]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/sparse.c
sparsemem: Put usemap for one node together
[net-next-2.6.git] / mm / sparse.c
CommitLineData
d41dee36
AW
1/*
2 * sparse memory mappings.
3 */
d41dee36
AW
4#include <linux/mm.h>
5#include <linux/mmzone.h>
6#include <linux/bootmem.h>
0b0acbec 7#include <linux/highmem.h>
d41dee36 8#include <linux/module.h>
28ae55c9 9#include <linux/spinlock.h>
0b0acbec 10#include <linux/vmalloc.h>
0c0a4a51 11#include "internal.h"
d41dee36 12#include <asm/dma.h>
8f6aac41
CL
13#include <asm/pgalloc.h>
14#include <asm/pgtable.h>
d41dee36
AW
15
16/*
17 * Permanent SPARSEMEM data:
18 *
19 * 1) mem_section - memory sections, mem_map's for valid memory
20 */
3e347261 21#ifdef CONFIG_SPARSEMEM_EXTREME
802f192e 22struct mem_section *mem_section[NR_SECTION_ROOTS]
22fc6ecc 23 ____cacheline_internodealigned_in_smp;
3e347261
BP
24#else
25struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
22fc6ecc 26 ____cacheline_internodealigned_in_smp;
3e347261
BP
27#endif
28EXPORT_SYMBOL(mem_section);
29
89689ae7
CL
30#ifdef NODE_NOT_IN_PAGE_FLAGS
31/*
32 * If we did not store the node number in the page then we have to
33 * do a lookup in the section_to_node_table in order to find which
34 * node the page belongs to.
35 */
36#if MAX_NUMNODES <= 256
37static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
38#else
39static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
40#endif
41
25ba77c1 42int page_to_nid(struct page *page)
89689ae7
CL
43{
44 return section_to_node_table[page_to_section(page)];
45}
46EXPORT_SYMBOL(page_to_nid);
85770ffe
AW
47
48static void set_section_nid(unsigned long section_nr, int nid)
49{
50 section_to_node_table[section_nr] = nid;
51}
52#else /* !NODE_NOT_IN_PAGE_FLAGS */
53static inline void set_section_nid(unsigned long section_nr, int nid)
54{
55}
89689ae7
CL
56#endif
57
3e347261 58#ifdef CONFIG_SPARSEMEM_EXTREME
577a32f6 59static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
28ae55c9
DH
60{
61 struct mem_section *section = NULL;
62 unsigned long array_size = SECTIONS_PER_ROOT *
63 sizeof(struct mem_section);
64
f52407ce
SL
65 if (slab_is_available()) {
66 if (node_state(nid, N_HIGH_MEMORY))
67 section = kmalloc_node(array_size, GFP_KERNEL, nid);
68 else
69 section = kmalloc(array_size, GFP_KERNEL);
70 } else
46a66eec 71 section = alloc_bootmem_node(NODE_DATA(nid), array_size);
28ae55c9
DH
72
73 if (section)
74 memset(section, 0, array_size);
75
76 return section;
3e347261 77}
802f192e 78
a3142c8e 79static int __meminit sparse_index_init(unsigned long section_nr, int nid)
802f192e 80{
34af946a 81 static DEFINE_SPINLOCK(index_init_lock);
28ae55c9
DH
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
84 int ret = 0;
802f192e
BP
85
86 if (mem_section[root])
28ae55c9 87 return -EEXIST;
3e347261 88
28ae55c9 89 section = sparse_index_alloc(nid);
af0cd5a7
WC
90 if (!section)
91 return -ENOMEM;
28ae55c9
DH
92 /*
93 * This lock keeps two different sections from
94 * reallocating for the same index
95 */
96 spin_lock(&index_init_lock);
3e347261 97
28ae55c9
DH
98 if (mem_section[root]) {
99 ret = -EEXIST;
100 goto out;
101 }
102
103 mem_section[root] = section;
104out:
105 spin_unlock(&index_init_lock);
106 return ret;
107}
108#else /* !SPARSEMEM_EXTREME */
109static inline int sparse_index_init(unsigned long section_nr, int nid)
110{
111 return 0;
802f192e 112}
28ae55c9
DH
113#endif
114
4ca644d9
DH
115/*
116 * Although written for the SPARSEMEM_EXTREME case, this happens
cd881a6b 117 * to also work for the flat array case because
4ca644d9
DH
118 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
119 */
120int __section_nr(struct mem_section* ms)
121{
122 unsigned long root_nr;
123 struct mem_section* root;
124
12783b00
MK
125 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
126 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
4ca644d9
DH
127 if (!root)
128 continue;
129
130 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
131 break;
132 }
133
134 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
135}
136
30c253e6
AW
137/*
138 * During early boot, before section_mem_map is used for an actual
139 * mem_map, we use section_mem_map to store the section's NUMA
140 * node. This keeps us from having to use another data structure. The
141 * node information is cleared just before we store the real mem_map.
