SECCLASS_PROCESS: /* kernel value */
1da177e4
LT
1353 *out_sid = ssid;
1354 break;
1355 default:
1356 *out_sid = tsid;
1357 break;
1358 }
1359 goto out;
1360 }
1361
851f8a69
VY
1362 context_init(&newcontext);
1363
0804d113 1364 read_lock(&policy_rwlock);
1da177e4 1365
c6d3aaa4
SS
1366 if (kern)
1367 tclass = unmap_class(orig_tclass);
1368 else
1369 tclass = orig_tclass;
1370
1da177e4
LT
1371 scontext = sidtab_search(&sidtab, ssid);
1372 if (!scontext) {
744ba35e
EP
1373 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1374 __func__, ssid);
1da177e4
LT
1375 rc = -EINVAL;
1376 goto out_unlock;
1377 }
1378 tcontext = sidtab_search(&sidtab, tsid);
1379 if (!tcontext) {
744ba35e
EP
1380 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1381 __func__, tsid);
1da177e4
LT
1382 rc = -EINVAL;
1383 goto out_unlock;
1384 }
1385
1da177e4
LT
1386 /* Set the user identity. */
1387 switch (specified) {
1388 case AVTAB_TRANSITION:
1389 case AVTAB_CHANGE:
1390 /* Use the process user identity. */
1391 newcontext.user = scontext->user;
1392 break;
1393 case AVTAB_MEMBER:
1394 /* Use the related object owner. */
1395 newcontext.user = tcontext->user;
1396 break;
1397 }
1398
1399 /* Set the role and type to default values. */
c6d3aaa4 1400 if (tclass == policydb.process_class) {
1da177e4
LT
1401 /* Use the current role and type of process. */
1402 newcontext.role = scontext->role;
1403 newcontext.type = scontext->type;
c6d3aaa4 1404 } else {
1da177e4
LT
1405 /* Use the well-defined object role. */
1406 newcontext.role = OBJECT_R_VAL;
1407 /* Use the type of the related object. */
1408 newcontext.type = tcontext->type;
1409 }
1410
1411 /* Look for a type transition/member/change rule. */
1412 avkey.source_type = scontext->type;
1413 avkey.target_type = tcontext->type;
1414 avkey.target_class = tclass;
782ebb99
SS
1415 avkey.specified = specified;
1416 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1da177e4
LT
1417
1418 /* If no permanent rule, also check for enabled conditional rules */
5d55a345 1419 if (!avdatum) {
782ebb99 1420 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
dbc74c65 1421 for (; node; node = avtab_search_node_next(node, specified)) {
782ebb99 1422 if (node->key.specified & AVTAB_ENABLED) {
1da177e4
LT
1423 avdatum = &node->datum;
1424 break;
1425 }
1426 }
1427 }
1428
782ebb99 1429 if (avdatum) {
1da177e4 1430 /* Use the type from the type transition/member/change rule. */
782ebb99 1431 newcontext.type = avdatum->data;
1da177e4
LT
1432 }
1433
1434 /* Check for class-specific changes. */
c6d3aaa4 1435 if (tclass == policydb.process_class) {
1da177e4
LT
1436 if (specified & AVTAB_TRANSITION) {
1437 /* Look for a role transition rule. */
1438 for (roletr = policydb.role_tr; roletr;
1439 roletr = roletr->next) {
1440 if (roletr->role == scontext->role &&
1441 roletr->type == tcontext->type) {
1442 /* Use the role transition rule. */
1443 newcontext.role = roletr->new_role;
1444 break;
1445 }
1446 }
1447 }
1da177e4
LT
1448 }
1449
1450 /* Set the MLS attributes.
1451 This is done last because it may allocate memory. */
1452 rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
1453 if (rc)
1454 goto out_unlock;
1455
1456 /* Check the validity of the context. */
1457 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1458 rc = compute_sid_handle_invalid_context(scontext,
1459 tcontext,
1460 tclass,
1461 &newcontext);
1462 if (rc)
1463 goto out_unlock;
1464 }
1465 /* Obtain the sid for the context. */
1466 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1467out_unlock:
0804d113 1468 read_unlock(&policy_rwlock);
1da177e4
LT
1469 context_destroy(&newcontext);
1470out:
1471 return rc;
1472}
1473
1474/**
1475 * security_transition_sid - Compute the SID for a new subject/object.
1476 * @ssid: source security identifier
1477 * @tsid: target security identifier
1478 * @tclass: target security class
1479 * @out_sid: security identifier for new subject/object
1480 *
1481 * Compute a SID to use for labeling a new subject or object in the
1482 * class @tclass based on a SID pair (@ssid, @tsid).
1483 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1484 * if insufficient memory is available, or %0 if the new SID was
1485 * computed successfully.
1486 */
1487int security_transition_sid(u32 ssid,
1488 u32 tsid,
1489 u16 tclass,
1490 u32 *out_sid)
1491{
c6d3aaa4
SS
1492 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1493 out_sid, true);
1494}
1495
1496int security_transition_sid_user(u32 ssid,
1497 u32 tsid,
1498 u16 tclass,
1499 u32 *out_sid)
1500{
1501 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1502 out_sid, false);
1da177e4
LT
1503}
1504
1505/**
1506 * security_member_sid - Compute the SID for member selection.
1507 * @ssid: source security identifier
1508 * @tsid: target security identifier
1509 * @tclass: target security class
1510 * @out_sid: security identifier for selected member
1511 *
1512 * Compute a SID to use when selecting a member of a polyinstantiated
1513 * object of class @tclass based on a SID pair (@ssid, @tsid).
1514 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1515 * if insufficient memory is available, or %0 if the SID was
1516 * computed successfully.
1517 */
1518int security_member_sid(u32 ssid,
1519 u32 tsid,
1520 u16 tclass,
1521 u32 *out_sid)
1522{
c6d3aaa4
SS
1523 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid,
1524 false);
1da177e4
LT
1525}
1526
1527/**
1528 * security_change_sid - Compute the SID for object relabeling.
1529 * @ssid: source security identifier
1530 * @tsid: target security identifier
1531 * @tclass: target security class
1532 * @out_sid: security identifier for selected member
1533 *
1534 * Compute a SID to use for relabeling an object of class @tclass
1535 * based on a SID pair (@ssid, @tsid).
1536 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1537 * if insufficient memory is available, or %0 if the SID was
1538 * computed successfully.
1539 */
1540int security_change_sid(u32 ssid,
1541 u32 tsid,
1542 u16 tclass,
1543 u32 *out_sid)
1544{
c6d3aaa4
SS
1545 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid,
1546 false);
b94c7e67
CS
1547}
1548
1da177e4
LT
1549/* Clone the SID into the new SID table. */
1550static int clone_sid(u32 sid,
1551 struct context *context,
1552 void *arg)
1553{
1554 struct sidtab *s = arg;
1555
42596eaf
GT
1556 if (sid > SECINITSID_NUM)
1557 return sidtab_insert(s, sid, context);
1558 else
1559 return 0;
1da177e4
LT
1560}
1561
1562static inline int convert_context_handle_invalid_context(struct context *context)
1563{
1564 int rc = 0;
1565
1566 if (selinux_enforcing) {
1567 rc = -EINVAL;
1568 } else {
1569 char *s;
1570 u32 len;
1571
12b29f34
SS
1572 if (!context_struct_to_string(context, &s, &len)) {
1573 printk(KERN_WARNING
1574 "SELinux: Context %s would be invalid if enforcing\n",
1575 s);
1576 kfree(s);
1577 }
1da177e4
LT
1578 }
1579 return rc;
1580}
1581
1582struct convert_context_args {
1583 struct policydb *oldp;
1584 struct policydb *newp;
1585};
1586
1587/*
1588 * Convert the values in the security context
1589 * structure `c' from the values specified
1590 * in the policy `p->oldp' to the values specified
1591 * in the policy `p->newp'. Verify that the
1592 * context is valid under the new policy.
