]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/vmscan.c
Input: wacom - fix pressure in Cintiq 21UX2
[net-next-2.6.git] / mm / vmscan.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/vmscan.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 *
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
12 */
13
14#include <linux/mm.h>
15#include <linux/module.h>
5a0e3ad6 16#include <linux/gfp.h>
1da177e4
LT
17#include <linux/kernel_stat.h>
18#include <linux/swap.h>
19#include <linux/pagemap.h>
20#include <linux/init.h>
21#include <linux/highmem.h>
e129b5c2 22#include <linux/vmstat.h>
1da177e4
LT
23#include <linux/file.h>
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28#include <linux/mm_inline.h>
29#include <linux/pagevec.h>
30#include <linux/backing-dev.h>
31#include <linux/rmap.h>
32#include <linux/topology.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
35#include <linux/notifier.h>
36#include <linux/rwsem.h>
248a0301 37#include <linux/delay.h>
3218ae14 38#include <linux/kthread.h>
7dfb7103 39#include <linux/freezer.h>
66e1707b 40#include <linux/memcontrol.h>
873b4771 41#include <linux/delayacct.h>
af936a16 42#include <linux/sysctl.h>
1da177e4
LT
43
44#include <asm/tlbflush.h>
45#include <asm/div64.h>
46
47#include <linux/swapops.h>
48
0f8053a5
NP
49#include "internal.h"
50
33906bc5
MG
51#define CREATE_TRACE_POINTS
52#include <trace/events/vmscan.h>
53
1da177e4 54struct scan_control {
1da177e4
LT
55 /* Incremented by the number of inactive pages that were scanned */
56 unsigned long nr_scanned;
57
a79311c1
RR
58 /* Number of pages freed so far during a call to shrink_zones() */
59 unsigned long nr_reclaimed;
60
22fba335
KM
61 /* How many pages shrink_list() should reclaim */
62 unsigned long nr_to_reclaim;
63
7b51755c
KM
64 unsigned long hibernation_mode;
65
1da177e4 66 /* This context's GFP mask */
6daa0e28 67 gfp_t gfp_mask;
1da177e4
LT
68
69 int may_writepage;
70
a6dc60f8
JW
71 /* Can mapped pages be reclaimed? */
72 int may_unmap;
f1fd1067 73
2e2e4259
KM
74 /* Can pages be swapped as part of reclaim? */
75 int may_swap;
76
d6277db4 77 int swappiness;
408d8544 78
5ad333eb 79 int order;
66e1707b 80
5f53e762
KM
81 /*
82 * Intend to reclaim enough contenious memory rather than to reclaim
83 * enough amount memory. I.e, it's the mode for high order allocation.
84 */
85 bool lumpy_reclaim_mode;
86
66e1707b
BS
87 /* Which cgroup do we reclaim from */
88 struct mem_cgroup *mem_cgroup;
89
327c0e96
KH
90 /*
91 * Nodemask of nodes allowed by the caller. If NULL, all nodes
92 * are scanned.
93 */
94 nodemask_t *nodemask;
1da177e4
LT
95};
96
1da177e4
LT
97#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
98
99#ifdef ARCH_HAS_PREFETCH
100#define prefetch_prev_lru_page(_page, _base, _field) \
101 do { \
102 if ((_page)->lru.prev != _base) { \
103 struct page *prev; \
104 \
105 prev = lru_to_page(&(_page->lru)); \
106 prefetch(&prev->_field); \
107 } \
108 } while (0)
109#else
110#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
111#endif
112
113#ifdef ARCH_HAS_PREFETCHW
114#define prefetchw_prev_lru_page(_page, _base, _field) \
115 do { \
116 if ((_page)->lru.prev != _base) { \
117 struct page *prev; \
118 \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetchw(&prev->_field); \
121 } \
122 } while (0)
123#else
124#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125#endif
126
127/*
128 * From 0 .. 100. Higher means more swappy.
129 */
130int vm_swappiness = 60;
bd1e22b8 131long vm_total_pages; /* The total number of pages which the VM controls */
1da177e4
LT
132
133static LIST_HEAD(shrinker_list);
134static DECLARE_RWSEM(shrinker_rwsem);
135
00f0b825 136#ifdef CONFIG_CGROUP_MEM_RES_CTLR
e72e2bd6 137#define scanning_global_lru(sc) (!(sc)->mem_cgroup)
91a45470 138#else
e72e2bd6 139#define scanning_global_lru(sc) (1)
91a45470
KH
140#endif
141
6e901571
KM
142static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
143 struct scan_control *sc)
144{
e72e2bd6 145 if (!scanning_global_lru(sc))
3e2f41f1
KM
146 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
147
6e901571
KM
148 return &zone->reclaim_stat;
149}
150
0b217676
VL
151static unsigned long zone_nr_lru_pages(struct zone *zone,
152 struct scan_control *sc, enum lru_list lru)
c9f299d9 153{
e72e2bd6 154 if (!scanning_global_lru(sc))
a3d8e054
KM
155 return mem_cgroup_zone_nr_pages(sc->mem_cgroup, zone, lru);
156
c9f299d9
KM
157 return zone_page_state(zone, NR_LRU_BASE + lru);
158}
159
160
1da177e4
LT
161/*
162 * Add a shrinker callback to be called from the vm
163 */
8e1f936b 164void register_shrinker(struct shrinker *shrinker)
1da177e4 165{
8e1f936b
RR
166 shrinker->nr = 0;
167 down_write(&shrinker_rwsem);
168 list_add_tail(&shrinker->list, &shrinker_list);
169 up_write(&shrinker_rwsem);
1da177e4 170}
8e1f936b 171EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
172
173/*
174 * Remove one
175 */
8e1f936b 176void unregister_shrinker(struct shrinker *shrinker)
1da177e4
LT
177{
178 down_write(&shrinker_rwsem);
179 list_del(&shrinker->list);
180 up_write(&shrinker_rwsem);
1da177e4 181}
8e1f936b 182EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
183
184#define SHRINK_BATCH 128
185/*
186 * Call the shrink functions to age shrinkable caches
187 *
188 * Here we assume it costs one seek to replace a lru page and that it also
189 * takes a seek to recreate a cache object. With this in mind we age equal
190 * percentages of the lru and ageable caches. This should balance the seeks
191 * generated by these structures.
192 *
183ff22b 193 * If the vm encountered mapped pages on the LRU it increase the pressure on
1da177e4
LT
194 * slab to avoid swapping.
195 *
196 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
197 *
198 * `lru_pages' represents the number of on-LRU pages in all the zones which
199 * are eligible for the caller's allocation attempt. It is used for balancing
200 * slab reclaim versus page reclaim.
b15e0905
AM
201 *
202 * Returns the number of slab objects which we shrunk.
1da177e4 203 */
69e05944
AM
204unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
205 unsigned long lru_pages)
1da177e4
LT
206{
207 struct shrinker *shrinker;
69e05944 208 unsigned long ret = 0;
1da177e4
LT
209
210 if (scanned == 0)
211 scanned = SWAP_CLUSTER_MAX;
212
213 if (!down_read_trylock(&shrinker_rwsem))
b15e0905 214 return 1; /* Assume we'll be able to shrink next time */
1da177e4
LT
215
216 list_for_each_entry(shrinker, &shrinker_list, list) {
217 unsigned long long delta;
218 unsigned long total_scan;
7f8275d0 219 unsigned long max_pass;
1da177e4 220
7f8275d0 221 max_pass = (*shrinker->shrink)(shrinker, 0, gfp_mask);
1da177e4 222 delta = (4 * scanned) / shrinker->seeks;
ea164d73 223 delta *= max_pass;
1da177e4
LT
224 do_div(delta, lru_pages + 1);
225 shrinker->nr += delta;
ea164d73 226 if (shrinker->nr < 0) {
88c3bd70
DR
227 printk(KERN_ERR "shrink_slab: %pF negative objects to "
228 "delete nr=%ld\n",
229 shrinker->shrink, shrinker->nr);
ea164d73
AA
230 shrinker->nr = max_pass;
231 }
232
233 /*
234 * Avoid risking looping forever due to too large nr value:
235 * never try to free more than twice the estimate number of
236 * freeable entries.
237 */
238 if (shrinker->nr > max_pass * 2)
239 shrinker->nr = max_pass * 2;
1da177e4
LT
240
241 total_scan = shrinker->nr;
242 shrinker->nr = 0;
243
244 while (total_scan >= SHRINK_BATCH) {
245 long this_scan = SHRINK_BATCH;
246 int shrink_ret;
b15e0905 247 int nr_before;
1da177e4 248
7f8275d0
DC
249 nr_before = (*shrinker->shrink)(shrinker, 0, gfp_mask);
250 shrink_ret = (*shrinker->shrink)(shrinker, this_scan,
251 gfp_mask);
1da177e4
LT
252 if (shrink_ret == -1)
253 break;
b15e0905
AM
254 if (shrink_ret < nr_before)
255 ret += nr_before - shrink_ret;
f8891e5e 256 count_vm_events(SLABS_SCANNED, this_scan);
1da177e4
LT
257 total_scan -= this_scan;
258
259 cond_resched();
260 }
261
262 shrinker->nr += total_scan;
263 }
264 up_read(&shrinker_rwsem);
b15e0905 265 return ret;
1da177e4
LT
266}
267
1da177e4
LT
268static inline int is_page_cache_freeable(struct page *page)
269{
ceddc3a5
JW
270 /*
271 * A freeable page cache page is referenced only by the caller
272 * that isolated the page, the page cache radix tree and
273 * optional buffer heads at page->private.
274 */
edcf4748 275 return page_count(page) - page_has_private(page) == 2;
1da177e4
LT
276}
277
278static int may_write_to_queue(struct backing_dev_info *bdi)
279{
930d9152 280 if (current->flags & PF_SWAPWRITE)
1da177e4
LT
281 return 1;
282 if (!bdi_write_congested(bdi))
283 return 1;
284 if (bdi == current->backing_dev_info)
285 return 1;
286 return 0;
287}
288
289/*
290 * We detected a synchronous write error writing a page out. Probably
291 * -ENOSPC. We need to propagate that into the address_space for a subsequent
292 * fsync(), msync() or close().
293 *
294 * The tricky part is that after writepage we cannot touch the mapping: nothing
295 * prevents it from being freed up. But we have a ref on the page and once
296 * that page is locked, the mapping is pinned.
297 *
298 * We're allowed to run sleeping lock_page() here because we know the caller has
299 * __GFP_FS.
300 */
301static void handle_write_error(struct address_space *mapping,
302 struct page *page, int error)
303{
a6aa62a0 304 lock_page_nosync(page);
3e9f45bd
GC
305 if (page_mapping(page) == mapping)
306 mapping_set_error(mapping, error);
1da177e4
LT
307 unlock_page(page);
308}
309
c661b078
AW
310/* Request for sync pageout. */
311enum pageout_io {
312 PAGEOUT_IO_ASYNC,
313 PAGEOUT_IO_SYNC,
314};
315
04e62a29
CL
316/* possible outcome of pageout() */
317typedef enum {
318 /* failed to write page out, page is locked */
319 PAGE_KEEP,
320 /* move page to the active list, page is locked */
321 PAGE_ACTIVATE,
322 /* page has been sent to the disk successfully, page is unlocked */
323 PAGE_SUCCESS,
324 /* page is clean and locked */
325 PAGE_CLEAN,
326} pageout_t;
327
1da177e4 328/*
1742f19f
AM
329 * pageout is called by shrink_page_list() for each dirty page.
330 * Calls ->writepage().
1da177e4 331 */
c661b078
AW
332static pageout_t pageout(struct page *page, struct address_space *mapping,
333 enum pageout_io sync_writeback)
1da177e4
LT
334{
335 /*
336 * If the page is dirty, only perform writeback if that write
337 * will be non-blocking. To prevent this allocation from being
338 * stalled by pagecache activity. But note that there may be
339 * stalls if we need to run get_block(). We could test
340 * PagePrivate for that.
341 *
6aceb53b 342 * If this process is currently in __generic_file_aio_write() against
1da177e4
LT
343 * this page's queue, we can perform writeback even if that
344 * will block.
345 *
346 * If the page is swapcache, write it back even if that would
347 * block, for some throttling. This happens by accident, because
348 * swap_backing_dev_info is bust: it doesn't reflect the
349 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
350 */
351 if (!is_page_cache_freeable(page))
352 return PAGE_KEEP;
353 if (!mapping) {
354 /*
355 * Some data journaling orphaned pages can have
356 * page->mapping == NULL while being dirty with clean buffers.
357 */
266cf658 358 if (page_has_private(page)) {
1da177e4
LT
359 if (try_to_free_buffers(page)) {
360 ClearPageDirty(page);
d40cee24 361 printk("%s: orphaned page\n", __func__);
1da177e4
LT
362 return PAGE_CLEAN;
363 }
364 }
365 return PAGE_KEEP;
366 }
367 if (mapping->a_ops->writepage == NULL)
368 return PAGE_ACTIVATE;
369 if (!may_write_to_queue(mapping->backing_dev_info))
370 return PAGE_KEEP;
371
372 if (clear_page_dirty_for_io(page)) {
373 int res;
374 struct writeback_control wbc = {
375 .sync_mode = WB_SYNC_NONE,
376 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
377 .range_start = 0,
378 .range_end = LLONG_MAX,
1da177e4
LT
379 .nonblocking = 1,
380 .for_reclaim = 1,
381 };
382
383 SetPageReclaim(page);
384 res = mapping->a_ops->writepage(page, &wbc);
385 if (res < 0)
386 handle_write_error(mapping, page, res);
994fc28c 387 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
388 ClearPageReclaim(page);
389 return PAGE_ACTIVATE;
390 }
c661b078
AW
391
392 /*
393 * Wait on writeback if requested to. This happens when
394 * direct reclaiming a large contiguous area and the
395 * first attempt to free a range of pages fails.