142 */
143static inline unsigned long sparse_encode_early_nid(int nid)
144{
145 return (nid << SECTION_NID_SHIFT);
146}
147
148static inline int sparse_early_nid(struct mem_section *section)
149{
150 return (section->section_mem_map >> SECTION_NID_SHIFT);
151}
152
2dbb51c4
MG
153/* Validate the physical addressing limitations of the model */
154void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
155 unsigned long *end_pfn)
d41dee36 156{
2dbb51c4 157 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
d41dee36 158
bead9a3a
IM
159 /*
160 * Sanity checks - do not allow an architecture to pass
161 * in larger pfns than the maximum scope of sparsemem:
162 */
2dbb51c4
MG
163 if (*start_pfn > max_sparsemem_pfn) {
164 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
165 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
166 *start_pfn, *end_pfn, max_sparsemem_pfn);
167 WARN_ON_ONCE(1);
168 *start_pfn = max_sparsemem_pfn;
169 *end_pfn = max_sparsemem_pfn;
ef161a98 170 } else if (*end_pfn > max_sparsemem_pfn) {
2dbb51c4
MG
171 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
172 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
173 *start_pfn, *end_pfn, max_sparsemem_pfn);
174 WARN_ON_ONCE(1);
175 *end_pfn = max_sparsemem_pfn;
176 }
177}
178
179/* Record a memory area against a node. */
180void __init memory_present(int nid, unsigned long start, unsigned long end)
181{
182 unsigned long pfn;
bead9a3a 183
d41dee36 184 start &= PAGE_SECTION_MASK;
2dbb51c4 185 mminit_validate_memmodel_limits(&start, &end);
d41dee36
AW
186 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
187 unsigned long section = pfn_to_section_nr(pfn);
802f192e
BP
188 struct mem_section *ms;
189
190 sparse_index_init(section, nid);
85770ffe 191 set_section_nid(section, nid);
802f192e
BP
192
193 ms = __nr_to_section(section);
194 if (!ms->section_mem_map)
30c253e6
AW
195 ms->section_mem_map = sparse_encode_early_nid(nid) |
196 SECTION_MARKED_PRESENT;
d41dee36
AW
197 }
198}
199
200/*
201 * Only used by the i386 NUMA architecures, but relatively
202 * generic code.
203 */
204unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
205 unsigned long end_pfn)
206{
207 unsigned long pfn;
208 unsigned long nr_pages = 0;
209
2dbb51c4 210 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
d41dee36
AW
211 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
212 if (nid != early_pfn_to_nid(pfn))
213 continue;
214
540557b9 215 if (pfn_present(pfn))
d41dee36
AW
216 nr_pages += PAGES_PER_SECTION;
217 }
218
219 return nr_pages * sizeof(struct page);
220}
221
29751f69
AW
222/*
223 * Subtle, we encode the real pfn into the mem_map such that
224 * the identity pfn - section_mem_map will return the actual
225 * physical page frame number.
226 */
227static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
228{
229 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
230}
231
232/*
ea01ea93 233 * Decode mem_map from the coded memmap
29751f69 234 */
29751f69
AW
235struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
236{
ea01ea93
BP
237 /* mask off the extra low bits of information */
238 coded_mem_map &= SECTION_MAP_MASK;
29751f69
AW
239 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
240}
241
a3142c8e 242static int __meminit sparse_init_one_section(struct mem_section *ms,
5c0e3066
MG
243 unsigned long pnum, struct page *mem_map,
244 unsigned long *pageblock_bitmap)
29751f69 245{
540557b9 246 if (!present_section(ms))
29751f69
AW
247 return -EINVAL;
248
30c253e6 249 ms->section_mem_map &= ~SECTION_MAP_MASK;
540557b9
AW
250 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
251 SECTION_HAS_MEM_MAP;
5c0e3066 252 ms->pageblock_flags = pageblock_bitmap;
29751f69
AW
253
254 return 1;
255}
256
04753278 257unsigned long usemap_size(void)
5c0e3066
MG
258{
259 unsigned long size_bytes;
260 size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
261 size_bytes = roundup(size_bytes, sizeof(unsigned long));
262 return size_bytes;
263}
264
265#ifdef CONFIG_MEMORY_HOTPLUG
266static unsigned long *__kmalloc_section_usemap(void)
267{
268 return kmalloc(usemap_size(), GFP_KERNEL);
269}
270#endif /* CONFIG_MEMORY_HOTPLUG */
271
48c90682
YG
272#ifdef CONFIG_MEMORY_HOTREMOVE
273static unsigned long * __init
a4322e1b
YL
274sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
275 unsigned long count)
48c90682
YG
276{
277 unsigned long section_nr;
278
279 /*
280 * A page may contain usemaps for other sections preventing the
281 * page being freed and making a section unremovable while
282 * other sections referencing the usemap retmain active. Similarly,
283 * a pgdat can prevent a section being removed. If section A
284 * contains a pgdat and section B contains the usemap, both
285 * sections become inter-dependent. This allocates usemaps
286 * from the same section as the pgdat where possible to avoid
287 * this problem.