1593 */
1594static int convert_context(u32 key,
1595 struct context *c,
1596 void *p)
1597{
1598 struct convert_context_args *args;
1599 struct context oldc;
0719aaf5
GT
1600 struct ocontext *oc;
1601 struct mls_range *range;
1da177e4
LT
1602 struct role_datum *role;
1603 struct type_datum *typdatum;
1604 struct user_datum *usrdatum;
1605 char *s;
1606 u32 len;
42596eaf
GT
1607 int rc = 0;
1608
1609 if (key <= SECINITSID_NUM)
1610 goto out;
1da177e4
LT
1611
1612 args = p;
1613
12b29f34
SS
1614 if (c->str) {
1615 struct context ctx;
9a59daa0
SS
1616 s = kstrdup(c->str, GFP_KERNEL);
1617 if (!s) {
1618 rc = -ENOMEM;
1619 goto out;
1620 }
1621 rc = string_to_context_struct(args->newp, NULL, s,
1622 c->len, &ctx, SECSID_NULL);
1623 kfree(s);
12b29f34
SS
1624 if (!rc) {
1625 printk(KERN_INFO
1626 "SELinux: Context %s became valid (mapped).\n",
1627 c->str);
1628 /* Replace string with mapped representation. */
1629 kfree(c->str);
1630 memcpy(c, &ctx, sizeof(*c));
1631 goto out;
1632 } else if (rc == -EINVAL) {
1633 /* Retain string representation for later mapping. */
1634 rc = 0;
1635 goto out;
1636 } else {
1637 /* Other error condition, e.g. ENOMEM. */
1638 printk(KERN_ERR
1639 "SELinux: Unable to map context %s, rc = %d.\n",
1640 c->str, -rc);
1641 goto out;
1642 }
1643 }
1644
1da177e4
LT
1645 rc = context_cpy(&oldc, c);
1646 if (rc)
1647 goto out;
1648
1649 rc = -EINVAL;
1650
1651 /* Convert the user. */
1652 usrdatum = hashtab_search(args->newp->p_users.table,
5d55a345
EP
1653 args->oldp->p_user_val_to_name[c->user - 1]);
1654 if (!usrdatum)
1da177e4 1655 goto bad;
1da177e4
LT
1656 c->user = usrdatum->value;
1657
1658 /* Convert the role. */
1659 role = hashtab_search(args->newp->p_roles.table,
5d55a345
EP
1660 args->oldp->p_role_val_to_name[c->role - 1]);
1661 if (!role)
1da177e4 1662 goto bad;
1da177e4
LT
1663 c->role = role->value;
1664
1665 /* Convert the type. */
1666 typdatum = hashtab_search(args->newp->p_types.table,
5d55a345
EP
1667 args->oldp->p_type_val_to_name[c->type - 1]);
1668 if (!typdatum)
1da177e4 1669 goto bad;
1da177e4
LT
1670 c->type = typdatum->value;
1671
0719aaf5
GT
1672 /* Convert the MLS fields if dealing with MLS policies */
1673 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1674 rc = mls_convert_context(args->oldp, args->newp, c);
1675 if (rc)
1676 goto bad;
1677 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1678 /*
1679 * Switching between MLS and non-MLS policy:
1680 * free any storage used by the MLS fields in the
1681 * context for all existing entries in the sidtab.
1682 */
1683 mls_context_destroy(c);
1684 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1685 /*
1686 * Switching between non-MLS and MLS policy:
1687 * ensure that the MLS fields of the context for all
1688 * existing entries in the sidtab are filled in with a
1689 * suitable default value, likely taken from one of the
1690 * initial SIDs.
1691 */
1692 oc = args->newp->ocontexts[OCON_ISID];
1693 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1694 oc = oc->next;
1695 if (!oc) {
1696 printk(KERN_ERR "SELinux: unable to look up"
1697 " the initial SIDs list\n");
1698 goto bad;
1699 }
1700 range = &oc->context[0].range;
1701 rc = mls_range_set(c, range);
1702 if (rc)
1703 goto bad;
1704 }
1da177e4
LT
1705
1706 /* Check the validity of the new context. */
1707 if (!policydb_context_isvalid(args->newp, c)) {
1708 rc = convert_context_handle_invalid_context(&oldc);
1709 if (rc)
1710 goto bad;
1711 }
1712
1713 context_destroy(&oldc);
12b29f34 1714 rc = 0;
1da177e4
LT
1715out:
1716 return rc;
1717bad:
12b29f34
SS
1718 /* Map old representation to string and save it. */
1719 if (context_struct_to_string(&oldc, &s, &len))
1720 return -ENOMEM;
1da177e4 1721 context_destroy(&oldc);
12b29f34
SS
1722 context_destroy(c);
1723 c->str = s;
1724 c->len = len;
1725 printk(KERN_INFO
1726 "SELinux: Context %s became invalid (unmapped).\n",
1727 c->str);
1728 rc = 0;
1da177e4
LT
1729 goto out;
1730}
1731
3bb56b25
PM
1732static void security_load_policycaps(void)
1733{
1734 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1735 POLICYDB_CAPABILITY_NETPEER);
b0c636b9
EP
1736 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1737 POLICYDB_CAPABILITY_OPENPERM);
3bb56b25
PM
1738}
1739
1da177e4 1740extern void selinux_complete_init(void);
e900a7d9 1741static int security_preserve_bools(struct policydb *p);
1da177e4
LT
1742
1743/**
1744 * security_load_policy - Load a security policy configuration.
1745 * @data: binary policy data
1746 * @len: length of data in bytes
1747 *
1748 * Load a new set of security policy configuration data,
1749 * validate it and convert the SID table as necessary.
1750 * This function will flush the access vector cache after
1751 * loading the new policy.
1752 */
1753int security_load_policy(void *data, size_t len)
1754{
1755 struct policydb oldpolicydb, newpolicydb;
1756 struct sidtab oldsidtab, newsidtab;
c6d3aaa4 1757 struct selinux_mapping *oldmap, *map = NULL;
1da177e4
LT
1758 struct convert_context_args args;
1759 u32 seqno;
c6d3aaa4 1760 u16 map_size;
1da177e4
LT
1761 int rc = 0;
1762 struct policy_file file = { data, len }, *fp = &file;
1763
1da177e4
LT
1764 if (!ss_initialized) {
1765 avtab_cache_init();
a2000050
EP
1766 rc = policydb_read(&policydb, fp);
1767 if (rc) {
1da177e4 1768 avtab_cache_destroy();
a2000050 1769 return rc;
1da177e4 1770 }
a2000050
EP
1771
1772 rc = selinux_set_mapping(&policydb, secclass_map,
1773 &current_mapping,
1774 &current_mapping_size);
1775 if (rc) {
1da177e4
LT
1776 policydb_destroy(&policydb);
1777 avtab_cache_destroy();
a2000050 1778 return rc;
1da177e4 1779 }
a2000050
EP
1780
1781 rc = policydb_load_isids(&policydb, &sidtab);
1782 if (rc) {
b94c7e67
CS
1783 policydb_destroy(&policydb);
1784 avtab_cache_destroy();
a2000050 1785 return rc;
b94c7e67 1786 }
a2000050 1787
3bb56b25 1788 security_load_policycaps();
1da177e4 1789 ss_initialized = 1;
4c443d1b 1790 seqno = ++latest_granting;
1da177e4 1791 selinux_complete_init();
4c443d1b
SS
1792 avc_ss_reset(seqno);
1793 selnl_notify_policyload(seqno);
7420ed23 1794 selinux_netlbl_cache_invalidate();
342a0cff 1795 selinux_xfrm_notify_policyload();
1da177e4
LT
1796 return 0;
1797 }
1798
1799#if 0
1800 sidtab_hash_eval(&sidtab, "sids");
1801#endif
1802
a2000050
EP
1803 rc = policydb_read(&newpolicydb, fp);
1804 if (rc)
1805 return rc;
1da177e4 1806
0719aaf5
GT
1807 /* If switching between different policy types, log MLS status */
1808 if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1809 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1810 else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1811 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1812
42596eaf
GT
1813 rc = policydb_load_isids(&newpolicydb, &newsidtab);
1814 if (rc) {
1815 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
12b29f34 1816 policydb_destroy(&newpolicydb);
42596eaf 1817 return rc;
12b29f34 1818 }
1da177e4 1819
a2000050
EP
1820 rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1821 if (rc)
b94c7e67 1822 goto err;
b94c7e67 1823
e900a7d9
SS
1824 rc = security_preserve_bools(&newpolicydb);
1825 if (rc) {
454d972c 1826 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
e900a7d9
SS
1827 goto err;
1828 }
1829
1da177e4
LT
1830 /* Clone the SID table. */
1831 sidtab_shutdown(&sidtab);
a2000050
EP
1832
1833 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1834 if (rc)
1da177e4 1835 goto err;
1da177e4 1836
12b29f34
SS
1837 /*
1838 * Convert the internal representations of contexts
1839 * in the new SID table.
