]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/wireless/reg.c
trivial: remove duplicate "different" from comment
[net-next-2.6.git] / net / wireless / reg.c
CommitLineData
8318d78a
JB
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
b2e1b302 5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
8318d78a
JB
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
b2e1b302
LR
12/**
13 * DOC: Wireless regulatory infrastructure
8318d78a
JB
14 *
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
19 *
b2e1b302
LR
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
23 *
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
29 *
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
33 *
8318d78a
JB
34 */
35#include <linux/kernel.h>
b2e1b302
LR
36#include <linux/list.h>
37#include <linux/random.h>
38#include <linux/nl80211.h>
39#include <linux/platform_device.h>
b2e1b302 40#include <net/cfg80211.h>
8318d78a 41#include "core.h"
b2e1b302 42#include "reg.h"
73d54c9e 43#include "nl80211.h"
8318d78a 44
5166ccd2 45/* Receipt of information from last regulatory request */
f6037d09 46static struct regulatory_request *last_request;
734366de 47
b2e1b302
LR
48/* To trigger userspace events */
49static struct platform_device *reg_pdev;
8318d78a 50
fb1fc7ad
LR
51/*
52 * Central wireless core regulatory domains, we only need two,
734366de 53 * the current one and a world regulatory domain in case we have no
fb1fc7ad
LR
54 * information to give us an alpha2
55 */
f130347c 56const struct ieee80211_regdomain *cfg80211_regdomain;
734366de 57
fb1fc7ad
LR
58/*
59 * We use this as a place for the rd structure built from the
3f2355cb 60 * last parsed country IE to rest until CRDA gets back to us with
fb1fc7ad
LR
61 * what it thinks should apply for the same country
62 */
3f2355cb
LR
63static const struct ieee80211_regdomain *country_ie_regdomain;
64
abc7381b
LR
65/*
66 * Protects static reg.c components:
67 * - cfg80211_world_regdom
68 * - cfg80211_regdom
69 * - country_ie_regdomain
70 * - last_request
71 */
72DEFINE_MUTEX(reg_mutex);
73#define assert_reg_lock() WARN_ON(!mutex_is_locked(&reg_mutex))
74
e38f8a7a 75/* Used to queue up regulatory hints */
fe33eb39
LR
76static LIST_HEAD(reg_requests_list);
77static spinlock_t reg_requests_lock;
78
e38f8a7a
LR
79/* Used to queue up beacon hints for review */
80static LIST_HEAD(reg_pending_beacons);
81static spinlock_t reg_pending_beacons_lock;
82
83/* Used to keep track of processed beacon hints */
84static LIST_HEAD(reg_beacon_list);
85
86struct reg_beacon {
87 struct list_head list;
88 struct ieee80211_channel chan;
89};
90
734366de
JB
91/* We keep a static world regulatory domain in case of the absence of CRDA */
92static const struct ieee80211_regdomain world_regdom = {
611b6a82 93 .n_reg_rules = 5,
734366de
JB
94 .alpha2 = "00",
95 .reg_rules = {
68798a62
LR
96 /* IEEE 802.11b/g, channels 1..11 */
97 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
611b6a82
LR
98 /* IEEE 802.11b/g, channels 12..13. No HT40
99 * channel fits here. */
100 REG_RULE(2467-10, 2472+10, 20, 6, 20,
3fc71f77
LR
101 NL80211_RRF_PASSIVE_SCAN |
102 NL80211_RRF_NO_IBSS),
611b6a82
LR
103 /* IEEE 802.11 channel 14 - Only JP enables
104 * this and for 802.11b only */
105 REG_RULE(2484-10, 2484+10, 20, 6, 20,
106 NL80211_RRF_PASSIVE_SCAN |
107 NL80211_RRF_NO_IBSS |
108 NL80211_RRF_NO_OFDM),
109 /* IEEE 802.11a, channel 36..48 */
ec329ace 110 REG_RULE(5180-10, 5240+10, 40, 6, 20,
611b6a82
LR
111 NL80211_RRF_PASSIVE_SCAN |
112 NL80211_RRF_NO_IBSS),
3fc71f77
LR
113
114 /* NB: 5260 MHz - 5700 MHz requies DFS */
115
116 /* IEEE 802.11a, channel 149..165 */
ec329ace 117 REG_RULE(5745-10, 5825+10, 40, 6, 20,
3fc71f77
LR
118 NL80211_RRF_PASSIVE_SCAN |
119 NL80211_RRF_NO_IBSS),
734366de
JB
120 }
121};
122
a3d2eaf0
JB
123static const struct ieee80211_regdomain *cfg80211_world_regdom =
124 &world_regdom;
734366de 125
6ee7d330 126static char *ieee80211_regdom = "00";
6ee7d330 127
734366de
JB
128module_param(ieee80211_regdom, charp, 0444);
129MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
130
6ee7d330 131#ifdef CONFIG_WIRELESS_OLD_REGULATORY
fb1fc7ad
LR
132/*
133 * We assume 40 MHz bandwidth for the old regulatory work.
734366de 134 * We make emphasis we are using the exact same frequencies
fb1fc7ad
LR
135 * as before
136 */
734366de
JB
137
138static const struct ieee80211_regdomain us_regdom = {
139 .n_reg_rules = 6,
140 .alpha2 = "US",
141 .reg_rules = {
142 /* IEEE 802.11b/g, channels 1..11 */
143 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
144 /* IEEE 802.11a, channel 36 */
145 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
146 /* IEEE 802.11a, channel 40 */
147 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
148 /* IEEE 802.11a, channel 44 */
149 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
150 /* IEEE 802.11a, channels 48..64 */
151 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
152 /* IEEE 802.11a, channels 149..165, outdoor */
153 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
154 }
155};
156
157static const struct ieee80211_regdomain jp_regdom = {
158 .n_reg_rules = 3,
159 .alpha2 = "JP",
160 .reg_rules = {
161 /* IEEE 802.11b/g, channels 1..14 */
162 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
163 /* IEEE 802.11a, channels 34..48 */
164 REG_RULE(5170-10, 5240+10, 40, 6, 20,
165 NL80211_RRF_PASSIVE_SCAN),
166 /* IEEE 802.11a, channels 52..64 */
167 REG_RULE(5260-10, 5320+10, 40, 6, 20,
168 NL80211_RRF_NO_IBSS |
169 NL80211_RRF_DFS),
170 }
171};
172
173static const struct ieee80211_regdomain eu_regdom = {
174 .n_reg_rules = 6,
fb1fc7ad
LR
175 /*
176 * This alpha2 is bogus, we leave it here just for stupid
177 * backward compatibility
178 */
734366de
JB
179 .alpha2 = "EU",
180 .reg_rules = {
181 /* IEEE 802.11b/g, channels 1..13 */
182 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
183 /* IEEE 802.11a, channel 36 */
184 REG_RULE(5180-10, 5180+10, 40, 6, 23,
185 NL80211_RRF_PASSIVE_SCAN),
186 /* IEEE 802.11a, channel 40 */
187 REG_RULE(5200-10, 5200+10, 40, 6, 23,
188 NL80211_RRF_PASSIVE_SCAN),
189 /* IEEE 802.11a, channel 44 */
190 REG_RULE(5220-10, 5220+10, 40, 6, 23,
191 NL80211_RRF_PASSIVE_SCAN),
192 /* IEEE 802.11a, channels 48..64 */
193 REG_RULE(5240-10, 5320+10, 40, 6, 20,
194 NL80211_RRF_NO_IBSS |
195 NL80211_RRF_DFS),
196 /* IEEE 802.11a, channels 100..140 */
197 REG_RULE(5500-10, 5700+10, 40, 6, 30,
198 NL80211_RRF_NO_IBSS |
199 NL80211_RRF_DFS),
200 }
201};
202
203static const struct ieee80211_regdomain *static_regdom(char *alpha2)
204{
205 if (alpha2[0] == 'U' && alpha2[1] == 'S')
206 return &us_regdom;
207 if (alpha2[0] == 'J' && alpha2[1] == 'P')
208 return &jp_regdom;
209 if (alpha2[0] == 'E' && alpha2[1] == 'U')
210 return &eu_regdom;
211 /* Default, as per the old rules */
212 return &us_regdom;
213}
214
a3d2eaf0 215static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
734366de
JB
216{
217 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
218 return true;
219 return false;
220}
942b25cf
JB
221#else
222static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
734366de 223{
942b25cf 224 return false;
734366de 225}
942b25cf
JB
226#endif
227
734366de
JB
228static void reset_regdomains(void)
229{
942b25cf
JB
230 /* avoid freeing static information or freeing something twice */
231 if (cfg80211_regdomain == cfg80211_world_regdom)
232 cfg80211_regdomain = NULL;
233 if (cfg80211_world_regdom == &world_regdom)
234 cfg80211_world_regdom = NULL;
235 if (cfg80211_regdomain == &world_regdom)
236 cfg80211_regdomain = NULL;
237 if (is_old_static_regdom(cfg80211_regdomain))
238 cfg80211_regdomain = NULL;
239
240 kfree(cfg80211_regdomain);
241 kfree(cfg80211_world_regdom);
734366de 242
a3d2eaf0 243 cfg80211_world_regdom = &world_regdom;
734366de
JB
244 cfg80211_regdomain = NULL;
245}
246
fb1fc7ad
LR
247/*
248 * Dynamic world regulatory domain requested by the wireless
249 * core upon initialization
250 */
a3d2eaf0 251static void update_world_regdomain(const struct ieee80211_regdomain *rd)
734366de 252{
f6037d09 253 BUG_ON(!last_request);
734366de
JB
254
255 reset_regdomains();
256
257 cfg80211_world_regdom = rd;
258 cfg80211_regdomain = rd;
259}
734366de 260
a3d2eaf0 261bool is_world_regdom(const char *alpha2)
b2e1b302
LR
262{
263 if (!alpha2)
264 return false;
265 if (alpha2[0] == '0' && alpha2[1] == '0')
266 return true;
267 return false;
268}
8318d78a 269
a3d2eaf0 270static bool is_alpha2_set(const char *alpha2)
b2e1b302
LR
271{
272 if (!alpha2)
273 return false;
274 if (alpha2[0] != 0 && alpha2[1] != 0)
275 return true;
276 return false;
277}
8318d78a 278
b2e1b302
LR
279static bool is_alpha_upper(char letter)
280{
281 /* ASCII A - Z */
282 if (letter >= 65 && letter <= 90)
283 return true;
284 return false;
285}
8318d78a 286
a3d2eaf0 287static bool is_unknown_alpha2(const char *alpha2)
b2e1b302
LR
288{
289 if (!alpha2)
290 return false;
fb1fc7ad
LR
291 /*
292 * Special case where regulatory domain was built by driver
293 * but a specific alpha2 cannot be determined
294 */
b2e1b302
LR
295 if (alpha2[0] == '9' && alpha2[1] == '9')
296 return true;
297 return false;
298}
8318d78a 299
3f2355cb
LR
300static bool is_intersected_alpha2(const char *alpha2)
301{
302 if (!alpha2)
303 return false;
fb1fc7ad
LR
304 /*
305 * Special case where regulatory domain is the
3f2355cb 306 * result of an intersection between two regulatory domain
fb1fc7ad
LR
307 * structures
308 */
3f2355cb
LR
309 if (alpha2[0] == '9' && alpha2[1] == '8')
310 return true;
311 return false;
312}
313
a3d2eaf0 314static bool is_an_alpha2(const char *alpha2)
b2e1b302
LR
315{
316 if (!alpha2)
317 return false;
318 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
319 return true;
320 return false;
321}
8318d78a 322
a3d2eaf0 323static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
b2e1b302
LR
324{
325 if (!alpha2_x || !alpha2_y)
326 return false;
327 if (alpha2_x[0] == alpha2_y[0] &&
328 alpha2_x[1] == alpha2_y[1])
329 return true;
330 return false;
331}
332
69b1572b 333static bool regdom_changes(const char *alpha2)
b2e1b302 334{
761cf7ec
LR
335 assert_cfg80211_lock();
336
b2e1b302
LR
337 if (!cfg80211_regdomain)
338 return true;
339 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
340 return false;
341 return true;
342}
343
3f2355cb
LR
344/**
345 * country_ie_integrity_changes - tells us if the country IE has changed
346 * @checksum: checksum of country IE of fields we are interested in
347 *
348 * If the country IE has not changed you can ignore it safely. This is
349 * useful to determine if two devices are seeing two different country IEs
350 * even on the same alpha2. Note that this will return false if no IE has
351 * been set on the wireless core yet.