288 */
289 section_nr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
a4322e1b 290 return alloc_bootmem_section(usemap_size() * count, section_nr);
48c90682
YG
291}
292
293static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
294{
295 unsigned long usemap_snr, pgdat_snr;
296 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
297 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
298 struct pglist_data *pgdat = NODE_DATA(nid);
299 int usemap_nid;
300
301 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
302 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
303 if (usemap_snr == pgdat_snr)
304 return;
305
306 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
307 /* skip redundant message */
308 return;
309
310 old_usemap_snr = usemap_snr;
311 old_pgdat_snr = pgdat_snr;
312
313 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
314 if (usemap_nid != nid) {
315 printk(KERN_INFO
316 "node %d must be removed before remove section %ld\n",
317 nid, usemap_snr);
318 return;
319 }
320 /*
321 * There is a circular dependency.
322 * Some platforms allow un-removable section because they will just
323 * gather other removable sections for dynamic partitioning.
324 * Just notify un-removable section's number here.
325 */
326 printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
327 pgdat_snr, nid);
328 printk(KERN_CONT
329 " have a circular dependency on usemap and pgdat allocations\n");
330}
331#else
332static unsigned long * __init
a4322e1b
YL
333sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
334 unsigned long count)
48c90682
YG
335{
336 return NULL;
337}
338
339static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
340{
341}
342#endif /* CONFIG_MEMORY_HOTREMOVE */
343
a4322e1b
YL
344static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
345 unsigned long pnum_begin,
346 unsigned long pnum_end,
347 unsigned long usemap_count, int nodeid)
5c0e3066 348{
a4322e1b
YL
349 void *usemap;
350 unsigned long pnum;
351 int size = usemap_size();
5c0e3066 352
a4322e1b
YL
353 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
354 usemap_count);
48c90682 355 if (usemap) {
a4322e1b
YL
356 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
357 if (!present_section_nr(pnum))
358 continue;
359 usemap_map[pnum] = usemap;
360 usemap += size;
361 }
362 return;
48c90682
YG
363 }
364
a4322e1b
YL
365 usemap = alloc_bootmem_node(NODE_DATA(nodeid), size * usemap_count);
366 if (usemap) {
367 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
368 if (!present_section_nr(pnum))
369 continue;
370 usemap_map[pnum] = usemap;
371 usemap += size;
372 check_usemap_section_nr(nodeid, usemap_map[pnum]);
373 }
374 return;
375 }
5c0e3066 376
d40cee24 377 printk(KERN_WARNING "%s: allocation failed\n", __func__);
5c0e3066
MG
378}
379
8f6aac41 380#ifndef CONFIG_SPARSEMEM_VMEMMAP
98f3cfc1 381struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
29751f69
AW
382{
383 struct page *map;
29751f69
AW
384
385 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
386 if (map)
387 return map;
388
9d99217a
YG
389 map = alloc_bootmem_pages_node(NODE_DATA(nid),
390 PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION));
8f6aac41
CL
391 return map;
392}
393#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
394
9e5c6da7 395static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
8f6aac41
CL
396{
397 struct page *map;
398 struct mem_section *ms = __nr_to_section(pnum);
399 int nid = sparse_early_nid(ms);
400
98f3cfc1 401 map = sparse_mem_map_populate(pnum, nid);
29751f69
AW
402 if (map)
403 return map;
404
8f6aac41 405 printk(KERN_ERR "%s: sparsemem memory map backing failed "
d40cee24 406 "some memory will not be available.\n", __func__);
802f192e 407 ms->section_mem_map = 0;
29751f69
AW
408 return NULL;
409}
410
c2b91e2e
YL
411void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
412{
413}
a4322e1b 414
193faea9
SR
415/*
416 * Allocate the accumulated non-linear sections, allocate a mem_map
417 * for each and record the physical to section mapping.