396 */
397 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
398 wait_on_page_writeback(page);
399
1da177e4
LT
400 if (!PageWriteback(page)) {
401 /* synchronous write or broken a_ops? */
402 ClearPageReclaim(page);
403 }
755f0225
MG
404 trace_mm_vmscan_writepage(page,
405 trace_reclaim_flags(page, sync_writeback));
e129b5c2 406 inc_zone_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
407 return PAGE_SUCCESS;
408 }
409
410 return PAGE_CLEAN;
411}
412
a649fd92 413/*
e286781d
NP
414 * Same as remove_mapping, but if the page is removed from the mapping, it
415 * gets returned with a refcount of 0.
a649fd92 416 */
e286781d 417static int __remove_mapping(struct address_space *mapping, struct page *page)
49d2e9cc 418{
28e4d965
NP
419 BUG_ON(!PageLocked(page));
420 BUG_ON(mapping != page_mapping(page));
49d2e9cc 421
19fd6231 422 spin_lock_irq(&mapping->tree_lock);
49d2e9cc 423 /*
0fd0e6b0
NP
424 * The non racy check for a busy page.
425 *
426 * Must be careful with the order of the tests. When someone has
427 * a ref to the page, it may be possible that they dirty it then
428 * drop the reference. So if PageDirty is tested before page_count
429 * here, then the following race may occur:
430 *
431 * get_user_pages(&page);
432 * [user mapping goes away]
433 * write_to(page);
434 * !PageDirty(page) [good]
435 * SetPageDirty(page);
436 * put_page(page);
437 * !page_count(page) [good, discard it]
438 *
439 * [oops, our write_to data is lost]
440 *
441 * Reversing the order of the tests ensures such a situation cannot
442 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
443 * load is not satisfied before that of page->_count.
444 *
445 * Note that if SetPageDirty is always performed via set_page_dirty,
446 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 447 */
e286781d 448 if (!page_freeze_refs(page, 2))
49d2e9cc 449 goto cannot_free;
e286781d
NP
450 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
451 if (unlikely(PageDirty(page))) {
452 page_unfreeze_refs(page, 2);
49d2e9cc 453 goto cannot_free;
e286781d 454 }
49d2e9cc
CL
455
456 if (PageSwapCache(page)) {
457 swp_entry_t swap = { .val = page_private(page) };
458 __delete_from_swap_cache(page);
19fd6231 459 spin_unlock_irq(&mapping->tree_lock);
cb4b86ba 460 swapcache_free(swap, page);
e286781d
NP
461 } else {
462 __remove_from_page_cache(page);
19fd6231 463 spin_unlock_irq(&mapping->tree_lock);
e767e056 464 mem_cgroup_uncharge_cache_page(page);
49d2e9cc
CL
465 }
466
49d2e9cc
CL
467 return 1;
468
469cannot_free:
19fd6231 470 spin_unlock_irq(&mapping->tree_lock);
49d2e9cc
CL
471 return 0;
472}
473
e286781d
NP
474/*
475 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
476 * someone else has a ref on the page, abort and return 0. If it was
477 * successfully detached, return 1. Assumes the caller has a single ref on
478 * this page.
479 */
480int remove_mapping(struct address_space *mapping, struct page *page)
481{
482 if (__remove_mapping(mapping, page)) {
483 /*
484 * Unfreezing the refcount with 1 rather than 2 effectively
485 * drops the pagecache ref for us without requiring another
486 * atomic operation.
487 */
488 page_unfreeze_refs(page, 1);
489 return 1;
490 }
491 return 0;
492}
493
894bc310
LS
494/**
495 * putback_lru_page - put previously isolated page onto appropriate LRU list
496 * @page: page to be put back to appropriate lru list
497 *
498 * Add previously isolated @page to appropriate LRU list.
499 * Page may still be unevictable for other reasons.
500 *
501 * lru_lock must not be held, interrupts must be enabled.
502 */
894bc310
LS
503void putback_lru_page(struct page *page)
504{
505 int lru;
506 int active = !!TestClearPageActive(page);
bbfd28ee 507 int was_unevictable = PageUnevictable(page);
894bc310
LS
508
509 VM_BUG_ON(PageLRU(page));
510
511redo:
512 ClearPageUnevictable(page);
513
514 if (page_evictable(page, NULL)) {
515 /*
516 * For evictable pages, we can use the cache.
517 * In event of a race, worst case is we end up with an
518 * unevictable page on [in]active list.
519 * We know how to handle that.
520 */
401a8e1c 521 lru = active + page_lru_base_type(page);
894bc310
LS
522 lru_cache_add_lru(page, lru);
523 } else {
524 /*
525 * Put unevictable pages directly on zone's unevictable
526 * list.
527 */
528 lru = LRU_UNEVICTABLE;
529 add_page_to_unevictable_list(page);
6a7b9548
JW
530 /*
531 * When racing with an mlock clearing (page is
532 * unlocked), make sure that if the other thread does
533 * not observe our setting of PG_lru and fails
534 * isolation, we see PG_mlocked cleared below and move
535 * the page back to the evictable list.
536 *
537 * The other side is TestClearPageMlocked().
538 */
539 smp_mb();
894bc310 540 }
894bc310
LS
541
542 /*
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
546 */
547 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
548 if (!isolate_lru_page(page)) {
549 put_page(page);
550 goto redo;
551 }
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
555 */
556 }
557
bbfd28ee
LS
558 if (was_unevictable && lru != LRU_UNEVICTABLE)
559 count_vm_event(UNEVICTABLE_PGRESCUED);
560 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
561 count_vm_event(UNEVICTABLE_PGCULLED);
562
894bc310
LS
563 put_page(page); /* drop ref from isolate */
564}
565
dfc8d636
JW
566enum page_references {
567 PAGEREF_RECLAIM,
568 PAGEREF_RECLAIM_CLEAN,
64574746 569 PAGEREF_KEEP,
dfc8d636
JW
570 PAGEREF_ACTIVATE,
571};
572
573static enum page_references page_check_references(struct page *page,
574 struct scan_control *sc)
575{
64574746 576 int referenced_ptes, referenced_page;
dfc8d636 577 unsigned long vm_flags;
dfc8d636 578
64574746
JW
579 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
580 referenced_page = TestClearPageReferenced(page);
dfc8d636
JW
581
582 /* Lumpy reclaim - ignore references */
5f53e762 583 if (sc->lumpy_reclaim_mode)
dfc8d636
JW
584 return PAGEREF_RECLAIM;
585
586 /*
587 * Mlock lost the isolation race with us. Let try_to_unmap()
588 * move the page to the unevictable list.
589 */
590 if (vm_flags & VM_LOCKED)
591 return PAGEREF_RECLAIM;
592
64574746
JW
593 if (referenced_ptes) {
594 if (PageAnon(page))
595 return PAGEREF_ACTIVATE;
596 /*
597 * All mapped pages start out with page table
598 * references from the instantiating fault, so we need
599 * to look twice if a mapped file page is used more
600 * than once.
601 *
602 * Mark it and spare it for another trip around the
603 * inactive list. Another page table reference will
604 * lead to its activation.
605 *
606 * Note: the mark is set for activated pages as well
607 * so that recently deactivated but used pages are
608 * quickly recovered.
609 */
610 SetPageReferenced(page);
611
612 if (referenced_page)
613 return PAGEREF_ACTIVATE;
614
615 return PAGEREF_KEEP;
616 }
dfc8d636
JW
617
618 /* Reclaim if clean, defer dirty pages to writeback */
64574746
JW
619 if (referenced_page)
620 return PAGEREF_RECLAIM_CLEAN;
621
622 return PAGEREF_RECLAIM;
dfc8d636
JW
623}
624
abe4c3b5
MG
625static noinline_for_stack void free_page_list(struct list_head *free_pages)
626{
627 struct pagevec freed_pvec;
628 struct page *page, *tmp;
629
630 pagevec_init(&freed_pvec, 1);
631
632 list_for_each_entry_safe(page, tmp, free_pages, lru) {
633 list_del(&page->lru);
634 if (!pagevec_add(&freed_pvec, page)) {
635 __pagevec_free(&freed_pvec);
636 pagevec_reinit(&freed_pvec);
637 }
638 }
639
640 pagevec_free(&freed_pvec);
641}
642
1da177e4 643/*
1742f19f 644 * shrink_page_list() returns the number of reclaimed pages
1da177e4 645 */
1742f19f 646static unsigned long shrink_page_list(struct list_head *page_list,
c661b078
AW
647 struct scan_control *sc,
648 enum pageout_io sync_writeback)
1da177e4
LT
649{
650 LIST_HEAD(ret_pages);
abe4c3b5 651 LIST_HEAD(free_pages);
1da177e4 652 int pgactivate = 0;
05ff5137 653 unsigned long nr_reclaimed = 0;
1da177e4
LT
654
655 cond_resched();
656
1da177e4 657 while (!list_empty(page_list)) {
dfc8d636 658 enum page_references references;
1da177e4
LT
659 struct address_space *mapping;
660 struct page *page;
661 int may_enter_fs;
1da177e4
LT
662
663 cond_resched();
664
665 page = lru_to_page(page_list);
666 list_del(&page->lru);
667
529ae9aa 668 if (!trylock_page(page))
1da177e4
LT
669 goto keep;
670
725d704e 671 VM_BUG_ON(PageActive(page));
1da177e4
LT
672
673 sc->nr_scanned++;
80e43426 674
b291f000
NP
675 if (unlikely(!page_evictable(page, NULL)))
676 goto cull_mlocked;
894bc310 677
a6dc60f8 678 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
679 goto keep_locked;
680
1da177e4
LT
681 /* Double the slab pressure for mapped and swapcache pages */
682 if (page_mapped(page) || PageSwapCache(page))
683 sc->nr_scanned++;
684
c661b078
AW
685 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
686 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
687
688 if (PageWriteback(page)) {
689 /*
690 * Synchronous reclaim is performed in two passes,
691 * first an asynchronous pass over the list to
692 * start parallel writeback, and a second synchronous
693 * pass to wait for the IO to complete. Wait here
694 * for any page for which writeback has already
695 * started.
696 */
697 if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
698 wait_on_page_writeback(page);
4dd4b920 699 else
c661b078
AW
700 goto keep_locked;
701 }
1da177e4 702
dfc8d636
JW
703 references = page_check_references(page, sc);
704 switch (references) {
705 case PAGEREF_ACTIVATE:
1da177e4 706 goto activate_locked;
64574746
JW
707 case PAGEREF_KEEP:
708 goto keep_locked;
dfc8d636
JW
709 case PAGEREF_RECLAIM:
710 case PAGEREF_RECLAIM_CLEAN:
711 ; /* try to reclaim the page below */
712 }
1da177e4 713
1da177e4
LT
714 /*
715 * Anonymous process memory has backing store?
716 * Try to allocate it some swap space here.
717 */
b291f000 718 if (PageAnon(page) && !PageSwapCache(page)) {
63eb6b93
HD
719 if (!(sc->gfp_mask & __GFP_IO))
720 goto keep_locked;
ac47b003 721 if (!add_to_swap(page))
1da177e4 722 goto activate_locked;
63eb6b93 723 may_enter_fs = 1;
b291f000 724 }
1da177e4
LT
725
726 mapping = page_mapping(page);
1da177e4
LT
727
728 /*
729 * The page is mapped into the page tables of one or more
730 * processes. Try to unmap it here.
731 */
732 if (page_mapped(page) && mapping) {
14fa31b8 733 switch (try_to_unmap(page, TTU_UNMAP)) {
1da177e4
LT
734 case SWAP_FAIL:
735 goto activate_locked;
736 case SWAP_AGAIN:
737 goto keep_locked;
b291f000
NP
738 case SWAP_MLOCK:
739 goto cull_mlocked;
1da177e4
LT
740 case SWAP_SUCCESS:
741 ; /* try to free the page below */
742 }
743 }
744
745 if (PageDirty(page)) {
dfc8d636 746 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 747 goto keep_locked;
4dd4b920 748 if (!may_enter_fs)
1da177e4 749 goto keep_locked;
52a8363e 750 if (!sc->may_writepage)
1da177e4
LT
751 goto keep_locked;
752
753 /* Page is dirty, try to write it out here */
c661b078 754 switch (pageout(page, mapping, sync_writeback)) {
1da177e4
LT
755 case PAGE_KEEP:
756 goto keep_locked;
757 case PAGE_ACTIVATE:
758 goto activate_locked;
759 case PAGE_SUCCESS:
4dd4b920 760 if (PageWriteback(page) || PageDirty(page))
1da177e4
LT
761 goto keep;
762 /*
763 * A synchronous write - probably a ramdisk. Go
764 * ahead and try to reclaim the page.
765 */
529ae9aa 766 if (!trylock_page(page))
1da177e4
LT
767 goto keep;
768 if (PageDirty(page) || PageWriteback(page))
769 goto keep_locked;
770 mapping = page_mapping(page);
771 case PAGE_CLEAN:
772 ; /* try to free the page below */
773 }
774 }
775
776 /*
777 * If the page has buffers, try to free the buffer mappings
778 * associated with this page. If we succeed we try to free
779 * the page as well.
780 *
781 * We do this even if the page is PageDirty().
782 * try_to_release_page() does not perform I/O, but it is
783 * possible for a page to have PageDirty set, but it is actually
784 * clean (all its buffers are clean). This happens if the
785 * buffers were written out directly, with submit_bh(). ext3
894bc310 786 * will do this, as well as the blockdev mapping.