352 */
353static bool country_ie_integrity_changes(u32 checksum)
354{
355 /* If no IE has been set then the checksum doesn't change */
356 if (unlikely(!last_request->country_ie_checksum))
357 return false;
358 if (unlikely(last_request->country_ie_checksum != checksum))
359 return true;
360 return false;
361}
362
fb1fc7ad
LR
363/*
364 * This lets us keep regulatory code which is updated on a regulatory
365 * basis in userspace.
366 */
b2e1b302
LR
367static int call_crda(const char *alpha2)
368{
369 char country_env[9 + 2] = "COUNTRY=";
370 char *envp[] = {
371 country_env,
372 NULL
373 };
374
375 if (!is_world_regdom((char *) alpha2))
376 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
377 alpha2[0], alpha2[1]);
378 else
b2e1b302
LR
379 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
380 "regulatory domain\n");
b2e1b302
LR
381
382 country_env[8] = alpha2[0];
383 country_env[9] = alpha2[1];
384
385 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
386}
387
b2e1b302 388/* Used by nl80211 before kmalloc'ing our regulatory domain */
a3d2eaf0 389bool reg_is_valid_request(const char *alpha2)
b2e1b302 390{
61405e97
LR
391 assert_cfg80211_lock();
392
f6037d09
JB
393 if (!last_request)
394 return false;
395
396 return alpha2_equal(last_request->alpha2, alpha2);
b2e1b302 397}
8318d78a 398
b2e1b302 399/* Sanity check on a regulatory rule */
a3d2eaf0 400static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
8318d78a 401{
a3d2eaf0 402 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
b2e1b302
LR
403 u32 freq_diff;
404
91e99004 405 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
b2e1b302
LR
406 return false;
407
408 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
409 return false;
410
411 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
412
bd05f28e
RK
413 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
414 freq_range->max_bandwidth_khz > freq_diff)
b2e1b302
LR
415 return false;
416
417 return true;
418}
419
a3d2eaf0 420static bool is_valid_rd(const struct ieee80211_regdomain *rd)
b2e1b302 421{
a3d2eaf0 422 const struct ieee80211_reg_rule *reg_rule = NULL;
b2e1b302 423 unsigned int i;
8318d78a 424
b2e1b302
LR
425 if (!rd->n_reg_rules)
426 return false;
8318d78a 427
88dc1c3f
LR
428 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
429 return false;
430
b2e1b302
LR
431 for (i = 0; i < rd->n_reg_rules; i++) {
432 reg_rule = &rd->reg_rules[i];
433 if (!is_valid_reg_rule(reg_rule))
434 return false;
435 }
436
437 return true;
8318d78a
JB
438}
439
038659e7
LR
440static bool reg_does_bw_fit(const struct ieee80211_freq_range *freq_range,
441 u32 center_freq_khz,
442 u32 bw_khz)
b2e1b302 443{
038659e7
LR
444 u32 start_freq_khz, end_freq_khz;
445
446 start_freq_khz = center_freq_khz - (bw_khz/2);
447 end_freq_khz = center_freq_khz + (bw_khz/2);
448
449 if (start_freq_khz >= freq_range->start_freq_khz &&
450 end_freq_khz <= freq_range->end_freq_khz)
451 return true;
452
453 return false;
b2e1b302 454}
8318d78a 455
0c7dc45d
LR
456/**
457 * freq_in_rule_band - tells us if a frequency is in a frequency band
458 * @freq_range: frequency rule we want to query
459 * @freq_khz: frequency we are inquiring about
460 *
461 * This lets us know if a specific frequency rule is or is not relevant to
462 * a specific frequency's band. Bands are device specific and artificial
463 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
464 * safe for now to assume that a frequency rule should not be part of a
465 * frequency's band if the start freq or end freq are off by more than 2 GHz.
466 * This resolution can be lowered and should be considered as we add
467 * regulatory rule support for other "bands".
468 **/
469static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
470 u32 freq_khz)
471{
472#define ONE_GHZ_IN_KHZ 1000000
473 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
474 return true;
475 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
476 return true;
477 return false;
478#undef ONE_GHZ_IN_KHZ
479}
480
fb1fc7ad
LR
481/*
482 * Converts a country IE to a regulatory domain. A regulatory domain
3f2355cb
LR
483 * structure has a lot of information which the IE doesn't yet have,
484 * so for the other values we use upper max values as we will intersect
fb1fc7ad
LR
485 * with our userspace regulatory agent to get lower bounds.
486 */
3f2355cb
LR
487static struct ieee80211_regdomain *country_ie_2_rd(
488 u8 *country_ie,
489 u8 country_ie_len,
490 u32 *checksum)
491{
492 struct ieee80211_regdomain *rd = NULL;
493 unsigned int i = 0;
494 char alpha2[2];
495 u32 flags = 0;
496 u32 num_rules = 0, size_of_regd = 0;
497 u8 *triplets_start = NULL;
498 u8 len_at_triplet = 0;
499 /* the last channel we have registered in a subband (triplet) */
500 int last_sub_max_channel = 0;
501
502 *checksum = 0xDEADBEEF;
503
504 /* Country IE requirements */
505 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
506 country_ie_len & 0x01);
507
508 alpha2[0] = country_ie[0];
509 alpha2[1] = country_ie[1];
510
511 /*
512 * Third octet can be:
513 * 'I' - Indoor
514 * 'O' - Outdoor
515 *
516 * anything else we assume is no restrictions
517 */
518 if (country_ie[2] == 'I')
519 flags = NL80211_RRF_NO_OUTDOOR;
520 else if (country_ie[2] == 'O')
521 flags = NL80211_RRF_NO_INDOOR;
522
523 country_ie += 3;
524 country_ie_len -= 3;
525
526 triplets_start = country_ie;
527 len_at_triplet = country_ie_len;
528
529 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
530
fb1fc7ad
LR
531 /*
532 * We need to build a reg rule for each triplet, but first we must
3f2355cb 533 * calculate the number of reg rules we will need. We will need one
fb1fc7ad
LR
534 * for each channel subband
535 */
3f2355cb 536 while (country_ie_len >= 3) {
615aab4b 537 int end_channel = 0;
3f2355cb
LR
538 struct ieee80211_country_ie_triplet *triplet =
539 (struct ieee80211_country_ie_triplet *) country_ie;
540 int cur_sub_max_channel = 0, cur_channel = 0;
541
542 if (triplet->ext.reg_extension_id >=
543 IEEE80211_COUNTRY_EXTENSION_ID) {
544 country_ie += 3;
545 country_ie_len -= 3;
546 continue;
547 }
548
615aab4b
LR
549 /* 2 GHz */
550 if (triplet->chans.first_channel <= 14)
551 end_channel = triplet->chans.first_channel +
552 triplet->chans.num_channels;
553 else
554 /*
555 * 5 GHz -- For example in country IEs if the first
556 * channel given is 36 and the number of channels is 4
557 * then the individual channel numbers defined for the
558 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
559 * and not 36, 37, 38, 39.
560 *
561 * See: http://tinyurl.com/11d-clarification
562 */
563 end_channel = triplet->chans.first_channel +
564 (4 * (triplet->chans.num_channels - 1));
565
3f2355cb 566 cur_channel = triplet->chans.first_channel;
615aab4b 567 cur_sub_max_channel = end_channel;
3f2355cb
LR
568
569 /* Basic sanity check */
570 if (cur_sub_max_channel < cur_channel)
571 return NULL;
572
fb1fc7ad
LR
573 /*
574 * Do not allow overlapping channels. Also channels
3f2355cb 575 * passed in each subband must be monotonically
fb1fc7ad
LR
576 * increasing
577 */
3f2355cb
LR
578 if (last_sub_max_channel) {
579 if (cur_channel <= last_sub_max_channel)
580 return NULL;
581 if (cur_sub_max_channel <= last_sub_max_channel)
582 return NULL;
583 }
584
fb1fc7ad
LR
585 /*
586 * When dot11RegulatoryClassesRequired is supported
3f2355cb
LR
587 * we can throw ext triplets as part of this soup,
588 * for now we don't care when those change as we
fb1fc7ad
LR
589 * don't support them
590 */
3f2355cb
LR
591 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
592 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
593 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
594
595 last_sub_max_channel = cur_sub_max_channel;
596
597 country_ie += 3;
598 country_ie_len -= 3;
599 num_rules++;
600
fb1fc7ad
LR
601 /*
602 * Note: this is not a IEEE requirement but
603 * simply a memory requirement
604 */
3f2355cb
LR
605 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
606 return NULL;
607 }
608
609 country_ie = triplets_start;
610 country_ie_len = len_at_triplet;
611
612 size_of_regd = sizeof(struct ieee80211_regdomain) +
613 (num_rules * sizeof(struct ieee80211_reg_rule));
614
615 rd = kzalloc(size_of_regd, GFP_KERNEL);
616 if (!rd)
617 return NULL;
618
619 rd->n_reg_rules = num_rules;
620 rd->alpha2[0] = alpha2[0];
621 rd->alpha2[1] = alpha2[1];
622
623 /* This time around we fill in the rd */
624 while (country_ie_len >= 3) {
02e68a3d 625 int end_channel = 0;
3f2355cb
LR
626 struct ieee80211_country_ie_triplet *triplet =
627 (struct ieee80211_country_ie_triplet *) country_ie;
628 struct ieee80211_reg_rule *reg_rule = NULL;
629 struct ieee80211_freq_range *freq_range = NULL;
630 struct ieee80211_power_rule *power_rule = NULL;
631
fb1fc7ad
LR
632 /*
633 * Must parse if dot11RegulatoryClassesRequired is true,
634 * we don't support this yet
635 */
3f2355cb
LR
636 if (triplet->ext.reg_extension_id >=
637 IEEE80211_COUNTRY_EXTENSION_ID) {
638 country_ie += 3;
639 country_ie_len -= 3;
640 continue;
641 }
642
643 reg_rule = &rd->reg_rules[i];
644 freq_range = &reg_rule->freq_range;
645 power_rule = &reg_rule->power_rule;
646
647 reg_rule->flags = flags;
648
02e68a3d
LR
649 /* 2 GHz */
650 if (triplet->chans.first_channel <= 14)
651 end_channel = triplet->chans.first_channel +
652 triplet->chans.num_channels;
653 else
02e68a3d
LR
654 end_channel = triplet->chans.first_channel +
655 (4 * (triplet->chans.num_channels - 1));
656
fb1fc7ad
LR
657 /*
658 * The +10 is since the regulatory domain expects
3f2355cb
LR
659 * the actual band edge, not the center of freq for
660 * its start and end freqs, assuming 20 MHz bandwidth on
fb1fc7ad
LR
661 * the channels passed
662 */
3f2355cb
LR
663 freq_range->start_freq_khz =
664 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
665 triplet->chans.first_channel) - 10);
666 freq_range->end_freq_khz =
667 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
02e68a3d 668 end_channel) + 10);
3f2355cb 669
fb1fc7ad
LR
670 /*
671 * These are large arbitrary values we use to intersect later.