1840 */
1da177e4
LT
1841 args.oldp = &policydb;
1842 args.newp = &newpolicydb;
12b29f34 1843 rc = sidtab_map(&newsidtab, convert_context, &args);
0719aaf5
GT
1844 if (rc) {
1845 printk(KERN_ERR "SELinux: unable to convert the internal"
1846 " representation of contexts in the new SID"
1847 " table\n");
12b29f34 1848 goto err;
0719aaf5 1849 }
1da177e4
LT
1850
1851 /* Save the old policydb and SID table to free later. */
1852 memcpy(&oldpolicydb, &policydb, sizeof policydb);
1853 sidtab_set(&oldsidtab, &sidtab);
1854
1855 /* Install the new policydb and SID table. */
0804d113 1856 write_lock_irq(&policy_rwlock);
1da177e4
LT
1857 memcpy(&policydb, &newpolicydb, sizeof policydb);
1858 sidtab_set(&sidtab, &newsidtab);
3bb56b25 1859 security_load_policycaps();
c6d3aaa4
SS
1860 oldmap = current_mapping;
1861 current_mapping = map;
1862 current_mapping_size = map_size;
1da177e4 1863 seqno = ++latest_granting;
0804d113 1864 write_unlock_irq(&policy_rwlock);
1da177e4
LT
1865
1866 /* Free the old policydb and SID table. */
1867 policydb_destroy(&oldpolicydb);
1868 sidtab_destroy(&oldsidtab);
c6d3aaa4 1869 kfree(oldmap);
1da177e4
LT
1870
1871 avc_ss_reset(seqno);
1872 selnl_notify_policyload(seqno);
7420ed23 1873 selinux_netlbl_cache_invalidate();
342a0cff 1874 selinux_xfrm_notify_policyload();
1da177e4
LT
1875
1876 return 0;
1877
1878err:
c6d3aaa4 1879 kfree(map);
1da177e4
LT
1880 sidtab_destroy(&newsidtab);
1881 policydb_destroy(&newpolicydb);
1882 return rc;
1883
1884}
1885
1886/**
1887 * security_port_sid - Obtain the SID for a port.
1da177e4
LT
1888 * @protocol: protocol number
1889 * @port: port number
1890 * @out_sid: security identifier
1891 */
3e112172 1892int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1da177e4
LT
1893{
1894 struct ocontext *c;
1895 int rc = 0;
1896
0804d113 1897 read_lock(&policy_rwlock);
1da177e4
LT
1898
1899 c = policydb.ocontexts[OCON_PORT];
1900 while (c) {
1901 if (c->u.port.protocol == protocol &&
1902 c->u.port.low_port <= port &&
1903 c->u.port.high_port >= port)
1904 break;
1905 c = c->next;
1906 }
1907
1908 if (c) {
1909 if (!c->sid[0]) {
1910 rc = sidtab_context_to_sid(&sidtab,
1911 &c->context[0],
1912 &c->sid[0]);
1913 if (rc)
1914 goto out;
1915 }
1916 *out_sid = c->sid[0];
1917 } else {
1918 *out_sid = SECINITSID_PORT;
1919 }
1920
1921out:
0804d113 1922 read_unlock(&policy_rwlock);
1da177e4
LT
1923 return rc;
1924}
1925
1926/**
1927 * security_netif_sid - Obtain the SID for a network interface.
1928 * @name: interface name
1929 * @if_sid: interface SID
1da177e4 1930 */
e8bfdb9d 1931int security_netif_sid(char *name, u32 *if_sid)
1da177e4
LT
1932{
1933 int rc = 0;
1934 struct ocontext *c;
1935
0804d113 1936 read_lock(&policy_rwlock);
1da177e4
LT
1937
1938 c = policydb.ocontexts[OCON_NETIF];
1939 while (c) {
1940 if (strcmp(name, c->u.name) == 0)
1941 break;
1942 c = c->next;
1943 }
1944
1945 if (c) {
1946 if (!c->sid[0] || !c->sid[1]) {
1947 rc = sidtab_context_to_sid(&sidtab,
1948 &c->context[0],
1949 &c->sid[0]);
1950 if (rc)
1951 goto out;
1952 rc = sidtab_context_to_sid(&sidtab,
1953 &c->context[1],
1954 &c->sid[1]);
1955 if (rc)
1956 goto out;
1957 }
1958 *if_sid = c->sid[0];
e8bfdb9d 1959 } else
1da177e4 1960 *if_sid = SECINITSID_NETIF;
1da177e4
LT
1961
1962out:
0804d113 1963 read_unlock(&policy_rwlock);
1da177e4
LT
1964 return rc;
1965}
1966
1967static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
1968{
1969 int i, fail = 0;
1970
5d55a345
EP
1971 for (i = 0; i < 4; i++)
1972 if (addr[i] != (input[i] & mask[i])) {
1da177e4
LT
1973 fail = 1;
1974 break;
1975 }
1976
1977 return !fail;
1978}
1979
1980/**
1981 * security_node_sid - Obtain the SID for a node (host).
1982 * @domain: communication domain aka address family
1983 * @addrp: address
1984 * @addrlen: address length in bytes
1985 * @out_sid: security identifier
1986 */
1987int security_node_sid(u16 domain,
1988 void *addrp,
1989 u32 addrlen,
1990 u32 *out_sid)
1991{
1992 int rc = 0;
1993 struct ocontext *c;
1994
0804d113 1995 read_lock(&policy_rwlock);
1da177e4
LT
1996
1997 switch (domain) {
1998 case AF_INET: {
1999 u32 addr;
2000
2001 if (addrlen != sizeof(u32)) {
2002 rc = -EINVAL;
2003 goto out;
2004 }
2005
2006 addr = *((u32 *)addrp);
2007
2008 c = policydb.ocontexts[OCON_NODE];
2009 while (c) {
2010 if (c->u.node.addr == (addr & c->u.node.mask))
2011 break;
2012 c = c->next;
2013 }
2014 break;
2015 }
2016
2017 case AF_INET6:
2018 if (addrlen != sizeof(u64) * 2) {
2019 rc = -EINVAL;
2020 goto out;
2021 }
2022 c = policydb.ocontexts[OCON_NODE6];
2023 while (c) {
2024 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2025 c->u.node6.mask))
2026 break;
2027 c = c->next;
2028 }
2029 break;
2030
2031 default:
2032 *out_sid = SECINITSID_NODE;
2033 goto out;
2034 }
2035
2036 if (c) {
2037 if (!c->sid[0]) {
2038 rc = sidtab_context_to_sid(&sidtab,
2039 &c->context[0],
2040 &c->sid[0]);
2041 if (rc)
2042 goto out;
2043 }
2044 *out_sid = c->sid[0];
2045 } else {
2046 *out_sid = SECINITSID_NODE;
2047 }
2048
2049out:
0804d113 2050 read_unlock(&policy_rwlock);
1da177e4
LT
2051 return rc;
2052}
2053
2054#define SIDS_NEL 25
2055
2056/**
2057 * security_get_user_sids - Obtain reachable SIDs for a user.