1da177e4
LT
787 * try_to_release_page() will discover that cleanness and will
788 * drop the buffers and mark the page clean - it can be freed.
789 *
790 * Rarely, pages can have buffers and no ->mapping. These are
791 * the pages which were not successfully invalidated in
792 * truncate_complete_page(). We try to drop those buffers here
793 * and if that worked, and the page is no longer mapped into
794 * process address space (page_count == 1) it can be freed.
795 * Otherwise, leave the page on the LRU so it is swappable.
796 */
266cf658 797 if (page_has_private(page)) {
1da177e4
LT
798 if (!try_to_release_page(page, sc->gfp_mask))
799 goto activate_locked;
e286781d
NP
800 if (!mapping && page_count(page) == 1) {
801 unlock_page(page);
802 if (put_page_testzero(page))
803 goto free_it;
804 else {
805 /*
806 * rare race with speculative reference.
807 * the speculative reference will free
808 * this page shortly, so we may
809 * increment nr_reclaimed here (and
810 * leave it off the LRU).
811 */
812 nr_reclaimed++;
813 continue;
814 }
815 }
1da177e4
LT
816 }
817
e286781d 818 if (!mapping || !__remove_mapping(mapping, page))
49d2e9cc 819 goto keep_locked;
1da177e4 820
a978d6f5
NP
821 /*
822 * At this point, we have no other references and there is
823 * no way to pick any more up (removed from LRU, removed
824 * from pagecache). Can use non-atomic bitops now (and
825 * we obviously don't have to worry about waking up a process
826 * waiting on the page lock, because there are no references.
827 */
828 __clear_page_locked(page);
e286781d 829free_it:
05ff5137 830 nr_reclaimed++;
abe4c3b5
MG
831
832 /*
833 * Is there need to periodically free_page_list? It would
834 * appear not as the counts should be low
835 */
836 list_add(&page->lru, &free_pages);
1da177e4
LT
837 continue;
838
b291f000 839cull_mlocked:
63d6c5ad
HD
840 if (PageSwapCache(page))
841 try_to_free_swap(page);
b291f000
NP
842 unlock_page(page);
843 putback_lru_page(page);
844 continue;
845
1da177e4 846activate_locked:
68a22394
RR
847 /* Not a candidate for swapping, so reclaim swap space. */
848 if (PageSwapCache(page) && vm_swap_full())
a2c43eed 849 try_to_free_swap(page);
894bc310 850 VM_BUG_ON(PageActive(page));
1da177e4
LT
851 SetPageActive(page);
852 pgactivate++;
853keep_locked:
854 unlock_page(page);
855keep:
856 list_add(&page->lru, &ret_pages);
b291f000 857 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1da177e4 858 }
abe4c3b5
MG
859
860 free_page_list(&free_pages);
861
1da177e4 862 list_splice(&ret_pages, page_list);
f8891e5e 863 count_vm_events(PGACTIVATE, pgactivate);
05ff5137 864 return nr_reclaimed;
1da177e4
LT
865}
866
5ad333eb
AW
867/*
868 * Attempt to remove the specified page from its LRU. Only take this page
869 * if it is of the appropriate PageActive status. Pages which are being
870 * freed elsewhere are also ignored.
871 *
872 * page: page to consider
873 * mode: one of the LRU isolation modes defined above
874 *
875 * returns 0 on success, -ve errno on failure.
876 */
4f98a2fe 877int __isolate_lru_page(struct page *page, int mode, int file)
5ad333eb
AW
878{
879 int ret = -EINVAL;
880
881 /* Only take pages on the LRU. */
882 if (!PageLRU(page))
883 return ret;
884
885 /*
886 * When checking the active state, we need to be sure we are
887 * dealing with comparible boolean values. Take the logical not
888 * of each.
889 */
890 if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
891 return ret;
892
6c0b1351 893 if (mode != ISOLATE_BOTH && page_is_file_cache(page) != file)
4f98a2fe
RR
894 return ret;
895
894bc310
LS
896 /*
897 * When this function is being called for lumpy reclaim, we
898 * initially look into all LRU pages, active, inactive and
899 * unevictable; only give shrink_page_list evictable pages.
900 */
901 if (PageUnevictable(page))
902 return ret;
903
5ad333eb 904 ret = -EBUSY;
08e552c6 905
5ad333eb
AW
906 if (likely(get_page_unless_zero(page))) {
907 /*
908 * Be careful not to clear PageLRU until after we're
909 * sure the page is not being freed elsewhere -- the
910 * page release code relies on it.
911 */
912 ClearPageLRU(page);
913 ret = 0;
914 }
915
916 return ret;
917}
918
1da177e4
LT
919/*
920 * zone->lru_lock is heavily contended. Some of the functions that
921 * shrink the lists perform better by taking out a batch of pages
922 * and working on them outside the LRU lock.
923 *
924 * For pagecache intensive workloads, this function is the hottest
925 * spot in the kernel (apart from copy_*_user functions).
926 *
927 * Appropriate locks must be held before calling this function.
928 *
929 * @nr_to_scan: The number of pages to look through on the list.
930 * @src: The LRU list to pull pages off.
931 * @dst: The temp list to put pages on to.
932 * @scanned: The number of pages that were scanned.
5ad333eb
AW
933 * @order: The caller's attempted allocation order
934 * @mode: One of the LRU isolation modes
4f98a2fe 935 * @file: True [1] if isolating file [!anon] pages
1da177e4
LT
936 *
937 * returns how many pages were moved onto *@dst.
938 */
69e05944
AM
939static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
940 struct list_head *src, struct list_head *dst,
4f98a2fe 941 unsigned long *scanned, int order, int mode, int file)
1da177e4 942{
69e05944 943 unsigned long nr_taken = 0;
a8a94d15
MG
944 unsigned long nr_lumpy_taken = 0;
945 unsigned long nr_lumpy_dirty = 0;
946 unsigned long nr_lumpy_failed = 0;
c9b02d97 947 unsigned long scan;
1da177e4 948
c9b02d97 949 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
5ad333eb
AW
950 struct page *page;
951 unsigned long pfn;
952 unsigned long end_pfn;
953 unsigned long page_pfn;
954 int zone_id;
955
1da177e4
LT
956 page = lru_to_page(src);
957 prefetchw_prev_lru_page(page, src, flags);
958
725d704e 959 VM_BUG_ON(!PageLRU(page));
8d438f96 960
4f98a2fe 961 switch (__isolate_lru_page(page, mode, file)) {
5ad333eb
AW
962 case 0:
963 list_move(&page->lru, dst);
2ffebca6 964 mem_cgroup_del_lru(page);
7c8ee9a8 965 nr_taken++;
5ad333eb
AW
966 break;
967
968 case -EBUSY:
969 /* else it is being freed elsewhere */
970 list_move(&page->lru, src);
2ffebca6 971 mem_cgroup_rotate_lru_list(page, page_lru(page));
5ad333eb 972 continue;
46453a6e 973
5ad333eb
AW
974 default:
975 BUG();
976 }
977
978 if (!order)
979 continue;
980
981 /*
982 * Attempt to take all pages in the order aligned region
983 * surrounding the tag page. Only take those pages of
984 * the same active state as that tag page. We may safely
985 * round the target page pfn down to the requested order
986 * as the mem_map is guarenteed valid out to MAX_ORDER,
987 * where that page is in a different zone we will detect
988 * it from its zone id and abort this block scan.
989 */
990 zone_id = page_zone_id(page);
991 page_pfn = page_to_pfn(page);
992 pfn = page_pfn & ~((1 << order) - 1);
993 end_pfn = pfn + (1 << order);
994 for (; pfn < end_pfn; pfn++) {
995 struct page *cursor_page;
996
997 /* The target page is in the block, ignore it. */
998 if (unlikely(pfn == page_pfn))
999 continue;
1000
1001 /* Avoid holes within the zone. */
1002 if (unlikely(!pfn_valid_within(pfn)))
1003 break;
1004
1005 cursor_page = pfn_to_page(pfn);
4f98a2fe 1006
5ad333eb
AW
1007 /* Check that we have not crossed a zone boundary. */
1008 if (unlikely(page_zone_id(cursor_page) != zone_id))
1009 continue;
de2e7567
MK
1010
1011 /*
1012 * If we don't have enough swap space, reclaiming of
1013 * anon page which don't already have a swap slot is
1014 * pointless.
1015 */
1016 if (nr_swap_pages <= 0 && PageAnon(cursor_page) &&
1017 !PageSwapCache(cursor_page))
1018 continue;
1019
ee993b13 1020 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
5ad333eb 1021 list_move(&cursor_page->lru, dst);
cb4cbcf6 1022 mem_cgroup_del_lru(cursor_page);
5ad333eb 1023 nr_taken++;
a8a94d15
MG
1024 nr_lumpy_taken++;
1025 if (PageDirty(cursor_page))
1026 nr_lumpy_dirty++;
5ad333eb 1027 scan++;
a8a94d15
MG
1028 } else {
1029 if (mode == ISOLATE_BOTH &&
1030 page_count(cursor_page))
1031 nr_lumpy_failed++;
5ad333eb
AW
1032 }
1033 }
1da177e4
LT
1034 }
1035
1036 *scanned = scan;
a8a94d15
MG
1037
1038 trace_mm_vmscan_lru_isolate(order,
1039 nr_to_scan, scan,
1040 nr_taken,
1041 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1042 mode);
1da177e4
LT
1043 return nr_taken;
1044}
1045
66e1707b
BS
1046static unsigned long isolate_pages_global(unsigned long nr,
1047 struct list_head *dst,
1048 unsigned long *scanned, int order,
1049 int mode, struct zone *z,
4f98a2fe 1050 int active, int file)
66e1707b 1051{
4f98a2fe 1052 int lru = LRU_BASE;
66e1707b 1053 if (active)
4f98a2fe
RR
1054 lru += LRU_ACTIVE;
1055 if (file)
1056 lru += LRU_FILE;
1057 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
b7c46d15 1058 mode, file);
66e1707b
BS
1059}
1060
5ad333eb
AW
1061/*
1062 * clear_active_flags() is a helper for shrink_active_list(), clearing
1063 * any active bits from the pages in the list.
1064 */
4f98a2fe
RR
1065static unsigned long clear_active_flags(struct list_head *page_list,
1066 unsigned int *count)
5ad333eb
AW
1067{
1068 int nr_active = 0;
4f98a2fe 1069 int lru;
5ad333eb
AW
1070 struct page *page;
1071
4f98a2fe 1072 list_for_each_entry(page, page_list, lru) {
401a8e1c 1073 lru = page_lru_base_type(page);
5ad333eb 1074 if (PageActive(page)) {
4f98a2fe 1075 lru += LRU_ACTIVE;
5ad333eb
AW
1076 ClearPageActive(page);
1077 nr_active++;
1078 }
1489fa14
MG
1079 if (count)
1080 count[lru]++;
4f98a2fe 1081 }
5ad333eb
AW
1082
1083 return nr_active;
1084}
1085
62695a84
NP
1086/**
1087 * isolate_lru_page - tries to isolate a page from its LRU list
1088 * @page: page to isolate from its LRU list
1089 *
1090 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1091 * vmstat statistic corresponding to whatever LRU list the page was on.
1092 *
1093 * Returns 0 if the page was removed from an LRU list.
1094 * Returns -EBUSY if the page was not on an LRU list.
1095 *
1096 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1097 * the active list, it will have PageActive set. If it was found on
1098 * the unevictable list, it will have the PageUnevictable bit set. That flag
1099 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1100 *
1101 * The vmstat statistic corresponding to the list on which the page was
1102 * found will be decremented.
1103 *
1104 * Restrictions:
1105 * (1) Must be called with an elevated refcount on the page. This is a
1106 * fundamentnal difference from isolate_lru_pages (which is called
1107 * without a stable reference).
1108 * (2) the lru_lock must not be held.
1109 * (3) interrupts must be enabled.
1110 */
1111int isolate_lru_page(struct page *page)
1112{
1113 int ret = -EBUSY;
1114
1115 if (PageLRU(page)) {
1116 struct zone *zone = page_zone(page);
1117
1118 spin_lock_irq(&zone->lru_lock);
1119 if (PageLRU(page) && get_page_unless_zero(page)) {
894bc310 1120 int lru = page_lru(page);
62695a84
NP
1121 ret = 0;
1122 ClearPageLRU(page);
4f98a2fe 1123
4f98a2fe 1124 del_page_from_lru_list(zone, page, lru);
62695a84
NP
1125 }
1126 spin_unlock_irq(&zone->lru_lock);
1127 }
1128 return ret;
1129}
1130
35cd7815
RR
1131/*
1132 * Are there way too many processes in the direct reclaim path already?
1133 */
1134static int too_many_isolated(struct zone *zone, int file,
1135 struct scan_control *sc)
1136{
1137 unsigned long inactive, isolated;
1138
1139 if (current_is_kswapd())
1140 return 0;
1141
1142 if (!scanning_global_lru(sc))
1143 return 0;
1144
1145 if (file) {
1146 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1147 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1148 } else {
1149 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1150 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1151 }
1152
1153 return isolated > inactive;
1154}
1155
66635629
MG
1156/*
1157 * TODO: Try merging with migrations version of putback_lru_pages
1158 */
1159static noinline_for_stack void
1489fa14 1160putback_lru_pages(struct zone *zone, struct scan_control *sc,
66635629
MG
1161 unsigned long nr_anon, unsigned long nr_file,
1162 struct list_head *page_list)
1163{
1164 struct page *page;
1165 struct pagevec pvec;
1489fa14 1166 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
66635629
MG
1167
1168 pagevec_init(&pvec, 1);
1169
1170 /*
1171 * Put back any unfreeable pages.
