]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slub.c
slub: add option to disable higher order debugging slabs
[net-next-2.6.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
81819f0f
CL
9 */
10
11#include <linux/mm.h>
1eb5ac64 12#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
13#include <linux/module.h>
14#include <linux/bit_spinlock.h>
15#include <linux/interrupt.h>
16#include <linux/bitops.h>
17#include <linux/slab.h>
7b3c3a50 18#include <linux/proc_fs.h>
81819f0f 19#include <linux/seq_file.h>
02af61bb 20#include <linux/kmemtrace.h>
5a896d9e 21#include <linux/kmemcheck.h>
81819f0f
CL
22#include <linux/cpu.h>
23#include <linux/cpuset.h>
06f22f13 24#include <linux/kmemleak.h>
81819f0f
CL
25#include <linux/mempolicy.h>
26#include <linux/ctype.h>
3ac7fe5a 27#include <linux/debugobjects.h>
81819f0f 28#include <linux/kallsyms.h>
b9049e23 29#include <linux/memory.h>
f8bd2258 30#include <linux/math64.h>
773ff60e 31#include <linux/fault-inject.h>
81819f0f
CL
32
33/*
34 * Lock order:
35 * 1. slab_lock(page)
36 * 2. slab->list_lock
37 *
38 * The slab_lock protects operations on the object of a particular
39 * slab and its metadata in the page struct. If the slab lock
40 * has been taken then no allocations nor frees can be performed
41 * on the objects in the slab nor can the slab be added or removed
42 * from the partial or full lists since this would mean modifying
43 * the page_struct of the slab.
44 *
45 * The list_lock protects the partial and full list on each node and
46 * the partial slab counter. If taken then no new slabs may be added or
47 * removed from the lists nor make the number of partial slabs be modified.
48 * (Note that the total number of slabs is an atomic value that may be
49 * modified without taking the list lock).
50 *
51 * The list_lock is a centralized lock and thus we avoid taking it as
52 * much as possible. As long as SLUB does not have to handle partial
53 * slabs, operations can continue without any centralized lock. F.e.
54 * allocating a long series of objects that fill up slabs does not require
55 * the list lock.
56 *
57 * The lock order is sometimes inverted when we are trying to get a slab
58 * off a list. We take the list_lock and then look for a page on the list
59 * to use. While we do that objects in the slabs may be freed. We can
60 * only operate on the slab if we have also taken the slab_lock. So we use
61 * a slab_trylock() on the slab. If trylock was successful then no frees
62 * can occur anymore and we can use the slab for allocations etc. If the
63 * slab_trylock() does not succeed then frees are in progress in the slab and
64 * we must stay away from it for a while since we may cause a bouncing
65 * cacheline if we try to acquire the lock. So go onto the next slab.
66 * If all pages are busy then we may allocate a new slab instead of reusing
67 * a partial slab. A new slab has noone operating on it and thus there is
68 * no danger of cacheline contention.
69 *
70 * Interrupts are disabled during allocation and deallocation in order to
71 * make the slab allocator safe to use in the context of an irq. In addition
72 * interrupts are disabled to ensure that the processor does not change
73 * while handling per_cpu slabs, due to kernel preemption.
74 *
75 * SLUB assigns one slab for allocation to each processor.
76 * Allocations only occur from these slabs called cpu slabs.
77 *
672bba3a
CL
78 * Slabs with free elements are kept on a partial list and during regular
79 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 80 * freed then the slab will show up again on the partial lists.
672bba3a
CL
81 * We track full slabs for debugging purposes though because otherwise we
82 * cannot scan all objects.
81819f0f
CL
83 *
84 * Slabs are freed when they become empty. Teardown and setup is
85 * minimal so we rely on the page allocators per cpu caches for
86 * fast frees and allocs.
87 *
88 * Overloading of page flags that are otherwise used for LRU management.
89 *
4b6f0750
CL
90 * PageActive The slab is frozen and exempt from list processing.
91 * This means that the slab is dedicated to a purpose
92 * such as satisfying allocations for a specific
93 * processor. Objects may be freed in the slab while
94 * it is frozen but slab_free will then skip the usual
95 * list operations. It is up to the processor holding
96 * the slab to integrate the slab into the slab lists
97 * when the slab is no longer needed.
98 *
99 * One use of this flag is to mark slabs that are
100 * used for allocations. Then such a slab becomes a cpu
101 * slab. The cpu slab may be equipped with an additional
dfb4f096 102 * freelist that allows lockless access to
894b8788
CL
103 * free objects in addition to the regular freelist
104 * that requires the slab lock.
81819f0f
CL
105 *
106 * PageError Slab requires special handling due to debug
107 * options set. This moves slab handling out of
894b8788 108 * the fast path and disables lockless freelists.
81819f0f
CL
109 */
110
5577bd8a 111#ifdef CONFIG_SLUB_DEBUG
8a38082d 112#define SLABDEBUG 1
5577bd8a
CL
113#else
114#define SLABDEBUG 0
115#endif
116
81819f0f
CL
117/*
118 * Issues still to be resolved:
119 *
81819f0f
CL
120 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
121 *
81819f0f
CL
122 * - Variable sizing of the per node arrays
123 */
124
125/* Enable to test recovery from slab corruption on boot */
126#undef SLUB_RESILIENCY_TEST
127
2086d26a
CL
128/*
129 * Mininum number of partial slabs. These will be left on the partial
130 * lists even if they are empty. kmem_cache_shrink may reclaim them.
131 */
76be8950 132#define MIN_PARTIAL 5
e95eed57 133
2086d26a
CL
134/*
135 * Maximum number of desirable partial slabs.
136 * The existence of more partial slabs makes kmem_cache_shrink
137 * sort the partial list by the number of objects in the.
138 */
139#define MAX_PARTIAL 10
140
81819f0f
CL
141#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
142 SLAB_POISON | SLAB_STORE_USER)
672bba3a 143
fa5ec8a1
DR
144/*
145 * Debugging flags that require metadata to be stored in the slab, up to
146 * DEBUG_SIZE in size.
147 */
148#define DEBUG_SIZE_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
149#define DEBUG_SIZE (3 * sizeof(void *) + 2 * sizeof(struct track))
150
81819f0f
CL
151/*
152 * Set of flags that will prevent slab merging
153 */
154#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
06f22f13 155 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE)
81819f0f
CL
156
157#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
5a896d9e 158 SLAB_CACHE_DMA | SLAB_NOTRACK)
81819f0f
CL
159
160#ifndef ARCH_KMALLOC_MINALIGN
47bfdc0d 161#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
162#endif
163
164#ifndef ARCH_SLAB_MINALIGN
47bfdc0d 165#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
81819f0f
CL
166#endif
167
210b5c06
CG
168#define OO_SHIFT 16
169#define OO_MASK ((1 << OO_SHIFT) - 1)
170#define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
171
81819f0f 172/* Internal SLUB flags */
1ceef402
CL
173#define __OBJECT_POISON 0x80000000 /* Poison object */
174#define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
81819f0f
CL
175
176static int kmem_size = sizeof(struct kmem_cache);
177
178#ifdef CONFIG_SMP
179static struct notifier_block slab_notifier;
180#endif
181
182static enum {
183 DOWN, /* No slab functionality available */
184 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
672bba3a 185 UP, /* Everything works but does not show up in sysfs */
81819f0f
CL
186 SYSFS /* Sysfs up */
187} slab_state = DOWN;
188
189/* A list of all slab caches on the system */
190static DECLARE_RWSEM(slub_lock);
5af328a5 191static LIST_HEAD(slab_caches);
81819f0f 192
02cbc874
CL
193/*
194 * Tracking user of a slab.
195 */
196struct track {
ce71e27c 197 unsigned long addr; /* Called from address */
02cbc874
CL
198 int cpu; /* Was running on cpu */
199 int pid; /* Pid context */
200 unsigned long when; /* When did the operation occur */
201};
202
203enum track_item { TRACK_ALLOC, TRACK_FREE };
204
f6acb635 205#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
206static int sysfs_slab_add(struct kmem_cache *);
207static int sysfs_slab_alias(struct kmem_cache *, const char *);
208static void sysfs_slab_remove(struct kmem_cache *);
8ff12cfc 209
81819f0f 210#else
0c710013
CL
211static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
212static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
213 { return 0; }
151c602f
CL
214static inline void sysfs_slab_remove(struct kmem_cache *s)
215{
216 kfree(s);
217}
8ff12cfc 218
81819f0f
CL
219#endif
220
8ff12cfc
CL
221static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
222{
223#ifdef CONFIG_SLUB_STATS
224 c->stat[si]++;
225#endif
226}
227
81819f0f
CL
228/********************************************************************
229 * Core slab cache functions
230 *******************************************************************/
231
232int slab_is_available(void)
233{
234 return slab_state >= UP;
235}
236
237static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
238{
239#ifdef CONFIG_NUMA
240 return s->node[node];
241#else
242 return &s->local_node;
243#endif
244}
245
dfb4f096
CL
246static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
247{
4c93c355
CL
248#ifdef CONFIG_SMP
249 return s->cpu_slab[cpu];
250#else
251 return &s->cpu_slab;
252#endif
dfb4f096
CL
253}
254
6446faa2 255/* Verify that a pointer has an address that is valid within a slab page */
02cbc874
CL
256static inline int check_valid_pointer(struct kmem_cache *s,
257 struct page *page, const void *object)
258{
259 void *base;
260
a973e9dd 261 if (!object)
02cbc874
CL
262 return 1;
263
a973e9dd 264 base = page_address(page);
39b26464 265 if (object < base || object >= base + page->objects * s->size ||
02cbc874
CL
266 (object - base) % s->size) {
267 return 0;
268 }
269
270 return 1;
271}
272
7656c72b
CL
273/*
274 * Slow version of get and set free pointer.
275 *
276 * This version requires touching the cache lines of kmem_cache which
277 * we avoid to do in the fast alloc free paths. There we obtain the offset
278 * from the page struct.
279 */
280static inline void *get_freepointer(struct kmem_cache *s, void *object)
281{
282 return *(void **)(object + s->offset);
283}
284
285static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
286{
287 *(void **)(object + s->offset) = fp;
288}
289
290/* Loop over all objects in a slab */
224a88be
CL
291#define for_each_object(__p, __s, __addr, __objects) \
292 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
7656c72b
CL
293 __p += (__s)->size)
294
295/* Scan freelist */
296#define for_each_free_object(__p, __s, __free) \
a973e9dd 297 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
7656c72b
CL
298
299/* Determine object index from a given position */
300static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
301{
302 return (p - addr) / s->size;
303}
304
834f3d11
CL
305static inline struct kmem_cache_order_objects oo_make(int order,
306 unsigned long size)
307{
308 struct kmem_cache_order_objects x = {
210b5c06 309 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
834f3d11
CL
310 };
311
312 return x;
313}
314
315static inline int oo_order(struct kmem_cache_order_objects x)
316{
210b5c06 317 return x.x >> OO_SHIFT;
834f3d11
CL
318}
319
320static inline int oo_objects(struct kmem_cache_order_objects x)
321{
210b5c06 322 return x.x & OO_MASK;
834f3d11
CL
323}
324
41ecc55b
CL
325#ifdef CONFIG_SLUB_DEBUG
326/*
327 * Debug settings:
328 */
f0630fff
CL
329#ifdef CONFIG_SLUB_DEBUG_ON
330static int slub_debug = DEBUG_DEFAULT_FLAGS;
331#else
41ecc55b 332static int slub_debug;
f0630fff 333#endif
41ecc55b
CL
334
335static char *slub_debug_slabs;
fa5ec8a1 336static int disable_higher_order_debug;
41ecc55b 337
81819f0f
CL
338/*
339 * Object debugging
340 */
341static void print_section(char *text, u8 *addr, unsigned int length)
342{
343 int i, offset;
344 int newline = 1;
345 char ascii[17];
346
347 ascii[16] = 0;
348
349 for (i = 0; i < length; i++) {
350 if (newline) {
24922684 351 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
81819f0f
CL
352 newline = 0;
353 }
06428780 354 printk(KERN_CONT " %02x", addr[i]);
81819f0f
CL
355 offset = i % 16;
356 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
357 if (offset == 15) {
06428780 358 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
359 newline = 1;
360 }
361 }
362 if (!newline) {
363 i %= 16;
364 while (i < 16) {
06428780 365 printk(KERN_CONT " ");
81819f0f
CL
366 ascii[i] = ' ';
367 i++;
368 }
06428780 369 printk(KERN_CONT " %s\n", ascii);
81819f0f
CL
370 }
371}
372
81819f0f
CL
373static struct track *get_track(struct kmem_cache *s, void *object,
374 enum track_item alloc)
375{
376 struct track *p;
377
378 if (s->offset)
379 p = object + s->offset + sizeof(void *);
380 else
381 p = object + s->inuse;
382
383 return p + alloc;
384}
385
386static void set_track(struct kmem_cache *s, void *object,
ce71e27c 387 enum track_item alloc, unsigned long addr)
81819f0f 388{
1a00df4a 389 struct track *p = get_track(s, object, alloc);
81819f0f 390
81819f0f
CL
391 if (addr) {
392 p->addr = addr;
393 p->cpu = smp_processor_id();
88e4ccf2 394 p->pid = current->pid;
81819f0f
CL
395 p->when = jiffies;
396 } else
397 memset(p, 0, sizeof(struct track));
398}
399
81819f0f
CL
400static void init_tracking(struct kmem_cache *s, void *object)
401{
24922684
CL
402 if (!(s->flags & SLAB_STORE_USER))
403 return;
404
ce71e27c
EGM
405 set_track(s, object, TRACK_FREE, 0UL);
406 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
407}
408
409static void print_track(const char *s, struct track *t)
410{
411 if (!t->addr)
412 return;
413
7daf705f 414 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
ce71e27c 415 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
24922684
CL
416}
417
418static void print_tracking(struct kmem_cache *s, void *object)
419{
420 if (!(s->flags & SLAB_STORE_USER))
421 return;
422
423 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
424 print_track("Freed", get_track(s, object, TRACK_FREE));
425}
426
427static void print_page_info(struct page *page)
428{
39b26464
CL
429 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
430 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
431
432}
433
434static void slab_bug(struct kmem_cache *s, char *fmt, ...)
435{
436 va_list args;
437 char buf[100];
438
439 va_start(args, fmt);
440 vsnprintf(buf, sizeof(buf), fmt, args);
441 va_end(args);
442 printk(KERN_ERR "========================================"
443 "=====================================\n");
444 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
445 printk(KERN_ERR "----------------------------------------"
446 "-------------------------------------\n\n");
81819f0f
CL
447}
448
24922684
CL
449static void slab_fix(struct kmem_cache *s, char *fmt, ...)
450{
451 va_list args;
452 char buf[100];
453
454 va_start(args, fmt);
455 vsnprintf(buf, sizeof(buf), fmt, args);
456 va_end(args);
457 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
458}
459
460static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
461{
462 unsigned int off; /* Offset of last byte */
a973e9dd 463 u8 *addr = page_address(page);
24922684
CL
464
465 print_tracking(s, p);
466
467 print_page_info(page);
468
469 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
470 p, p - addr, get_freepointer(s, p));
471
472 if (p > addr + 16)
473 print_section("Bytes b4", p - 16, 16);
474
0ebd652b 475 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
81819f0f
CL
476
477 if (s->flags & SLAB_RED_ZONE)
478 print_section("Redzone", p + s->objsize,
479 s->inuse - s->objsize);
480
81819f0f
CL
481 if (s->offset)
482 off = s->offset + sizeof(void *);
483 else
484 off = s->inuse;
485
24922684 486 if (s->flags & SLAB_STORE_USER)
81819f0f 487 off += 2 * sizeof(struct track);
81819f0f
CL
488
489 if (off != s->size)
490 /* Beginning of the filler is the free pointer */
24922684
CL
491 print_section("Padding", p + off, s->size - off);
492
493 dump_stack();
81819f0f
CL
494}
495
496static void object_err(struct kmem_cache *s, struct page *page,
497 u8 *object, char *reason)
498{
3dc50637 499 slab_bug(s, "%s", reason);
24922684 500 print_trailer(s, page, object);
81819f0f
CL
501}
502
24922684 503static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
81819f0f
CL
504{
505 va_list args;
506 char buf[100];
507
24922684
CL
508 va_start(args, fmt);
509 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 510 va_end(args);
3dc50637 511 slab_bug(s, "%s", buf);
24922684 512 print_page_info(page);
81819f0f
CL
513 dump_stack();
514}
515
516static void init_object(struct kmem_cache *s, void *object, int active)
517{
518 u8 *p = object;
519
520 if (s->flags & __OBJECT_POISON) {
521 memset(p, POISON_FREE, s->objsize - 1);
06428780 522 p[s->objsize - 1] = POISON_END;
81819f0f
CL
523 }
524
525 if (s->flags & SLAB_RED_ZONE)
526 memset(p + s->objsize,
527 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
528 s->inuse - s->objsize);
529}
530
24922684 531static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
81819f0f
CL
532{
533 while (bytes) {
534 if (*start != (u8)value)
24922684 535 return start;
81819f0f
CL
536 start++;
537 bytes--;
538 }
24922684
CL
539 return NULL;
540}
541
542static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
543 void *from, void *to)
544{
545 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
546 memset(from, data, to - from);
547}
548
549static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
550 u8 *object, char *what,
06428780 551 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
552{
553 u8 *fault;
554 u8 *end;
555
556 fault = check_bytes(start, value, bytes);
557 if (!fault)
558 return 1;
559
560 end = start + bytes;
561 while (end > fault && end[-1] == value)
562 end--;
563
564 slab_bug(s, "%s overwritten", what);
565 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
566 fault, end - 1, fault[0], value);
567 print_trailer(s, page, object);
568
569 restore_bytes(s, what, value, fault, end);
570 return 0;
81819f0f
CL
571}
572
81819f0f
CL
573/*
574 * Object layout:
575 *
576 * object address
577 * Bytes of the object to be managed.
578 * If the freepointer may overlay the object then the free
579 * pointer is the first word of the object.
672bba3a 580 *
81819f0f
CL
581 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
582 * 0xa5 (POISON_END)
583 *
584 * object + s->objsize
585 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a
CL
586 * Padding is extended by another word if Redzoning is enabled and
587 * objsize == inuse.
588 *
81819f0f
CL
589 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
590 * 0xcc (RED_ACTIVE) for objects in use.
591 *
592 * object + s->inuse
672bba3a
CL
593 * Meta data starts here.
594 *
81819f0f
CL
595 * A. Free pointer (if we cannot overwrite object on free)
596 * B. Tracking data for SLAB_STORE_USER
672bba3a 597 * C. Padding to reach required alignment boundary or at mininum
6446faa2 598 * one word if debugging is on to be able to detect writes
672bba3a
CL
599 * before the word boundary.
600 *
601 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
602 *
603 * object + s->size
672bba3a 604 * Nothing is used beyond s->size.
81819f0f 605 *
672bba3a
CL
606 * If slabcaches are merged then the objsize and inuse boundaries are mostly
607 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
608 * may be used with merged slabcaches.