672 * Increment this if we ever support >= 40 MHz channels
673 * in IEEE 802.11
674 */
3f2355cb
LR
675 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
676 power_rule->max_antenna_gain = DBI_TO_MBI(100);
677 power_rule->max_eirp = DBM_TO_MBM(100);
678
679 country_ie += 3;
680 country_ie_len -= 3;
681 i++;
682
683 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
684 }
685
686 return rd;
687}
688
689
fb1fc7ad
LR
690/*
691 * Helper for regdom_intersect(), this does the real
692 * mathematical intersection fun
693 */
9c96477d
LR
694static int reg_rules_intersect(
695 const struct ieee80211_reg_rule *rule1,
696 const struct ieee80211_reg_rule *rule2,
697 struct ieee80211_reg_rule *intersected_rule)
698{
699 const struct ieee80211_freq_range *freq_range1, *freq_range2;
700 struct ieee80211_freq_range *freq_range;
701 const struct ieee80211_power_rule *power_rule1, *power_rule2;
702 struct ieee80211_power_rule *power_rule;
703 u32 freq_diff;
704
705 freq_range1 = &rule1->freq_range;
706 freq_range2 = &rule2->freq_range;
707 freq_range = &intersected_rule->freq_range;
708
709 power_rule1 = &rule1->power_rule;
710 power_rule2 = &rule2->power_rule;
711 power_rule = &intersected_rule->power_rule;
712
713 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
714 freq_range2->start_freq_khz);
715 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
716 freq_range2->end_freq_khz);
717 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
718 freq_range2->max_bandwidth_khz);
719
720 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
721 if (freq_range->max_bandwidth_khz > freq_diff)
722 freq_range->max_bandwidth_khz = freq_diff;
723
724 power_rule->max_eirp = min(power_rule1->max_eirp,
725 power_rule2->max_eirp);
726 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
727 power_rule2->max_antenna_gain);
728
729 intersected_rule->flags = (rule1->flags | rule2->flags);
730
731 if (!is_valid_reg_rule(intersected_rule))
732 return -EINVAL;
733
734 return 0;
735}
736
737/**
738 * regdom_intersect - do the intersection between two regulatory domains
739 * @rd1: first regulatory domain
740 * @rd2: second regulatory domain
741 *
742 * Use this function to get the intersection between two regulatory domains.
743 * Once completed we will mark the alpha2 for the rd as intersected, "98",
744 * as no one single alpha2 can represent this regulatory domain.
745 *
746 * Returns a pointer to the regulatory domain structure which will hold the
747 * resulting intersection of rules between rd1 and rd2. We will
748 * kzalloc() this structure for you.
749 */
750static struct ieee80211_regdomain *regdom_intersect(
751 const struct ieee80211_regdomain *rd1,
752 const struct ieee80211_regdomain *rd2)
753{
754 int r, size_of_regd;
755 unsigned int x, y;
756 unsigned int num_rules = 0, rule_idx = 0;
757 const struct ieee80211_reg_rule *rule1, *rule2;
758 struct ieee80211_reg_rule *intersected_rule;
759 struct ieee80211_regdomain *rd;
760 /* This is just a dummy holder to help us count */
761 struct ieee80211_reg_rule irule;
762
763 /* Uses the stack temporarily for counter arithmetic */
764 intersected_rule = &irule;
765
766 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
767
768 if (!rd1 || !rd2)
769 return NULL;
770
fb1fc7ad
LR
771 /*
772 * First we get a count of the rules we'll need, then we actually
9c96477d
LR
773 * build them. This is to so we can malloc() and free() a
774 * regdomain once. The reason we use reg_rules_intersect() here
775 * is it will return -EINVAL if the rule computed makes no sense.
fb1fc7ad
LR
776 * All rules that do check out OK are valid.
777 */
9c96477d
LR
778
779 for (x = 0; x < rd1->n_reg_rules; x++) {
780 rule1 = &rd1->reg_rules[x];
781 for (y = 0; y < rd2->n_reg_rules; y++) {
782 rule2 = &rd2->reg_rules[y];
783 if (!reg_rules_intersect(rule1, rule2,
784 intersected_rule))
785 num_rules++;
786 memset(intersected_rule, 0,
787 sizeof(struct ieee80211_reg_rule));
788 }
789 }
790
791 if (!num_rules)
792 return NULL;
793
794 size_of_regd = sizeof(struct ieee80211_regdomain) +
795 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
796
797 rd = kzalloc(size_of_regd, GFP_KERNEL);
798 if (!rd)
799 return NULL;
800
801 for (x = 0; x < rd1->n_reg_rules; x++) {
802 rule1 = &rd1->reg_rules[x];
803 for (y = 0; y < rd2->n_reg_rules; y++) {
804 rule2 = &rd2->reg_rules[y];
fb1fc7ad
LR
805 /*
806 * This time around instead of using the stack lets
9c96477d 807 * write to the target rule directly saving ourselves
fb1fc7ad
LR
808 * a memcpy()
809 */
9c96477d
LR
810 intersected_rule = &rd->reg_rules[rule_idx];
811 r = reg_rules_intersect(rule1, rule2,
812 intersected_rule);
fb1fc7ad
LR
813 /*
814 * No need to memset here the intersected rule here as
815 * we're not using the stack anymore
816 */
9c96477d
LR
817 if (r)
818 continue;
819 rule_idx++;
820 }
821 }
822
823 if (rule_idx != num_rules) {
824 kfree(rd);
825 return NULL;
826 }
827
828 rd->n_reg_rules = num_rules;
829 rd->alpha2[0] = '9';
830 rd->alpha2[1] = '8';
831
832 return rd;
833}
834
fb1fc7ad
LR
835/*
836 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
837 * want to just have the channel structure use these
838 */
b2e1b302
LR
839static u32 map_regdom_flags(u32 rd_flags)
840{
841 u32 channel_flags = 0;
842 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
843 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
844 if (rd_flags & NL80211_RRF_NO_IBSS)
845 channel_flags |= IEEE80211_CHAN_NO_IBSS;
846 if (rd_flags & NL80211_RRF_DFS)
847 channel_flags |= IEEE80211_CHAN_RADAR;
848 return channel_flags;
849}
850
1fa25e41
LR
851static int freq_reg_info_regd(struct wiphy *wiphy,
852 u32 center_freq,
038659e7 853 u32 desired_bw_khz,
1fa25e41
LR
854 const struct ieee80211_reg_rule **reg_rule,
855 const struct ieee80211_regdomain *custom_regd)
8318d78a
JB
856{
857 int i;
0c7dc45d 858 bool band_rule_found = false;
3e0c3ff3 859 const struct ieee80211_regdomain *regd;
038659e7
LR
860 bool bw_fits = false;
861
862 if (!desired_bw_khz)
863 desired_bw_khz = MHZ_TO_KHZ(20);
8318d78a 864
1fa25e41 865 regd = custom_regd ? custom_regd : cfg80211_regdomain;
3e0c3ff3 866
fb1fc7ad
LR
867 /*
868 * Follow the driver's regulatory domain, if present, unless a country
869 * IE has been processed or a user wants to help complaince further
870 */
7db90f4a
LR
871 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
872 last_request->initiator != NL80211_REGDOM_SET_BY_USER &&
3e0c3ff3
LR
873 wiphy->regd)
874 regd = wiphy->regd;
875
876 if (!regd)
b2e1b302
LR
877 return -EINVAL;
878
3e0c3ff3 879 for (i = 0; i < regd->n_reg_rules; i++) {
b2e1b302
LR
880 const struct ieee80211_reg_rule *rr;
881 const struct ieee80211_freq_range *fr = NULL;
882 const struct ieee80211_power_rule *pr = NULL;
883
3e0c3ff3 884 rr = &regd->reg_rules[i];
b2e1b302
LR
885 fr = &rr->freq_range;
886 pr = &rr->power_rule;
0c7dc45d 887
fb1fc7ad
LR
888 /*
889 * We only need to know if one frequency rule was
0c7dc45d 890 * was in center_freq's band, that's enough, so lets
fb1fc7ad
LR
891 * not overwrite it once found
892 */
0c7dc45d
LR
893 if (!band_rule_found)
894 band_rule_found = freq_in_rule_band(fr, center_freq);
895
038659e7
LR
896 bw_fits = reg_does_bw_fit(fr,
897 center_freq,
898 desired_bw_khz);
0c7dc45d 899
038659e7 900 if (band_rule_found && bw_fits) {
b2e1b302 901 *reg_rule = rr;
038659e7 902 return 0;
8318d78a
JB
903 }
904 }
905
0c7dc45d
LR
906 if (!band_rule_found)
907 return -ERANGE;
908
038659e7 909 return -EINVAL;
b2e1b302 910}
34f57347 911EXPORT_SYMBOL(freq_reg_info);
b2e1b302 912
038659e7
LR
913int freq_reg_info(struct wiphy *wiphy,
914 u32 center_freq,
915 u32 desired_bw_khz,
916 const struct ieee80211_reg_rule **reg_rule)
1fa25e41 917{
ac46d48e 918 assert_cfg80211_lock();
038659e7
LR
919 return freq_reg_info_regd(wiphy,
920 center_freq,
921 desired_bw_khz,
922 reg_rule,
923 NULL);
1fa25e41 924}
b2e1b302 925
038659e7
LR
926/*
927 * Note that right now we assume the desired channel bandwidth
928 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
929 * per channel, the primary and the extension channel). To support
930 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
931 * new ieee80211_channel.target_bw and re run the regulatory check
932 * on the wiphy with the target_bw specified. Then we can simply use
933 * that below for the desired_bw_khz below.