418 */
419void __init sparse_init(void)
420{
421 unsigned long pnum;
422 struct page *map;
5c0e3066 423 unsigned long *usemap;
e123dd3f
YL
424 unsigned long **usemap_map;
425 int size;
a4322e1b
YL
426 int nodeid_begin = 0;
427 unsigned long pnum_begin = 0;
428 unsigned long usemap_count;
e123dd3f
YL
429
430 /*
431 * map is using big page (aka 2M in x86 64 bit)
432 * usemap is less one page (aka 24 bytes)
433 * so alloc 2M (with 2M align) and 24 bytes in turn will
434 * make next 2M slip to one more 2M later.
435 * then in big system, the memory will have a lot of holes...
436 * here try to allocate 2M pages continously.
437 *
438 * powerpc need to call sparse_init_one_section right after each
439 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
440 */
441 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
442 usemap_map = alloc_bootmem(size);
443 if (!usemap_map)
444 panic("can not allocate usemap_map\n");
193faea9
SR
445
446 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
a4322e1b
YL
447 struct mem_section *ms;
448
540557b9 449 if (!present_section_nr(pnum))
193faea9 450 continue;
a4322e1b
YL
451 ms = __nr_to_section(pnum);
452 nodeid_begin = sparse_early_nid(ms);
453 pnum_begin = pnum;
454 break;
455 }
456 usemap_count = 1;
457 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
458 struct mem_section *ms;
459 int nodeid;
460
461 if (!present_section_nr(pnum))
462 continue;
463 ms = __nr_to_section(pnum);
464 nodeid = sparse_early_nid(ms);
465 if (nodeid == nodeid_begin) {
466 usemap_count++;
467 continue;
468 }
469 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
470 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
471 usemap_count, nodeid_begin);
472 /* new start, update count etc*/
473 nodeid_begin = nodeid;
474 pnum_begin = pnum;
475 usemap_count = 1;
e123dd3f 476 }
a4322e1b
YL
477 /* ok, last chunk */
478 sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
479 usemap_count, nodeid_begin);
193faea9 480
e123dd3f
YL
481 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
482 if (!present_section_nr(pnum))
193faea9 483 continue;
5c0e3066 484
e123dd3f 485 usemap = usemap_map[pnum];
5c0e3066
MG
486 if (!usemap)
487 continue;
488
e123dd3f
YL
489 map = sparse_early_mem_map_alloc(pnum);
490 if (!map)
491 continue;
492
5c0e3066
MG
493 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
494 usemap);
193faea9 495 }
e123dd3f 496
c2b91e2e
YL
497 vmemmap_populate_print_last();
498
e123dd3f 499 free_bootmem(__pa(usemap_map), size);
193faea9
SR
500}
501
502#ifdef CONFIG_MEMORY_HOTPLUG
98f3cfc1
YG
503#ifdef CONFIG_SPARSEMEM_VMEMMAP
504static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
505 unsigned long nr_pages)
506{
507 /* This will make the necessary allocations eventually. */
508 return sparse_mem_map_populate(pnum, nid);
509}
510static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
511{
512 return; /* XXX: Not implemented yet */
513}
0c0a4a51
YG
514static void free_map_bootmem(struct page *page, unsigned long nr_pages)
515{
516}
98f3cfc1 517#else
0b0acbec
DH
518static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
519{
520 struct page *page, *ret;
521 unsigned long memmap_size = sizeof(struct page) * nr_pages;
522
f2d0aa5b 523 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
0b0acbec
DH
524 if (page)
525 goto got_map_page;
526
527 ret = vmalloc(memmap_size);
528 if (ret)
529 goto got_map_ptr;
530
531 return NULL;
532got_map_page:
533 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
534got_map_ptr:
535 memset(ret, 0, memmap_size);
536
537 return ret;
538}
539
98f3cfc1
YG
540static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
541 unsigned long nr_pages)
542{
543 return __kmalloc_section_memmap(nr_pages);
544}
545
0b0acbec
DH
546static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
547{
9e2779fa 548 if (is_vmalloc_addr(memmap))
0b0acbec
DH
549 vfree(memmap);
550 else
551 free_pages((unsigned long)memmap,
552 get_order(sizeof(struct page) * nr_pages));
553}
0c0a4a51
YG
554
555static void free_map_bootmem(struct page *page, unsigned long nr_pages)
556{
557 unsigned long maps_section_nr, removing_section_nr, i;
558 int magic;
559
560 for (i = 0; i < nr_pages; i++, page++) {
561 magic = atomic_read(&page->_mapcount);
562
563 BUG_ON(magic == NODE_INFO);
564
565 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
566 removing_section_nr = page->private;
567
568 /*
569 * When this function is called, the removing section is
570 * logical offlined state. This means all pages are isolated
571 * from page allocator. If removing section's memmap is placed
572 * on the same section, it must not be freed.