2058 * @fromsid: starting SID
2059 * @username: username
2060 * @sids: array of reachable SIDs for user
2061 * @nel: number of elements in @sids
2062 *
2063 * Generate the set of SIDs for legal security contexts
2064 * for a given user that can be reached by @fromsid.
2065 * Set *@sids to point to a dynamically allocated
2066 * array containing the set of SIDs. Set *@nel to the
2067 * number of elements in the array.
2068 */
2069
2070int security_get_user_sids(u32 fromsid,
5d55a345 2071 char *username,
1da177e4
LT
2072 u32 **sids,
2073 u32 *nel)
2074{
2075 struct context *fromcon, usercon;
2c3c05db 2076 u32 *mysids = NULL, *mysids2, sid;
1da177e4
LT
2077 u32 mynel = 0, maxnel = SIDS_NEL;
2078 struct user_datum *user;
2079 struct role_datum *role;
782ebb99 2080 struct ebitmap_node *rnode, *tnode;
1da177e4
LT
2081 int rc = 0, i, j;
2082
2c3c05db
SS
2083 *sids = NULL;
2084 *nel = 0;
2085
2086 if (!ss_initialized)
1da177e4 2087 goto out;
1da177e4 2088
0804d113 2089 read_lock(&policy_rwlock);
1da177e4 2090
12b29f34
SS
2091 context_init(&usercon);
2092
1da177e4
LT
2093 fromcon = sidtab_search(&sidtab, fromsid);
2094 if (!fromcon) {
2095 rc = -EINVAL;
2096 goto out_unlock;
2097 }
2098
2099 user = hashtab_search(policydb.p_users.table, username);
2100 if (!user) {
2101 rc = -EINVAL;
2102 goto out_unlock;
2103 }
2104 usercon.user = user->value;
2105
89d155ef 2106 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
1da177e4
LT
2107 if (!mysids) {
2108 rc = -ENOMEM;
2109 goto out_unlock;
2110 }
1da177e4 2111
9fe79ad1 2112 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
1da177e4 2113 role = policydb.role_val_to_struct[i];
c1a7368a 2114 usercon.role = i + 1;
9fe79ad1 2115 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
c1a7368a 2116 usercon.type = j + 1;
1da177e4
LT
2117
2118 if (mls_setup_user_range(fromcon, user, &usercon))
2119 continue;
2120
1da177e4 2121 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2c3c05db 2122 if (rc)
1da177e4 2123 goto out_unlock;
1da177e4
LT
2124 if (mynel < maxnel) {
2125 mysids[mynel++] = sid;
2126 } else {
2127 maxnel += SIDS_NEL;
89d155ef 2128 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
1da177e4
LT
2129 if (!mysids2) {
2130 rc = -ENOMEM;
1da177e4
LT
2131 goto out_unlock;
2132 }
1da177e4
LT
2133 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2134 kfree(mysids);
2135 mysids = mysids2;
2136 mysids[mynel++] = sid;
2137 }
2138 }
2139 }
2140
1da177e4 2141out_unlock:
0804d113 2142 read_unlock(&policy_rwlock);
2c3c05db
SS
2143 if (rc || !mynel) {
2144 kfree(mysids);
2145 goto out;
2146 }
2147
2148 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2149 if (!mysids2) {
2150 rc = -ENOMEM;
2151 kfree(mysids);
2152 goto out;
2153 }
2154 for (i = 0, j = 0; i < mynel; i++) {
2155 rc = avc_has_perm_noaudit(fromsid, mysids[i],
c6d3aaa4 2156 SECCLASS_PROCESS, /* kernel value */
2c3c05db
SS
2157 PROCESS__TRANSITION, AVC_STRICT,
2158 NULL);
2159 if (!rc)
2160 mysids2[j++] = mysids[i];
2161 cond_resched();
2162 }
2163 rc = 0;
2164 kfree(mysids);
2165 *sids = mysids2;
2166 *nel = j;
1da177e4
LT
2167out:
2168 return rc;
2169}
2170
2171/**
2172 * security_genfs_sid - Obtain a SID for a file in a filesystem
2173 * @fstype: filesystem type
2174 * @path: path from root of mount
2175 * @sclass: file security class
2176 * @sid: SID for path
2177 *
2178 * Obtain a SID to use for a file in a filesystem that
2179 * cannot support xattr or use a fixed labeling behavior like
2180 * transition SIDs or task SIDs.
2181 */
2182int security_genfs_sid(const char *fstype,
5d55a345 2183 char *path,
c6d3aaa4 2184 u16 orig_sclass,
1da177e4
LT
2185 u32 *sid)
2186{
2187 int len;
c6d3aaa4 2188 u16 sclass;
1da177e4
LT
2189 struct genfs *genfs;
2190 struct ocontext *c;
2191 int rc = 0, cmp = 0;
2192
b1aa5301
SS
2193 while (path[0] == '/' && path[1] == '/')
2194 path++;
2195
0804d113 2196 read_lock(&policy_rwlock);
1da177e4 2197
c6d3aaa4
SS
2198 sclass = unmap_class(orig_sclass);
2199
1da177e4
LT
2200 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2201 cmp = strcmp(fstype, genfs->fstype);
2202 if (cmp <= 0)
2203 break;
2204 }
2205
2206 if (!genfs || cmp) {
2207 *sid = SECINITSID_UNLABELED;
2208 rc = -ENOENT;
2209 goto out;
2210 }
2211
2212 for (c = genfs->head; c; c = c->next) {
2213 len = strlen(c->u.name);
2214 if ((!c->v.sclass || sclass == c->v.sclass) &&
2215 (strncmp(c->u.name, path, len) == 0))
2216 break;
2217 }
2218
2219 if (!c) {
2220 *sid = SECINITSID_UNLABELED;
2221 rc = -ENOENT;
2222 goto out;
2223 }
2224
2225 if (!c->sid[0]) {
2226 rc = sidtab_context_to_sid(&sidtab,
2227 &c->context[0],
2228 &c->sid[0]);
2229 if (rc)
2230 goto out;
2231 }
2232
2233 *sid = c->sid[0];
2234out:
0804d113 2235 read_unlock(&policy_rwlock);
1da177e4
LT
2236 return rc;
2237}
2238
2239/**
2240 * security_fs_use - Determine how to handle labeling for a filesystem.