609 */
610
81819f0f
CL
611static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
612{
613 unsigned long off = s->inuse; /* The end of info */
614
615 if (s->offset)
616 /* Freepointer is placed after the object. */
617 off += sizeof(void *);
618
619 if (s->flags & SLAB_STORE_USER)
620 /* We also have user information there */
621 off += 2 * sizeof(struct track);
622
623 if (s->size == off)
624 return 1;
625
24922684
CL
626 return check_bytes_and_report(s, page, p, "Object padding",
627 p + off, POISON_INUSE, s->size - off);
81819f0f
CL
628}
629
39b26464 630/* Check the pad bytes at the end of a slab page */
81819f0f
CL
631static int slab_pad_check(struct kmem_cache *s, struct page *page)
632{
24922684
CL
633 u8 *start;
634 u8 *fault;
635 u8 *end;
636 int length;
637 int remainder;
81819f0f
CL
638
639 if (!(s->flags & SLAB_POISON))
640 return 1;
641
a973e9dd 642 start = page_address(page);
834f3d11 643 length = (PAGE_SIZE << compound_order(page));
39b26464
CL
644 end = start + length;
645 remainder = length % s->size;
81819f0f
CL
646 if (!remainder)
647 return 1;
648
39b26464 649 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
24922684
CL
650 if (!fault)
651 return 1;
652 while (end > fault && end[-1] == POISON_INUSE)
653 end--;
654
655 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
39b26464 656 print_section("Padding", end - remainder, remainder);
24922684
CL
657
658 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
659 return 0;
81819f0f
CL
660}
661
662static int check_object(struct kmem_cache *s, struct page *page,
663 void *object, int active)
664{
665 u8 *p = object;
666 u8 *endobject = object + s->objsize;
667
668 if (s->flags & SLAB_RED_ZONE) {
669 unsigned int red =
670 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
671
24922684
CL
672 if (!check_bytes_and_report(s, page, object, "Redzone",
673 endobject, red, s->inuse - s->objsize))
81819f0f 674 return 0;
81819f0f 675 } else {
3adbefee
IM
676 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
677 check_bytes_and_report(s, page, p, "Alignment padding",
678 endobject, POISON_INUSE, s->inuse - s->objsize);
679 }
81819f0f
CL
680 }
681
682 if (s->flags & SLAB_POISON) {
683 if (!active && (s->flags & __OBJECT_POISON) &&
24922684
CL
684 (!check_bytes_and_report(s, page, p, "Poison", p,
685 POISON_FREE, s->objsize - 1) ||
686 !check_bytes_and_report(s, page, p, "Poison",
06428780 687 p + s->objsize - 1, POISON_END, 1)))
81819f0f 688 return 0;
81819f0f
CL
689 /*
690 * check_pad_bytes cleans up on its own.
691 */
692 check_pad_bytes(s, page, p);
693 }
694
695 if (!s->offset && active)
696 /*
697 * Object and freepointer overlap. Cannot check
698 * freepointer while object is allocated.
699 */
700 return 1;
701
702 /* Check free pointer validity */
703 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
704 object_err(s, page, p, "Freepointer corrupt");
705 /*
9f6c708e 706 * No choice but to zap it and thus lose the remainder
81819f0f 707 * of the free objects in this slab. May cause
672bba3a 708 * another error because the object count is now wrong.
81819f0f 709 */
a973e9dd 710 set_freepointer(s, p, NULL);
81819f0f
CL
711 return 0;
712 }
713 return 1;
714}
715
716static int check_slab(struct kmem_cache *s, struct page *page)
717{
39b26464
CL
718 int maxobj;
719
81819f0f
CL
720 VM_BUG_ON(!irqs_disabled());
721
722 if (!PageSlab(page)) {
24922684 723 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
724 return 0;
725 }
39b26464
CL
726
727 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
728 if (page->objects > maxobj) {
729 slab_err(s, page, "objects %u > max %u",
730 s->name, page->objects, maxobj);
731 return 0;
732 }
733 if (page->inuse > page->objects) {
24922684 734 slab_err(s, page, "inuse %u > max %u",
39b26464 735 s->name, page->inuse, page->objects);
81819f0f
CL
736 return 0;
737 }
738 /* Slab_pad_check fixes things up after itself */
739 slab_pad_check(s, page);
740 return 1;
741}
742
743/*
672bba3a
CL
744 * Determine if a certain object on a page is on the freelist. Must hold the
745 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
746 */
747static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
748{
749 int nr = 0;
750 void *fp = page->freelist;
751 void *object = NULL;
224a88be 752 unsigned long max_objects;
81819f0f 753
39b26464 754 while (fp && nr <= page->objects) {
81819f0f
CL
755 if (fp == search)
756 return 1;
757 if (!check_valid_pointer(s, page, fp)) {
758 if (object) {
759 object_err(s, page, object,
760 "Freechain corrupt");
a973e9dd 761 set_freepointer(s, object, NULL);
81819f0f
CL
762 break;
763 } else {
24922684 764 slab_err(s, page, "Freepointer corrupt");
a973e9dd 765 page->freelist = NULL;
39b26464 766 page->inuse = page->objects;
24922684 767 slab_fix(s, "Freelist cleared");
81819f0f
CL
768 return 0;
769 }
770 break;
771 }
772 object = fp;
773 fp = get_freepointer(s, object);
774 nr++;
775 }
776
224a88be 777 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
210b5c06
CG
778 if (max_objects > MAX_OBJS_PER_PAGE)
779 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
780
781 if (page->objects != max_objects) {
782 slab_err(s, page, "Wrong number of objects. Found %d but "
783 "should be %d", page->objects, max_objects);
784 page->objects = max_objects;
785 slab_fix(s, "Number of objects adjusted.");
786 }
39b26464 787 if (page->inuse != page->objects - nr) {
70d71228 788 slab_err(s, page, "Wrong object count. Counter is %d but "
39b26464
CL
789 "counted were %d", page->inuse, page->objects - nr);
790 page->inuse = page->objects - nr;
24922684 791 slab_fix(s, "Object count adjusted.");
81819f0f
CL
792 }
793 return search == NULL;
794}
795
0121c619
CL
796static void trace(struct kmem_cache *s, struct page *page, void *object,
797 int alloc)
3ec09742
CL
798{
799 if (s->flags & SLAB_TRACE) {
800 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
801 s->name,
802 alloc ? "alloc" : "free",
803 object, page->inuse,
804 page->freelist);
805
806 if (!alloc)
807 print_section("Object", (void *)object, s->objsize);
808
809 dump_stack();
810 }
811}
812
643b1138 813/*
672bba3a 814 * Tracking of fully allocated slabs for debugging purposes.
643b1138 815 */
e95eed57 816static void add_full(struct kmem_cache_node *n, struct page *page)
643b1138 817{
643b1138
CL
818 spin_lock(&n->list_lock);
819 list_add(&page->lru, &n->full);
820 spin_unlock(&n->list_lock);
821}
822
823static void remove_full(struct kmem_cache *s, struct page *page)
824{
825 struct kmem_cache_node *n;
826
827 if (!(s->flags & SLAB_STORE_USER))
828 return;
829
830 n = get_node(s, page_to_nid(page));
831
832 spin_lock(&n->list_lock);
833 list_del(&page->lru);
834 spin_unlock(&n->list_lock);
835}
836
0f389ec6
CL
837/* Tracking of the number of slabs for debugging purposes */
838static inline unsigned long slabs_node(struct kmem_cache *s, int node)
839{
840 struct kmem_cache_node *n = get_node(s, node);
841
842 return atomic_long_read(&n->nr_slabs);
843}
844
26c02cf0
AB
845static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
846{
847 return atomic_long_read(&n->nr_slabs);
848}
849
205ab99d 850static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
851{
852 struct kmem_cache_node *n = get_node(s, node);
853
854 /*
855 * May be called early in order to allocate a slab for the
856 * kmem_cache_node structure. Solve the chicken-egg
857 * dilemma by deferring the increment of the count during
858 * bootstrap (see early_kmem_cache_node_alloc).
859 */
205ab99d 860 if (!NUMA_BUILD || n) {
0f389ec6 861 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
862 atomic_long_add(objects, &n->total_objects);
863 }
0f389ec6 864}
205ab99d 865static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
866{
867 struct kmem_cache_node *n = get_node(s, node);
868
869 atomic_long_dec(&n->nr_slabs);
205ab99d 870 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
871}
872
873/* Object debug checks for alloc/free paths */
3ec09742
CL
874static void setup_object_debug(struct kmem_cache *s, struct page *page,
875 void *object)
876{
877 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
878 return;
879
880 init_object(s, object, 0);
881 init_tracking(s, object);
882}
883
884static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 885 void *object, unsigned long addr)
81819f0f
CL
886{
887 if (!check_slab(s, page))
888 goto bad;
889
d692ef6d 890 if (!on_freelist(s, page, object)) {
24922684 891 object_err(s, page, object, "Object already allocated");
70d71228 892 goto bad;
81819f0f
CL
893 }
894
895 if (!check_valid_pointer(s, page, object)) {
896 object_err(s, page, object, "Freelist Pointer check fails");
70d71228 897 goto bad;
81819f0f
CL
898 }
899
d692ef6d 900 if (!check_object(s, page, object, 0))
81819f0f 901 goto bad;
81819f0f 902
3ec09742
CL
903 /* Success perform special debug activities for allocs */
904 if (s->flags & SLAB_STORE_USER)
905 set_track(s, object, TRACK_ALLOC, addr);
906 trace(s, page, object, 1);
907 init_object(s, object, 1);
81819f0f 908 return 1;
3ec09742 909
81819f0f
CL
910bad:
911 if (PageSlab(page)) {
912 /*
913 * If this is a slab page then lets do the best we can
914 * to avoid issues in the future. Marking all objects
672bba3a 915 * as used avoids touching the remaining objects.
81819f0f 916 */
24922684 917 slab_fix(s, "Marking all objects used");
39b26464 918 page->inuse = page->objects;
a973e9dd 919 page->freelist = NULL;
81819f0f
CL
920 }
921 return 0;
922}
923
3ec09742 924static int free_debug_processing(struct kmem_cache *s, struct page *page,
ce71e27c 925 void *object, unsigned long addr)
81819f0f
CL
926{
927 if (!check_slab(s, page))
928 goto fail;
929
930 if (!check_valid_pointer(s, page, object)) {
70d71228 931 slab_err(s, page, "Invalid object pointer 0x%p", object);
81819f0f
CL
932 goto fail;
933 }
934
935 if (on_freelist(s, page, object)) {
24922684 936 object_err(s, page, object, "Object already free");
81819f0f
CL
937 goto fail;
938 }
939
940 if (!check_object(s, page, object, 1))
941 return 0;
942
943 if (unlikely(s != page->slab)) {
3adbefee 944 if (!PageSlab(page)) {
70d71228
CL
945 slab_err(s, page, "Attempt to free object(0x%p) "
946 "outside of slab", object);
3adbefee 947 } else if (!page->slab) {
81819f0f 948 printk(KERN_ERR
70d71228 949 "SLUB <none>: no slab for object 0x%p.\n",
81819f0f 950 object);
70d71228 951 dump_stack();
06428780 952 } else
24922684
CL
953 object_err(s, page, object,
954 "page slab pointer corrupt.");
81819f0f
CL
955 goto fail;
956 }
3ec09742
CL
957
958 /* Special debug activities for freeing objects */
8a38082d 959 if (!PageSlubFrozen(page) && !page->freelist)
3ec09742
CL
960 remove_full(s, page);
961 if (s->flags & SLAB_STORE_USER)
962 set_track(s, object, TRACK_FREE, addr);
963 trace(s, page, object, 0);
964 init_object(s, object, 0);
81819f0f 965 return 1;
3ec09742 966
81819f0f 967fail:
24922684 968 slab_fix(s, "Object at 0x%p not freed", object);
81819f0f
CL
969 return 0;
970}
971
41ecc55b
CL
972static int __init setup_slub_debug(char *str)
973{
f0630fff
CL
974 slub_debug = DEBUG_DEFAULT_FLAGS;
975 if (*str++ != '=' || !*str)
976 /*
977 * No options specified. Switch on full debugging.
978 */
979 goto out;
980
981 if (*str == ',')
982 /*
983 * No options but restriction on slabs. This means full
984 * debugging for slabs matching a pattern.
985 */
986 goto check_slabs;
987
fa5ec8a1
DR
988 if (tolower(*str) == 'o') {
989 /*
990 * Avoid enabling debugging on caches if its minimum order
991 * would increase as a result.
992 */
993 disable_higher_order_debug = 1;
994 goto out;
995 }
996
f0630fff
CL
997 slub_debug = 0;
998 if (*str == '-')
999 /*
1000 * Switch off all debugging measures.
1001 */
1002 goto out;
1003
1004 /*
1005 * Determine which debug features should be switched on
1006 */
06428780 1007 for (; *str && *str != ','; str++) {
f0630fff
CL
1008 switch (tolower(*str)) {
1009 case 'f':
1010 slub_debug |= SLAB_DEBUG_FREE;
1011 break;
1012 case 'z':
1013 slub_debug |= SLAB_RED_ZONE;
1014 break;
1015 case 'p':
1016 slub_debug |= SLAB_POISON;
1017 break;
1018 case 'u':
1019 slub_debug |= SLAB_STORE_USER;
1020 break;
1021 case 't':
1022 slub_debug |= SLAB_TRACE;
1023 break;
1024 default:
1025 printk(KERN_ERR "slub_debug option '%c' "
06428780 1026 "unknown. skipped\n", *str);
f0630fff 1027 }
41ecc55b
CL
1028 }
1029
f0630fff 1030check_slabs:
41ecc55b
CL
1031 if (*str == ',')
1032 slub_debug_slabs = str + 1;
f0630fff 1033out:
41ecc55b
CL
1034 return 1;
1035}
1036
1037__setup("slub_debug", setup_slub_debug);
1038
ba0268a8
CL
1039static unsigned long kmem_cache_flags(unsigned long objsize,
1040 unsigned long flags, const char *name,
51cc5068 1041 void (*ctor)(void *))
41ecc55b 1042{
fa5ec8a1
DR
1043 int debug_flags = slub_debug;
1044
41ecc55b 1045 /*
e153362a 1046 * Enable debugging if selected on the kernel commandline.
41ecc55b 1047 */
fa5ec8a1
DR
1048 if (debug_flags) {
1049 if (slub_debug_slabs &&
1050 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))
1051 goto out;
1052
1053 /*
1054 * Disable debugging that increases slab size if the minimum
1055 * slab order would have increased as a result.
1056 */
1057 if (disable_higher_order_debug &&
1058 get_order(objsize + DEBUG_SIZE) > get_order(objsize))
1059 debug_flags &= ~DEBUG_SIZE_FLAGS;
ba0268a8 1060
fa5ec8a1
DR
1061 flags |= debug_flags;
1062 }
1063out:
ba0268a8 1064 return flags;
41ecc55b
CL
1065}
1066#else
3ec09742
CL
1067static inline void setup_object_debug(struct kmem_cache *s,
1068 struct page *page, void *object) {}
41ecc55b 1069
3ec09742 1070static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1071 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1072
3ec09742 1073static inline int free_debug_processing(struct kmem_cache *s,
ce71e27c 1074 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1075
41ecc55b
CL
1076static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1077 { return 1; }
1078static inline int check_object(struct kmem_cache *s, struct page *page,
1079 void *object, int active) { return 1; }
3ec09742 1080static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
ba0268a8
CL
1081static inline unsigned long kmem_cache_flags(unsigned long objsize,
1082 unsigned long flags, const char *name,
51cc5068 1083 void (*ctor)(void *))
ba0268a8
CL
1084{
1085 return flags;
1086}
41ecc55b 1087#define slub_debug 0
0f389ec6
CL
1088
1089static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1090 { return 0; }
26c02cf0
AB
1091static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1092 { return 0; }
205ab99d
CL
1093static inline void inc_slabs_node(struct kmem_cache *s, int node,
1094 int objects) {}
1095static inline void dec_slabs_node(struct kmem_cache *s, int node,
1096 int objects) {}
41ecc55b 1097#endif
205ab99d 1098
81819f0f
CL
1099/*
1100 * Slab allocation and freeing
1101 */
65c3376a
CL
1102static inline struct page *alloc_slab_page(gfp_t flags, int node,
1103 struct kmem_cache_order_objects oo)
1104{
1105 int order = oo_order(oo);
1106
b1eeab67
VN
1107 flags |= __GFP_NOTRACK;
1108
65c3376a
CL
1109 if (node == -1)
1110 return alloc_pages(flags, order);
1111 else
1112 return alloc_pages_node(node, flags, order);
1113}
1114
81819f0f
CL
1115static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1116{
06428780 1117 struct page *page;
834f3d11 1118 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1119 gfp_t alloc_gfp;
81819f0f 1120
b7a49f0d 1121 flags |= s->allocflags;
e12ba74d 1122
ba52270d
PE
1123 /*
1124 * Let the initial higher-order allocation fail under memory pressure
1125 * so we fall-back to the minimum order allocation.
1126 */
1127 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1128
1129 page = alloc_slab_page(alloc_gfp, node, oo);
65c3376a
CL
1130 if (unlikely(!page)) {
1131 oo = s->min;
1132 /*
1133 * Allocation may have failed due to fragmentation.
1134 * Try a lower order alloc if possible
1135 */
1136 page = alloc_slab_page(flags, node, oo);
1137 if (!page)
1138 return NULL;
81819f0f 1139
65c3376a
CL
1140 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1141 }
5a896d9e
VN
1142
1143 if (kmemcheck_enabled
1144 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS)))
1145 {
b1eeab67
VN
1146 int pages = 1 << oo_order(oo);
1147
1148 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1149
1150 /*
1151 * Objects from caches that have a constructor don't get
1152 * cleared when they're allocated, so we need to do it here.