573 * If it is freed, page allocator may allocate it which will
574 * be removed physically soon.
575 */
576 if (maps_section_nr != removing_section_nr)
577 put_page_bootmem(page);
578 }
579}
98f3cfc1 580#endif /* CONFIG_SPARSEMEM_VMEMMAP */
0b0acbec 581
ea01ea93
BP
582static void free_section_usemap(struct page *memmap, unsigned long *usemap)
583{
0c0a4a51
YG
584 struct page *usemap_page;
585 unsigned long nr_pages;
586
ea01ea93
BP
587 if (!usemap)
588 return;
589
0c0a4a51 590 usemap_page = virt_to_page(usemap);
ea01ea93
BP
591 /*
592 * Check to see if allocation came from hot-plug-add
593 */
0c0a4a51 594 if (PageSlab(usemap_page)) {
ea01ea93
BP
595 kfree(usemap);
596 if (memmap)
597 __kfree_section_memmap(memmap, PAGES_PER_SECTION);
598 return;
599 }
600
601 /*
0c0a4a51
YG
602 * The usemap came from bootmem. This is packed with other usemaps
603 * on the section which has pgdat at boot time. Just keep it as is now.
ea01ea93 604 */
0c0a4a51
YG
605
606 if (memmap) {
607 struct page *memmap_page;
608 memmap_page = virt_to_page(memmap);
609
610 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
611 >> PAGE_SHIFT;
612
613 free_map_bootmem(memmap_page, nr_pages);
614 }
ea01ea93
BP
615}
616
29751f69
AW
617/*
618 * returns the number of sections whose mem_maps were properly
619 * set. If this is <=0, then that means that the passed-in
620 * map was not consumed and must be freed.
621 */
31168481 622int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
0b0acbec 623 int nr_pages)
29751f69 624{
0b0acbec
DH
625 unsigned long section_nr = pfn_to_section_nr(start_pfn);
626 struct pglist_data *pgdat = zone->zone_pgdat;
627 struct mem_section *ms;
628 struct page *memmap;
5c0e3066 629 unsigned long *usemap;
0b0acbec
DH
630 unsigned long flags;
631 int ret;
29751f69 632
0b0acbec
DH
633 /*
634 * no locking for this, because it does its own
635 * plus, it does a kmalloc
636 */
bbd06825
WC
637 ret = sparse_index_init(section_nr, pgdat->node_id);
638 if (ret < 0 && ret != -EEXIST)
639 return ret;
98f3cfc1 640 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
bbd06825
WC
641 if (!memmap)
642 return -ENOMEM;
5c0e3066 643 usemap = __kmalloc_section_usemap();
bbd06825
WC
644 if (!usemap) {
645 __kfree_section_memmap(memmap, nr_pages);
646 return -ENOMEM;
647 }
0b0acbec
DH
648
649 pgdat_resize_lock(pgdat, &flags);
29751f69 650
0b0acbec
DH
651 ms = __pfn_to_section(start_pfn);
652 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
653 ret = -EEXIST;
654 goto out;
655 }
5c0e3066 656
29751f69
AW
657 ms->section_mem_map |= SECTION_MARKED_PRESENT;
658
5c0e3066 659 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
0b0acbec 660
0b0acbec
DH
661out:
662 pgdat_resize_unlock(pgdat, &flags);
bbd06825
WC
663 if (ret <= 0) {
664 kfree(usemap);
46a66eec 665 __kfree_section_memmap(memmap, nr_pages);
bbd06825 666 }
0b0acbec 667 return ret;
29751f69 668}
ea01ea93
BP
669
670void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
671{
672 struct page *memmap = NULL;
673 unsigned long *usemap = NULL;
674
675 if (ms->section_mem_map) {
676 usemap = ms->pageblock_flags;
677 memmap = sparse_decode_mem_map(ms->section_mem_map,
678 __section_nr(ms));
679 ms->section_mem_map = 0;
680 ms->pageblock_flags = NULL;
681 }
682
683 free_section_usemap(memmap, usemap);
684}
a3142c8e 685#endif