2241 * @fstype: filesystem type
2242 * @behavior: labeling behavior
2243 * @sid: SID for filesystem (superblock)
2244 */
2245int security_fs_use(
2246 const char *fstype,
2247 unsigned int *behavior,
089be43e 2248 u32 *sid)
1da177e4
LT
2249{
2250 int rc = 0;
2251 struct ocontext *c;
2252
0804d113 2253 read_lock(&policy_rwlock);
1da177e4
LT
2254
2255 c = policydb.ocontexts[OCON_FSUSE];
2256 while (c) {
2257 if (strcmp(fstype, c->u.name) == 0)
2258 break;
2259 c = c->next;
2260 }
2261
2262 if (c) {
2263 *behavior = c->v.behavior;
2264 if (!c->sid[0]) {
2265 rc = sidtab_context_to_sid(&sidtab,
2266 &c->context[0],
2267 &c->sid[0]);
2268 if (rc)
2269 goto out;
2270 }
2271 *sid = c->sid[0];
2272 } else {
089be43e
JM
2273 rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2274 if (rc) {
2275 *behavior = SECURITY_FS_USE_NONE;
2276 rc = 0;
2277 } else {
2278 *behavior = SECURITY_FS_USE_GENFS;
2279 }
1da177e4
LT
2280 }
2281
2282out:
0804d113 2283 read_unlock(&policy_rwlock);
1da177e4
LT
2284 return rc;
2285}
2286
2287int security_get_bools(int *len, char ***names, int **values)
2288{
2289 int i, rc = -ENOMEM;
2290
0804d113 2291 read_lock(&policy_rwlock);
1da177e4
LT
2292 *names = NULL;
2293 *values = NULL;
2294
2295 *len = policydb.p_bools.nprim;
2296 if (!*len) {
2297 rc = 0;
2298 goto out;
2299 }
2300
5d55a345 2301 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
1da177e4
LT
2302 if (!*names)
2303 goto err;
1da177e4 2304
e0795cf4 2305 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
1da177e4
LT
2306 if (!*values)
2307 goto err;
2308
2309 for (i = 0; i < *len; i++) {
2310 size_t name_len;
2311 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2312 name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
5d55a345 2313 (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
1da177e4
LT
2314 if (!(*names)[i])
2315 goto err;
2316 strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
2317 (*names)[i][name_len - 1] = 0;
2318 }
2319 rc = 0;
2320out:
0804d113 2321 read_unlock(&policy_rwlock);
1da177e4
LT
2322 return rc;
2323err:
2324 if (*names) {
2325 for (i = 0; i < *len; i++)
9a5f04bf 2326 kfree((*names)[i]);
1da177e4 2327 }
9a5f04bf 2328 kfree(*values);
1da177e4
LT
2329 goto out;
2330}
2331
2332
2333int security_set_bools(int len, int *values)
2334{
2335 int i, rc = 0;
2336 int lenp, seqno = 0;
2337 struct cond_node *cur;
2338
0804d113 2339 write_lock_irq(&policy_rwlock);
1da177e4
LT
2340
2341 lenp = policydb.p_bools.nprim;
2342 if (len != lenp) {
2343 rc = -EFAULT;
2344 goto out;
2345 }
2346
1da177e4 2347 for (i = 0; i < len; i++) {
af601e46
SG
2348 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2349 audit_log(current->audit_context, GFP_ATOMIC,
2350 AUDIT_MAC_CONFIG_CHANGE,
4746ec5b 2351 "bool=%s val=%d old_val=%d auid=%u ses=%u",
af601e46
SG
2352 policydb.p_bool_val_to_name[i],
2353 !!values[i],
2354 policydb.bool_val_to_struct[i]->state,
4746ec5b
EP
2355 audit_get_loginuid(current),
2356 audit_get_sessionid(current));
af601e46 2357 }
5d55a345 2358 if (values[i])
1da177e4 2359 policydb.bool_val_to_struct[i]->state = 1;
5d55a345 2360 else
1da177e4 2361 policydb.bool_val_to_struct[i]->state = 0;
1da177e4 2362 }
1da177e4 2363
dbc74c65 2364 for (cur = policydb.cond_list; cur; cur = cur->next) {
1da177e4
LT
2365 rc = evaluate_cond_node(&policydb, cur);
2366 if (rc)
2367 goto out;
2368 }
2369
2370 seqno = ++latest_granting;
2371
2372out:
0804d113 2373 write_unlock_irq(&policy_rwlock);
1da177e4
LT
2374 if (!rc) {
2375 avc_ss_reset(seqno);
2376 selnl_notify_policyload(seqno);
342a0cff 2377 selinux_xfrm_notify_policyload();
1da177e4
LT
2378 }
2379 return rc;
2380}
2381
2382int security_get_bool_value(int bool)
2383{
2384 int rc = 0;
2385 int len;
2386
0804d113 2387 read_lock(&policy_rwlock);
1da177e4
LT
2388
2389 len = policydb.p_bools.nprim;
2390 if (bool >= len) {
2391 rc = -EFAULT;
2392 goto out;
2393 }
2394
2395 rc = policydb.bool_val_to_struct[bool]->state;
2396out:
0804d113 2397 read_unlock(&policy_rwlock);
1da177e4
LT
2398 return rc;
2399}
376bd9cb 2400
e900a7d9
SS
2401static int security_preserve_bools(struct policydb *p)
2402{
2403 int rc, nbools = 0, *bvalues = NULL, i;
2404 char **bnames = NULL;
2405 struct cond_bool_datum *booldatum;
2406 struct cond_node *cur;
2407
2408 rc = security_get_bools(&nbools, &bnames, &bvalues);
2409 if (rc)
2410 goto out;
2411 for (i = 0; i < nbools; i++) {
2412 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2413 if (booldatum)
2414 booldatum->state = bvalues[i];
2415 }
dbc74c65 2416 for (cur = p->cond_list; cur; cur = cur->next) {
e900a7d9
SS
2417 rc = evaluate_cond_node(p, cur);
2418 if (rc)
2419 goto out;
2420 }
2421
2422out:
2423 if (bnames) {
2424 for (i = 0; i < nbools; i++)
2425 kfree(bnames[i]);
2426 }
2427 kfree(bnames);
2428 kfree(bvalues);
2429 return rc;
2430}
2431
08554d6b
VY
2432/*
2433 * security_sid_mls_copy() - computes a new sid based on the given
2434 * sid and the mls portion of mls_sid.