1153 */
1154 if (s->ctor)
1155 kmemcheck_mark_uninitialized_pages(page, pages);
1156 else
1157 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1158 }
1159
834f3d11 1160 page->objects = oo_objects(oo);
81819f0f
CL
1161 mod_zone_page_state(page_zone(page),
1162 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1163 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
65c3376a 1164 1 << oo_order(oo));
81819f0f
CL
1165
1166 return page;
1167}
1168
1169static void setup_object(struct kmem_cache *s, struct page *page,
1170 void *object)
1171{
3ec09742 1172 setup_object_debug(s, page, object);
4f104934 1173 if (unlikely(s->ctor))
51cc5068 1174 s->ctor(object);
81819f0f
CL
1175}
1176
1177static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1178{
1179 struct page *page;
81819f0f 1180 void *start;
81819f0f
CL
1181 void *last;
1182 void *p;
1183
6cb06229 1184 BUG_ON(flags & GFP_SLAB_BUG_MASK);
81819f0f 1185
6cb06229
CL
1186 page = allocate_slab(s,
1187 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
81819f0f
CL
1188 if (!page)
1189 goto out;
1190
205ab99d 1191 inc_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1192 page->slab = s;
1193 page->flags |= 1 << PG_slab;
1194 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1195 SLAB_STORE_USER | SLAB_TRACE))
8a38082d 1196 __SetPageSlubDebug(page);
81819f0f
CL
1197
1198 start = page_address(page);
81819f0f
CL
1199
1200 if (unlikely(s->flags & SLAB_POISON))
834f3d11 1201 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
81819f0f
CL
1202
1203 last = start;
224a88be 1204 for_each_object(p, s, start, page->objects) {
81819f0f
CL
1205 setup_object(s, page, last);
1206 set_freepointer(s, last, p);
1207 last = p;
1208 }
1209 setup_object(s, page, last);
a973e9dd 1210 set_freepointer(s, last, NULL);
81819f0f
CL
1211
1212 page->freelist = start;
1213 page->inuse = 0;
1214out:
81819f0f
CL
1215 return page;
1216}
1217
1218static void __free_slab(struct kmem_cache *s, struct page *page)
1219{
834f3d11
CL
1220 int order = compound_order(page);
1221 int pages = 1 << order;
81819f0f 1222
8a38082d 1223 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
81819f0f
CL
1224 void *p;
1225
1226 slab_pad_check(s, page);
224a88be
CL
1227 for_each_object(p, s, page_address(page),
1228 page->objects)
81819f0f 1229 check_object(s, page, p, 0);
8a38082d 1230 __ClearPageSlubDebug(page);
81819f0f
CL
1231 }
1232
b1eeab67 1233 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1234
81819f0f
CL
1235 mod_zone_page_state(page_zone(page),
1236 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1237 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1238 -pages);
81819f0f 1239
49bd5221
CL
1240 __ClearPageSlab(page);
1241 reset_page_mapcount(page);
1eb5ac64
NP
1242 if (current->reclaim_state)
1243 current->reclaim_state->reclaimed_slab += pages;
834f3d11 1244 __free_pages(page, order);
81819f0f
CL
1245}
1246
1247static void rcu_free_slab(struct rcu_head *h)
1248{
1249 struct page *page;
1250
1251 page = container_of((struct list_head *)h, struct page, lru);
1252 __free_slab(page->slab, page);
1253}
1254
1255static void free_slab(struct kmem_cache *s, struct page *page)
1256{
1257 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1258 /*
1259 * RCU free overloads the RCU head over the LRU
1260 */
1261 struct rcu_head *head = (void *)&page->lru;
1262
1263 call_rcu(head, rcu_free_slab);
1264 } else
1265 __free_slab(s, page);
1266}
1267
1268static void discard_slab(struct kmem_cache *s, struct page *page)
1269{
205ab99d 1270 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1271 free_slab(s, page);
1272}
1273
1274/*
1275 * Per slab locking using the pagelock
1276 */
1277static __always_inline void slab_lock(struct page *page)
1278{
1279 bit_spin_lock(PG_locked, &page->flags);
1280}
1281
1282static __always_inline void slab_unlock(struct page *page)
1283{
a76d3546 1284 __bit_spin_unlock(PG_locked, &page->flags);
81819f0f
CL
1285}
1286
1287static __always_inline int slab_trylock(struct page *page)
1288{
1289 int rc = 1;
1290
1291 rc = bit_spin_trylock(PG_locked, &page->flags);
1292 return rc;
1293}
1294
1295/*
1296 * Management of partially allocated slabs
1297 */
7c2e132c
CL
1298static void add_partial(struct kmem_cache_node *n,
1299 struct page *page, int tail)
81819f0f 1300{
e95eed57
CL
1301 spin_lock(&n->list_lock);
1302 n->nr_partial++;
7c2e132c
CL
1303 if (tail)
1304 list_add_tail(&page->lru, &n->partial);
1305 else
1306 list_add(&page->lru, &n->partial);
81819f0f
CL
1307 spin_unlock(&n->list_lock);
1308}
1309
0121c619 1310static void remove_partial(struct kmem_cache *s, struct page *page)
81819f0f
CL
1311{
1312 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1313
1314 spin_lock(&n->list_lock);
1315 list_del(&page->lru);
1316 n->nr_partial--;
1317 spin_unlock(&n->list_lock);
1318}
1319
1320/*
672bba3a 1321 * Lock slab and remove from the partial list.
81819f0f 1322 *
672bba3a 1323 * Must hold list_lock.
81819f0f 1324 */
0121c619
CL
1325static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1326 struct page *page)
81819f0f
CL
1327{
1328 if (slab_trylock(page)) {
1329 list_del(&page->lru);
1330 n->nr_partial--;
8a38082d 1331 __SetPageSlubFrozen(page);
81819f0f
CL
1332 return 1;
1333 }
1334 return 0;
1335}
1336
1337/*
672bba3a 1338 * Try to allocate a partial slab from a specific node.
81819f0f
CL
1339 */
1340static struct page *get_partial_node(struct kmem_cache_node *n)
1341{
1342 struct page *page;
1343
1344 /*
1345 * Racy check. If we mistakenly see no partial slabs then we
1346 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1347 * partial slab and there is none available then get_partials()
1348 * will return NULL.
81819f0f
CL
1349 */
1350 if (!n || !n->nr_partial)
1351 return NULL;
1352
1353 spin_lock(&n->list_lock);
1354 list_for_each_entry(page, &n->partial, lru)
4b6f0750 1355 if (lock_and_freeze_slab(n, page))
81819f0f
CL
1356 goto out;
1357 page = NULL;
1358out:
1359 spin_unlock(&n->list_lock);
1360 return page;
1361}
1362
1363/*
672bba3a 1364 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f
CL
1365 */
1366static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1367{
1368#ifdef CONFIG_NUMA
1369 struct zonelist *zonelist;
dd1a239f 1370 struct zoneref *z;
54a6eb5c
MG
1371 struct zone *zone;
1372 enum zone_type high_zoneidx = gfp_zone(flags);
81819f0f
CL
1373 struct page *page;
1374
1375 /*
672bba3a
CL
1376 * The defrag ratio allows a configuration of the tradeoffs between
1377 * inter node defragmentation and node local allocations. A lower
1378 * defrag_ratio increases the tendency to do local allocations
1379 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1380 *
672bba3a
CL
1381 * If the defrag_ratio is set to 0 then kmalloc() always
1382 * returns node local objects. If the ratio is higher then kmalloc()
1383 * may return off node objects because partial slabs are obtained
1384 * from other nodes and filled up.
81819f0f 1385 *
6446faa2 1386 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
672bba3a
CL
1387 * defrag_ratio = 1000) then every (well almost) allocation will
1388 * first attempt to defrag slab caches on other nodes. This means
1389 * scanning over all nodes to look for partial slabs which may be
1390 * expensive if we do it every time we are trying to find a slab
1391 * with available objects.
81819f0f 1392 */
9824601e
CL
1393 if (!s->remote_node_defrag_ratio ||
1394 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1395 return NULL;
1396
0e88460d 1397 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
54a6eb5c 1398 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
81819f0f
CL
1399 struct kmem_cache_node *n;
1400
54a6eb5c 1401 n = get_node(s, zone_to_nid(zone));
81819f0f 1402
54a6eb5c 1403 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
3b89d7d8 1404 n->nr_partial > s->min_partial) {
81819f0f
CL
1405 page = get_partial_node(n);
1406 if (page)
1407 return page;
1408 }
1409 }
1410#endif
1411 return NULL;
1412}
1413
1414/*
1415 * Get a partial page, lock it and return it.
1416 */
1417static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1418{
1419 struct page *page;
1420 int searchnode = (node == -1) ? numa_node_id() : node;
1421
1422 page = get_partial_node(get_node(s, searchnode));
1423 if (page || (flags & __GFP_THISNODE))
1424 return page;
1425
1426 return get_any_partial(s, flags);
1427}
1428
1429/*
1430 * Move a page back to the lists.
1431 *
1432 * Must be called with the slab lock held.
1433 *
1434 * On exit the slab lock will have been dropped.
1435 */
7c2e132c 1436static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
81819f0f 1437{
e95eed57 1438 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
8ff12cfc 1439 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
e95eed57 1440
8a38082d 1441 __ClearPageSlubFrozen(page);
81819f0f 1442 if (page->inuse) {
e95eed57 1443
a973e9dd 1444 if (page->freelist) {
7c2e132c 1445 add_partial(n, page, tail);
8ff12cfc
CL
1446 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1447 } else {
1448 stat(c, DEACTIVATE_FULL);
8a38082d
AW
1449 if (SLABDEBUG && PageSlubDebug(page) &&
1450 (s->flags & SLAB_STORE_USER))
8ff12cfc
CL
1451 add_full(n, page);
1452 }
81819f0f
CL
1453 slab_unlock(page);
1454 } else {
8ff12cfc 1455 stat(c, DEACTIVATE_EMPTY);
3b89d7d8 1456 if (n->nr_partial < s->min_partial) {
e95eed57 1457 /*
672bba3a
CL
1458 * Adding an empty slab to the partial slabs in order
1459 * to avoid page allocator overhead. This slab needs
1460 * to come after the other slabs with objects in
6446faa2
CL
1461 * so that the others get filled first. That way the
1462 * size of the partial list stays small.
1463 *
0121c619
CL
1464 * kmem_cache_shrink can reclaim any empty slabs from
1465 * the partial list.
e95eed57 1466 */
7c2e132c 1467 add_partial(n, page, 1);
e95eed57
CL
1468 slab_unlock(page);
1469 } else {
1470 slab_unlock(page);
8ff12cfc 1471 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
e95eed57
CL
1472 discard_slab(s, page);
1473 }
81819f0f
CL
1474 }
1475}
1476
1477/*
1478 * Remove the cpu slab
1479 */
dfb4f096 1480static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1481{
dfb4f096 1482 struct page *page = c->page;
7c2e132c 1483 int tail = 1;
8ff12cfc 1484
b773ad73 1485 if (page->freelist)
8ff12cfc 1486 stat(c, DEACTIVATE_REMOTE_FREES);
894b8788 1487 /*
6446faa2 1488 * Merge cpu freelist into slab freelist. Typically we get here
894b8788
CL
1489 * because both freelists are empty. So this is unlikely
1490 * to occur.
1491 */
a973e9dd 1492 while (unlikely(c->freelist)) {
894b8788
CL
1493 void **object;
1494
7c2e132c
CL
1495 tail = 0; /* Hot objects. Put the slab first */
1496
894b8788 1497 /* Retrieve object from cpu_freelist */
dfb4f096 1498 object = c->freelist;
b3fba8da 1499 c->freelist = c->freelist[c->offset];
894b8788
CL
1500
1501 /* And put onto the regular freelist */
b3fba8da 1502 object[c->offset] = page->freelist;
894b8788
CL
1503 page->freelist = object;
1504 page->inuse--;
1505 }
dfb4f096 1506 c->page = NULL;
7c2e132c 1507 unfreeze_slab(s, page, tail);
81819f0f
CL
1508}
1509
dfb4f096 1510static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 1511{
8ff12cfc 1512 stat(c, CPUSLAB_FLUSH);
dfb4f096
CL
1513 slab_lock(c->page);
1514 deactivate_slab(s, c);
81819f0f
CL
1515}
1516
1517/*
1518 * Flush cpu slab.
6446faa2 1519 *
81819f0f
CL
1520 * Called from IPI handler with interrupts disabled.
1521 */
0c710013 1522static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 1523{
dfb4f096 1524 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
81819f0f 1525
dfb4f096
CL
1526 if (likely(c && c->page))
1527 flush_slab(s, c);
81819f0f
CL
1528}
1529
1530static void flush_cpu_slab(void *d)
1531{
1532 struct kmem_cache *s = d;
81819f0f 1533
dfb4f096 1534 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
1535}
1536
1537static void flush_all(struct kmem_cache *s)
1538{
15c8b6c1 1539 on_each_cpu(flush_cpu_slab, s, 1);
81819f0f
CL
1540}
1541
dfb4f096
CL
1542/*
1543 * Check if the objects in a per cpu structure fit numa
1544 * locality expectations.
1545 */
1546static inline int node_match(struct kmem_cache_cpu *c, int node)
1547{
1548#ifdef CONFIG_NUMA
1549 if (node != -1 && c->node != node)
1550 return 0;
1551#endif
1552 return 1;
1553}
1554
781b2ba6
PE
1555static int count_free(struct page *page)
1556{
1557 return page->objects - page->inuse;
1558}
1559
1560static unsigned long count_partial(struct kmem_cache_node *n,
1561 int (*get_count)(struct page *))
1562{
1563 unsigned long flags;
1564 unsigned long x = 0;
1565 struct page *page;
1566
1567 spin_lock_irqsave(&n->list_lock, flags);
1568 list_for_each_entry(page, &n->partial, lru)
1569 x += get_count(page);
1570 spin_unlock_irqrestore(&n->list_lock, flags);
1571 return x;
1572}
1573
26c02cf0
AB
1574static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1575{
1576#ifdef CONFIG_SLUB_DEBUG
1577 return atomic_long_read(&n->total_objects);
1578#else
1579 return 0;
1580#endif
1581}
1582
781b2ba6
PE
1583static noinline void
1584slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1585{
1586 int node;
1587
1588 printk(KERN_WARNING
1589 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1590 nid, gfpflags);
1591 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1592 "default order: %d, min order: %d\n", s->name, s->objsize,
1593 s->size, oo_order(s->oo), oo_order(s->min));
1594
fa5ec8a1
DR
1595 if (oo_order(s->min) > get_order(s->objsize))
1596 printk(KERN_WARNING " %s debugging increased min order, use "
1597 "slub_debug=O to disable.\n", s->name);
1598
781b2ba6
PE
1599 for_each_online_node(node) {
1600 struct kmem_cache_node *n = get_node(s, node);
1601 unsigned long nr_slabs;
1602 unsigned long nr_objs;
1603 unsigned long nr_free;
1604
1605 if (!n)
1606 continue;
1607
26c02cf0
AB
1608 nr_free = count_partial(n, count_free);
1609 nr_slabs = node_nr_slabs(n);
1610 nr_objs = node_nr_objs(n);
781b2ba6
PE
1611
1612 printk(KERN_WARNING
1613 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1614 node, nr_slabs, nr_objs, nr_free);
1615 }
1616}
1617
81819f0f 1618/*
894b8788
CL
1619 * Slow path. The lockless freelist is empty or we need to perform
1620 * debugging duties.
1621 *
1622 * Interrupts are disabled.
81819f0f 1623 *
894b8788
CL
1624 * Processing is still very fast if new objects have been freed to the
1625 * regular freelist. In that case we simply take over the regular freelist
1626 * as the lockless freelist and zap the regular freelist.
81819f0f 1627 *
894b8788
CL
1628 * If that is not working then we fall back to the partial lists. We take the
1629 * first element of the freelist as the object to allocate now and move the
1630 * rest of the freelist to the lockless freelist.
81819f0f 1631 *
894b8788 1632 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
1633 * we need to allocate a new slab. This is the slowest path since it involves
1634 * a call to the page allocator and the setup of a new slab.
81819f0f 1635 */
ce71e27c
EGM
1636static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1637 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 1638{
81819f0f 1639 void **object;
dfb4f096 1640 struct page *new;
81819f0f 1641
e72e9c23
LT
1642 /* We handle __GFP_ZERO in the caller */
1643 gfpflags &= ~__GFP_ZERO;
1644
dfb4f096 1645 if (!c->page)
81819f0f
CL
1646 goto new_slab;
1647
dfb4f096
CL
1648 slab_lock(c->page);
1649 if (unlikely(!node_match(c, node)))
81819f0f 1650 goto another_slab;
6446faa2 1651
8ff12cfc 1652 stat(c, ALLOC_REFILL);
6446faa2 1653
894b8788 1654load_freelist:
dfb4f096 1655 object = c->page->freelist;
a973e9dd 1656 if (unlikely(!object))
81819f0f 1657 goto another_slab;
8a38082d 1658 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
81819f0f
CL
1659 goto debug;
1660
b3fba8da 1661 c->freelist = object[c->offset];
39b26464 1662 c->page->inuse = c->page->objects;
a973e9dd 1663 c->page->freelist = NULL;
dfb4f096 1664 c->node = page_to_nid(c->page);
1f84260c 1665unlock_out:
dfb4f096 1666 slab_unlock(c->page);
8ff12cfc 1667 stat(c, ALLOC_SLOWPATH);
81819f0f
CL
1668 return object;
1669
1670another_slab:
dfb4f096 1671 deactivate_slab(s, c);
81819f0f
CL
1672
1673new_slab:
dfb4f096
CL
1674 new = get_partial(s, gfpflags, node);
1675 if (new) {
1676 c->page = new;
8ff12cfc 1677 stat(c, ALLOC_FROM_PARTIAL);
894b8788 1678 goto load_freelist;
81819f0f
CL
1679 }
1680
b811c202
CL
1681 if (gfpflags & __GFP_WAIT)
1682 local_irq_enable();
1683
dfb4f096 1684 new = new_slab(s, gfpflags, node);
b811c202
CL
1685
1686 if (gfpflags & __GFP_WAIT)
1687 local_irq_disable();
1688
dfb4f096
CL
1689 if (new) {
1690 c = get_cpu_slab(s, smp_processor_id());
8ff12cfc 1691 stat(c, ALLOC_SLAB);
05aa3450 1692 if (c->page)
dfb4f096 1693 flush_slab(s, c);
dfb4f096 1694 slab_lock(new);
8a38082d 1695 __SetPageSlubFrozen(new);
dfb4f096 1696 c->page = new;
4b6f0750 1697 goto load_freelist;
81819f0f 1698 }
95f85989
PE
1699 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1700 slab_out_of_memory(s, gfpflags, node);
71c7a06f 1701 return NULL;
81819f0f 1702debug:
dfb4f096 1703 if (!alloc_debug_processing(s, c->page, object, addr))
81819f0f 1704 goto another_slab;
894b8788 1705
dfb4f096 1706 c->page->inuse++;
b3fba8da 1707 c->page->freelist = object[c->offset];
ee3c72a1 1708 c->node = -1;
1f84260c 1709 goto unlock_out;
894b8788
CL
1710}
1711
1712/*
1713 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1714 * have the fastpath folded into their functions. So no function call
1715 * overhead for requests that can be satisfied on the fastpath.
1716 *
1717 * The fastpath works by first checking if the lockless freelist can be used.
1718 * If not then __slab_alloc is called for slow processing.
1719 *
1720 * Otherwise we can simply pick the next object from the lockless free list.
1721 */
06428780 1722static __always_inline void *slab_alloc(struct kmem_cache *s,
ce71e27c 1723 gfp_t gfpflags, int node, unsigned long addr)
894b8788 1724{
894b8788 1725 void **object;
dfb4f096 1726 struct kmem_cache_cpu *c;
1f84260c 1727 unsigned long flags;
bdb21928 1728 unsigned int objsize;
1f84260c 1729
dcce284a 1730 gfpflags &= gfp_allowed_mask;
7e85ee0c 1731
cf40bd16 1732 lockdep_trace_alloc(gfpflags);
89124d70 1733 might_sleep_if(gfpflags & __GFP_WAIT);
3c506efd 1734
773ff60e
AM
1735 if (should_failslab(s->objsize, gfpflags))
1736 return NULL;
1f84260c 1737
894b8788 1738 local_irq_save(flags);
dfb4f096 1739 c = get_cpu_slab(s, smp_processor_id());
bdb21928 1740 objsize = c->objsize;
a973e9dd 1741 if (unlikely(!c->freelist || !node_match(c, node)))
894b8788 1742
dfb4f096 1743 object = __slab_alloc(s, gfpflags, node, addr, c);
894b8788
CL
1744
1745 else {
dfb4f096 1746 object = c->freelist;
b3fba8da 1747 c->freelist = object[c->offset];
8ff12cfc 1748 stat(c, ALLOC_FASTPATH);
894b8788
CL
1749 }
1750 local_irq_restore(flags);
d07dbea4
CL
1751
1752 if (unlikely((gfpflags & __GFP_ZERO) && object))
bdb21928 1753 memset(object, 0, objsize);
d07dbea4 1754
5a896d9e 1755 kmemcheck_slab_alloc(s, gfpflags, object, c->objsize);
06f22f13 1756 kmemleak_alloc_recursive(object, objsize, 1, s->flags, gfpflags);
5a896d9e 1757
894b8788 1758 return object;
81819f0f
CL
1759}
1760
1761void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1762{
5b882be4
EGM
1763 void *ret = slab_alloc(s, gfpflags, -1, _RET_IP_);
1764
ca2b84cb 1765 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
5b882be4
EGM
1766
1767 return ret;
81819f0f
CL
1768}
1769EXPORT_SYMBOL(kmem_cache_alloc);
1770
5b882be4
EGM
1771#ifdef CONFIG_KMEMTRACE
1772void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1773{
1774 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1775}
1776EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1777#endif
1778
81819f0f
CL
1779#ifdef CONFIG_NUMA
1780void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1781{
5b882be4
EGM
1782 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1783
ca2b84cb
EGM
1784 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1785 s->objsize, s->size, gfpflags, node);
5b882be4
EGM
1786
1787 return ret;
81819f0f
CL
1788}
1789EXPORT_SYMBOL(kmem_cache_alloc_node);
1790#endif
1791
5b882be4
EGM
1792#ifdef CONFIG_KMEMTRACE
1793void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1794 gfp_t gfpflags,
1795 int node)
1796{
1797 return slab_alloc(s, gfpflags, node, _RET_IP_);
1798}
1799EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1800#endif
1801
81819f0f 1802/*
894b8788
CL
1803 * Slow patch handling. This may still be called frequently since objects
1804 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 1805 *
894b8788
CL
1806 * So we still attempt to reduce cache line usage. Just take the slab
1807 * lock and free the item. If there is no additional partial page
1808 * handling required then we can return immediately.