934 */
a92a3ce7
LR
935static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
936 unsigned int chan_idx)
b2e1b302
LR
937{
938 int r;
038659e7
LR
939 u32 flags, bw_flags = 0;
940 u32 desired_bw_khz = MHZ_TO_KHZ(20);
b2e1b302
LR
941 const struct ieee80211_reg_rule *reg_rule = NULL;
942 const struct ieee80211_power_rule *power_rule = NULL;
038659e7 943 const struct ieee80211_freq_range *freq_range = NULL;
a92a3ce7
LR
944 struct ieee80211_supported_band *sband;
945 struct ieee80211_channel *chan;
fe33eb39 946 struct wiphy *request_wiphy = NULL;
a92a3ce7 947
761cf7ec
LR
948 assert_cfg80211_lock();
949
806a9e39
LR
950 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
951
a92a3ce7
LR
952 sband = wiphy->bands[band];
953 BUG_ON(chan_idx >= sband->n_channels);
954 chan = &sband->channels[chan_idx];
955
956 flags = chan->orig_flags;
b2e1b302 957
038659e7
LR
958 r = freq_reg_info(wiphy,
959 MHZ_TO_KHZ(chan->center_freq),
960 desired_bw_khz,
961 &reg_rule);
b2e1b302
LR
962
963 if (r) {
fb1fc7ad
LR
964 /*
965 * This means no regulatory rule was found in the country IE
0c7dc45d
LR
966 * with a frequency range on the center_freq's band, since
967 * IEEE-802.11 allows for a country IE to have a subset of the
968 * regulatory information provided in a country we ignore
969 * disabling the channel unless at least one reg rule was
970 * found on the center_freq's band. For details see this
971 * clarification:
972 *
973 * http://tinyurl.com/11d-clarification
974 */
975 if (r == -ERANGE &&
7db90f4a
LR
976 last_request->initiator ==
977 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
0c7dc45d
LR
978#ifdef CONFIG_CFG80211_REG_DEBUG
979 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
980 "intact on %s - no rule found in band on "
981 "Country IE\n",
982 chan->center_freq, wiphy_name(wiphy));
983#endif
984 } else {
fb1fc7ad
LR
985 /*
986 * In this case we know the country IE has at least one reg rule
987 * for the band so we respect its band definitions
988 */
0c7dc45d 989#ifdef CONFIG_CFG80211_REG_DEBUG
7db90f4a
LR
990 if (last_request->initiator ==
991 NL80211_REGDOM_SET_BY_COUNTRY_IE)
0c7dc45d
LR
992 printk(KERN_DEBUG "cfg80211: Disabling "
993 "channel %d MHz on %s due to "
994 "Country IE\n",
995 chan->center_freq, wiphy_name(wiphy));
996#endif
997 flags |= IEEE80211_CHAN_DISABLED;
998 chan->flags = flags;
999 }
8318d78a
JB
1000 return;
1001 }
1002
b2e1b302 1003 power_rule = &reg_rule->power_rule;
038659e7
LR
1004 freq_range = &reg_rule->freq_range;
1005
1006 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1007 bw_flags = IEEE80211_CHAN_NO_HT40;
b2e1b302 1008
7db90f4a 1009 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
806a9e39
LR
1010 request_wiphy && request_wiphy == wiphy &&
1011 request_wiphy->strict_regulatory) {
fb1fc7ad
LR
1012 /*
1013 * This gaurantees the driver's requested regulatory domain
f976376d 1014 * will always be used as a base for further regulatory
fb1fc7ad
LR
1015 * settings
1016 */
f976376d 1017 chan->flags = chan->orig_flags =
038659e7 1018 map_regdom_flags(reg_rule->flags) | bw_flags;
f976376d
LR
1019 chan->max_antenna_gain = chan->orig_mag =
1020 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
f976376d
LR
1021 chan->max_power = chan->orig_mpwr =
1022 (int) MBM_TO_DBM(power_rule->max_eirp);
1023 return;
1024 }
1025
038659e7 1026 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
8318d78a 1027 chan->max_antenna_gain = min(chan->orig_mag,
b2e1b302 1028 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
253898c4 1029 if (chan->orig_mpwr)
b2e1b302
LR
1030 chan->max_power = min(chan->orig_mpwr,
1031 (int) MBM_TO_DBM(power_rule->max_eirp));
253898c4 1032 else
b2e1b302 1033 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
8318d78a
JB
1034}
1035
a92a3ce7 1036static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
8318d78a 1037{
a92a3ce7
LR
1038 unsigned int i;
1039 struct ieee80211_supported_band *sband;
1040
1041 BUG_ON(!wiphy->bands[band]);
1042 sband = wiphy->bands[band];
8318d78a
JB
1043
1044 for (i = 0; i < sband->n_channels; i++)
a92a3ce7 1045 handle_channel(wiphy, band, i);
8318d78a
JB
1046}
1047
7db90f4a
LR
1048static bool ignore_reg_update(struct wiphy *wiphy,
1049 enum nl80211_reg_initiator initiator)
14b9815a
LR
1050{
1051 if (!last_request)
1052 return true;
7db90f4a 1053 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2a44f911 1054 wiphy->custom_regulatory)
14b9815a 1055 return true;
fb1fc7ad
LR
1056 /*
1057 * wiphy->regd will be set once the device has its own
1058 * desired regulatory domain set
1059 */
f976376d
LR
1060 if (wiphy->strict_regulatory && !wiphy->regd &&
1061 !is_world_regdom(last_request->alpha2))
14b9815a
LR
1062 return true;
1063 return false;
1064}
1065
7db90f4a 1066static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
8318d78a 1067{
79c97e97 1068 struct cfg80211_registered_device *rdev;
8318d78a 1069
79c97e97
JB
1070 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1071 wiphy_update_regulatory(&rdev->wiphy, initiator);
b2e1b302
LR
1072}
1073
e38f8a7a
LR
1074static void handle_reg_beacon(struct wiphy *wiphy,
1075 unsigned int chan_idx,
1076 struct reg_beacon *reg_beacon)
1077{
e38f8a7a
LR
1078 struct ieee80211_supported_band *sband;
1079 struct ieee80211_channel *chan;
6bad8766
LR
1080 bool channel_changed = false;
1081 struct ieee80211_channel chan_before;
e38f8a7a
LR
1082
1083 assert_cfg80211_lock();
1084
1085 sband = wiphy->bands[reg_beacon->chan.band];
1086 chan = &sband->channels[chan_idx];
1087
1088 if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1089 return;
1090
6bad8766
LR
1091 if (chan->beacon_found)
1092 return;
1093
1094 chan->beacon_found = true;
1095
37184244
LR
1096 if (wiphy->disable_beacon_hints)
1097 return;
1098
6bad8766
LR
1099 chan_before.center_freq = chan->center_freq;
1100 chan_before.flags = chan->flags;
1101
37184244 1102 if (chan->flags & IEEE80211_CHAN_PASSIVE_SCAN) {
e38f8a7a 1103 chan->flags &= ~IEEE80211_CHAN_PASSIVE_SCAN;
6bad8766 1104 channel_changed = true;
e38f8a7a
LR
1105 }
1106
37184244 1107 if (chan->flags & IEEE80211_CHAN_NO_IBSS) {
e38f8a7a 1108 chan->flags &= ~IEEE80211_CHAN_NO_IBSS;
6bad8766 1109 channel_changed = true;
e38f8a7a
LR
1110 }
1111
6bad8766
LR
1112 if (channel_changed)
1113 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
e38f8a7a
LR
1114}
1115
1116/*
1117 * Called when a scan on a wiphy finds a beacon on
1118 * new channel
1119 */
1120static void wiphy_update_new_beacon(struct wiphy *wiphy,
1121 struct reg_beacon *reg_beacon)
1122{
1123 unsigned int i;
1124 struct ieee80211_supported_band *sband;
1125
1126 assert_cfg80211_lock();
1127
1128 if (!wiphy->bands[reg_beacon->chan.band])
1129 return;
1130
1131 sband = wiphy->bands[reg_beacon->chan.band];
1132
1133 for (i = 0; i < sband->n_channels; i++)
1134 handle_reg_beacon(wiphy, i, reg_beacon);
1135}
1136
1137/*
1138 * Called upon reg changes or a new wiphy is added
1139 */
1140static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1141{
1142 unsigned int i;
1143 struct ieee80211_supported_band *sband;
1144 struct reg_beacon *reg_beacon;
1145
1146 assert_cfg80211_lock();
1147
1148 if (list_empty(&reg_beacon_list))
1149 return;
1150
1151 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1152 if (!wiphy->bands[reg_beacon->chan.band])
1153 continue;
1154 sband = wiphy->bands[reg_beacon->chan.band];
1155 for (i = 0; i < sband->n_channels; i++)
1156 handle_reg_beacon(wiphy, i, reg_beacon);
1157 }
1158}
1159
1160static bool reg_is_world_roaming(struct wiphy *wiphy)
1161{
1162 if (is_world_regdom(cfg80211_regdomain->alpha2) ||
1163 (wiphy->regd && is_world_regdom(wiphy->regd->alpha2)))
1164 return true;
b1ed8ddd
LR
1165 if (last_request &&
1166 last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
e38f8a7a
LR
1167 wiphy->custom_regulatory)
1168 return true;
1169 return false;
1170}
1171
1172/* Reap the advantages of previously found beacons */
1173static void reg_process_beacons(struct wiphy *wiphy)
1174{
b1ed8ddd
LR
1175 /*
1176 * Means we are just firing up cfg80211, so no beacons would
1177 * have been processed yet.
1178 */
1179 if (!last_request)
1180 return;
e38f8a7a
LR
1181 if (!reg_is_world_roaming(wiphy))
1182 return;
1183 wiphy_update_beacon_reg(wiphy);
1184}
1185
038659e7
LR
1186static bool is_ht40_not_allowed(struct ieee80211_channel *chan)
1187{
1188 if (!chan)
1189 return true;
1190 if (chan->flags & IEEE80211_CHAN_DISABLED)
1191 return true;
1192 /* This would happen when regulatory rules disallow HT40 completely */
1193 if (IEEE80211_CHAN_NO_HT40 == (chan->flags & (IEEE80211_CHAN_NO_HT40)))
1194 return true;
1195 return false;
1196}
1197
1198static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1199 enum ieee80211_band band,
1200 unsigned int chan_idx)
1201{
1202 struct ieee80211_supported_band *sband;
1203 struct ieee80211_channel *channel;
1204 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1205 unsigned int i;
1206
1207 assert_cfg80211_lock();
1208
1209 sband = wiphy->bands[band];
1210 BUG_ON(chan_idx >= sband->n_channels);
1211 channel = &sband->channels[chan_idx];
1212
1213 if (is_ht40_not_allowed(channel)) {
1214 channel->flags |= IEEE80211_CHAN_NO_HT40;
1215 return;
1216 }
1217
1218 /*
1219 * We need to ensure the extension channels exist to
1220 * be able to use HT40- or HT40+, this finds them (or not)
1221 */
1222 for (i = 0; i < sband->n_channels; i++) {
1223 struct ieee80211_channel *c = &sband->channels[i];
1224 if (c->center_freq == (channel->center_freq - 20))
1225 channel_before = c;
1226 if (c->center_freq == (channel->center_freq + 20))
1227 channel_after = c;
1228 }
1229
1230 /*
1231 * Please note that this assumes target bandwidth is 20 MHz,
1232 * if that ever changes we also need to change the below logic
1233 * to include that as well.