2435 */
2436int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2437{
2438 struct context *context1;
2439 struct context *context2;
2440 struct context newcon;
2441 char *s;
2442 u32 len;
2443 int rc = 0;
2444
0719aaf5 2445 if (!ss_initialized || !policydb.mls_enabled) {
08554d6b
VY
2446 *new_sid = sid;
2447 goto out;
2448 }
2449
2450 context_init(&newcon);
2451
0804d113 2452 read_lock(&policy_rwlock);
08554d6b
VY
2453 context1 = sidtab_search(&sidtab, sid);
2454 if (!context1) {
744ba35e
EP
2455 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2456 __func__, sid);
08554d6b
VY
2457 rc = -EINVAL;
2458 goto out_unlock;
2459 }
2460
2461 context2 = sidtab_search(&sidtab, mls_sid);
2462 if (!context2) {
744ba35e
EP
2463 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2464 __func__, mls_sid);
08554d6b
VY
2465 rc = -EINVAL;
2466 goto out_unlock;
2467 }
2468
2469 newcon.user = context1->user;
2470 newcon.role = context1->role;
2471 newcon.type = context1->type;
0efc61ea 2472 rc = mls_context_cpy(&newcon, context2);
08554d6b
VY
2473 if (rc)
2474 goto out_unlock;
2475
08554d6b
VY
2476 /* Check the validity of the new context. */
2477 if (!policydb_context_isvalid(&policydb, &newcon)) {
2478 rc = convert_context_handle_invalid_context(&newcon);
2479 if (rc)
2480 goto bad;
2481 }
2482
2483 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2484 goto out_unlock;
2485
2486bad:
2487 if (!context_struct_to_string(&newcon, &s, &len)) {
2488 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2489 "security_sid_mls_copy: invalid context %s", s);
2490 kfree(s);
2491 }
2492
2493out_unlock:
0804d113 2494 read_unlock(&policy_rwlock);
08554d6b
VY
2495 context_destroy(&newcon);
2496out:
2497 return rc;
2498}
2499
220deb96
PM
2500/**
2501 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2502 * @nlbl_sid: NetLabel SID
2503 * @nlbl_type: NetLabel labeling protocol type
2504 * @xfrm_sid: XFRM SID
2505 *
2506 * Description:
2507 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2508 * resolved into a single SID it is returned via @peer_sid and the function
2509 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2510 * returns a negative value. A table summarizing the behavior is below:
2511 *
2512 * | function return | @sid
2513 * ------------------------------+-----------------+-----------------
2514 * no peer labels | 0 | SECSID_NULL
2515 * single peer label | 0 | <peer_label>
2516 * multiple, consistent labels | 0 | <peer_label>
2517 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2518 *
2519 */
2520int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2521 u32 xfrm_sid,
2522 u32 *peer_sid)
2523{
2524 int rc;
2525 struct context *nlbl_ctx;
2526 struct context *xfrm_ctx;
2527
2528 /* handle the common (which also happens to be the set of easy) cases
2529 * right away, these two if statements catch everything involving a
2530 * single or absent peer SID/label */
2531 if (xfrm_sid == SECSID_NULL) {
2532 *peer_sid = nlbl_sid;
2533 return 0;
2534 }
2535 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2536 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2537 * is present */
2538 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2539 *peer_sid = xfrm_sid;
2540 return 0;
2541 }
2542
2543 /* we don't need to check ss_initialized here since the only way both
2544 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2545 * security server was initialized and ss_initialized was true */
0719aaf5 2546 if (!policydb.mls_enabled) {
220deb96
PM
2547 *peer_sid = SECSID_NULL;
2548 return 0;
2549 }
2550
0804d113 2551 read_lock(&policy_rwlock);
220deb96
PM
2552
2553 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2554 if (!nlbl_ctx) {
744ba35e
EP
2555 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2556 __func__, nlbl_sid);
220deb96
PM
2557 rc = -EINVAL;
2558 goto out_slowpath;
2559 }
2560 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2561 if (!xfrm_ctx) {
744ba35e
EP
2562 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2563 __func__, xfrm_sid);
220deb96
PM
2564 rc = -EINVAL;
2565 goto out_slowpath;
2566 }
2567 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2568
2569out_slowpath:
0804d113 2570 read_unlock(&policy_rwlock);
220deb96
PM
2571 if (rc == 0)
2572 /* at present NetLabel SIDs/labels really only carry MLS
2573 * information so if the MLS portion of the NetLabel SID
2574 * matches the MLS portion of the labeled XFRM SID/label
2575 * then pass along the XFRM SID as it is the most
2576 * expressive */
2577 *peer_sid = xfrm_sid;
2578 else
2579 *peer_sid = SECSID_NULL;
2580 return rc;
2581}
2582
55fcf09b
CP
2583static int get_classes_callback(void *k, void *d, void *args)
2584{
2585 struct class_datum *datum = d;
2586 char *name = k, **classes = args;
2587 int value = datum->value - 1;
2588
2589 classes[value] = kstrdup(name, GFP_ATOMIC);
2590 if (!classes[value])
2591 return -ENOMEM;
2592
2593 return 0;
2594}
2595
2596int security_get_classes(char ***classes, int *nclasses)
2597{
2598 int rc = -ENOMEM;
2599
0804d113 2600 read_lock(&policy_rwlock);
55fcf09b
CP
2601
2602 *nclasses = policydb.p_classes.nprim;
9f59f90b 2603 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
55fcf09b
CP
2604 if (!*classes)
2605 goto out;
2606
2607 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2608 *classes);
2609 if (rc < 0) {
2610 int i;
2611 for (i = 0; i < *nclasses; i++)
2612 kfree((*classes)[i]);
2613 kfree(*classes);
2614 }
2615
2616out:
0804d113 2617 read_unlock(&policy_rwlock);
55fcf09b
CP
2618 return rc;
2619}
2620
2621static int get_permissions_callback(void *k, void *d, void *args)
2622{
2623 struct perm_datum *datum = d;
2624 char *name = k, **perms = args;
2625 int value = datum->value - 1;
2626
2627 perms[value] = kstrdup(name, GFP_ATOMIC);
2628 if (!perms[value])
2629 return -ENOMEM;
2630
2631 return 0;
2632}
2633
2634int security_get_permissions(char *class, char ***perms, int *nperms)
2635{
2636 int rc = -ENOMEM, i;
2637 struct class_datum *match;
2638
0804d113 2639 read_lock(&policy_rwlock);
55fcf09b
CP
2640
2641 match = hashtab_search(policydb.p_classes.table, class);
2642 if (!match) {
744ba35e 2643 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
dd6f953a 2644 __func__, class);
55fcf09b
CP
2645 rc = -EINVAL;
2646 goto out;
2647 }
2648
2649 *nperms = match->permissions.nprim;
9f59f90b 2650 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
55fcf09b
CP
2651 if (!*perms)
2652 goto out;
2653
2654 if (match->comdatum) {
2655 rc = hashtab_map(match->comdatum->permissions.table,
2656 get_permissions_callback, *perms);
2657 if (rc < 0)
2658 goto err;
2659 }
2660
2661 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2662 *perms);
2663 if (rc < 0)
2664 goto err;
2665
2666out:
0804d113 2667 read_unlock(&policy_rwlock);
55fcf09b
CP
2668 return rc;
2669
2670err:
0804d113 2671 read_unlock(&policy_rwlock);
55fcf09b
CP
2672 for (i = 0; i < *nperms; i++)
2673 kfree((*perms)[i]);
2674 kfree(*perms);
2675 return rc;
2676}
2677
3f12070e
EP
2678int security_get_reject_unknown(void)
2679{
2680 return policydb.reject_unknown;
2681}
2682
2683int security_get_allow_unknown(void)
2684{
2685 return policydb.allow_unknown;
2686}
2687
3bb56b25
PM
2688/**
2689 * security_policycap_supported - Check for a specific policy capability
2690 * @req_cap: capability
2691 *
2692 * Description:
2693 * This function queries the currently loaded policy to see if it supports the
2694 * capability specified by @req_cap. Returns true (1) if the capability is
2695 * supported, false (0) if it isn't supported.