81819f0f 1809 */
894b8788 1810static void __slab_free(struct kmem_cache *s, struct page *page,
ce71e27c 1811 void *x, unsigned long addr, unsigned int offset)
81819f0f
CL
1812{
1813 void *prior;
1814 void **object = (void *)x;
8ff12cfc 1815 struct kmem_cache_cpu *c;
81819f0f 1816
8ff12cfc
CL
1817 c = get_cpu_slab(s, raw_smp_processor_id());
1818 stat(c, FREE_SLOWPATH);
81819f0f
CL
1819 slab_lock(page);
1820
8a38082d 1821 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
81819f0f 1822 goto debug;
6446faa2 1823
81819f0f 1824checks_ok:
b3fba8da 1825 prior = object[offset] = page->freelist;
81819f0f
CL
1826 page->freelist = object;
1827 page->inuse--;
1828
8a38082d 1829 if (unlikely(PageSlubFrozen(page))) {
8ff12cfc 1830 stat(c, FREE_FROZEN);
81819f0f 1831 goto out_unlock;
8ff12cfc 1832 }
81819f0f
CL
1833
1834 if (unlikely(!page->inuse))
1835 goto slab_empty;
1836
1837 /*
6446faa2 1838 * Objects left in the slab. If it was not on the partial list before
81819f0f
CL
1839 * then add it.
1840 */
a973e9dd 1841 if (unlikely(!prior)) {
7c2e132c 1842 add_partial(get_node(s, page_to_nid(page)), page, 1);
8ff12cfc
CL
1843 stat(c, FREE_ADD_PARTIAL);
1844 }
81819f0f
CL
1845
1846out_unlock:
1847 slab_unlock(page);
81819f0f
CL
1848 return;
1849
1850slab_empty:
a973e9dd 1851 if (prior) {
81819f0f 1852 /*
672bba3a 1853 * Slab still on the partial list.
81819f0f
CL
1854 */
1855 remove_partial(s, page);
8ff12cfc
CL
1856 stat(c, FREE_REMOVE_PARTIAL);
1857 }
81819f0f 1858 slab_unlock(page);
8ff12cfc 1859 stat(c, FREE_SLAB);
81819f0f 1860 discard_slab(s, page);
81819f0f
CL
1861 return;
1862
1863debug:
3ec09742 1864 if (!free_debug_processing(s, page, x, addr))
77c5e2d0 1865 goto out_unlock;
77c5e2d0 1866 goto checks_ok;
81819f0f
CL
1867}
1868
894b8788
CL
1869/*
1870 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1871 * can perform fastpath freeing without additional function calls.
1872 *
1873 * The fastpath is only possible if we are freeing to the current cpu slab
1874 * of this processor. This typically the case if we have just allocated
1875 * the item before.
1876 *
1877 * If fastpath is not possible then fall back to __slab_free where we deal
1878 * with all sorts of special processing.
1879 */
06428780 1880static __always_inline void slab_free(struct kmem_cache *s,
ce71e27c 1881 struct page *page, void *x, unsigned long addr)
894b8788
CL
1882{
1883 void **object = (void *)x;
dfb4f096 1884 struct kmem_cache_cpu *c;
1f84260c
CL
1885 unsigned long flags;
1886
06f22f13 1887 kmemleak_free_recursive(x, s->flags);
894b8788 1888 local_irq_save(flags);
dfb4f096 1889 c = get_cpu_slab(s, smp_processor_id());
5a896d9e 1890 kmemcheck_slab_free(s, object, c->objsize);
27d9e4e9 1891 debug_check_no_locks_freed(object, c->objsize);
3ac7fe5a 1892 if (!(s->flags & SLAB_DEBUG_OBJECTS))
6047a007 1893 debug_check_no_obj_freed(object, c->objsize);
ee3c72a1 1894 if (likely(page == c->page && c->node >= 0)) {
b3fba8da 1895 object[c->offset] = c->freelist;
dfb4f096 1896 c->freelist = object;
8ff12cfc 1897 stat(c, FREE_FASTPATH);
894b8788 1898 } else
b3fba8da 1899 __slab_free(s, page, x, addr, c->offset);
894b8788
CL
1900
1901 local_irq_restore(flags);
1902}
1903
81819f0f
CL
1904void kmem_cache_free(struct kmem_cache *s, void *x)
1905{
77c5e2d0 1906 struct page *page;
81819f0f 1907
b49af68f 1908 page = virt_to_head_page(x);
81819f0f 1909
ce71e27c 1910 slab_free(s, page, x, _RET_IP_);
5b882be4 1911
ca2b84cb 1912 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
1913}
1914EXPORT_SYMBOL(kmem_cache_free);
1915
e9beef18 1916/* Figure out on which slab page the object resides */
81819f0f
CL
1917static struct page *get_object_page(const void *x)
1918{
b49af68f 1919 struct page *page = virt_to_head_page(x);
81819f0f
CL
1920
1921 if (!PageSlab(page))
1922 return NULL;
1923
1924 return page;
1925}
1926
1927/*
672bba3a
CL
1928 * Object placement in a slab is made very easy because we always start at
1929 * offset 0. If we tune the size of the object to the alignment then we can
1930 * get the required alignment by putting one properly sized object after
1931 * another.
81819f0f
CL
1932 *
1933 * Notice that the allocation order determines the sizes of the per cpu
1934 * caches. Each processor has always one slab available for allocations.
1935 * Increasing the allocation order reduces the number of times that slabs
672bba3a 1936 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 1937 * locking overhead.
81819f0f
CL
1938 */
1939
1940/*
1941 * Mininum / Maximum order of slab pages. This influences locking overhead
1942 * and slab fragmentation. A higher order reduces the number of partial slabs
1943 * and increases the number of allocations possible without having to
1944 * take the list_lock.
1945 */
1946static int slub_min_order;
114e9e89 1947static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 1948static int slub_min_objects;
81819f0f
CL
1949
1950/*
1951 * Merge control. If this is set then no merging of slab caches will occur.
672bba3a 1952 * (Could be removed. This was introduced to pacify the merge skeptics.)
81819f0f
CL
1953 */
1954static int slub_nomerge;
1955
81819f0f
CL
1956/*
1957 * Calculate the order of allocation given an slab object size.
1958 *
672bba3a
CL
1959 * The order of allocation has significant impact on performance and other
1960 * system components. Generally order 0 allocations should be preferred since
1961 * order 0 does not cause fragmentation in the page allocator. Larger objects
1962 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 1963 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
1964 * would be wasted.
1965 *
1966 * In order to reach satisfactory performance we must ensure that a minimum
1967 * number of objects is in one slab. Otherwise we may generate too much
1968 * activity on the partial lists which requires taking the list_lock. This is
1969 * less a concern for large slabs though which are rarely used.
81819f0f 1970 *
672bba3a
CL
1971 * slub_max_order specifies the order where we begin to stop considering the
1972 * number of objects in a slab as critical. If we reach slub_max_order then
1973 * we try to keep the page order as low as possible. So we accept more waste
1974 * of space in favor of a small page order.
81819f0f 1975 *
672bba3a
CL
1976 * Higher order allocations also allow the placement of more objects in a
1977 * slab and thereby reduce object handling overhead. If the user has
1978 * requested a higher mininum order then we start with that one instead of
1979 * the smallest order which will fit the object.
81819f0f 1980 */
5e6d444e
CL
1981static inline int slab_order(int size, int min_objects,
1982 int max_order, int fract_leftover)
81819f0f
CL
1983{
1984 int order;
1985 int rem;
6300ea75 1986 int min_order = slub_min_order;
81819f0f 1987
210b5c06
CG
1988 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1989 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 1990
6300ea75 1991 for (order = max(min_order,
5e6d444e
CL
1992 fls(min_objects * size - 1) - PAGE_SHIFT);
1993 order <= max_order; order++) {
81819f0f 1994
5e6d444e 1995 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 1996
5e6d444e 1997 if (slab_size < min_objects * size)
81819f0f
CL
1998 continue;
1999
2000 rem = slab_size % size;
2001
5e6d444e 2002 if (rem <= slab_size / fract_leftover)
81819f0f
CL
2003 break;
2004
2005 }
672bba3a 2006
81819f0f
CL
2007 return order;
2008}
2009
5e6d444e
CL
2010static inline int calculate_order(int size)
2011{
2012 int order;
2013 int min_objects;
2014 int fraction;
e8120ff1 2015 int max_objects;
5e6d444e
CL
2016
2017 /*
2018 * Attempt to find best configuration for a slab. This
2019 * works by first attempting to generate a layout with
2020 * the best configuration and backing off gradually.
2021 *
2022 * First we reduce the acceptable waste in a slab. Then
2023 * we reduce the minimum objects required in a slab.
2024 */
2025 min_objects = slub_min_objects;
9b2cd506
CL
2026 if (!min_objects)
2027 min_objects = 4 * (fls(nr_cpu_ids) + 1);
e8120ff1
ZY
2028 max_objects = (PAGE_SIZE << slub_max_order)/size;
2029 min_objects = min(min_objects, max_objects);
2030
5e6d444e 2031 while (min_objects > 1) {
c124f5b5 2032 fraction = 16;
5e6d444e
CL
2033 while (fraction >= 4) {
2034 order = slab_order(size, min_objects,
2035 slub_max_order, fraction);
2036 if (order <= slub_max_order)
2037 return order;
2038 fraction /= 2;
2039 }
e8120ff1 2040 min_objects --;
5e6d444e
CL
2041 }
2042
2043 /*
2044 * We were unable to place multiple objects in a slab. Now
2045 * lets see if we can place a single object there.
2046 */
2047 order = slab_order(size, 1, slub_max_order, 1);
2048 if (order <= slub_max_order)
2049 return order;
2050
2051 /*
2052 * Doh this slab cannot be placed using slub_max_order.
2053 */
2054 order = slab_order(size, 1, MAX_ORDER, 1);
818cf590 2055 if (order < MAX_ORDER)
5e6d444e
CL
2056 return order;
2057 return -ENOSYS;
2058}
2059
81819f0f 2060/*
672bba3a 2061 * Figure out what the alignment of the objects will be.
81819f0f
CL
2062 */
2063static unsigned long calculate_alignment(unsigned long flags,
2064 unsigned long align, unsigned long size)
2065{
2066 /*
6446faa2
CL
2067 * If the user wants hardware cache aligned objects then follow that
2068 * suggestion if the object is sufficiently large.
81819f0f 2069 *
6446faa2
CL
2070 * The hardware cache alignment cannot override the specified
2071 * alignment though. If that is greater then use it.
81819f0f 2072 */
b6210386
NP
2073 if (flags & SLAB_HWCACHE_ALIGN) {
2074 unsigned long ralign = cache_line_size();
2075 while (size <= ralign / 2)
2076 ralign /= 2;
2077 align = max(align, ralign);
2078 }
81819f0f
CL
2079
2080 if (align < ARCH_SLAB_MINALIGN)
b6210386 2081 align = ARCH_SLAB_MINALIGN;
81819f0f
CL
2082
2083 return ALIGN(align, sizeof(void *));
2084}
2085
dfb4f096
CL
2086static void init_kmem_cache_cpu(struct kmem_cache *s,
2087 struct kmem_cache_cpu *c)
2088{
2089 c->page = NULL;
a973e9dd 2090 c->freelist = NULL;
dfb4f096 2091 c->node = 0;
42a9fdbb
CL
2092 c->offset = s->offset / sizeof(void *);
2093 c->objsize = s->objsize;
62f75532
PE
2094#ifdef CONFIG_SLUB_STATS
2095 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
2096#endif
dfb4f096
CL
2097}
2098
5595cffc
PE
2099static void
2100init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
81819f0f
CL
2101{
2102 n->nr_partial = 0;
81819f0f
CL
2103 spin_lock_init(&n->list_lock);
2104 INIT_LIST_HEAD(&n->partial);
8ab1372f 2105#ifdef CONFIG_SLUB_DEBUG
0f389ec6 2106 atomic_long_set(&n->nr_slabs, 0);
02b71b70 2107 atomic_long_set(&n->total_objects, 0);
643b1138 2108 INIT_LIST_HEAD(&n->full);
8ab1372f 2109#endif
81819f0f
CL
2110}
2111
4c93c355
CL
2112#ifdef CONFIG_SMP
2113/*
2114 * Per cpu array for per cpu structures.
2115 *
2116 * The per cpu array places all kmem_cache_cpu structures from one processor
2117 * close together meaning that it becomes possible that multiple per cpu
2118 * structures are contained in one cacheline. This may be particularly
2119 * beneficial for the kmalloc caches.
2120 *
2121 * A desktop system typically has around 60-80 slabs. With 100 here we are
2122 * likely able to get per cpu structures for all caches from the array defined
2123 * here. We must be able to cover all kmalloc caches during bootstrap.
2124 *
2125 * If the per cpu array is exhausted then fall back to kmalloc
2126 * of individual cachelines. No sharing is possible then.
2127 */
2128#define NR_KMEM_CACHE_CPU 100
2129
2130static DEFINE_PER_CPU(struct kmem_cache_cpu,
2131 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
2132
2133static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
174596a0 2134static DECLARE_BITMAP(kmem_cach_cpu_free_init_once, CONFIG_NR_CPUS);
4c93c355
CL
2135
2136static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
2137 int cpu, gfp_t flags)
2138{
2139 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
2140
2141 if (c)
2142 per_cpu(kmem_cache_cpu_free, cpu) =
2143 (void *)c->freelist;
2144 else {
2145 /* Table overflow: So allocate ourselves */
2146 c = kmalloc_node(
2147 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
2148 flags, cpu_to_node(cpu));
2149 if (!c)
2150 return NULL;
2151 }
2152
2153 init_kmem_cache_cpu(s, c);
2154 return c;
2155}
2156
2157static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
2158{
2159 if (c < per_cpu(kmem_cache_cpu, cpu) ||
37189094 2160 c >= per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
4c93c355
CL
2161 kfree(c);
2162 return;
2163 }
2164 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
2165 per_cpu(kmem_cache_cpu_free, cpu) = c;
2166}
2167
2168static void free_kmem_cache_cpus(struct kmem_cache *s)
2169{
2170 int cpu;
2171
2172 for_each_online_cpu(cpu) {
2173 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2174
2175 if (c) {
2176 s->cpu_slab[cpu] = NULL;
2177 free_kmem_cache_cpu(c, cpu);
2178 }
2179 }
2180}
2181
2182static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2183{
2184 int cpu;
2185
2186 for_each_online_cpu(cpu) {
2187 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2188
2189 if (c)
2190 continue;
2191
2192 c = alloc_kmem_cache_cpu(s, cpu, flags);
2193 if (!c) {
2194 free_kmem_cache_cpus(s);
2195 return 0;
2196 }
2197 s->cpu_slab[cpu] = c;
2198 }
2199 return 1;
2200}
2201
2202/*
2203 * Initialize the per cpu array.
2204 */
2205static void init_alloc_cpu_cpu(int cpu)
2206{
2207 int i;
2208
174596a0 2209 if (cpumask_test_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once)))
4c93c355
CL
2210 return;
2211
2212 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2213 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2214
174596a0 2215 cpumask_set_cpu(cpu, to_cpumask(kmem_cach_cpu_free_init_once));
4c93c355
CL
2216}
2217
2218static void __init init_alloc_cpu(void)
2219{
2220 int cpu;
2221
2222 for_each_online_cpu(cpu)
2223 init_alloc_cpu_cpu(cpu);
2224 }
2225
2226#else
2227static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2228static inline void init_alloc_cpu(void) {}
2229
2230static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2231{
2232 init_kmem_cache_cpu(s, &s->cpu_slab);
2233 return 1;
2234}
2235#endif
2236
81819f0f
CL
2237#ifdef CONFIG_NUMA
2238/*
2239 * No kmalloc_node yet so do it by hand. We know that this is the first
2240 * slab on the node for this slabcache. There are no concurrent accesses
2241 * possible.
2242 *
2243 * Note that this function only works on the kmalloc_node_cache
4c93c355
CL
2244 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2245 * memory on a fresh node that has no slab structures yet.
81819f0f 2246 */
0094de92 2247static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
81819f0f
CL
2248{
2249 struct page *page;
2250 struct kmem_cache_node *n;
ba84c73c 2251 unsigned long flags;
81819f0f
CL
2252
2253 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2254
a2f92ee7 2255 page = new_slab(kmalloc_caches, gfpflags, node);
81819f0f
CL
2256
2257 BUG_ON(!page);
a2f92ee7
CL
2258 if (page_to_nid(page) != node) {
2259 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2260 "node %d\n", node);
2261 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2262 "in order to be able to continue\n");
2263 }
2264
81819f0f
CL
2265 n = page->freelist;
2266 BUG_ON(!n);
2267 page->freelist = get_freepointer(kmalloc_caches, n);
2268 page->inuse++;
2269 kmalloc_caches->node[node] = n;
8ab1372f 2270#ifdef CONFIG_SLUB_DEBUG
d45f39cb
CL
2271 init_object(kmalloc_caches, n, 1);
2272 init_tracking(kmalloc_caches, n);
8ab1372f 2273#endif
5595cffc 2274 init_kmem_cache_node(n, kmalloc_caches);
205ab99d 2275 inc_slabs_node(kmalloc_caches, node, page->objects);
6446faa2 2276
ba84c73c 2277 /*
2278 * lockdep requires consistent irq usage for each lock
2279 * so even though there cannot be a race this early in
2280 * the boot sequence, we still disable irqs.
2281 */
2282 local_irq_save(flags);
7c2e132c 2283 add_partial(n, page, 0);
ba84c73c 2284 local_irq_restore(flags);
81819f0f
CL
2285}
2286
2287static void free_kmem_cache_nodes(struct kmem_cache *s)
2288{
2289 int node;
2290
f64dc58c 2291 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2292 struct kmem_cache_node *n = s->node[node];
2293 if (n && n != &s->local_node)
2294 kmem_cache_free(kmalloc_caches, n);
2295 s->node[node] = NULL;
2296 }
2297}
2298
2299static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2300{
2301 int node;
2302 int local_node;
2303
2304 if (slab_state >= UP)
2305 local_node = page_to_nid(virt_to_page(s));
2306 else
2307 local_node = 0;
2308
f64dc58c 2309 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2310 struct kmem_cache_node *n;
2311
2312 if (local_node == node)
2313 n = &s->local_node;
2314 else {
2315 if (slab_state == DOWN) {
0094de92 2316 early_kmem_cache_node_alloc(gfpflags, node);
81819f0f
CL
2317 continue;
2318 }
2319 n = kmem_cache_alloc_node(kmalloc_caches,
2320 gfpflags, node);
2321
2322 if (!n) {
2323 free_kmem_cache_nodes(s);
2324 return 0;
2325 }
2326
2327 }
2328 s->node[node] = n;
5595cffc 2329 init_kmem_cache_node(n, s);
81819f0f
CL
2330 }
2331 return 1;
2332}
2333#else
2334static void free_kmem_cache_nodes(struct kmem_cache *s)
2335{
2336}
2337
2338static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2339{
5595cffc 2340 init_kmem_cache_node(&s->local_node, s);
81819f0f
CL
2341 return 1;
2342}
2343#endif
2344
c0bdb232 2345static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
2346{
2347 if (min < MIN_PARTIAL)
2348 min = MIN_PARTIAL;
2349 else if (min > MAX_PARTIAL)
2350 min = MAX_PARTIAL;
2351 s->min_partial = min;
2352}
2353
81819f0f
CL
2354/*
2355 * calculate_sizes() determines the order and the distribution of data within
2356 * a slab object.