1234 */
1235 if (is_ht40_not_allowed(channel_before))
689da1b3 1236 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
038659e7 1237 else
689da1b3 1238 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
038659e7
LR
1239
1240 if (is_ht40_not_allowed(channel_after))
689da1b3 1241 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
038659e7 1242 else
689da1b3 1243 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
038659e7
LR
1244}
1245
1246static void reg_process_ht_flags_band(struct wiphy *wiphy,
1247 enum ieee80211_band band)
1248{
1249 unsigned int i;
1250 struct ieee80211_supported_band *sband;
1251
1252 BUG_ON(!wiphy->bands[band]);
1253 sband = wiphy->bands[band];
1254
1255 for (i = 0; i < sband->n_channels; i++)
1256 reg_process_ht_flags_channel(wiphy, band, i);
1257}
1258
1259static void reg_process_ht_flags(struct wiphy *wiphy)
1260{
1261 enum ieee80211_band band;
1262
1263 if (!wiphy)
1264 return;
1265
1266 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1267 if (wiphy->bands[band])
1268 reg_process_ht_flags_band(wiphy, band);
1269 }
1270
1271}
1272
7db90f4a
LR
1273void wiphy_update_regulatory(struct wiphy *wiphy,
1274 enum nl80211_reg_initiator initiator)
b2e1b302
LR
1275{
1276 enum ieee80211_band band;
d46e5b1d 1277
7db90f4a 1278 if (ignore_reg_update(wiphy, initiator))
e38f8a7a 1279 goto out;
b2e1b302 1280 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
8318d78a 1281 if (wiphy->bands[band])
a92a3ce7 1282 handle_band(wiphy, band);
b2e1b302 1283 }
e38f8a7a
LR
1284out:
1285 reg_process_beacons(wiphy);
038659e7 1286 reg_process_ht_flags(wiphy);
560e28e1 1287 if (wiphy->reg_notifier)
716f9392 1288 wiphy->reg_notifier(wiphy, last_request);
b2e1b302
LR
1289}
1290
1fa25e41
LR
1291static void handle_channel_custom(struct wiphy *wiphy,
1292 enum ieee80211_band band,
1293 unsigned int chan_idx,
1294 const struct ieee80211_regdomain *regd)
1295{
1296 int r;
038659e7
LR
1297 u32 desired_bw_khz = MHZ_TO_KHZ(20);
1298 u32 bw_flags = 0;
1fa25e41
LR
1299 const struct ieee80211_reg_rule *reg_rule = NULL;
1300 const struct ieee80211_power_rule *power_rule = NULL;
038659e7 1301 const struct ieee80211_freq_range *freq_range = NULL;
1fa25e41
LR
1302 struct ieee80211_supported_band *sband;
1303 struct ieee80211_channel *chan;
1304
abc7381b 1305 assert_reg_lock();
ac46d48e 1306
1fa25e41
LR
1307 sband = wiphy->bands[band];
1308 BUG_ON(chan_idx >= sband->n_channels);
1309 chan = &sband->channels[chan_idx];
1310
038659e7
LR
1311 r = freq_reg_info_regd(wiphy,
1312 MHZ_TO_KHZ(chan->center_freq),
1313 desired_bw_khz,
1314 &reg_rule,
1315 regd);
1fa25e41
LR
1316
1317 if (r) {
1318 chan->flags = IEEE80211_CHAN_DISABLED;
1319 return;
1320 }
1321
1322 power_rule = &reg_rule->power_rule;
038659e7
LR
1323 freq_range = &reg_rule->freq_range;
1324
1325 if (freq_range->max_bandwidth_khz < MHZ_TO_KHZ(40))
1326 bw_flags = IEEE80211_CHAN_NO_HT40;
1fa25e41 1327
038659e7 1328 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
1fa25e41 1329 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1fa25e41
LR
1330 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1331}
1332
1333static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1334 const struct ieee80211_regdomain *regd)
1335{
1336 unsigned int i;
1337 struct ieee80211_supported_band *sband;
1338
1339 BUG_ON(!wiphy->bands[band]);
1340 sband = wiphy->bands[band];
1341
1342 for (i = 0; i < sband->n_channels; i++)
1343 handle_channel_custom(wiphy, band, i, regd);
1344}
1345
1346/* Used by drivers prior to wiphy registration */
1347void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1348 const struct ieee80211_regdomain *regd)
1349{
1350 enum ieee80211_band band;
bbcf3f02 1351 unsigned int bands_set = 0;
ac46d48e 1352
abc7381b 1353 mutex_lock(&reg_mutex);
1fa25e41 1354 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
bbcf3f02
LR
1355 if (!wiphy->bands[band])
1356 continue;
1357 handle_band_custom(wiphy, band, regd);
1358 bands_set++;
b2e1b302 1359 }
abc7381b 1360 mutex_unlock(&reg_mutex);
bbcf3f02
LR
1361
1362 /*
1363 * no point in calling this if it won't have any effect
1364 * on your device's supportd bands.
1365 */
1366 WARN_ON(!bands_set);
b2e1b302 1367}
1fa25e41
LR
1368EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1369
3e0c3ff3
LR
1370static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1371 const struct ieee80211_regdomain *src_regd)
1372{
1373 struct ieee80211_regdomain *regd;
1374 int size_of_regd = 0;
1375 unsigned int i;
1376
1377 size_of_regd = sizeof(struct ieee80211_regdomain) +
1378 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1379
1380 regd = kzalloc(size_of_regd, GFP_KERNEL);
1381 if (!regd)
1382 return -ENOMEM;
1383
1384 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1385
1386 for (i = 0; i < src_regd->n_reg_rules; i++)
1387 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1388 sizeof(struct ieee80211_reg_rule));
1389
1390 *dst_regd = regd;
1391 return 0;
1392}
b2e1b302 1393
fb1fc7ad
LR
1394/*
1395 * Return value which can be used by ignore_request() to indicate
1396 * it has been determined we should intersect two regulatory domains
1397 */
9c96477d
LR
1398#define REG_INTERSECT 1
1399
84fa4f43
JB
1400/* This has the logic which determines when a new request
1401 * should be ignored. */
2f92cd2e
LR
1402static int ignore_request(struct wiphy *wiphy,
1403 struct regulatory_request *pending_request)
84fa4f43 1404{
806a9e39 1405 struct wiphy *last_wiphy = NULL;
761cf7ec
LR
1406
1407 assert_cfg80211_lock();
1408
84fa4f43
JB
1409 /* All initial requests are respected */
1410 if (!last_request)
1411 return 0;
1412
2f92cd2e 1413 switch (pending_request->initiator) {
7db90f4a 1414 case NL80211_REGDOM_SET_BY_CORE:
ba25c141 1415 return -EINVAL;
7db90f4a 1416 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
806a9e39
LR
1417
1418 last_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1419
2f92cd2e 1420 if (unlikely(!is_an_alpha2(pending_request->alpha2)))
84fa4f43 1421 return -EINVAL;
7db90f4a
LR
1422 if (last_request->initiator ==
1423 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
806a9e39 1424 if (last_wiphy != wiphy) {
84fa4f43
JB
1425 /*
1426 * Two cards with two APs claiming different
1fe90b03 1427 * Country IE alpha2s. We could
84fa4f43
JB
1428 * intersect them, but that seems unlikely
1429 * to be correct. Reject second one for now.
1430 */
2f92cd2e 1431 if (regdom_changes(pending_request->alpha2))
84fa4f43
JB
1432 return -EOPNOTSUPP;
1433 return -EALREADY;
1434 }
fb1fc7ad
LR
1435 /*
1436 * Two consecutive Country IE hints on the same wiphy.
1437 * This should be picked up early by the driver/stack
1438 */
2f92cd2e 1439 if (WARN_ON(regdom_changes(pending_request->alpha2)))
84fa4f43
JB
1440 return 0;
1441 return -EALREADY;
1442 }
3f2355cb 1443 return REG_INTERSECT;
7db90f4a
LR
1444 case NL80211_REGDOM_SET_BY_DRIVER:
1445 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE) {
e74b1e7f
LR
1446 if (is_old_static_regdom(cfg80211_regdomain))
1447 return 0;
2f92cd2e 1448 if (regdom_changes(pending_request->alpha2))
e74b1e7f 1449 return 0;
84fa4f43 1450 return -EALREADY;
e74b1e7f 1451 }
fff32c04
LR
1452
1453 /*
1454 * This would happen if you unplug and plug your card
1455 * back in or if you add a new device for which the previously
1456 * loaded card also agrees on the regulatory domain.
1457 */
7db90f4a 1458 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2f92cd2e 1459 !regdom_changes(pending_request->alpha2))
fff32c04
LR
1460 return -EALREADY;
1461
3e0c3ff3 1462 return REG_INTERSECT;
7db90f4a
LR
1463 case NL80211_REGDOM_SET_BY_USER:
1464 if (last_request->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
9c96477d 1465 return REG_INTERSECT;
fb1fc7ad
LR
1466 /*
1467 * If the user knows better the user should set the regdom
1468 * to their country before the IE is picked up
1469 */
7db90f4a 1470 if (last_request->initiator == NL80211_REGDOM_SET_BY_USER &&
3f2355cb
LR
1471 last_request->intersect)
1472 return -EOPNOTSUPP;
fb1fc7ad
LR
1473 /*
1474 * Process user requests only after previous user/driver/core
1475 * requests have been processed
1476 */
7db90f4a
LR
1477 if (last_request->initiator == NL80211_REGDOM_SET_BY_CORE ||
1478 last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
1479 last_request->initiator == NL80211_REGDOM_SET_BY_USER) {
69b1572b 1480 if (regdom_changes(last_request->alpha2))
5eebade6
LR
1481 return -EAGAIN;
1482 }
1483
e74b1e7f 1484 if (!is_old_static_regdom(cfg80211_regdomain) &&
2f92cd2e 1485 !regdom_changes(pending_request->alpha2))
e74b1e7f
LR
1486 return -EALREADY;
1487
84fa4f43
JB
1488 return 0;
1489 }
1490
1491 return -EINVAL;
1492}
1493
d1c96a9a
LR
1494/**
1495 * __regulatory_hint - hint to the wireless core a regulatory domain
1496 * @wiphy: if the hint comes from country information from an AP, this
1497 * is required to be set to the wiphy that received the information
28da32d7 1498 * @pending_request: the regulatory request currently being processed
d1c96a9a
LR
1499 *
1500 * The Wireless subsystem can use this function to hint to the wireless core
28da32d7 1501 * what it believes should be the current regulatory domain.
d1c96a9a
LR
1502 *
1503 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1504 * already been set or other standard error codes.