1172 */
1173 spin_lock(&zone->lru_lock);
1174 while (!list_empty(page_list)) {
1175 int lru;
1176 page = lru_to_page(page_list);
1177 VM_BUG_ON(PageLRU(page));
1178 list_del(&page->lru);
1179 if (unlikely(!page_evictable(page, NULL))) {
1180 spin_unlock_irq(&zone->lru_lock);
1181 putback_lru_page(page);
1182 spin_lock_irq(&zone->lru_lock);
1183 continue;
1184 }
1185 SetPageLRU(page);
1186 lru = page_lru(page);
1187 add_page_to_lru_list(zone, page, lru);
1188 if (is_active_lru(lru)) {
1189 int file = is_file_lru(lru);
1190 reclaim_stat->recent_rotated[file]++;
1191 }
1192 if (!pagevec_add(&pvec, page)) {
1193 spin_unlock_irq(&zone->lru_lock);
1194 __pagevec_release(&pvec);
1195 spin_lock_irq(&zone->lru_lock);
1196 }
1197 }
1198 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1199 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1200
1201 spin_unlock_irq(&zone->lru_lock);
1202 pagevec_release(&pvec);
1203}
1204
1489fa14
MG
1205static noinline_for_stack void update_isolated_counts(struct zone *zone,
1206 struct scan_control *sc,
1207 unsigned long *nr_anon,
1208 unsigned long *nr_file,
1209 struct list_head *isolated_list)
1210{
1211 unsigned long nr_active;
1212 unsigned int count[NR_LRU_LISTS] = { 0, };
1213 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1214
1215 nr_active = clear_active_flags(isolated_list, count);
1216 __count_vm_events(PGDEACTIVATE, nr_active);
1217
1218 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1219 -count[LRU_ACTIVE_FILE]);
1220 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1221 -count[LRU_INACTIVE_FILE]);
1222 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1223 -count[LRU_ACTIVE_ANON]);
1224 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1225 -count[LRU_INACTIVE_ANON]);
1226
1227 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1228 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1229 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1230 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1231
1232 reclaim_stat->recent_scanned[0] += *nr_anon;
1233 reclaim_stat->recent_scanned[1] += *nr_file;
1234}
1235
e31f3698
WF
1236/*
1237 * Returns true if the caller should wait to clean dirty/writeback pages.
1238 *
1239 * If we are direct reclaiming for contiguous pages and we do not reclaim
1240 * everything in the list, try again and wait for writeback IO to complete.
1241 * This will stall high-order allocations noticeably. Only do that when really
1242 * need to free the pages under high memory pressure.
1243 */
1244static inline bool should_reclaim_stall(unsigned long nr_taken,
1245 unsigned long nr_freed,
1246 int priority,
1247 struct scan_control *sc)
1248{
1249 int lumpy_stall_priority;
1250
1251 /* kswapd should not stall on sync IO */
1252 if (current_is_kswapd())
1253 return false;
1254
1255 /* Only stall on lumpy reclaim */
1256 if (!sc->lumpy_reclaim_mode)
1257 return false;
1258
1259 /* If we have relaimed everything on the isolated list, no stall */
1260 if (nr_freed == nr_taken)
1261 return false;
1262
1263 /*
1264 * For high-order allocations, there are two stall thresholds.
1265 * High-cost allocations stall immediately where as lower
1266 * order allocations such as stacks require the scanning
1267 * priority to be much higher before stalling.
1268 */
1269 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1270 lumpy_stall_priority = DEF_PRIORITY;
1271 else
1272 lumpy_stall_priority = DEF_PRIORITY / 3;
1273
1274 return priority <= lumpy_stall_priority;
1275}
1276
1da177e4 1277/*
1742f19f
AM
1278 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1279 * of reclaimed pages
1da177e4 1280 */
66635629
MG
1281static noinline_for_stack unsigned long
1282shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1283 struct scan_control *sc, int priority, int file)
1da177e4
LT
1284{
1285 LIST_HEAD(page_list);
e247dbce 1286 unsigned long nr_scanned;
05ff5137 1287 unsigned long nr_reclaimed = 0;
e247dbce
KM
1288 unsigned long nr_taken;
1289 unsigned long nr_active;
e247dbce
KM
1290 unsigned long nr_anon;
1291 unsigned long nr_file;
78dc583d 1292
35cd7815 1293 while (unlikely(too_many_isolated(zone, file, sc))) {
58355c78 1294 congestion_wait(BLK_RW_ASYNC, HZ/10);
35cd7815
RR
1295
1296 /* We are about to die and free our memory. Return now. */
1297 if (fatal_signal_pending(current))
1298 return SWAP_CLUSTER_MAX;
1299 }
1300
1da177e4 1301
1da177e4
LT
1302 lru_add_drain();
1303 spin_lock_irq(&zone->lru_lock);
b35ea17b 1304
e247dbce
KM
1305 if (scanning_global_lru(sc)) {
1306 nr_taken = isolate_pages_global(nr_to_scan,
1307 &page_list, &nr_scanned, sc->order,
1308 sc->lumpy_reclaim_mode ?
1309 ISOLATE_BOTH : ISOLATE_INACTIVE,
1310 zone, 0, file);
1311 zone->pages_scanned += nr_scanned;
1312 if (current_is_kswapd())
1313 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1314 nr_scanned);
1315 else
1316 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1317 nr_scanned);
1318 } else {
1319 nr_taken = mem_cgroup_isolate_pages(nr_to_scan,
1320 &page_list, &nr_scanned, sc->order,
1321 sc->lumpy_reclaim_mode ?
1322 ISOLATE_BOTH : ISOLATE_INACTIVE,
1323 zone, sc->mem_cgroup,
1324 0, file);
1325 /*
1326 * mem_cgroup_isolate_pages() keeps track of
1327 * scanned pages on its own.
1328 */
1329 }
b35ea17b 1330
66635629
MG
1331 if (nr_taken == 0) {
1332 spin_unlock_irq(&zone->lru_lock);
1333 return 0;
1334 }
5ad333eb 1335
1489fa14 1336 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1da177e4 1337
e247dbce 1338 spin_unlock_irq(&zone->lru_lock);
c661b078 1339
e247dbce 1340 nr_reclaimed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
c661b078 1341
e31f3698
WF
1342 /* Check if we should syncronously wait for writeback */
1343 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
e247dbce 1344 congestion_wait(BLK_RW_ASYNC, HZ/10);
c661b078 1345
e247dbce
KM
1346 /*
1347 * The attempt at page out may have made some
1348 * of the pages active, mark them inactive again.
1349 */
1489fa14 1350 nr_active = clear_active_flags(&page_list, NULL);
e247dbce 1351 count_vm_events(PGDEACTIVATE, nr_active);
c661b078 1352
e247dbce
KM
1353 nr_reclaimed += shrink_page_list(&page_list, sc, PAGEOUT_IO_SYNC);
1354 }
b35ea17b 1355
e247dbce
KM
1356 local_irq_disable();
1357 if (current_is_kswapd())
1358 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1359 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
a74609fa 1360
1489fa14 1361 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
05ff5137 1362 return nr_reclaimed;
1da177e4
LT
1363}
1364
1365/*
1366 * This moves pages from the active list to the inactive list.
1367 *
1368 * We move them the other way if the page is referenced by one or more
1369 * processes, from rmap.
1370 *
1371 * If the pages are mostly unmapped, the processing is fast and it is
1372 * appropriate to hold zone->lru_lock across the whole operation. But if
1373 * the pages are mapped, the processing is slow (page_referenced()) so we
1374 * should drop zone->lru_lock around each page. It's impossible to balance
1375 * this, so instead we remove the pages from the LRU while processing them.
1376 * It is safe to rely on PG_active against the non-LRU pages in here because
1377 * nobody will play with that bit on a non-LRU page.
1378 *
1379 * The downside is that we have to touch page->_count against each page.
1380 * But we had to alter page->flags anyway.
1381 */
1cfb419b 1382
3eb4140f
WF
1383static void move_active_pages_to_lru(struct zone *zone,
1384 struct list_head *list,
1385 enum lru_list lru)
1386{
1387 unsigned long pgmoved = 0;
1388 struct pagevec pvec;
1389 struct page *page;
1390
1391 pagevec_init(&pvec, 1);
1392
1393 while (!list_empty(list)) {
1394 page = lru_to_page(list);
3eb4140f
WF
1395
1396 VM_BUG_ON(PageLRU(page));
1397 SetPageLRU(page);
1398
3eb4140f
WF
1399 list_move(&page->lru, &zone->lru[lru].list);
1400 mem_cgroup_add_lru_list(page, lru);
1401 pgmoved++;
1402
1403 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1404 spin_unlock_irq(&zone->lru_lock);
1405 if (buffer_heads_over_limit)
1406 pagevec_strip(&pvec);
1407 __pagevec_release(&pvec);
1408 spin_lock_irq(&zone->lru_lock);
1409 }
1410 }
1411 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1412 if (!is_active_lru(lru))
1413 __count_vm_events(PGDEACTIVATE, pgmoved);
1414}
1cfb419b 1415
1742f19f 1416static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
4f98a2fe 1417 struct scan_control *sc, int priority, int file)
1da177e4 1418{
44c241f1 1419 unsigned long nr_taken;
69e05944 1420 unsigned long pgscanned;
6fe6b7e3 1421 unsigned long vm_flags;
1da177e4 1422 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 1423 LIST_HEAD(l_active);
b69408e8 1424 LIST_HEAD(l_inactive);
1da177e4 1425 struct page *page;
6e901571 1426 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
44c241f1 1427 unsigned long nr_rotated = 0;
1da177e4
LT
1428
1429 lru_add_drain();
1430 spin_lock_irq(&zone->lru_lock);
e72e2bd6 1431 if (scanning_global_lru(sc)) {
8b25c6d2
JW
1432 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1433 &pgscanned, sc->order,
1434 ISOLATE_ACTIVE, zone,
1435 1, file);
1cfb419b 1436 zone->pages_scanned += pgscanned;
8b25c6d2
JW
1437 } else {
1438 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1439 &pgscanned, sc->order,
1440 ISOLATE_ACTIVE, zone,
1441 sc->mem_cgroup, 1, file);
1442 /*
1443 * mem_cgroup_isolate_pages() keeps track of
1444 * scanned pages on its own.
1445 */
4f98a2fe 1446 }
8b25c6d2 1447
b7c46d15 1448 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 1449
3eb4140f 1450 __count_zone_vm_events(PGREFILL, zone, pgscanned);
4f98a2fe 1451 if (file)
44c241f1 1452 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
4f98a2fe 1453 else
44c241f1 1454 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
a731286d 1455 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1da177e4
LT
1456 spin_unlock_irq(&zone->lru_lock);
1457
1da177e4
LT
1458 while (!list_empty(&l_hold)) {
1459 cond_resched();
1460 page = lru_to_page(&l_hold);
1461 list_del(&page->lru);
7e9cd484 1462
894bc310
LS
1463 if (unlikely(!page_evictable(page, NULL))) {
1464 putback_lru_page(page);
1465 continue;
1466 }
1467
64574746 1468 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
44c241f1 1469 nr_rotated++;
8cab4754
WF
1470 /*
1471 * Identify referenced, file-backed active pages and
1472 * give them one more trip around the active list. So
1473 * that executable code get better chances to stay in
1474 * memory under moderate memory pressure. Anon pages
1475 * are not likely to be evicted by use-once streaming
1476 * IO, plus JVM can create lots of anon VM_EXEC pages,
1477 * so we ignore them here.
1478 */
41e20983 1479 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
1480 list_add(&page->lru, &l_active);
1481 continue;
1482 }
1483 }
7e9cd484 1484
5205e56e 1485 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
1486 list_add(&page->lru, &l_inactive);
1487 }
1488
b555749a 1489 /*
8cab4754 1490 * Move pages back to the lru list.
b555749a 1491 */
2a1dc509 1492 spin_lock_irq(&zone->lru_lock);
556adecb 1493 /*
8cab4754
WF
1494 * Count referenced pages from currently used mappings as rotated,
1495 * even though only some of them are actually re-activated. This
1496 * helps balance scan pressure between file and anonymous pages in
1497 * get_scan_ratio.
7e9cd484 1498 */
b7c46d15 1499 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 1500
3eb4140f
WF
1501 move_active_pages_to_lru(zone, &l_active,
1502 LRU_ACTIVE + file * LRU_FILE);
1503 move_active_pages_to_lru(zone, &l_inactive,
1504 LRU_BASE + file * LRU_FILE);
a731286d 1505 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
f8891e5e 1506 spin_unlock_irq(&zone->lru_lock);
1da177e4
LT
1507}
1508
14797e23 1509static int inactive_anon_is_low_global(struct zone *zone)
f89eb90e
KM
1510{
1511 unsigned long active, inactive;
1512
1513 active = zone_page_state(zone, NR_ACTIVE_ANON);
1514 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1515
1516 if (inactive * zone->inactive_ratio < active)
1517 return 1;
1518
1519 return 0;
1520}
1521
14797e23
KM
1522/**
1523 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1524 * @zone: zone to check
1525 * @sc: scan control of this context
1526 *
1527 * Returns true if the zone does not have enough inactive anon pages,
1528 * meaning some active anon pages need to be deactivated.