2357 */
06b285dc 2358static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
2359{
2360 unsigned long flags = s->flags;
2361 unsigned long size = s->objsize;
2362 unsigned long align = s->align;
834f3d11 2363 int order;
81819f0f 2364
d8b42bf5
CL
2365 /*
2366 * Round up object size to the next word boundary. We can only
2367 * place the free pointer at word boundaries and this determines
2368 * the possible location of the free pointer.
2369 */
2370 size = ALIGN(size, sizeof(void *));
2371
2372#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2373 /*
2374 * Determine if we can poison the object itself. If the user of
2375 * the slab may touch the object after free or before allocation
2376 * then we should never poison the object itself.
2377 */
2378 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
c59def9f 2379 !s->ctor)
81819f0f
CL
2380 s->flags |= __OBJECT_POISON;
2381 else
2382 s->flags &= ~__OBJECT_POISON;
2383
81819f0f
CL
2384
2385 /*
672bba3a 2386 * If we are Redzoning then check if there is some space between the
81819f0f 2387 * end of the object and the free pointer. If not then add an
672bba3a 2388 * additional word to have some bytes to store Redzone information.
81819f0f
CL
2389 */
2390 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2391 size += sizeof(void *);
41ecc55b 2392#endif
81819f0f
CL
2393
2394 /*
672bba3a
CL
2395 * With that we have determined the number of bytes in actual use
2396 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
2397 */
2398 s->inuse = size;
2399
2400 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
c59def9f 2401 s->ctor)) {
81819f0f
CL
2402 /*
2403 * Relocate free pointer after the object if it is not
2404 * permitted to overwrite the first word of the object on
2405 * kmem_cache_free.
2406 *
2407 * This is the case if we do RCU, have a constructor or
2408 * destructor or are poisoning the objects.
2409 */
2410 s->offset = size;
2411 size += sizeof(void *);
2412 }
2413
c12b3c62 2414#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2415 if (flags & SLAB_STORE_USER)
2416 /*
2417 * Need to store information about allocs and frees after
2418 * the object.
2419 */
2420 size += 2 * sizeof(struct track);
2421
be7b3fbc 2422 if (flags & SLAB_RED_ZONE)
81819f0f
CL
2423 /*
2424 * Add some empty padding so that we can catch
2425 * overwrites from earlier objects rather than let
2426 * tracking information or the free pointer be
0211a9c8 2427 * corrupted if a user writes before the start
81819f0f
CL
2428 * of the object.
2429 */
2430 size += sizeof(void *);
41ecc55b 2431#endif
672bba3a 2432
81819f0f
CL
2433 /*
2434 * Determine the alignment based on various parameters that the
65c02d4c
CL
2435 * user specified and the dynamic determination of cache line size
2436 * on bootup.
81819f0f
CL
2437 */
2438 align = calculate_alignment(flags, align, s->objsize);
2439
2440 /*
2441 * SLUB stores one object immediately after another beginning from
2442 * offset 0. In order to align the objects we have to simply size
2443 * each object to conform to the alignment.
2444 */
2445 size = ALIGN(size, align);
2446 s->size = size;
06b285dc
CL
2447 if (forced_order >= 0)
2448 order = forced_order;
2449 else
2450 order = calculate_order(size);
81819f0f 2451
834f3d11 2452 if (order < 0)
81819f0f
CL
2453 return 0;
2454
b7a49f0d 2455 s->allocflags = 0;
834f3d11 2456 if (order)
b7a49f0d
CL
2457 s->allocflags |= __GFP_COMP;
2458
2459 if (s->flags & SLAB_CACHE_DMA)
2460 s->allocflags |= SLUB_DMA;
2461
2462 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2463 s->allocflags |= __GFP_RECLAIMABLE;
2464
81819f0f
CL
2465 /*
2466 * Determine the number of objects per slab
2467 */
834f3d11 2468 s->oo = oo_make(order, size);
65c3376a 2469 s->min = oo_make(get_order(size), size);
205ab99d
CL
2470 if (oo_objects(s->oo) > oo_objects(s->max))
2471 s->max = s->oo;
81819f0f 2472
834f3d11 2473 return !!oo_objects(s->oo);
81819f0f
CL
2474
2475}
2476
81819f0f
CL
2477static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2478 const char *name, size_t size,
2479 size_t align, unsigned long flags,
51cc5068 2480 void (*ctor)(void *))
81819f0f
CL
2481{
2482 memset(s, 0, kmem_size);
2483 s->name = name;
2484 s->ctor = ctor;
81819f0f 2485 s->objsize = size;
81819f0f 2486 s->align = align;
ba0268a8 2487 s->flags = kmem_cache_flags(size, flags, name, ctor);
81819f0f 2488
06b285dc 2489 if (!calculate_sizes(s, -1))
81819f0f
CL
2490 goto error;
2491
3b89d7d8
DR
2492 /*
2493 * The larger the object size is, the more pages we want on the partial
2494 * list to avoid pounding the page allocator excessively.
2495 */
c0bdb232 2496 set_min_partial(s, ilog2(s->size));
81819f0f
CL
2497 s->refcount = 1;
2498#ifdef CONFIG_NUMA
e2cb96b7 2499 s->remote_node_defrag_ratio = 1000;
81819f0f 2500#endif
dfb4f096
CL
2501 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2502 goto error;
81819f0f 2503
dfb4f096 2504 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
81819f0f 2505 return 1;
4c93c355 2506 free_kmem_cache_nodes(s);
81819f0f
CL
2507error:
2508 if (flags & SLAB_PANIC)
2509 panic("Cannot create slab %s size=%lu realsize=%u "
2510 "order=%u offset=%u flags=%lx\n",
834f3d11 2511 s->name, (unsigned long)size, s->size, oo_order(s->oo),
81819f0f
CL
2512 s->offset, flags);
2513 return 0;
2514}
81819f0f
CL
2515
2516/*
2517 * Check if a given pointer is valid
2518 */
2519int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2520{
06428780 2521 struct page *page;
81819f0f
CL
2522
2523 page = get_object_page(object);
2524
2525 if (!page || s != page->slab)
2526 /* No slab or wrong slab */
2527 return 0;
2528
abcd08a6 2529 if (!check_valid_pointer(s, page, object))
81819f0f
CL
2530 return 0;
2531
2532 /*
2533 * We could also check if the object is on the slabs freelist.
2534 * But this would be too expensive and it seems that the main
6446faa2 2535 * purpose of kmem_ptr_valid() is to check if the object belongs
81819f0f
CL
2536 * to a certain slab.
2537 */
2538 return 1;
2539}
2540EXPORT_SYMBOL(kmem_ptr_validate);
2541
2542/*
2543 * Determine the size of a slab object
2544 */
2545unsigned int kmem_cache_size(struct kmem_cache *s)
2546{
2547 return s->objsize;
2548}
2549EXPORT_SYMBOL(kmem_cache_size);
2550
2551const char *kmem_cache_name(struct kmem_cache *s)
2552{
2553 return s->name;
2554}
2555EXPORT_SYMBOL(kmem_cache_name);
2556
33b12c38
CL
2557static void list_slab_objects(struct kmem_cache *s, struct page *page,
2558 const char *text)
2559{
2560#ifdef CONFIG_SLUB_DEBUG
2561 void *addr = page_address(page);
2562 void *p;
2563 DECLARE_BITMAP(map, page->objects);
2564
2565 bitmap_zero(map, page->objects);
2566 slab_err(s, page, "%s", text);
2567 slab_lock(page);
2568 for_each_free_object(p, s, page->freelist)
2569 set_bit(slab_index(p, s, addr), map);
2570
2571 for_each_object(p, s, addr, page->objects) {
2572
2573 if (!test_bit(slab_index(p, s, addr), map)) {
2574 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2575 p, p - addr);
2576 print_tracking(s, p);
2577 }
2578 }
2579 slab_unlock(page);
2580#endif
2581}
2582
81819f0f 2583/*
599870b1 2584 * Attempt to free all partial slabs on a node.
81819f0f 2585 */
599870b1 2586static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 2587{
81819f0f
CL
2588 unsigned long flags;
2589 struct page *page, *h;
2590
2591 spin_lock_irqsave(&n->list_lock, flags);
33b12c38 2592 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f
CL
2593 if (!page->inuse) {
2594 list_del(&page->lru);
2595 discard_slab(s, page);
599870b1 2596 n->nr_partial--;
33b12c38
CL
2597 } else {
2598 list_slab_objects(s, page,
2599 "Objects remaining on kmem_cache_close()");
599870b1 2600 }
33b12c38 2601 }
81819f0f 2602 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2603}
2604
2605/*
672bba3a 2606 * Release all resources used by a slab cache.
81819f0f 2607 */
0c710013 2608static inline int kmem_cache_close(struct kmem_cache *s)
81819f0f
CL
2609{
2610 int node;
2611
2612 flush_all(s);
2613
2614 /* Attempt to free all objects */
4c93c355 2615 free_kmem_cache_cpus(s);
f64dc58c 2616 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
2617 struct kmem_cache_node *n = get_node(s, node);
2618
599870b1
CL
2619 free_partial(s, n);
2620 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
2621 return 1;
2622 }
2623 free_kmem_cache_nodes(s);
2624 return 0;
2625}
2626
2627/*
2628 * Close a cache and release the kmem_cache structure
2629 * (must be used for caches created using kmem_cache_create)
2630 */
2631void kmem_cache_destroy(struct kmem_cache *s)
2632{
7ed9f7e5
PM
2633 if (s->flags & SLAB_DESTROY_BY_RCU)
2634 rcu_barrier();
81819f0f
CL
2635 down_write(&slub_lock);
2636 s->refcount--;
2637 if (!s->refcount) {
2638 list_del(&s->list);
a0e1d1be 2639 up_write(&slub_lock);
d629d819
PE
2640 if (kmem_cache_close(s)) {
2641 printk(KERN_ERR "SLUB %s: %s called for cache that "
2642 "still has objects.\n", s->name, __func__);
2643 dump_stack();
2644 }
81819f0f 2645 sysfs_slab_remove(s);
a0e1d1be
CL
2646 } else
2647 up_write(&slub_lock);
81819f0f
CL
2648}
2649EXPORT_SYMBOL(kmem_cache_destroy);
2650
2651/********************************************************************
2652 * Kmalloc subsystem
2653 *******************************************************************/
2654
ffadd4d0 2655struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
81819f0f
CL
2656EXPORT_SYMBOL(kmalloc_caches);
2657
81819f0f
CL
2658static int __init setup_slub_min_order(char *str)
2659{
06428780 2660 get_option(&str, &slub_min_order);
81819f0f
CL
2661
2662 return 1;
2663}
2664
2665__setup("slub_min_order=", setup_slub_min_order);
2666
2667static int __init setup_slub_max_order(char *str)
2668{
06428780 2669 get_option(&str, &slub_max_order);
818cf590 2670 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
2671
2672 return 1;
2673}
2674
2675__setup("slub_max_order=", setup_slub_max_order);
2676
2677static int __init setup_slub_min_objects(char *str)
2678{
06428780 2679 get_option(&str, &slub_min_objects);
81819f0f
CL
2680
2681 return 1;
2682}
2683
2684__setup("slub_min_objects=", setup_slub_min_objects);
2685
2686static int __init setup_slub_nomerge(char *str)
2687{
2688 slub_nomerge = 1;
2689 return 1;
2690}
2691
2692__setup("slub_nomerge", setup_slub_nomerge);
2693
81819f0f
CL
2694static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2695 const char *name, int size, gfp_t gfp_flags)
2696{
2697 unsigned int flags = 0;
2698
2699 if (gfp_flags & SLUB_DMA)
2700 flags = SLAB_CACHE_DMA;
2701
83b519e8
PE
2702 /*
2703 * This function is called with IRQs disabled during early-boot on
2704 * single CPU so there's no need to take slub_lock here.
2705 */
81819f0f 2706 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
319d1e24 2707 flags, NULL))
81819f0f
CL
2708 goto panic;
2709
2710 list_add(&s->list, &slab_caches);
83b519e8 2711
81819f0f
CL
2712 if (sysfs_slab_add(s))
2713 goto panic;
2714 return s;
2715
2716panic:
2717 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2718}
2719
2e443fd0 2720#ifdef CONFIG_ZONE_DMA
ffadd4d0 2721static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];
1ceef402
CL
2722
2723static void sysfs_add_func(struct work_struct *w)
2724{
2725 struct kmem_cache *s;
2726
2727 down_write(&slub_lock);
2728 list_for_each_entry(s, &slab_caches, list) {
2729 if (s->flags & __SYSFS_ADD_DEFERRED) {
2730 s->flags &= ~__SYSFS_ADD_DEFERRED;
2731 sysfs_slab_add(s);
2732 }
2733 }
2734 up_write(&slub_lock);
2735}
2736
2737static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2738
2e443fd0
CL
2739static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2740{
2741 struct kmem_cache *s;
2e443fd0
CL
2742 char *text;
2743 size_t realsize;
964cf35c 2744 unsigned long slabflags;
2e443fd0
CL
2745
2746 s = kmalloc_caches_dma[index];
2747 if (s)
2748 return s;
2749
2750 /* Dynamically create dma cache */
1ceef402
CL
2751 if (flags & __GFP_WAIT)
2752 down_write(&slub_lock);
2753 else {
2754 if (!down_write_trylock(&slub_lock))
2755 goto out;
2756 }
2757
2758 if (kmalloc_caches_dma[index])
2759 goto unlock_out;
2e443fd0 2760
7b55f620 2761 realsize = kmalloc_caches[index].objsize;
3adbefee
IM
2762 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2763 (unsigned int)realsize);
1ceef402
CL
2764 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2765
964cf35c
NP
2766 /*
2767 * Must defer sysfs creation to a workqueue because we don't know
2768 * what context we are called from. Before sysfs comes up, we don't
2769 * need to do anything because our sysfs initcall will start by
2770 * adding all existing slabs to sysfs.
2771 */
5caf5c7d 2772 slabflags = SLAB_CACHE_DMA|SLAB_NOTRACK;
964cf35c
NP
2773 if (slab_state >= SYSFS)
2774 slabflags |= __SYSFS_ADD_DEFERRED;
2775
1ceef402 2776 if (!s || !text || !kmem_cache_open(s, flags, text,
964cf35c 2777 realsize, ARCH_KMALLOC_MINALIGN, slabflags, NULL)) {
1ceef402
CL
2778 kfree(s);
2779 kfree(text);
2780 goto unlock_out;
dfce8648 2781 }
1ceef402
CL
2782
2783 list_add(&s->list, &slab_caches);
2784 kmalloc_caches_dma[index] = s;
2785
964cf35c
NP
2786 if (slab_state >= SYSFS)
2787 schedule_work(&sysfs_add_work);
1ceef402
CL
2788
2789unlock_out:
dfce8648 2790 up_write(&slub_lock);
1ceef402 2791out:
dfce8648 2792 return kmalloc_caches_dma[index];
2e443fd0
CL
2793}
2794#endif
2795
f1b26339
CL
2796/*
2797 * Conversion table for small slabs sizes / 8 to the index in the
2798 * kmalloc array. This is necessary for slabs < 192 since we have non power
2799 * of two cache sizes there. The size of larger slabs can be determined using
2800 * fls.
2801 */
2802static s8 size_index[24] = {
2803 3, /* 8 */
2804 4, /* 16 */
2805 5, /* 24 */
2806 5, /* 32 */
2807 6, /* 40 */
2808 6, /* 48 */
2809 6, /* 56 */
2810 6, /* 64 */
2811 1, /* 72 */
2812 1, /* 80 */
2813 1, /* 88 */
2814 1, /* 96 */
2815 7, /* 104 */
2816 7, /* 112 */
2817 7, /* 120 */
2818 7, /* 128 */
2819 2, /* 136 */
2820 2, /* 144 */
2821 2, /* 152 */
2822 2, /* 160 */
2823 2, /* 168 */
2824 2, /* 176 */
2825 2, /* 184 */
2826 2 /* 192 */
2827};
2828
81819f0f
CL
2829static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2830{
f1b26339 2831 int index;
81819f0f 2832
f1b26339
CL
2833 if (size <= 192) {
2834 if (!size)
2835 return ZERO_SIZE_PTR;
81819f0f 2836
f1b26339 2837 index = size_index[(size - 1) / 8];
aadb4bc4 2838 } else
f1b26339 2839 index = fls(size - 1);
81819f0f
CL
2840
2841#ifdef CONFIG_ZONE_DMA
f1b26339 2842 if (unlikely((flags & SLUB_DMA)))
2e443fd0 2843 return dma_kmalloc_cache(index, flags);
f1b26339 2844
81819f0f
CL
2845#endif
2846 return &kmalloc_caches[index];
2847}
2848
2849void *__kmalloc(size_t size, gfp_t flags)
2850{
aadb4bc4 2851 struct kmem_cache *s;
5b882be4 2852 void *ret;
81819f0f 2853
ffadd4d0 2854 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef 2855 return kmalloc_large(size, flags);
aadb4bc4
CL
2856
2857 s = get_slab(size, flags);
2858
2859 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2860 return s;
2861
5b882be4
EGM
2862 ret = slab_alloc(s, flags, -1, _RET_IP_);
2863
ca2b84cb 2864 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4
EGM
2865
2866 return ret;
81819f0f
CL
2867}
2868EXPORT_SYMBOL(__kmalloc);
2869
f619cfe1
CL
2870static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2871{
b1eeab67 2872 struct page *page;
f619cfe1 2873
b1eeab67
VN
2874 flags |= __GFP_COMP | __GFP_NOTRACK;
2875 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1
CL
2876 if (page)
2877 return page_address(page);
2878 else
2879 return NULL;
2880}
2881
81819f0f
CL
2882#ifdef CONFIG_NUMA
2883void *__kmalloc_node(size_t size, gfp_t flags, int node)
2884{
aadb4bc4 2885 struct kmem_cache *s;
5b882be4 2886 void *ret;
81819f0f 2887
057685cf 2888 if (unlikely(size > SLUB_MAX_SIZE)) {
5b882be4
EGM
2889 ret = kmalloc_large_node(size, flags, node);
2890
ca2b84cb
EGM
2891 trace_kmalloc_node(_RET_IP_, ret,
2892 size, PAGE_SIZE << get_order(size),
2893 flags, node);
5b882be4
EGM
2894
2895 return ret;
2896 }
aadb4bc4
CL
2897
2898 s = get_slab(size, flags);
2899
2900 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
2901 return s;
2902
5b882be4
EGM
2903 ret = slab_alloc(s, flags, node, _RET_IP_);
2904
ca2b84cb 2905 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4
EGM
2906
2907 return ret;
81819f0f
CL
2908}
2909EXPORT_SYMBOL(__kmalloc_node);
2910#endif
2911
2912size_t ksize(const void *object)
2913{
272c1d21 2914 struct page *page;
81819f0f
CL
2915 struct kmem_cache *s;
2916
ef8b4520 2917 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
2918 return 0;
2919
294a80a8 2920 page = virt_to_head_page(object);
294a80a8 2921
76994412
PE
2922 if (unlikely(!PageSlab(page))) {
2923 WARN_ON(!PageCompound(page));
294a80a8 2924 return PAGE_SIZE << compound_order(page);
76994412 2925 }
81819f0f 2926 s = page->slab;
81819f0f 2927
ae20bfda 2928#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
2929 /*
2930 * Debugging requires use of the padding between object
2931 * and whatever may come after it.