1505 *
abc7381b 1506 * Caller must hold &cfg80211_mutex and &reg_mutex
d1c96a9a 1507 */
28da32d7
LR
1508static int __regulatory_hint(struct wiphy *wiphy,
1509 struct regulatory_request *pending_request)
b2e1b302 1510{
9c96477d 1511 bool intersect = false;
b2e1b302
LR
1512 int r = 0;
1513
761cf7ec
LR
1514 assert_cfg80211_lock();
1515
2f92cd2e 1516 r = ignore_request(wiphy, pending_request);
9c96477d 1517
3e0c3ff3 1518 if (r == REG_INTERSECT) {
7db90f4a
LR
1519 if (pending_request->initiator ==
1520 NL80211_REGDOM_SET_BY_DRIVER) {
3e0c3ff3 1521 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
d951c1dd
LR
1522 if (r) {
1523 kfree(pending_request);
3e0c3ff3 1524 return r;
d951c1dd 1525 }
3e0c3ff3 1526 }
9c96477d 1527 intersect = true;
3e0c3ff3 1528 } else if (r) {
fb1fc7ad
LR
1529 /*
1530 * If the regulatory domain being requested by the
3e0c3ff3 1531 * driver has already been set just copy it to the
fb1fc7ad
LR
1532 * wiphy
1533 */
28da32d7 1534 if (r == -EALREADY &&
7db90f4a
LR
1535 pending_request->initiator ==
1536 NL80211_REGDOM_SET_BY_DRIVER) {
3e0c3ff3 1537 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
d951c1dd
LR
1538 if (r) {
1539 kfree(pending_request);
3e0c3ff3 1540 return r;
d951c1dd 1541 }
3e0c3ff3
LR
1542 r = -EALREADY;
1543 goto new_request;
1544 }
d951c1dd 1545 kfree(pending_request);
b2e1b302 1546 return r;
3e0c3ff3 1547 }
b2e1b302 1548
3e0c3ff3 1549new_request:
d951c1dd 1550 kfree(last_request);
5203cdb6 1551
d951c1dd
LR
1552 last_request = pending_request;
1553 last_request->intersect = intersect;
5203cdb6 1554
d951c1dd 1555 pending_request = NULL;
3e0c3ff3
LR
1556
1557 /* When r == REG_INTERSECT we do need to call CRDA */
73d54c9e
LR
1558 if (r < 0) {
1559 /*
1560 * Since CRDA will not be called in this case as we already
1561 * have applied the requested regulatory domain before we just
1562 * inform userspace we have processed the request
1563 */
1564 if (r == -EALREADY)
1565 nl80211_send_reg_change_event(last_request);
3e0c3ff3 1566 return r;
73d54c9e 1567 }
3e0c3ff3 1568
d951c1dd 1569 return call_crda(last_request->alpha2);
b2e1b302
LR
1570}
1571
30a548c7 1572/* This processes *all* regulatory hints */
d951c1dd 1573static void reg_process_hint(struct regulatory_request *reg_request)
fe33eb39
LR
1574{
1575 int r = 0;
1576 struct wiphy *wiphy = NULL;
1577
1578 BUG_ON(!reg_request->alpha2);
1579
1580 mutex_lock(&cfg80211_mutex);
abc7381b 1581 mutex_lock(&reg_mutex);
fe33eb39
LR
1582
1583 if (wiphy_idx_valid(reg_request->wiphy_idx))
1584 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
1585
7db90f4a 1586 if (reg_request->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
fe33eb39 1587 !wiphy) {
d951c1dd 1588 kfree(reg_request);
fe33eb39
LR
1589 goto out;
1590 }
1591
28da32d7 1592 r = __regulatory_hint(wiphy, reg_request);
fe33eb39
LR
1593 /* This is required so that the orig_* parameters are saved */
1594 if (r == -EALREADY && wiphy && wiphy->strict_regulatory)
1595 wiphy_update_regulatory(wiphy, reg_request->initiator);
1596out:
abc7381b 1597 mutex_unlock(&reg_mutex);
fe33eb39 1598 mutex_unlock(&cfg80211_mutex);
fe33eb39
LR
1599}
1600
7db90f4a 1601/* Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_* */
fe33eb39
LR
1602static void reg_process_pending_hints(void)
1603 {
1604 struct regulatory_request *reg_request;
fe33eb39
LR
1605
1606 spin_lock(&reg_requests_lock);
1607 while (!list_empty(&reg_requests_list)) {
1608 reg_request = list_first_entry(&reg_requests_list,
1609 struct regulatory_request,
1610 list);
1611 list_del_init(&reg_request->list);
fe33eb39 1612
d951c1dd
LR
1613 spin_unlock(&reg_requests_lock);
1614 reg_process_hint(reg_request);
fe33eb39
LR
1615 spin_lock(&reg_requests_lock);
1616 }
1617 spin_unlock(&reg_requests_lock);
1618}
1619
e38f8a7a
LR
1620/* Processes beacon hints -- this has nothing to do with country IEs */
1621static void reg_process_pending_beacon_hints(void)
1622{
79c97e97 1623 struct cfg80211_registered_device *rdev;
e38f8a7a
LR
1624 struct reg_beacon *pending_beacon, *tmp;
1625
abc7381b
LR
1626 /*
1627 * No need to hold the reg_mutex here as we just touch wiphys
1628 * and do not read or access regulatory variables.
1629 */
e38f8a7a
LR
1630 mutex_lock(&cfg80211_mutex);
1631
1632 /* This goes through the _pending_ beacon list */
1633 spin_lock_bh(&reg_pending_beacons_lock);
1634
1635 if (list_empty(&reg_pending_beacons)) {
1636 spin_unlock_bh(&reg_pending_beacons_lock);
1637 goto out;
1638 }
1639
1640 list_for_each_entry_safe(pending_beacon, tmp,
1641 &reg_pending_beacons, list) {
1642
1643 list_del_init(&pending_beacon->list);
1644
1645 /* Applies the beacon hint to current wiphys */
79c97e97
JB
1646 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
1647 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
e38f8a7a
LR
1648
1649 /* Remembers the beacon hint for new wiphys or reg changes */
1650 list_add_tail(&pending_beacon->list, &reg_beacon_list);
1651 }
1652
1653 spin_unlock_bh(&reg_pending_beacons_lock);
1654out:
1655 mutex_unlock(&cfg80211_mutex);
1656}
1657
fe33eb39
LR
1658static void reg_todo(struct work_struct *work)
1659{
1660 reg_process_pending_hints();
e38f8a7a 1661 reg_process_pending_beacon_hints();
fe33eb39
LR
1662}
1663
1664static DECLARE_WORK(reg_work, reg_todo);
1665
1666static void queue_regulatory_request(struct regulatory_request *request)
1667{
1668 spin_lock(&reg_requests_lock);
1669 list_add_tail(&request->list, &reg_requests_list);
1670 spin_unlock(&reg_requests_lock);
1671
1672 schedule_work(&reg_work);
1673}
1674
1675/* Core regulatory hint -- happens once during cfg80211_init() */
ba25c141
LR
1676static int regulatory_hint_core(const char *alpha2)
1677{
1678 struct regulatory_request *request;
1679
1680 BUG_ON(last_request);
1681
1682 request = kzalloc(sizeof(struct regulatory_request),
1683 GFP_KERNEL);
1684 if (!request)
1685 return -ENOMEM;
1686
1687 request->alpha2[0] = alpha2[0];
1688 request->alpha2[1] = alpha2[1];
7db90f4a 1689 request->initiator = NL80211_REGDOM_SET_BY_CORE;
ba25c141 1690
fe33eb39 1691 queue_regulatory_request(request);
ba25c141 1692
5078b2e3
LR
1693 /*
1694 * This ensures last_request is populated once modules
1695 * come swinging in and calling regulatory hints and
1696 * wiphy_apply_custom_regulatory().
1697 */
1698 flush_scheduled_work();
1699
fe33eb39 1700 return 0;
ba25c141
LR
1701}
1702
fe33eb39
LR
1703/* User hints */
1704int regulatory_hint_user(const char *alpha2)
b2e1b302 1705{
fe33eb39
LR
1706 struct regulatory_request *request;
1707
be3d4810 1708 BUG_ON(!alpha2);
b2e1b302 1709
fe33eb39
LR
1710 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1711 if (!request)
1712 return -ENOMEM;
1713
1714 request->wiphy_idx = WIPHY_IDX_STALE;
1715 request->alpha2[0] = alpha2[0];
1716 request->alpha2[1] = alpha2[1];
7db90f4a 1717 request->initiator = NL80211_REGDOM_SET_BY_USER,
fe33eb39
LR
1718
1719 queue_regulatory_request(request);
1720
1721 return 0;
1722}
1723
1724/* Driver hints */
1725int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1726{
1727 struct regulatory_request *request;
1728
1729 BUG_ON(!alpha2);
1730 BUG_ON(!wiphy);
1731
1732 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1733 if (!request)
1734 return -ENOMEM;
1735
1736 request->wiphy_idx = get_wiphy_idx(wiphy);
1737
1738 /* Must have registered wiphy first */
1739 BUG_ON(!wiphy_idx_valid(request->wiphy_idx));
1740
1741 request->alpha2[0] = alpha2[0];
1742 request->alpha2[1] = alpha2[1];
7db90f4a 1743 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
fe33eb39
LR
1744
1745 queue_regulatory_request(request);
1746
1747 return 0;
b2e1b302
LR
1748}
1749EXPORT_SYMBOL(regulatory_hint);
1750
abc7381b 1751/* Caller must hold reg_mutex */
3f2355cb
LR
1752static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1753 u32 country_ie_checksum)
1754{
806a9e39
LR
1755 struct wiphy *request_wiphy;
1756
abc7381b 1757 assert_reg_lock();
761cf7ec 1758
cc0b6fe8
LR
1759 if (unlikely(last_request->initiator !=
1760 NL80211_REGDOM_SET_BY_COUNTRY_IE))
1761 return false;
1762
806a9e39
LR
1763 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
1764
1765 if (!request_wiphy)
3f2355cb 1766 return false;
806a9e39
LR
1767
1768 if (likely(request_wiphy != wiphy))
3f2355cb 1769 return !country_ie_integrity_changes(country_ie_checksum);
fb1fc7ad
LR
1770 /*
1771 * We should not have let these through at this point, they
3f2355cb 1772 * should have been picked up earlier by the first alpha2 check
fb1fc7ad
LR
1773 * on the device
1774 */
3f2355cb
LR
1775 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1776 return true;
1777 return false;
1778}
1779
4b44c8bc
LR
1780/*
1781 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1782 * therefore cannot iterate over the rdev list here.
1783 */
3f2355cb
LR
1784void regulatory_hint_11d(struct wiphy *wiphy,
1785 u8 *country_ie,
1786 u8 country_ie_len)
1787{
1788 struct ieee80211_regdomain *rd = NULL;
1789 char alpha2[2];
1790 u32 checksum = 0;
1791 enum environment_cap env = ENVIRON_ANY;
fe33eb39 1792 struct regulatory_request *request;
3f2355cb 1793
abc7381b 1794 mutex_lock(&reg_mutex);
3f2355cb 1795
9828b017
LR
1796 if (unlikely(!last_request))
1797 goto out;
d335fe63 1798
3f2355cb
LR
1799 /* IE len must be evenly divisible by 2 */
1800 if (country_ie_len & 0x01)
1801 goto out;
1802
1803 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1804 goto out;
1805
fb1fc7ad
LR
1806 /*
1807 * Pending country IE processing, this can happen after we
3f2355cb 1808 * call CRDA and wait for a response if a beacon was received before
fb1fc7ad
LR
1809 * we were able to process the last regulatory_hint_11d() call
1810 */
3f2355cb
LR
1811 if (country_ie_regdomain)
1812 goto out;
1813
1814 alpha2[0] = country_ie[0];
1815 alpha2[1] = country_ie[1];
1816
1817 if (country_ie[2] == 'I')
1818 env = ENVIRON_INDOOR;
1819 else if (country_ie[2] == 'O')
1820 env = ENVIRON_OUTDOOR;
1821
fb1fc7ad 1822 /*
8b19e6ca 1823 * We will run this only upon a successful connection on cfg80211.