1529 */
1530static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1531{
1532 int low;
1533
e72e2bd6 1534 if (scanning_global_lru(sc))
14797e23
KM
1535 low = inactive_anon_is_low_global(zone);
1536 else
c772be93 1537 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup);
14797e23
KM
1538 return low;
1539}
1540
56e49d21
RR
1541static int inactive_file_is_low_global(struct zone *zone)
1542{
1543 unsigned long active, inactive;
1544
1545 active = zone_page_state(zone, NR_ACTIVE_FILE);
1546 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1547
1548 return (active > inactive);
1549}
1550
1551/**
1552 * inactive_file_is_low - check if file pages need to be deactivated
1553 * @zone: zone to check
1554 * @sc: scan control of this context
1555 *
1556 * When the system is doing streaming IO, memory pressure here
1557 * ensures that active file pages get deactivated, until more
1558 * than half of the file pages are on the inactive list.
1559 *
1560 * Once we get to that situation, protect the system's working
1561 * set from being evicted by disabling active file page aging.
1562 *
1563 * This uses a different ratio than the anonymous pages, because
1564 * the page cache uses a use-once replacement algorithm.
1565 */
1566static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1567{
1568 int low;
1569
1570 if (scanning_global_lru(sc))
1571 low = inactive_file_is_low_global(zone);
1572 else
1573 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup);
1574 return low;
1575}
1576
b39415b2
RR
1577static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1578 int file)
1579{
1580 if (file)
1581 return inactive_file_is_low(zone, sc);
1582 else
1583 return inactive_anon_is_low(zone, sc);
1584}
1585
4f98a2fe 1586static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
b69408e8
CL
1587 struct zone *zone, struct scan_control *sc, int priority)
1588{
4f98a2fe
RR
1589 int file = is_file_lru(lru);
1590
b39415b2
RR
1591 if (is_active_lru(lru)) {
1592 if (inactive_list_is_low(zone, sc, file))
1593 shrink_active_list(nr_to_scan, zone, sc, priority, file);
556adecb
RR
1594 return 0;
1595 }
1596
33c120ed 1597 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
4f98a2fe
RR
1598}
1599
76a33fc3
SL
1600/*
1601 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1602 * until we collected @swap_cluster_max pages to scan.
1603 */
1604static unsigned long nr_scan_try_batch(unsigned long nr_to_scan,
1605 unsigned long *nr_saved_scan)
1606{
1607 unsigned long nr;
1608
1609 *nr_saved_scan += nr_to_scan;
1610 nr = *nr_saved_scan;
1611
1612 if (nr >= SWAP_CLUSTER_MAX)
1613 *nr_saved_scan = 0;
1614 else
1615 nr = 0;
1616
1617 return nr;
1618}
1619
4f98a2fe
RR
1620/*
1621 * Determine how aggressively the anon and file LRU lists should be
1622 * scanned. The relative value of each set of LRU lists is determined
1623 * by looking at the fraction of the pages scanned we did rotate back
1624 * onto the active list instead of evict.
1625 *
76a33fc3 1626 * nr[0] = anon pages to scan; nr[1] = file pages to scan
4f98a2fe 1627 */
76a33fc3
SL
1628static void get_scan_count(struct zone *zone, struct scan_control *sc,
1629 unsigned long *nr, int priority)
4f98a2fe
RR
1630{
1631 unsigned long anon, file, free;
1632 unsigned long anon_prio, file_prio;
1633 unsigned long ap, fp;
6e901571 1634 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
76a33fc3
SL
1635 u64 fraction[2], denominator;
1636 enum lru_list l;
1637 int noswap = 0;
1638
1639 /* If we have no swap space, do not bother scanning anon pages. */
1640 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1641 noswap = 1;
1642 fraction[0] = 0;
1643 fraction[1] = 1;
1644 denominator = 1;
1645 goto out;
1646 }
4f98a2fe 1647
0b217676
VL
1648 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1649 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1650 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1651 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
b962716b 1652
e72e2bd6 1653 if (scanning_global_lru(sc)) {
eeee9a8c
KM
1654 free = zone_page_state(zone, NR_FREE_PAGES);
1655 /* If we have very few page cache pages,
1656 force-scan anon pages. */
41858966 1657 if (unlikely(file + free <= high_wmark_pages(zone))) {
76a33fc3
SL
1658 fraction[0] = 1;
1659 fraction[1] = 0;
1660 denominator = 1;
1661 goto out;
eeee9a8c 1662 }
4f98a2fe
RR
1663 }
1664
58c37f6e
KM
1665 /*
1666 * With swappiness at 100, anonymous and file have the same priority.
1667 * This scanning priority is essentially the inverse of IO cost.
1668 */
1669 anon_prio = sc->swappiness;
1670 file_prio = 200 - sc->swappiness;
1671
4f98a2fe
RR
1672 /*
1673 * OK, so we have swap space and a fair amount of page cache
1674 * pages. We use the recently rotated / recently scanned
1675 * ratios to determine how valuable each cache is.
1676 *
1677 * Because workloads change over time (and to avoid overflow)
1678 * we keep these statistics as a floating average, which ends
1679 * up weighing recent references more than old ones.
1680 *
1681 * anon in [0], file in [1]
1682 */
58c37f6e 1683 spin_lock_irq(&zone->lru_lock);
6e901571 1684 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
1685 reclaim_stat->recent_scanned[0] /= 2;
1686 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
1687 }
1688
6e901571 1689 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
1690 reclaim_stat->recent_scanned[1] /= 2;
1691 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
1692 }
1693
4f98a2fe 1694 /*
00d8089c
RR
1695 * The amount of pressure on anon vs file pages is inversely
1696 * proportional to the fraction of recently scanned pages on
1697 * each list that were recently referenced and in active use.
4f98a2fe 1698 */
6e901571
KM
1699 ap = (anon_prio + 1) * (reclaim_stat->recent_scanned[0] + 1);
1700 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 1701
6e901571
KM
1702 fp = (file_prio + 1) * (reclaim_stat->recent_scanned[1] + 1);
1703 fp /= reclaim_stat->recent_rotated[1] + 1;
58c37f6e 1704 spin_unlock_irq(&zone->lru_lock);
4f98a2fe 1705
76a33fc3
SL
1706 fraction[0] = ap;
1707 fraction[1] = fp;
1708 denominator = ap + fp + 1;
1709out:
1710 for_each_evictable_lru(l) {
1711 int file = is_file_lru(l);
1712 unsigned long scan;
6e08a369 1713
76a33fc3
SL
1714 scan = zone_nr_lru_pages(zone, sc, l);
1715 if (priority || noswap) {
1716 scan >>= priority;
1717 scan = div64_u64(scan * fraction[file], denominator);
1718 }
1719 nr[l] = nr_scan_try_batch(scan,
1720 &reclaim_stat->nr_saved_scan[l]);
1721 }
6e08a369 1722}
4f98a2fe 1723
5f53e762
KM
1724static void set_lumpy_reclaim_mode(int priority, struct scan_control *sc)
1725{
1726 /*
1727 * If we need a large contiguous chunk of memory, or have
1728 * trouble getting a small set of contiguous pages, we
1729 * will reclaim both active and inactive pages.
1730 */
1731 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1732 sc->lumpy_reclaim_mode = 1;
1733 else if (sc->order && priority < DEF_PRIORITY - 2)
1734 sc->lumpy_reclaim_mode = 1;
1735 else
1736 sc->lumpy_reclaim_mode = 0;
1737}
1738
1da177e4
LT
1739/*
1740 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1741 */
a79311c1 1742static void shrink_zone(int priority, struct zone *zone,
05ff5137 1743 struct scan_control *sc)
1da177e4 1744{
b69408e8 1745 unsigned long nr[NR_LRU_LISTS];
8695949a 1746 unsigned long nr_to_scan;
b69408e8 1747 enum lru_list l;
01dbe5c9 1748 unsigned long nr_reclaimed = sc->nr_reclaimed;
22fba335 1749 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
e0f79b8f 1750
76a33fc3 1751 get_scan_count(zone, sc, nr, priority);
1da177e4 1752
5f53e762
KM
1753 set_lumpy_reclaim_mode(priority, sc);
1754
556adecb
RR
1755 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
1756 nr[LRU_INACTIVE_FILE]) {
894bc310 1757 for_each_evictable_lru(l) {
b69408e8 1758 if (nr[l]) {
ece74b2e
KM
1759 nr_to_scan = min_t(unsigned long,
1760 nr[l], SWAP_CLUSTER_MAX);
b69408e8 1761 nr[l] -= nr_to_scan;
1da177e4 1762
01dbe5c9
KM
1763 nr_reclaimed += shrink_list(l, nr_to_scan,
1764 zone, sc, priority);
b69408e8 1765 }
1da177e4 1766 }
a79311c1
RR
1767 /*
1768 * On large memory systems, scan >> priority can become
1769 * really large. This is fine for the starting priority;
1770 * we want to put equal scanning pressure on each zone.
1771 * However, if the VM has a harder time of freeing pages,
1772 * with multiple processes reclaiming pages, the total
1773 * freeing target can get unreasonably large.
1774 */
338fde90 1775 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
a79311c1 1776 break;
1da177e4
LT
1777 }
1778
01dbe5c9
KM
1779 sc->nr_reclaimed = nr_reclaimed;
1780
556adecb
RR
1781 /*
1782 * Even if we did not try to evict anon pages at all, we want to
1783 * rebalance the anon lru active/inactive ratio.
1784 */
69c85481 1785 if (inactive_anon_is_low(zone, sc) && nr_swap_pages > 0)
556adecb
RR
1786 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
1787
232ea4d6 1788 throttle_vm_writeout(sc->gfp_mask);
1da177e4
LT
1789}
1790
1791/*
1792 * This is the direct reclaim path, for page-allocating processes. We only
1793 * try to reclaim pages from zones which will satisfy the caller's allocation
1794 * request.
1795 *
41858966
MG
1796 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1797 * Because:
1da177e4
LT
1798 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1799 * allocation or
41858966
MG
1800 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1801 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1802 * zone defense algorithm.
1da177e4 1803 *
1da177e4
LT
1804 * If a zone is deemed to be full of pinned pages then just give it a light
1805 * scan then give up on it.
1806 */
bb21c7ce 1807static bool shrink_zones(int priority, struct zonelist *zonelist,
05ff5137 1808 struct scan_control *sc)
1da177e4 1809{
dd1a239f 1810 struct zoneref *z;
54a6eb5c 1811 struct zone *zone;
bb21c7ce 1812 bool all_unreclaimable = true;
1cfb419b 1813
d4debc66
MG
1814 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1815 gfp_zone(sc->gfp_mask), sc->nodemask) {
f3fe6512 1816 if (!populated_zone(zone))
1da177e4 1817 continue;
1cfb419b
KH
1818 /*
1819 * Take care memory controller reclaiming has small influence
1820 * to global LRU.
1821 */
e72e2bd6 1822 if (scanning_global_lru(sc)) {
1cfb419b
KH
1823 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1824 continue;
93e4a89a 1825 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1cfb419b 1826 continue; /* Let kswapd poll it */
1cfb419b 1827 }
408d8544 1828
a79311c1 1829 shrink_zone(priority, zone, sc);
bb21c7ce 1830 all_unreclaimable = false;
1da177e4 1831 }
bb21c7ce 1832 return all_unreclaimable;
1da177e4 1833}
4f98a2fe 1834
1da177e4
LT
1835/*
1836 * This is the main entry point to direct page reclaim.
1837 *
1838 * If a full scan of the inactive list fails to free enough memory then we
1839 * are "out of memory" and something needs to be killed.
1840 *
1841 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1842 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
1843 * caller can't do much about. We kick the writeback threads and take explicit
1844 * naps in the hope that some of these pages can be written. But if the
1845 * allocating task holds filesystem locks which prevent writeout this might not
1846 * work, and the allocation attempt will fail.
a41f24ea
NA
1847 *
1848 * returns: 0, if no pages reclaimed
1849 * else, the number of pages reclaimed
1da177e4 1850 */
dac1d27b 1851static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
dd1a239f 1852 struct scan_control *sc)
1da177e4
LT
1853{
1854 int priority;
bb21c7ce 1855 bool all_unreclaimable;
69e05944 1856 unsigned long total_scanned = 0;
1da177e4 1857 struct reclaim_state *reclaim_state = current->reclaim_state;
dd1a239f 1858 struct zoneref *z;
54a6eb5c 1859 struct zone *zone;
22fba335 1860 unsigned long writeback_threshold;
1da177e4 1861
c0ff7453 1862 get_mems_allowed();
873b4771
KK
1863 delayacct_freepages_start();
1864
e72e2bd6 1865 if (scanning_global_lru(sc))
1cfb419b 1866 count_vm_event(ALLOCSTALL);
1da177e4
LT
1867
1868 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
66e1707b 1869 sc->nr_scanned = 0;
f7b7fd8f
RR
1870 if (!priority)
1871 disable_swap_token();
bb21c7ce 1872 all_unreclaimable = shrink_zones(priority, zonelist, sc);
66e1707b
BS
1873 /*
1874 * Don't shrink slabs when reclaiming memory from
1875 * over limit cgroups
1876 */
e72e2bd6 1877 if (scanning_global_lru(sc)) {
c6a8a8c5 1878 unsigned long lru_pages = 0;
d4debc66
MG
1879 for_each_zone_zonelist(zone, z, zonelist,
1880 gfp_zone(sc->gfp_mask)) {
c6a8a8c5
KM
1881 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1882 continue;
1883
1884 lru_pages += zone_reclaimable_pages(zone);
1885 }
1886
dd1a239f 1887 shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
91a45470 1888 if (reclaim_state) {
a79311c1 1889 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
91a45470
KH
1890 reclaim_state->reclaimed_slab = 0;
1891 }
1da177e4 1892 }
66e1707b 1893 total_scanned += sc->nr_scanned;
bb21c7ce 1894 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
1da177e4 1895 goto out;
1da177e4
LT
1896
1897 /*
1898 * Try to write back as many pages as we just scanned. This
1899 * tends to cause slow streaming writers to write data to the
1900 * disk smoothly, at the dirtying rate, which is nice. But
1901 * that's undesirable in laptop mode, where we *want* lumpy
1902 * writeout. So in laptop mode, write out the whole world.