2932 */
2933 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2934 return s->objsize;
2935
ae20bfda 2936#endif
81819f0f
CL
2937 /*
2938 * If we have the need to store the freelist pointer
2939 * back there or track user information then we can
2940 * only use the space before that information.
2941 */
2942 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2943 return s->inuse;
81819f0f
CL
2944 /*
2945 * Else we can use all the padding etc for the allocation
2946 */
2947 return s->size;
2948}
b1aabecd 2949EXPORT_SYMBOL(ksize);
81819f0f
CL
2950
2951void kfree(const void *x)
2952{
81819f0f 2953 struct page *page;
5bb983b0 2954 void *object = (void *)x;
81819f0f 2955
2121db74
PE
2956 trace_kfree(_RET_IP_, x);
2957
2408c550 2958 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
2959 return;
2960
b49af68f 2961 page = virt_to_head_page(x);
aadb4bc4 2962 if (unlikely(!PageSlab(page))) {
0937502a 2963 BUG_ON(!PageCompound(page));
aadb4bc4
CL
2964 put_page(page);
2965 return;
2966 }
ce71e27c 2967 slab_free(page->slab, page, object, _RET_IP_);
81819f0f
CL
2968}
2969EXPORT_SYMBOL(kfree);
2970
2086d26a 2971/*
672bba3a
CL
2972 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2973 * the remaining slabs by the number of items in use. The slabs with the
2974 * most items in use come first. New allocations will then fill those up
2975 * and thus they can be removed from the partial lists.
2976 *
2977 * The slabs with the least items are placed last. This results in them
2978 * being allocated from last increasing the chance that the last objects
2979 * are freed in them.
2086d26a
CL
2980 */
2981int kmem_cache_shrink(struct kmem_cache *s)
2982{
2983 int node;
2984 int i;
2985 struct kmem_cache_node *n;
2986 struct page *page;
2987 struct page *t;
205ab99d 2988 int objects = oo_objects(s->max);
2086d26a 2989 struct list_head *slabs_by_inuse =
834f3d11 2990 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2086d26a
CL
2991 unsigned long flags;
2992
2993 if (!slabs_by_inuse)
2994 return -ENOMEM;
2995
2996 flush_all(s);
f64dc58c 2997 for_each_node_state(node, N_NORMAL_MEMORY) {
2086d26a
CL
2998 n = get_node(s, node);
2999
3000 if (!n->nr_partial)
3001 continue;
3002
834f3d11 3003 for (i = 0; i < objects; i++)
2086d26a
CL
3004 INIT_LIST_HEAD(slabs_by_inuse + i);
3005
3006 spin_lock_irqsave(&n->list_lock, flags);
3007
3008 /*
672bba3a 3009 * Build lists indexed by the items in use in each slab.
2086d26a 3010 *
672bba3a
CL
3011 * Note that concurrent frees may occur while we hold the
3012 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3013 */
3014 list_for_each_entry_safe(page, t, &n->partial, lru) {
3015 if (!page->inuse && slab_trylock(page)) {
3016 /*
3017 * Must hold slab lock here because slab_free
3018 * may have freed the last object and be
3019 * waiting to release the slab.
3020 */
3021 list_del(&page->lru);
3022 n->nr_partial--;
3023 slab_unlock(page);
3024 discard_slab(s, page);
3025 } else {
fcda3d89
CL
3026 list_move(&page->lru,
3027 slabs_by_inuse + page->inuse);
2086d26a
CL
3028 }
3029 }
3030
2086d26a 3031 /*
672bba3a
CL
3032 * Rebuild the partial list with the slabs filled up most
3033 * first and the least used slabs at the end.
2086d26a 3034 */
834f3d11 3035 for (i = objects - 1; i >= 0; i--)
2086d26a
CL
3036 list_splice(slabs_by_inuse + i, n->partial.prev);
3037
2086d26a
CL
3038 spin_unlock_irqrestore(&n->list_lock, flags);
3039 }
3040
3041 kfree(slabs_by_inuse);
3042 return 0;
3043}
3044EXPORT_SYMBOL(kmem_cache_shrink);
3045
b9049e23
YG
3046#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
3047static int slab_mem_going_offline_callback(void *arg)
3048{
3049 struct kmem_cache *s;
3050
3051 down_read(&slub_lock);
3052 list_for_each_entry(s, &slab_caches, list)
3053 kmem_cache_shrink(s);
3054 up_read(&slub_lock);
3055
3056 return 0;
3057}
3058
3059static void slab_mem_offline_callback(void *arg)
3060{
3061 struct kmem_cache_node *n;
3062 struct kmem_cache *s;
3063 struct memory_notify *marg = arg;
3064 int offline_node;
3065
3066 offline_node = marg->status_change_nid;
3067
3068 /*
3069 * If the node still has available memory. we need kmem_cache_node
3070 * for it yet.
3071 */
3072 if (offline_node < 0)
3073 return;
3074
3075 down_read(&slub_lock);
3076 list_for_each_entry(s, &slab_caches, list) {
3077 n = get_node(s, offline_node);
3078 if (n) {
3079 /*
3080 * if n->nr_slabs > 0, slabs still exist on the node
3081 * that is going down. We were unable to free them,
3082 * and offline_pages() function shoudn't call this
3083 * callback. So, we must fail.
3084 */
0f389ec6 3085 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
3086
3087 s->node[offline_node] = NULL;
3088 kmem_cache_free(kmalloc_caches, n);
3089 }
3090 }
3091 up_read(&slub_lock);
3092}
3093
3094static int slab_mem_going_online_callback(void *arg)
3095{
3096 struct kmem_cache_node *n;
3097 struct kmem_cache *s;
3098 struct memory_notify *marg = arg;
3099 int nid = marg->status_change_nid;
3100 int ret = 0;
3101
3102 /*
3103 * If the node's memory is already available, then kmem_cache_node is
3104 * already created. Nothing to do.
3105 */
3106 if (nid < 0)
3107 return 0;
3108
3109 /*
0121c619 3110 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
3111 * allocate a kmem_cache_node structure in order to bring the node
3112 * online.
3113 */
3114 down_read(&slub_lock);
3115 list_for_each_entry(s, &slab_caches, list) {
3116 /*
3117 * XXX: kmem_cache_alloc_node will fallback to other nodes
3118 * since memory is not yet available from the node that
3119 * is brought up.
3120 */
3121 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
3122 if (!n) {
3123 ret = -ENOMEM;
3124 goto out;
3125 }
5595cffc 3126 init_kmem_cache_node(n, s);
b9049e23
YG
3127 s->node[nid] = n;
3128 }
3129out:
3130 up_read(&slub_lock);
3131 return ret;
3132}
3133
3134static int slab_memory_callback(struct notifier_block *self,
3135 unsigned long action, void *arg)
3136{
3137 int ret = 0;
3138
3139 switch (action) {
3140 case MEM_GOING_ONLINE:
3141 ret = slab_mem_going_online_callback(arg);
3142 break;
3143 case MEM_GOING_OFFLINE:
3144 ret = slab_mem_going_offline_callback(arg);
3145 break;
3146 case MEM_OFFLINE:
3147 case MEM_CANCEL_ONLINE:
3148 slab_mem_offline_callback(arg);
3149 break;
3150 case MEM_ONLINE:
3151 case MEM_CANCEL_OFFLINE:
3152 break;
3153 }
dc19f9db
KH
3154 if (ret)
3155 ret = notifier_from_errno(ret);
3156 else
3157 ret = NOTIFY_OK;
b9049e23
YG
3158 return ret;
3159}
3160
3161#endif /* CONFIG_MEMORY_HOTPLUG */
3162
81819f0f
CL
3163/********************************************************************
3164 * Basic setup of slabs
3165 *******************************************************************/
3166
3167void __init kmem_cache_init(void)
3168{
3169 int i;
4b356be0 3170 int caches = 0;
81819f0f 3171
4c93c355
CL
3172 init_alloc_cpu();
3173
81819f0f
CL
3174#ifdef CONFIG_NUMA
3175 /*
3176 * Must first have the slab cache available for the allocations of the
672bba3a 3177 * struct kmem_cache_node's. There is special bootstrap code in
81819f0f
CL
3178 * kmem_cache_open for slab_state == DOWN.
3179 */
3180 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
83b519e8 3181 sizeof(struct kmem_cache_node), GFP_NOWAIT);
8ffa6875 3182 kmalloc_caches[0].refcount = -1;
4b356be0 3183 caches++;
b9049e23 3184
0c40ba4f 3185 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
81819f0f
CL
3186#endif
3187
3188 /* Able to allocate the per node structures */
3189 slab_state = PARTIAL;
3190
3191 /* Caches that are not of the two-to-the-power-of size */
4b356be0
CL
3192 if (KMALLOC_MIN_SIZE <= 64) {
3193 create_kmalloc_cache(&kmalloc_caches[1],
83b519e8 3194 "kmalloc-96", 96, GFP_NOWAIT);
4b356be0 3195 caches++;
4b356be0 3196 create_kmalloc_cache(&kmalloc_caches[2],
83b519e8 3197 "kmalloc-192", 192, GFP_NOWAIT);
4b356be0
CL
3198 caches++;
3199 }
81819f0f 3200
ffadd4d0 3201 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
81819f0f 3202 create_kmalloc_cache(&kmalloc_caches[i],
83b519e8 3203 "kmalloc", 1 << i, GFP_NOWAIT);
4b356be0
CL
3204 caches++;
3205 }
81819f0f 3206
f1b26339
CL
3207
3208 /*
3209 * Patch up the size_index table if we have strange large alignment
3210 * requirements for the kmalloc array. This is only the case for
6446faa2 3211 * MIPS it seems. The standard arches will not generate any code here.
f1b26339
CL
3212 *
3213 * Largest permitted alignment is 256 bytes due to the way we
3214 * handle the index determination for the smaller caches.
3215 *
3216 * Make sure that nothing crazy happens if someone starts tinkering
3217 * around with ARCH_KMALLOC_MINALIGN
3218 */
3219 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3220 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3221
12ad6843 3222 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
f1b26339
CL
3223 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3224
41d54d3b
CL
3225 if (KMALLOC_MIN_SIZE == 128) {
3226 /*
3227 * The 192 byte sized cache is not used if the alignment
3228 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3229 * instead.
3230 */
3231 for (i = 128 + 8; i <= 192; i += 8)
3232 size_index[(i - 1) / 8] = 8;
3233 }
3234
81819f0f
CL
3235 slab_state = UP;
3236
3237 /* Provide the correct kmalloc names now that the caches are up */
ffadd4d0 3238 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
81819f0f 3239 kmalloc_caches[i]. name =
83b519e8 3240 kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
81819f0f
CL
3241
3242#ifdef CONFIG_SMP
3243 register_cpu_notifier(&slab_notifier);
4c93c355
CL
3244 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3245 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3246#else
3247 kmem_size = sizeof(struct kmem_cache);
81819f0f
CL
3248#endif
3249
3adbefee
IM
3250 printk(KERN_INFO
3251 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
4b356be0
CL
3252 " CPUs=%d, Nodes=%d\n",
3253 caches, cache_line_size(),
81819f0f
CL
3254 slub_min_order, slub_max_order, slub_min_objects,
3255 nr_cpu_ids, nr_node_ids);
3256}
3257
7e85ee0c
PE
3258void __init kmem_cache_init_late(void)
3259{
7e85ee0c
PE
3260}
3261
81819f0f
CL
3262/*
3263 * Find a mergeable slab cache
3264 */
3265static int slab_unmergeable(struct kmem_cache *s)
3266{
3267 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3268 return 1;
3269
c59def9f 3270 if (s->ctor)
81819f0f
CL
3271 return 1;
3272
8ffa6875
CL
3273 /*
3274 * We may have set a slab to be unmergeable during bootstrap.
3275 */
3276 if (s->refcount < 0)
3277 return 1;
3278
81819f0f
CL
3279 return 0;
3280}
3281
3282static struct kmem_cache *find_mergeable(size_t size,
ba0268a8 3283 size_t align, unsigned long flags, const char *name,
51cc5068 3284 void (*ctor)(void *))
81819f0f 3285{
5b95a4ac 3286 struct kmem_cache *s;
81819f0f
CL
3287
3288 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3289 return NULL;
3290
c59def9f 3291 if (ctor)
81819f0f
CL
3292 return NULL;
3293
3294 size = ALIGN(size, sizeof(void *));
3295 align = calculate_alignment(flags, align, size);
3296 size = ALIGN(size, align);
ba0268a8 3297 flags = kmem_cache_flags(size, flags, name, NULL);
81819f0f 3298
5b95a4ac 3299 list_for_each_entry(s, &slab_caches, list) {
81819f0f
CL
3300 if (slab_unmergeable(s))
3301 continue;
3302
3303 if (size > s->size)
3304 continue;
3305
ba0268a8 3306 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
81819f0f
CL
3307 continue;
3308 /*
3309 * Check if alignment is compatible.
3310 * Courtesy of Adrian Drzewiecki
3311 */
06428780 3312 if ((s->size & ~(align - 1)) != s->size)
81819f0f
CL
3313 continue;
3314
3315 if (s->size - size >= sizeof(void *))
3316 continue;
3317
3318 return s;
3319 }
3320 return NULL;
3321}
3322
3323struct kmem_cache *kmem_cache_create(const char *name, size_t size,
51cc5068 3324 size_t align, unsigned long flags, void (*ctor)(void *))
81819f0f
CL
3325{
3326 struct kmem_cache *s;
3327
3328 down_write(&slub_lock);
ba0268a8 3329 s = find_mergeable(size, align, flags, name, ctor);
81819f0f 3330 if (s) {
42a9fdbb
CL
3331 int cpu;
3332
81819f0f
CL
3333 s->refcount++;
3334 /*
3335 * Adjust the object sizes so that we clear
3336 * the complete object on kzalloc.
3337 */
3338 s->objsize = max(s->objsize, (int)size);
42a9fdbb
CL
3339
3340 /*
3341 * And then we need to update the object size in the
3342 * per cpu structures
3343 */
3344 for_each_online_cpu(cpu)
3345 get_cpu_slab(s, cpu)->objsize = s->objsize;
6446faa2 3346
81819f0f 3347 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
a0e1d1be 3348 up_write(&slub_lock);
6446faa2 3349
7b8f3b66
DR
3350 if (sysfs_slab_alias(s, name)) {
3351 down_write(&slub_lock);
3352 s->refcount--;
3353 up_write(&slub_lock);
81819f0f 3354 goto err;
7b8f3b66 3355 }
a0e1d1be
CL
3356 return s;
3357 }
6446faa2 3358
a0e1d1be
CL
3359 s = kmalloc(kmem_size, GFP_KERNEL);
3360 if (s) {
3361 if (kmem_cache_open(s, GFP_KERNEL, name,
c59def9f 3362 size, align, flags, ctor)) {
81819f0f 3363 list_add(&s->list, &slab_caches);
a0e1d1be 3364 up_write(&slub_lock);
7b8f3b66
DR
3365 if (sysfs_slab_add(s)) {
3366 down_write(&slub_lock);
3367 list_del(&s->list);
3368 up_write(&slub_lock);
3369 kfree(s);
a0e1d1be 3370 goto err;
7b8f3b66 3371 }
a0e1d1be
CL
3372 return s;
3373 }
3374 kfree(s);
81819f0f
CL
3375 }
3376 up_write(&slub_lock);
81819f0f
CL
3377
3378err:
81819f0f
CL
3379 if (flags & SLAB_PANIC)
3380 panic("Cannot create slabcache %s\n", name);
3381 else
3382 s = NULL;
3383 return s;
3384}
3385EXPORT_SYMBOL(kmem_cache_create);
3386
81819f0f 3387#ifdef CONFIG_SMP
81819f0f 3388/*
672bba3a
CL
3389 * Use the cpu notifier to insure that the cpu slabs are flushed when
3390 * necessary.