4b44c8bc
LR
1824 * We leave conflict resolution to the workqueue, where can hold
1825 * cfg80211_mutex.
fb1fc7ad 1826 */
cc0b6fe8
LR
1827 if (likely(last_request->initiator ==
1828 NL80211_REGDOM_SET_BY_COUNTRY_IE &&
4b44c8bc
LR
1829 wiphy_idx_valid(last_request->wiphy_idx)))
1830 goto out;
3f2355cb
LR
1831
1832 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1833 if (!rd)
1834 goto out;
1835
915278e0
LR
1836 /*
1837 * This will not happen right now but we leave it here for the
3f2355cb
LR
1838 * the future when we want to add suspend/resume support and having
1839 * the user move to another country after doing so, or having the user
915278e0
LR
1840 * move to another AP. Right now we just trust the first AP.
1841 *
1842 * If we hit this before we add this support we want to be informed of
1843 * it as it would indicate a mistake in the current design
1844 */
1845 if (WARN_ON(reg_same_country_ie_hint(wiphy, checksum)))
0441d6ff 1846 goto free_rd_out;
3f2355cb 1847
fe33eb39
LR
1848 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
1849 if (!request)
1850 goto free_rd_out;
1851
fb1fc7ad
LR
1852 /*
1853 * We keep this around for when CRDA comes back with a response so
1854 * we can intersect with that
1855 */
3f2355cb
LR
1856 country_ie_regdomain = rd;
1857
fe33eb39
LR
1858 request->wiphy_idx = get_wiphy_idx(wiphy);
1859 request->alpha2[0] = rd->alpha2[0];
1860 request->alpha2[1] = rd->alpha2[1];
7db90f4a 1861 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
fe33eb39
LR
1862 request->country_ie_checksum = checksum;
1863 request->country_ie_env = env;
1864
abc7381b 1865 mutex_unlock(&reg_mutex);
3f2355cb 1866
fe33eb39
LR
1867 queue_regulatory_request(request);
1868
1869 return;
0441d6ff
LR
1870
1871free_rd_out:
1872 kfree(rd);
3f2355cb 1873out:
abc7381b 1874 mutex_unlock(&reg_mutex);
3f2355cb 1875}
b2e1b302 1876
e38f8a7a
LR
1877static bool freq_is_chan_12_13_14(u16 freq)
1878{
1879 if (freq == ieee80211_channel_to_frequency(12) ||
1880 freq == ieee80211_channel_to_frequency(13) ||
1881 freq == ieee80211_channel_to_frequency(14))
1882 return true;
1883 return false;
1884}
1885
1886int regulatory_hint_found_beacon(struct wiphy *wiphy,
1887 struct ieee80211_channel *beacon_chan,
1888 gfp_t gfp)
1889{
1890 struct reg_beacon *reg_beacon;
1891
1892 if (likely((beacon_chan->beacon_found ||
1893 (beacon_chan->flags & IEEE80211_CHAN_RADAR) ||
1894 (beacon_chan->band == IEEE80211_BAND_2GHZ &&
1895 !freq_is_chan_12_13_14(beacon_chan->center_freq)))))
1896 return 0;
1897
1898 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
1899 if (!reg_beacon)
1900 return -ENOMEM;
1901
1902#ifdef CONFIG_CFG80211_REG_DEBUG
1903 printk(KERN_DEBUG "cfg80211: Found new beacon on "
1904 "frequency: %d MHz (Ch %d) on %s\n",
1905 beacon_chan->center_freq,
1906 ieee80211_frequency_to_channel(beacon_chan->center_freq),
1907 wiphy_name(wiphy));
1908#endif
1909 memcpy(&reg_beacon->chan, beacon_chan,
1910 sizeof(struct ieee80211_channel));
1911
1912
1913 /*
1914 * Since we can be called from BH or and non-BH context
1915 * we must use spin_lock_bh()
1916 */
1917 spin_lock_bh(&reg_pending_beacons_lock);
1918 list_add_tail(&reg_beacon->list, &reg_pending_beacons);
1919 spin_unlock_bh(&reg_pending_beacons_lock);
1920
1921 schedule_work(&reg_work);
1922
1923 return 0;
1924}
1925
a3d2eaf0 1926static void print_rd_rules(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1927{
1928 unsigned int i;
a3d2eaf0
JB
1929 const struct ieee80211_reg_rule *reg_rule = NULL;
1930 const struct ieee80211_freq_range *freq_range = NULL;
1931 const struct ieee80211_power_rule *power_rule = NULL;
b2e1b302
LR
1932
1933 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1934 "(max_antenna_gain, max_eirp)\n");
1935
1936 for (i = 0; i < rd->n_reg_rules; i++) {
1937 reg_rule = &rd->reg_rules[i];
1938 freq_range = &reg_rule->freq_range;
1939 power_rule = &reg_rule->power_rule;
1940
fb1fc7ad
LR
1941 /*
1942 * There may not be documentation for max antenna gain
1943 * in certain regions
1944 */
b2e1b302
LR
1945 if (power_rule->max_antenna_gain)
1946 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1947 "(%d mBi, %d mBm)\n",
1948 freq_range->start_freq_khz,
1949 freq_range->end_freq_khz,
1950 freq_range->max_bandwidth_khz,
1951 power_rule->max_antenna_gain,
1952 power_rule->max_eirp);
1953 else
1954 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1955 "(N/A, %d mBm)\n",
1956 freq_range->start_freq_khz,
1957 freq_range->end_freq_khz,
1958 freq_range->max_bandwidth_khz,
1959 power_rule->max_eirp);
1960 }
1961}
1962
a3d2eaf0 1963static void print_regdomain(const struct ieee80211_regdomain *rd)
b2e1b302
LR
1964{
1965
3f2355cb 1966 if (is_intersected_alpha2(rd->alpha2)) {
3f2355cb 1967
7db90f4a
LR
1968 if (last_request->initiator ==
1969 NL80211_REGDOM_SET_BY_COUNTRY_IE) {
79c97e97
JB
1970 struct cfg80211_registered_device *rdev;
1971 rdev = cfg80211_rdev_by_wiphy_idx(
806a9e39 1972 last_request->wiphy_idx);
79c97e97 1973 if (rdev) {
3f2355cb
LR
1974 printk(KERN_INFO "cfg80211: Current regulatory "
1975 "domain updated by AP to: %c%c\n",
79c97e97
JB
1976 rdev->country_ie_alpha2[0],
1977 rdev->country_ie_alpha2[1]);
3f2355cb
LR
1978 } else
1979 printk(KERN_INFO "cfg80211: Current regulatory "
1980 "domain intersected: \n");
1981 } else
1982 printk(KERN_INFO "cfg80211: Current regulatory "
039498c6 1983 "domain intersected: \n");
3f2355cb 1984 } else if (is_world_regdom(rd->alpha2))
b2e1b302
LR
1985 printk(KERN_INFO "cfg80211: World regulatory "
1986 "domain updated:\n");
1987 else {
1988 if (is_unknown_alpha2(rd->alpha2))
1989 printk(KERN_INFO "cfg80211: Regulatory domain "
1990 "changed to driver built-in settings "
1991 "(unknown country)\n");
1992 else
1993 printk(KERN_INFO "cfg80211: Regulatory domain "
1994 "changed to country: %c%c\n",
1995 rd->alpha2[0], rd->alpha2[1]);
1996 }
1997 print_rd_rules(rd);
1998}
1999
2df78167 2000static void print_regdomain_info(const struct ieee80211_regdomain *rd)
b2e1b302
LR
2001{
2002 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
2003 rd->alpha2[0], rd->alpha2[1]);
2004 print_rd_rules(rd);
2005}
2006
3f2355cb
LR
2007#ifdef CONFIG_CFG80211_REG_DEBUG
2008static void reg_country_ie_process_debug(
2009 const struct ieee80211_regdomain *rd,
2010 const struct ieee80211_regdomain *country_ie_regdomain,
2011 const struct ieee80211_regdomain *intersected_rd)
2012{
2013 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
2014 print_regdomain_info(country_ie_regdomain);
2015 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
2016 print_regdomain_info(rd);
2017 if (intersected_rd) {
2018 printk(KERN_DEBUG "cfg80211: We intersect both of these "
2019 "and get:\n");
667ecd01 2020 print_regdomain_info(intersected_rd);
3f2355cb
LR
2021 return;
2022 }
2023 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
2024}
2025#else
2026static inline void reg_country_ie_process_debug(
2027 const struct ieee80211_regdomain *rd,
2028 const struct ieee80211_regdomain *country_ie_regdomain,
2029 const struct ieee80211_regdomain *intersected_rd)
2030{
2031}
2032#endif
2033
d2372b31 2034/* Takes ownership of rd only if it doesn't fail */
a3d2eaf0 2035static int __set_regdom(const struct ieee80211_regdomain *rd)
b2e1b302 2036{
9c96477d 2037 const struct ieee80211_regdomain *intersected_rd = NULL;
79c97e97 2038 struct cfg80211_registered_device *rdev = NULL;
806a9e39 2039 struct wiphy *request_wiphy;
b2e1b302
LR
2040 /* Some basic sanity checks first */
2041
b2e1b302 2042 if (is_world_regdom(rd->alpha2)) {
f6037d09 2043 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
b2e1b302
LR
2044 return -EINVAL;
2045 update_world_regdomain(rd);
2046 return 0;
2047 }
b2e1b302
LR
2048
2049 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
2050 !is_unknown_alpha2(rd->alpha2))
2051 return -EINVAL;
2052
f6037d09 2053 if (!last_request)
b2e1b302
LR
2054 return -EINVAL;
2055
fb1fc7ad
LR
2056 /*
2057 * Lets only bother proceeding on the same alpha2 if the current
3f2355cb 2058 * rd is non static (it means CRDA was present and was used last)
fb1fc7ad
LR
2059 * and the pending request came in from a country IE
2060 */
7db90f4a 2061 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
fb1fc7ad
LR
2062 /*
2063 * If someone else asked us to change the rd lets only bother
2064 * checking if the alpha2 changes if CRDA was already called
2065 */
3f2355cb 2066 if (!is_old_static_regdom(cfg80211_regdomain) &&
69b1572b 2067 !regdom_changes(rd->alpha2))
3f2355cb
LR
2068 return -EINVAL;
2069 }
2070
fb1fc7ad
LR
2071 /*
2072 * Now lets set the regulatory domain, update all driver channels
b2e1b302
LR
2073 * and finally inform them of what we have done, in case they want
2074 * to review or adjust their own settings based on their own
fb1fc7ad
LR
2075 * internal EEPROM data
2076 */
b2e1b302 2077
f6037d09 2078 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
b2e1b302
LR
2079 return -EINVAL;
2080
8375af3b
LR
2081 if (!is_valid_rd(rd)) {
2082 printk(KERN_ERR "cfg80211: Invalid "
2083 "regulatory domain detected:\n");
2084 print_regdomain_info(rd);
2085 return -EINVAL;
b2e1b302
LR
2086 }
2087
806a9e39
LR
2088 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
2089
b8295acd 2090 if (!last_request->intersect) {
3e0c3ff3
LR
2091 int r;
2092
7db90f4a 2093 if (last_request->initiator != NL80211_REGDOM_SET_BY_DRIVER) {
3e0c3ff3
LR
2094 reset_regdomains();
2095 cfg80211_regdomain = rd;
2096 return 0;
2097 }
2098
fb1fc7ad
LR
2099 /*
2100 * For a driver hint, lets copy the regulatory domain the
2101 * driver wanted to the wiphy to deal with conflicts
2102 */
3e0c3ff3 2103
558f6d32
LR
2104 /*
2105 * Userspace could have sent two replies with only
2106 * one kernel request.