1903 */
22fba335
KM
1904 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
1905 if (total_scanned > writeback_threshold) {
03ba3782 1906 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned);
66e1707b 1907 sc->may_writepage = 1;
1da177e4
LT
1908 }
1909
1910 /* Take a nap, wait for some writeback to complete */
7b51755c
KM
1911 if (!sc->hibernation_mode && sc->nr_scanned &&
1912 priority < DEF_PRIORITY - 2)
8aa7e847 1913 congestion_wait(BLK_RW_ASYNC, HZ/10);
1da177e4 1914 }
bb21c7ce 1915
1da177e4 1916out:
3bb1a852
MB
1917 /*
1918 * Now that we've scanned all the zones at this priority level, note
1919 * that level within the zone so that the next thread which performs
1920 * scanning of this zone will immediately start out at this priority
1921 * level. This affects only the decision whether or not to bring
1922 * mapped pages onto the inactive list.
1923 */
1924 if (priority < 0)
1925 priority = 0;
1da177e4 1926
873b4771 1927 delayacct_freepages_end();
c0ff7453 1928 put_mems_allowed();
873b4771 1929
bb21c7ce
KM
1930 if (sc->nr_reclaimed)
1931 return sc->nr_reclaimed;
1932
1933 /* top priority shrink_zones still had more to do? don't OOM, then */
1934 if (scanning_global_lru(sc) && !all_unreclaimable)
1935 return 1;
1936
1937 return 0;
1da177e4
LT
1938}
1939
dac1d27b 1940unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 1941 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 1942{
33906bc5 1943 unsigned long nr_reclaimed;
66e1707b
BS
1944 struct scan_control sc = {
1945 .gfp_mask = gfp_mask,
1946 .may_writepage = !laptop_mode,
22fba335 1947 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a6dc60f8 1948 .may_unmap = 1,
2e2e4259 1949 .may_swap = 1,
66e1707b
BS
1950 .swappiness = vm_swappiness,
1951 .order = order,
1952 .mem_cgroup = NULL,
327c0e96 1953 .nodemask = nodemask,
66e1707b
BS
1954 };
1955
33906bc5
MG
1956 trace_mm_vmscan_direct_reclaim_begin(order,
1957 sc.may_writepage,
1958 gfp_mask);
1959
1960 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
1961
1962 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
1963
1964 return nr_reclaimed;
66e1707b
BS
1965}
1966
00f0b825 1967#ifdef CONFIG_CGROUP_MEM_RES_CTLR
66e1707b 1968
4e416953
BS
1969unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
1970 gfp_t gfp_mask, bool noswap,
1971 unsigned int swappiness,
14fec796 1972 struct zone *zone)
4e416953
BS
1973{
1974 struct scan_control sc = {
b8f5c566 1975 .nr_to_reclaim = SWAP_CLUSTER_MAX,
4e416953
BS
1976 .may_writepage = !laptop_mode,
1977 .may_unmap = 1,
1978 .may_swap = !noswap,
4e416953
BS
1979 .swappiness = swappiness,
1980 .order = 0,
1981 .mem_cgroup = mem,
4e416953 1982 };
4e416953
BS
1983 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
1984 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e
KM
1985
1986 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
1987 sc.may_writepage,
1988 sc.gfp_mask);
1989
4e416953
BS
1990 /*
1991 * NOTE: Although we can get the priority field, using it
1992 * here is not a good idea, since it limits the pages we can scan.
1993 * if we don't reclaim here, the shrink_zone from balance_pgdat
1994 * will pick up pages from other mem cgroup's as well. We hack
1995 * the priority and make it zero.
1996 */
1997 shrink_zone(0, zone, &sc);
bdce6d9e
KM
1998
1999 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2000
4e416953
BS
2001 return sc.nr_reclaimed;
2002}
2003
e1a1cd59 2004unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
a7885eb8
KM
2005 gfp_t gfp_mask,
2006 bool noswap,
2007 unsigned int swappiness)
66e1707b 2008{
4e416953 2009 struct zonelist *zonelist;
bdce6d9e 2010 unsigned long nr_reclaimed;
66e1707b 2011 struct scan_control sc = {
66e1707b 2012 .may_writepage = !laptop_mode,
a6dc60f8 2013 .may_unmap = 1,
2e2e4259 2014 .may_swap = !noswap,
22fba335 2015 .nr_to_reclaim = SWAP_CLUSTER_MAX,
a7885eb8 2016 .swappiness = swappiness,
66e1707b
BS
2017 .order = 0,
2018 .mem_cgroup = mem_cont,
327c0e96 2019 .nodemask = NULL, /* we don't care the placement */
66e1707b 2020 };
66e1707b 2021
dd1a239f
MG
2022 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2023 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2024 zonelist = NODE_DATA(numa_node_id())->node_zonelists;
bdce6d9e
KM
2025
2026 trace_mm_vmscan_memcg_reclaim_begin(0,
2027 sc.may_writepage,
2028 sc.gfp_mask);
2029
2030 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
2031
2032 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2033
2034 return nr_reclaimed;
66e1707b
BS
2035}
2036#endif
2037
f50de2d3 2038/* is kswapd sleeping prematurely? */
bb3ab596 2039static int sleeping_prematurely(pg_data_t *pgdat, int order, long remaining)
f50de2d3 2040{
bb3ab596 2041 int i;
f50de2d3
MG
2042
2043 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2044 if (remaining)
2045 return 1;
2046
2047 /* If after HZ/10, a zone is below the high mark, it's premature */
bb3ab596
KM
2048 for (i = 0; i < pgdat->nr_zones; i++) {
2049 struct zone *zone = pgdat->node_zones + i;
2050
2051 if (!populated_zone(zone))
2052 continue;
2053
93e4a89a 2054 if (zone->all_unreclaimable)
de3fab39
KM
2055 continue;
2056
f50de2d3
MG
2057 if (!zone_watermark_ok(zone, order, high_wmark_pages(zone),
2058 0, 0))
2059 return 1;
bb3ab596 2060 }
f50de2d3
MG
2061
2062 return 0;
2063}
2064
1da177e4
LT
2065/*
2066 * For kswapd, balance_pgdat() will work across all this node's zones until
41858966 2067 * they are all at high_wmark_pages(zone).
1da177e4 2068 *
1da177e4
LT
2069 * Returns the number of pages which were actually freed.
2070 *
2071 * There is special handling here for zones which are full of pinned pages.
2072 * This can happen if the pages are all mlocked, or if they are all used by
2073 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2074 * What we do is to detect the case where all pages in the zone have been
2075 * scanned twice and there has been zero successful reclaim. Mark the zone as
2076 * dead and from now on, only perform a short scan. Basically we're polling
2077 * the zone for when the problem goes away.
2078 *
2079 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966
MG
2080 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2081 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2082 * lower zones regardless of the number of free pages in the lower zones. This
2083 * interoperates with the page allocator fallback scheme to ensure that aging
2084 * of pages is balanced across the zones.
1da177e4 2085 */
d6277db4 2086static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1da177e4 2087{
1da177e4
LT
2088 int all_zones_ok;
2089 int priority;
2090 int i;
69e05944 2091 unsigned long total_scanned;
1da177e4 2092 struct reclaim_state *reclaim_state = current->reclaim_state;
179e9639
AM
2093 struct scan_control sc = {
2094 .gfp_mask = GFP_KERNEL,
a6dc60f8 2095 .may_unmap = 1,
2e2e4259 2096 .may_swap = 1,
22fba335
KM
2097 /*
2098 * kswapd doesn't want to be bailed out while reclaim. because
2099 * we want to put equal scanning pressure on each zone.
2100 */
2101 .nr_to_reclaim = ULONG_MAX,
d6277db4 2102 .swappiness = vm_swappiness,
5ad333eb 2103 .order = order,
66e1707b 2104 .mem_cgroup = NULL,
179e9639 2105 };
1da177e4
LT
2106loop_again:
2107 total_scanned = 0;
a79311c1 2108 sc.nr_reclaimed = 0;
c0bbbc73 2109 sc.may_writepage = !laptop_mode;
f8891e5e 2110 count_vm_event(PAGEOUTRUN);
1da177e4 2111
1da177e4
LT
2112 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2113 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2114 unsigned long lru_pages = 0;
bb3ab596 2115 int has_under_min_watermark_zone = 0;
1da177e4 2116
f7b7fd8f
RR
2117 /* The swap token gets in the way of swapout... */
2118 if (!priority)
2119 disable_swap_token();
2120
1da177e4
LT
2121 all_zones_ok = 1;
2122
d6277db4
RW
2123 /*
2124 * Scan in the highmem->dma direction for the highest
2125 * zone which needs scanning
2126 */
2127 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2128 struct zone *zone = pgdat->node_zones + i;
1da177e4 2129
d6277db4
RW
2130 if (!populated_zone(zone))
2131 continue;
1da177e4 2132
93e4a89a 2133 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
d6277db4 2134 continue;
1da177e4 2135
556adecb
RR
2136 /*
2137 * Do some background aging of the anon list, to give
2138 * pages a chance to be referenced before reclaiming.
2139 */
14797e23 2140 if (inactive_anon_is_low(zone, &sc))
556adecb
RR
2141 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2142 &sc, priority, 0);
2143
41858966
MG
2144 if (!zone_watermark_ok(zone, order,
2145 high_wmark_pages(zone), 0, 0)) {
d6277db4 2146 end_zone = i;
e1dbeda6 2147 break;
1da177e4 2148 }
1da177e4 2149 }
e1dbeda6
AM
2150 if (i < 0)
2151 goto out;
2152
1da177e4
LT
2153 for (i = 0; i <= end_zone; i++) {
2154 struct zone *zone = pgdat->node_zones + i;
2155
adea02a1 2156 lru_pages += zone_reclaimable_pages(zone);
1da177e4
LT
2157 }
2158
2159 /*
2160 * Now scan the zone in the dma->highmem direction, stopping
2161 * at the last zone which needs scanning.
2162 *
2163 * We do this because the page allocator works in the opposite
2164 * direction. This prevents the page allocator from allocating
2165 * pages behind kswapd's direction of progress, which would
2166 * cause too much scanning of the lower zones.
2167 */
2168 for (i = 0; i <= end_zone; i++) {
2169 struct zone *zone = pgdat->node_zones + i;
b15e0905 2170 int nr_slab;
1da177e4 2171
f3fe6512 2172 if (!populated_zone(zone))
1da177e4
LT
2173 continue;
2174
93e4a89a 2175 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
1da177e4
LT
2176 continue;
2177
1da177e4 2178 sc.nr_scanned = 0;
4e416953 2179
4e416953
BS
2180 /*
2181 * Call soft limit reclaim before calling shrink_zone.
2182 * For now we ignore the return value
2183 */
00918b6a
KM
2184 mem_cgroup_soft_limit_reclaim(zone, order, sc.gfp_mask);
2185
32a4330d
RR
2186 /*
2187 * We put equal pressure on every zone, unless one
2188 * zone has way too many pages free already.
2189 */
41858966
MG
2190 if (!zone_watermark_ok(zone, order,
2191 8*high_wmark_pages(zone), end_zone, 0))
a79311c1 2192 shrink_zone(priority, zone, &sc);
1da177e4 2193 reclaim_state->reclaimed_slab = 0;
b15e0905
AM
2194 nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
2195 lru_pages);
a79311c1 2196 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
1da177e4 2197 total_scanned += sc.nr_scanned;
93e4a89a 2198 if (zone->all_unreclaimable)
1da177e4 2199 continue;
93e4a89a
KM
2200 if (nr_slab == 0 &&
2201 zone->pages_scanned >= (zone_reclaimable_pages(zone) * 6))
2202 zone->all_unreclaimable = 1;
1da177e4
LT
2203 /*
2204 * If we've done a decent amount of scanning and
2205 * the reclaim ratio is low, start doing writepage
2206 * even in laptop mode
2207 */
2208 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
a79311c1 2209 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
1da177e4 2210 sc.may_writepage = 1;
bb3ab596 2211
45973d74
MK
2212 if (!zone_watermark_ok(zone, order,
2213 high_wmark_pages(zone), end_zone, 0)) {
2214 all_zones_ok = 0;
2215 /*
2216 * We are still under min water mark. This
2217 * means that we have a GFP_ATOMIC allocation
2218 * failure risk. Hurry up!
2219 */
2220 if (!zone_watermark_ok(zone, order,
2221 min_wmark_pages(zone), end_zone, 0))
2222 has_under_min_watermark_zone = 1;
2223 }
bb3ab596 2224
1da177e4 2225 }
1da177e4
LT
2226 if (all_zones_ok)
2227 break; /* kswapd: all done */
2228 /*
2229 * OK, kswapd is getting into trouble. Take a nap, then take
2230 * another pass across the zones.
2231 */
bb3ab596
KM
2232 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2233 if (has_under_min_watermark_zone)
2234 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2235 else
2236 congestion_wait(BLK_RW_ASYNC, HZ/10);
2237 }
1da177e4
LT
2238
2239 /*
2240 * We do this so kswapd doesn't build up large priorities for
2241 * example when it is freeing in parallel with allocators. It
2242 * matches the direct reclaim path behaviour in terms of impact
2243 * on zone->*_priority.