2696 *
2697 */
2698int security_policycap_supported(unsigned int req_cap)
2699{
2700 int rc;
2701
0804d113 2702 read_lock(&policy_rwlock);
3bb56b25 2703 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
0804d113 2704 read_unlock(&policy_rwlock);
3bb56b25
PM
2705
2706 return rc;
2707}
2708
376bd9cb
DG
2709struct selinux_audit_rule {
2710 u32 au_seqno;
2711 struct context au_ctxt;
2712};
2713
9d57a7f9 2714void selinux_audit_rule_free(void *vrule)
376bd9cb 2715{
9d57a7f9
AD
2716 struct selinux_audit_rule *rule = vrule;
2717
376bd9cb
DG
2718 if (rule) {
2719 context_destroy(&rule->au_ctxt);
2720 kfree(rule);
2721 }
2722}
2723
9d57a7f9 2724int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
376bd9cb
DG
2725{
2726 struct selinux_audit_rule *tmprule;
2727 struct role_datum *roledatum;
2728 struct type_datum *typedatum;
2729 struct user_datum *userdatum;
9d57a7f9 2730 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
376bd9cb
DG
2731 int rc = 0;
2732
2733 *rule = NULL;
2734
2735 if (!ss_initialized)
3ad40d64 2736 return -EOPNOTSUPP;
376bd9cb
DG
2737
2738 switch (field) {
3a6b9f85
DG
2739 case AUDIT_SUBJ_USER:
2740 case AUDIT_SUBJ_ROLE:
2741 case AUDIT_SUBJ_TYPE:
6e5a2d1d
DG
2742 case AUDIT_OBJ_USER:
2743 case AUDIT_OBJ_ROLE:
2744 case AUDIT_OBJ_TYPE:
376bd9cb 2745 /* only 'equals' and 'not equals' fit user, role, and type */
5af75d8d 2746 if (op != Audit_equal && op != Audit_not_equal)
376bd9cb
DG
2747 return -EINVAL;
2748 break;
3a6b9f85
DG
2749 case AUDIT_SUBJ_SEN:
2750 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2751 case AUDIT_OBJ_LEV_LOW:
2752 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2753 /* we do not allow a range, indicated by the presense of '-' */
2754 if (strchr(rulestr, '-'))
2755 return -EINVAL;
2756 break;
2757 default:
2758 /* only the above fields are valid */
2759 return -EINVAL;
2760 }
2761
2762 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2763 if (!tmprule)
2764 return -ENOMEM;
2765
2766 context_init(&tmprule->au_ctxt);
2767
0804d113 2768 read_lock(&policy_rwlock);
376bd9cb
DG
2769
2770 tmprule->au_seqno = latest_granting;
2771
2772 switch (field) {
3a6b9f85 2773 case AUDIT_SUBJ_USER:
6e5a2d1d 2774 case AUDIT_OBJ_USER:
376bd9cb
DG
2775 userdatum = hashtab_search(policydb.p_users.table, rulestr);
2776 if (!userdatum)
2777 rc = -EINVAL;
2778 else
2779 tmprule->au_ctxt.user = userdatum->value;
2780 break;
3a6b9f85 2781 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2782 case AUDIT_OBJ_ROLE:
376bd9cb
DG
2783 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2784 if (!roledatum)
2785 rc = -EINVAL;
2786 else
2787 tmprule->au_ctxt.role = roledatum->value;
2788 break;
3a6b9f85 2789 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2790 case AUDIT_OBJ_TYPE:
376bd9cb
DG
2791 typedatum = hashtab_search(policydb.p_types.table, rulestr);
2792 if (!typedatum)
2793 rc = -EINVAL;
2794 else
2795 tmprule->au_ctxt.type = typedatum->value;
2796 break;
3a6b9f85
DG
2797 case AUDIT_SUBJ_SEN:
2798 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2799 case AUDIT_OBJ_LEV_LOW:
2800 case AUDIT_OBJ_LEV_HIGH:
376bd9cb
DG
2801 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
2802 break;
2803 }
2804
0804d113 2805 read_unlock(&policy_rwlock);
376bd9cb
DG
2806
2807 if (rc) {
2808 selinux_audit_rule_free(tmprule);
2809 tmprule = NULL;
2810 }
2811
2812 *rule = tmprule;
2813
2814 return rc;
2815}
2816
9d57a7f9
AD
2817/* Check to see if the rule contains any selinux fields */
2818int selinux_audit_rule_known(struct audit_krule *rule)
2819{
2820 int i;
2821
2822 for (i = 0; i < rule->field_count; i++) {
2823 struct audit_field *f = &rule->fields[i];
2824 switch (f->type) {
2825 case AUDIT_SUBJ_USER:
2826 case AUDIT_SUBJ_ROLE:
2827 case AUDIT_SUBJ_TYPE:
2828 case AUDIT_SUBJ_SEN:
2829 case AUDIT_SUBJ_CLR:
2830 case AUDIT_OBJ_USER:
2831 case AUDIT_OBJ_ROLE:
2832 case AUDIT_OBJ_TYPE:
2833 case AUDIT_OBJ_LEV_LOW:
2834 case AUDIT_OBJ_LEV_HIGH:
2835 return 1;
2836 }
2837 }
2838
2839 return 0;
2840}
2841
2842int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
f5269710 2843 struct audit_context *actx)
376bd9cb
DG
2844{
2845 struct context *ctxt;
2846 struct mls_level *level;
9d57a7f9 2847 struct selinux_audit_rule *rule = vrule;
376bd9cb
DG
2848 int match = 0;
2849
2850 if (!rule) {
2851 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2852 "selinux_audit_rule_match: missing rule\n");
376bd9cb
DG
2853 return -ENOENT;
2854 }
2855
0804d113 2856 read_lock(&policy_rwlock);
376bd9cb
DG
2857
2858 if (rule->au_seqno < latest_granting) {
2859 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345 2860 "selinux_audit_rule_match: stale rule\n");
376bd9cb
DG
2861 match = -ESTALE;
2862 goto out;
2863 }
2864
9a2f44f0 2865 ctxt = sidtab_search(&sidtab, sid);
376bd9cb
DG
2866 if (!ctxt) {
2867 audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
5d55a345
EP
2868 "selinux_audit_rule_match: unrecognized SID %d\n",
2869 sid);
376bd9cb
DG
2870 match = -ENOENT;
2871 goto out;
2872 }
2873
2874 /* a field/op pair that is not caught here will simply fall through
2875 without a match */
2876 switch (field) {
3a6b9f85 2877 case AUDIT_SUBJ_USER:
6e5a2d1d 2878 case AUDIT_OBJ_USER:
376bd9cb 2879 switch (op) {
5af75d8d 2880 case Audit_equal:
376bd9cb
DG
2881 match = (ctxt->user == rule->au_ctxt.user);
2882 break;
5af75d8d 2883 case Audit_not_equal:
376bd9cb
DG
2884 match = (ctxt->user != rule->au_ctxt.user);
2885 break;
2886 }
2887 break;
3a6b9f85 2888 case AUDIT_SUBJ_ROLE:
6e5a2d1d 2889 case AUDIT_OBJ_ROLE:
376bd9cb 2890 switch (op) {
5af75d8d 2891 case Audit_equal:
376bd9cb
DG
2892 match = (ctxt->role == rule->au_ctxt.role);
2893 break;
5af75d8d 2894 case Audit_not_equal:
376bd9cb
DG
2895 match = (ctxt->role != rule->au_ctxt.role);
2896 break;
2897 }
2898 break;
3a6b9f85 2899 case AUDIT_SUBJ_TYPE:
6e5a2d1d 2900 case AUDIT_OBJ_TYPE:
376bd9cb 2901 switch (op) {
5af75d8d 2902 case Audit_equal:
376bd9cb
DG
2903 match = (ctxt->type == rule->au_ctxt.type);
2904 break;
5af75d8d 2905 case Audit_not_equal:
376bd9cb
DG
2906 match = (ctxt->type != rule->au_ctxt.type);
2907 break;
2908 }
2909 break;
3a6b9f85
DG
2910 case AUDIT_SUBJ_SEN:
2911 case AUDIT_SUBJ_CLR:
6e5a2d1d
DG
2912 case AUDIT_OBJ_LEV_LOW:
2913 case AUDIT_OBJ_LEV_HIGH:
2914 level = ((field == AUDIT_SUBJ_SEN ||
5d55a345
EP
2915 field == AUDIT_OBJ_LEV_LOW) ?