81819f0f
CL
3391 */
3392static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3393 unsigned long action, void *hcpu)
3394{
3395 long cpu = (long)hcpu;
5b95a4ac
CL
3396 struct kmem_cache *s;
3397 unsigned long flags;
81819f0f
CL
3398
3399 switch (action) {
4c93c355
CL
3400 case CPU_UP_PREPARE:
3401 case CPU_UP_PREPARE_FROZEN:
3402 init_alloc_cpu_cpu(cpu);
3403 down_read(&slub_lock);
3404 list_for_each_entry(s, &slab_caches, list)
3405 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3406 GFP_KERNEL);
3407 up_read(&slub_lock);
3408 break;
3409
81819f0f 3410 case CPU_UP_CANCELED:
8bb78442 3411 case CPU_UP_CANCELED_FROZEN:
81819f0f 3412 case CPU_DEAD:
8bb78442 3413 case CPU_DEAD_FROZEN:
5b95a4ac
CL
3414 down_read(&slub_lock);
3415 list_for_each_entry(s, &slab_caches, list) {
4c93c355
CL
3416 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3417
5b95a4ac
CL
3418 local_irq_save(flags);
3419 __flush_cpu_slab(s, cpu);
3420 local_irq_restore(flags);
4c93c355
CL
3421 free_kmem_cache_cpu(c, cpu);
3422 s->cpu_slab[cpu] = NULL;
5b95a4ac
CL
3423 }
3424 up_read(&slub_lock);
81819f0f
CL
3425 break;
3426 default:
3427 break;
3428 }
3429 return NOTIFY_OK;
3430}
3431
06428780 3432static struct notifier_block __cpuinitdata slab_notifier = {
3adbefee 3433 .notifier_call = slab_cpuup_callback
06428780 3434};
81819f0f
CL
3435
3436#endif
3437
ce71e27c 3438void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 3439{
aadb4bc4 3440 struct kmem_cache *s;
94b528d0 3441 void *ret;
aadb4bc4 3442
ffadd4d0 3443 if (unlikely(size > SLUB_MAX_SIZE))
eada35ef
PE
3444 return kmalloc_large(size, gfpflags);
3445
aadb4bc4 3446 s = get_slab(size, gfpflags);
81819f0f 3447
2408c550 3448 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3449 return s;
81819f0f 3450
94b528d0
EGM
3451 ret = slab_alloc(s, gfpflags, -1, caller);
3452
3453 /* Honor the call site pointer we recieved. */
ca2b84cb 3454 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
3455
3456 return ret;
81819f0f
CL
3457}
3458
3459void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 3460 int node, unsigned long caller)
81819f0f 3461{
aadb4bc4 3462 struct kmem_cache *s;
94b528d0 3463 void *ret;
aadb4bc4 3464
ffadd4d0 3465 if (unlikely(size > SLUB_MAX_SIZE))
f619cfe1 3466 return kmalloc_large_node(size, gfpflags, node);
eada35ef 3467
aadb4bc4 3468 s = get_slab(size, gfpflags);
81819f0f 3469
2408c550 3470 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 3471 return s;
81819f0f 3472
94b528d0
EGM
3473 ret = slab_alloc(s, gfpflags, node, caller);
3474
3475 /* Honor the call site pointer we recieved. */
ca2b84cb 3476 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
3477
3478 return ret;
81819f0f
CL
3479}
3480
f6acb635 3481#ifdef CONFIG_SLUB_DEBUG
205ab99d
CL
3482static int count_inuse(struct page *page)
3483{
3484 return page->inuse;
3485}
3486
3487static int count_total(struct page *page)
3488{
3489 return page->objects;
3490}
3491
434e245d
CL
3492static int validate_slab(struct kmem_cache *s, struct page *page,
3493 unsigned long *map)
53e15af0
CL
3494{
3495 void *p;
a973e9dd 3496 void *addr = page_address(page);
53e15af0
CL
3497
3498 if (!check_slab(s, page) ||
3499 !on_freelist(s, page, NULL))
3500 return 0;
3501
3502 /* Now we know that a valid freelist exists */
39b26464 3503 bitmap_zero(map, page->objects);
53e15af0 3504
7656c72b
CL
3505 for_each_free_object(p, s, page->freelist) {
3506 set_bit(slab_index(p, s, addr), map);
53e15af0
CL
3507 if (!check_object(s, page, p, 0))
3508 return 0;
3509 }
3510
224a88be 3511 for_each_object(p, s, addr, page->objects)
7656c72b 3512 if (!test_bit(slab_index(p, s, addr), map))
53e15af0
CL
3513 if (!check_object(s, page, p, 1))
3514 return 0;
3515 return 1;
3516}
3517
434e245d
CL
3518static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3519 unsigned long *map)
53e15af0
CL
3520{
3521 if (slab_trylock(page)) {
434e245d 3522 validate_slab(s, page, map);
53e15af0
CL
3523 slab_unlock(page);
3524 } else
3525 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3526 s->name, page);
3527
3528 if (s->flags & DEBUG_DEFAULT_FLAGS) {
8a38082d
AW
3529 if (!PageSlubDebug(page))
3530 printk(KERN_ERR "SLUB %s: SlubDebug not set "
53e15af0
CL
3531 "on slab 0x%p\n", s->name, page);
3532 } else {
8a38082d
AW
3533 if (PageSlubDebug(page))
3534 printk(KERN_ERR "SLUB %s: SlubDebug set on "
53e15af0
CL
3535 "slab 0x%p\n", s->name, page);
3536 }
3537}
3538
434e245d
CL
3539static int validate_slab_node(struct kmem_cache *s,
3540 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
3541{
3542 unsigned long count = 0;
3543 struct page *page;
3544 unsigned long flags;
3545
3546 spin_lock_irqsave(&n->list_lock, flags);
3547
3548 list_for_each_entry(page, &n->partial, lru) {
434e245d 3549 validate_slab_slab(s, page, map);
53e15af0
CL
3550 count++;
3551 }
3552 if (count != n->nr_partial)
3553 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3554 "counter=%ld\n", s->name, count, n->nr_partial);
3555
3556 if (!(s->flags & SLAB_STORE_USER))
3557 goto out;
3558
3559 list_for_each_entry(page, &n->full, lru) {
434e245d 3560 validate_slab_slab(s, page, map);
53e15af0
CL
3561 count++;
3562 }
3563 if (count != atomic_long_read(&n->nr_slabs))
3564 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3565 "counter=%ld\n", s->name, count,
3566 atomic_long_read(&n->nr_slabs));
3567
3568out:
3569 spin_unlock_irqrestore(&n->list_lock, flags);
3570 return count;
3571}
3572
434e245d 3573static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
3574{
3575 int node;
3576 unsigned long count = 0;
205ab99d 3577 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d
CL
3578 sizeof(unsigned long), GFP_KERNEL);
3579
3580 if (!map)
3581 return -ENOMEM;
53e15af0
CL
3582
3583 flush_all(s);
f64dc58c 3584 for_each_node_state(node, N_NORMAL_MEMORY) {
53e15af0
CL
3585 struct kmem_cache_node *n = get_node(s, node);
3586
434e245d 3587 count += validate_slab_node(s, n, map);
53e15af0 3588 }
434e245d 3589 kfree(map);
53e15af0
CL
3590 return count;
3591}
3592
b3459709
CL
3593#ifdef SLUB_RESILIENCY_TEST
3594static void resiliency_test(void)
3595{
3596 u8 *p;
3597
3598 printk(KERN_ERR "SLUB resiliency testing\n");
3599 printk(KERN_ERR "-----------------------\n");
3600 printk(KERN_ERR "A. Corruption after allocation\n");
3601
3602 p = kzalloc(16, GFP_KERNEL);
3603 p[16] = 0x12;
3604 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3605 " 0x12->0x%p\n\n", p + 16);
3606
3607 validate_slab_cache(kmalloc_caches + 4);
3608
3609 /* Hmmm... The next two are dangerous */
3610 p = kzalloc(32, GFP_KERNEL);
3611 p[32 + sizeof(void *)] = 0x34;
3612 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3adbefee
IM
3613 " 0x34 -> -0x%p\n", p);
3614 printk(KERN_ERR
3615 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3616
3617 validate_slab_cache(kmalloc_caches + 5);
3618 p = kzalloc(64, GFP_KERNEL);
3619 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3620 *p = 0x56;
3621 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3622 p);
3adbefee
IM
3623 printk(KERN_ERR
3624 "If allocated object is overwritten then not detectable\n\n");
b3459709
CL
3625 validate_slab_cache(kmalloc_caches + 6);
3626
3627 printk(KERN_ERR "\nB. Corruption after free\n");
3628 p = kzalloc(128, GFP_KERNEL);
3629 kfree(p);
3630 *p = 0x78;
3631 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3632 validate_slab_cache(kmalloc_caches + 7);
3633
3634 p = kzalloc(256, GFP_KERNEL);
3635 kfree(p);
3636 p[50] = 0x9a;
3adbefee
IM
3637 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3638 p);
b3459709
CL
3639 validate_slab_cache(kmalloc_caches + 8);
3640
3641 p = kzalloc(512, GFP_KERNEL);
3642 kfree(p);
3643 p[512] = 0xab;
3644 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3645 validate_slab_cache(kmalloc_caches + 9);
3646}
3647#else
3648static void resiliency_test(void) {};
3649#endif
3650
88a420e4 3651/*
672bba3a 3652 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
3653 * and freed.
3654 */
3655
3656struct location {
3657 unsigned long count;
ce71e27c 3658 unsigned long addr;
45edfa58
CL
3659 long long sum_time;
3660 long min_time;
3661 long max_time;
3662 long min_pid;
3663 long max_pid;
174596a0 3664 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 3665 nodemask_t nodes;
88a420e4
CL
3666};
3667
3668struct loc_track {
3669 unsigned long max;
3670 unsigned long count;
3671 struct location *loc;
3672};
3673
3674static void free_loc_track(struct loc_track *t)
3675{
3676 if (t->max)
3677 free_pages((unsigned long)t->loc,
3678 get_order(sizeof(struct location) * t->max));
3679}
3680
68dff6a9 3681static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
3682{
3683 struct location *l;
3684 int order;
3685
88a420e4
CL
3686 order = get_order(sizeof(struct location) * max);
3687
68dff6a9 3688 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
3689 if (!l)
3690 return 0;
3691
3692 if (t->count) {
3693 memcpy(l, t->loc, sizeof(struct location) * t->count);
3694 free_loc_track(t);
3695 }
3696 t->max = max;
3697 t->loc = l;
3698 return 1;
3699}
3700
3701static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 3702 const struct track *track)
88a420e4
CL
3703{
3704 long start, end, pos;
3705 struct location *l;
ce71e27c 3706 unsigned long caddr;
45edfa58 3707 unsigned long age = jiffies - track->when;
88a420e4
CL
3708
3709 start = -1;
3710 end = t->count;
3711
3712 for ( ; ; ) {
3713 pos = start + (end - start + 1) / 2;
3714
3715 /*
3716 * There is nothing at "end". If we end up there
3717 * we need to add something to before end.
3718 */
3719 if (pos == end)
3720 break;
3721
3722 caddr = t->loc[pos].addr;
45edfa58
CL
3723 if (track->addr == caddr) {
3724
3725 l = &t->loc[pos];
3726 l->count++;
3727 if (track->when) {
3728 l->sum_time += age;
3729 if (age < l->min_time)
3730 l->min_time = age;
3731 if (age > l->max_time)
3732 l->max_time = age;
3733
3734 if (track->pid < l->min_pid)
3735 l->min_pid = track->pid;
3736 if (track->pid > l->max_pid)
3737 l->max_pid = track->pid;
3738
174596a0
RR
3739 cpumask_set_cpu(track->cpu,
3740 to_cpumask(l->cpus));
45edfa58
CL
3741 }
3742 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3743 return 1;
3744 }
3745
45edfa58 3746 if (track->addr < caddr)
88a420e4
CL
3747 end = pos;
3748 else
3749 start = pos;
3750 }
3751
3752 /*
672bba3a 3753 * Not found. Insert new tracking element.
88a420e4 3754 */
68dff6a9 3755 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
3756 return 0;
3757
3758 l = t->loc + pos;
3759 if (pos < t->count)
3760 memmove(l + 1, l,
3761 (t->count - pos) * sizeof(struct location));
3762 t->count++;
3763 l->count = 1;
45edfa58
CL
3764 l->addr = track->addr;
3765 l->sum_time = age;
3766 l->min_time = age;
3767 l->max_time = age;
3768 l->min_pid = track->pid;
3769 l->max_pid = track->pid;
174596a0
RR
3770 cpumask_clear(to_cpumask(l->cpus));
3771 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
3772 nodes_clear(l->nodes);
3773 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
3774 return 1;
3775}
3776
3777static void process_slab(struct loc_track *t, struct kmem_cache *s,
3778 struct page *page, enum track_item alloc)
3779{
a973e9dd 3780 void *addr = page_address(page);
39b26464 3781 DECLARE_BITMAP(map, page->objects);
88a420e4
CL
3782 void *p;
3783
39b26464 3784 bitmap_zero(map, page->objects);
7656c72b
CL
3785 for_each_free_object(p, s, page->freelist)
3786 set_bit(slab_index(p, s, addr), map);
88a420e4 3787
224a88be 3788 for_each_object(p, s, addr, page->objects)
45edfa58
CL
3789 if (!test_bit(slab_index(p, s, addr), map))
3790 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
3791}
3792
3793static int list_locations(struct kmem_cache *s, char *buf,
3794 enum track_item alloc)
3795{
e374d483 3796 int len = 0;
88a420e4 3797 unsigned long i;
68dff6a9 3798 struct loc_track t = { 0, 0, NULL };
88a420e4
CL
3799 int node;
3800
68dff6a9 3801 if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
ea3061d2 3802 GFP_TEMPORARY))
68dff6a9 3803 return sprintf(buf, "Out of memory\n");
88a420e4
CL
3804
3805 /* Push back cpu slabs */
3806 flush_all(s);
3807
f64dc58c 3808 for_each_node_state(node, N_NORMAL_MEMORY) {
88a420e4
CL
3809 struct kmem_cache_node *n = get_node(s, node);
3810 unsigned long flags;
3811 struct page *page;
3812
9e86943b 3813 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
3814 continue;
3815
3816 spin_lock_irqsave(&n->list_lock, flags);
3817 list_for_each_entry(page, &n->partial, lru)
3818 process_slab(&t, s, page, alloc);
3819 list_for_each_entry(page, &n->full, lru)
3820 process_slab(&t, s, page, alloc);
3821 spin_unlock_irqrestore(&n->list_lock, flags);
3822 }
3823
3824 for (i = 0; i < t.count; i++) {
45edfa58 3825 struct location *l = &t.loc[i];
88a420e4 3826
9c246247 3827 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 3828 break;
e374d483 3829 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
3830
3831 if (l->addr)
e374d483 3832 len += sprint_symbol(buf + len, (unsigned long)l->addr);
88a420e4 3833 else
e374d483 3834 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
3835
3836 if (l->sum_time != l->min_time) {
e374d483 3837 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
3838 l->min_time,
3839 (long)div_u64(l->sum_time, l->count),
3840 l->max_time);
45edfa58 3841 } else
e374d483 3842 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
3843 l->min_time);
3844
3845 if (l->min_pid != l->max_pid)
e374d483 3846 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
3847 l->min_pid, l->max_pid);
3848 else
e374d483 3849 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
3850 l->min_pid);
3851
174596a0
RR
3852 if (num_online_cpus() > 1 &&
3853 !cpumask_empty(to_cpumask(l->cpus)) &&
e374d483
HH
3854 len < PAGE_SIZE - 60) {
3855 len += sprintf(buf + len, " cpus=");
3856 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
174596a0 3857 to_cpumask(l->cpus));
45edfa58
CL
3858 }
3859
62bc62a8 3860 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
e374d483
HH
3861 len < PAGE_SIZE - 60) {
3862 len += sprintf(buf + len, " nodes=");
3863 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
45edfa58
CL
3864 l->nodes);
3865 }
3866
e374d483 3867 len += sprintf(buf + len, "\n");
88a420e4
CL
3868 }
3869
3870 free_loc_track(&t);
3871 if (!t.count)
e374d483
HH
3872 len += sprintf(buf, "No data\n");
3873 return len;
88a420e4
CL
3874}
3875
81819f0f 3876enum slab_stat_type {
205ab99d
CL
3877 SL_ALL, /* All slabs */
3878 SL_PARTIAL, /* Only partially allocated slabs */
3879 SL_CPU, /* Only slabs used for cpu caches */
3880 SL_OBJECTS, /* Determine allocated objects not slabs */
3881 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
3882};
3883
205ab99d 3884#define SO_ALL (1 << SL_ALL)
81819f0f
CL
3885#define SO_PARTIAL (1 << SL_PARTIAL)
3886#define SO_CPU (1 << SL_CPU)
3887#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 3888#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 3889
62e5c4b4
CG
3890static ssize_t show_slab_objects(struct kmem_cache *s,
3891 char *buf, unsigned long flags)
81819f0f
CL
3892{
3893 unsigned long total = 0;
81819f0f
CL
3894 int node;
3895 int x;
3896 unsigned long *nodes;
3897 unsigned long *per_cpu;
3898
3899 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
3900 if (!nodes)
3901 return -ENOMEM;
81819f0f
CL
3902 per_cpu = nodes + nr_node_ids;
3903
205ab99d
CL
3904 if (flags & SO_CPU) {
3905 int cpu;
81819f0f 3906
205ab99d
CL
3907 for_each_possible_cpu(cpu) {
3908 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
dfb4f096 3909
205ab99d
CL
3910 if (!c || c->node < 0)
3911 continue;
3912
3913 if (c->page) {
3914 if (flags & SO_TOTAL)
3915 x = c->page->objects;
3916 else if (flags & SO_OBJECTS)
3917 x = c->page->inuse;
81819f0f
CL
3918 else
3919 x = 1;
205ab99d 3920
81819f0f 3921 total += x;
205ab99d 3922 nodes[c->node] += x;
81819f0f 3923 }
205ab99d 3924 per_cpu[c->node]++;
81819f0f
CL
3925 }
3926 }
3927
205ab99d
CL
3928 if (flags & SO_ALL) {
3929 for_each_node_state(node, N_NORMAL_MEMORY) {
3930 struct kmem_cache_node *n = get_node(s, node);
3931
3932 if (flags & SO_TOTAL)
3933 x = atomic_long_read(&n->total_objects);
3934 else if (flags & SO_OBJECTS)
3935 x = atomic_long_read(&n->total_objects) -
3936 count_partial(n, count_free);
81819f0f 3937
81819f0f 3938 else
205ab99d 3939 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
3940 total += x;
3941 nodes[node] += x;
3942 }
3943
205ab99d
CL
3944 } else if (flags & SO_PARTIAL) {
3945 for_each_node_state(node, N_NORMAL_MEMORY) {
3946 struct kmem_cache_node *n = get_node(s, node);
81819f0f 3947
205ab99d
CL
3948 if (flags & SO_TOTAL)
3949 x = count_partial(n, count_total);
3950 else if (flags & SO_OBJECTS)
3951 x = count_partial(n, count_inuse);
81819f0f 3952 else
205ab99d 3953 x = n->nr_partial;
81819f0f
CL
3954 total += x;
3955 nodes[node] += x;
3956 }
3957 }
81819f0f
CL
3958 x = sprintf(buf, "%lu", total);
3959#ifdef CONFIG_NUMA
f64dc58c 3960 for_each_node_state(node, N_NORMAL_MEMORY)
81819f0f
CL
3961 if (nodes[node])
3962 x += sprintf(buf + x, " N%d=%lu",
3963 node, nodes[node]);
3964#endif
3965 kfree(nodes);
3966 return x + sprintf(buf + x, "\n");
3967}
3968
3969static int any_slab_objects(struct kmem_cache *s)
3970{
3971 int node;
81819f0f 3972
dfb4f096 3973 for_each_online_node(node) {
81819f0f
CL
3974 struct kmem_cache_node *n = get_node(s, node);
3975
dfb4f096
CL
3976 if (!n)
3977 continue;
3978
4ea33e2d 3979 if (atomic_long_read(&n->total_objects))
81819f0f
CL
3980 return 1;
3981 }
3982 return 0;
3983}
3984
3985#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3986#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3987
3988struct slab_attribute {
3989 struct attribute attr;
3990 ssize_t (*show)(struct kmem_cache *s, char *buf);
3991 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3992};
3993
3994#define SLAB_ATTR_RO(_name) \
3995 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3996
3997#define SLAB_ATTR(_name) \
3998 static struct slab_attribute _name##_attr = \
3999 __ATTR(_name, 0644, _name##_show, _name##_store)
4000
81819f0f
CL
4001static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4002{
4003 return sprintf(buf, "%d\n", s->size);
4004}
4005SLAB_ATTR_RO(slab_size);
4006
4007static ssize_t align_show(struct kmem_cache *s, char *buf)
4008{
4009 return sprintf(buf, "%d\n", s->align);
4010}
4011SLAB_ATTR_RO(align);
4012
4013static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4014{
4015 return sprintf(buf, "%d\n", s->objsize);
4016}
4017SLAB_ATTR_RO(object_size);
4018
4019static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4020{
834f3d11 4021 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4022}
4023SLAB_ATTR_RO(objs_per_slab);
4024
06b285dc
CL
4025static ssize_t order_store(struct kmem_cache *s,
4026 const char *buf, size_t length)
4027{
0121c619
CL
4028 unsigned long order;
4029 int err;
4030
4031 err = strict_strtoul(buf, 10, &order);
4032 if (err)
4033 return err;
06b285dc
CL
4034
4035 if (order > slub_max_order || order < slub_min_order)
4036 return -EINVAL;
4037
4038 calculate_sizes(s, order);
4039 return length;
4040}
4041
81819f0f
CL
4042static ssize_t order_show(struct kmem_cache *s, char *buf)
4043{
834f3d11 4044 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4045}
06b285dc 4046SLAB_ATTR(order);
81819f0f 4047
73d342b1
DR
4048static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4049{