2244 */
a79311c1 2245 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
1da177e4
LT
2246 break;
2247 }
2248out:
1da177e4
LT
2249 if (!all_zones_ok) {
2250 cond_resched();
8357376d
RW
2251
2252 try_to_freeze();
2253
73ce02e9
KM
2254 /*
2255 * Fragmentation may mean that the system cannot be
2256 * rebalanced for high-order allocations in all zones.
2257 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2258 * it means the zones have been fully scanned and are still
2259 * not balanced. For high-order allocations, there is
2260 * little point trying all over again as kswapd may
2261 * infinite loop.
2262 *
2263 * Instead, recheck all watermarks at order-0 as they
2264 * are the most important. If watermarks are ok, kswapd will go
2265 * back to sleep. High-order users can still perform direct
2266 * reclaim if they wish.
2267 */
2268 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2269 order = sc.order = 0;
2270
1da177e4
LT
2271 goto loop_again;
2272 }
2273
a79311c1 2274 return sc.nr_reclaimed;
1da177e4
LT
2275}
2276
2277/*
2278 * The background pageout daemon, started as a kernel thread
4f98a2fe 2279 * from the init process.
1da177e4
LT
2280 *
2281 * This basically trickles out pages so that we have _some_
2282 * free memory available even if there is no other activity
2283 * that frees anything up. This is needed for things like routing
2284 * etc, where we otherwise might have all activity going on in
2285 * asynchronous contexts that cannot page things out.
2286 *
2287 * If there are applications that are active memory-allocators
2288 * (most normal use), this basically shouldn't matter.
2289 */
2290static int kswapd(void *p)
2291{
2292 unsigned long order;
2293 pg_data_t *pgdat = (pg_data_t*)p;
2294 struct task_struct *tsk = current;
2295 DEFINE_WAIT(wait);
2296 struct reclaim_state reclaim_state = {
2297 .reclaimed_slab = 0,
2298 };
a70f7302 2299 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 2300
cf40bd16
NP
2301 lockdep_set_current_reclaim_state(GFP_KERNEL);
2302
174596a0 2303 if (!cpumask_empty(cpumask))
c5f59f08 2304 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
2305 current->reclaim_state = &reclaim_state;
2306
2307 /*
2308 * Tell the memory management that we're a "memory allocator",
2309 * and that if we need more memory we should get access to it
2310 * regardless (see "__alloc_pages()"). "kswapd" should
2311 * never get caught in the normal page freeing logic.
2312 *
2313 * (Kswapd normally doesn't need memory anyway, but sometimes
2314 * you need a small amount of memory in order to be able to
2315 * page out something else, and this flag essentially protects
2316 * us from recursively trying to free more memory as we're
2317 * trying to free the first piece of memory in the first place).
2318 */
930d9152 2319 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 2320 set_freezable();
1da177e4
LT
2321
2322 order = 0;
2323 for ( ; ; ) {
2324 unsigned long new_order;
8fe23e05 2325 int ret;
3e1d1d28 2326
1da177e4
LT
2327 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2328 new_order = pgdat->kswapd_max_order;
2329 pgdat->kswapd_max_order = 0;
2330 if (order < new_order) {
2331 /*
2332 * Don't sleep if someone wants a larger 'order'
2333 * allocation
2334 */
2335 order = new_order;
2336 } else {
f50de2d3
MG
2337 if (!freezing(current) && !kthread_should_stop()) {
2338 long remaining = 0;
2339
2340 /* Try to sleep for a short interval */
bb3ab596 2341 if (!sleeping_prematurely(pgdat, order, remaining)) {
f50de2d3
MG
2342 remaining = schedule_timeout(HZ/10);
2343 finish_wait(&pgdat->kswapd_wait, &wait);
2344 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2345 }
2346
2347 /*
2348 * After a short sleep, check if it was a
2349 * premature sleep. If not, then go fully
2350 * to sleep until explicitly woken up
2351 */
33906bc5
MG
2352 if (!sleeping_prematurely(pgdat, order, remaining)) {
2353 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
f50de2d3 2354 schedule();
33906bc5 2355 } else {
f50de2d3 2356 if (remaining)
bb3ab596 2357 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
f50de2d3 2358 else
bb3ab596 2359 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
f50de2d3
MG
2360 }
2361 }
b1296cc4 2362
1da177e4
LT
2363 order = pgdat->kswapd_max_order;
2364 }
2365 finish_wait(&pgdat->kswapd_wait, &wait);
2366
8fe23e05
DR
2367 ret = try_to_freeze();
2368 if (kthread_should_stop())
2369 break;
2370
2371 /*
2372 * We can speed up thawing tasks if we don't call balance_pgdat
2373 * after returning from the refrigerator
2374 */
33906bc5
MG
2375 if (!ret) {
2376 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
b1296cc4 2377 balance_pgdat(pgdat, order);
33906bc5 2378 }
1da177e4
LT
2379 }
2380 return 0;
2381}
2382
2383/*
2384 * A zone is low on free memory, so wake its kswapd task to service it.
2385 */
2386void wakeup_kswapd(struct zone *zone, int order)
2387{
2388 pg_data_t *pgdat;
2389
f3fe6512 2390 if (!populated_zone(zone))
1da177e4
LT
2391 return;
2392
2393 pgdat = zone->zone_pgdat;
41858966 2394 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
1da177e4
LT
2395 return;
2396 if (pgdat->kswapd_max_order < order)
2397 pgdat->kswapd_max_order = order;
33906bc5 2398 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
02a0e53d 2399 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1da177e4 2400 return;
8d0986e2 2401 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 2402 return;
8d0986e2 2403 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
2404}
2405
adea02a1
WF
2406/*
2407 * The reclaimable count would be mostly accurate.
2408 * The less reclaimable pages may be
2409 * - mlocked pages, which will be moved to unevictable list when encountered
2410 * - mapped pages, which may require several travels to be reclaimed
2411 * - dirty pages, which is not "instantly" reclaimable
2412 */
2413unsigned long global_reclaimable_pages(void)
4f98a2fe 2414{
adea02a1
WF
2415 int nr;
2416
2417 nr = global_page_state(NR_ACTIVE_FILE) +
2418 global_page_state(NR_INACTIVE_FILE);
2419
2420 if (nr_swap_pages > 0)
2421 nr += global_page_state(NR_ACTIVE_ANON) +
2422 global_page_state(NR_INACTIVE_ANON);
2423
2424 return nr;
2425}
2426
2427unsigned long zone_reclaimable_pages(struct zone *zone)
2428{
2429 int nr;
2430
2431 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
2432 zone_page_state(zone, NR_INACTIVE_FILE);
2433
2434 if (nr_swap_pages > 0)
2435 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
2436 zone_page_state(zone, NR_INACTIVE_ANON);
2437
2438 return nr;
4f98a2fe
RR
2439}
2440
c6f37f12 2441#ifdef CONFIG_HIBERNATION
1da177e4 2442/*
7b51755c 2443 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
2444 * freed pages.
2445 *
2446 * Rather than trying to age LRUs the aim is to preserve the overall
2447 * LRU order by reclaiming preferentially
2448 * inactive > active > active referenced > active mapped
1da177e4 2449 */
7b51755c 2450unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 2451{
d6277db4 2452 struct reclaim_state reclaim_state;
d6277db4 2453 struct scan_control sc = {
7b51755c
KM
2454 .gfp_mask = GFP_HIGHUSER_MOVABLE,
2455 .may_swap = 1,
2456 .may_unmap = 1,
d6277db4 2457 .may_writepage = 1,
7b51755c
KM
2458 .nr_to_reclaim = nr_to_reclaim,
2459 .hibernation_mode = 1,
2460 .swappiness = vm_swappiness,
2461 .order = 0,
1da177e4 2462 };
7b51755c
KM
2463 struct zonelist * zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
2464 struct task_struct *p = current;
2465 unsigned long nr_reclaimed;
1da177e4 2466
7b51755c
KM
2467 p->flags |= PF_MEMALLOC;
2468 lockdep_set_current_reclaim_state(sc.gfp_mask);
2469 reclaim_state.reclaimed_slab = 0;
2470 p->reclaim_state = &reclaim_state;
d6277db4 2471
7b51755c 2472 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 2473
7b51755c
KM
2474 p->reclaim_state = NULL;
2475 lockdep_clear_current_reclaim_state();
2476 p->flags &= ~PF_MEMALLOC;
d6277db4 2477
7b51755c 2478 return nr_reclaimed;
1da177e4 2479}
c6f37f12 2480#endif /* CONFIG_HIBERNATION */
1da177e4 2481
1da177e4
LT
2482/* It's optimal to keep kswapds on the same CPUs as their memory, but
2483 not required for correctness. So if the last cpu in a node goes
2484 away, we get changed to run anywhere: as the first one comes back,
2485 restore their cpu bindings. */
9c7b216d 2486static int __devinit cpu_callback(struct notifier_block *nfb,
69e05944 2487 unsigned long action, void *hcpu)
1da177e4 2488{
58c0a4a7 2489 int nid;
1da177e4 2490
8bb78442 2491 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
58c0a4a7 2492 for_each_node_state(nid, N_HIGH_MEMORY) {
c5f59f08 2493 pg_data_t *pgdat = NODE_DATA(nid);
a70f7302
RR
2494 const struct cpumask *mask;
2495
2496 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 2497
3e597945 2498 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
1da177e4 2499 /* One of our CPUs online: restore mask */
c5f59f08 2500 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4
LT
2501 }
2502 }
2503 return NOTIFY_OK;
2504}
1da177e4 2505
3218ae14
YG
2506/*
2507 * This kswapd start function will be called by init and node-hot-add.
2508 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2509 */
2510int kswapd_run(int nid)
2511{
2512 pg_data_t *pgdat = NODE_DATA(nid);
2513 int ret = 0;
2514
2515 if (pgdat->kswapd)
2516 return 0;
2517
2518 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
2519 if (IS_ERR(pgdat->kswapd)) {
2520 /* failure at boot is fatal */
2521 BUG_ON(system_state == SYSTEM_BOOTING);
2522 printk("Failed to start kswapd on node %d\n",nid);
2523 ret = -1;
2524 }
2525 return ret;
2526}
2527
8fe23e05
DR
2528/*
2529 * Called by memory hotplug when all memory in a node is offlined.
2530 */
2531void kswapd_stop(int nid)
2532{
2533 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
2534
2535 if (kswapd)
2536 kthread_stop(kswapd);
2537}
2538
1da177e4
LT
2539static int __init kswapd_init(void)
2540{
3218ae14 2541 int nid;
69e05944 2542
1da177e4 2543 swap_setup();
9422ffba 2544 for_each_node_state(nid, N_HIGH_MEMORY)
3218ae14 2545 kswapd_run(nid);
1da177e4
LT
2546 hotcpu_notifier(cpu_callback, 0);
2547 return 0;
2548}
2549
2550module_init(kswapd_init)
9eeff239
CL
2551
2552#ifdef CONFIG_NUMA
2553/*
2554 * Zone reclaim mode
2555 *
2556 * If non-zero call zone_reclaim when the number of free pages falls below
2557 * the watermarks.
9eeff239
CL
2558 */
2559int zone_reclaim_mode __read_mostly;
2560
1b2ffb78 2561#define RECLAIM_OFF 0
7d03431c 2562#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78
CL
2563#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2564#define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2565
a92f7126
CL
2566/*
2567 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2568 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2569 * a zone.
2570 */
2571#define ZONE_RECLAIM_PRIORITY 4
2572
9614634f
CL
2573/*
2574 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2575 * occur.
2576 */
2577int sysctl_min_unmapped_ratio = 1;
2578
0ff38490
CL
2579/*
2580 * If the number of slab pages in a zone grows beyond this percentage then
2581 * slab reclaim needs to occur.
2582 */
2583int sysctl_min_slab_ratio = 5;
2584
90afa5de
MG
2585static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
2586{
2587 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
2588 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
2589 zone_page_state(zone, NR_ACTIVE_FILE);
2590
2591 /*
2592 * It's possible for there to be more file mapped pages than
2593 * accounted for by the pages on the file LRU lists because
2594 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2595 */
2596 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
2597}
2598
2599/* Work out how many page cache pages we can reclaim in this reclaim_mode */
2600static long zone_pagecache_reclaimable(struct zone *zone)
2601{
2602 long nr_pagecache_reclaimable;
2603 long delta = 0;
2604
2605 /*
2606 * If RECLAIM_SWAP is set, then all file pages are considered
2607 * potentially reclaimable. Otherwise, we have to worry about
2608 * pages like swapcache and zone_unmapped_file_pages() provides
2609 * a better estimate
2610 */
2611 if (zone_reclaim_mode & RECLAIM_SWAP)
2612 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
2613 else
2614 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
2615
2616 /* If we can't clean pages, remove dirty pages from consideration */
2617 if (!(zone_reclaim_mode & RECLAIM_WRITE))
2618 delta += zone_page_state(zone, NR_FILE_DIRTY);
2619
2620 /* Watch for any possible underflows due to delta */
2621 if (unlikely(delta > nr_pagecache_reclaimable))
2622 delta = nr_pagecache_reclaimable;
2623
2624 return nr_pagecache_reclaimable - delta;
2625}
2626
9eeff239
CL
2627/*
2628 * Try to free up some pages from this zone through reclaim.