2107 */
2108 if (request_wiphy->regd)
2109 return -EALREADY;
3e0c3ff3 2110
806a9e39 2111 r = reg_copy_regd(&request_wiphy->regd, rd);
3e0c3ff3
LR
2112 if (r)
2113 return r;
2114
b8295acd
LR
2115 reset_regdomains();
2116 cfg80211_regdomain = rd;
2117 return 0;
2118 }
2119
2120 /* Intersection requires a bit more work */
2121
7db90f4a 2122 if (last_request->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE) {
b8295acd 2123
9c96477d
LR
2124 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
2125 if (!intersected_rd)
2126 return -EINVAL;
b8295acd 2127
fb1fc7ad
LR
2128 /*
2129 * We can trash what CRDA provided now.
3e0c3ff3 2130 * However if a driver requested this specific regulatory
fb1fc7ad
LR
2131 * domain we keep it for its private use
2132 */
7db90f4a 2133 if (last_request->initiator == NL80211_REGDOM_SET_BY_DRIVER)
806a9e39 2134 request_wiphy->regd = rd;
3e0c3ff3
LR
2135 else
2136 kfree(rd);
2137
b8295acd
LR
2138 rd = NULL;
2139
2140 reset_regdomains();
2141 cfg80211_regdomain = intersected_rd;
2142
2143 return 0;
9c96477d
LR
2144 }
2145
3f2355cb
LR
2146 /*
2147 * Country IE requests are handled a bit differently, we intersect
2148 * the country IE rd with what CRDA believes that country should have
2149 */
2150
729e9c76
LR
2151 /*
2152 * Userspace could have sent two replies with only
2153 * one kernel request. By the second reply we would have
2154 * already processed and consumed the country_ie_regdomain.
2155 */
2156 if (!country_ie_regdomain)
2157 return -EALREADY;
86f04680 2158 BUG_ON(rd == country_ie_regdomain);
3f2355cb 2159
86f04680
LR
2160 /*
2161 * Intersect what CRDA returned and our what we
2162 * had built from the Country IE received
2163 */
3f2355cb 2164
86f04680 2165 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
3f2355cb 2166
86f04680
LR
2167 reg_country_ie_process_debug(rd,
2168 country_ie_regdomain,
2169 intersected_rd);
3f2355cb 2170
86f04680
LR
2171 kfree(country_ie_regdomain);
2172 country_ie_regdomain = NULL;
3f2355cb
LR
2173
2174 if (!intersected_rd)
2175 return -EINVAL;
2176
79c97e97 2177 rdev = wiphy_to_dev(request_wiphy);
3f2355cb 2178
79c97e97
JB
2179 rdev->country_ie_alpha2[0] = rd->alpha2[0];
2180 rdev->country_ie_alpha2[1] = rd->alpha2[1];
2181 rdev->env = last_request->country_ie_env;
3f2355cb
LR
2182
2183 BUG_ON(intersected_rd == rd);
2184
2185 kfree(rd);
2186 rd = NULL;
2187
b8295acd 2188 reset_regdomains();
3f2355cb 2189 cfg80211_regdomain = intersected_rd;
b2e1b302
LR
2190
2191 return 0;
2192}
2193
2194
fb1fc7ad
LR
2195/*
2196 * Use this call to set the current regulatory domain. Conflicts with
b2e1b302 2197 * multiple drivers can be ironed out later. Caller must've already
fb1fc7ad
LR
2198 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2199 */
a3d2eaf0 2200int set_regdom(const struct ieee80211_regdomain *rd)
b2e1b302 2201{
b2e1b302
LR
2202 int r;
2203
761cf7ec
LR
2204 assert_cfg80211_lock();
2205
abc7381b
LR
2206 mutex_lock(&reg_mutex);
2207
b2e1b302
LR
2208 /* Note that this doesn't update the wiphys, this is done below */
2209 r = __set_regdom(rd);
d2372b31
JB
2210 if (r) {
2211 kfree(rd);
abc7381b 2212 mutex_unlock(&reg_mutex);
b2e1b302 2213 return r;
d2372b31 2214 }
b2e1b302 2215
b2e1b302 2216 /* This would make this whole thing pointless */
a01ddafd
LR
2217 if (!last_request->intersect)
2218 BUG_ON(rd != cfg80211_regdomain);
b2e1b302
LR
2219
2220 /* update all wiphys now with the new established regulatory domain */
f6037d09 2221 update_all_wiphy_regulatory(last_request->initiator);
b2e1b302 2222
a01ddafd 2223 print_regdomain(cfg80211_regdomain);
b2e1b302 2224
73d54c9e
LR
2225 nl80211_send_reg_change_event(last_request);
2226
abc7381b
LR
2227 mutex_unlock(&reg_mutex);
2228
b2e1b302
LR
2229 return r;
2230}
2231
a1794390 2232/* Caller must hold cfg80211_mutex */
3f2355cb
LR
2233void reg_device_remove(struct wiphy *wiphy)
2234{
0ad8acaf 2235 struct wiphy *request_wiphy = NULL;
806a9e39 2236
761cf7ec
LR
2237 assert_cfg80211_lock();
2238
abc7381b
LR
2239 mutex_lock(&reg_mutex);
2240
0ef9ccdd
CW
2241 kfree(wiphy->regd);
2242
0ad8acaf
LR
2243 if (last_request)
2244 request_wiphy = wiphy_idx_to_wiphy(last_request->wiphy_idx);
806a9e39 2245
0ef9ccdd 2246 if (!request_wiphy || request_wiphy != wiphy)
abc7381b 2247 goto out;
0ef9ccdd 2248
806a9e39 2249 last_request->wiphy_idx = WIPHY_IDX_STALE;
3f2355cb 2250 last_request->country_ie_env = ENVIRON_ANY;
abc7381b
LR
2251out:
2252 mutex_unlock(&reg_mutex);
3f2355cb
LR
2253}
2254
b2e1b302
LR
2255int regulatory_init(void)
2256{
bcf4f99b 2257 int err = 0;
734366de 2258
b2e1b302
LR
2259 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
2260 if (IS_ERR(reg_pdev))
2261 return PTR_ERR(reg_pdev);
734366de 2262
fe33eb39 2263 spin_lock_init(&reg_requests_lock);
e38f8a7a 2264 spin_lock_init(&reg_pending_beacons_lock);
fe33eb39 2265
734366de 2266#ifdef CONFIG_WIRELESS_OLD_REGULATORY
a3d2eaf0 2267 cfg80211_regdomain = static_regdom(ieee80211_regdom);
734366de 2268
942b25cf 2269 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
734366de 2270 print_regdomain_info(cfg80211_regdomain);
734366de 2271#else
a3d2eaf0 2272 cfg80211_regdomain = cfg80211_world_regdom;
734366de 2273
bcf4f99b 2274#endif
ae9e4b0d
LR
2275 /* We always try to get an update for the static regdomain */
2276 err = regulatory_hint_core(cfg80211_regdomain->alpha2);
ba25c141 2277 if (err) {
bcf4f99b
LR
2278 if (err == -ENOMEM)
2279 return err;
2280 /*
2281 * N.B. kobject_uevent_env() can fail mainly for when we're out
2282 * memory which is handled and propagated appropriately above
2283 * but it can also fail during a netlink_broadcast() or during
2284 * early boot for call_usermodehelper(). For now treat these
2285 * errors as non-fatal.
2286 */
2287 printk(KERN_ERR "cfg80211: kobject_uevent_env() was unable "
2288 "to call CRDA during init");
2289#ifdef CONFIG_CFG80211_REG_DEBUG
2290 /* We want to find out exactly why when debugging */
2291 WARN_ON(err);
734366de 2292#endif
bcf4f99b 2293 }
734366de 2294
ae9e4b0d
LR
2295 /*
2296 * Finally, if the user set the module parameter treat it
2297 * as a user hint.
2298 */
2299 if (!is_world_regdom(ieee80211_regdom))
2300 regulatory_hint_user(ieee80211_regdom);
2301
b2e1b302
LR
2302 return 0;
2303}
2304
2305void regulatory_exit(void)
2306{
fe33eb39 2307 struct regulatory_request *reg_request, *tmp;
e38f8a7a 2308 struct reg_beacon *reg_beacon, *btmp;
fe33eb39
LR
2309
2310 cancel_work_sync(&reg_work);
2311
a1794390 2312 mutex_lock(&cfg80211_mutex);
abc7381b 2313 mutex_lock(&reg_mutex);
734366de 2314
b2e1b302 2315 reset_regdomains();
734366de 2316
3f2355cb
LR
2317 kfree(country_ie_regdomain);
2318 country_ie_regdomain = NULL;
2319
f6037d09
JB
2320 kfree(last_request);
2321
b2e1b302 2322 platform_device_unregister(reg_pdev);
734366de 2323
e38f8a7a
LR
2324 spin_lock_bh(&reg_pending_beacons_lock);
2325 if (!list_empty(&reg_pending_beacons)) {
2326 list_for_each_entry_safe(reg_beacon, btmp,
2327 &reg_pending_beacons, list) {
2328 list_del(&reg_beacon->list);
2329 kfree(reg_beacon);
2330 }
2331 }
2332 spin_unlock_bh(&reg_pending_beacons_lock);
2333
2334 if (!list_empty(&reg_beacon_list)) {
2335 list_for_each_entry_safe(reg_beacon, btmp,
2336 &reg_beacon_list, list) {
2337 list_del(&reg_beacon->list);
2338 kfree(reg_beacon);
2339 }
2340 }
2341
fe33eb39
LR
2342 spin_lock(&reg_requests_lock);
2343 if (!list_empty(&reg_requests_list)) {
2344 list_for_each_entry_safe(reg_request, tmp,
2345 &reg_requests_list, list) {
2346 list_del(&reg_request->list);
2347 kfree(reg_request);
2348 }
2349 }
2350 spin_unlock(&reg_requests_lock);
2351
abc7381b 2352 mutex_unlock(&reg_mutex);
a1794390 2353 mutex_unlock(&cfg80211_mutex);
8318d78a 2354}