4050 return sprintf(buf, "%lu\n", s->min_partial);
4051}
4052
4053static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4054 size_t length)
4055{
4056 unsigned long min;
4057 int err;
4058
4059 err = strict_strtoul(buf, 10, &min);
4060 if (err)
4061 return err;
4062
c0bdb232 4063 set_min_partial(s, min);
73d342b1
DR
4064 return length;
4065}
4066SLAB_ATTR(min_partial);
4067
81819f0f
CL
4068static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4069{
4070 if (s->ctor) {
4071 int n = sprint_symbol(buf, (unsigned long)s->ctor);
4072
4073 return n + sprintf(buf + n, "\n");
4074 }
4075 return 0;
4076}
4077SLAB_ATTR_RO(ctor);
4078
81819f0f
CL
4079static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4080{
4081 return sprintf(buf, "%d\n", s->refcount - 1);
4082}
4083SLAB_ATTR_RO(aliases);
4084
4085static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4086{
205ab99d 4087 return show_slab_objects(s, buf, SO_ALL);
81819f0f
CL
4088}
4089SLAB_ATTR_RO(slabs);
4090
4091static ssize_t partial_show(struct kmem_cache *s, char *buf)
4092{
d9acf4b7 4093 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4094}
4095SLAB_ATTR_RO(partial);
4096
4097static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4098{
d9acf4b7 4099 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4100}
4101SLAB_ATTR_RO(cpu_slabs);
4102
4103static ssize_t objects_show(struct kmem_cache *s, char *buf)
4104{
205ab99d 4105 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4106}
4107SLAB_ATTR_RO(objects);
4108
205ab99d
CL
4109static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4110{
4111 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4112}
4113SLAB_ATTR_RO(objects_partial);
4114
4115static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4116{
4117 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4118}
4119SLAB_ATTR_RO(total_objects);
4120
81819f0f
CL
4121static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4122{
4123 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4124}
4125
4126static ssize_t sanity_checks_store(struct kmem_cache *s,
4127 const char *buf, size_t length)
4128{
4129 s->flags &= ~SLAB_DEBUG_FREE;
4130 if (buf[0] == '1')
4131 s->flags |= SLAB_DEBUG_FREE;
4132 return length;
4133}
4134SLAB_ATTR(sanity_checks);
4135
4136static ssize_t trace_show(struct kmem_cache *s, char *buf)
4137{
4138 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4139}
4140
4141static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4142 size_t length)
4143{
4144 s->flags &= ~SLAB_TRACE;
4145 if (buf[0] == '1')
4146 s->flags |= SLAB_TRACE;
4147 return length;
4148}
4149SLAB_ATTR(trace);
4150
4151static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4152{
4153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4154}
4155
4156static ssize_t reclaim_account_store(struct kmem_cache *s,
4157 const char *buf, size_t length)
4158{
4159 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4160 if (buf[0] == '1')
4161 s->flags |= SLAB_RECLAIM_ACCOUNT;
4162 return length;
4163}
4164SLAB_ATTR(reclaim_account);
4165
4166static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4167{
5af60839 4168 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
81819f0f
CL
4169}
4170SLAB_ATTR_RO(hwcache_align);
4171
4172#ifdef CONFIG_ZONE_DMA
4173static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4174{
4175 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4176}
4177SLAB_ATTR_RO(cache_dma);
4178#endif
4179
4180static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4181{
4182 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4183}
4184SLAB_ATTR_RO(destroy_by_rcu);
4185
4186static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4187{
4188 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4189}
4190
4191static ssize_t red_zone_store(struct kmem_cache *s,
4192 const char *buf, size_t length)
4193{
4194 if (any_slab_objects(s))
4195 return -EBUSY;
4196
4197 s->flags &= ~SLAB_RED_ZONE;
4198 if (buf[0] == '1')
4199 s->flags |= SLAB_RED_ZONE;
06b285dc 4200 calculate_sizes(s, -1);
81819f0f
CL
4201 return length;
4202}
4203SLAB_ATTR(red_zone);
4204
4205static ssize_t poison_show(struct kmem_cache *s, char *buf)
4206{
4207 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4208}
4209
4210static ssize_t poison_store(struct kmem_cache *s,
4211 const char *buf, size_t length)
4212{
4213 if (any_slab_objects(s))
4214 return -EBUSY;
4215
4216 s->flags &= ~SLAB_POISON;
4217 if (buf[0] == '1')
4218 s->flags |= SLAB_POISON;
06b285dc 4219 calculate_sizes(s, -1);
81819f0f
CL
4220 return length;
4221}
4222SLAB_ATTR(poison);
4223
4224static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4225{
4226 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4227}
4228
4229static ssize_t store_user_store(struct kmem_cache *s,
4230 const char *buf, size_t length)
4231{
4232 if (any_slab_objects(s))
4233 return -EBUSY;
4234
4235 s->flags &= ~SLAB_STORE_USER;
4236 if (buf[0] == '1')
4237 s->flags |= SLAB_STORE_USER;
06b285dc 4238 calculate_sizes(s, -1);
81819f0f
CL
4239 return length;
4240}
4241SLAB_ATTR(store_user);
4242
53e15af0
CL
4243static ssize_t validate_show(struct kmem_cache *s, char *buf)
4244{
4245 return 0;
4246}
4247
4248static ssize_t validate_store(struct kmem_cache *s,
4249 const char *buf, size_t length)
4250{
434e245d
CL
4251 int ret = -EINVAL;
4252
4253 if (buf[0] == '1') {
4254 ret = validate_slab_cache(s);
4255 if (ret >= 0)
4256 ret = length;
4257 }
4258 return ret;
53e15af0
CL
4259}
4260SLAB_ATTR(validate);
4261
2086d26a
CL
4262static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4263{
4264 return 0;
4265}
4266
4267static ssize_t shrink_store(struct kmem_cache *s,
4268 const char *buf, size_t length)
4269{
4270 if (buf[0] == '1') {
4271 int rc = kmem_cache_shrink(s);
4272
4273 if (rc)
4274 return rc;
4275 } else
4276 return -EINVAL;
4277 return length;
4278}
4279SLAB_ATTR(shrink);
4280
88a420e4
CL
4281static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4282{
4283 if (!(s->flags & SLAB_STORE_USER))
4284 return -ENOSYS;
4285 return list_locations(s, buf, TRACK_ALLOC);
4286}
4287SLAB_ATTR_RO(alloc_calls);
4288
4289static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4290{
4291 if (!(s->flags & SLAB_STORE_USER))
4292 return -ENOSYS;
4293 return list_locations(s, buf, TRACK_FREE);
4294}
4295SLAB_ATTR_RO(free_calls);
4296
81819f0f 4297#ifdef CONFIG_NUMA
9824601e 4298static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 4299{
9824601e 4300 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
4301}
4302
9824601e 4303static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
4304 const char *buf, size_t length)
4305{
0121c619
CL
4306 unsigned long ratio;
4307 int err;
4308
4309 err = strict_strtoul(buf, 10, &ratio);
4310 if (err)
4311 return err;
4312
e2cb96b7 4313 if (ratio <= 100)
0121c619 4314 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 4315
81819f0f
CL
4316 return length;
4317}
9824601e 4318SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
4319#endif
4320
8ff12cfc 4321#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
4322static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4323{
4324 unsigned long sum = 0;
4325 int cpu;
4326 int len;
4327 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4328
4329 if (!data)
4330 return -ENOMEM;
4331
4332 for_each_online_cpu(cpu) {
4333 unsigned x = get_cpu_slab(s, cpu)->stat[si];
4334
4335 data[cpu] = x;
4336 sum += x;
4337 }
4338
4339 len = sprintf(buf, "%lu", sum);
4340
50ef37b9 4341#ifdef CONFIG_SMP
8ff12cfc
CL
4342 for_each_online_cpu(cpu) {
4343 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 4344 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 4345 }
50ef37b9 4346#endif
8ff12cfc
CL
4347 kfree(data);
4348 return len + sprintf(buf + len, "\n");
4349}
4350
4351#define STAT_ATTR(si, text) \
4352static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4353{ \
4354 return show_stat(s, buf, si); \
4355} \
4356SLAB_ATTR_RO(text); \
4357
4358STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4359STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4360STAT_ATTR(FREE_FASTPATH, free_fastpath);
4361STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4362STAT_ATTR(FREE_FROZEN, free_frozen);
4363STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4364STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4365STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4366STAT_ATTR(ALLOC_SLAB, alloc_slab);
4367STAT_ATTR(ALLOC_REFILL, alloc_refill);
4368STAT_ATTR(FREE_SLAB, free_slab);
4369STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4370STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4371STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4372STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4373STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4374STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
65c3376a 4375STAT_ATTR(ORDER_FALLBACK, order_fallback);
8ff12cfc
CL
4376#endif
4377
06428780 4378static struct attribute *slab_attrs[] = {
81819f0f
CL
4379 &slab_size_attr.attr,
4380 &object_size_attr.attr,
4381 &objs_per_slab_attr.attr,
4382 &order_attr.attr,
73d342b1 4383 &min_partial_attr.attr,
81819f0f 4384 &objects_attr.attr,
205ab99d
CL
4385 &objects_partial_attr.attr,
4386 &total_objects_attr.attr,
81819f0f
CL
4387 &slabs_attr.attr,
4388 &partial_attr.attr,
4389 &cpu_slabs_attr.attr,
4390 &ctor_attr.attr,
81819f0f
CL
4391 &aliases_attr.attr,
4392 &align_attr.attr,
4393 &sanity_checks_attr.attr,
4394 &trace_attr.attr,
4395 &hwcache_align_attr.attr,
4396 &reclaim_account_attr.attr,
4397 &destroy_by_rcu_attr.attr,
4398 &red_zone_attr.attr,
4399 &poison_attr.attr,
4400 &store_user_attr.attr,
53e15af0 4401 &validate_attr.attr,
2086d26a 4402 &shrink_attr.attr,
88a420e4
CL
4403 &alloc_calls_attr.attr,
4404 &free_calls_attr.attr,
81819f0f
CL
4405#ifdef CONFIG_ZONE_DMA
4406 &cache_dma_attr.attr,
4407#endif
4408#ifdef CONFIG_NUMA
9824601e 4409 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
4410#endif
4411#ifdef CONFIG_SLUB_STATS
4412 &alloc_fastpath_attr.attr,
4413 &alloc_slowpath_attr.attr,
4414 &free_fastpath_attr.attr,
4415 &free_slowpath_attr.attr,
4416 &free_frozen_attr.attr,
4417 &free_add_partial_attr.attr,
4418 &free_remove_partial_attr.attr,
4419 &alloc_from_partial_attr.attr,
4420 &alloc_slab_attr.attr,
4421 &alloc_refill_attr.attr,
4422 &free_slab_attr.attr,
4423 &cpuslab_flush_attr.attr,
4424 &deactivate_full_attr.attr,
4425 &deactivate_empty_attr.attr,
4426 &deactivate_to_head_attr.attr,
4427 &deactivate_to_tail_attr.attr,
4428 &deactivate_remote_frees_attr.attr,
65c3376a 4429 &order_fallback_attr.attr,
81819f0f
CL
4430#endif
4431 NULL
4432};
4433
4434static struct attribute_group slab_attr_group = {
4435 .attrs = slab_attrs,
4436};
4437
4438static ssize_t slab_attr_show(struct kobject *kobj,
4439 struct attribute *attr,
4440 char *buf)
4441{
4442 struct slab_attribute *attribute;
4443 struct kmem_cache *s;
4444 int err;
4445
4446 attribute = to_slab_attr(attr);
4447 s = to_slab(kobj);
4448
4449 if (!attribute->show)
4450 return -EIO;
4451
4452 err = attribute->show(s, buf);
4453
4454 return err;
4455}
4456
4457static ssize_t slab_attr_store(struct kobject *kobj,
4458 struct attribute *attr,
4459 const char *buf, size_t len)
4460{
4461 struct slab_attribute *attribute;
4462 struct kmem_cache *s;
4463 int err;
4464
4465 attribute = to_slab_attr(attr);
4466 s = to_slab(kobj);
4467
4468 if (!attribute->store)
4469 return -EIO;
4470
4471 err = attribute->store(s, buf, len);
4472
4473 return err;
4474}
4475
151c602f
CL
4476static void kmem_cache_release(struct kobject *kobj)
4477{
4478 struct kmem_cache *s = to_slab(kobj);
4479
4480 kfree(s);
4481}
4482
81819f0f
CL
4483static struct sysfs_ops slab_sysfs_ops = {
4484 .show = slab_attr_show,
4485 .store = slab_attr_store,
4486};
4487
4488static struct kobj_type slab_ktype = {
4489 .sysfs_ops = &slab_sysfs_ops,
151c602f 4490 .release = kmem_cache_release
81819f0f
CL
4491};
4492
4493static int uevent_filter(struct kset *kset, struct kobject *kobj)
4494{
4495 struct kobj_type *ktype = get_ktype(kobj);
4496
4497 if (ktype == &slab_ktype)
4498 return 1;
4499 return 0;
4500}
4501
4502static struct kset_uevent_ops slab_uevent_ops = {
4503 .filter = uevent_filter,
4504};
4505
27c3a314 4506static struct kset *slab_kset;
81819f0f
CL
4507
4508#define ID_STR_LENGTH 64
4509
4510/* Create a unique string id for a slab cache:
6446faa2
CL
4511 *
4512 * Format :[flags-]size
81819f0f
CL
4513 */
4514static char *create_unique_id(struct kmem_cache *s)
4515{
4516 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4517 char *p = name;
4518
4519 BUG_ON(!name);
4520
4521 *p++ = ':';
4522 /*
4523 * First flags affecting slabcache operations. We will only
4524 * get here for aliasable slabs so we do not need to support
4525 * too many flags. The flags here must cover all flags that
4526 * are matched during merging to guarantee that the id is
4527 * unique.
4528 */
4529 if (s->flags & SLAB_CACHE_DMA)
4530 *p++ = 'd';
4531 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4532 *p++ = 'a';
4533 if (s->flags & SLAB_DEBUG_FREE)
4534 *p++ = 'F';
5a896d9e
VN
4535 if (!(s->flags & SLAB_NOTRACK))
4536 *p++ = 't';
81819f0f
CL
4537 if (p != name + 1)
4538 *p++ = '-';
4539 p += sprintf(p, "%07d", s->size);
4540 BUG_ON(p > name + ID_STR_LENGTH - 1);
4541 return name;
4542}
4543
4544static int sysfs_slab_add(struct kmem_cache *s)
4545{
4546 int err;
4547 const char *name;
4548 int unmergeable;
4549
4550 if (slab_state < SYSFS)
4551 /* Defer until later */
4552 return 0;
4553
4554 unmergeable = slab_unmergeable(s);
4555 if (unmergeable) {
4556 /*
4557 * Slabcache can never be merged so we can use the name proper.
4558 * This is typically the case for debug situations. In that
4559 * case we can catch duplicate names easily.
4560 */
27c3a314 4561 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
4562 name = s->name;
4563 } else {
4564 /*
4565 * Create a unique name for the slab as a target
4566 * for the symlinks.
4567 */
4568 name = create_unique_id(s);
4569 }
4570
27c3a314 4571 s->kobj.kset = slab_kset;
1eada11c
GKH
4572 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4573 if (err) {
4574 kobject_put(&s->kobj);
81819f0f 4575 return err;
1eada11c 4576 }
81819f0f
CL
4577
4578 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4579 if (err)
4580 return err;
4581 kobject_uevent(&s->kobj, KOBJ_ADD);
4582 if (!unmergeable) {
4583 /* Setup first alias */
4584 sysfs_slab_alias(s, s->name);
4585 kfree(name);
4586 }
4587 return 0;
4588}
4589
4590static void sysfs_slab_remove(struct kmem_cache *s)
4591{
4592 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4593 kobject_del(&s->kobj);
151c602f 4594 kobject_put(&s->kobj);
81819f0f
CL
4595}
4596
4597/*
4598 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 4599 * available lest we lose that information.
81819f0f
CL
4600 */
4601struct saved_alias {
4602 struct kmem_cache *s;
4603 const char *name;
4604 struct saved_alias *next;
4605};
4606
5af328a5 4607static struct saved_alias *alias_list;
81819f0f
CL
4608
4609static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4610{
4611 struct saved_alias *al;
4612
4613 if (slab_state == SYSFS) {
4614 /*
4615 * If we have a leftover link then remove it.
4616 */
27c3a314
GKH
4617 sysfs_remove_link(&slab_kset->kobj, name);
4618 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
4619 }
4620
4621 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4622 if (!al)
4623 return -ENOMEM;
4624
4625 al->s = s;
4626 al->name = name;
4627 al->next = alias_list;
4628 alias_list = al;
4629 return 0;
4630}
4631
4632static int __init slab_sysfs_init(void)
4633{
5b95a4ac 4634 struct kmem_cache *s;
81819f0f
CL
4635 int err;
4636
0ff21e46 4637 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 4638 if (!slab_kset) {
81819f0f
CL
4639 printk(KERN_ERR "Cannot register slab subsystem.\n");
4640 return -ENOSYS;
4641 }
4642
26a7bd03
CL
4643 slab_state = SYSFS;
4644
5b95a4ac 4645 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 4646 err = sysfs_slab_add(s);
5d540fb7
CL
4647 if (err)
4648 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4649 " to sysfs\n", s->name);
26a7bd03 4650 }
81819f0f
CL
4651
4652 while (alias_list) {
4653 struct saved_alias *al = alias_list;
4654
4655 alias_list = alias_list->next;
4656 err = sysfs_slab_alias(al->s, al->name);
5d540fb7
CL
4657 if (err)
4658 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4659 " %s to sysfs\n", s->name);
81819f0f
CL
4660 kfree(al);
4661 }
4662
4663 resiliency_test();
4664 return 0;
4665}
4666
4667__initcall(slab_sysfs_init);
81819f0f 4668#endif
57ed3eda
PE
4669
4670/*
4671 * The /proc/slabinfo ABI
4672 */
158a9624 4673#ifdef CONFIG_SLABINFO
57ed3eda
PE
4674static void print_slabinfo_header(struct seq_file *m)
4675{
4676 seq_puts(m, "slabinfo - version: 2.1\n");
4677 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4678 "<objperslab> <pagesperslab>");
4679 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4680 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4681 seq_putc(m, '\n');
4682}
4683
4684static void *s_start(struct seq_file *m, loff_t *pos)
4685{
4686 loff_t n = *pos;
4687
4688 down_read(&slub_lock);
4689 if (!n)
4690 print_slabinfo_header(m);
4691
4692 return seq_list_start(&slab_caches, *pos);
4693}
4694
4695static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4696{
4697 return seq_list_next(p, &slab_caches, pos);
4698}
4699
4700static void s_stop(struct seq_file *m, void *p)
4701{
4702 up_read(&slub_lock);
4703}
4704
4705static int s_show(struct seq_file *m, void *p)
4706{
4707 unsigned long nr_partials = 0;
4708 unsigned long nr_slabs = 0;
4709 unsigned long nr_inuse = 0;
205ab99d
CL
4710 unsigned long nr_objs = 0;
4711 unsigned long nr_free = 0;
57ed3eda
PE
4712 struct kmem_cache *s;
4713 int node;
4714
4715 s = list_entry(p, struct kmem_cache, list);
4716
4717 for_each_online_node(node) {
4718 struct kmem_cache_node *n = get_node(s, node);
4719
4720 if (!n)
4721 continue;
4722
4723 nr_partials += n->nr_partial;
4724 nr_slabs += atomic_long_read(&n->nr_slabs);
205ab99d
CL
4725 nr_objs += atomic_long_read(&n->total_objects);
4726 nr_free += count_partial(n, count_free);
57ed3eda
PE
4727 }
4728
205ab99d 4729 nr_inuse = nr_objs - nr_free;
57ed3eda
PE
4730
4731 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
834f3d11
CL
4732 nr_objs, s->size, oo_objects(s->oo),
4733 (1 << oo_order(s->oo)));
57ed3eda
PE
4734 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4735 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4736 0UL);
4737 seq_putc(m, '\n');
4738 return 0;
4739}
4740
7b3c3a50 4741static const struct seq_operations slabinfo_op = {
57ed3eda
PE
4742 .start = s_start,
4743 .next = s_next,
4744 .stop = s_stop,
4745 .show = s_show,
4746};
4747
7b3c3a50
AD
4748static int slabinfo_open(struct inode *inode, struct file *file)
4749{
4750 return seq_open(file, &slabinfo_op);
4751}
4752
4753static const struct file_operations proc_slabinfo_operations = {
4754 .open = slabinfo_open,
4755 .read = seq_read,
4756 .llseek = seq_lseek,
4757 .release = seq_release,
4758};
4759
4760static int __init slab_proc_init(void)
4761{
4762 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4763 return 0;
4764}
4765module_init(slab_proc_init);
158a9624 4766#endif /* CONFIG_SLABINFO */