2629 */
179e9639 2630static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
9eeff239 2631{
7fb2d46d 2632 /* Minimum pages needed in order to stay on node */
69e05944 2633 const unsigned long nr_pages = 1 << order;
9eeff239
CL
2634 struct task_struct *p = current;
2635 struct reclaim_state reclaim_state;
8695949a 2636 int priority;
179e9639
AM
2637 struct scan_control sc = {
2638 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
a6dc60f8 2639 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
2e2e4259 2640 .may_swap = 1,
22fba335
KM
2641 .nr_to_reclaim = max_t(unsigned long, nr_pages,
2642 SWAP_CLUSTER_MAX),
179e9639 2643 .gfp_mask = gfp_mask,
d6277db4 2644 .swappiness = vm_swappiness,
bd2f6199 2645 .order = order,
179e9639 2646 };
15748048 2647 unsigned long nr_slab_pages0, nr_slab_pages1;
9eeff239 2648
9eeff239 2649 cond_resched();
d4f7796e
CL
2650 /*
2651 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2652 * and we also need to be able to write out pages for RECLAIM_WRITE
2653 * and RECLAIM_SWAP.
2654 */
2655 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
76ca542d 2656 lockdep_set_current_reclaim_state(gfp_mask);
9eeff239
CL
2657 reclaim_state.reclaimed_slab = 0;
2658 p->reclaim_state = &reclaim_state;
c84db23c 2659
90afa5de 2660 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
0ff38490
CL
2661 /*
2662 * Free memory by calling shrink zone with increasing
2663 * priorities until we have enough memory freed.
2664 */
2665 priority = ZONE_RECLAIM_PRIORITY;
2666 do {
a79311c1 2667 shrink_zone(priority, zone, &sc);
0ff38490 2668 priority--;
a79311c1 2669 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
0ff38490 2670 }
c84db23c 2671
15748048
KM
2672 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2673 if (nr_slab_pages0 > zone->min_slab_pages) {
2a16e3f4 2674 /*
7fb2d46d 2675 * shrink_slab() does not currently allow us to determine how
0ff38490
CL
2676 * many pages were freed in this zone. So we take the current
2677 * number of slab pages and shake the slab until it is reduced
2678 * by the same nr_pages that we used for reclaiming unmapped
2679 * pages.
2a16e3f4 2680 *
0ff38490
CL
2681 * Note that shrink_slab will free memory on all zones and may
2682 * take a long time.
2a16e3f4 2683 */
4dc4b3d9
KM
2684 for (;;) {
2685 unsigned long lru_pages = zone_reclaimable_pages(zone);
2686
2687 /* No reclaimable slab or very low memory pressure */
2688 if (!shrink_slab(sc.nr_scanned, gfp_mask, lru_pages))
2689 break;
2690
2691 /* Freed enough memory */
2692 nr_slab_pages1 = zone_page_state(zone,
2693 NR_SLAB_RECLAIMABLE);
2694 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
2695 break;
2696 }
83e33a47
CL
2697
2698 /*
2699 * Update nr_reclaimed by the number of slab pages we
2700 * reclaimed from this zone.
2701 */
15748048
KM
2702 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2703 if (nr_slab_pages1 < nr_slab_pages0)
2704 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
2a16e3f4
CL
2705 }
2706
9eeff239 2707 p->reclaim_state = NULL;
d4f7796e 2708 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
76ca542d 2709 lockdep_clear_current_reclaim_state();
a79311c1 2710 return sc.nr_reclaimed >= nr_pages;
9eeff239 2711}
179e9639
AM
2712
2713int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2714{
179e9639 2715 int node_id;
d773ed6b 2716 int ret;
179e9639
AM
2717
2718 /*
0ff38490
CL
2719 * Zone reclaim reclaims unmapped file backed pages and
2720 * slab pages if we are over the defined limits.
34aa1330 2721 *
9614634f
CL
2722 * A small portion of unmapped file backed pages is needed for
2723 * file I/O otherwise pages read by file I/O will be immediately
2724 * thrown out if the zone is overallocated. So we do not reclaim
2725 * if less than a specified percentage of the zone is used by
2726 * unmapped file backed pages.
179e9639 2727 */
90afa5de
MG
2728 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
2729 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
fa5e084e 2730 return ZONE_RECLAIM_FULL;
179e9639 2731
93e4a89a 2732 if (zone->all_unreclaimable)
fa5e084e 2733 return ZONE_RECLAIM_FULL;
d773ed6b 2734
179e9639 2735 /*
d773ed6b 2736 * Do not scan if the allocation should not be delayed.
179e9639 2737 */
d773ed6b 2738 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
fa5e084e 2739 return ZONE_RECLAIM_NOSCAN;
179e9639
AM
2740
2741 /*
2742 * Only run zone reclaim on the local zone or on zones that do not
2743 * have associated processors. This will favor the local processor
2744 * over remote processors and spread off node memory allocations
2745 * as wide as possible.
2746 */
89fa3024 2747 node_id = zone_to_nid(zone);
37c0708d 2748 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
fa5e084e 2749 return ZONE_RECLAIM_NOSCAN;
d773ed6b
DR
2750
2751 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
fa5e084e
MG
2752 return ZONE_RECLAIM_NOSCAN;
2753
d773ed6b
DR
2754 ret = __zone_reclaim(zone, gfp_mask, order);
2755 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2756
24cf7251
MG
2757 if (!ret)
2758 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
2759
d773ed6b 2760 return ret;
179e9639 2761}
9eeff239 2762#endif
894bc310 2763
894bc310
LS
2764/*
2765 * page_evictable - test whether a page is evictable
2766 * @page: the page to test
2767 * @vma: the VMA in which the page is or will be mapped, may be NULL
2768 *
2769 * Test whether page is evictable--i.e., should be placed on active/inactive
b291f000
NP
2770 * lists vs unevictable list. The vma argument is !NULL when called from the
2771 * fault path to determine how to instantate a new page.
894bc310
LS
2772 *
2773 * Reasons page might not be evictable:
ba9ddf49 2774 * (1) page's mapping marked unevictable
b291f000 2775 * (2) page is part of an mlocked VMA
ba9ddf49 2776 *
894bc310
LS
2777 */
2778int page_evictable(struct page *page, struct vm_area_struct *vma)
2779{
2780
ba9ddf49
LS
2781 if (mapping_unevictable(page_mapping(page)))
2782 return 0;
2783
b291f000
NP
2784 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
2785 return 0;
894bc310
LS
2786
2787 return 1;
2788}
89e004ea
LS
2789
2790/**
2791 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2792 * @page: page to check evictability and move to appropriate lru list
2793 * @zone: zone page is in
2794 *
2795 * Checks a page for evictability and moves the page to the appropriate
2796 * zone lru list.
2797 *
2798 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2799 * have PageUnevictable set.
2800 */
2801static void check_move_unevictable_page(struct page *page, struct zone *zone)
2802{
2803 VM_BUG_ON(PageActive(page));
2804
2805retry:
2806 ClearPageUnevictable(page);
2807 if (page_evictable(page, NULL)) {
401a8e1c 2808 enum lru_list l = page_lru_base_type(page);
af936a16 2809
89e004ea
LS
2810 __dec_zone_state(zone, NR_UNEVICTABLE);
2811 list_move(&page->lru, &zone->lru[l].list);
08e552c6 2812 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, l);
89e004ea
LS
2813 __inc_zone_state(zone, NR_INACTIVE_ANON + l);
2814 __count_vm_event(UNEVICTABLE_PGRESCUED);
2815 } else {
2816 /*
2817 * rotate unevictable list
2818 */
2819 SetPageUnevictable(page);
2820 list_move(&page->lru, &zone->lru[LRU_UNEVICTABLE].list);
08e552c6 2821 mem_cgroup_rotate_lru_list(page, LRU_UNEVICTABLE);
89e004ea
LS
2822 if (page_evictable(page, NULL))
2823 goto retry;
2824 }
2825}
2826
2827/**
2828 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2829 * @mapping: struct address_space to scan for evictable pages
2830 *
2831 * Scan all pages in mapping. Check unevictable pages for
2832 * evictability and move them to the appropriate zone lru list.
2833 */
2834void scan_mapping_unevictable_pages(struct address_space *mapping)
2835{
2836 pgoff_t next = 0;
2837 pgoff_t end = (i_size_read(mapping->host) + PAGE_CACHE_SIZE - 1) >>
2838 PAGE_CACHE_SHIFT;
2839 struct zone *zone;
2840 struct pagevec pvec;
2841
2842 if (mapping->nrpages == 0)
2843 return;
2844
2845 pagevec_init(&pvec, 0);
2846 while (next < end &&
2847 pagevec_lookup(&pvec, mapping, next, PAGEVEC_SIZE)) {
2848 int i;
2849 int pg_scanned = 0;
2850
2851 zone = NULL;
2852
2853 for (i = 0; i < pagevec_count(&pvec); i++) {
2854 struct page *page = pvec.pages[i];
2855 pgoff_t page_index = page->index;
2856 struct zone *pagezone = page_zone(page);
2857
2858 pg_scanned++;
2859 if (page_index > next)
2860 next = page_index;
2861 next++;
2862
2863 if (pagezone != zone) {
2864 if (zone)
2865 spin_unlock_irq(&zone->lru_lock);
2866 zone = pagezone;
2867 spin_lock_irq(&zone->lru_lock);
2868 }
2869
2870 if (PageLRU(page) && PageUnevictable(page))
2871 check_move_unevictable_page(page, zone);
2872 }
2873 if (zone)
2874 spin_unlock_irq(&zone->lru_lock);
2875 pagevec_release(&pvec);
2876
2877 count_vm_events(UNEVICTABLE_PGSCANNED, pg_scanned);
2878 }
2879
2880}
af936a16
LS
2881
2882/**
2883 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2884 * @zone - zone of which to scan the unevictable list
2885 *
2886 * Scan @zone's unevictable LRU lists to check for pages that have become
2887 * evictable. Move those that have to @zone's inactive list where they
2888 * become candidates for reclaim, unless shrink_inactive_zone() decides
2889 * to reactivate them. Pages that are still unevictable are rotated
2890 * back onto @zone's unevictable list.
2891 */
2892#define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
14b90b22 2893static void scan_zone_unevictable_pages(struct zone *zone)
af936a16
LS
2894{
2895 struct list_head *l_unevictable = &zone->lru[LRU_UNEVICTABLE].list;
2896 unsigned long scan;
2897 unsigned long nr_to_scan = zone_page_state(zone, NR_UNEVICTABLE);
2898
2899 while (nr_to_scan > 0) {
2900 unsigned long batch_size = min(nr_to_scan,
2901 SCAN_UNEVICTABLE_BATCH_SIZE);
2902
2903 spin_lock_irq(&zone->lru_lock);
2904 for (scan = 0; scan < batch_size; scan++) {
2905 struct page *page = lru_to_page(l_unevictable);
2906
2907 if (!trylock_page(page))
2908 continue;
2909
2910 prefetchw_prev_lru_page(page, l_unevictable, flags);
2911
2912 if (likely(PageLRU(page) && PageUnevictable(page)))
2913 check_move_unevictable_page(page, zone);
2914
2915 unlock_page(page);
2916 }
2917 spin_unlock_irq(&zone->lru_lock);
2918
2919 nr_to_scan -= batch_size;
2920 }
2921}
2922
2923
2924/**
2925 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2926 *
2927 * A really big hammer: scan all zones' unevictable LRU lists to check for
2928 * pages that have become evictable. Move those back to the zones'
2929 * inactive list where they become candidates for reclaim.
2930 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2931 * and we add swap to the system. As such, it runs in the context of a task
2932 * that has possibly/probably made some previously unevictable pages
2933 * evictable.
2934 */
ff30153b 2935static void scan_all_zones_unevictable_pages(void)
af936a16
LS
2936{
2937 struct zone *zone;
2938
2939 for_each_zone(zone) {
2940 scan_zone_unevictable_pages(zone);
2941 }
2942}
2943
2944/*
2945 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2946 * all nodes' unevictable lists for evictable pages
2947 */
2948unsigned long scan_unevictable_pages;
2949
2950int scan_unevictable_handler(struct ctl_table *table, int write,
8d65af78 2951 void __user *buffer,
af936a16
LS
2952 size_t *length, loff_t *ppos)
2953{
8d65af78 2954 proc_doulongvec_minmax(table, write, buffer, length, ppos);
af936a16
LS
2955
2956 if (write && *(unsigned long *)table->data)
2957 scan_all_zones_unevictable_pages();
2958
2959 scan_unevictable_pages = 0;
2960 return 0;
2961}
2962
2963/*
2964 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2965 * a specified node's per zone unevictable lists for evictable pages.
2966 */
2967
2968static ssize_t read_scan_unevictable_node(struct sys_device *dev,
2969 struct sysdev_attribute *attr,
2970 char *buf)
2971{
2972 return sprintf(buf, "0\n"); /* always zero; should fit... */
2973}
2974
2975static ssize_t write_scan_unevictable_node(struct sys_device *dev,
2976 struct sysdev_attribute *attr,
2977 const char *buf, size_t count)
2978{
2979 struct zone *node_zones = NODE_DATA(dev->id)->node_zones;
2980 struct zone *zone;
2981 unsigned long res;
2982 unsigned long req = strict_strtoul(buf, 10, &res);
2983
2984 if (!req)
2985 return 1; /* zero is no-op */
2986
2987 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2988 if (!populated_zone(zone))
2989 continue;
2990 scan_zone_unevictable_pages(zone);
2991 }
2992 return 1;
2993}
2994
2995
2996static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
2997 read_scan_unevictable_node,
2998 write_scan_unevictable_node);
2999
3000int scan_unevictable_register_node(struct node *node)
3001{
3002 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3003}
3004
3005void scan_unevictable_unregister_node(struct node *node)
3006{
3007 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3008}
3009