2916 &ctxt->range.level[0] : &ctxt->range.level[1]);
376bd9cb 2917 switch (op) {
5af75d8d 2918 case Audit_equal:
376bd9cb 2919 match = mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2920 level);
376bd9cb 2921 break;
5af75d8d 2922 case Audit_not_equal:
376bd9cb 2923 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
5d55a345 2924 level);
376bd9cb 2925 break;
5af75d8d 2926 case Audit_lt:
376bd9cb 2927 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345
EP
2928 level) &&
2929 !mls_level_eq(&rule->au_ctxt.range.level[0],
2930 level));
376bd9cb 2931 break;
5af75d8d 2932 case Audit_le:
376bd9cb 2933 match = mls_level_dom(&rule->au_ctxt.range.level[0],
5d55a345 2934 level);
376bd9cb 2935 break;
5af75d8d 2936 case Audit_gt:
376bd9cb 2937 match = (mls_level_dom(level,
5d55a345
EP
2938 &rule->au_ctxt.range.level[0]) &&
2939 !mls_level_eq(level,
2940 &rule->au_ctxt.range.level[0]));
376bd9cb 2941 break;
5af75d8d 2942 case Audit_ge:
376bd9cb 2943 match = mls_level_dom(level,
5d55a345 2944 &rule->au_ctxt.range.level[0]);
376bd9cb
DG
2945 break;
2946 }
2947 }
2948
2949out:
0804d113 2950 read_unlock(&policy_rwlock);
376bd9cb
DG
2951 return match;
2952}
2953
9d57a7f9 2954static int (*aurule_callback)(void) = audit_update_lsm_rules;
376bd9cb
DG
2955
2956static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
f5269710 2957 u16 class, u32 perms, u32 *retained)
376bd9cb
DG
2958{
2959 int err = 0;
2960
2961 if (event == AVC_CALLBACK_RESET && aurule_callback)
2962 err = aurule_callback();
2963 return err;
2964}
2965
2966static int __init aurule_init(void)
2967{
2968 int err;
2969
2970 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
5d55a345 2971 SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
376bd9cb
DG
2972 if (err)
2973 panic("avc_add_callback() failed, error %d\n", err);
2974
2975 return err;
2976}
2977__initcall(aurule_init);
2978
7420ed23 2979#ifdef CONFIG_NETLABEL
7420ed23 2980/**
5778eabd
PM
2981 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2982 * @secattr: the NetLabel packet security attributes
5dbe1eb0 2983 * @sid: the SELinux SID
7420ed23
VY
2984 *
2985 * Description:
2986 * Attempt to cache the context in @ctx, which was derived from the packet in
5778eabd
PM
2987 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2988 * already been initialized.
7420ed23
VY
2989 *
2990 */
5778eabd 2991static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
5dbe1eb0 2992 u32 sid)
7420ed23 2993{
5dbe1eb0 2994 u32 *sid_cache;
7420ed23 2995
5dbe1eb0
PM
2996 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
2997 if (sid_cache == NULL)
5778eabd 2998 return;
5dbe1eb0
PM
2999 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3000 if (secattr->cache == NULL) {
3001 kfree(sid_cache);
5778eabd 3002 return;
0ec8abd7 3003 }
7420ed23 3004
5dbe1eb0
PM
3005 *sid_cache = sid;
3006 secattr->cache->free = kfree;
3007 secattr->cache->data = sid_cache;
5778eabd 3008 secattr->flags |= NETLBL_SECATTR_CACHE;
7420ed23
VY
3009}
3010
3011/**
5778eabd 3012 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
7420ed23 3013 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3014 * @sid: the SELinux SID
3015 *
3016 * Description:
5778eabd 3017 * Convert the given NetLabel security attributes in @secattr into a
7420ed23 3018 * SELinux SID. If the @secattr field does not contain a full SELinux
5dbe1eb0
PM
3019 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
3020 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3021 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3022 * conversion for future lookups. Returns zero on success, negative values on
3023 * failure.
7420ed23
VY
3024 *
3025 */
5778eabd 3026int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
5778eabd 3027 u32 *sid)
7420ed23
VY
3028{
3029 int rc = -EIDRM;
3030 struct context *ctx;
3031 struct context ctx_new;
5778eabd
PM
3032
3033 if (!ss_initialized) {
3034 *sid = SECSID_NULL;
3035 return 0;
3036 }
7420ed23 3037
0804d113 3038 read_lock(&policy_rwlock);
7420ed23 3039
701a90ba 3040 if (secattr->flags & NETLBL_SECATTR_CACHE) {
5dbe1eb0
PM
3041 *sid = *(u32 *)secattr->cache->data;
3042 rc = 0;
16efd454
PM
3043 } else if (secattr->flags & NETLBL_SECATTR_SECID) {
3044 *sid = secattr->attr.secid;
3045 rc = 0;
701a90ba 3046 } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
5dbe1eb0 3047 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
7420ed23
VY
3048 if (ctx == NULL)
3049 goto netlbl_secattr_to_sid_return;
3050
81990fbd 3051 context_init(&ctx_new);
7420ed23
VY
3052 ctx_new.user = ctx->user;
3053 ctx_new.role = ctx->role;
3054 ctx_new.type = ctx->type;
02752760 3055 mls_import_netlbl_lvl(&ctx_new, secattr);
701a90ba 3056 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
02752760 3057 if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
16efd454 3058 secattr->attr.mls.cat) != 0)
7420ed23 3059 goto netlbl_secattr_to_sid_return;
81990fbd
PM
3060 memcpy(&ctx_new.range.level[1].cat,
3061 &ctx_new.range.level[0].cat,
3062 sizeof(ctx_new.range.level[0].cat));
7420ed23
VY
3063 }
3064 if (mls_context_isvalid(&policydb, &ctx_new) != 1)
3065 goto netlbl_secattr_to_sid_return_cleanup;
3066
3067 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3068 if (rc != 0)
3069 goto netlbl_secattr_to_sid_return_cleanup;
3070
5dbe1eb0 3071 security_netlbl_cache_add(secattr, *sid);
5778eabd 3072
7420ed23
VY
3073 ebitmap_destroy(&ctx_new.range.level[0].cat);
3074 } else {
388b2405 3075 *sid = SECSID_NULL;
7420ed23
VY
3076 rc = 0;
3077 }
3078
3079netlbl_secattr_to_sid_return:
0804d113 3080 read_unlock(&policy_rwlock);
7420ed23
VY
3081 return rc;
3082netlbl_secattr_to_sid_return_cleanup:
3083 ebitmap_destroy(&ctx_new.range.level[0].cat);
3084 goto netlbl_secattr_to_sid_return;
3085}
3086
3087/**
5778eabd
PM
3088 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3089 * @sid: the SELinux SID
3090 * @secattr: the NetLabel packet security attributes
7420ed23
VY
3091 *
3092 * Description:
5778eabd
PM
3093 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3094 * Returns zero on success, negative values on failure.
7420ed23
VY
3095 *
3096 */
5778eabd 3097int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
7420ed23 3098{
99d854d2 3099 int rc;
7420ed23
VY
3100 struct context *ctx;
3101
3102 if (!ss_initialized)
3103 return 0;
3104
0804d113 3105 read_lock(&policy_rwlock);
7420ed23 3106 ctx = sidtab_search(&sidtab, sid);
99d854d2
PM
3107 if (ctx == NULL) {
3108 rc = -ENOENT;
5778eabd 3109 goto netlbl_sid_to_secattr_failure;
99d854d2 3110 }
5778eabd
PM
3111 secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
3112 GFP_ATOMIC);
99d854d2
PM
3113 if (secattr->domain == NULL) {
3114 rc = -ENOMEM;
3115 goto netlbl_sid_to_secattr_failure;
3116 }
8d75899d
PM
3117 secattr->attr.secid = sid;
3118 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
5778eabd
PM
3119 mls_export_netlbl_lvl(ctx, secattr);
3120 rc = mls_export_netlbl_cat(ctx, secattr);
bf0edf39 3121 if (rc != 0)
5778eabd 3122 goto netlbl_sid_to_secattr_failure;
0804d113 3123 read_unlock(&policy_rwlock);
99f59ed0 3124
5778eabd 3125 return 0;
f8687afe 3126
5778eabd 3127netlbl_sid_to_secattr_failure:
0804d113 3128 read_unlock(&policy_rwlock);
f8687afe
PM
3129 return rc;
3130}
7420ed23 3131#endif /* CONFIG_NETLABEL */